
Analysis and Design of Blockcipher
Based Cryptographic Algorithms

Inauguraldissertation

zur Erlangung des akademischen Grades
doctor rerum naturalium (Dr. rer. nat.)

der Bauhaus-Universität Weimar
an der Fakultät Medien

vorgelegt von
Ewan Fleischmann

Weimar, 2013

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224742551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Gutachter: Professor Dr. Stefan Lucks
Bauhaus-Universität Weimar

Dr. Martijn Stam, Lecturer
University of Bristol (Großbritannien)

Mündliche Prüfung: 13. Mai 2013

For my loving wife Ursula
and my three children Alissa, Nils, and Jana

Acknowledgments

First of all I want to thank all the people who helped me to make
this thesis successful. I would like to thank my PhD advisor Prof.
Dr. Stefan Lucks. The mix of freedom and support Stefan gave me is
unmatched and I’m very grateful for that. He always strived to keep
organizational work for us students down to a minimum.
Another person that I’m indebted to is Martijn Stam. He not only

agreed to serve as co-advisor for this thesis, but also gave me valuable
and detailed feedback on some of my results.
I also want to thank my colleagues Christian Forler, Michael Gorski

and Jakob Wenzel for good discussions, fun, friendship and proofread-
ing.

iii

iv

Abstract

This thesis focuses on the analysis and design of hash functions and
authenticated encryption schemes that are blockcipher based. We
give an introduction into these fields of research – taking in a block-
cipher based point of view – with special emphasis on the topics of
double length, double call blockcipher based compression functions.

The first main topic (thesis parts I - III) is on analysis and design of
hash functions. We start with a collision security analysis of some well
known double length blockcipher based compression functions and
hash functions: Abreast-DM, Tandem-DM and MDC-4. We also
propose new double length compression functions that have elevated
collision security guarantees. We complement the collision analysis
with a preimage analysis by stating (near) optimal security results for
Abreast-DM, Tandem-DM, and Hirose-DM. Also, some gener-
alizations are discussed. These are the first preimage security results
for blockcipher based double length hash functions that go beyond
the birthday barrier.

We then raise the abstraction level and analyze the notion of ’hash

v

function indifferentiability from a random oracle’. So we not anymore
focus on how to obtain a good compression function but, instead,
on how to obtain a good hash function using (other) cryptographic
primitives. In particular we give some examples when this strong
notion of hash function security might give questionable advice for
building a practical hash function.
In the second main topic (thesis part IV), which is on authenticated

encryption schemes, we present an on-line authenticated encryption
scheme, McOEx, that simultaneously achieves privacy and confiden-
tiality and is secure against nonce-misuse. It is the first dedicated
scheme that achieves high standards of security and – at the same
time – is on-line computable.

vi

Zusammenfassung

Die Schwerpunkte dieser Dissertation sind die Analyse und das Design
von blockchiffrenbasierten Hashfunktionen (Abschnitte I-III) sowie
die Entwicklung von robusten Verfahren zur authentifizierten Ver-
schlüsselung (Abschnitt IV). Die Arbeit beginnt mit einer Einführung
in diese Themengebiete, wobei – insbesondere bei den Hashfunktio-
nen – eine blockchiffrenzentrierte Perspektive eingenommen wird.

Die Abschnitte I-III dieser Dissertation beschäftigen sich mit der
Analyse und dem Design von Hashfunktionen. Zu Beginn werden die
Kollisionssicherheit einiger wohlbekannter Kompressions- und Hash-
funktionen mit zweifacher Blockchiffrenausgabelänge näher analysiert:
Abreast-DM, Tandem-DM undMDC-4. Ebenso werden neue De-
signs vorgestellt, welche erhöhte Kollisionssicherheitsgarantien haben.
Ergänzend zur Kollisionssicherheitsanalyse wird die Resistenz gegen
Urbildangriffe von Kompressionsfunktionen doppelter Ausgabelänge
untersucht. Dabei werden nahezu optimale Sicherheitsschranken für
Abreast-DM, Tandem-DM und Hirose-DM abgeleitet. Einige
Verallgemeinerungen sind ebenfalls Teil der Diskussion. Das sind

vii

die ersten Sicherheitsresultate gegen Urbildangriffe auf blockchiffren-
basierte Kompressionsfunktionen doppelter Länge, die weit über die
bis dahin bekannten Sicherheitsresultate hinausgehen.
Daran anschließend folgt eine Betrachtung, die auf einem erhöhten

Abstraktionslevel durchgeführt wird und den Begriff der Undifferen-
zierbarkeit einer Hashfunktion von einem Zufallsorakel diskutiert.
Hierbei liegt der Fokus nicht darauf, wie man eine gute Kompres-
sionfunktion auf Basis anderer kryptographischer Funktionen erstellt,
sondern auf dem Design einer Hashfunktionen auf Basis einer Kom-
pressionsfunktion. Unter Einnahme eines eher praktischen Stand-
punktes wird anhand einiger Beispiele aufgezeigt, dass die relativ
starke Eigenschaft der Undifferenzierbarkeit einer Hashfunktion zu
widersprüchlichen Designempfehlungen für praktikable Hashfunktio-
nen führen kann.
Im zweiten Schwerpunkt, in Abschnitt IV, werden Verfahren zur

authentifizierten Verschlüsselung behandelt. Es wird ein neues Schema
zur authentifizierten Verschlüsselung vorgestellt,McOEx. Es schützt
gleichzeitig die Integrität und die Vertrauchlichkeit einer Nachricht.
McOEx ist das erste konkrete Schema das sowohl robust gegen die
Wiederverwendung von Nonces ist und gleichzeitig on-line berechnet
werden kann.

viii

Contents

Introduction 1
Modern Cryptography . 1
How to read this thesis . 4

1. Cryptographic Hash Functions 7
1.1. Security Notions for Hash Functions 8
1.2. Iterated Hash Functions 12
1.3. Compression Functions Based on Block Ciphers 18
1.4. Double Length Compression Functions 24

I. Collision Security of Double Length Hash Func-
tions 39

2. Results Summary 41

3. Weimar-DM 45

ix

Contents

4. Abreast-DM, Cyclic-DL and Applications 49
4.1. Abreast-DM . 49
4.2. Cyclic-DL . 59
4.3. Applications . 68

5. Serial-DL, Tandem-DM and Applications 73
5.1. Serial-DL . 73
5.2. Generic-DL . 83
5.3. Applications . 86
5.4. Combinatorial Proofs 89

6. MDC-4 93
6.1. MDC-4 Hash Function 93
6.2. Collision Security . 96

II. Preimage Security of Double Length Compres-
sion Functions 119

7. Results Summary 121
7.1. Introduction . 121
7.2. Proof Model . 125

8. Applications 127
8.1. Example Application 127
8.2. Hirose-DM . 131
8.3. Weimar-DM . 134
8.4. Abreast-DM . 137
8.5. Tandem-DM . 144
8.6. Generalization . 147

x

Contents

III. On Ideal World Models for Hash Functions 153

9. Results Summary 155
9.1. Introduction . 155
9.2. (In)Security in the Indifferentiability World 156
9.3. Motivational Example 157

10.Ambiguous Security Recommendations 159
10.1. Preliminaries . 159
10.2. Composition . 163
10.3. NMAC . 170
10.4. Mix-Compress-Mix . 176
10.5. Shady Design Principles for Secure Hash Functions . . 180
10.6. Discussion . 181

IV. On-Line Authenticated Encryption for Practical
Applications 185

11.Results Summary 187
11.1. Introduction . 188
11.2.McOEx Instances . 193

12.Misuse Attacks on Authenticated Encryption Schemes 197
12.1. Schemes Without Claimed Resistance Against Nonce-

Misuse . 197
12.2. Off-Line Schemes Defeating Nonce-Misuse 202

13.Security Analysis of McOEx 203
13.1. Preliminaries . 203
13.2. Security Notions . 205
13.3. The McOEx Scheme 210

Conclusions 219

xi

Contents

List of Notations 223

List of Publications 225

Bibliography 231

Index 253

xii

Introduction

Modern Cryptography

Even in some contemporary publications, cryptology is described as
the art of codifying messages, so that they become unreadable1.
While being historically accurate, it does misrepresent the essence of
modern cryptography: First, secret communication based on codes
is only one of the current areas of activity, and, second, post-1980s
cryptography distinguishes itself from the ’art’ of classic cryptogra-
phy by its emphasis on definitions, precise assumptions and rigorous
proofs of security.

• Definitions: One of the most important contributions of mod-
ern cryptography is the development of formal definitions of
security. These are crucial in the design of any cryptographic
scheme: If you do not precisely know what you want how should

1A. Kahate, Cryptography and Network Security, McGraw-Hill, Second Edition
2008.

1

Introduction

there be a measure if one has successfully achieved it?

• Precise assumptions: Essentially all known cryptographic
schemes can only be proven secure when depending on some
believed – yet unproven – assumptions. The modern cryptog-
raphy approach states that these assumptions are completely
defined.

• Rigorous proofs of security: The first and the second idea
lay the groundwork for being able to use formal arguments
showing that a cryptographic scheme is secure. Always with
respect to clearly stated definitions and cryptographic assump-
tions. It is through this step that modern cryptography is nowa-
days more a science than an art.

One starts in modern cryptography by clearly defining the secu-
rity target and stating the assumptions. An example of a common
cryptographic assumptions in secret-key cryptography is postulating
the existence of a secure so-called cryptographic primitive like, e.g., a
blockcipher or a compression function. Another example, taken from
common public-key scenarios, is the postulated hardness, i.e., the as-
sumed practical unsolvability of a number theoretic problem like the
factoring of a sufficiently large compound number. Also, the notion
of secure is defined in more detail.
We then start from these atomic cryptographic primitives and

transform them into schemes. Good atomic primitives are rare. Some
of widely-used atomic block ciphers have never been convincingly bro-
ken, such as AES and DES2. But, on the contrary, most of the widely-
used hash functions have been at least severely harmed or completely
broken, such as, e.g., MD4, MD5, SHA-1, and RIPEMD. It appar-
ently seems that it is much more difficult to build good hash functions

2The best known practical attack on DES is still complete key search – although
some attacks are known that are much better in theory. Due the to short key-
size of 56-bit, DES is not recommended any more. But variants of DES,
e.g., Triple-DES, are still in use today: NIST considers Triple-DES with three
independent keys to be appropriate through 2030 [131].

2

than it is to build good block ciphers. Consequently, an important
effort in cryptography is to design new and efficient primitives and to
analyze the old ones. However, this is not the part of cryptography
we focus on in this thesis. One reason is that often the weak link in
real-world cryptography seems to be between atomic primitives and
schemes and not in the primitives themselves. It is in this transfor-
mation that the bulk of security flaws arise. And there is a science
that can do something about it, namely, provable security.
Throughout this thesis, we view a cryptographer as someone who

is responsible for turning atomic primitives into schemes. That is, we
focus on scheme design under the assumption that good atomic prim-
itives exist. Some examples of the kind of questions we are interested
in are these: What is the best way to use a blockcipher to build a
secure compression function that has a sufficiently long output? How
secure are these methods? What can happen if some definitions get
too strong for unambiguous ’what is best ’ recommendations? How
can we build robust ciphers that are on-line computable and guaran-
tee privacy and authenticity at the same time by only relying on a
blockcipher as a primitive.
A poorly designed scheme can be insecure even though the under-

lying atomic primitive is good. This is not the fault of the underlying
atomic primitive, but that primitive was somehow misused. We would
like to build on the strength of such primitives, especially block ci-
phers, in such a way that schemes can inherit this strength, not lose
it. The work inside the proofs now essentially consists in providing a
security reduction. A reduction shows that the only way to defeat the
scheme is to break the underlying atomic primitive. A reduction is a
proof that uses formal arguments to show that if the atomic primitive
does the job it is supposed to do, then the scheme does the job that it
is supposed to do. Believing this, it is no longer necessary to directly
cryptanalyze the protocol: if you were to find a weakness in it, you
would have found one in the underlying atomic primitive (or a flaw in
the proof). So if one is going to do cryptanalysis, one might as well
focus on the atomic primitive. And if we believe the latter is secure,
then we know, without further cryptanalysis of the scheme, that the

3

Introduction

scheme is secure, too.

How to Read this Thesis

One way to read this thesis is, of course, sequentially from cover to
cover. Apart from Chapter 1 where we introduce the concept of a
hash function in greater detail and discuss some related work, we
often provide theory and material on an as-needed basis. This helps
keeping cross-dependency relations to a minimum. So, the proficient
reader might well skip ahead and directly start with one of the four
thesis parts. Parts I-III strongly rely on the contents introduced in
Chapter 1 where the fourth part only lightly depends on it. However,
we refer to the appropriate sections of Chapter 1 when we use the
concepts for the first time.
Each of the four parts starts with a results summary (Chapters

2, 7, 9 and 11) aiming to provide an easily understandable overview
of the results obtained by the theorems, proofs and discussions that
follow.

Part I We give collision security results on some well-known block-
cipher based hash functions as Abreast-DM, Tandem-DM,
MDC-4 and some generalizations on them. Except forMDC-4,
the analysis is for the compression function.

Part II (Near) Optimal preimage results are presented for Abreast-
DM, Tandem-DM and Hirose-DM. Also, some generaliza-
tions are discussed and analyzed.

Part III In the third part, we make some observations on the well-
known notion of ’indifferentiability from a random oracle’ by
taking in a hash function designer’s point of view.

Part IV We present an new on-line authenticated encryption scheme,
McOEx, that simultaneously achieves privacy and confidential-
ity and is secure against nonce-reuse.

4

Preliminary versions of the results obtained in this thesis have been
published before in [3, 47, 51–54, 60–62, 99]. This material has been
thoroughly revised and some deficiencies have been fixed. Other
results in symmetric cryptography that are not considered in this
thesis and have been published during my studies can be found in
[39, 45, 46, 48–50, 55–59]. As they do not fit into the context of this
thesis, we have not included them. A complete list of publications
can be found at the back of this thesis on Pages 225-229.

5

6

1
Cryptographic Hash Functions

A cryptographic hash function is a function which maps an input of
arbitrary length – usually called the message – to an output of fixed
length. This output is often referred to as hash value, message digest
or just hash. Hash functions are commonly used for public-key en-
cryption, digital signatures, password protection, message authenti-
cation, key-derivation functions, pseudo-random number generators,
etc. Recently, cryptographic hash functions have received a huge
amount of attention due to the NIST SHA-3 contest [128]. This con-
test has been initiated since many of the prominent hash functions
(e.g., MD4 [142], MD5 [141], RIPEMD [71], SHA-0/1 [129]) have
been successfully attacked in several ways, e.g., [35, 70, 165, 166]. In
2012, the winner was announced (Keccak), now called SHA-3, as a
successor of the currently still unbroken SHA-2 [130]1 hash standard.

In this thesis, we use the unkeyed notion of hash functions as pro-
posed by Rogaway [147].

1Some even claim, that SHA-2 is so strong, that it might well serve as a backup
for SHA-3. (D.J. Bernstein, Dagstuhl Seminar on Symmetric Cryptography,
2012).

7

1. Cryptographic Hash Functions

Definition 1.1 (Hash Function). A hash function is a function
H : {0, 1}∗ → {0, 1}r for some integer value r > 0.

Practical designs of hash functions seem to come in two flavors:
provably-secure constructions based on number-theoretic assumptions
or highly-efficient constructions that are more heuristic in nature.
Examples of the former types can be found in [4, 15, 29] and are
based on problems from coding theory, number theory, or lattices.
But only the heuristic hash functions are the ones used in practice.
As it became apparent in the SHA-3 contest, and is especially true
for most second-round and any final-round candidates, there is a new
approach aiming to get the best of both worlds. In short, one tries
to get as much provable security results for some macro structure
as possible by assuming the security of one (small) atomic function
working inside. And then thoroughly analyzing and arguing that this
heuristically designed function is indeed at least as secure as claimed.
We usually call this function a cryptographic primitive. The first part
of the latter approach is also what this thesis is all about, since our
proofs come to an end at the heuristic borderline.

1.1. Security Notions for Hash Functions

Most cryptographers expect a good hash function somehow to behave
like a random oracle [12] which is restricted to a fixed output length.
Such an oracle behaves as if it had chosen its outputs randomly from
a set {0, 1}r, independently of the input, except that repeated queries
are always treated consistently. A random oracle is a mathematical
abstraction used in cryptographic proofs, hiding away virtually all
real world and implementation details. They are typically used when
no known implementable function provides the mathematical prop-
erties required for the proof – or when it gets too tedious to formalize
these. A security proof of a cryptographic scheme using a random

8

1.1. Security Notions for Hash Functions

oracle as a component function is said to be in the random oracle
model. From a theoretical point of view, it is clear that such a secu-
rity proof is only a heuristic indication of the security of the scheme
when instantiated with a particular hash function. In fact, many re-
cent separation results [8, 27, 36, 68, 118, 127] illustrate that various
cryptographic schemes are secure in the random oracle model but
still completely insecure for any efficient instantiation of the random
oracle. According to [96], all such counterexamples are ’artificial’ and
these results do not seem to attack any practically relevant scheme di-
rectly. Most cryptographers believe that a proof in the random oracle
model at least shows that there are no structural flaws in the design
of the scheme. In part III of this thesis, we discuss the issues one is
faced with, when trying to design a practical hash function that is as
close as possible to the merely abstract concept of a random oracle.

1.1.1. Defining Security

Apart from modeling a hash function as a random oracle, one can
define some simpler (and strictly weaker) properties that it should
provide. As for example stated in [120], a cryptographic hash func-
tion should at least be collision resistant, preimage resistant, and
second-preimage resistant. These properties are always defined in
terms of an algorithm that is called an adversary. We quantify the
insecurity of a cryptographic function by the success probability of
an optimal, resource-bounded adversary. Depending on the setting,
different notions of success and different resource-bounds apply for
the adversary. In this thesis, any analyzed cryptographic system is
an algorithm that uses (at least one) other component function – the
primitive – inside. As the adversary is assumed to have no knowl-
edge on the inner workings of these primitives – in the past always
formalized by assuming a secret key [147] – these are accessed by the
adversary via an oracle interface. Such an oracle interface essentially
formalizes the black-box mode of operation of an adversary towards
the scheme or primitive being attacked. It provides a clearly defined
set of exposed functions an adversary is able to send queries to and

9

1. Cryptographic Hash Functions

can expect to get an answer from. We always assume that such an ad-
versary is computationally unbounded, but is given resource-bounded
access to its oracles.
We now proceed with a short overview of the three most promi-

nent, so called standard-model, security assumptions of hash func-
tions: collision resistance, preimage resistance, and second-preimage
resistance.

Collision Resistance This property formalizes the requirement that
it should be difficult to find two different inputs that have the same
hash value. We define the collision security of a hash function H by
an experiment of an adversary A with a security parameter r.

Experiment 1.2 (Collision-Finding Exp-CollA,H(r)).

1. An adversary A is given oracle access to a hash function H :
{0, 1}∗ → {0, 1}r and returns two values x, x′ ∈ {0, 1}∗.

2. The output of the experiment is defined to be 1 if and only if
(iff) x 6= x and H(x) = H(x′). In such a case we say that A
has found a collision.

The advantage of an adversary A finding such a collision of H is
defined as

Definition 1.3. AdvcollH (A) = Pr
[
Exp-CollA,H(r) = 1

]
.

Since an adversary is only limited by the number of queries to its
oracles, we can write

AdvcollH (q) := max
A
{AdvcollH (A)},

10

1.1. Security Notions for Hash Functions

where the maximum is taken over all adversaries that ask at most q
oracle queries in total.
For an n-bit hash function the number of message pairs with q

messages is
(
q
2

)
= q(q − 1)/2 ≈ q2/2. An ideal r-bit hash function

returns random r-bit strings. Since two of these are equal with prob-
ability 2−r, one needs 2r pairs before a collision can be expected.
More precise, with q = 2(r+1)/2 queries, the probability of a collision
is 1− 1/e ≈ 0.63. This generic attack works for any hash function [9]
and is commonly known as the birthday attack.

Preimage Resistance Preimage resistance refers to the requirement
that, given a hash value, it is difficult to find a message that hashes
to this value. So finding a preimage for a hash function H refers to
the ability of an adversary to find a value x ∈ {0, 1}∗ for a specified
value y ∈ {0, 1}r such that y = H(x).2 There are some notions known
that formalize this case [149] by further clarifying how the value y
is chosen. In this thesis, we adopt everywhere preimage resistance
(epre) in the information-theoretic setting, which essentially lets the
adversary pre-commit to the hash value y, it likes to be challenged
on, before submitting any queries.
A method for finding preimages that works for any hash function

is the brute force attack. For this, one hashes random messages until
the hash value y is reached. Assuming that the output of the hash
function is balanced, an adversary is expected to try 2r messages in
order to be successful.

Second-Preimage Resistance Finding a second-preimage describes
the setting that an adversary is able to find a value x′ ∈ {0, 1}∗ for
a given value x ∈ {0, 1}∗ such that H(x) = H(x′). A brute force
preimage attack can also be used to find a second-preimage. One
simply ignores the message in the domain range that was used to

2We formally define a preimage experiment for compression functions on page
14 in this introductory chapter, but skip the experiment for hash functions
since we do not need it in this thesis.

11

1. Cryptographic Hash Functions

obtain the challenge hash value. By selecting messages at random
and assuming that the domain is much larger than the co-domain,
the probability of the second-preimage being identical to the first is
negligible - therefore one can ignore this possibility. So finding a
second-preimage seems to be never harder than finding a preimage,
except for maliciously designed hash functions [120, Note 9.20].

1.2. Iterated Hash Functions

We defined hash functions as being able to take an input of arbitrary
length and produce an output of fixed length. Since it seems to be
very difficult to develop directly a function being able to handle ef-
ficiently variable length inputs, all known hash functions are based
on a compression function that takes inputs of fixed size. Then,
a domain-extending transform is used in order to get a full-fledged
hash function. Lai and Massey [103] first called these types of hash
functions iterated. These transforms obtain their popularity by be-
ing property-preserving, which means that certain properties of the
compression function are transferred to the hash function. By far the
most prominent transform technique has been named by its inventors,
Merkle-Damg̊ard (MD) [34, 121] which preserves collision-resistance.
Since, in recent years, research has put a focus on designing construc-
tions that preserve as many properties of the compression function as
possible, many more constructions are known, e.g., [1, 2, 11, 28, 44].

Due to its historic relevance, we discuss the Merkle-Damg̊ard trans-
form in detail in Section 1.2.2 after introducing some basics on com-
pression functions.

1.2.1. Cryptographic Compression Functions

A cryptographic compression function transforms a fixed length input
to a smaller, fixed length, output.

12

1.2. Iterated Hash Functions

Definition 1.4 (Compression Function). A compression func-
tion is a function H : {0, 1}m × {0, 1}r → {0, 1}r for some integer
values m, r > 0.

Similar to hash functions, the most common security scenarios for
cryptographic compression functions are collision resistance, preim-
age resistance and second-preimage resistance.

Collision Resistance We again define the security by an experiment
with a security parameter r.

Experiment 1.5 (Collision-Finding Exp-CollA,H(r)).

1. An adversary A is given oracle access to a compression func-
tion H : {0, 1}m × {0, 1}r → {0, 1}r and returns two values
x, x′ ∈ {0, 1}m × {0, 1}r.

2. The output of the experiment is defined to be 1 iff x 6= x′ and
H(x) = H(x′). In such a case we say that A has found a
collision.

The advantage of an adversary A finding such a collision of H is
defined as

Definition 1.6. AdvcollH (A) = Pr
[
Exp-CollA,H(r) = 1

]
.

Since, as discussed, we limit an adversary only by the number of
queries to its oracles, we write

AdvcollH (q) := max
A
{AdvcollH (A)},

13

1. Cryptographic Hash Functions

where the maximum is taken over all adversaries that ask at most q
oracle queries in total.

Preimage Resistance We let AdvepreH (A) be the predicate that is
true iff the experiment Exp-EpreA,H(r) returns 1. The pre-commited
preimage value y is an omitted parameter of AdvepreH (A).

Experiment 1.7 (Preimage-Finding Exp-EpreA,H(r)).

1. An adversary A is given oracle access to a compression func-
tion H : {0, 1}m×{0, 1}r → {0, 1}r. A selects and announces
a point y ∈ {0, 1}r before making any oracle queries. It out-
puts a value x ∈ {0, 1}m × {0, 1}r.

2. The output of the experiment is defined to be 1 iff H(x) = y.
In such a case we say that A has found a preimage.

The advantage of an adversary A finding such a preimage of H is
defined as

Definition 1.8. AdvepreH (A) = Pr
[
Exp-EpreA,H(r) = 1

]
.

Again, we define

AdvepreH (q) := max
A
{AdvepreH (A)},

where the maximum is taken over all adversaries that ask at most q
oracle queries in total.

14

1.2. Iterated Hash Functions

Second-Preimage Resistance Finding a second-preimage describes
the setting that an adversary is able to find a value x′ ∈ {0, 1}m ×
{0, 1}r for a given value x ∈ {0, 1}m×{0, 1}r such thatH(x) = H(x′).
Since the related experiment and predicate is straightforward – and
is not needed in this thesis – we omit it here.

1.2.2. Merkle-Damg̊ard Iterated Hash Functions

At Crypto’89, Damg̊ard [34] and Merkle [121] independently proposed
an iterative structure to construct a collision resistant hash function
accepting arbitrary length inputs while utilizing only a fixed-input
length compression function. This iterated design has been called the
Merkle-Damg̊ard (MD) construction. It has influenced the design of
virtually all popular hash functions such as MD4 [142], MD5 [141],
SHA-0/1 [129], and the SHA-2 family [130].

Definition 1.9. Let H be as in Definition 1.4. Fix an initial value
V0 = IV ∈ {0, 1}r. Let M = (M1,M2, . . . ,Mℓ) be the message
input where Mi ∈ {0, 1}m for 1 ≤ i ≤ ℓ. The iterated hash function
H is the hash function H : ({0, 1}m)∗ −→ {0, 1}r returning the hash
value Vℓ which is computed by Vi+1 = H(Mi+1, Vi), for 0 ≤ i < ℓ.

Since the total number of bits of a message M , denoted by |M |, is
not necessary a multiple ofm, a padding procedure is usually specified.
This padding procedure can also be applied if |M | is a multiple of m
since it can serve as a pre-processing function. This additional stage
is sometimes called message expansion. The most common padding
procedure is as follows:

10∗-Padding-Rule. The message is padded on the right
with a 1 followed, if necessary, by 0’s until the last block
becomes complete. If the last block is complete, a new
block is added to the message, equal to a 1 followed by
0’s.

15

1. Cryptographic Hash Functions

There are numerous other padding rules known and the choice de-
pends on the applications. More examples are discussed in [136,
Chap. 2.4.1]. As we will see now, the length of the message might
also be included into the padding as a security measure.
Damg̊ard and Merkle independently provided theorems in their

papers [34, 121] that essentially show Theorem 1.10.

Theorem 1.10 (Merkle-Damg̊ard). If the IV is fixed and if the
padding procedure includes the length of the input into the padding
bits, then H is collision resistant if H is collision resistant.

Fixing the IV and adding a representation of the message length
is called MD - strengthening.

A related work by Lai and Massey [103] considered the relation
between the compression function and the iterated hash function with
respect to second-preimage resistance.

Theorem 1.11 (Lai-Massey). Let IV be fixed and let the padding
procedure include the length of the input into the padding bits. Let
the input M be at least two blocks, excluding padding. Then, finding
a second-preimage for the iterated hash function H requires 2r oper-
ations if and only if finding a preimage for the compression function
H requires 2r operations (with arbitrary chaining input).

1.2.3. Attacks on Iterated Hash Functions

Although the Merkle-Damg̊ard construction provably preserves the
collision resistance of the compression function, some other properties
are not inherited by H from H. There are currently some attacks
known that exploit the iterated structure of the hash function, but

16

1.2. Iterated Hash Functions

do not utilize special properties of the compression function itself.
Examples are multicollisions [84], the herding attack [87] or a second-
preimage attack [88]. It seems that the MD transform does not have
all the desired properties one demands from a general purpose hash
function.

Apart from these structural attacks, one can always try to exploit
the detailed inner workings of the compression functions. Often, but
not always, compression function weaknesses harm the hash function
built on it as well.

1.2.4. Ideal World Model for Iterated Hash Functions

Motivated by the practical need to ’say anything about structural
flaws in the design of the hash function H itself ’, Coron et al. [30]
presented a new notion of security for cryptographic hash functions
which is called indifferentiability. It serves as a method to compare
an iterated hash function with a random oracle. In short, if one
models the compression function(s) as random oracles with fixed-size
inputs, then the iterated hash function composed from these com-
pression functions should be indifferentiable from a random oracle
with variably-sized inputs. They propose this as a practically rele-
vant criterion, e.g., to separate practical hash functions with a good
structure from those which might suffer from structural flaws, espe-
cially with regard to the SHA-3 [91, 132] contests. The neat thing
about indifferentiability is that, if one proves that a hash function
H is indifferential to a random oracle, one can replace the random
oracle with this function and the whole scheme remains secure.

There are also three other comparison methods known and dis-
cussed in literature: preimage awareness, indifferentiability from a
public-use random oracle and indistinguishability. A more detailed
discussion of these techniques is given in Part III of this thesis, where
we analyze some practically relevant issues of the notion indifferen-
tiability from a random oracle.

17

1. Cryptographic Hash Functions

1.3. Compression Functions Based on Block
Ciphers

A blockcipher is a combined encryption/decryption cryptographic
primitive. Most hash functions in use today are based on a block-
cipher, but they are often not considered as such, since the blockci-
pher was designed for the hash function specifically, and was never
intended to be used for encryption. We call these hash functions ded-
icated hash functions. This is in contrast to blockcipher based hash
functions which only make use of an existing – general purpose –
blockcipher. An advantage of dedicated hash function is that they
are likely to be more efficient. Also, the use of block ciphers for pur-
poses they were not designed for may reveal weaknesses which are
not relevant in the case of encryption.

But despite these apparent disadvantages, there are several rea-
sons for the recent resurgence of interest in blockcipher based hash
function designs and their analysis. Presumably the most important
one being the already discussed breakdown of virtually any widely-
employed hash function which has stimulated researchers to look for
alternatives. Generic blockcipher based constructions seem promis-
ing since they are very well known – they even predate the dedicated
block-cipher based MD4-approach [115]. Also, many of the SHA-3 de-
signs like Skein [43], SHAvite-3 [17], and SIMD [109] use blockcipher
based instantiations. Another reason for the resurgence of interest
in blockcipher based hash functions is due to the rise of resource
restricted devices such as RFID tags or smart cards. A hardware
designer only needs to implement a blockcipher in order to obtain an
encryption function as well as a hash function.

1.3.1. Blockciphers

A (k, n) blockcipher is a keyed family of permutations consisting of
two paired algorithms E : {0, 1}k × {0, 1}n → {0, 1}n and E−1 :
{0, 1}k × {0, 1}n → {0, 1}n both accepting a key of size k bits and

18

1.3. Compression Functions Based on Block Ciphers

an input block of size n bits for some k, n > 0. For positive val-
ues k, n, Block(k, n) is the set of all (k, n) block ciphers. For any
E ∈ Block(k, n) and any fixed key K ∈ {0, 1}k, decryption E−1K :=
E−1(K, ·) is the inverse function of encryption EK := E(K, ·), so that
E−1K (EK(X)) = X holds for any admissible input X ∈ {0, 1}n.

Security Goals

Ideally, one models a blockcipher as a family of random permutations
{EK}, whereas the random permutations are chosen independently
for each key K, i.e., formally any EK is selected at random from
Block(k, n). This setting is called the ideal cipher model [19, 42, 90].
Clearly, no practical blockcipher is an ideal cipher. Similar to the
random oracle model, there are also – arguably maliciously designed
– separation results known [18].

A ’weaker’ variant to saying that a blockcipher is modeled as an
ideal cipher is given by the common notion of a pseudorandom per-
mutation (PRP). Intuitively, we say that a blockcipher is a PRP if no
adversary running in polynomial time exists, which can distinguish
between an ’ideal cipher’ and the actual cipher EK – assuming a ran-
domly chosen secret key K that is not known to the adversary. So
a PRP is a computational relaxation of the purely abstract concept
of an ideal cipher. We note that we skip a formal definition of this
classic PRP security notion, since we do not require it for our later
discussion. A considerably stronger security notion than a PRP is
a RK-PRP which is a PRP also secure against related-key attacks.
In short, we say that a cipher is a RK-PRP, if the cipher is a PRP
and remains secure if we give the adversary some control on key-
differences used for encryption/decryption. The related key notions
relevant in this thesis are given in Definition 1.12 using the concepts
of Section 1.3.1.

19

1. Cryptographic Hash Functions

Attack Settings

In order to assess the security of any given blockcipher, one usually
considers an adversary having access to some information (i.e., the
power of the adversary) trying to achieve a specific goal (e.g., show-
ing that an efficient distinguisher between this cipher and a PRP
exists). Common information settings of an adversary are (in order
of severity):

• Ciphertext-only This is the most basic type and refers to the
scenario where the adversary just observes ciphertexts.

• Known Plaintext (KP) Here, the adversary learns one or
more pairs of plaintexts/ciphertexts encrypted under the same
key.

• Chosen Plaintext (CP) In this scenario, the adversary has
the ability to obtain the encryption of plaintexts of its choice.

• Chosen Ciphertext (CC) The final type is one where the
adversary is given the capability to not only obtain encryptions
of plaintexts, but also decryptions of ciphertexts of its choice.

The first two types are called passive adversaries, the last two types
are called active adversaries.

Capabilities of an Active Adversary The adversary may make a
forward query (K,X)fwd to discover the corresponding value Y =
E(K,X), or the adversary may make a backward query (K,Y)bwd,
so as to learn the corresponding value X = E−1(K,Y) such that
E(K,X) = Y . Either way, the result of the query is stored in a
triple (Ki, Xi, Yi) := (K,X, Y) and the query history Q is the tuple
(Q1, . . . , Qq), where Qi = (Ki, Xi, Yi) and q is the total number of
queries made by the adversary. Without loss of generality, we al-
ways assume that A asks at most only once on a triplet of a key
Ki, a plaintext Xi, and a ciphertext Yi obtained by a query and the
corresponding reply.

20

1.3. Compression Functions Based on Block Ciphers

Definition 1.12. Let E ∈ Block(k, n) and denote by E−1 the cor-
responding inverse. Let ϕ : {0, 1}k × {0, 1}n → {0, 1}k. A fixed
related key adversary A has access to an E oracle with two param-
eters such that it can query either Eϕ(K,·)(·) or its inverse. Let
π ∈ Block(n, n) and π−1 denote the corresponding reverse. By
writing oracles that are given to an adversary as superscripts, we
define the related-key (RK) advantage [112] of A in breaking E as

AdvCPA-RKPRP
E (A) =

∣∣Pr[K $← {0, 1}k : AEϕ(K,·)(·) ⇒ 1]

− Pr[π
$← Perm(n, n) : Aπ(·,·) ⇒ 1]

∣∣,

AdvCCA-RKPRP
E (A) =

∣∣Pr[K $← {0, 1}k : AEϕ(K,·)(·),E
−1
ϕ(K,·)

(·) ⇒ 1]

− Pr[π
$← Perm(n, n) : Aπ(·,·),π−1(·,·) ⇒ 1]

∣∣.

1.3.2. Single Length Compression Functions

Generally speaking, a single length (SL) blockcipher based compres-
sion function is a compression functionH : {0, 1}n×{0, 1}n → {0, 1}n
using a blockcipher with n-bit block size inside. The idea was first
discussed in literature by Rabin [115]. Most SL functions use a block-
cipher from Block(n, n) and compress a 2n-bit string to an n-bit
string. Popular examples are the Davies-Meyer (DM) [167] mode

H(M,U) = EM (U)⊕ U,

the Matyas-Meyer-Oseas (MMO) [117] mode

H(M,U) = EU (M)⊕M,

and the Miyaguchi-Preneel mode (MP) [123, 136] mode

H(M,U) = EU (M)⊕M ⊕ U.

21

1. Cryptographic Hash Functions

The ⊕ operation is usually called feed-forward. Any of the three
examples have been proven to be collision resistant and/or one-way
in the publications referenced above. But clearly, there are a lot more
simple combinations possible, namely 64, by choosing for plaintext,
ciphertext and the feed-forwarded value either the chaining value U ,
the message M , U ⊕M , or a constant. These possibilities were first
systematically studied by Preneel et al. [138], which found attacks on
any of them – except 12 combinations. Among these 12 apparently
secure ones were DM, MMO and MP. A rigorous and proof-centric
analysis of these 64 modes was given by Black et al. [19], who not
only confirmed the analysis of the secure 12 but added another 8
constructions to the list to be secure in the iteration. This means
that there are attacks known on the compression function itself, but
if used inside of an iterated hash function these 8 might also be safe
to use. The analysis in [19] is in the ideal cipher model just as any
hash function security proof in this thesis.

Practical Relevance

Assume an iterated mode of operation with U being the chaining
value and M the message. The DM mode has the advantage of know-
ing the key of the block ciphers used in advance which may lead to
faster implementations since the key-scheduler can be run in paral-
lel prior to having access to the chaining value result of the foregoing
computation. This advantage can also be seen as a disadvantage since
the adversary then has complete control over the key. Also, DM does
not require U and M to be of equal length.

For example, DM is used in the SHA-2 hash function family [130],
MMO is the basis of the MDC-2 and MDC-4 double length con-
structions discussed in Section 1.4 and MP is utilized in Whirlpool
[139] and N-Hash [123].

22

1.3. Compression Functions Based on Block Ciphers

Single Length (SL) Framework

Stam introduced a framework [160] that aims to provide more insight
into SL compression functions. It works as follows. Given a message
M ∈ {0, 1}k and a chaining value U ∈ {0, 1}n and two functions, for
pre-processing and post-processing,

CPRE :{0, 1}k × {0, 1}n → {0, 1}k × {0, 1}n and

CPOST :{0, 1}k × {0, 1}n × {0, 1}n → {0, 1}n,

the new chaining value V is computed by:

1. Prepare key and plaintext: (K,X)← CPRE(M,U).

2. Set Y ← EK(X).

3. Output V ← CPOST (M,U, Y).

Since an adversary might also be asking for inverse queries, a modified
post-processing functionCAUX(K,X, Y) = CPOST (C−PRE(K,X), Y)
is also defined for convenience. In the case of CPRE being bijective,
C−PRE(·) denotes the inverse function of CPRE(·). For example,
choosing |X| = |K| = |M | = |U | = |V | = |Y | = n and a blockci-
pher E ∈ Block(n, n), the 12 secure SL schemes can be derived for
appropriate choices of CPRE and CPOST . In fact, Stam’s analysis
also covers more general choices by allowing values larger than the
block size n. This framework, for a blockcipher E ∈ Block(n, n),
is shown in Figure 1.1. Given a query (K,X, Y), we call V =
CPOST (C−PRE(K,X), Y) the post-output of that query.

The SL compression functions have been categorized [19, 160] into
the following three groups:

(1) Type-I: The compression function is collision- and preimage re-
sistant (12 out of 64).

(2) Type-II: The compression function is ’secure’ only in the iteration
(8 out of 64).

23

1. Cryptographic Hash Functions

CPRE CPOST(M,U) V
nn

k

k + n

k + n

KT n

E

Figure 1.1.: Single Length Compression Function, E ∈ Block(k, n).
The gray notch inside the cipher rectangle indicates the
input used as a key.

(3) Insecure: The compression function is not secure, i.e., there are
attacks known.

In order to get a Type-I compression function, Stam proved that it
is sufficient to show that CPRE , CPOST (M,U, ·) and CAUX(K, ·, Y)
are bijective.

1.4. Double Length Compression Functions

Due to the short output length of most practical block ciphers, it
became evident that – for typical block ciphers and security expecta-
tions – the hash function needs to output a digest that is considerably
larger than the blockcipher’s block size. As a result, many proposals
of double length (DL) hash functions have been published in the last
25 years. Such double length hash functions use a blockcipher with
n-bit output as the building block by which they map possibly long
strings to 2n-bit ones.
From an efficiency point of view, double length compression func-

tions that only require one blockcipher invocation for any hashed
message block are desirable. We define the rate of a blockcipher
based compression function simply as the number of message blocks
that are processed by a compression function divided by the number
of blockcipher invocations needed for this. This definition of a rate

24

1.4. Double Length Compression Functions

is only a rough estimate of efficiency since some important aspects –
for example the number of key schedule runs or additional operations
over GF (2n) – have been completely neglected. Also, this definition
of a rate does not take the actual block size, the key size, or some
relations among those into account.

Any hash function design based on blockciphers from Block(n, n)
with a rate of one has been broken [92], including Parallel Davies-
Meyer [75], PBGV [137], and the LOKI DBH mode [24]. For single
call constructions using a blockcipher with a longer key, e.g., cho-
sen from Block(2n, n), some are known which are provably collision
resistant. These do require some Galois field multiplication in their
processing, e.g., [114, 160] – a simpleXOR-operation does not suffice.

There are four classical – somewhat unbroken and all with rate
< 1 – double length blockcipher based hash function constructions
known: MDC-2, MDC-4, Abreast-DM and Tandem-DM. We
now give some details on the inner workings of these four schemes.
Additionally, we also discuss a more current one, named by its inven-
tor, Hirose-DM.

MDC-2 and MDC-4 MDC-2 and MDC-4 are acronyms for Modi-
fication Detection Code, with rate 1/2 and 1/4 respectively, and were
both developed in the late eighties by Brachtl et al. [22]. They are
also known as the Meyer-Schilling hash functions after the authors of
the first paper describing them [122]. Both were originally specified
for the blockcipher DES [125]. They were patented by IBM [22] and
MDC-2 was standardized in ISO/IEC 10118-2 [77].

As [162], we consider a slightly generalized version of MDC-2 by
ignoring an additional bit-fixing step that was used in the original
specification as a security measure to avoid some DES specific key
issues. Let U, Û be two n-bit chaining values, E ∈ Block(n, n), and
M an n-bit message block. The compression function MDC-2 (cf.
Figure 1.2) is now computed as follows, where SL and SR denote the
left and right halves of a string S.

1. S = (SL‖SR)← EU (M)⊕M

25

1. Cryptographic Hash Functions

E E

MU Û

V V̂

Figure 1.2.: Compression Function of MDC-2. The gray notch inside
the cipher rectangle indicates the input to the blockcipher
that is used as a key.

2. T = (TL‖TR)← EÛ (M)⊕M

3. V ← (SL‖TR)

4. V̂ ← (TL‖SR)

The compression function MDC-2 can only be secure in the it-
eration since U = Û essentially renders the double length compres-
sion function into a single length compression function. Steinberger
showed [83, 162] that, in the ideal cipher model, the hash function
MDC-2 is collision resistant up to at least 23/5n blockcipher calls. In
[94] Knudsen et al. gave a collision attack requiring 2124.5 blockci-
pher calls (assuming n = 128) and a time-memory trade off preimage
attack with time ·memory = 22n.

MDC-4 is an up-scaled variant of MDC-2 that uses twice as much
blockcipher calls. MDC-4 was intended to offer a higher security mar-

26

1.4. Double Length Compression Functions

E E

E E

MU Û

V V̂

Figure 1.3.: Compression Function of MDC-4

gin than MDC-2 and has a rate of 1/4, i.e., four blockcipher calls are
needed for processing one message block. The MDC-4 hash function
is part of the IBM CLiC cryptographic module [31]. Assuming again

two n-bit chaining values U, Û , a blockcipher E ∈ Block(n, n), and
an n-bit message block M , the compression function of MDC-4 (cf.
Figure 1.3) works as follows.

1. S = (SL‖SR)← EU (M)⊕M

2. T = (TL‖TR)← EÛ (M)⊕M

3. V ← ESL‖TR(Û)⊕ Û

27

1. Cryptographic Hash Functions

4. V̂ ← ETL‖SR(U)⊕ U

In Chapter 6 we give the first collision security bound for MDC-4
showing that no adversary asking less than 274.76 queries to the block-
cipher E can find a collision with probability greater than 1/2 for
n = 128.

Abreast-DM and Tandem-DM Proposed at EUROCRYPT ’92 by
Xuejia Lai and James L. Massey [103], both compression functions
incorporate two Davies-Meyer (DM) single block length compression
functions [120], which are used side-by-side. Each of them uses two
calls to a blockcipher from Block(2n, n) for hashing one message
block meaning that they have a rate of 1/2. For Abreast-DM, the
two blockcipher invocations can be computed in parallel whereas for
Tandem-DM they have to be computed one after another. Assuming
again two n-bit chaining values U, Û and an n-bit message block M ,
the algorithms output the new 2n-bit chaining value (V, V̂) as follows
(cf. Figures 1.4 and 1.5).

Abreast-DM HADM

1. V ← EÛ‖M (U)⊕ U

2. V̂ ← EM‖U (Û ⊕ 1n)⊕ Û

Tandem-DM HTDM

1. V ← EÛ‖M (U)⊕ U

2. V̂ ← EM‖V⊕U (Û)⊕ Û

We gave the first (flawed) collision security proof for Tandem-DM
[60] which can be found in a corrected3 version in Section 5.3.1. There
we essentially state that, again in the case n = 128, no adversary ask-
ing less than 2119.6 queries can find a collision with probability greater
than 1/2. The best collision security bound known for Tandem-DM
today is given in [107] with 2120.87.
Hirose [73] gave the first collision security analysis forAbreast-DM,

but the proof used the simplifying assumption of two independent
block ciphers. We give in Chapter 4 the first collision security bound

3details on the corrections are also discussed in Section 5.3.1

28

1.4. Double Length Compression Functions

E

E

U

Û

V

V̂

M

Figure 1.4.: Abreast-DM (’◦’
denotes a bit-by-bit
complement)

E

E

U

Û

V

V̂

M

Figure 1.5.: Tandem-DM

for Abreast-DM that works in the case of one blockcipher. We
generalize these techniques to be applicable to a more generic de-
sign, Cyclic-DL, which we introduce shortly. Using this design, we
are able to give new double length compression functions that have
higher collision security guarantees. Most of these results have been
published in [61].

For Abreast-DM, a weak birthday-type preimage security bound
is also known, 6q/(2n − 6q)2 [105], which becomes void for q ≥
2n−log2 6. The first preimage security bounds for Abreast-DM and
Tandem-DM that go beyond the birthday barrier, i.e., allowing the
adversary to ask more than 2n queries, are given in the second part of
this thesis and were published in [3]. We show that no adversary ask-
ing less than O(22n−10) queries to the blockcipher can find a preimge
with probability greater than 1/2.

Hirose-DM Hirose introduced a 3n-bit to 2n-bit compression func-
tion [74] making two calls to a blockcipher using a 2n-bit key dur-
ing message processing – more than ten years after Abreast-DM
and Tandem-DM had been published. We call this construction
Hirose-DM (cf. Figure 1.6). It is simpler than either Abreast-
DM or Tandem-DM and uses only a single keying schedule for the
’top’ and ’bottom’ block ciphers.

29

1. Cryptographic Hash Functions

Hirose’s scheme

1. V ← EÛ‖M (U)⊕ U

2. V̂ ← EÛ‖M (U ⊕ c)⊕ U ⊕ c

E

E

U

Û

V

V̂

M

c

Figure 1.6.: Hirose-DM

As forAbreast-DM andTandem-DM, we let E ∈ Block(2n, n),

(U, Û) be a 2n-bit chaining value,M be an n-bit message block, (V, V̂)
the new 2n-bit chaining value output, and c a non-zero n bit value.

Hirose himself already proved a birthday-type collision resistance
bound of 2124.55 for his construction in the ideal cipher model (evalu-
ated for n = 128), thereby pre-dating the collision resistance anal-
yses for Abreast-DM and Tandem-DM. For preimage security,
a birthday-type bound is also known, 2q/(2n − 2q)2 [105] – which
again becomes void once q ≥ 2n−1. Similar as for Abreast-DM and
Tandem-DM, we also give for Hirose-DM the first preimage secu-
rity bound in Section 8.2 that shows a near-perfect preimage security
of O(22n−5). This result has also been published in [3].

More Related Work Merkle [121] presented three DBL hash func-
tions composed of DES with rates of at most 0.276. They are opti-
mally collision resistant in the ideal cipher model. Hirose [73] gave a
class of DBL hash functions with rate 1/2 which are composed of two
different and independent (2n, n) block ciphers that have birthday-
type collision resistance. In [104], Lee and Kwon independently pro-
vided a similar security bound for Abreast-DM. They also stated a
generalized Theorem (without proof) and gave a compression func-
tion with a security guarantee of up to 2125 queries, which does not
have a common key for both encryption functions. Knudsen et al. [93]
discussed the insecurity of DBL hash functions with rate 1 composed

30

1.4. Double Length Compression Functions

of (n, n) block ciphers. Hohl et al. [75] analyzed the security of DBL
compression functions with rate 1 and 1/2. Satoh et al. [157] and Hat-
toris et al. [72] discussed DBL hash functions with rate 1 composed of
(2n, n) block ciphers. Nandi et al. [124] proposed a construction with
rate 2/3 but it is not optimally collision resistant. In [95], Knudsen
and Muller presented some attacks against it. Gauravaram et al. [64]
proposed a new approach based on iterated halving to design a hash
function with a blockcipher. Steinberger [152, 153] proved some secu-
rity bounds for fixed-key (n, n) blockcipher based hash functions, i.e.,
permutation based hash functions, that all have small rates and low
collision security bounds. Lee and Stam [106] gave a scheme similar
to MDC-2, called MJH. It uses finite field multiplications to offer a
collision security bound in the iteration of O(22n/3−logn). Bos et al.
[21] provided practical performance figures for some double length
hash functions using the AES-NI instruction set.

1.4.1. Double Length Double Call Framework

Our starting point for analyzing double length double call compres-
sion functions is the recent framework for double length blockcipher
based compression functions given by Özen and Stam [133], which
is a natural extension of the SL framework [160]. We adapt this
double length framework to be able to handle what we call serial
double length constructions since their framework could not handle
compression functions as complex as Tandem-DM. Examples of dou-
ble length compression functions covered by our framework [47] are
Tandem-DM, Abreast-DM, and Hirose-DM, but not MDC-2 or
MDC-4 since we assume a blockcipher from Block(k, n) with k > n.
A compression function HDL : {0, 1}k−n × {0, 1}2n → {0, 1}2n is
called double length double call (DL) when it requires exact two invo-
cations of E for computing the 2n-bit output; therefore compressing
an k − n+ 2n = n+ k bit string to a 2n-bit string.
Formally, (V, V̂) := HDL(M,U, Û) for a given (k − n)-bit mes-

sage M and a 2n-bit chaining value (U, Û) is computed using pre-
processing and post-processing functions CPRE

T ,CPRE
B : {0, 1}k+n →

31

1. Cryptographic Hash Functions

{0, 1}k+n and CPOST
T ,CPOST

B : {0, 1}k+2n → {0, 1}n as well as a
linking function CLNK : {0, 1}k+2n → {0, 1}k+n by:

1. (KT , XT)← CPRE
T (M,U, Û)

2. YT ← EKT
(XT)

3. L← CLNK(M,U, Û , YT), L ∈ {0, 1}k+n

4. (KB , XB)← CPRE
B (L)

5. YB ← EKB
(XB)

6. Output (V, V̂)← (CPOST
T (M,U, Û , YT),C

POST
B (L, YB)).

This framework is depicted in Figure 1.7. Using the notations
given there, we say that a blockcipher query Q = (K,X, Y), Y =
EK(X), is used in the top row if its plaintext, ciphertext, and key
are (KT , XT , YT), otherwise (i.e., if the query is (KB , XB , YB)) we
say that it is used in the bottom row.
In order to ensure uniqueness of presentation, the linking function
CLNK : {0, 1}k+2n → {0, 1}k+n is assumed to discard exactly n bits
and not performing any further operation. The output bits are filled
up ’in ascending order’ of the input bits.

1.4.2. Security Experiments for Double Length
Compression Functions

Similar to the security notions for compression functions already given
in Section 1.2.1, we now adapt the collision security and preimage se-
curity experiments to the case of double length double call blockcipher
based compression functions. In the following we assume a double
length compression function HDL : {0, 1}k−n×{0, 1}2n → {0, 1}2n as
given in the previous Section 1.4.1.

32

1.4. Double Length Compression Functions

CPRE
T CPOST

T

CPRE
B CPOST

B

CLNK

V

V̂
n

n

nn

n

n

k + n

k + n

k + n

k

k

(M,U, Û)

KT

KB

XT

XB

YT

YBE

E

Figure 1.7.: Double Length Double Call Compression Function
Framework HDL; E ∈ Block(k, n); the notch indicates
the key input of the cipher

Experiment 1.13 (Collision-Finding Exp-CollA,HDL(2n)).

1. An adversary A is given oracle access to a blockcipher E ∈
Block(k, n) and returns values (M,U, Û), (M ′, U ′, Û ′) ∈
{0, 1}k−n × {0, 1}n × {0, 1}n.

2. The output of the experiment is defined to be 1 iff (M,U, Û) 6=
(M ′, U ′, Û ′) and HDL(M,U, Û) = HDL(M ′, U ′, Û ′). In such
a case we say that A has found a collision for HDL.

The advantage of an adversary A finding such a collision for HDL is
defined as

Definition 1.14. AdvcollHDL (A) = Pr
[
Exp-CollA,HDL(2n) = 1

]
.

33

1. Cryptographic Hash Functions

Due to the unlimited computing we give to the adversary, we write

AdvcollHDL (q) := max
A
{AdvcollHDL (A)},

where the maximum is taken over all adversaries that ask at most q
oracle queries in total.

Experiment 1.15 (Preimage-Finding Exp-EpreA,HDL(2n)).

1. An adversary A is given oracle access to a blockcipher E ∈
Block(k, n). A selects and announces a value (V, V̂) ∈
{0, 1}n ×{0, 1}n before making any oracle queries. It outputs

a value (M,U, Û) ∈ {0, 1}k−n × {0, 1}n × {0, 1}n.

2. The output of the experiment is defined to be 1 iff
HDL(M,U, Û) = (V, V̂). In such a case we say that A has
found a preimage of HDL.

We let AdvepreHDL (A) be the probability that the experiment Exp-

EpreA,HDL(2n) returns 1. The pre-committed value (V, V̂) is an omit-

ted parameter of AdvepreHDL (A). Again, we define

AdvepreHDL (q) := max
A
{AdvepreHDL (A)},

where the maximum is taken over all adversaries that ask at most q
oracle queries in total.

1.4.3. Classification of Double Length Double Call
Compression Functions

We now give a classification of DL compression functions that is later
used for our analysis. It is a revised and unified variant of the frame-
works used in the proofs published in [47, 61].

34

1.4. Double Length Compression Functions

Generic-DL

The smallest common denominator any double length compression
function shares in our analysis is that, given a top-row query QT =
(KT , XT , YT), one can compute the input to the bottom-row for-
ward query (KB , XB). We do require this as a minimum-standard
since otherwise the queries in both rows have some kind of ’unso-
licited correlation’. Note that we do not require the converse, i.e.,
we do not require that a bottom-row query uniquely determines the
top-row query. We call DL compression functions satisfying this
generic requirement Generic-DL. As an example set KB = KT

and XB = XT ⊕ YT . It follows, that for any given top-row query
QT = (KT , XT , YT), the bottom-row input to a forward query is
uniquely determined. Another example is Mix-Tandem-DM which
is discussed in Section 5.3.2.

Serial-DL

Serial-DL is a special case of Generic-DL where one can compute
(KT , YT) uniquely given (KB , XB). Given (M,U, Û), the result of the
blockcipher query in the top row must be known since the query in the
bottom row depends on the ciphertext output of the blockcipher in
the top row. We define a helper function SER : {0, 1}k+n → {0, 1}k+n

such that (KB , XB) = SER(KT , YT) and (KT , YT) = SER−1(KB , XB).
We say that such a compression function is of type Serial-DL if

the SL compression function in the ’top row’ (CPRE
T , CPOST

T) and
the SL compression function in the bottom row (CPRE

B , CPOST
B) are

both of Type-I. A prominent example of a Serial-DL compression
function is Tandem-DM [103]. So for a Serial-DL compression
function, the following four statements hold:

1. The pre-processing functions CPRE
T and CPRE

B are both bijec-
tive with C−PRE

T and C−PRE
B being the inverse functions.

2. For any (M,U, Û) ∈ {0, 1}k−n × {0, 1}n × {0, 1}n, the post-

processing functions CPOST
T (M,U, Û , ·) and CPOST

B (M,U, Û , ·)

35

1. Cryptographic Hash Functions

are both bijective.

3. For anyA ∈ {0, 1}k+n, Y ∈ {0, 1}n, the modified post-processing
functions
CAUX

T (A, ·, Y) and CAUX
B (A, ·, Y) are both bijective.

4. SER exists and is bijective.

In order to give concrete security bounds, we have to make sure, that
it is not ’too easy’ to use one and the same query in the top row and
the bottom row simultaneously. This might essentially render the
double length compression function into a single length compression
function. For an adversary this could imply that if it has found
a collision in one row, there could automatically be a collision in
the other row (depending on the pre-processing and post-processing
functions).

36

1.4. Double Length Compression Functions

Definition 1.16 (Independence of top row and bottom row).

Let Qfwd = (K,X,Y) be a forward query with Y = EK(X). Now
let ζ1 ∈ R be such that

max
K,X

[
Pr[(K,X) = (CPRE

B ◦CLNK)(C−PRE
T (K,X),Y)]

]
≤ ζ1.

Let Qbwd = (K,X , Y) be a backward query with X = E−1K (Y). Let
ζ2 ∈ R be such that

max
K,Y

[
Pr[(K,X) = (CPRE

B ◦CLNK)(C−PRE
T (K,X), Y)]

]
≤ ζ2.

The independence ζ of the top row and bottom row of a double-
length compression function is now defined as ζ := max(ζ1, ζ2).

Cyclic-DL

This is also a special case of the Generic-DL construction where
one can compute (KT , XT) uniquely given (KB , XB) and vice versa.
Let σ : {0, 1}k+n → {0, 1}k+n be such that (KB , XB) = σ(KT , XT).
Clearly, σ is a bijection.

Definition 1.17. Let d > 0 be an integer and id be the identity
mapping on {0, 1}k+n. The permutation σd is defined as σd :=
σ ◦ σd−1 and σ0 := id.

(i) Fix some element s ∈ {0, 1}k+n. The order of s is defined to
be |s| = mint>1(σ

t(s) = s).

(ii) If there is an integer z such that ∀ s ∈ {0, 1}k+n : |s| = z, we
say that the order of the mapping σ, denoted by |σ|, is equal
to z. If there is no such z, then |σ| := 0.

37

1. Cryptographic Hash Functions

Now assume that |σ| ≥ 2. We say that in such a case a compression
function is of type Cyclic-DL, if the SL compression function in
the top row (CPRE

T , CPOST
T) and the SL compression function in

the bottom row (CPRE
B , CPOST

B) are both of Type-I. Examples of
Cyclic-DL compression functions are Abreast-DM (|σ| = 6) and
Hirose-DM (|σ| = 2). For a Cyclic-DL compression function, the
following four hold:

1. The pre-processing functions CPRE
T and CPRE

B are both bijec-
tive with C−PRE

T and C−PRE
B being the inverse functions.

2. For any (M,U, Û) ∈ {0, 1}k−n × {0, 1}n × {0, 1}n, the post-

processing functions CPOST
T (M,U, Û , ·) and CPOST

B (M,U, Û , ·)
are both bijective.

3. For anyA ∈ {0, 1}k+n, Y ∈ {0, 1}n, the modified post-processing
functions
CAUX

T (A, ·, Y) and CAUX
B (A, ·, Y) are both bijective.

4. |σ| ≥ 2.

38

Part I.

Collision Security of
Double Length Hash

Functions

39

2
Results Summary

In the first part of this thesis we analyze the collision security of sev-
eral blockcipher based double length compression functions and hash
functions. An overview of our results presented in the following Chap-
ters 3 - 6 is given in Table 2.1. The ’published’ column lists related
publications of the author. The numerical security bounds given in
this table are evaluated for a blockcipher from Block(256, 128) or
Block(128, 128) (the latter only in the case of MDC-4). The col-
lision security bounds state that no adversary, asking less than the
given amount of queries to the blockcipher, can find a collision with
probability greater than 1/2.

Chapter 3 - Weimar-DM

This chapter starts with a simple motivational ’example analysis’ of
a double length compression function with rate 1/2, Weimar-DM,
demonstrating the basic procedures. But this surprisingly simple
proof should not hide the fact, that Weimar-DM is currently the
double length compression function with the tightest collision security
bound known: we show that no adversary asking less than 2126.73

41

2. Results Summary

Comp. Funct. Coll. sec. bound Chap. Published

Weimar-DM 2126.73 / 2n−1.27 3 [54]

Abreast-DM 2124.42 / 2n−3.58 4 [61]

Cyclic-DL, 2127−log2 c

4 [61]
Add/k-DM cycle length c = 2k

Cube-DM 2125.41 4 [61]

Serial-DL,
2119.6 5 [47, 60]

Tandem-DM

Generic-DL,
283.2 5 [47]

Mix-Tandem-DM

MDC-4
274.76 6 [52]

(hash function)

Table 2.1.: Overview of our collision security results for double length
compression and hash functions. Our results are in the
ideal cipher model. The values in the ’Coll. sec. bound’
column are evaluated for n = 128 and a success probabil-
ity of 1/2. If available, an asymptotic bound for n → ∞
is given.

queries can find a collision with probability greater than 1/2.

Chapter 4 - Abreast-DM, Cyclic-DL and Applications

We provide the collision security proof for Abreast-DM. In particu-
lar, we show that for Abreast-DM, when instantiated with a block-
cipher from Block(256, 128), an adversary that asks less than 2124.42

queries cannot find a collision with success probability greater than
1/2. We generalize our techniques used in the proof of Abreast-DM
to Cyclic-DL (cf. Section 1.4.3). It is easy to see that Cyclic-DL
covers any DL construction that enables one to compute both block-

42

cipher calls in parallel as, e.g., for Hirose-DM or for the modified
Abreast-DM scheme given by Lee and Kwon [104]. Using our se-
curity results from Cyclic-DL, we are able to derive several DL
constructions that lead to compression functions that have higher
collision security guarantees and are more efficient than Abreast-
DM:Add/k-DM andCube-DM. At the time of publication [61], the
newly presented Cube-DM had the highest collision security ’guar-
antee’ of any known DL compression function. This crown has now
been passed to Weimar-DM.

Chapter 5 - Serial-DL and Applications

In this chapter, we give a generic collision security bound for Serial-
DL compression functions (cf. Section 1.4.3). From this, we can eas-
ily derive such a bound for Tandem-DM: Assuming a blockcipher
from Block(256, 128), we show that no adversary asking less than
2119.6 queries to the blockcipher can find a collision with probabil-
ity greater than 1/2. We also give a collision security analysis for
Generic-DL (cf. Section 1.4.3) and state, as an application, a colli-
sion security bound of 283.2 for Mix-Tandem-DM, which is a simple
example of a DL compression function that is neither in Serial-DL
nor in Cyclic-DL, but in Generic-DL.

Chapter 6 - MDC-4

We show for the hash function MDC-4, assuming a blockcipher from
Block(128, 128), that no adversary asking less than 274.76 queries
can find a collision with probability greater than 1/2. This is the
first result on the collision security of MDC-4. Although being some-
what similar to the MDC-2 collision security analysis of Steinberger
[83, 162], his result could not be directly applied to MDC-4 due
to the structural differences. Also, our proof for MDC-4 is much
shorter than Steinberger’s MDC-2 analysis and we claim that our
presentation is also easier to grasp.

43

2. Results Summary

Revisions since Initial Publication

The results of [52] and Generic-DL [47] have found their way with-
out major modifications into this thesis. This is also true for the
results regarding Abreast-DM and Add/k-DM [61]. The analy-
sis of Cyclic-DM [61] has been further generalized to Cyclic-DL–
thus covering not only Davies-Meyer based double length compres-
sion functions but any reasonable combination of ’secure’ Type-1 SL
compression functions. This also fits nicely with our definition of dou-
ble length compression functions given in Section 1.4. The numerical
results have not been changed by this revision. The collision security
results of Weimar-DM [54] has been further tightened (from 2n−1.77

to 2n−1.27).
Part of the results published in [60] and [47] (Serial-DL and

Tandem-DM) unfortunately have been erroneous and are corrected
using a technique given by Lee et al. [107]. We explicitly point out
the modification we made in our proofs.

44

3
Weimar-DM

We start the discussion of collision security for double length compres-
sion functions with a simple example, Weimar-DM, and its collision
security analysis.

Definition 3.1. Let E ∈ Block(2n, n). The compression func-
tion HWDM : {0, 1}n × {0, 1}2n → {0, 1}2n is defined as (cf. Figure
3.1)

HWDM(M,U, Û) =
(
EM‖U (Û)⊕ Û , E

M‖U
(Û)⊕ Û

)
.

It is easy to see that HWDM is of type Cyclic-DL with |σ| = 2.
Since we are going to provide a proof for Cyclic-DL in Section 4.2,
we could skip this proof here, but we do not: First, it is a good
educational example on how such proofs work. Second, the proof is
much simpler than the generic analysis for Cyclic-DL. And, third,
the bound derived here is somewhat better than the bound we get by

45

3. Weimar-DM

E

E

M

Û

V̂

V

U

Figure 3.1.: Weimar-DM compression function HWDM; the small
circle ’◦’ denotes a bit-by-bit complement

applying the Cyclic-DL result. We now proceed to show that the
compression function HWDM is indeed collision resistant.

Theorem 3.2. Let N = 2n. Then, AdvColl
HWDM(q) ≤ q(q+1)

(N−q)2 .

In numerical terms, e.g., for n = 128 and AdvcollHWDM(q) = 1/2, we
have q = 2126.73. Using simple calculus, it is easy to see that for
α = N(

√
2− 1)= 2n−1.27 we have

AdvcollHWDM(α) =
1

2
+ o(1),

where the term o(1)→ 0 for n→∞. Neglecting constant factors, our
security bound reads as an asymptotically optimal bound of O(2n)
for a compression function with 2n-bit output.

Proof. We assume that the adversary has made any relevant query to
E to come up with a collision – which is reasonable in the ideal cipher
model. We start by considering an arbitrary q-query collision finding
adversary A. We then construct an adversary A′ which simulates A

46

but does sometimes ask an additional query to the E oracle under
certain circumstances.
Since A′ is more powerful than A, it suffices to upper bound the

success probability of A′. We now give a detailed description of A′
by simultaneously upper bounding its chances of success.

Description of A′. The adversary A′ maintains an initially empty
list L representing any possible input/output of the compression func-
tion HWDM that can be computed by the adversary A. An entry
L ∈ L is a 4-tuple (K,X, Y, Y ′) ∈ {0, 1}5n where K ∈ {0, 1}2n,
X ∈ {0, 1}n is the 3n-bit input to the compression function such that

(M,U) = K and Û = X. The n-bit values Y and Y ′ are given by
Y = EK(X), Y ′ = EK(X).

The list is now built as follows. Say that the adversary A mounts
its i-th query to E or E−1, 1 ≤ i ≤ q. In the case of a forward query,
the adversary gets hold of the tuple (K,X, Y) where Y = EK(X).
In the case of a backward query, the adversary gets also hold of the
tuple (K,X, Y), but in this case X = E−1K (Y). In either case, the
value X ⊕ Y is randomly determined by the output of the query.
Now, A′ checks if an entry L = (K,X, ∗, ∗) or L′ = (K,X, ∗, ∗) is

contained in L where ′∗′ denotes an arbitrary value. We now analyze
the two possible cases A′ might be confronted with and upper bound
their success probability separately.

Case 1 Neither L nor L′ are in L. Then A′ mounts an additional
forward query Y ′ = EK(X). Note that Y ′⊕X, the result of the ’bot-
tom row’ of the compression function, is always uniformly distributed
since K 6= K. Hence, the results of the first query asked by the ad-
versary A and the second query asked additionally by the adversary
A′ are always independently distributed. Set Li := (K,X, Y, Y ′). We
append Li to the list L.
We now define what we mean by a collision in the list. Fix two

integers r and s such that Lr = (Kr, Xr, Yr, Y
′
r) represents the r-th

entry in L and Ls = (Ks, Xs, Ys, Y
′
s) the s-th entry in L and both

47

3. Weimar-DM

entries exist. We say that Ls and Lr collide if a collision of the
compression functions occurs that can be computed using the query
results given in Lr and Ls. This is the case if at least one of the
following two conditions is met:

1. Yr ⊕Xr = Ys ⊕Xs and Y ′r ⊕Xr = Y ′s ⊕Xs or

2. Yr ⊕Xr = Y ′s ⊕Xs and Y ′r ⊕Xr = Ys ⊕Xs.

So for the i-th query, there are at most i − 1 entries in the list L
that might collide with Li. We can upper bound the probability of
success of the i-th query by

i−1∑

j=1

2

(N − q)(N − q)
≤ 2i

(N − q)(N − q)
.

As the adversary can ask at most q queries, the list L cannot con-
tain more than q entries since for any adversary query at most one
additional entry is added to the list L of A′. So the total chance of
success for q queries is

≤
q∑

i=1

2i

(N − q)(N − q)
=

q(q + 1)

(N − q)2
.

In case of a collision in L we give the attack to the adversary.

Case 2 Now assume that at least one of the values L or L′ is already
in L. Then A′ ignores this query, since we already know that A has
zero chance of winning since otherwise we would have given the attack
to the adversary before. �

48

4
Abreast-DM, Cyclic-DL and Applications

4.1. Abreast-DM

4.1.1. Compression Function

We recall the already introducedAbreast-DMDL compression func-
tion. For better reference, we illustrate it again in Figure 4.1. Abreast-
DM was formally defined in Section 1.4 on page 29.

4.1.2. Security Results

Our discussion results in a proof of the bound given in Theorem 4.1.

Theorem 4.1. (Collision Resistance of Abreast-DM) Let n, q
be natural numbers with q < 2n−3.58 and N = 2n. Then,

AdvColl
HADM(q) ≤ 18

(
q

N/2

)2

.

49

4. Abreast-DM, Cyclic-DL and Applications

E

E

U

Û

V

V̂

M

Figure 4.1.: Abreast-DM HADM; the small circle ’◦’ denotes a bit-
by-bit complement

For n = 128 we explicitly state, what this Theorem means numeri-
cally.

Corollary 4.2. For the compression function Abreast-DM, ’in-
stantiated’ with an (ideal) blockcipher from Block(256, 128), any
adversary asking less than q = 2124.42 (backward or forward) oracle
queries cannot find a collision with probability greater than 1/2.

The proof of Theorem 4.1 is given in Section 4.1.3.

4.1.3. Collision Security of Abreast-DM

In this Section, we provide a proof of Theorem 4.1.

Analysis Overview. We analyze if the queries made by the adver-
sary contain the means for constructing a collision of the compres-
sion function HADM. Two queries to the oracles E, E−1 in total
are required to compute the output (V, V̂) of HADM for any given

50

4.1. Abreast-DM

[TL]

[BL]

U

Û V̂

V

M

Y

Ŷ

[TR]

[BR]

U ′

Û ′ V̂ ′

V ′

M ′

Y ′

Ŷ ′

Figure 4.2.: Notations used for a collision of Abreast-DM; If
CollADM (Q), then V = V ′ and V̂ = V̂ ′ hold.

input (M,U, Û). It is easy to see that one oracle query and its re-
sult uniquely determines the other query. Effectively, we look to see
whether there exist four (not necessarily distinct) queries that form
a collision (cf. Figure 4.2).

To upper bound the probability of a fixed q-query asking adversary
obtaining queries than can be used to construct a collision, we upper
bound the probability of the adversary making one query that can
be used as the final query to complete such a collision. Namely, for
each i, 1 ≤ i ≤ q, we upper bound the probability that the answer to
the adversary’s i-th forward query (Ki, Xi, ∗)fwd or backward query
(Ki, ∗, Yi)bwd allows it to use the i-th query to complete the collision.
In the latter case, we say that the i-th query is successful and we give
the attack to the adversary.

Naturally, the computation of any single compression function de-
pends on two blockcipher calls – assuming that the construction
does not allow the use of one and the same query in the top row
and the bottom row of the compression function. This is true for
Abreast-DM. In order to upper bound the success probability of
any single query mounted by the adversary, we have to upper bound
the maximal number of compression functions the adversary can com-
plete with this single query result. At a first glance, any single query
can be used in the top row or in the bottom row of a compression
function. Say, e.g., the query is (Û‖M,U, Y) and the adversary in-
tends to use it in the top row. As it is practically impossible to track

51

4. Abreast-DM, Cyclic-DL and Applications

whether the adversary has mounted the corresponding bottom-row

query (M‖U, Û , Ŷ) in the past, we have to assume that the adver-
sary has access to this query. Formally, we give the adversary this
query for free. These can be modeled as queries which the adversary
is forced to query (under certain conditions), but for which the ad-
versary is not charged, i.e., they do not count towards the maximum
of q queries which the adversary is allowed to ask. However, these
queries become part of the adversary’s query history, just like other
queries. In particular, the adversary is not allowed, later, to remake
these queries on its own (due to the previously discussed assumption
that the adversary never makes a query which it already owns).

In general, just this free query that is intended for use in the bottom
row, can be reused also in the top row by the adversary in order to
start the computation of a new compression function. And, again, as
we cannot say whether the adversary has access to the corresponding
bottom row query, we have to assume that the adversary has access
to it (i.e., we give the query for free to the adversary). Pursuing this
process seems to result in a virtually infinite action. But it does not
for Abreast-DM.

On Abreast-DM’s Cycle. Assume that the adversary mounts his
i-th query denoted by Q6i = (Û‖M,U, Y1). For ease of presentation,
we give the adversary’s ’first’ query the index zero and therefore i ∈
{0, 1, . . . , q−1} assuming that the adversary mounts q queries in total.
Also we give the adversary’s i-th query index 6i for reasons that will
become clear later – in short, this is due to the 5 ’free’ queries the
adversary is given for any single mounted query. First, assume that
the query Q6i is used in the top row. The adversary is given for free

the corresponding query of the bottom row Q6i+1 := (M‖U, Û , Y2).
Using Q6i and Q6i+1, the adversary is able to compute one result of
a compression function

(V1, V̂1) := HADM(M,U, Û) = (EÛ‖M (U)⊕ U,EM‖U (Û)⊕ Û).

52

4.1. Abreast-DM

As the adversary can reuse the free query Q6i+1 in the top row, we
give the adversary for free the matching bottom-row query Q6i+2 =

(M,U‖Û , Y3). After this, the adversary can additionally compute

(V2, V̂2) := HADM(Û ,M,U) = (EM‖U (Û)⊕ Û , E
U‖Û

(M)⊕M),

using the queries Q6i+1 and Q6i+2. The continuation of this process
is summarized in Table 4.1.3. Likewise, the adversary is given for free
the (forward) queries Q6i+3, Q6i+4, Q6i+5. The query Q6i+6 is equal
to the initial query of the adversary Q6i and this process comes to an
end.
Note that the query numbers in parentheses in Table 4.1.3 denote

a reuse of a previous query, e.g., (6i + 1) denotes the reuse of query
Q6i+1 in another position (either top or bottom).
As indicated by Table 4.1.3, any single query is used in the bottom
row as well as in the top row. Since any single query (used in top
row or bottom row) uniquely determines the corresponding query in
the bottom row or top row, it follows that all queries can only be
used for the compression functions mentioned in Table 4.1.3. It is
not possible to use them again for computing the output result of
any other compression function for the adversary.

Analysis Details. Fix numbers n, q, and an adversary A asking in
total q forward or backward queries to its oracle E. Let CollADM(Q)
be the event that the adversary can construct a collision of HADM

using the queries in the query history Q. The term ’last query’ means
the latest query made by the adversary. It is always the i-th query
of the adversary and it is always denoted as Q6i. As mentioned, this
is due to the fact that we give the adversary, for any single query it
asks, 5 additional free queries. We examine the adversary’s mounted
queries one at a time as they come in. Similarly, the free queries are
also examined one at a time as they are given to the adversary.
We say a query Qm = (K1

m‖K2
m, Xm, Ym) is successful if the out-

put, Ym for a forward query or Xm for a backward query, is such

53

4. Abreast-DM, Cyclic-DL and Applications

HUDM(·) Query # Plaintext Key Ciphertext Chaining Value

(M,U, Û)
6i (*) U Û‖M Y1 V1 = Y1 ⊕ U

6i+ 1 Û M‖U Y2 V̂1 = Y2 ⊕ Û

(U, Û ,M)
(6i+ 1) Û M‖U Y2 V2 = Y2 ⊕ Û

6i+ 2 M U‖Û Y3 V̂2 = Y3 ⊕M

(Û ,M,U)
(6i+ 2) M U‖Û Y3 V3 = Y3 ⊕M

6i+ 3 U Û‖M Y4 V̂4 = Y4 ⊕ U

(M,U, Û)
(6i+ 3) U Û‖M Y4 V4 = Y4 ⊕ U

6i+ 4 Û M‖U Y5 V̂4 = Y5 ⊕ Û

(U, Û ,M)
(6i+ 4) Û M‖U Y5 V5 = Y5 ⊕ Û

6i+ 5 M U‖Û Y6 V̂5 = Y6 ⊕M

(Û ,M,U)
(6i+ 5) M U‖Û Y6 V6 = Y6 ⊕M

(6i) U Û‖M Y1 V6 = Y1 ⊕ U

Table 4.1.: Starting with the i-th query of the adversary, Q6i, either
(Û‖M,U, ∗)fwd or (Û‖M, ∗, Y)bwd, the adversary is given
5 additional forward queries, query #’s 6i+1, 6i+2, 6i+
3, 6i + 4, 6i + 5, for free. In total, it is able to compute
six complete compression functions HADM by using these
six queries. Notation: (*) is the only query the adversary
has mounted.

54

4.1. Abreast-DM

that the adversary can use this very query Qm to form a collision.
More precise, there are three queries Qj , Qk, Ql in Q such that the
four (not necessarily pairwise different) queries Qm, Qj , Qk, Ql can be
used for a collision (cf. Figure 4.2). The goal is thus to upper bound
the adversary’s chance of ever making a successful last query.
We now upper bound Pr[CollADM(Q)] by exhibiting the predicates

Win0(Q), . . ., Winq−1(Q) such that CollADM =⇒ Win0(Q) ∨ . . . ∨
Winq−1(Q). It follows that Pr[CollADM(Q)] ≤ Pr[Win0(Q)] + . . .+
Pr[Winq−1(Q)].
Since the adversary mounts q queries in total, we informally say

that Wini(Q), 0 ≤ i ≤ q − 1, holds, if the adversary finds a collision
after mounting its i-th query, i.e., using at least one of the queries
Q6i, . . . , Q6i+5 conditioned on the fact that the adversary has not
been successful before.
Notation: Let Qk denote the first k queries made by the adversary

or the adversary had been given for free: Qk = ∪0≤j≤k Qj and
|Qk| = k + 1.
To formally define the predicatesWini(Q) the following Definitions

4.3 and 4.4 are convenient.

Definition 4.3. We say that a pair of queries (Qa, Qb) is successful
in the query set Q, if – for computation of the compression function
output of HADM – the query Qa is used in the top row, the query
Qb is used in the bottom row, and there exists a pair of queries
Qj , Qk ∈ Q such that a collision for HADM can be computed:

Xa ⊕ Ya = Xj ⊕ Yj and Xb ⊕ Yb = Xk ⊕ Yk.

Definition 4.4. Let d = 0, . . . , 5, d′ = d+1 mod 6, d̃ = max(d, d′).
We say CollFitd

i (Q) if (i) the pair of queries (6i + d, 6i + d′) is
successful in Q6i+d̃ and (ii) the adversary had not been successful

55

4. Abreast-DM, Cyclic-DL and Applications

for 0 ≤ t ≤ d−1: ¬CollFitt
i(Q). The probability is measured over

the post-outputs of the newly received queries (6i+ d) and 6i+ d′.

The predicates Wini(Q) are defined as follows:

Definition 4.5. For 0 ≤ i ≤ q − 1,

Wini(Q) =¬

 ∨

0≤ j≤ i−1

Winj(Q)

∧
(
CollFit0

i (Q) ∨ . . . ∨CollFit5
i (Q)

)
.

We now show that our case analysis is complete.

Lemma 4.6. CollADM(Q) =⇒Win0(Q) ∨ . . . ∨Winq−1(Q).

Proof. Say CollADM(Q). Then a collision can be constructed from
the queries in Q. That is, our query history Q contains queries
Qi, Qj , Qk, Ql (see Figure 4.2) that can be used in positions TL, TR,BL

and BR, TL 6= TR, such that V = V ′ and V̂ = V̂ ′. Note that the
condition TL 6= TR suffices to ensure that a collision from two dif-
ferent inputs has occurred. It is easy to see that no query mounted
directly by the adversary can be successful since any such query can
only serve for either a top- or bottom row position in the compression
function HADM. Also, the corresponding query, which is necessary
to compute the complete compression function, is given to the adver-
sary for free after it has mounted a query. So the adversary can only
be successful in the phase where it is given the free queries one after

56

4.1. Abreast-DM

another. Say the adversary is successful during the phase where it
gets the free queries following his i-th query. We can safely assume
that this is the first time the adversary has found such a collision and
therefore i is minimal. Then ¬Winj(Q), 0 ≤ j < i, CollFitd

i (Q)
such that d ∈ {0, 1, . . . , 5} is minimal and therefore Wini(Q). This
proves our claim. �

Since Pr[CollADM(Q)] ≤∑q−1
j=0 Winj(Q) it follows that

Pr[CollADM(Q)] ≤
q−1∑

i=0

5∑

d=0

CollFitd
i (Q). (4.1)

We now proceed to upper bound the probability of CollFitd
i (Q).

Lemma 4.7. Let 1 ≤ i ≤ q and 0 ≤ d ≤ 5. Then

Pr[CollFitd
i (Q)] ≤

6i

(N − 6i)2
.

Proof. Let d′ = d + 1 mod 6. The 2n-bit output of the compres-
sion function HADM, (V, V̂), is uniquely determined by the queries
Q6i+d = (K6i+d, X6i+d, Y6i+d) and Q6i+d′ = (K6i+d′ , X6i+d′ , Y6i+d′)
by

V = Y6i+d ⊕X6i+d and V̂ = Y6i+d′ ⊕X6i+d′ .

Both, V and V̂ , depend on the plaintext and the ciphertext of E.
If Q6i+d was received by a forward query, the key and the plaintext
are fixed. The result of this query, i.e., the ciphertext, is chosen
uniformly at random from a set of at least N − (6i + d) values. In
the case of a backward query, the key and the ciphertext are fixed.
The result of this query, the plaintext, is chosen uniformly at random
from a set of at least N− (6i+d) values. It follows that V is in either

57

4. Abreast-DM, Cyclic-DL and Applications

case randomly determined by the answer of the E oracle. Using the
same arguments, it follows that V̂ is also randomly determined by
the answer of the oracle. Note that the bit-by-bit inversion in the
bottom row of X6i+d′ does not change any of our arguments.

To form a collision, two queries Qj , Qk are needed that can be
chosen from at most 6(i+1) queries in Q6(i+1)−1. The adversary can
use them to compute the output of < 6(i+ 1) compression functions
HADM. Therefore,

Pr[CollFitd
i (Q)] ≤

6(i+ 1)

(N − 6(i+ 1))2
.

�

Using equation (4.1) we get the following upper bound for any q <
2n−log2 6 = 2n−2.58

Pr[CollADM(Q)] ≤
q−1∑

i=0

5∑

d=0

6(i+ 1)

(N − 6(i+ 1))2
≤

q∑

i=1

5∑

d=0

6i

(N − 6i)2

≤
q∑

i=1

36i

(N − 6i)2
≤ 36 · q2 · 12

(N − 6q)2
≤ 18

(q

2n−1

)2

.

This completes our proof of Theorem 4.1. �

58

4.2. Cyclic-DL

4.2. Cyclic-DL

We now generalize the techniques used in the last section for analyzing
Abreast-DM and apply them to Cyclic-DL (cf. Section 1.4.3).
Our discussion results in two security bounds for Cyclic-DL, one
for the case |σ| = 2 and a proof for the case |σ| > 2.

Theorem 4.8. (Collision Resistance for c = 2) Let H2CYC be a
Cyclic-DL compression function with cycle length c = 2 and let
N = 2n. If CPRE

T = CPRE
B and CPOST

T = CPOST
B , then a = 1, else

a = 2. Then, for any q > 1 and 2q < N ,

AdvColl
H2CYC(q) ≤ 2aq2

(N − 2q)2
+

2q

N − 2q
.

Theorem 4.9. (Collision Resistance for c > 2) Let HCYC be a
Cyclic-DL compression function with cycle length c > 2 and let
N = 2n. Then, for any q > 1 and cq < N ,

AdvColl
HCYC(q) ≤ c2

2

(
q

N − cq

)2

.

Remarks. Naturally, the question arises what to conclude if only
some form of ’generalization’ of Definition 1.17 is applicable, i.e., if
not all elements s share the same order. In theory, one can imagine
a case where some elements have an order of 2, some of 3 and some
have an order of 4. Since for any |σ| > 2, Theorem 4.9 states a
monotonically decreasing upper bound. We can easily assume the
’worst case’ bound and apply this theorem for the maximum cycle

59

4. Abreast-DM, Cyclic-DL and Applications

length if all elements have a minimum order of 3. Should there be
elements s that have an order of 2, one has to take into account the
result given in Theorem 4.8. The final bound for the advantage can
be obtained by taking the maximum of all bounds that result from
the order of the elements. Simply, this is due to the fact that a query
resulting in a ’query cycle’ of length c̃ cannot be used in any other
query cycle since any query cycle is a closed set.

4.2.1. Proof of Theorem 4.8 – Collision Resistance of
Cyclic-DL (c = 2)

Due to the special structure of the compression function in the case
of c = |σ| = 2, the following definition, inspired by [74], is convenient
for the proof.

Definition 4.10. A pair of distinct inputs, (M,U, Û) and

(M ′, U ′, Û ′), to a compression function H2CYC is called a matching
pair if

σ(CPRE
T (M,U, Û)) = CPRE

B (CLNK(M ′, U ′, Û ′)).

Otherwise they are called a non-matching pair.

Fix numbers n, q, and an adversary A asking q backward and for-
ward queries to its oracle E in total. All queries to the oracle as
well as any queries received ’for free’ are saved in a query history Q.
Let Coll2CYC be the event that the adversary is able to construct
a collision of H2CYC from the queries in Q. For this we examine the
queries, one at a time, as they come in; the latest query made by the
adversary, his i-th query, is always be given index 2i, and is denoted
by Q2i = (K2i, X2i, Y2i). Assume that the query Q2i is a forward
or backward query asked by the adversary and assume that Q2i is
used in the top row. Since two different queries are required for the

60

4.2. Cyclic-DL

computation of H2CYC we give the adversary the bottom-row query
for free. This query is uniquely determined by its plaintext X2i+1

and key K2i+1 component as follows:

(K2i+1, X2i+1) = σ(K2i, X2i)

and the adversary is given the ciphertext Y2i+1 = EK2i+1
(X2i+1). If

the adversary uses the query Q2i in the bottom row, we give it the
top-row query for free:

(K2i+1, X2i+1) = σ−1(K2i, X2i)

and the adversary is given the ciphertext Y2i+1 = EK2i+1
(X2i+1) in

this case. Since σ2 = ID it follows that σ = σ−1. So in either case,
the adversary is given the same free query, i.e., the input to the
other query is always uniquely determined using one and the same
computation.

Now assume for simplicity of the following argument that the query
Q2i is used in the top row and Q2i+1 in the bottom row. In the case
of a forward query Q2i the output of the compression function in the
top row is randomly determined via CPOST

T . Similarly, in the case of
a backward query Q2i, the output of the compression function in the
top row is randomly determined via CAUX

T . After getting the result
of its query to Q2i, the adversary gets the corresponding bottom-
row forward query Q2i+1 for free. So the bottom-row output of the
compression function is randomly determined via CPOST

B .

For any 2 ≤ i ≤ q let Ci be the event that a colliding pair of non-
matching inputs is found for H2CYC with the i-th pair of queries.
Namely, it is the event that for some i′ < i

H2CYC(C−PRE
T (K2i, X2i)) ∈ {H2CYC(C−PRE

T (K2i′ , X2i′)),

H2CYC((C−LNK ◦C−PRE
B)(K2i′+1, X2i′+1))}

61

4. Abreast-DM, Cyclic-DL and Applications

or

H2CYC((C−LNK ◦C−PRE
B)(K2i+1, X2i+1)) ∈

{H2CYC(C−PRE
T (K2i′ , X2i′)),

H2CYC((C−LNK ◦C−PRE
B)(K2i′+1, X2i′+1))}.

Assuming a forward query Q2i, this condition is equivalent to

[CPOST
T (C−PRE

T (K2i, X2i), Y2i),C
POST
B (C−PRE

B (K2i+1, X2i+1), Y2i+1)]

= [CPOST
T (C−PRE

T (K2i′ , X2i′), Y2i′),

CPOST
B (C−PRE

B (K2i′+1, X2i′+1), Y2i′+1)] or (4.2)

[CPOST
T (C−PRE

T (K2i, X2i), Y2i),C
POST
B (C−PRE

B (K2i+1, X2i+1), Y2i+1)]

= [CPOST
T (C−PRE

T (K2i′+1, X2i′+1), Y2i′+1),

CPOST
B (C−PRE

B (K2i′ , X2i′), Y2i′)] or (4.3)

[CPOST
T (C−PRE

T (K2i+1, X2i+1), Y2i+1),C
POST
B (C−PRE

B (K2i, X2i), Y2i)]

= [CPOST
T (C−PRE

T (K2i′ , X2i′), Y2i′),

CPOST
B (C−PRE

B (K2i′+1, X2i′+1), Y2i′+1)] or (4.4)

[CPOST
T (C−PRE

T (K2i+1, X2i+1), Y2i+1),C
POST
B (C−PRE

B (K2i, X2i), Y2i)]

= [CPOST
T (C−PRE

T (K2i′+1, X2i′+1), Y2i′+1),

CPOST
B (C−PRE

B (K2i′ , X2i′), Y2i′)]. (4.5)

Note that (4.2) is equal to (4.5) and (4.3) is equal to (4.4) if CPOST
T =

CPOST
B . In this case, it follows that for 2q < N

Pr[Ci] ≤
2(i− 1)

(N − (2i− 2))(N − (2i− 1))
≤ 2q

(N − 2q)2
. (4.6)

Assuming CPOST
T 6= CPOST

B we obtain

Pr[Ci] ≤
4(i− 1)

(N − (2i− 2))(N − (2i− 1))
≤ 4q

(N − 2q)2
. (4.7)

62

4.2. Cyclic-DL

For unifying the treatment of these two cases, we set a = 1 ifCPOST
T =

CPOST
B and a = 2 otherwise. Let C be the event that a colliding pair

of non-matching inputs is found for H2CYC with q (pairs) of queries.
Then,

Pr[C] ≤
q∑

i=2

Pr[Cj] ≤
q∑

i=2

2q · a
(N − 2q)2

≤ 2aq2

(N − 2q)2
.

Now, assuming the i-th query, let Ĉi be the event that a colliding
pair of matching inputs has been found for H2CYC. It follows, that

Pr[Ĉi] ≤
2

N − 2i
.

Let Ĉ be the event that a colliding pair of matching inputs is found
for H2CYC with q (pairs) of queries. Then,

Pr[Ĉ] ≤
q∑

i=2

Pr[Ĉi] ≤
2q

N − 2q
.

Since AdvColl
H2CYC(q) = Pr[C ∨ Ĉ] ≤ Pr[C] + Pr[Ĉ], the claim follows.

�

4.2.2. Proof of Theorem 4.9 – Collision Resistance of
Cyclic-DL (c > 2)

Analysis Overview. In this section we omit some details that were
already discussed in the proof of Abreast-DM in Section 4.1.3 since
the basic arguments are the same. Again, we analyze if the queries
made by the adversary contain the means for constructing a collision
of the compression function HCYC by upper bounding the probability
of an adversary asking for a query that can be used as the final query
to complete a collision.

63

4. Abreast-DM, Cyclic-DL and Applications

The Cycle in Cyclic-DL. First assume that the adversary asks for a
query Qci = (Kci, Xci, Yci). The query index c · i for the i-th query of
the adversary is – similar as in the case of Abreast-DM – due to the
c − 1 additional free queries the adversary is given for any mounted
query. Now, consider the case where the query is used in the top
row. Let P1 = (Kci, Xci) and P2 = (Kci+1, Xci+1) = σ(Kci, Xci).
After having received the answer to its query Qci, the adversary is
given for free the corresponding forward query in the bottom row
Qci+1 = (Kci+1, Xci+1, Yci+1), Yci+1 = EKci+1

(Xci+1). With these
two queries, the adversary is able to compute one output of the
compression function (V, V̂) = HCYC(C−PRE

T (P1)). The adversary
can reuse the query Qci+1 in the top row as a starting point to
compute a new result of HCYC. We now give the adversary for
free the corresponding bottom row forward query, Qci+2, assum-
ing that Qci+1 is used in the top row. For the query Qci+2, we
have P3 = (Kci+2, Xci+2) = σ(P2). Our main observation is that
P3 = σ(P2) = σ2(P1). Let c = |σ| denote the cycle length of HCYC.
This process can be continued. The adversary is given for free the
forward queries Qci+3, . . . , Qci+c−1 as shown in Table 4.2 in more de-
tail. A cycle is formed since Pc = σ(Pc−1) = · · · = σc(P1) = P1 and
therefore Qci+c = Qci. The queries forming the cycle are shown in
Figure 4.3.

Analysis Details. Fix an adversary A asking a total of q backward
and forward queries to its oracle E. Let CollCYC(Q) be the event
that the adversary is able to construct a collision of HCYC using the
queries in Q. The term ’last query’ means the latest query made by
the adversary and is always given index c · i and denoted by Qci. We
examine the adversary’s directly asked queries (d = 0) and the free
queries (d = 1, 2, . . . , c− 1) one at a time as the adversary gets hold
of them. A query Qm = (Km, Xm, Ym) is successful, if it can be used
to form a collision using other queries contained in the query history
Qm.

Similar to the proof of Abreast-DM, we now proceed to upper

64

4.2. Cyclic-DL

HCYC(·) Query # Plaintext Key Ciphertext

C−PRE
T (P1)

ci (*) Xci Kci Yci

ci+ 1 Xci+1 Kci+1 Yci+1

C−PRE
T (σ(P1))

(ci+ 1) Xci+1 Kci+1 Yci+1

ci+ 2 Xci+2 Kci+2 Yci+2

C−PRE
T (σ2(P1))

(ci+ 2) Xci+2 Kci+2 Yci+2

ci+ 3 Xci+3 Kci+3 Yci+3

...
...

...
...

...

C−PRE
T (σc−2(P1))

(ci+ c− 2) Xci+c−2 Kci+c−2 Yci+c−2

ci+ c− 1 Xci+c−1 Kci+c−1 Yci+c−1

C−PRE
T (σc−1(P1))

(ci+ c− 1) Xci+c−1 Kci+c−1 Yci+c−1

(ci) Xci Kci Yci

Table 4.2.: Starting with query Qci, Kci, (Xci, ∗)fwd or
(Kci, ∗, Yci)bwd, the adversary is given c − 1 forward
queries Qci+1, Qci+2, . . . , Qci+c−1 for free. In total, it
is able to compute c results of HCYC by using these c
queries. The notations used in the table are given in the
text.

bound Pr[CollCYC(Q)] by exhibiting some predicates Win0(Q), . . .
Winq−1(Q) such that CollCYC =⇒ Win0(Q) ∨ . . . ∨Winq−1(Q).
Since the adversary mounts q queries in total, we informally say
that Wini(Q), 0 ≤ i ≤ q − 1, holds if the adversary finds a colli-
sion after mounting the i-th query, 0 ≤ i ≤ q − 1, using at least
two of the following queries Qci, . . . , Qci+c−1 conditioned on the fact
that the adversary has not been successful before. It follows, that
Pr[CollCYC(Q)] ≤ Pr[Win0(Q)] + . . . + Pr[Winq−1(Q)]. For sim-
plicity, we assume again that the free queries are always given in
’ascending’ order as in in Table 4.2.

65

4. Abreast-DM, Cyclic-DL and Applications

Qci+c−2

Qci+c−1 Qci+c−1

Qci

Qci

Qci+1

Qci+1

Qci+2

HCYC
HCYC

HCYCHCYC

. . .
...

Figure 4.3.: Visualization of the query cycle of Cyclic-DL: An ad-
versary uses the c queries to compute the complete out-
put of c compression functions HCYC.

Definition 4.11. We say that a pair of queries (Qa, Qb) is suc-
cessful in the query set Q, if the query Qa is used in the top row,
the query Qb is used the bottom-row of HCYC, and there exists a
pair of queries Qj , Qk ∈ Q that can also be used to compute an
output of HCYC such that a collision for HCYC has been found:

CPOST
T (C−PRE

T (Ka, Xa), Ya) = CPOST
T (C−PRE

T (Kj , Xj), Yj) and

CPOST
B (C−PRE

B (Kb, Xb), Yb) = CPOST
B (C−PRE

B (Kk, Xk), Yk).

Definition 4.12. Let d = 0, . . . , c − 1, d′ = d + 1 mod c, d̃ =
max(d, d′). We say CollFitd

i (Q) if (i) the pair of queries (ci +
d, ci+d′) is successful in Qci+d̃ and (ii) the adversary had not been

successful for 0 ≤ t ≤ d − 1: ¬CollFitt
i(Q). The probability is

measured over the post-outputs of the newly received queries (6i+d)
and 6i+ d′.

66

4.2. Cyclic-DL

The predicates Wini(Q) are defined as follows:

Definition 4.13.

Wini(Q) =¬

 ∨

0≤j≤i−1

Winj(Q)

∧
(
CollFit1

i (Q) ∨ . . . ∨CollFitc
i (Q)

)
.

We now show that our case analysis is complete.

Lemma 4.14. CollCYC(Q) =⇒Win0(Q) ∨ . . . ∨Winq−1(Q).

This proof is omitted as it is essentially the same as the proof of
Lemma 4.6. The only difference is that d is not chosen from the set
{0, 1, . . . , 5} but from the set {0, 1, . . . , c− 1}. �

Since Pr[CollCYC(Q)] ≤∑q−1
j=0 Winj(Q) it follows that

Pr[CollCYC(Q)] ≤
q−1∑

i=0

c−1∑

d=0

CollFitd
i (Q). (4.8)

We now proceed to upper bound Pr[CollFitd
i (Q)].

Lemma 4.15. Let 0 < i ≤ q − 1 and 0 ≤ d ≤ c− 1. Then

Pr[CollFitd
i (Q)] ≤

ci

(N − ci)2
.

67

4. Abreast-DM, Cyclic-DL and Applications

Proof. Let d′ = d + 1 mod c. The output of the compression function
HCYC is determined by the queriesQci+d = (Kci+d, Xci+d, Yci+d) and
Q6i+d′ = (Kci+d′ , Xci+d′ , Yci+d′) and the bijective pre-processing and
post-processing functions CPRE

T , CPOST
T , CPRE

B , CPOST
B . To form a

collision, two queries, Qj and Qk, are needed that can be chosen from
at most c(i + 1) queries in Qc(i+1)−1. The adversary can use them
to compute the output of < c(i + 1) compression functions HCYC.
Therefore,

Pr[CollFitd
i (Q)] ≤

c(i+ 1)

(N − c(i+ 1))2
.

�

Using (4.8) we get the following upper bound for any q ≥ 1 and
N > cq

Pr[CollCYC(Q)] ≤
q−1∑

i=0

c−1∑

d=0

c(i+ 1)

(N − c(i+ 1))2
≤

q∑

i=1

c−1∑

d=0

ci

(N − ci)2

≤
q∑

i=1

c2i

(N − ci)2
≤ c2 · q2 · 12

(N − cq)2
≤ c2

2

(
q

N − cq

)2

.

This completes our proof of Theorem 4.9. �

4.3. Applications

4.3.1. Add/k-DM (cycle length 2k)

We give a very elegant and efficient method to instantiate a com-
pression function with cycle length c = 2k for any k ≥ 1. This
construction is very similar to Hirose-DM. It is shown in Figure 4.4
and formally given in Definition 4.16.

68

4.3. Applications

Definition 4.16. Let HAdd/k : {0, 1}n × {0, 1}2n → {0, 1}2n be a

compression function such that (V, V̂) = HAdd/k(M,U, Û) where

M,U, Û ∈ {0, 1}n and let k ∈ N such that 1 ≤ k < n. HAdd/k uses
a blockcipher E ∈ Block(2n, n) as follows:

V = EÛ‖M (U)⊕ U

V̂ = EÛ‖M (U ⊞ 2n−k)⊕ U ⊞ 2n−k.

The symbol ⊞ denotes an addition modulo 2n.

Lemma 4.17. The compression function HAdd/k is a Cyclic-DL
compression function with a cycle length of c = 2k.

Proof. It is trivial to choose the pre-processing function and post-
processing function as required. It follows that σ(K,X) = (K,X ⊞

2n−k). Using simple arithmetics,

(σ ◦ · · · ◦ σ)︸ ︷︷ ︸
2k times

(K,X) = (K,X ⊞ 2k · 2n−k) = (K,X).

gives our claim since X ∈ {0, 1}n. �

Therefore we can apply Theorem 4.8 for k = 1 or Theorem 4.9 if
k ≥ 2.

Corollary 4.18. No adversary asking less than 2n−k−1 queries can
have more than a chance of 1/2 in finding a collision for the com-
pression function HAdd/k for any 1 < k < n.

69

4. Abreast-DM, Cyclic-DL and Applications

E

E

U

Û

V

V̂

M

const

Add/k-DM, cycle-length
c = 2k

E

E

U

Û

V

V̂

M

const

Hirose-DM, cycle length
c = 2, const 6= 0

Figure 4.4.: Left: Cyclic Compression Function with cycle length 2k,
k > 1. Right: (for comparison) Hirose-DM with a cycle
length of 2.

Proof. As the cycle length c is equal to 2k (Lemma 4.17), it follows,
using Theorem 4.9, that

AdvcollHAdd/k(q) =
22k

2

(q

2n−1

)2

.

By applying AdvcollHAdd/k(q) = 1/2 and solving after q one obtains

q(k) =
√
22n−2k−2 = 2n−k−1.

�

For example, when considering n = 128, we can for derive without
effort, that no adversary asking less than 2122 queries can have more
than a chance of 1/2 in finding a collision for the compression function
HAdd/5. The compression function HAdd/5 has a cycle length of 25 =
32.

4.3.2. Cube-DM (cycle length = 3)

The ’most optimal’ result in terms of security – at least in the class
Cyclic-DL as given by our theorems – can be achieved by using

70

4.3. Applications

a compression function that has a cycle length of 3. The approach
is slightly different compared to Add/k-DM as neither additions
modulo 2n nor XOR can be used to create a permutation σ with
|σ| = 3. The guiding idea is to use a message space Ω such that |Ω|
is evenly divisible by three. This construction is shown in Figure 4.5
and is given in Definition 4.20.

E

E

U

Û

V

V̂

M

(2n − 1)/3

Figure 4.5.: Cube-DM, a compression function with cycle length
|σ| = 3, the symbol ⋄ denotes an addition modulo 2n − 1.

Definition 4.19. Let E ∈ Block(2n, n) and let Ω = {0, 1}n −
{1n}, i.e., |Ω| = 2n−1. The blockcipher E′ : (Ω×{0, 1}n)×Ω→ Ω,
where Ω× {0, 1}n is the key space and is defined as

E′K(X) =

{
EK(X), if EK(X) 6= 1n

EK(EK(X)), else.

This definition of the blockcipher E′ ensures that E′K(X) ∈ Ω for
any value of X ∈ Ω: since E is a permutation, it follows that E′ is
a permutation. It is easy to see that, for n even, |Ω| is divisible by
three as

|Ω| mod 3 ≡ 2n − 1 mod 3 ≡ (2 · 2)n′ − 1 mod 3 ≡ 0 mod 3. (4.9)

71

4. Abreast-DM, Cyclic-DL and Applications

Definition 4.20. Let Ω = {0, 1}n\{1n} and N = |Ω| = 2n − 1.
Let HCube : Ω2×{0, 1}n → Ω2 be a compression function such that

(V, V̂) = HCube(M,U, Û) where U, Û , V, V̂ ∈ Ω and Mi ∈ {0, 1}n.
Furthermore, let const = (2n − 1)/3 and ⋄ be the addition modulo
2n − 1. Now HCube is built upon a blockcipher E′ as in Definition
4.19:

V = E′
Û‖M

(U) ⋄ U

V̂ = E′
Û‖M

(U ⋄ const) ⋄ U ⋄ const.

Actually, we would theoretically need a slightly generalized variant
of Cyclic-DL (operating not only over binary sets, but being also
able to work over arbitrary sets as Ω). But it is easy to see that this
extension is very simple to do, so we skip the details here. Note that
in the original publication [61] the proof was given for the generic set
Ω.
The compression function HCube has a cycle length of 3 using

σ(K,X) = (K,X ⋄ (2n − 1)/3) and since

(σ ◦ σ ◦ σ)(K,X) = (K,X ⋄ 3 · 2
n − 1

3
mod (2n − 1)) = (K,X).

The operation ⋄ is trivially efficient since a simple ’if’ and an ’ad-
dition’ suffice for an implementation. Also, the implementation of E′

is not assumed to cost any practically relevant performance.

72

5
Serial-DL, Tandem-DM and Applications

5.1. Serial-DL

5.1.1. Collision Security Results

Theorem 5.1. Let HSER be a Serial-DL compression function
as given in Section 1.4.3. Let α, β, n be such that α > e and let
N = 2n, N ′′ = N − 2q and τ = N ′′α/2q. Then

AdvColl
HSER(q) ≤ 2q(2α+ 1)/N ′′ + 2qζ + L, (5.1)

where

L = 4 ·
(
q2neτ2q(1−ln τ)/N ′′

+ q2/(βN ′′)
)

and ζ is from Definition 1.16.

73

5. Serial-DL, Tandem-DM and Applications

Since the proof of this theorem is rather brief, and based on several
propositions that are discussed shortly, we postpone it to Page 82.
Numerical results, e.g., for Tandem-DM, are discussed in Section
5.3.1 and 5.3.2.
We also show that Theorem 5.1 implies the following asymptotic

bound.

Theorem 5.2. Let q = 20.93n−ǫ where ǫ ≥ 0 and HSER be
a Serial-DL compression function with ζ ≤ 1/N ′′. Then
AdvColl

HSER(q)→ 0 as n→∞.

Corrections since Initial Publication The collision security proof
of Serial-DL in [47] had a flaw in the analysis of (what now is)
Case 1 in Proposition 5.5. We ’repaired’ it using a technique first
given in [107]. As a consequence of this technique, we had to give the
adversary a second query for each query asked.

5.1.2. Proof Model

We analyze whether the queries to the oracle E made by the adversary
can be used for constructing a collision of the compression function
HSER. We look to see whether there exist four not necessarily distinct
queries that form a collision (cf. Figure 5.1).
We start our discussion from an arbitrary collision-finding adver-

sary A which asks q queries. We then construct an adversary A′ that
simulates A and asks additional queries as follows: First, assume
that A has launched a forward query EKB

(XB). Then A′ computes
(KT , YT) = SER−1(KB , XB) and launches an additional backward
query E−1KT

(YT). In the case of a backward query E−1KT
(XT), A′ com-

putes (KB , XB) = SER(KT , YT) and launches an additional forward
query EKB

(XB). If A ever makes a query to which A′ already knows
the answer from its query history, A′ ignores this query and returns

74

5.1. Serial-DL

CPRE
TCPRE

T CPOST
TCPOST

T

CPRE
BCPRE

B CPOST
BCPOST

B

CLNKCLNK

V

V̂

V ′

V̂ ′

(M,U, Û) (M ′, U ′, Û ′)(K
L,1
T

‖K
L,2
T

)

(K
L,1
B

‖K
L,2
B

)

(K
R,1
T

‖K
R,2
T

)

(K
R,1
B

‖K
R,2
B

)

XL
T

XL
B

Y L
T

Y L
B

XR
T

XR
B

Y R
T

Y R
B

E [TL]

E [BL]

E [TR]

E [BR]

Figure 5.1.: The double length compression function HSER using a
blockcipher E ∈ Block(k, n). The four possible posi-
tions a query can be used in are denoted by TL, BL,
TR, BR which are abbreviations for top-left, bottom-left,
top-right, and bottom-right.

the ’old’ result that has been stored in its query history. So A′ never
makes a query to which it knows the answer. Let Q′ be the query
history of A′ and Q be the query history of A. Then, Q ⊂ Q′ and
|Q′| = q∗ ≤ 2q. Our analysis now focuses on the adversary A′ with
its query history Q′.
To upper bound the probability of the adversary obtaining queries

than can be used for a collision, we upper bound the probability of the
adversary A′ making a query that can be used as the final query to
complete such a collision. Let Q′i denote the set of the first i queries
made by the adversary A’, i ≤ 2q. So, from the point of view of A′,
it responds to two events: either A asks for a query that is already
in Q′ by just returning it or A asks for a query that is not in Q′.
Since the success probability in the first case is zero we analyze in
the following the latter case.
In our analysis, we examine the queries of the adversary one at a

time (either forward or backward) as they are placed. We denote by
the term last query the latest query made by the adversary. This
query is always given the index i. Therefore, for each i, 1 ≤ i ≤ 2q,
we upper bound the probability that the answer to the adversary’s
i-th query, (Ki, Xi)fwd or (Ki, Yi)bwd, allows the adversary to use

75

5. Serial-DL, Tandem-DM and Applications

this query to complete the collision. In the latter case, the last query
is called successful and the attack is given to the adversary. As the
probability depends on the first i − 1 queries, we need to make sure
that the adversary has not already been too lucky with these. Being
lucky is explicitly defined in (5.2), e.g., it means – among others –
that there exists a large subset of the first i−1 queries that have equal
post-output. Our upper bound thus breaks down into two pieces: an
upper bound for the probability of the adversary getting lucky and
the probability of the adversary ever making a successful i-th query,
conditioned on the fact that the adversary has not yet become lucky
by its (i− 1)-th query.
We say Coll(Q′) if the adversary A′ wins in either finding a colli-

sion or gets lucky in one of the predefined ways specified shortly. (So
’winning’ does not necessarily imply that a collision has been found.)
We upper bound Pr[Coll(Q′)] by exhibiting predicates Lucky(Q′),
WinTL(Q′), WinBL(Q′), WinTLBL(Q′) andWinTLBR(Q′) such that

Coll(Q′)⇒ Lucky(Q′) ∨WinTL(Q′) ∨WinBL(Q′)
∨WinTLBL(Q′) ∨WinTLBR(Q′).

We then proceed to derive separately upper bounds for the prob-
abilities Lucky(Q′), WinTL(Q′), WinBL(Q′), WinTLBL(Q′) and
WinTLBR(Q′). The union bound finally gives

Pr[Coll(Q)] ≤Pr[Lucky(Q′)] + Pr[WinTL(Q′)]+
Pr[WinBL(Q′)] + Pr[WinTLBL(Q′)]+
Pr[WinTLBR(Q′)].

Clearly, it suffices for our purposes to upper bound Pr[Coll(Q′)]
since

Pr[Coll(Q)] ≤ Pr[Coll(Q′)].

To formally state these predicates, some additional definitions are
convenient. Let NumEqualT(Q′), NumEqualB(Q′) be functions defined

76

5.1. Serial-DL

on query sequences Q′ of length q∗ as follows:

NumEqualT(Q′) = max
Z∈{0,1}n

|{i : CPOST
T (C−PRE

T (Ki, Xi), Yi) = Z}|,

NumEqualB(Q′) = max
Z∈{0,1}n

|{i : CPOST
B (C−PRE

B (Ki, Xi), Yi) = Z}|.

They give the maximum size of a set of queries in Q′ whose post-
outputs are all the same (for the top row and bottom row, respec-
tively). Let NumCollT(Q′), NumCollB(Q′) be also defined on query
sequences Q′ of length q∗ as

NumCollT(Q′) = |{(i, j) ∈ {1, . . . , q∗}2, i 6= j :

CPOST
T (C−PRE

T (Ki, Xi), Yi) =

CPOST
T (C−PRE

T (Kj , Xj), Yj)}|,
NumCollB(Q′) = |{(i, j) ∈ {1, . . . , q∗}2, i 6= j :

CPOST
B (C−PRE

B (Ki, Xi), Yi) =

CPOST
B (C−PRE

B (Kj , Xj), Yj)}|.

They give the number of ordered pairs of distinct queries in Q′ which
have the same post-outputs, again for the top row and bottom row,
respectively.
We now define the event Lucky(Q′) as

Lucky(Q′) =(NumEqualT(Q′) > α) ∨ (NumEqualB(Q′) > α) ∨
(NumCollT(Q′) > β) ∨ (NumCollB(Q′) > β) , (5.2)

where α and β are the constants from Theorem 5.1. These constants
are chosen depending on n and q∗ by a numerical optimization pro-
cess. If α and β are chosen larger, Pr[Lucky(Q′)] diminishes. The
other events consider mutually exclusive cases on how to find a colli-
sion for the compression function. These cases are formalized by the
following four predicates.
FitTL(Q′): The last query is used only once: in position TL. This is

equivalent to the case where the last query is used in position
TR.

77

5. Serial-DL, Tandem-DM and Applications

FitBL(Q′): The last query is used only once: in position BL or
(equivalent) BR.

FitTLBL(Q′): The last query is used twice in a collision: either TL
and BL or (equivalent) TR and BR.

FitTLBR(Q′): The last query is used twice in a collision: either TL
and BR or (equivalent) TR and BL.

In Proposition 5.3, we prove that these four predicates do cover all
possible cases of a collision. For practical purposes we now define
some additional predicates as follows:

WinTL(Q′) = ¬Lucky(Q′) ∧ FitTL(Q′),
WinBL(Q′) = ¬(Lucky(Q′) ∨ FitTL(Q′)) ∧ FitBL(Q′),

WinTLBL(Q′) = ¬(Lucky(Q′) ∨ FitTL(Q′) ∨ FitBL(Q′))
∧FitTLBL(Q′),

WinTLBR(Q′) = ¬(Lucky(Q′) ∨ FitTL(Q′) ∨ FitBL(Q′)
∨FitTLBL(Q′)) ∧ FitTLBR(Q′).

Proposition 5.3.

Coll(Q′)⇒WinTL(Q′) ∨WinBL(Q′) ∨WinTLBL(Q′)
∨WinTLBR(Q′).

Proof. We can assume that the adversary has not been lucky, i.e.,
¬Lucky(Q′). Then it is easy to see that

FitTL(Q′) ∨ FitBL(Q′) ∨ FitTLBL(Q′) ∨ FitTLBR(Q′) =⇒
WinTL(Q′) ∨WinBL(Q′) ∨WinTLBL(Q′) ∨WinTLBR(Q′).

It is sufficient to show that Coll(Q′) ⇒ FitTL(Q′) ∨ FitBL(Q′) ∨
FitTLBL(Q′) ∨ FitTLBR(Q′). Now, assume Coll(Q′) in the ad-
versary’s i-th query. So the adversary has not been able to find a

78

5.1. Serial-DL

successful query prior to the i-th query but is successful now. Hence,
it has found queries Qi, Qj , Qk, Ql, including queries from the query
history Q′, for some integers 1 ≤ j, k, l ≤ i, such that a collision can
be constructed.

For this, first assume that the last query, i.e., the i-th query, is used
once in the collision. If it is used in TL (or TR), then FitTL(Q′).
If it is used in BL (or BR), then FitBL(Q′). Now assume that the
query is used twice in the collision. If it is used in TL and BL (or
TR and BR), then FitTLBL(Q′). If it is used in TL and BR (or BL
and TR), then FitTLBR(Q′). We note that a query cannot be used
twice in one row (top row or bottom row) since then we would not
have found a collision. This is due to the fact that the top-row query
uniquely determines the bottom-row query and vice versa. The same
argument also holds in the case that the last query is used more than
twice. This concludes our analysis as no cases are left. �

The next step is to upper bound separately the probability of oc-
currence of any of the predicates: Pr[Lucky(Q′)], Pr[WinTL(Q′)],
Pr[WinBL(Q′)], Pr[WinTLBL(Q′)], and Pr[WinTLBR(Q′)].

Proposition 5.4. Let α and β as in Theorem 5.1 and let N∗ =
2n − q∗, α > e and τ = N∗α/q∗. Then

Pr[Lucky(Q′)] ≤ 2 ·
(
q∗2

neτq∗(1−ln τ)/N∗

+ q2∗/(βN
∗)
)
.

Proof. The proof is somewhat technical and is postponed to Section
5.4. Also, the methods are well known in literature. �

We note that the multiplication factor ’2’ can be omitted if the
post processing functions of the top and bottom row are equal, i.e.,
CPOST

T = CPOST
B .

79

5. Serial-DL, Tandem-DM and Applications

5.1.3. Proof Details

Proposition 5.5. Pr[WinTL(Q′)] ≤ q∗ · α/N∗.

Proof. Let Qi = (Ki, Xi, Yi) be the last query.

Case 1: Qi is a forward query. As in [107], we call a value R good
if there exists a query (K ′, X ′, ·) in Q′ that was obtained as
a backward query such that (X ′,K ′) = SER(Ki, R). By defi-
nition, it follows that there are at most α good values R. By
construction of A′, a successful query that is used in the bot-
tom row cannot have been obtained as a forward query, since
A′ would have immediately launched the corresponding back-
ward query in the top row. In such a case, also by the design
of A′, we would have ignored the last query for analysis. Thus,
a successful query in the bottom row must have been obtained
as a backward query, which leaves us with a chance of success
of ≤ α/N∗ and for q∗ queries we have ≤ q∗ · α/N∗.

Case 2: Qi is a backward query. In order to be successful, there must
be a matching query in BL = SER(Ki, Yi) ∈ Qi−1. We now as-
sume that this query is in fact in the query history and denote
it by Q∗ = (K∗i , X

∗
i , Y

∗
i). The post-output of Q∗ is uniquely

determined and we denote it by V ∗i . Now, there are at most α
queries that can be used in BR (i.e., that have an equal post-
output as BL). And for any such matching query in BR, there
is at most one query in TR (computed via SER−1). In total,
there are no more than α queries that can possibly be used to
find a collision in the top row. The last query has a chance
of succeeding of ≤ α/N∗. In total, for q∗ queries, the chance
of ever making a successful query of this type can be upper
bounded by q∗ · α/N∗.

�

80

5.1. Serial-DL

Proposition 5.6. Pr[WinBL(Q′)] ≤ q∗ · α/N∗.

Proof. Apart from swapping the roles of top row and bottom row,
forward queries and backward queries, and SER and SER−1, the proof
is the same as for Proposition 5.5 – so we omit it here. �

Proposition 5.7. Pr[WinTLBL(Q′)] ≤ q∗ · ζ.

Proof. The analysis is the same for forward queries and backward
queries. The probability that the last query can be used concurrently
in the top row and bottom row (i.e., TL and BL) can be upper
bounded by ζ (cf. Definition 1.16). For a total of q queries, this
bound is q∗ · ζ. �

Proposition 5.8. Pr[WinTLBR(Q′)] ≤ q∗/N
∗.

Proof. Assume that the last query is a forward query and we use it in
TL and BR (TL = BR). It follows that the query in TR is uniquely
determined by the input of the last query. So the chance of success in
the top row for q∗ queries is upper bounded by q∗/N

∗. Now assume
that the last query is a backward query used again in TL and BR.
Since the query in BL is uniquely determined by the input of the last
query used in TL, the total chance of success for q∗ queries in the
bottom row is again upper bounded by q∗/N

∗. In both cases, the
success probability is bounded by ≤ q∗/N

∗. �

81

5. Serial-DL, Tandem-DM and Applications

Proof of Theorem 5.1 The proof follows with Proposition 5.3 and
the bounds given in Propositions 5.4, 5.5, 5.6, 5.7, and 5.8. We also
let 2q = q∗ since the new adversary A′ never makes more than twice
the queries of the original adversary A. �

82

5.2. Generic-DL

5.2. Generic-DL

Theorem 5.9. Let HGEN be a Generic-DL compression function
as given in Section 1.4.3. Let α, β, n, and γ be constants such that
α > e and N = 2n, N ′ = N − q, and τ = N ′α/q. Let Γ(q, γ) be as
in equation (5.3). Then

AdvColl
HGEN(q) ≤ qβ(γ + 1)/N ′ + q2ζ/N ′ + qγ/N ′ + L,

where

L = 2q2neτq(1−ln τ)/N ′

+ 2q2/(βN ′) + Γ(q, γ).

Proof. The proof of Theorem 5.9 closely follows the proof of Theorem
5.1 generalized by a further parameter γ, but without the ’additional’
adversary A′. So the queries of the adversary A and its query history
Q are analyzed directly. This parameter gives an upper bound on
how many queries can be used in the top row for a given bottom-row
query. Informally, the function Γ(q, γ) is defined as the probability
that a given parameter γ for a specific value of q is in fact such an
upper bound. For sake of convenience, we only discuss the relevant
differences in the proof. In particular, we do not restate the basic
notions, definitions and the case analysis as given in Section 5.1.2.
We note that the bound for Generic-DL is considerably worse than
for Serial-DL or Cyclic-DL. The main reason for this is that the
arguments used in the proofs of Propositions 5.5 and 5.6 do not work
here anymore.

5.2.1. Proof Details

First, we give some additional notations. Let γ be an upper bound
for the number of queries that can be used in the top row for any

83

5. Serial-DL, Tandem-DM and Applications

given query in the bottom row. Let MaxTopCount(Q) be a function
defined on query sequences Q of length q as follows:

MaxTopCount(Q) =
max
1≤j≤q

|{i : (CPRE
B ◦CLNK)(C−PRE

T (Ki, Xi), Yi) = (Kj , Xj)}|.

Using the notions of Section 5.1.2 we state the event LuckyGen(Q)
as

LuckyGen(Q) = Lucky(Q) ∨ MaxTopCount(Q) > γ.

The function Γ(q, γ) with |Q| = q is defined as

Γ(q, γ) = Pr[MaxTopCount(Q) > γ]. (5.3)

We define the four predicatesWinTL(Q),WinBL(Q),WinTLBL(Q)
and WinTLBR(Q) as on page 78, only Lucky(Q′) is substituted by
LuckyGen(Q). Now, the proof is essentially the same as for Theorem
5.1, it only differs in the arguments and some subtle modifications in
Propositions 5.5, 5.6, 5.7, and 5.8.

Argument MTC. We label a row (either top row or bottom row) as
query row (QR) if this is the row the last query shall be used
in. Similarly, the term other row (OR) is used in the discussion
if the last query is not used in this row. Let γ′ be a parameter
giving the maximum number of queries that can be used in the
query row given a query in the other row. We assume wlog.
that the last query is used in position QL. We upper bound
the number of queries possible for QR as follows. There are
at most β pairs of queries that can be used in the other row
to form a collision (i.e., the post-outputs of OL and OR are
equal). For any query in OR, there are at most γ′ queries that
can be used in QR. So the success probability can be upper
bounded by βγ′/N ′. For q queries, this bound is qβγ′/N ′.

Argument MTC is now used to derive easily a collision resistance
bound in Propositions 5.10 and 5.11.

84

5.2. Generic-DL

Proposition 5.10. Pr[WinTL(Q)] ≤ qβγ/N ′.

Proof. The query row QR is the top row and the other row OR is
the bottom row. The analysis is the same for a forward query and
backward query since in both cases Argument MTC with parameter
γ′ = γ holds. �

Proposition 5.11. Pr[WinBL(Q)] ≤ qβ/N ′.

Proof. The query row QR is the bottom row and the other row OR
is the top row. The analysis is the same for a forward row and
backward query since in both cases Argument MTC with parameter
γ′ = 1 holds. �

Proposition 5.12. Pr[WinTLBL(Q)] ≤ q2 · ζ/N ′.

Proof. The proof is the same as for Proposition 5.7. We omit it here.
�

Proposition 5.13. Pr[WinTLBR(Q)] ≤ qγ/N ′.

Proof. The following argument is the same for a forward query and a
backward query. Assume that the last query is used in TL and BR.
Then there are at most γ queries that can be used in TR. So the
probability of a collision of the post-outputs in the top row is upper
bounded (for q queries) by qγ/N ′ and our claim follows. �

85

5. Serial-DL, Tandem-DM and Applications

Proof of Theorem 5.9 The proof follows from our discussion to-
gether with Proposition 5.3 and the bounds given in Propositions
5.4, 5.10, 5.11, 5.12, and 5.13. �

5.3. Applications

5.3.1. Collision Resistance of Tandem-DM

We now apply Theorem 5.1 to Tandem-DM (cf. also Figure 5.2(a)).
We again let N = 2n and N ′′ = (N − 2q). We have to derive an
upper bound for the value ζ, i.e., the probability that a query can be
used at the same time in the top row and bottom row. It follows that
this is the case iff U = Û , M = Û and EÛ‖M (U) = Û which can be

upper bounded by 1/(N − 2q), i.e., ζ = 1/(N − 2q). So we evaluate

AdvColl
HTDM(q) ≤2q(2α+ 1)/N ′′ + 2q/(N − 2q)

+ 4 ·
(
qNeτ2q(1−ln τ)/N ′′

+ q2/(βN ′′)
)
.

Using a numerical optimization process, we find for n = 128 that
no adversary asking less than q = 2119.6 queries can find a collision
with probability greater than 1/2. The parameters in this case are
α = 24 and β = q/4. More details are given in Table 5.1.

5.3.2. Collision Resistance of Mix-Tandem-DM

We now apply the generic constructionGeneric-DL in order to get a
collision security bound for a construction that we callMix-Tandem-
DM depicted in Figure 5.2 (b) and given in Definition 5.14.

Definition 5.14. Let HMTDM : {0, 1}2n × {0, 1}n → {0, 1}2n be a

compression function such that (V, V̂) = HMTDM(M,U, Û) where

U, Û , V, V̂ ,M ∈ {0, 1}n. HMTDM consists of a blockcipher E ∈

86

5.3. Applications

q AdvColl
HTDM(q) ≤ α β

2111.16 10−4 14 q/4

2114.6 1/100 19 q/4

2117.8 1/10 23 q/4

2119.2 1/4 24 q/4

2119.6 1/2 24 q/4

Table 5.1.: Upper bounds on AdvColl
HTDM(q) as given by Theorem 5.1

evaluated for n = 128; we always let β = q/4

Block(2n, n) as follows:

V = EÛ‖M (U)⊕ U,

V̂ = EM‖V (Û)⊕ Û .

V

V̂

U

Û

M

E

E

(a) Tandem-DM

V

V̂

U

Û

M

E

E

(b) Mix-Tandem-DM

Figure 5.2.: Comparison of Tandem-DM and Mix-Tandem-DM

We show that in this case ζ = 1/N ′ (Step 1), Γ(q, γ) = 0 (Step 2),
and γ = α (Step 3). Using again a numerical optimization process,

87

5. Serial-DL, Tandem-DM and Applications

q AdvColl
HMTDM(q) ≤ α β

277.4 10−4 3 238

279.6 1/100 3 239

281.8 1/10 3 240

282.6 1/4 3 240

283.3 1/2 3 241

Table 5.2.: Upper bounds on AdvColl
HMTDM(q) as given by Theorem 5.9

evaluated for n = 128

it is easy to compute that for n = 128 no adversary asking less than
q = 283.3 queries can find a collision with probability greater than
1/2. In this case, the parameters are α = 3 and β = 241. More
details can be found in Table 5.2.

(Step 1) Determining ζ. First, we upper bound the probability
that a query can be used in the top row and bottom row simultane-
ously. This is the case iff U = Û , M = Û , and EÛ‖M (U) ⊕ U = Û .

Independent of the query type – either forward or backward – this is
upper bounded by 1/N ′.

(Step 2) Deriving a bound for Pr[MaxTopCount(Q) > γ]. We have
to upper bound the probability that for a given bottom-row query,
the number of matching top-row queries that can be used in a com-
pression function exceeds a specific value, here γ. For Mix-Tandem-
DM, this is simply the number of queries that all share the same
XOR-output. Since we already have an upper bound for this, we can
set γ = α and ’reuse’ the bound we already got in the analysis of
LuckyGen(Q).

88

5.4. Combinatorial Proofs

(Step 3) Success probability of an adversary. Following closely
Theorem 5.9, we can state the bound:

AdvColl
HMTDM(q) ≤ qβ(α+ 1)/N ′ + q2/(N ′)2 + qα/N ′ + L,

where

L = qNeτq(1−ln τ)/N ′

+ q2/(βN ′).

64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 110 112 114 116 118 120 122 124 126

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

log2(q)

success probability

Figure 5.3.: Collision Security Bound for Tandem-DM (right) and
Mix-Tandem-DM (left).

5.4. Combinatorial Proofs

We now give a proof for Proposition 5.4. The proof essentially follows
by adding up the individual results of Lemmas 5.15 and 5.16. The
analysis is only given for the top-row bounds, i.e., for NumEqualT(Q′),
NumCollT(Q′), and NumTriangleCollT(Q′). The bottom-row equiv-
alents NumEqualB(Q′), NumCollB(Q′), and NumTriangleCollB(Q′)
can be omitted for the bound Pr[Lucky(Q′)] iff CPOST

T = CPOST
B .

In Proposition 5.4, we have stated the more generic bound that also
permits different post-processing functions in the top row and bottom
row, i.e.,

Pr[Lucky(Q′)] ≤2 · (Pr[NumEqualT(Q′) > α]

+ Pr[NumCollT(Q′) > β]).

89

5. Serial-DL, Tandem-DM and Applications

Note that the constants in the following Lemmas are the same as
before, including |Q′| = q∗ and N∗ = 2n − q∗.

Lemma 5.15. Pr[NumEqualT(Q′) > α] ≤ q∗2
neτq∗(1−ln τ)/N∗

.

Lemma 5.16. Pr[NumCollT(Q′) > β] ≤ q2∗/(βN
∗).

The proofs are essentially due to Steinberger [161].

Proof of Lemma 5.15.

We now upper bound the number of queries in the query history Q′
that have equal post-outputs. For a forward query with key K and
plaintext X, the post-output V is computed as

1. (M,U, Û) = C−PRE(K,X),

2. Y = EK(X),

3. V = CPOST (M,U, Û , Y).

For a backward query using key K and ciphertext Y , the post-output
V is computed as

1. X = E−1K (Y),

2. V = CAUX(K,X, Y).

Since CPOST (M,U, Û , ·) and CAUX(K, ·, Y) are both bijective and
since for a forward query Y (for a backward query X) is chosen
independently and evenly distributed, the post-outputs V are also
chosen independently and evenly distributed (in both cases).

90

5.4. Combinatorial Proofs

So the queries Qi = (Ki, Xi, Yi), with post-output Vi, and Qj =
(Kj , Xj , Yj), with post-output Vj , have equal post-outputs iff Vi = Vj .
Since Vi and Vj are chosen independently from a set of at least 2n−q∗
values, we can rephrase this question as a balls-in-bins question. Let
N = 2n be the number of bins and q∗ be the number of balls to
be thrown. The i-th ball falls into the j-th bin, if the post-output
of the i-th query is equal to the post output of the j-th query, i.e.,
Vi = Vj . In the following we upper bound the probability that some
bin contains more than α balls. As the balls are thrown independent
of each other, the i-th ball always has probability ≤ p = 1/N∗ of
falling in the j-th bin. Let B(k) be the probability of having exactly
k balls in a particular bin, say bin 1. Then we can upper bound

B(k) ≤ pk
(
q∗
k

)
.

Let ν = q∗p, where ν is an upper bound for the expected number of
balls in any bin. By Stirlings approximation [41] (and ex being the
exponential function)

n! ≤
√
2πn ·

(n
e

)n

· e1/(12n),

we can upper bound B(k) as follows:

B(k) ≤ pk
q∗!

k!(q − k)!

≤ pk√
2π

√
q∗

k(q − k)
· qq∗
kk(q − k)1−k

· e
k · eq∗−k

eq
· e 1

12 (q−k−(q−k))

≤ k−kνk
(

q∗
q∗ − k

)q∗−k

≤ νk · k−k · ek.
And, since α = τν, we get

B(α) ≤ ντνeτν

(τν)τν
=

eτν

τ τν
= eτν(1−ln τ).

91

5. Serial-DL, Tandem-DM and Applications

It follows that B(α) is a decreasing function of α if τ > e. Then we
can upper bound

Pr[NumEqualT(Q′) > α] ≤ 2n ·
q∑

j=α

B(j)

≤ q∗2
nB(α) ≤ q∗2

neτν(1−ln τ).

This proves our claim. �

Proof of Lemma 5.16.

Let Ci,j be the event that the queries i and j, i 6= j, have the same
post-output, i.e., Pr[Ci,j] ≤ 1/N∗ (cf. the discussion in den previous
section). As a result, E[NumCollT(Q′)] =

∑
i6=j E[Ci,j] ≤ q2∗/N

∗.
Using Markov’s inequality, we get

Pr[NumCollT(Q′) > β] ≤ q2∗
βN∗

,

�

since Qi uniquely determines the query Qj .

92

6
MDC-4

6.1. MDC-4 Hash Function

6.1.1. The compression function of MDC-4

We recall the definition of the MDC-4 compression function given on
Page 25 (cf. Figure 6.1). Assuming again two n-bit chaining values U

and Û , a blockcipher E ∈ Block(n, n), and an n-bit message block
M . The compression function of MDC-4 (cf. Figure 6.1) works as
follows:

1. S = (SL‖SR)← EU (M)⊕M

2. T = (TL‖TR)← EÛ (M)⊕M

3. V ← ESL‖TR(Û)⊕ Û

4. V̂ ← ETL‖SR(U)⊕ U

The superscript L denotes the left n/2 bits of an expression, and
the superscript R denotes the right n/2 bits of an expression. The

93

6. MDC-4

original MDC-4 specification [122] swaps the right halves of V and

V̂ . But, since we are in the ideal cipher model, this operation does
neither change the distribution of the output nor our collision security
analysis. So, for ease of presentation, we omit this additional step.
Apart from notational complication of matters, the right/left swap
would also not change any of our arguments of the following proof(s).

U ÛM

SL SR TL TR

SL TR TL SR

V V̂

E
[TL]

E
[TR]

E
[BL]

E
[BR]

Figure 6.1.: The double-length quad-call compression function
HMDC-4 where E ∈ Block(n, n); the notch indicates
the key input of the cipher.

94

6.1. MDC-4 Hash Function

Our analysis is for the MDC-4 hash function HMDC-4 which is
obtained by a simple iteration of the MDC-4 compression function
HMDC-4 in the Merkle-Damg̊ard manner: Given some n·ℓ-bit message
M = (M1, . . . ,Mℓ), Mj ∈ {0, 1}n for j = 1, . . . , ℓ and an initial value

(U0, Û0) ∈ {0, 1}2n it works by computing

(Ui, Ûi) = HMDC-4(Mi, Ui−1, Ûi−1)

for i = 1, . . . , ℓ. The hash value HMDC-4(M) is (Uℓ, Ûℓ).

Collision Security of the MDC-4 compression function. There is
a very simple attack on the compression function which only requires
about 2n/2 invocations of the E oracle: Let the adversary find values
K,K ′,M,M ′ ∈ {0, 1}n such that EK(M) = EK′(M ′). Then, by

HMDC-4(M,K,K) = HMDC-4(M ′,K ′,K ′),

a collision for the MDC-4 compression function has been found.

Another interesting observation is that a collision for the MDC-2
compression function might also lead to a collision for the MDC-4
compression function as follows: Assume that an adversary has found
values M,M ′,K,K ′ such that

HMDC-2(M,K,K ′) = HMDC-2(M ′,K,K ′)

then this automatically leads to a collision for the MDC-4 compres-
sion function since

HMDC-4(M,K,K ′) = HMDC-4(M ′,K,K ′).

Though, the relevance of this observation is quite limited, since such
a collision for MDC-2 is much harder to find than our final bound
will state (which is for the full MDC-4 hash function and not only
for the MDC-4 compression function).

95

6. MDC-4

6.2. Collision Security

6.2.1. Proof Model

Our analysis is for the MDC-4 hash function HMDC-4 assuming that
the initial chaining values are different, i.e., U0 6= Û0. The goal of
the adversary is to output two messages M1 ∈ {0, 1}n·ℓ and M2 ∈
{0, 1}n·ℓ′ such that H(M1) = H(M2) for some positive integers ℓ
and ℓ′.
In our analysis, we dispense the adversary from returning these two

messages. Instead, we upper bound its success probability by giving
the attack to it if
(i) an ’internal’ collision has been found, i.e., (M,U, Û) such that

(V, V) = HMDC-4(M,U, Û)

for some V ∈ {0, 1}n or

(ii) case (i) is not true but a collision in the compression function

HMDC-4 has been found, i.e., (M,U, Û) and (M ′, U ′, Û ′), such
that

HMDC-4(M,U, Û) = HMDC-4(M ′, U ′, Û ′),

and U 6= Û , U ′ 6= Û ′ or

(iii) cases (i), (ii) are not true but values (M,U, Û) have been found
such that

(U0, Û0) = HMDC-4(M,U, Û).

Note that this requirement essentially models the preimage re-
sistance of the MDC-4 compression function.

The proof is well-known and straightforward: Assume a collision for
HMDC-4 has been found using two not necessarily equal-length mes-
sages M and M′, i.e., HMDC-4(M) = HMDC-4(M′). Also assume
that the collision is the earliest possible, i.e., that neither message
cannot be shortened without loosing the collision. Then, the adver-
sary has either found (i) or (ii) or has ’hit’ the initial value while
hashing the second to the last block. The latter is covered by (iii).

96

6.2. Collision Security

For our analysis, we again impose the reasonable condition that
the adversary must have made all queries necessary to compute the
results. We determine whether the adversary has been successful
or not by examining the query history Q. Formally, we say that

CollMDC-4(Q) holds if there is such a collision and Q contains all
the queries necessary to compute it.
We now define what we formally mean by a collision of the MDC-4

compression function.

Definition 6.1 (Collision resistance of the MDC-4 CF).
Let HMDC-4 be a MDC-4 compression function. Fix an adversary
A. Then the advantage of A in finding collisions for HMDC-4 is
the real number

AdvColl
HMDC-4(A) =Pr[E

$← Block(n, n);

((M,U, Û), (M ′, U ′, Û ′))
$← AE,E−1

:

((M,U, Û) 6= (M ′, U ′, Û ′))

∧HMDC-4(M,U, Û) = HMDC-4(M ′, U ′, Û ′)

∧ U 6= Û ∧ U ′ 6= Û ′].

For q ≥ 1 we write

AdvColl
HMDC-4(q) = max

A
{AdvColl

HMDC-4(A)},

where the maximum is taken over all adversaries that ask at most q
oracle queries, i.e., forward and backward queries to E.
Since our analysis in the next sections is for HMDC-4, we informally

say that the probability of a collision for HMDC-4 is upper bounded
by using a union bound for the cases (i), (ii) and (iii). This is part of
the formalization in Theorem 6.2.

97

6. MDC-4

6.2.2. Our Results

We now give our main result. Although, having a substantial com-
plexity on the first sight in its general form, we can easily evaluate it
to numerical terms (cf. Corollary 6.3).

Theorem 6.2. Fix some initial values S0, T0 ∈ {0, 1}n with S0 6=
T0 and let HMDC-4 be the MDC-4 hash function as given in Section
6.1.1. Let N = 2n and α, β, γ be constants such that eq2n/2/(N −
q) ≤ α, eq/(N − q) ≤ β, and let Pr[Lucky(Q)] as in Proposition
6.15. Then,

AdvColl
HMDC-4(q) ≤q

(
α2 + γ

N − q
+

2α

N − α2n/2+1 + α2

)

+q

(
β2 + 4

N − q
+

β

N − q

)

+2q

(
α4 + α2 + 3αγ + 2γ

N − q
+ 6

α2 + 1

N1/2 − α

)

+q

(
γα2 + γ2

N − q
+

2α

(2n/2 − α)2

)
+ Pr[Lucky(Q)].

(6.1)

The proof of Theorem 6.2 is developed throughout the following
discussion and explicitly stated in Section 6.2.5. As mentioned before,
our bound is rather non-transparent, so we discuss it for n = 128.
We evaluate the equation above such that the adversary’s advantage
is upper bounded by 1/2 – thereby maximizing the value of q by
numerically optimizing the values of α, β, and γ. Our result is the
following corollary.

98

6.2. Collision Security

q AdvColl
HMDC-4(q) ≤ α β γ

264 7.18 · 10−7 42 4.0 2 · 106

268.26 10−4 126 4.0 6 · 106

272.19 1/100 900 4.0 1.3 · 107

273.84 1/10 2600 4.0 1.4 · 107

274.40 1/4 3780 4.0 1.5 · 107

274.76 1/2 4900 4.0 1.5 · 107

Table 6.1.: Upper bounds on AdvColl
HMDC-4(q) as given by Theorem 6.2

Corollary 6.3. No adversary asking less than 274.76 queries can
find a collision for the MDC-4 hash function with probability greater
than 1/2.

An overview of the behavior of our upper bound is given in Ta-
ble 6.1 and is depicted in Figure 6.2. Note that for other values of
(α, β, γ) the bound stays correct but worsens numerically (as long as
the conditions given in Theorem 6.2 hold).

6.2.3. Proof Preliminaries

Overview. Our discussion starts with case (ii). We analyze whether
the list of oracle queries to E made by the adversary can be used
for a collision of the MDC-4 compression function HMDC-4. For
a collision, there are eight – not necessarily distinct – blockcipher
queries necessary (cf. Figure 6.3).
To upper bound the probability of the adversary obtaining queries

that can be used for a collision, we upper bound the probability

99

6. MDC-4

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

log2(q)

success probability

Figure 6.2.: Collision Security Bound for MDC-4; evaluated for n =
128.

of the adversary making a final query that can be used as the last
query to complete such a collision. Let Qi denote the set of the first
i queries (K1, X1, Y1), ..., (Ki, Xi, Yi) (either forward or backward)
made by the adversary. Furthermore, we denote by the term last
query the latest query made by the adversary. This query has always
index i. Therefore, for each i with 1 ≤ i ≤ q, we upper bound the
success probability of an adversary to use the i-th query to complete
a collision.

As the probability depends on the first i−1 queries, we have to put
some restrictions on these and also upper bound the probability that
these restrictions are not met by an adversary. One example of such
a restriction is to assume that, e.g., the adversary has not found too
many collisions for the underlying component function EK(X)⊕X.

Thus, our upper bound breaks down into two parts: first, an upper
bound for the probability of an adversary not meeting our restrictions
and, second, the probability of an adversary ever making a successful
i-th query, conditioned on the fact that the adversary does meet our
restrictions and has not been successful by its (i − 1)-th query. We
use some notations that are given in Figure 6.3, e.g., the statement
1BL 6= 2BL means that the query used in the bottom left of the ’left’
side is not the same as the query used in the bottom left of the ’right’
side.

100

6.2. Collision Security

U Û U ′ Û ′M M ′

SL SR TL TR
PL PR WL WR

SL TR TL SR
PL WR WL PR

V V̂ V ′ V̂ ′

E
[1TL]

E
[1TR]

E
[1BL]

E
[1BR]

E
[2TL]

E
[2TR]

E
[2BL]

E
[2BR]

Figure 6.3.: The double-length MDC-4 compression func-
tion HMDC-4, where E ∈ Block(n, n). If

(M,U, Û) 6= (M ′, U ′, Û ′) but (V, V̂) = (V ′, V̂ ′) then
the adversary has found a collision for HMDC-4. The
notch inside the cipher indicates the key input. For later
reference, the different positions a query can be used in
are denoted by 1TL, 1TR, . . . , 2BR.

6.2.4. Details

We say CollMDC-4(Q) if the adversary wins. We note that winning
does not necessarily imply that the adversary has found a collision.
It might also be that the adversary got lucky and does not meet our

restrictions any more. But in the case of a collision CollMDC-4(Q)
always holds.

101

6. MDC-4

Proposition 6.4.

CollMDC-4(Q) =⇒
Lucky(Q) ∨ InternalColl(Q) ∨CollTopRows(Q) ∨
CollLeftColumns(Q) ∨CollRightColumns(Q) ∨

CollBothColumns(Q) ∨ Preimage(Q).

We now define the involved predicates of Proposition 6.4 and then
give a proof. The predicates on the ’right’ side of the expression
are made mutually exclusive, meaning that if the left side is true it
follows that exactly one of the predicates on the right side is true.
By upper bounding separately the probabilities of these predicates
on the right side it is easy to see that the union bound can be used

to upper bound the probability of CollMDC-4(Q) as follows:

Pr[CollMDC-4(Q)] ≤Pr[Lucky(Q)] + Pr[InternalColl(Q)]
+ Pr[CollTopRows(Q)]
+ Pr[CollLeftColumns(Q)]
+ Pr[CollRightColumns(Q)]
+ Pr[CollBothColumns(Q)]
+ Pr[Preimage(Q)].

To state the predicate Lucky(Q), we give some helper definitions
that are also used as restrictions for the other predicates. We now
let NumEqual(Q) be a function defined on the query set Q, |Q| = q,
as follows:

NumEqual(Q) = max
Z∈{0,1}n

|{i : EKi
(Xi)⊕Xi = Z}|.

It is the maximum size of a set of queries inQ whoseXOR-outputs are
all the same. Similarly, we define NumEqualHalf(Q) as the maximum

102

6.2. Collision Security

size of a set of queries whose XOR-outputs either share the same left
half or the same right half. Let

NEH-L(Q) = max
Z∈{0,1}n/2

|{i : (EKi
(Xi)⊕Xi)

L = Z}|,

NEH-R(Q) = max
Z∈{0,1}n/2

|{i : (EKi
(Xi)⊕Xi)

R = Z}|,

then NumEqualHalf(Q) = max(NEH-L(Q), NEH-R(Q)). We now let
NumColl(Q) be also defined on a query set Q, |Q| = q, as

NumColl(Q) = |{(i, j) ∈ {1, . . . , q}2 : i 6= j,

EKi
(Xi)⊕Xi = EKj

(Xj)⊕Xj}|.

It outputs the number of ordered pairs of distinct queries in Q which
have the same XOR-outputs.
We now define the event Lucky(Q) as

Lucky(Q) =(NumEqualHalf(Q) > α) ∨ (NumEqual(Q) > β) (6.2)

∨ (NumColl(Q) > γ),

where α, β, and γ are the constants from Theorem 6.2. These con-
stants, depending on n and q, are chosen by a simple numerical op-
timization process such that the upper bound of the advantage of an
adversary is minimized for given values of n and q. We now give the
definitions of the other predicates.

FitInternalColl(Q). The adversary has found four – not necessarily

distinct – queries such that HMDC-4(M,U, Û) can be computed

and HMDC-4(M,U, Û) = (V, V) holds for some arbitrary V with

U 6= Û .

FitCollLeftColumns(Q). The adversary has found eight – not neces-

sarily distinct – queries such that (V, V̂) = HMDC-4(M,U, Û)

and (V ′, V̂ ′) = HMDC-4(M ′, U ′, Û ′) can be computed with V =
V ′, 1BL 6= 2BL and 1BR = 2BR.

103

6. MDC-4

FitCollRightColumns(Q). The adversary has found eight – not nec-

essarily distinct – queries such that (V, V̂) = HMDC-4(M,U, Û)

and (V ′, V̂ ′) = HMDC-4(M ′, U ′, Û ′) can be computed with V̂ =

V̂ ′, 1BR 6= 2BR and 1BL = 2BL.

FitCollTopRows(Q). The adversary has found four – not necessarily
distinct – queries such that

(EU (M)⊕M,EÛ (M)⊕M) = (EU ′(M ′)⊕M ′, EÛ ′(M
′)⊕M ′)

for U 6= Û , U ′ 6= Û ′, 1BL = 2BL, and 1BR = 2BR. Clearly,
in this case, U = U ′ and Û = Û ′ and therefore M 6= M ′.

FitCollBothColumns(Q). In this case we assume that both
¬FitCollLeftColumns(Q), ¬FitCollRightColumns(Q)
are ’true’. The adversary has found eight – not necessarily
distinct – queries such that

(V, V̂) = HMDC-4(M,U, Û) and (V ′, V̂ ′) = HMDC-4(M ′, U ′, Û ′)

can be computed with V = V ′, V̂ = V̂ ′, 1BL 6= 2BL, and
1BR 6= 2BR.

FitPreimage(Q). This formalizes case (iii). The adversary has found
four – not necessarily distinct – queries used in HMDC-4 in posi-
tions 1TL, 1TR, 1BL, 1BR such that the output of HMDC-4 is
equal to (U0, Û0), i.e., the initial chaining values of the MDC-4
hash function.

For practical purposes we derive our predicates as follows.

InternalColl(Q) = ¬Lucky(Q) ∧ FitInternalColl(Q),
CollLeftColumns(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q))

∧ FitCollLeftColumns(Q),

104

6.2. Collision Security

CollRightColumns(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q)
∨ FitCollLeftColumns(Q))
∧ FitCollRightColumns(Q),

CollTopRows(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q)
∨ FitCollLeftColumns(Q)
∨ FitCollRightColumns(Q))
∧ FitCollTopRows(Q),

CollBothColumns(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q)
∨ FitCollLeftColumns(Q)
∨ FitCollRightColumns(Q)
∨ FitCollTopRows(Q))
∧ FitCollBothColumns(Q),

Preimage(Q) = ¬(Lucky(Q) ∨ FitInternalColl(Q)
∨ FitCollLeftColumns(Q)
∨ FitCollRightColumns(Q)
∨ FitCollTopRows(Q)
∨ FitCollBothColumns(Q))
∧ FitPreimage(Q).

Proof of Proposition 6.4. Assume that the adversary is not lucky,
i.e., ¬Lucky(Q). Then it is easy to see that

FitInternalColl(Q) ∨ FitCollLeftColumns(Q) ∨
FitCollRightColumns(Q) ∨ FitCollTopRows(Q) ∨

FitCollBothColumns(Q) ∨ FitPreimage(Q)
=⇒

InternalColl(Q) ∨CollLeftColumns(Q) ∨
CollRightColumns(Q) ∨CollTopRows(Q) ∨

CollBothColumns(Q) ∨ Preimage(Q)

105

6. MDC-4

holds. Therefore, it is sufficient to show that

CollMDC-4(Q) =⇒ FitInternalColl(Q)
∨ FitCollLeftColumns(Q)
∨ FitCollRightColumns(Q)
∨ FitCollTopRows(Q)
∨ FitCollBothColumns(Q)
∨ FitPreimage(Q).

To ensure that the chaining values are always different, we give the
attack to the adversary if these values collide, i.e., V = V̂ or V ′ = V̂ ′.
Note that this is usually not a real collision, but we can exclude
this case in our analysis. We call this InternalColl(Q). This
corresponds to case (i) described in Section 6.2.1.
For the case (ii), we assume that a collision for the MDC-4 com-

pression function HMDC-4 can be constructed from the queries in Q.
Then, there are inputs M,M′ ∈ ({0, 1}n)+, M 6= M′, such that
H(M) = H(M′). In particular, there are message blocks M,M ′ ∈
{0, 1}n and chaining values (U, Û), (U ′, Û ′) ∈ {0, 1}2n, (M,U, Û) 6=
(M ′, U ′, Û ′), such that HMDC-4(M,U, Û) = HMDC-4(M ′, U ′, Û ′).

For the following analysis we have ¬InternalColl(Q), i.e., U 6=
Û and U ′ 6= Û ′. Our case differentiation is based on the disposal
of queries in the bottom row. First, assume that 1BL = 2BL and
1BR = 2BR. Then CollTopRows(Q). Now, assume that 1BL =
2BL and 1BR 6= 2BR. Then CollRightColumns(Q). Conversely,
if 1BL 6= 2BL and 1BR = 2BR, we say CollLeftColumns(Q).
The only missing case, 1BL 6= 2BL and 1BR 6= 2BR, is denoted
by CollBothColumns(Q). Preimage(Q) formalizes case (iii) of
Section 6.2.1 and corresponds to FitPreimage(Q). �

General Remarks. The strategy for the other predicates is to up-
per bound the probability of the last query being successful condi-
tioned on the fact that the adversary has not yet been successful

106

6.2. Collision Security

in its previous queries. We say that the last query is successful if
the output is such that NumEqualHalf(Q) < α, NumEqual(Q) < β,
NumColl(Q) < γ, and that one of the predicates is true.

Proposition 6.5 (InternalColl(Q)).

Pr[InternalColl(Q)] ≤ q

(
α2 + γ

N − q
+

αβ

(N − q)(2n/2 − α)

)

+
qα

N − 2n/2α
.

Proof. The adversary can use the last query Qi either once or twice.
When Qi is used three times or more then it must occur twice either
in the top- or bottom row. But this would imply U = Û .

In the case that the query is used once it can either be used in the
top row or bottom row. Due to the symmetric structure of MDC-4,
we can assume wlog. that the last query Qi is either used in position
TL or BL (in this case we only consider the ’left’ side of Figure 6.3
and denote 1TL by TL, 1TR by TR, 1BL by BL, and 1BR by
BR.). The success probability is analyzed in Lemma 6.6.
In the case that Qi is used twice, it must be used once in the top

row and once in the bottom row. We again assume that the last
query is wlog. used in TL and BL or in TL and BR. The success
probability is analyzed in Lemma 6.7. A union bound, i.e., adding
up the individual results, gives our claim. �

Lemma 6.6. Let U 6= Û and assume that Qi is used once in the
MDC-4 compression function HMDC-4. Then

Pr[(V, V) = HMDC-4(M,U, Û)] ≤ q

(
α2 + γ

N − q

)
.

107

6. MDC-4

Proof. Depending on the place of the intended use of the query Qi,
which is either BL or TL, our analysis is as follows.

Case 1: Assume first that Qi = (KL
i ||KR

i , Xi, Yi) is used in position
BL. It follows that KL

i must be equal to the XOR-output
ZL
TL of the query in TL. It follows that there are at most α

different candidates for the query in TL in the query history
Qi−1. Similarly, because KR

i must be equal to the right half of
the XOR-output of TR, ZR

TR, there are at most α candidates
for that which can be used in TR. For the query in BR, there
are at most α2 possible key inputs. The ciphertext input of
BR is determined by the query used in TL. So the probability
that there is a query in Qi such that V = V̂ is upper bounded
by α2/(N − q). For q queries, the total chance of success is
≤ qα2/(N − q).

Case 2: Now assume that Qi is used in position TL. Since U 6= Û
it follows that BL 6= BR. So, there are at most γ ordered
pairs of queries that can be used in BL and BR such that their
XOR-output collide. Fixing one of these, it fully determines the
XOR-output TL. So, for q queries, Qi has at most a chance of
qγ/(N − q). �

Lemma 6.7. Let U 6= Û and assume that Qi is used twice in the
computation of HMDC-4. Then

Pr[(V, V) = HMDC-4(M,U, Û)] ≤ q
2α

(N − α2n/2+1 + α2)
.

Proof. By symmetry arguments, we assume wlog., that the last query
Qi is used in position TL. Since U 6= Û , the last query can only
appear a second time in position BL, or BR but not in TR.

108

6.2. Collision Security

Case 1: Assume Qi is used in positions TL and BL. This query can
be used in these positions if the randomly determined left-side
XOR-output ZL

i is equal to the left-side of the key KL
i . This

event is called PK and its probability of success can be upper
bounded for Qi by Pr[PK] ≤ 1

2n/2−α
.

It follows that the left side of BL and therefore the left side of
BR, too, get also fixed. So there are at most α queries left that
can be used in BR. Assuming that PK has been successful, the
probability that ZR

i ’matches’ the right half of one of the α key
inputs in BR is upper bounded by α/(2n/2 − α).

So for q queries the total probability of success is upper bounded
by qα/(2n/2 − α)2.

Case 2: Assume Qi is used in positions TL and BR. Then, Ki = Xi.
The query Qi can be used in these two positions at the same
time if the randomly determined right-half XOR-output ZR

i is
equal to the right-half of the key, KR

i = XR
i . This event is

called OK and its probability of success can be upper bounded
for Qi by Pr[OK] ≤ 1

2n/2−α
.

We now upper bound the number of queries that can be used
in TR conditioned on the fact the OK is successful. There are
at most α queries that can be used in TR such that ZL

TR = KL
i

holds. Hence, there are at most α queries that can be used
in BL. We denote the chance that ZL

BL = ZL
i for the i-the

query as Pr[ZL
i]. This event can thus be upper bounded by

α
2n/2−α

·Pr[OK] ≤ α
(2n/2−α)2

. For q queries we can upper bound

this case by qα
(2n/2−α)2

. �

Proposition 6.8 (CollTopRows(Q)).

Pr[CollTopRows(Q)] ≤ qβ

N − q
.

109

6. MDC-4

Proof. In this case we consider a collision in the top row, with 1BL =
2BL and 1BR = 2BR. This implies U = U ′ and Û = Û ′. Fur-
thermore, it implies M 6= M ′, because otherwise we would have
1TL = 2TL and 1TR = 2TR. Regarding to this constraints we
have to upper bound the probability that the i-th query can be used
such that

(EU (M)⊕M,EÛ (M)⊕M) = (EU ′(M ′)⊕M ′, EÛ ′(M
′)⊕M ′).

Note that no internal collision has happened before, or, more formal,
¬InternalColl(Q), which implies that the chaining values are al-
ways different. First, assume that the last query is used twice or
more. In order to find a collision in the top row, the last query must
be used in the top row or otherwise the success probability is zero.
Since M 6= M ′, it follows that 1TL 6= 2TL and 1TR 6= 2TR. Ad-
ditionally, 1TL 6= 2TR must also hold or else U = Û ′ = U ′ = Û
would follow. These arguments rule out the possibility of the last
query being used twice.
Now, assume that Qi is used once, wlog. in 1TL. Then, there are

at most β pairs of queries for (1TR, 2TR) that form a collision. So
there are at most β queries that can be used in 2TL that may form
a collision with the XOR-output of the last query used in 1TL. The
success probability for q queries can therefore be upper bounded by
qβ/(N − q). �

Proposition 6.9 (CollLeftColumns(Q)).

Pr[CollLeftColumns(Q)] ≤

q

(
α4 + α2 + 3αγ + 2γ

N − q
+ 6

α2 + 1

N1/2 − α

)
.

Proof. Since 1TL 6= 1TR and 2TL 6= 2TR always, a query can never
be used more than twice in the top row. First assume that a query is

110

6.2. Collision Security

used twice in the top row. Then, either 1TL = 2TL or 1TR = 2TR.
If 1TR = 2TR and – by precondition – 1BR = 2BR, it follows that
1TL = 2TL, i.e. the success probability of this case is zero since this
would not lead to a collision (or we would have given the collision to
the adversary before). The case 1TL = 2TL is upper bounded by
Lemma 6.10. The remaining case, i.e. all queries used in the top row
are pairwise different, is upper bounded by Lemma 6.11. Since no
cases are left, a union bound gives our claim.

�

Lemma 6.10. Let U 6= Û , U ′ 6= Û ′, 1BL 6= 2BL and 1BR =
2BR. Assume that 1TL = 2TL. Then,

Pr[HMDC-4(M,U, Û) =HMDC-4(M ′, U ′, Û ′)] ≤

q ·
(
γα+ α2

N − q
+ 2

α2 + 1

N1/2 − α

)

Proof. Since 1TL = 2TL, it follows that 1TR 6= 2TR. It suffices to
analyze the disposition of the last query in in 1TR, 1BL, 2TR, and
2BL since a usage of the last query in 1TL and 2TL reverts to this
case. The same is true for the usage of the last query in 1BR and
2BR.

Case 1: The last query is used exactly once in either 1TR, 1BL,
2TR, or 2BL; we wlog. assume that it is used in 1TR or 1BL.

Subcase 1.1 The last query is used in position 1TR. There are
at most γ queries that can be used in 1BL, 2BL that form
a collision. So there are at most γα queries for the pair
(1BL, 2TR). The output of the last query is completely
determined by that pair so the last query has a chance of
success ≤ γα/N ′ and for q queries ≤ qγα/(N − q).

111

6. MDC-4

Subcase 1.2 The last query is used in position 1BL. The key
input of the last query admits at most α possible queries
for 1TR. Since the left half of the XOR output of 1TR is
equal to the left half of the XOR output of 2TR, there are
at most α2 queries that can be used for 2TR. Since the last
query together with 2TR uniquely determines the number
of possible queries in 2BL, the probability of success of the
last query is upper bounded, for q queries, by ≤ qα2/(N −
q).

Case 2: The last query is used twice or more. By symmetry we
can assume that the last query is used exactly twice, either in
positions 1TR and 1BL or in positions 1TR, 2BL.

Subcase 2.1 The last query is used in positions 1TR and 1BL. The
left output of the query has a chance of ≤ 1/(N1/2−α) of suc-
ceeding since it must match the left half of the key. Conditioned
on the success, there are at most α possible queries in 2BL that
share the same left XOR output. Now, for any query in 2BL,
there are at most α queries that can be used in 2TR. Since
the left half of the XOR output of 2TR must match the left
half of the XOR output of the last query in 1TR, the left half
as a chance ≤ α2/(N1/2 − α) of succeeding. The total success
probability for q queries is ≤ (α2 + 1)/(N1/2 − α).

Subcase 2.2 The last query is used in position 1TR and 2BL. There
are at most α possible choices for 2TR given the key input of
the last query. Since the left halves of the XOR outputs of
1TR and 2TR must be equal, the right half of the last query
has a chance of success of ≤ q/(N1/2 − α). If the left half is
successful, there are at most α possible queries for 1BL (with
that right half XOR output), so the left half has a chance of
success of ≤ α/(N1/2 − α). For q queries, the total probability
of success is ≤ q(α2 + 1)/(N1/2 − α).

112

6.2. Collision Security

Adding up Case 1 and Case 2, the overall chance of success is

≤ q ·
(
γα/(N − q) + α2/(N − q) + 2(α2 + 1)/(N1/2 − α)

)

�

Lemma 6.11. Let U 6= Û , U ′ 6= Û ′, 1BL 6= 2BL and 1BR =
2BR. Assume that 1TL 6= 2TL and 1TR 6= 2TR. Then,

Pr[HMDC-4(M,U, Û) = HMDC-4(M ′, U ′, Û ′)] ≤

q ·
(
α4 + 2αγ + 2γ

N − q
+ 4

α2 + 1

N1/2 − q

)
.

Proof. Case 1: The last query is only used once, wlog. in either 1BL,
1TL, or 1TR.

Subcase 1.1 The last query is used in position 1BL. There are
at most α possible choices for query in 1TL, and at most α
possible queries for 1TR. Then, since 1BR = 2BR, there
are at most α2 possible queries for 2TL and at most α2

possible queries for 2TR. So there are at most α4 possible
choices for 2BL. So the probability of success for q queries
is ≤ qα4/(N − q).

Subcase 1.2 The last query is used in position 1TL. There
are at most γ possible pairs for queries for 1BL and 2BL.
For any query in 2BL, there are at most α queries in 2TL.
Since the output of the last query is completely determined
by the queries (1BL, 2TL) the probability of success for q
queries is ≤ qαγ/(N − q).

Subcase 1.3 The last query is used in position 1TR. The
analysis is the same as for 1TL giving the same bound of
≤ qαγ/(N − q).

113

6. MDC-4

Case 2: The last query is used twice or more. Then it is used at
least once in the top-row, wlog. at least in 1TL or 1TR. Our
analysis assumes that the last query is used in 1TL, since the
case where it is used in 1TR is essentially the same (we adjust
for this second case by doubling our probabilities of success for
the 1TL case).

Subcase 2.1 The last query is also used in 1BL. The left
half of the XOR output of the last query has a chance
≤ 1/(N1/2 − α) of being successful. If the left output half
is successful, there are at most α different queries 2BL
with that left XOR output and for each of them there are
at most α possible choices for 2TL. So the right output
half has a chance of success of ≤ α2/(N1/2 − q). For q
queries, the chance of success is ≤ (α2 + 1)/(N1/2 − q).

Subcase 2.2 The last query is also used in 2BL. Given the key
input of the last query in 2BL, the right half of the XOR
output has a chance of success of ≤ 1/(N1/2 − α). If the
right half is successful, then there are at most α queries
for 1BL so the left half of the XOR output has a chance
of success of ≤ α/(N1/2−α) of being successful. The total
chance for q queries is therefore ≤ (α2 + 1)/(N1/2 − q).

Subcase 2.3 The last query is also used in 2TR. It does not
appear in 1BL or 2BL (or our analysis of the prior sub-
cases would hold). There are at most γ pairs for 1BL and
2BL, so the last query has a chance ≤ γ/(N−q) of success
and for q queries ≤ qγ/(N − q).

�

Proposition 6.12 (CollRightColumns(Q)).
Pr[CollRightColumns(Q)] ≤

q

(
α4 + α2 + 3αγ + 2γ

N − q
+ 6

α2 + 1

N1/2 − α

)
.

114

6.2. Collision Security

Proof. Due to the symmetric structure of MDC-4 this proof is es-
sentially the same as for Proposition 6.9. �

Proposition 6.13 (CollBothColumns(Q)).

Pr[CollBothColumns(Q)] ≤ q

(
γα2 + γ2

N − q
+

2α

(2n/2 − α)2

)
.

Proof. In Case 1, we discuss the implication if the last query is only
used once, the Cases 2-4 give bounds if the last query is used at least
twice.

Case 1: The last query is used exactly once. We can wlog. assume
the it is either used in 1TL or 1BL.

Subcase 1.1: The last query is used in position 1BL. Since
1BR = 2BR, there are at most γ pairs of queries in the
query history that can be used for positions 1BR and
2BR. Now, for any query 2BR, there are at most α
matching queries in position 2TL and at most α match-
ing queries in 2TR. Since the queries in 2TL and 2TR
uniquely determine the query 2BL, there are at most γα2

queries that can be used for 2BL. Therefore, the last
query has a chance of being successful ≤ γα2/(N − q).
For q queries, the total chance of success in this case is
≤ qγα2/(N − q).

Subcase 1.2: The last query is used in position 1TL. There
are at most γ possible pairs of queries that can be used
for 1BL and 2BL and there are at most γ possible queries
that can be used for 1BR and 2BR. We now upper bound
the probability that the last query can be used in 1TL
assuming a collision. There are at most γ2 pairs of queries
that can be used for 1BL and 1BR. Therefore, the success

115

6. MDC-4

probability of the last query can be upper bounded by
≤ γ2/(N − q) and for q queries by qγ2/(N − q).

Case 2: The last query is only used in the bottom row. Then it is
used exactly twice, wlog. in positions 1BL and 2BR. This
would imply V = V̂ ′ which then – in the case of success –
implies InternalColl(Q).

Case 3: The last query is only used in the top row. We can wlog.
assume it is used in 1TL. We can use the same reasoning as
in Subcase 1.2 and therefore extend Subcase 1.2 to also handle
this slightly more general situation here.

Case 4: The last query is used at least once in the bottom row and
at least once in the top row. We can wlog. assume that it is
used in position 1TL. Using the same argument as for Case
2, the last query must then appear exactly once in the bottom
row. The following four subcases discuss the implications of the
last query being also used in 1BL, 1BR, 2BL and 2BR. Note
that the adversary may use it also a second time in the top row
– apart from 1TL– but this does not change our bounds.

Subcase 4.1: The last query is also used in 1BL. The left half
of the XOR-output of 1TL has a chance of being equal to
its key input (i.e., the key input of 1BL) of ≤ 1/(2n/2−α).
The following analysis is now based on the fact that the
left half of the XOR-output has matched the left half of
the key input. Since we now also know the left half of
the XOR-output of 2BL, there are at most α queries that
can be used in 2BL. The chance that the right half of
the XOR-output of 2BL matches the right half of the
XOR-output of 1BL is therefore ≤ α/(2n/2 − α). So, for
q queries, the total chance of success is ≤ qα/(2n/2 − α)2.

Subcase 4.2: The last query is also used in 1BR. The same
arguing as for Subcase 4.1 can be used (apart from ex-
changing ’left’ and ’right’) and the bound for q queries is

116

6.2. Collision Security

again ≤ qα/(2n/2 − α)2.

Subcase 4.3 The last query is also used in position 2BL. There
are at most γ possible pairs of queries in the query his-
tory that can be used for the pair 1BR, 2BR that form
a collision. The probability that the right half of the
XOR-output of 1TL matches the right half of its key in-
put (i.e., for the last query being also used in 1BR) is
≤ 1/(2n/2 − α). Conditioned on the fact that the right
half of the XOR-output is now fixed there are at most
α queries that can be used in 1BL such that the XOR-
outputs of 1BL and 2BL collide. The probability that the
left half of the XOR-output of 1TL is equal to the left
half of the key of 1BL is therefore ≤ α/(2n/2−α) and the
total chance of success for q queries is ≤ qα/(2n/2 − α)2.

Subcase 4.4 The last query is also used in 2BR. The same
arguing as for Subcase 4.3 can be used (apart from ex-
changing ’left’ and ’right’) and the bound for q queries is
again ≤ qα/(2n/2 − α)2. �

Proposition 6.14 (Preimage(Q)).

Pr[Preimage(Q)] ≤ q(4 + β2)

N − q
.

Proof. The adversary can use the last query either once or twice. If
it is used twice, it is used at least once in the bottom row.

Case 1: Assume first, that the last query is used once and that it
is used in the top row. Assume wlog. that it is used in 1TL.
Since there are at most β queries that can be used in 1BL and
also at most β queries for 1BR, the success probability for q
queries is upper bounded by qβ2/(N − q).

117

6. MDC-4

Now, assume that the last query is used once and that it is
used in the bottom row. Whether it is used in 1BL or 1BR,
the success probability in each case for one query is ≤ 1/(N−q).
So, the total success probability for q queries for this case is
upper bounded by q(2 + β2)/(N − q).

Case 2: Now, assume that the last query is used twice. So it is
used exactly once in the bottom row and the analysis of Case
1 (bottom row) gives an upper bound of 2q/(N − q).

�

Proposition 6.15. Let n, q ∈ N, n ≥ q. Let α, β, and γ be as in
Theorem 6.2 with eq2n/2/(N − q) ≤ α and eq/(N − q) ≤ β. Set

τ = α(N−q)
q2n/2 and ν = β(N−q)

q . Then

Pr[Lucky(Q)] ≤ q2

γ(N − q)
+ 2q2n/2eq2

n/2τ(1−ln τ)/(N−q)

+ qNeqNν(1−ln ν)/(N−q).

Proof. This is a special case of the results discussed in Section 5.4.
A direct proof can also be found in [161, Appendix B]. �

6.2.5. Proof of Theorem 6.2

The proof of Theorem 6.2 now follows with Proposition 6.4 by adding
up the individual results from Propositions 6.5, 6.8, 6.9, and 6.12 -
6.15. �

118

Part II.

Preimage Security of
Double Length

Compression Functions

119

7
Results Summary

7.1. Introduction

As discussed in the first part of this thesis, collision resistance has
been successfully resolved for a lot of double call double length com-
pression functions using a blockcipher from Block(2n, n). On the
other hand, the corresponding situation for preimage resistance has
been far less satisfactory. Up to now, it was an open problem to
prove preimage resistance for values of q higher than 2n for either
Abreast-DM, Tandem-DM, or Hirose-DM. This is not to say
that no dedicated preimage security proofs have appeared in the lit-
erature. For instance, Lee et al. [107] provide a preimage resistance
bound for Tandem-DM that is a lot closer to 2n than a straightfor-
ward implication [149] of their collision bound would give. However,
a barrier occurs once 2n queries are reached: namely, a blockcipher
’loses randomness’ after being queried Ω(2n) times on the same key
(for example, when 2n − 1 queries have been made to a blockcipher
under a given key, the answer to the last query under that key is
deterministic). Going beyond the 2n barrier seemed to require either

121

7. Results Summary

a very technical probabilistic analysis, or some brand new idea. In
this thesis, we show a new idea which delivers tight bounds in a quite
pain-free and non-technical fashion.

226 228 230 232 234 236 238 240 242 244 246 248 250 252 254 256 258 260

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

logq

success probability

Figure 7.1.: Preimage bounds for the classical constructions:
Abreast-DM, Tandem-DM (left), and Hirose-DM
(right).

We prove that various compression functions that turn a block-
cipher of 2n-bit key into a double-block-length hash function, have
preimage resistance close to the optimal 22n in the ideal cipher model.
Our analysis covers many relevant proposals, such as Abreast-DM,
Hirose-DM, and Tandem-DM. Bounds for the case n = 128 are
depicted in Figure 7.1 and summarized in Table 7.1.

At the heart of our result are so-called ’super queries’, a new tech-
nique to restrict the advantage of an adaptive preimage-finding ad-
versary.

To build some intuition for our result, let us start by considering the
much easier problem of constructing a 3n-bit to 2n-bit compression
function H based on two 3n-bit to n-bit smaller underlying primitives
f and f ′. An obvious approach is simply to concatenate the outputs
of f and f ′, that is let H(B) = f(B)‖f ′(B) for B ∈ {0, 1}3n. If f and
f ′ are modeled as independently sampled, ideally random functions,
then it is not hard to see thatH behaves ideally as well. In particular,
it is preimage resistant up to 22n queries (to f and f ′).

122

7.1. Introduction

Comp. Function Preimage bound Section Published

Hirose-DM 22n−5 = 2251 8.2 [3]
Weimar-DM 22n−5 = 2251 8.3 [54]
Abreast-DM 22n−10 = 2246 8.4 [3]
Tandem-DM 22n−10 = 2246 8.5 [3]

Table 7.1.: Overview of our preimage security results for double
length compression functions. The results are in the ideal
cipher model.

When switching to a block cipher-based scenario, it is natural to
replace f and f ′ in the construction above by E, resp. E′, both run in
Davies–Meyer mode. In other words, for block ciphers E and E′ both
with 2n-bit keys and operating on n-bit blocks, define H(A‖B) =
(EB(A) ⊕ A)‖(E′B(A) ⊕ A) where A ∈ {0, 1}n and B ∈ {0, 1}2n.
While there is every reason to believe this construction maintains
preimage resistance up to 22n queries, the standard proof technique
against adaptive adversaries falls short significantly. Indeed, the usual
argument goes that the i-th query an adversary makes to E using key
K will return an answer uniform from a set of size at least 2n−(i−1)
and thus the probability of hitting a prespecified value is at most
1/(2n − (i− 1)) < 1/(2n − q). Unfortunately, once q approaches 2n,
the denominator tends to zero (rendering the bound useless). As a
result, one cannot hope to prove anything beyond 2n queries using
this method. This restriction holds even for a typical bound of type
q/(2n − q)2.

When considering non-adaptive adversaries only, the situation is far
less grim. Such adversaries need to commit to all queries in advance,
which allows bounding the probability of each individual query hitting
a prespecified value by 2−n. While obviously there are dependencies
(in the answers), these can safely be ignored when a union bound
is later used to combine the various individual queries. Since the

123

7. Results Summary

q offset has disappeared from the denominator, the typical bound
q/(2n)2 would give the desired security.

Our solution, then, is to force an adaptive adversary to behave non-
adaptively. As this might sound a bit cryptic, let us be more precise.
Consider an adversary adaptively making queries to the blockcipher,
using the same key throughout. As soon as the number of queries
to this key passes a certain threshold, we give the remaining queries
to the blockcipher using this very key for free. We will refer to this
event as a super query. Since these free queries are all asked in one
go, they can be dealt with non-adaptively, preempting the problems
that occur (in standard proofs) due to adaptive queries. Nonetheless,
for every super query we need to hand out a very large number of
free queries, which can aid the adversary. Thus we need to limit
the amount of super queries an adversary can make by setting the
threshold that triggers a super query sufficiently high. In fact, we
set the threshold at exactly half1 the total number of queries that
can be made under a given key (i.e., it is set to 2n/2 queries). This
effectively doubles the adversary’s query budget, since for every query
the adversary makes it can get another one later for free (if it keeps
on making queries under the same key), but such a doubling of the
number of queries does not lead to an unacceptable deterioration of
the security bound.

With this new technique in hand, we can prove in Section 8.1 that
the construction H given above has indeed an asymptotically opti-
mal preimage resistance bound (a generalization of this result is given
in Section 8.6). Afterwards, we revisit the proofs of preimage resis-
tance of the three main double-block-length, double-call construc-
tions: Hirose-DM (Section 8.2), Abreast-DM (Section 8.4) and
Tandem-DM (Section 8.5).

An additional technical problem is that these compression func-
tions make two calls to the same blockcipher each, as opposed to
using two calls to independent block ciphers. Ideally, to get a good

1The optimized threshold turns out to be very near one half, but a bit less; we
set the threshold at a half for simplicity in our proofs.

124

7.2. Proof Model

bound, one would like to query the two calls necessary for a sin-
gle compression function evaluation in conjunction (this would allow
using the randomness of both calls simultaneously, potentially lead-
ing to a denominator 22n as desired for preimage resistance). For
instance, in the context of collision resistance for Hirose-DM and
Abreast-DM corresponding queries are grouped in cycles (of length
2 and 6, respectively) and all queries in a cycle are made simultane-
ously: if the adversary makes one query in a cycle, the remaining
queries are handed out for free. Care has to be taken that these free
queries and the free queries due to super queries do not reinforce each
other to untenable levels.

For Hirose-DM, there are no problems as the free queries intro-
duced by a super query necessarily consist of full cycles only. The
corresponding (upper) bound on the preimage finding advantage is
16q/22n which is as desired, up to a small factor. For Abreast-
DM, however, the cyclic nature can no longer be exploited: any su-
per query introduces many partial cycles, yet freely completing these
might well trigger a new super query, etc. Luckily, the original preim-
age proof for Tandem-DM [107] (which does not involve cycles) pro-
vides a way out of this conundrum. The downside, however, is that
our preimage bound for Abreast-DM, and Tandem-DM is slightly
less tight than that for Hirose’s scheme. Ignoring negligible terms, it
grows roughly as 16

√
q/2n. Although this is faster than one might

wish for (as can be seen in Figure 7.1), it does imply that Ω(22n)
queries are required to find a preimage with constant probability.

7.2. Proof Model

As our preimage security notion for a blockcipher based double call,
double length compression function H, we adopt everywhere preim-
age resistance in the information theoretic setting as it was introduced
in Section 1.1.1 on Page 11.

We let Qi = {(Kj , Xj , Yj)}ij=1 be the first i elements of the query
history; thus Q = Qq.

125

7. Results Summary

For Tandem-DM, it turns out that the everywhere preimage resis-
tance notion is slightly too strong, as there is one weak point (namely
02n) in the range, for which finding preimages is a bit easier. A simple
adaptation of the everywhere preimage resistance definition is to dis-
allow the adversary to choose (V, V̂) = 02n as the target point [107];
we denote the corresponding advantage as

Advepre6=0
H (q) .

(We will still use the same predicate Preim(Q) though.)
As for our collision security proofs, we again assume that the adver-

sary never makes a query to which it already knows the answer. By
this it is meant, for example, that one can assume that the adversary
never makes a query EK(X), obtaining an answer Y , and then makes
the query E−1K (Y) (which will necessarily be answered by X). In the
current context, where we consider adversaries making 2n queries or
more, this assumption should be more precisely restated as the adver-
sary never makes a query that will result in a triple (K,X, Y) which is
already present in the query history. (This latter assumption can be
made without loss of generality using the fact that EK(·) is a permu-
tation.) Indeed, if an adversary has made 2n − 1 queries under a key
K, the result of the last query under that key is predetermined, and
thus the adversary already knows the answer to this query. However,
one should not forbid the adversary from making this query, since the
query may be necessary to complete a preimage.
Our preimage security proofs, again, use the notion of ’free queries’

which already has been discussed, e.g., on Page 52.

126

8
Applications

8.1. Example Application

Before we apply the new technique of super queries to the analysis
of three well-known constructions that compress 3n bits to 2n bits
and that each call the same blockcipher twice, we demonstrate our
technique at the following simplest possible example. We consider
the construction HSPL, compressing 3n−1 bits to 2n bits that makes
two blockcipher calls. Given a blockcipher E ∈ Block(2n, n), an
input block M ∈ {0, 1}n, and a key prefix K ∈ {0, 1}2n−1 we define

HSPL(M,K) = (EK‖0(M)⊕M,EK‖1(M)⊕M)

where ‖ denotes the concatenation of two bit strings. If we consider
the ideal cipher model, the two blockcipher calls are independent.
Hence HSPL is exactly the construction mentioned within the intro-
duction (Section 7.1). HSPL can be seen as a simple special case of
a scenario discussed in Section 8.6, where two different block ciphers
are called.

127

8. Applications

Theorem 8.1. Let HSPL : {0, 1}n×{0, 1}2n−1 → {0, 1}n×{0, 1}n
be the block cipher-based compression function as defined above.
Then

AdvepreHSPL (q) ≤ 8q/N2.

In particular, to achieve an advantage of 1/2 the adversary has to
make at least 22n−4 queries.

Proof. Let (V, V̂) ∈ {0, 1}n×{0, 1}n be the point to invert (chosen by
the adversary before it makes any queries to E). We upper bound the
probability that, in q queries, the adversary finds a point A ∈ {0, 1}n
and a key prefix K ∈ {0, 1}2n−1 such that HSPL(A,K) = (V, V̂). On
top of the q queries the adversary wants to make, we give it several
queries for free, as follows.

Normal forward query If the adversary queries for EK‖0(X) (resp.
EK‖1(X)) for some key prefix K ∈ {0, 1}2n−1 and X ∈ {0, 1}n,
we also give it for free EK‖1(X) (resp. EK‖0(X)).

Normal inverse query Now, given the inverse query E−1K‖0(Y) (resp.

EK‖1(Y
′)) with answer X for some K ∈ {0, 1}2n−1 and Y, Y ′ ∈

{0, 1}n, the corresponding query EK‖1(X) (resp. EK‖0(X)) is
given for free.

We note that, as a result of these additional queries, the elements
(K‖0, X, Y) and (K‖1, X, Y ′) are always added to the query history
Q as a pair. We call such a pair an adjacent query pair with respect
to the key prefix K ∈ {0, 1}2n−1.

We now give further free queries to the adversary, in the fashion
described next. After each adjacent query pair has been completed
(namely, after the adversary has received the response to both its
query and its associated free query, and after these have been placed
in the query history), we check whether the key prefix used for the

128

8.1. Example Application

latest query is such that the (current) query history contains exactly
N/2 adjacent query pairs with this key prefix. If so, we give all re-
maining adjacent query pairs under this key for free to the adversary.
There will be exactly N/2 such query pairs. We insert these N/2 free
query pairs into the query history pair-by-pair (to maintain, mostly
for conceptual simplicity, the adjacent pair structure of the query his-
tory). We note that, after these free queries have been inserted into
the query history, the adversary cannot make any more queries under
this key prefix, since the adversary is assumed never to make a query
to which it knows the answer. When N/2 free query pairs are given
to the adversary in the fashion just described, we say that a super
query occurs. This can be summed up as follows:

Super query Given N/2 adjacent query pairs to E all using the same
key prefix K ∈ {0, 1}2n−1, all the remaining queries using the
same key prefix K are given for free.

We say that an adjacent query pair (K‖0, X, Y), (K‖1, X, Y ′) is

winning, or successful, ifX⊕Y = V andX⊕Y ′ = V̂ . Thus the adver-
sary obtains a preimage of (V, V̂) precisely if it obtains a winning adja-
cent query pair. This can occur in one of two ways: either the winning
query pair is part of a super query, or not. We let SuperQueryWin(Q)
denote the event that the adversary obtains a winning query pair that
is part of a super query, and ForwardQueryWin(Q) the event that the
adversary obtains a winning query pair of normal queries. It thus
suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[ForwardQueryWin(Q)].
Here, probabilities are taken (as usual) over the adversary’s random-
ness (if any) and over the randomness of the ideal cipher.
We first upper bound Pr[ForwardQueryWin(Q)]. Note that when

the adversary makes, say, a forward query EK‖0(X), at most N/2−1
queries have been previously answered to the key K‖0 and at most
N/2 − 1 queries have been previously answered to the key K‖1,
since otherwise a super query for the key prefix K would have oc-
curred. Thus the values Y = EK‖0(X) and Y ′ = EK‖1(X) come

129

8. Applications

uniformly and independently at random from a set of size at least
N/2+ 1 ≥ N/2, and there is a chance of at most (1/(N/2))2 = 4/N2

that we obtain a winning pair of adjacent queries. The same is true
if the adversary makes a forward query EK‖1(X) or an inverse query

E−1K‖0(Y) or an inverse query E−1K‖1(Y
′). Since the adversary makes

q queries in total, we therefore have

Pr[ForwardQueryWin(Q)] ≤ 4q/N2. (8.1)

We now bound Pr[SuperQueryWin(Q)]. Say a super query is about
to occur on key prefix K ∈ {0, 1}2n−1, meaning that the value of
EK‖0(·) and EK‖1(·) is already known on exactly N/2 points. Let
us denote this set of points by X , and let Y = EK‖0(X) and Y ′ =
EK‖1(X). Further, let R = {0, 1}n \ X , S = {0, 1}n \ Y, and S ′ =
{0, 1}n \ Y ′. Note that |X | = |Y| = |Y ′| = |R| = |S| = |S ′| = N/2.

Now let a point A ∈ R in the domain of the super query be arbi-
trarily fixed, and let us estimate the probability that point A induces
a winning pair under E. If A ⊕ V ∈ Y or if A ⊕ V̂ ∈ Y ′, this prob-
ability is zero. Consequently, let us suppose that A ⊕ V ∈ S and
A⊕ V̂ ∈ S ′.
The probability that EK‖0(A) = A ⊕ V and EK‖1(A) = A ⊕ V̂

equals 1/(N/2) · 1/(N/2). Thus we find that the probability of the
super query producing a winning pair of adjacent queries is at most

N/2 ·
(

1

N/2

)2

=
1

N/2

We now observe that at most q/(N/2) super queries can ever occur,
since each super query requires a setup cost of N/2 queries. Thus

Pr[SuperQueryWin(Q)] ≤ 4q/N2. (8.2)

Summing up (8.1) and (8.2) completes the proof. �

130

8.2. Hirose-DM

E

E

U

Û

U ⊕R

U ⊕ const⊕ S

M

R

S
const

Figure 8.1.: Notations used in this proof for the Hirose-DM com-
pression function. All wires carry n-bit values. The top
and bottom block ciphers, which are the same blockci-
pher, have 2n-bit key and n-bit input/output. The wires

M,U and Û are the inputs to the compression function.
The bottom left-hand wire is not an input; it carries an
arbitrary nonzero constant const.

8.2. Hirose-DM

Theorem 8.2. Let HHDM : {0, 1}3n → {0, 1}2n be the Hirose-
DM compression function as depicted in Figure 8.1 and defined in
Section 1.4 on Page 29. Then

AdvepreHHDM(q) ≤ 8q/N2 + 8q/N(N − 2).

In particular, AdvepreHHDM(q) is upper bounded by approximately
16q/N2.

Proof. Let (V, V̂) ∈ {0, 1}n×{0, 1}n be the point to invert (chosen by
the adversary before it makes any queries to E). We upper bound the

probability that, in q queries, the adversary finds a point (M,U, Û) ∈
({0, 1}n)3 such that HHDM(M,U, Û) = (V, V̂).

131

8. Applications

When the adversary makes a forward query EÛ‖M (U) we give it

for free, also, the answer to the query EÛ‖M (U ⊕ const). More-

over, when the adversary makes a backward query E−1
Û‖M

(R), result-

ing in an answer U = E−1
Û‖M

(R), we give it for free the answer to

the forward query EÛ‖M (U ⊕ const). Also, we assume that the ad-

versary never makes a query to which it knows the answer. Thus
the elements of the adversary’s query history Q can be paired into
adjacent pairs of the form (Û‖M,U,R), (Û‖M,U ⊕ const, S). We
call such a pair an “adjacent query pair”. Furthermore, we define
super queries analogously to the definition used in the proof of The-
orem 8.1. That is, as soon as the (current) query history contains
exactly N/2 queries with the same key, all remaining queries under
this key are given for free to the adversary. We say that an adjacent
query pair (Û‖M,U,R), (Û‖M,U ⊕ const, S) is “winning”, or “suc-

cessful”, if U ⊕ R = V and U ⊕ const ⊕ S = V̂ , or if U ⊕ R = V̂
and U ⊕ const ⊕ S = V . Thus the adversary obtains a preimage of
(V, V̂) precisely if it obtains a winning adjacent query pair. This can
occur in one of two ways: either the winning query pair is part of
a super query, or not. We let SuperQueryWin(Q) denote the event
that the adversary obtains a winning query pair that is part of a
super query, and ForwardQueryWin(Q) the event that the adversary
obtains a winning query pair of normal queries. It thus suffices to
upper bound

Pr[SuperQueryWin(Q)] + Pr[ForwardQueryWin(Q)].

Here, probabilities are taken (as usual) over the adversary’s random-
ness (if any) and over the randomness of the ideal cipher.
We first upper bound Pr[ForwardQueryWin(Q)]. Note that when

the adversary makes, say, a forward query EÛ‖M (U), at most N/2−2
queries (counting free queries) have been previously answered with

the key Û‖M , since otherwise a super query for the key Û‖M would
have occurred. Thus the value R = EÛ‖M (U) comes uniformly at

random from a set of size at least N/2+2 ≥ N/2, and there is chance

132

8.2. Hirose-DM

at most 2/(N/2) = 4/N that either U ⊕ R = V or U ⊕ R = V̂

(this is also true if V = V̂). If, say, U ⊕ R = V , there is further
chance at most 1/(N/2) = 2/N that the free query EÛ‖M (U ⊕ const)

returns U ⊕ const ⊕ V̂ , since the answer to the free query comes
uniformly at random from a set of size at least N/2 + 1 ≤ N/2.

Other cases (e.g., when U ⊕R = V̂ , and when the adversary makes a
backward query E−1

Û‖M
(R)) are similarly analyzed, showing that the

adversary’s chance of triggering the event ForwardQueryWin(Q) at
any given query is at most (4/N)(2/N) = 8/N2. Since the adversary
makes q queries total, we therefore have

Pr[ForwardQueryWin(Q)] ≤ 8q/N2. (8.3)

We now bound Pr[SuperQueryWin(Q)]. Say a super query is about

to occur on key Û‖M , meaning that the value of EÛ‖M (·) is already
known on exactly N/2 points paired into N/4 query pairs. Let U
and U ⊕ const be in the domain of the super query. (We say that a
point B ∈ {0, 1}n is “in the domain of the super query” if EÛ‖M (B)

is not yet known, and will be queried as part of the super query; note
that a point A ∈ {0, 1}n is in the domain of the super query if and
only if A ⊕ const is in the domain of the super query.) Then, the
probability that EÛ‖M (U) = R is either 0 if R is not in the range

of the super query (meaning there is a normal query EÛ‖M (B) = R

already present in the query history when the super query is made),
or else is exactly 2/N , since the value of EÛ‖M (U) returned by the

super query is uniform at random in a set of size N/2. Thus by a
similar argument on S, the probability that EÛ‖M (U) ∈ {R,S} is

at most 4/N . Conditioning on the event EÛ‖M (U) ∈ {R,S}, the

probability that EÛ‖M (U ⊕ const) ∈ {R,S} is at most 1/(N/2− 1),

since EÛ‖M (U ⊕ const) is sampled uniformly at random from a set of

size N/2−1, once the value EÛ‖M (U) is known. Thus the probability

that the super query returns values such that the adjacent query pair
(Û‖M,U, ·), (Û‖M,U ⊕ const, ·) is winning is at most 4/N(N/2−1).

133

8. Applications

But U,U ⊕ const were two arbitrary paired domain points; taking a
union bound over N/4 such pairs in the domain of the super query,
we find that the probability of the super query producing a winning
pair of adjacent queries is at most

(N/4) · (4/N(N/2− 1)) = 1/(N/2− 1).

We now observe that at most q/(N/4) super queries can ever occur,
since each super query requires a “setup” cost of N/4 queries. Thus

Pr[SuperQueryWin(Q)] ≤ 4q/N(N/2− 1). (8.4)

Summing up (8.3) and (8.4) completes the proof. �

8.3. Weimar-DM

We now give a preimage security analyis of Weimar-DM as intro-
duced in Chapter 3.

Theorem 8.3. Let N = 2n. Then, AdvepreHWDM(q) ≤ 16q/N2.

It is easy to see that AdvepreHWDM(22n−5) = 1/2 and therefore our
bound is asymptotically optimal for a 2n-bit compression function.

Proof. Let (V, V̂) ∈ {0, 1}n×{0, 1}n be the point to invert (chosen by
the adversary before it makes any queries to E). We upper bound the

probability that, in q queries, the adversary finds a point (M,U, Û) ∈
({0, 1}n)3 such that HWDM(M,U, Û) = (V, V̂).

When the adversary makes a (normal) forward query EM‖U (Û) we

give it for free, also, the answer to the query E
M‖U

(Û). Moreover,

when the adversary makes a (normal) backward query E−1M‖U (R), re-

sulting in an answer Û = E−1M‖U (R), we give it for free the answer

134

8.3. Weimar-DM

to the forward query E
M‖U

(Û). As discussed, we assume that the

adversary never makes a query to which it knows the answer. Thus
the elements of the adversary’s query history Q can be matched into
adjacent pairs of the form (M‖U, Û , R), (M‖U, Û , S). We call such a
pair an adjacent query pair.

We now give further free queries to the adversary, in the fashion
described next. After each adjacent query pair has been completed
(namely, after the adversary has received the response to both its
query and its associated free query, and after these have been placed
in the query history), we check whether the key prefix used for the
latest query is such that the (current) query history contains exactly
N/2 adjacent query pairs with this key prefix. If so, we give all re-
maining adjacent query pairs under this key for free to the adversary.
There will be exactly N/2 such query pairs. We insert these N/2 free
query pairs into the query history pair-by-pair (to maintain, mostly
for conceptual simplicity, the adjacent pair structure of the query his-
tory). We note that after these free queries have been inserted into
the query history, the adversary cannot make any more queries under
this key prefix, since, the adversary is assumed never to make a query
to which it knows the answer. When N/2 free query pairs are given
to the adversary in the fashion just described, we say that a super
query occurs. This can be summed up as follows.

Super query Given N/2 adjacent query pairs to E all using the same
key K ∈ {0, 1}2n, all the remaining N/2 queries using the same
key K and the remaining N/2 queries using key K are given
for free.

We say that an adjacent query pair (M‖U, Û , R), (M‖U, Û , S) is

successful, if Û ⊕ R = V and Û ⊕ S = V̂ , or if Û ⊕ R = V̂ and
Û ⊕ S = V . Thus the adversary obtains a preimage of (V, V̂) pre-
cisely if it obtains a successful adjacent query pair. This can occur
in one of two ways: either the winning query pair is part of a super
query, or not. We let SuperQueryWin(Q) denote the event that the
adversary obtains a winning query pair that is part of a super query,

135

8. Applications

and ForwardQueryWin(Q) the event that the adversary obtains a win-
ning query pair of normal queries (either forward or backward). It
thus suffices to upper bound

Pr[SuperQueryWin(Q)] + Pr[ForwardQueryWin(Q)].

Here, probabilities are taken (as usual) over the adversary’s random-
ness (if any) and over the randomness of the ideal cipher.
We first upper bound Pr[ForwardQueryWin(Q)]. Note that when

the adversary makes, say, a forward query EM‖U (Û), at most N/2−2
queries (counting free queries) have been previously answered with
the key M‖U , since otherwise a super query for the key M‖U would

have occurred. Thus the value R = EM‖U (Û) comes uniformly at
random from a set of size at least N/2+2 ≥ N/2, and there is chance

at most 2/(N/2) = 4/N that either Û ⊕R = V or Û ⊕R = V̂ (this is

also true if V = V̂). If, say, Û⊕R = V , there is further chance at most

1/(N/2) = 2/N that the free query E
M‖U

(Û) returns Û ⊕ V̂ , since

the answer to the free query comes uniformly at random from a set of
size at least N/2+1 > N/2. Other cases (e.g., when Û ⊕R = V̂ , and
when the adversary makes a backward query E−1M‖U (R)) are similarly

analyzed, showing that the adversary’s chance of triggering the event
ForwardQueryWin(Q) at any given query is at most (4/N)(2/N) =
8/N2. Since the adversary makes q queries total, we therefore have

Pr[ForwardQueryWin(Q)] ≤ 8q/N2. (8.5)

We now bound Pr[SuperQueryWin(Q)]. Assume that a super query
is about to occur on keys M‖U and M‖U meaning that the value
of EM‖U (·) and E

M‖U
(·) are already known on exactly N/2 points.

Let us denote this set of points by X and let Y = EM‖U (X) and
Y ′ = E

M‖U
(X). Further, let R = {0, 1}n\X , S = {0, 1}n\Y, and

S ′ = {0, 1}n\Y ′. Clearly, |X | = |Y| = |Y ′| = |R| = |S| = |S ′|.
Now fix a point A ∈ R in the domain of the super query. We now

estimate the probability that this point A induces a successful pair.
This can only be the case if

136

8.4. Abreast-DM

1. A⊕ V ∈ S and A⊕ V̂ ∈ S ′ or

2. A⊕ V̂ ∈ S and A⊕ V ∈ S ′.

The probability that EM‖U (A) = A⊕V and E
M‖U

(A) = A⊕V̂ equals

1/(N/2)2. The same is true for the probability that EM‖U (A) =

A ⊕ V̂ and E
M‖U

(A) = A ⊕ V . Thus the total probability to be

successful in a super query is at most

2 ·N/2 ·
(

1

N/2

)2

=
2

N/2
.

Since at most q/(N/2) super queries can ever occur, we have

Pr[SuperQueryWin(Q)] ≤ 8q/N2. (8.6)

The sum of (8.5) and (8.6) gives our claim. �

8.4. Abreast-DM

Theorem 8.4. Let HADM : {0, 1}3n → {0, 1}2n be the Abreast-
DM compression function as depicted in Figure 8.2 and defined in
Section 1.4 on Page 28. Let α > 0 be an integer. Then

Advepre
HADM(q) ≤ 16α

N
+

8q

N2(N − 2)
+ 2 ·

(
2eq

αN

)α

+
4q

αN
.

Proof. Let (V, V̂) ∈ {0, 1}n × {0, 1}n be the point to invert, chosen
by the adversary before any queries are made to E.
Unlike in the proof for Hirose-DM, we do not give the adver-

sary a free query after each query it makes. However, we still give

137

8. Applications

R

S

E

E

U

Û

V

V̂

M

Figure 8.2.: The Abreast-DM compression function. The wires
U, Û ,M are the inputs to the compression function. The
empty circle at the left side of the bottom blockcipher
denotes bit complementation.

the adversary super queries for free. More precisely, whenever the
adversary has made N/2 queries under a given key K‖L, and after
the (N/2)-th such query has been answered and placed in the query
history, we give the remaining N/2 queries under the key K‖L for
free to the adversary, in any order. In this case, we say that a su-
per query occurs; every query in the query history is either part of
a super query, or not. In the latter case we call the query a normal
query. (Thus in this theorem, normal queries are exactly the non-free
queries.) Unlike in the proof of Theorem 8.2, there is no notion of
an adjacent query pair. However, like in the proof of Theorem 8.2,
we alert the reader to the fact that a super query consists of a set of
N/2 queries, whereas a normal query is a single query.
We define an event Lucky(Q) on the query history; Lucky(Q) occurs

if
|{(K‖L,X, Y) ∈ Q : X ⊕ Y = V }| > 2α,

or if
|{(K‖L,X, Y) ∈ Q : X ⊕ Y = V̂ }| > 2α.

The adversary obtains a preimage of (V, V̂) precisely if it obtains

138

8.4. Abreast-DM

queries of the form (Û‖M,U,R), (M‖Û , Û , S) such that U ⊕R = V

and Û ⊕ S = V̂ , where Û is the bit-by-bit complement of Û . It
is easy to check that these two queries must be distinct, otherwise

one obtains the contradiction Û = U = M = Û . We call two such
queries a winning pair of queries. Note, of course, that the queries in
a winning pair need not be adjacent in the query history. We speak
of the first and second query in a winning pair referring to the order
in which they appear in the query history.
Let WinNormal(Q) be the event that the adversary obtains a win-

ning pair in which the second query is a normal query. We then let
WinSuper1(Q) be the event that the adversary obtains a winning pair
in which the second query is part of a super query and the first is
either normal or part of a super query, but is not part of the same
super query as the second. Finally let WinSuper2(Q) be the event
that the adversary obtains a winning pair in which both queries of
the pair are part of the same super query. It is then clear that if the
adversary wins, one of the events

WinNormal(Q), WinSuper1(Q) , or WinSuper2(Q)

occurs. In particular, thus, one of the four events

Lucky(Q), WinNormal(Q) ∧ ¬Lucky(Q), WinSuper1(Q) ∧ ¬Lucky(Q),

or
WinSuper2(Q) ∧ ¬Lucky(Q)

must occur if the adversary wins. We upper bound the probability
of each of these four events and sum the upper bounds in order to
obtain an upper bound on the adversary’s advantage.
We start by upper bounding Pr[Lucky(Q)]. For this we introduce

two new events. Let Qn be the restriction of Q to normal queries,
and let Qs be the restriction of Q to queries that are part of super
queries. Let Luckyn(Q) be the event that either

|{(K‖L,X, Y) ∈ Qn : X ⊕ Y = V }| > α,

139

8. Applications

or
|{(K‖L,X, Y) ∈ Qn : X ⊕ Y = V̂ }| > α.

The event Luckys(Q) is likewise defined with respect to Qs. Obvi-
ously, Lucky(Q) =⇒ Luckyn(Q) ∨ Luckys(Q), so it suffices to upper
bound Luckyn(Q) and Luckys(Q) and to sum these upper bounds.
Since every answer to a normal query, forward or backward, comes

at random from a set of size at least N/2, and since at most q normal
queries are made, we have that

Pr[Luckyn(Q)] ≤ 2 ·
(
q

α

)(
2

N

)α

≤ 2 ·
(
2eq

αN

)α

.

To upper bound Pr[Luckys(Q)], note that when a super query is made
on key K‖L, the expected number of points X ∈ {0, 1}n in the do-
main of the super query such that X ⊕ EK‖L(X) = V is at most
(N/2) · (2/N) = 1, since for each such individual point the proba-
bility that X ⊕ EK‖L(X) = V is either 0 (if X ⊕ V is not in the
range of the super query) or 2/N . Moreover, there occur at most
q/(N/2) = 2q/N super queries, since it costs N/2 queries to setup
a super query for a given key. Thus the expectation of the random
variable

|{(K‖L,X, Y) ∈ Qs : X ⊕ Y = V }|,
taken over the coin tosses of the adversary and the randomness of E,
is at most 2q/N · 1 = 2q/N . It then follows by Markov’s inequality
that the probability that

|{(K‖L,X, Y) ∈ Qs : X ⊕ Y = V }| > α

is at most 2q/αN . Then by a union bound and a symmetric argu-

ment (for X ⊕ Y = V̂), we obtain that Pr[Luckys(Q)] ≤ 4q/αN .
Summing the upper bounds for Pr[Luckyn(Q)] and Pr[Luckys(Q)], we
thus obtain that

Pr[Lucky(Q)] ≤ 2 ·
(
2eq

αN

)α

+
4q

αN
. (8.7)

140

8.4. Abreast-DM

We now upper bound Pr[WinNormal(Q)∧¬Lucky(Q)]. For this we
use a wish list argument similar to that of [107]. As the adversary
makes queries, we maintain two sequences WT and WB called wish
lists. These are initially empty. For each query (K‖L,X, Y) added
to the query history (whether normal or part of a super query) we
update the wish lists as follows:

1. If X ⊕ Y = V then (L‖X,K,K ⊕ V̂) is added to WB.

2. If X ⊕ Y = V̂ then (X‖K,L,L⊕ V) is added to WT.

We emphasize that WB and WT are sequences, not sets. The follow-
ing properties are easy to check: (i) a query never adds itself to a
wish list (namely, the queries inserted into the wish lists – if any – as
a result of query (K‖L,X, Y) being added to the query history, are
distinct from (K‖L,X, Y) itself); (ii) the elements of WT are all dis-
tinct from one another, and the elements of WB are all distinct from
one another—namely, the same triple is never added twice to a wish
list; (iii) the adversary obtains a winning pair precisely if a query is
ever added to its query history that is already a member of one of
its wish lists before the updating of the wish lists for that query (by
property (i), however, we could equally well say after the updating of
the wish lists for that query). Moreover, as long as ¬Lucky(Q) holds,
the wish lists never exceed length 2α.

Let EK‖L(X) be a query made to E during the adversary’s attack
(either a normal query, or as part of a super query). If, at the moment
the query is being made, there is an element of the form (K‖L,X, Y)
in (at least) one of the wish lists for some Y ∈ {0, 1}n, then we say
this wish list element is being ’wished for’ when the query EK‖L(X)
is made. We similarly say the wish list element (K‖L,X, Y) is being
wished for if the query E−1K‖L(Y) is made (note that in this case,

the query E−1K‖L(Y) is necessarily normal, since a super query is, by

default, implemented by forward queries). We note, importantly, that
any wish list element can only be wished for once, since EK‖L(·) is a
permutation.

141

8. Applications

We now let NormalWishGrantedT,i be the event that a normal query
(K‖L,X, Y), when added to the query list, is equal to the i-th element
ofWT (presumingWT has length at least i when the query is added).
Likewise define NormalWishGrantedB,i with respect to the list WB.
Then, by the above remarks,

WinNormal(Q) ∧ ¬Lucky(Q) =⇒
2α∨

i=1

NormalWishGrantedT,i

∨
2α∨

i=1

NormalWishGrantedB,i,

so by a union bound

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤
2α∑

i=1

Pr[NormalWishGrantedT,i] +

2α∑

i=1

Pr[NormalWishGrantedB,i].

Because each wish list element can only be wished for once and be-
cause a normal query is answered at random uniformly from a set of
size at least N/2, we have

Pr[NormalWishGrantedT,i] ≤ 2/N,Pr[NormalWishGrantedB,i] ≤ 2/N,

and therefore

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 2 · (4α/N) = 8α/N. (8.8)

We now upper bound Pr[WinSuper1(Q) ∧ ¬Lucky(Q)]. We keep
the same definition of the wish lists WT and WB as above. We let
SuperWishGranted1T,i be the event that a query (K‖L,X, Y) that is
part of a super query is equal to the i-th element of WT, where WT

has length ≥ i before any of the super queries under key K‖L have

142

8.4. Abreast-DM

been made. The event SuperWishGranted1B,i is similarly defined. By
the definition of WinSuper1(Q) we have that

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤
2α∑

i=1

Pr[SuperWishGranted1T,i]

+

2α∑

i=1

Pr[SuperWishGranted1B,i].

Assume, for a given i, that the i-th element ofWT (say) is (K‖L,X, Y),
and that a super query is about to be made for the key K‖L, and
that X is in the domain of the super query. Then the probability
that EK‖L(X) = Y is at most 2/N (more precisely, it is exactly 2/N
unless Y is not in the super query’s range, in which case it is 0).
Thus, arguing similarly for the list WB, we obtain that

Pr[SuperWishGranted1T,i] ≤ 2/N, Pr[SuperWishGranted1B,i] ≤ 2/N.

Therefore,

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (8.9)

We finally bound Pr[WinSuper2(Q)∧¬Lucky(Q)]. Actually, we just
upper bound Pr[WinSuper2(Q)], and do not use a wish list argument.
Note the event WinSuper2(Q) can only occur when a super query is
made on a key of the form L‖L, and then occurs only if both L and
L are in the domain of the super query and if EL‖L(L) ⊕ L = V

and EL‖L(L) ⊕ L = V̂ . It is easy to see that the probability (when
the super query is made) that these latter equalities hold is at most
(2/N) ·(1/(N/2−1)). Since at most q/(N/2) super queries are made,
we therefore have

Pr[WinSuper2(Q) ∧ ¬Lucky(Q)] ≤ Pr[WinSuper2(Q)]
≤ 4q/N2(N/2− 1). (8.10)

Finally, we obtain the theorem by summing (8.7), (8.8), (8.9), and
(8.10). �

143

8. Applications

Corollary 8.5. We have

Advepre
HADM(2

2n−10) ≤ 1/2 + o(1),

where the o(1) term tends to 0 as n→∞.

Proof. By setting α = q1/2/2 (note that α is allowed to depend on
q), the bound from Theorem 8.4 simplifies to

16q1/2

N
+

8q

N2(N − 2)
+ 2 ·

(
4eq1/2

N

)q1/2/2

.

Suppose that q = (cN)2 for some 0 < c < 1, then this bound can be
rewritten as

16c+
8c2

N − 2
+ 2 · (4ec)cN/2

.

For 4ec < 1 this tends 16c, so setting c = 1/32 gives us the claimed
result.

8.5. Tandem-DM

Our new bound forTandem-DM is identical to the bound we gave for
Abreast-DM, so in particular 22n−10 queries are needed to obtain
a preimage with probability ∼1/2. Also, the proof works very much
the same way (Corollary 8.7).

Theorem 8.6. Let HTDM : {0, 1}3n → {0, 1}2n be the Tandem-
DM compression function as depicted in Figure 8.3 and defined in
Section 1.4 on Page 28. Let α > 0 be an integer. Then

Advepre 6=0
HTDM (q) ≤ 16α

N
+

8q

N2(N − 2)
+ 2 ·

(
2eq

αN

)α

+
4q

αN
.

144

8.5. Tandem-DM
replacemen

R

S

E

E

U

Û

V

V̂

M

Figure 8.3.: The Tandem-DM compression function. The wires
U, Û ,M are the inputs to the compression function.

Proof. Let (V, V̂) 6= (0n, 0n) be the point to invert, chosen by the
adversary before making any queries to E. We manage free queries
exactly as for Abreast-DM; more precisely, when N/2 queries are
made to E under a given key, we give the remaining N/2 queries
under that key for free to the adversary, and this constitutes a “super
query”. No other free queries are given.
In the case of Tandem-DM, the adversary obtains a preimage

of (V, V̂) precisely if it obtains queries of the form (Û‖M,U,R),

(M‖R, Û , S) such that U ⊕ R = V , Û ⊕ S = V̂ . It is easy to see
that these two queries must be distinct, otherwise we would have
U = Û = M = R = S and therefore (V, V̂) = (0n, 0n). We call two
queries as above a “winning pair” of queries, where the two elements
of a winning pair need not be adjacent in the query history (and could
be in any order). We speak again of the “first” and “second” query
in a winning pair referring to the order in which they appear in the
query history.
We define the events Lucky(Q), WinNormal(Q), WinSuper1(Q), and

WinSuper2(Q) as in the proof of Theorem 8.4 (but with respect, of
course, to the new definition of“winning pair”). If the adversary wins,
one of the events

Lucky(Q), WinNormal(Q) ∧ ¬Lucky(Q), WinSuper1(Q) ∧ ¬Lucky(Q),

145

8. Applications

or

WinSuper2(Q) ∧ ¬Lucky(Q)

must occur. We upper bound the probability of each of these events
separately.
As in the case of Theorem 8.4, we have

Pr[Lucky(Q)] ≤ 2 ·
(
2eq

αN

)α

+
4q

αN
. (8.11)

To upper bound Pr[WinNormal(Q)∧¬Lucky(Q)], we again use wish
lists. There are two wish lists, WT and WB, that are both initially
empty and which are updated after each new query (K‖L,X, Y) is
placed into the query history, according to the following rules:

1. If X ⊕ Y = V then (L‖Y,K,K ⊕ V̂) is added to WB.

2. If X ⊕ Y = V̂ then (X‖K,L⊕ V, L) is added to WT.

The same four properties from Theorem 8.4 are easy to check: (i) a

query never “adds itself” to a wish list (this uses (V, V̂) 6= (0n, 0n));
(ii) the elements within each wish list are all distinct from one an-
other; (iii) the adversary obtains a winning pair precisely if it obtains
a query that is already in one of its wish lists (at the moment of
insertion of that query into the query history). And, by definition of
Lucky(Q), the wish lists never exceed length 2α as long ¬Lucky(Q)
holds.
Let NormalWishGrantedT,i and NormalWishGrantedB,i be defined as

in the proof of Theorem 8.4. Then, using exactly the same analysis
as in the proof of Theorem 8.4, we have that

Pr[NormalWishGrantedT,i] ≤ 2/N,Pr[NormalWishGrantedB,i] ≤ 2/N,

and therefore

Pr[WinNormal(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (8.12)

146

8.6. Generalization

Then, also arguing word for word as in the proof of Theorem 8.4, we
find that

Pr[WinSuper1(Q) ∧ ¬Lucky(Q)] ≤ 8α/N. (8.13)

We finally bound Pr[WinSuper2(Q) ∧ ¬Lucky(Q)]. Note the event
WinSuper2(Q) can only occur when a super query occurs for a key
of the form (L‖L), and when that super query results in the triples

(V⊕L,L‖L,L), (L,L‖L,L⊕V̂) being added to the query history. The
probability that EL‖L(V ⊕ L) = L is at most 2/N , and, conditioned
on the event that EL‖L(V ⊕L) = L, the probability that EL‖L(L) =

L ⊕ V̂ is at most 1/(N/2 − 1). Since at most 2q/N super queries
occur, we thus find that

Pr[WinSuper2(Q) ∧ ¬Lucky(Q)] ≤ Pr[WinSuper2(Q)]
≤ 4q/N2(N/2− 1). (8.14)

The theorem follows by summing (8.11), (8.12), (8.13) and (8.14).�

As for Abreast-DM, we have the following corollary (with the same
proof):

Corollary 8.7. We have

Advepre 6=0
HTDM (22n−10) ≤ 1/2 + o(1),

where the o(1) term tends to 0 as n→∞.

8.6. Generalization

In this section, we generalize the result from Section 8.1. That is we
state some general conditions such that the arguments given in the

147

8. Applications

proof of Theorem 8.1 still apply. Note that this is somewhat related
to our generic framework given in Section 1.4.1 and – even more – to
the framework in [133].

Let E,E′ ∈ Block(k, n). We define a parallel-call compression1

function HPAR : {0, 1}k+n → {0, 1}2n by means of three helper func-
tions F, F ′ : {0, 1}k+n → {0, 1}k × {0, 1}n, and G : {0, 1}k+n ×
{0, 1}n × {0, 1}n → {0, 1}2n. If U ∈ {0, 1}k+n is the input to
the compression function, the digest V is computed as (K,X) ←
F (U), (K ′, X ′) ← F ′(U), followed by Y ← EK(X), Y ′ ← E′K′(X ′),
and finally V = G(U, Y, Y ′).

(Since two distinct block ciphers E and E′ are used to create Y
and Y ′, respectively, one obviously needs to use a slightly different
definition of preimage resistance, where the adversary has access to
both block ciphers and these are sampled independently from each
other.)

Theorem 8.8. Let HPAR be a parallel-call compression function
using two distinct block ciphers and with the following structural
properties:

P1 F and F ′ are both bijections, thus defining a 1-1 correspon-
dence π between inputs (K,X) and (K ′, X ′) (so (K ′, X ′) =
π(K,X)).

P2 G(U, Y, Y ′) as a function from (Y, Y ′) to V is bijective for all
U .

P3a G (combined with F) is such that K,Y and V uniquely deter-
mine a corresponding X. Namely, for all X̃, Y ′, and U satis-
fying G(U, Y, Y ′) = V and (K, X̃) = F (U), we have X̃ = X.

P3b G (combined with F ′) is such that K ′, Y ′, and V uniquely
determine a corresponding X ′.

1Actual compression requires k > n, however, our result is valid regardless.

148

8.6. Generalization

P4 F and F ′ are key-consistent, that is there exists a permutation
ξ such that if (K ′, X ′) = π(K,X) then K ′ = ξ(K). (Here we
assumed property P1 is already satisfied.)

Then
Advpre

H (q) ≤ 8q/N2.

In particular, an adversary must ask at least N2/16 = 22n−4 queries
to have chance of 1/2 for obtaining a collision.

Proof. Let V be the point that the adversary has chosen to invert
(before gaining access to the block ciphers). Analogously to the proof
of Theorem 8.1, the adversary gets on top of the q queries several
queries for free, as follows:

Normal forward query If the adversary queries EK(X), we also give
it for free E′K′(X ′), where (K ′, X ′) = π(K,X) (and vice versa,
i.e., given a query E′K′(X ′) the appropriate EK(X) query with
(K,X) = π−1(K ′, X ′) is added).

Normal backward query Given an backward query E−1K (Y) with an-
swer X, the corresponding query E′K′(X ′) is given for free (and
vice versa, given an backward E′ query, the appropriate E query
is added).

Super query GivenN/2 queries to E all using the same keyK, all the
remaining queries using that keyK are given for free. Moreover,
all remaining queries to E′ using the corresponding key K ′ =
ξ(K) are given for free as well.

We also use the term “super query” to denote the set of N/2 free
queries that are returned to the adversary. Every adjacent query
pair in the query history is either part of a super query, or not. In
the latter case, we call the adjacent query pair a “normal” adjacent
query pair; we also say a single query is “normal” to indicate it is

149

8. Applications

not part of a super query.2 Moreover, we keep track in the query
history (e.g., by an additional bit of data attached to each query),
of which queries are normal, and of which queries belong to a super
query (with every query being one or the other and not both).

Thanks to property P1, any pair uniquely corresponds to some
U (for which (K,X) = F (U) and (K ′, X ′) = F ′(U)) and we call
it winning iff HPAR(U) = V , i.e. iff V = G(U, Y, Y ′). To find a
preimage, an adversary needs to create a winning pair in its query
history (composed of both – the queries it asks explicitly and the free
queries). We can distinguish between three types of winning pairs,
depending on the free queries involved. Let ForwardQueryWin(Q)
denote the event that the adversary obtains a winning pair that is not
part of a super query and whose first query was a forward query. Let
BackwardQueryWin(Q) denote the event that the winning pair is not
part of a super query whose first query was an backward query, and
finally, let SuperQueryWin(Q) denote the event that the adversary
obtains a winning pair that is part of a super query. Then, the
preimage-finding advantage is upper bounded by

Pr[SuperQueryWin(Q)] + Pr[ForwardQueryWin(Q)]
+ Pr[BackwardQueryWin(Q)].

We bound these three probabilities; a simple sum then leads to the
theorem claim.

To bound Pr[ForwardQueryWin(Q)], we first consider a pair of queries
EK(X), E′K′(X ′). Property P2 implies that only a single pair Y1, Y2

can lead to a preimage for V . Since there have been at most N/2
queries to E under K and, similarly, at most N/2 queries to E′ un-
der K ′, the probability of hitting this single value (Y1, Y2) is upper
bounded by 1/(N −N/2)2 = 4/N2 (here we also use that E and E′

are independent).

2We point out the following discrepancy, which might otherwise cause confusion:
a “super query” is a set of N/2 queries in the query history; but a “normal
query” is a single query in the query history.

150

8.6. Generalization

Bounding Pr[BackwardQueryWin(Q)] goes along similar lines. As-
sume wlog. that the pair has been received by query E−1K (Y). Then,
property P3a implies that there exists a unique X that might lead
to a preimage. Moreover (regardless of the actual X̃ obtained), there
is a unique answer Y ′ to E′K′(X ′) (where (K ′, X ′) = π(K, X̃)) that
combines with K,X, and Y to complete the preimage. Since there
have been at most N/2 queries to E under K and, similarly, at most
N/2 queries to E′ under K ′, the probability of hitting both X and
Y ′ is upper bounded by 1/(N −N/2)2 = 4/N2 (again exploiting the
independence of E and E′). The case that the pair was received by
an (E′)−1K′ (Y ′) is analogous, based on property P3b.

Note that a query is either a forward or an backward query (but
not both), so by an union bound, the (combined) total contribution
of these two events to the adversary’s advantage is at most 4q/N2.
It remains bounding Pr[SuperQueryWin(Q)]. We first note that

key consistency (property P4) ensures that only“regular”queries can
count towards causing a super query. Since the threshold is N/2, this
immediately implies that an adversary can only ever cause 2q/N su-
per queries. For any individual super query, we claim that the success
probability is upper bounded by 2/N , i.e., Pr[SuperQueryWin(Q)] ≤
4q/N2. A super query consists of N/2 query pairs. For each pair, we
can use the exact same derivation as for Pr[ForwardQueryWin(Q)] to
argue that it succeeds with probability at most 4/N2. A union bound
over the N/2 pairs constituting a super query gives the claimed 2/N
bound. �

151

152

Part III.

On Ideal World Models
for Hash Functions

153

9
Results Summary

9.1. Introduction

The results of the third part of this thesis were published in [62]. Here,
we take in a broader perspective. Until now, we tried to build good
compression functions from ’ideal’ ciphers inside. Now, we discuss the
problem of building a ’good’ hash function from ’ideal’ compression
functions. But instead of analyzing standard-model properties as col-
lision security or preimage security separately, we aim for a ’perfect’
hash function, namely, we want it to behave like a random oracle.
For this, we call a hash function secure if it is indifferentiable from a
random oracle (a formal definition is given in Section 10.1).

One purpose of our presentation is to inspire a discussion about
the practical relevance of the notion secure. More precisely: Does a
hash function that is not secure actually indicate a structural flaw
in a hash function, whereas being secure guarantees the absence of
them?

So taking in a practical point of view, we examine to what extent
a structure of a hash function, proven secure using the indifferentia-

155

9. Results Summary

bility framework, relates with instantiations satisfying this structure.
This perspective is justified by the objective of Coron et al. [30] to
deliver a criteria for the design of practical hash functions that can
distinguish between good hash structures and bad hash structures.
On a merely abstract level – i.e., if one views a hash function as a sole
random oracle – the hash structure is trivially secure. Instantiated
as one single collision resistant hash function, it is trivially insecure.
We examine what happens in between these two poles. We show that
one is able to prove one and the same practical hash function secure
and insecure at the same time. These hash functions do not differ
in their implementations but only on the level of abstraction. Also,
we show how a slight modification to a secure hash function, e.g., a
post-processing using some one way function, can drive it insecure,
whereas a post-processing using an easily invertible function appar-
ently preserves its security. We are able to derive some weird features
that a secure hash function must offer. Moreover, as we can prove
different structures that correspond to one and the same instantiated
hash function secure and insecure, we are faced with an open problem
what to conclude for the security of the practical hash function.

Section 9.2 gives a detailed outline and further motivates this dis-
cussion. Section 10.1 introduces the concept of “indifferentiability
from a random oracle” as a security notion for hash functions and
compares it to other known ideal world security models for hash func-
tions. In Section 10.5 we derive some mandatory design principles for
hash functions being secure in the indifferentiability framework. In
Section 10.6 we discuss our findings in greater detail.

9.2. (In)Security in the Indifferentiability

World

In the following sections we examine various constructions that are
secure in the indifferentiability framework (details on indifferentia-
bility follow in Section 10.1) involving one or more random oracles

156

9.3. Motivational Example

and show how slight modifications to them (or partial instantiations)
drive them insecure (at least in this framework).

We now motivate our research and summarize some of our results
in Table 9.1. Furthermore, we give a short example in which way our
results correlate with the design of practical hash functions.

Section Secure Insecure Insecure Secure
(partial instantiation (extension)

or modification)
10.2 RO X RO ◦X RO ◦W

X ◦ RO W ◦ RO
10.2 RO ◦RO RO ◦X RO ◦RO ◦X RO ◦RO ◦W

X ◦ RO X ◦ RO ◦ RO W ◦ RO ◦ RO
10.3 RO ◦MDRO RO ◦MDZ RO ◦MDRO ◦X RO ◦MDRO ◦W

(NMAC) X ◦MDRO X ◦ RO ◦MDRO W ◦ RO ◦MDRO
10.4 ROi ◦X ◦ ROi ROx ◦X ◦ Y ROi ◦X ◦ ROi ◦ Y ROi ◦X ◦ ROi ◦W

(MCM) Y ◦X ◦ ROx Y ◦ ROi ◦X ◦ ROi W ◦ ROi ◦X ◦ ROi

X ◦ ROx ◦ Y

Table 9.1.: RO denotes a random oracle (with fixed or variable length
input), ROi an injective random ’oracle’, ROx a random
oracle (ROx is a fixed or variable input length, injective or
not, random oracle), X,Y , and Z collision resistant one-
way functions (CROWF), W is an easily invertible func-
tion, MDR is a Merkle-Damg̊ard iteration with R being
used as the compression function.

9.3. Motivational Example

Say we want to design a secure hash function and come up with the
idea to design our hash function as a concatenation of a pre-processing
function modeled as a random oracle RO and a collision resistant one
way function (CROWF) X. Consequently, our hash function H for a
message M is

H(M) := (RO ◦X)(M).

157

9. Results Summary

So we try to proof its security in the indifferentiability framework
and come to the conclusion that this hash function is in fact insecure
(refer to Theorem 10.3 (iii)). In the indifferentiability framework we
have at least three straightforward approaches to get H secure:

1. Remove the CROWF X: H1(M) = (RO)(M).

2. ”Strengthen”X and make it a random oracle:
H2(M) = (RO ◦RO)(M).

3. ”Weaken”X and make it an easily invertible function W :
H3(M) = (RO ◦W)(M).

The hash functions H1,H2, and H3 can be proven secure in the in-
differentiability framework (see Theorem 10.3 (i) and (ii)).
Indifferentiability was devised as a tool to see subtle real world

weaknesses while in the random oracle world. But we can prove
H insecure and H3 secure. In the real world (i.e., comparing the
instantiated hash functions) H3 is (almost) sure to be substantially
weaker than H. Additionally, the hash functions H and H2 could be
implemented using exact the same lines of code but one is proved to
be insecure, the other one seems to be secure. What shall we conclude
for the security of our instantiated hash function in the real world?
How can we conclude that H has some real world weaknesses that
H2 has not. Note that mixing complexity-theoretic and ideal building
blocks is common and can, e.g., be found in [140].

158

10
Ambiguous Security Recommendations

10.1. Preliminaries

For hash functions a random oracle serves as a reference model. It of-
fers all the properties a hash function should have. This section gives
an overview on all ’known methods’ for comparing a hash function
with a random oracle: indifferentiability and three weaker models:
preimage awareness, indifferentiability from a public-use random or-
acle and indistinguishability.

Extending our initial discussion at the beginning of Section 1.1, we
let RO denote a random oracle, that takes as input binary strings
of any length and returns for each input a random infinite string,
i.e., it is a map RO : Z

∗
2 → Z

∞
2 , chosen by selecting each bit of

RO(x) uniformly and independently, for every x. As in [30] we will
only consider random oracles RO truncated to a fixed output length
RO : Z∗2 → Z

n
2 .

Indifferentiability from a Random Oracle. The indifferentiability
framework was introduced by Maurer et al. in [118] and is an exten-

159

10. Ambiguous Security Recommendations

sion to the classical notion of indistinguishability. Coron et al. [30]
applied it to iterated hash function constructions and demonstrated
for several iterated hash function constructions that they are indiffer-
entiable from a random oracle if the compression function is a fixed
input length (FIL) random oracle. Here, we give a brief introduction
on these topics. For a more in-depth treatment, we refer to the origi-
nal papers. In the context of iterated hashing, the adversary – called
distinguisher D – shall distinguish between two systems as illustrated
in Figure 10.1.

? FF G

G

HAlg
HRnd

G

S

Ideal Function Algorithm

Case Algorithm: Hash algorithm using
ideal primitives

Case Random: Random hash function,
simulator for the primitives

A −→ B: A has (oracle) access to B

Distinguisher D

Hash

Algorithm
Random

Simulator

Figure 10.1.: Defining HAlg being indifferentiable from a random or-
acle HRnd := RO

The system on the left (Case Algorithm) is the hash algorithm
HAlg using some ideal components (i.e., FIL random oracles) con-
tained in the set G. The adversary can make queries to HAlg as well
as to the functions contained in G. The system on the right consists
of a random oracle (with truncated output) HRnd := RO providing
the same interface as the system on the left. To be indifferentiable to
the system on the left, the system on the right (Case Random) also
needs a subsystem offering the same interface to the adversary as the
ideal compression functions contained in G. A simulator S is needed

160

10.1. Preliminaries

and its task is to simulate the ideal compression functions so that no
distinguisher can tell whether it is interacting with the system on the
left or with the one on the right. The output of S should look consis-
tent with what the distinguisher can obtain from the random oracle
HRnd. In order to achieve that, the simulator can query the random
oracle HRnd. Note that the simulator does not see the distinguisher’s
queries to the random oracle. Formally, the indifferentiability of HAlg

from a random oracle HRnd is satisfied if:

Definition 10.1. [30] A Turing machine HAlg with oracle access
to a set of ideal primitives contained in the set G is said to be
(tD, tS , q, ǫ) indifferentiable from an ideal primitive HRnd, if there
exists a simulator S, such that for any distinguisher D it holds that:

|Pr[DHAlg,G = 1]− Pr[DHRnd,S = 1]| < ǫ.

The simulator has oracle access to HRnd and runs in time at most
tS. The distinguisher runs in time at most tD and makes at most q
queries. Similarly, HAlg is said to be indifferentiable from HRnd if
ǫ is a negligible function of the security parameter k (for polynomial
bounded tD and tS).

Now, it is shown in [118] that if HAlg is indifferentiable from a ran-
dom oracle, then HAlg can replace the random oracle in any scheme,
and the resulting scheme is at least as secure in the ideal compres-
sion function model (i.e., case Algorithm) as in the random oracle
model (i.e., case random).

’Non-Optimal’ Ideal World Models. In [37], Dodis et al. have pre-
sented two ideal world security models that are strictly weaker than
indifferentiability: preimage awareness and indifferentiability from a
public-use random oracle. But both model a hash function fairly in-
adequate. A function that is preimage aware is not guaranteed to
be secure against such trivial attacks as, e.g., the Merkle-Damg̊ard

161

10. Ambiguous Security Recommendations

length-extension attack. And a function that is indifferentiable from a
public-use random oracle has to ’publish’ any oracle query and might
be only of limited use in the context of some signature schemes.

If a hash function is indistinguishable from a random oracle, an
attacker that can query HAlg – but has no access to the compression
functions contained in G – cannot distinguish it from a random ora-
cle. For hash function constructions, indistinguishability makes little
sense as, for any concrete hash function, the compression functions
in G are public and hence accessible to the adversary. As opposed to
blockcipher constructions, there is no secret key or any other infor-
mation the attacker has not. For them, being indistinguishable from
a random permutation seems to suffice (at least in the ideal cipher
model).

Therefore, we will focus in this work on ’indifferentiability from a
random oracle’ since this seems to be the only security model known
that is applicable in all contexts of cryptographic hash functions.
The (open) challenge is to find an ideal world security model that
is strong enough to defeat all known attacks but it should not be
so strong that it leads to real world ambiguities. As we will show,
the notion of indifferentiability has such ambiguities, namely we can
prove one and the same real world hash function secure and insecure
at the same time.

Security definitions that are based on a random oracle. Note that
by assuming ideal primitives even in theAlgorithm case, this defini-
tion is inherently based on the random oracle model. In the standard
model we cannot assume ideal primitives (at least not without al-
lowing an exponentially-sized memory to store a description of the
function), so this notion of security only makes sense in the random
oracle model.

Nevertheless, as we understand [30], a part of their motivation
was to introduce a formalism for aiding the design of practical hash
functions. Showing the above kind of “security” in the random oracle
model ought to indicate the absence of structural flaws in the hash

162

10.2. Composition

function.
On the other hand, if one can efficiently differentiate a hash func-

tion (using ideal primitives) from a random oracle, this appears to
indicate a weakness in the hash function structure. With this rea-
soning, we again follow the example of Coron et al., who debunk
certain hash function structures as insecure by pointing out efficient
differentiation attacks [30, Sections 3.1 and 3.2].

10.2. Composition

We start by investigating a rather simple construction to decide on the
security of a hash function where a pre-processing or post-processing
function is available.

Definition 10.2. Let

F (∗→n), G(∗→n) : {0, 1}∗ → {0, 1}n and

F (n→n), G(n→n) : {0, 1}n → {0, 1}n

be random oracles. A subscript i denotes an injective function/o-
racle whereas a subscript x denotes that we explicitly do not care
whether the function/oracle is injective or not. Let

P (∗→n), Q(∗→n) : {0, 1}∗ → {0, 1}n and

P (n→n), Q(n→n) : {0, 1}n → {0, 1}n

be collision resistant one way functions. Let

W (n→n) : {0, 1}n → {0, 1}n

be a function that is easily invertible, i.e. there exists an polynomial
algorithm W−1 : {0, 1}n → {0, 1}n such that W−1(W (A)) = A
holds for any A ∈ {0, 1}n.

163

10. Ambiguous Security Recommendations

(i) The hash function HRO◦RO : {0, 1}∗ → {0, 1}n for a message
M ∈ {0, 1}∗ is defined by

HRO◦RO(M) := G(n→n)(F (∗→n)(M)).

(ii) Modification/Partial instantiation I: The hash function
HRO◦X : {0, 1}∗ → {0, 1}n for a message M ∈ {0, 1}∗ is
defined by

HRO◦X(M) := F (n→n)(P (∗→n)(M)).

(iii) Modification/Partial instantiation II: The hash function
HX◦RO : {0, 1}∗ → {0, 1}n for a message M ∈ {0, 1}∗ is
defined by

HX◦RO(M) := P (n→n)(F (∗→n)(M)).

(iv) Extension I: The hash function HRO◦RO◦X : {0, 1}∗ →
{0, 1}n for a message M ∈ {0, 1}∗ is defined by

HRO◦RO◦X(M) := F (n→n)(G(n→n)(P (∗→n)(M))).

(v) Extension II: The hash function HX◦RO◦RO : {0, 1}∗ →
{0, 1}n for a message M ∈ {0, 1}∗ is defined by

HX◦RO◦RO(M) := P (n→n)(F (n→n)(G(∗→n)(M))).

Theorem 10.3. In the indifferentiability framework the following
statements must hold:

(i) HRO◦RO is secure (i.e., indifferentiable from a random
oracle),

164

10.2. Composition

(ii) HRO◦X is insecure (i.e., differentiable from a random or-
acle),

(iii) HX◦RO is insecure,

(iv) HRO◦RO◦X is insecure,

(v) HX◦RO◦RO is insecure.

Recall that for proving a hash function insecure we have to state an
efficient distinguisher which can decide with non-negligible probabil-
ity if the hash function is an algorithm utilizing at least one random
oracle (the Algorithm case) or is a random oracle by itself (the
Random case).

Proof. Let H denote the hash oracle.

(i) Let H := (RO2 ◦ RO1)(M) be the definition of the hash func-
tion. We have to describe an efficient simulator S who is able
to simulate the random oracles RO1 and RO2. The simulator
has access to the hash oracle HRO.
Description of the Simulator S:

1. RO1 oracle queries: For all queries we keep a record. If we
have answered the same query before we return the same
value again. Else we choose a random value and add it to

our database DB
add←− [query, random].

2. RO2 oracle queries: If [?, query] ∈ DB, then use the first
entry to ask the hash oracle HRO and return the answer.
Else choose a random value and add it to our database
DB

add←− [random, query]. Use the new chosen random
value to ask the hash oracle HRO and return the answer.

Clearly, S is efficient. Furthermore, any distinguisher D cannot
differentiate it from a random oracle, since the distribution of
the outputs are the same in both cases.

165

10. Ambiguous Security Recommendations

Remark: The proof can be easily generalized to all functions of
type HRO◦···◦RO(M).

(ii) This result is essentially equivalent to the Coron et al. inse-
curity result regarding the composition of a CROWF with a
random oracle [30], but we state a version of it here for com-
pleteness. We describe a distinguisher D to win this game,
regardless of the simulator S:

1. Choose a random message M ∈ {0, 1}∗.
2. Compute u = P (M).

3. Ask the F -oracle for v = F (u).

4. Ask the hash-oracle for z = H(M).

5. If z = v output algorithm, else output random.

Analysis: Clearly, D is efficient. In the algorithm world we
always have

z = H(M) = F (P (M)) = F (u) = v,

so it always outputs ’algorithm’ if it interacts with the algo-
rithm and the ideal primitive F .
A simulator trying to fool the distinguisher D does not know M
as he receives the F (u)-oracle call. In order to answer correctly
he has to come up with M = P−1(u) to ask the hash oracle
for H(M). As P is a CROWF this is not possible. Any such
simulator can be used to invert P since in order to answer the
F (u) query correctly, it must be able to compute v′ = P−1(u)
and then return the value H(v′) to the adversary.

Furthermore, it is information-theoretically impossible to re-
cover M ∈ {0, 1}∗ from u.

(iii) Again, we describe a distinguisher D to win this game, regard-
less of the simulator S:

1. Choose a random message M ∈ {0, 1}∗.

166

10.2. Composition

2. Ask the hash-oracle for z = H(M).

3. Ask the F -oracle for u = F (M).

4. Compute v = P (u).

5. If z = v output algorithm, else output random.

Analysis: Again, D is obviously efficient and always outputs
algorithm in the algorithm world as we have

z = H(M) = P (F (M)) = P (u) = v.

In the random world, D learns a random target z and needs to
find u with z = P (u) whereas u = F (M). So any simulator
able to answer the F -oracle correctly can be used to invert P
which is a CROWF.

(iv) The proof is essentially the same as in (ii).

(v) The proof is essentially the same as in (iii).

�

Paradox.

As we have proven in (ii) and (iii) the hash functions HRO◦X and
HX◦RO are in fact insecure, if X is a collision resistant one way func-
tion. What happens if we substitute that CROWF with an easily
invertible function? It turns out that both hash functions get secure
again. Taking preimage resistance as an example, we are not able
to attach an ’additional line of defense’ (namely the function X) for
preimage attacks, without losing the property of being ’indifferen-
tiable from a random oracle’. Note that we do not point out any
paradox in the indifferentiability framework itself. But, indeed, we
do show several ambiguities we inevitably have to face if we try to ap-
ply this framework as a guide for designing secure and practical hash
functions. This situations occur if we try to decrease the size of the
gap between a practical hash function and its ideal world mapping.

167

10. Ambiguous Security Recommendations

Theorem 10.4. Using the same notations as in Definition 10.2 it
must hold in the indifferentiability framework:

(i) The hash function

HRO◦W (M) := F (n→n)(W (∗→n)(M)),

is secure if W is an invertible function.

(ii) The hash function

HW◦RO(M) := W (n→n)(F (∗→n)(M)),

is secure if W is an invertible function.

Proof. Let H denote the hash oracle.

(i) Note that the function W : {0, 1}∗ → {0, 1}n is unlikely to be
uniquely invertible in practice (normally, it will be information-
theoretically impossible). But if we assume W ’s invertibility
we can easily give a simulator S thus proving the hash function
secure.

Description of Simulator S:

- F-oracle queries (parameter A): As we can invert W we
can easily calculate M = W−1(A) and ask the hash oracle
v = H(M) and return v to the caller.

(ii) Now we have the function W : {0, 1}n → {0, 1}n. Again, we
can give a simple simulator S. Description of Simulator S:

- F-oracle queries (parameter M): Ask the hash oracle z =
H(M) and return W−1(z) to the caller.

�

168

10.2. Composition

Recall the example of Section 9.2. Let us start with the hash func-
tion HRO◦X . For X being a CROWF we have shown HRO◦X to be
insecure. If we strengthen X to be a random oracle our hash function
gets secure. If we weaken X, i.e., let X be an invertible function,
our hash function gets secure again. The same is true if we begin our
discussion with HX◦RO.

Furthermore, all the theoretical hash functions HRO◦RO, HX◦RO,
and HRO◦X are a valid model for the same practical hash function,
employing two functions F and G and defined by H(x) = F (G(x)).
Should we conclude that this construction is secure, since we can
prove their security if we model both F and G as random oracles?
Or should we conclude that this construction is insecure, as we can
disprove security in two other cases?

Insecurity by (partial) Instantiation.

Another point of view of the problem is given here. We start with the
proven-to-be-secure hash function HRO◦RO. So one should assume
that there are no structural weaknesses found in our construction. In
order to get a practical hash function we have to instantiate the ran-
dom oracle by efficient collision resistant one way functions. Instead
of instantiating both random oracles at the same time we choose to
instantiate them one after the other. Our intermediate result is ei-
ther HX◦RO or HRO◦X . Both of them were proved the be insecure in
Theorem 10.3 – but formally we still have not left the random oracle
world. Informally, we start now with an insecure hash function and
instantiate the other random oracle. Thus, regarding the structural
soundness of our construction, we get entirely contradicting messages
again.

169

10. Ambiguous Security Recommendations

10.3. NMAC

Definition 10.5 (NMAC-Hash). Let

C(n+m→n) : {0, 1}n × {0, 1}m → {0, 1}n and

D(n→n) : {0, 1}n → {0, 1}n

be oracles, M = (M1,M2 . . . ,ML) ∈ ({0, 1}m)L be a padded mes-
sage, and H0 ∈ {0, 1}n an arbitrary initial value. The Merkle-
Damg̊ard hash function MDC : {0, 1}n × ({0, 1}m)+ → {0, 1}n is
defined by

H1 = C(H0,M1), . . . , HL = C(HL−1,ML),

MDC(H0,M1, . . . ,ML) = HL.

The hash function NMACC,D : {0, 1}n × ({0, 1}m)+ → {0, 1}n is
defined for fixed H0 ∈ {0, 1}n as follows:

NMACC,D(M1, . . . ,ML) = D(MDC(H0,M1, . . . ,ML)).

�
��

✲

✲

M1

H0

C

�
��

✲

✲

M2

H1

C
✲H2 . . .

. . .

�
��

✲

✲

ML

HL−1

C
✲HL

D

❄
NMACC,D(M1, . . . ,ML)MDC

Figure 10.2.: The NMAC-Hash NMACC,D – an extension to the
plain Merkle-Damg̊ard hash function MDC .

170

10.3. NMAC

Definition 10.6. Let F,G, P , and Q be as in Definition 10.2. Ad-
ditionally, let

F (n+m→n) : {0, 1}n+m → {0, 1}n

be a random oracle.

(i) The hash function HRO◦MDRO
: {0, 1}m·L → {0, 1}n for a

padded message M ∈ {0, 1}m·L is defined by

HRO◦MDRO
(M) = NMACF (n+m→n),G(n→n)(M)

= G(n→n)(MDF (n+m→n)(M)).

(ii) Modification/Partial instantiation I: The hash function
HRO◦MDX

: {0, 1}m·L → {0, 1}n for a padded message
M ∈ {0, 1}m·L is defined by

HRO◦MDX
(M) = NMACP (n+m→n),F (n→n)(M)

= F (n→n)(MDP (n+m→n)(M)).

(iii) Modification/Partial instantiation II: The hash function
HX◦MDRO

: {0, 1}m·L → {0, 1}n for a padded message M ∈
{0, 1}m·L is defined by

HX◦MDRO
(M) = NMACF (n+m→n),P (n→n)(M)

= P (n→n)(MDF (n+m→n)(M)).

(iv) Extension I: Let

R(∗→m·L) : {0, 1}∗ → {0, 1}m·L

be a padding function. The hash function HRO◦MDRO◦R :
{0, 1}∗ → {0, 1}n for an (unpadded) message M ∈ {0, 1}∗ is
defined by

HRO◦MDRO◦X(M) = NMACF (n+m→n),G(n→n)(R(∗→m·L)(M)).

171

10. Ambiguous Security Recommendations

(v) Extension II: The hash function HX◦RO◦MDRO
: {0, 1}m·L →

{0, 1}n for a padded message M ∈ {0, 1}m·L is defined by

HX◦RO◦MDRO
(M) = P (n→n)(NMACF (n+m→n),G(n→n)(M)).

We now proceed to give a proof for the following theorem.

Theorem 10.7. Using the indifferentiability framework it must
hold:

(i) HRO◦MDRO
is secure,

(ii) HRO◦MDX
is insecure,

(iii) HX◦MDRO
is insecure,

(iv) HRO◦MDRO◦X is insecure,

(v) HX◦RO◦MDRO
is insecure.

In [30], the plain Merkle-Damg̊ard hash function with ideal compres-
sion functions MDRO was shown to be insecure.

Proof. (i) Although this result was discussed in [30], the proof
seems to be missing in the published version of the paper. Our
task is to describe an efficient simulator S which can emulate
the oracles F and G in the Random case. Namely, we will

– give a description of S,

– show that S is efficient, and

– show that the probability that an efficient distinguisher is
successful (in differentiating this Random case from the
Algorithm case) is negligible.

172

10.3. NMAC

Description of the Simulator S.

1. F oracle queries: In order to simulate H ′ = F (H,M)
we use the natural approach:

– If we have answered the same query before we return
the same value H ′ again.

– Else we choose the answer to the queries of H ′ at
random.

But we have to take care that the randomly chosen answer
must not be equal to an answer of any prior query. If this
does happen, we call this event Bad.

If Bad has happened, it follows that a message chain is
indicated where, with overwhelming probability, should be
none. The probability for Bad is negligible as will be
shown later on.

For all oracle queries we perform record keeping. There are
two reasons for this: First, to detect when Bad happens
and, second, we need to know the values to answer the G
oracle queries. As a result we have a record of numerous
chains

[H0,Mk1
] 7→ [Hk1

,Mk2
] 7→ · · · 7→ [Hkl

,⊥].

We call Hkj
accessible if there exists a chain starting with

an initial value H0, Hkj
6= H0, that contains Hkj

.

Remarks: All Hkj
are different (or Bad would have oc-

curred). Initially, there does exist one chain for the initial-
ization value: [H0,⊥].

2. G oracle queries: For simulating oracle queries for H ′ =
G(H) we consider two cases:

a) H is not accessible: choose a random value H ′ ∈
{0, 1}n. Add a new chain [H ′,⊥] into the record and
return H ′.

173

10. Ambiguous Security Recommendations

b) H is accessible: There exists one specific chain that
contains H. Therefore, we can extract the related
message M = (Mk1

, . . .Mkj
) from the chain and dis-

patch it to the the random oracle HRnd. We return
H ′ = HRnd(M).

Efficiency. The operations are clearly efficient. They all can
be performed using standard techniques.

Success probability of the distinguisher. We will now show
that, if the event Bad does not occur, our simulator fools the
adversary by proving that the distribution of the adversary’s
output in the Algorithm case (without simulator S) is iden-
tical to the distribution of the adversary’s output in the Ran-
dom case (with simulator S). Afterwards, we will show that
the probability of Bad is negligible. This concludes the proof.

Lemma 10.8. The simulator S only aborts if Bad occurs.

Proof: This is directly implied by the description of the simula-
tor S. �

Lemma 10.9. If the simulator does not abort the adversary’s
view of Algorithm and Random is identical.

Proof:

1. Random: Only independent random values are returned,
Either by a random oracle, the hash function, or random
values chosen by the simulator (simulating F and G as be-
ing random oracles). If the same query has been answered
before, the same value is returned again.

174

10.3. NMAC

2. Algorithm: Here, F and G are random oracles and, con-
sequently, also the hash function.

In either case the distinguisher can only see random values. �

Lemma 10.10. The probability that Bad occurs is negligible.

Proof: If Bad has not happened after the first q queries to
the simulator (either for F or G), then the probability that it
happens on the (q+1)-st query is at most (q+1) · 2−n. This is
because there are at most (q + 1) answers including the initial
value H0. Therefore, if the distinguisher makes a total of q
queries, the probability of the event Bad is at most (q2+q)·2−n.
This completes the proof. �

(ii) This proof is essentially the same as the proof of Theorem 10.3
(ii). We only have to take care for the Merkle-Damg̊ard con-
struction. Here, we only give the distinguisher D:

1. Choose a random message M ∈ {0, 1}∗.
2. Compute u = MDP (M).

3. Ask the F -oracle for v = F (u).

4. Ask the hash-oracle for z = H(M).

5. If z = v output algorithm, else output random.

(iii) This proof is essentially the same as the proof of Theorem 10.3
(iii). We only have to take care for the Merkle-Damg̊ard con-
struction. Here, we only give the distinguisher D:

1. Choose a random message M ∈ {0, 1}∗.
2. Ask the hash-oracle for z = H(M).

3. Use the F -oracle to calculate u = MDF (M).

4. Compute v = P (u).

175

10. Ambiguous Security Recommendations

5. If z = v output algorithm, else output random.

(iv) The proof is essentially the same as in 10.3 (iv). So if this
hash function is secure, we could use our simulator to invert
the padding function R efficiently.

(v) The proof is essentially the same as in 10.3 (v). So if this hash
function is secure, we could use our simulator to invert the
CROWF G efficiently.

�

Paradox.

Again, as discussed in Section 10.2, we get a secure hash function if
we substitute the CROWF by an invertible function. For the hash
functions (ii)-(v) similar results as given in Theorem 10.4 can easily
be stated.

Part (iv) of the theorem might be somewhat surprising, at least in
this form. Most of the padding functions have the property of being
easily invertible. But in the indifferentiability world this is a must-
have feature for secure hash functions. If the padding function R is
not efficiently invertible, NMAC would be insecure.

In [30] the authors do not care about the padding function. But this
turns out to be somewhat shortsighted in the case of indifferentiable
secure hash functions. Even such a simple and (in the analysis phase)
easily to be forgotten function can drive a hash function insecure if
it is added.

10.4. Mix-Compress-Mix

We now analyze the Mix-Compress-Mix (MCM) construction given
by Ristenpart et al. [140]. In short, it is built as ROi − X − ROi.
Note that there was given a more efficient instantiation by Lehmann
and Tessaro [108].

176

10.4. Mix-Compress-Mix

Definition 10.11. Fix numbers η > 0, τ ≥ 0, L > 0, and a hash
key K = (k1, k, k2). Let

ǫ1(k1, ·) : {0, 1}≤L → {0, 1}≤L+τ ,

H(k, ·) : {0, 1}≤L+τ → {0, 1}η,
ǫ2(k2, ·) : {0, 1}η → {0, 1}η+τ ,

whereas ε1 has stretch τ , i.e., |ε1(k1,M)| = |M | + τ . The func-
tions ǫ1 and ǫ2 are injective. The hash function MCMǫ1,H,ǫ2 :
{0, 1}≤L → {0, 1}η+τ for a fixed key K = (k1, k, k2) is computed by

MCMǫ1,H,ǫ2(M) = ǫ2(k2, H(k, ǫ1(k1,M))).

ǫ1(k1,M)✲M ✲M ′

❵❵❵❵❵

✥✥✥
✥✥

H(k,M ′) ✲M ′′
ǫ2(k2,M

′′) ✲ MCMǫ1,H,ǫ2(M)

Figure 10.3.: The MCM construction MCMǫ1,H,ǫ2(M). H is a
CROWF, ǫ1, ǫ2 are injective (”mixing”) functions, K =
(k1, k, k2) is the previously fixed hash key.

Definition 10.12. As in Definition 10.2, a subscript i denotes an
injective function/oracle whereas a subscript x denotes that we ex-
plicitly do not care whether the function/oracle is injective or not.

(i) The hash function HROi◦X◦ROi
: {0, 1}≤L → {0, 1}η+τ for a

message M ∈ {0, 1}≤L is defined by

HROi◦X◦ROi
(M) = MCM

F
(≤L→≤L+τ)
i ,D(≤L+τ→η),G

(η→η+τ)
i

(M)

177

10. Ambiguous Security Recommendations

whereas F and G both have stretch τ .

(ii) Modification/Partial Instantiation I: The hash function
HROx◦X◦Y : {0, 1}≤L → {0, 1}η+τ for a message M ∈
{0, 1}≤L is defined by

HROx◦X◦Y (M) = MCM
F

(≤L→≤L+τ)
i ,D(≤L+τ→η),E

(η→η+τ)
i

(M)

whereas F and E both have stretch τ .

(iii) Modification/Partial Instantiation II: The hash function
HY ◦X◦ROx

: {0, 1}≤L → {0, 1}η+τ for a message M ∈
{0, 1}≤L is defined by

HY ◦X◦ROx
(M) = MCM

E
(≤L→≤L+τ)
i ,D(≤L+τ→η),G

(η→η+τ)
i

(M)

whereas E and G both have stretch τ .

(iv) Modification III: The hash function HX◦RO◦Y : {0, 1}≤L →
{0, 1}η+τ for a message M ∈ {0, 1}≤L is defined by

HX◦RO◦Y (M) = MCMD(≤L→≤L+τ),F (≤L+τ→η),E(η→η+τ)(M)

whereas D and E both have stretch τ .

(v) Extension I: The hash function HY ◦ROi◦X◦ROi
: {0, 1}≤L →

{0, 1}η+τ for a message M ∈ {0, 1}≤L is defined by

HY ◦ROi◦X◦ROi
(M)

= E(η+τ→η+τ)(MCM
F

(≤L→≤L+τ)
i ,D(≤L+τ→η),G

(η→η+τ)
i

(M))

whereas F and G both have stretch τ .

(vi) Extension II: The hash function HROi◦X◦ROi◦Y : {0, 1}≤L →
{0, 1}η+τ for a message M ∈ {0, 1}≤L is defined by

HROi◦X◦ROi◦Y (M)

= MCM
F

(≤L→≤L+τ)
i ,D(≤L+τ→η),G

(η→η+τ)
i

(E(≤L→≤L)(M))

whereas Fi and Gi both have stretch τ .

178

10.4. Mix-Compress-Mix

Theorem 10.13. (i) HROi◦X◦ROi
is secure if X is a ∆−regular

function (i.e., every image of H has approximately the same
number of preimages, for details see [140]).

(ii) HROx◦X◦Y is insecure.

(iii) HY ◦X◦ROx
is insecure.

(iv) HX◦RO◦Y is insecure.

(v) HROi◦X◦ROi◦Y is insecure.

(vi) HY ◦ROi◦X◦ROi
is insecure.

Proof. (i) This proof is given in [140, Theorem 3.2]. Note that the
condition of injective random oracles is only needed for their
special conclusion (proving collision resistance in the standard
model) – it is not compulsory to prove the MCM construction
secure in the indifferentiability framework.

(ii) The proof is essentially the same as in Theorem 1 (ii).

(iii) The proof is essentially the same as in Theorem 1 (iii).

(iv) This can be proved either by the proof of Theorem 1 (ii) or (iii)

(v) The proof is essentially the same as in Theorem 1 (ii).

(vi) The proof is essentially the same as in Theorem 1 (iii).

179

10. Ambiguous Security Recommendations

10.5. Shady Design Principles for Secure
Hash Functions

Definition 10.14. Let k ∈ N. Let S1 : {0, 1}∗ → {0, 1}m, Sj :
{0, 1}m → {0, 1}m, 1 < j < k, and Sk : {0, 1}m → {0, 1}n be
functions. The hash function H for a message M is defined by

H(M) = (Sk ◦ Sk−1 ◦ . . . ◦ S1)(M)

Here, we generally do not care whether the functions Sj , 1 ≤ i ≤ k,
are ideal or not. Using the technique applied above it is easy to show
that the following theorem holds.

Theorem 10.15. (Design Principles for Secure Hash Functions)
Let H be defined as in Definition 10.14. Let H be a secure (indif-
ferentiable) hash function. Then it must hold:

(i) S1 is not a one way function.

(ii) Sk is not a one way function.

Proof. (i) If S1 is a one way function we could use the simulator
(as H is secure) to invert S1. The proof is essentially the same
as the proof of Theorem 10.3 (ii).

(ii) If Sk is a one way function we could use the simulator (as H is
secure) to invert Sk. The proof is essentially the same as the
proof of Theorem 10.3 (iii).

�

180

10.6. Discussion

This simple design principle is mandatory to all (indifferentiable) se-
cure hash functions. Note that in the MCM construction, the one way
function is in the middle of two random oracles. Applying Theorem
10.15 we can conclude: It is possible to prove a structure secure only
if the ’first’ and the ’last’ functions are random oracles or easily in-
vertible functions, but we might be able – under some circumstances
– to choose some functions different to a random oracle.

10.6. Discussion

The Random Oracle Model

All ideal world notions and their definitions are inherently based on
the random oracle model. Before going into details on indifferentiabil-
ity itself in Section 10.6.1 let us recall some results from the literature
on the random oracle model. As mentioned, there had been quite a
few uninstantiability results, defining schemes provably secure in the
random oracle model, but insecure when instantiated by any efficient
function. One can argue that all of these constructions are malicious.
They are designed to be insecure. But either one relies on heuristics
and intuitions, or one relies on proofs. If one puts proofs above all
other aspects, then counter-examples do invalidate the proofs.

10.6.1. The Ambiguity of Indifferentiability in the
Design of Practical Hash Functions

The ideas from Coron et al. [30] have been very influential and in-
spiring for a lot of researchers. Namely, there have been quite a few
proposals for hash function structures provably “indifferentiable from
a random oracle”, often in addition to other security requirements as,
e.g., in [11, 16, 110].

But there seems to be some contradiction in the reasoning from [30]:
The same formalism can be used to indicate the structural soundness
of an implementation, as well as the presence of structural weaknesses.

181

10. Ambiguous Security Recommendations

The contradiction is not on the formal level – we do not claim any
flaw in the theorems or proofs of [30]. If all components (e.g., com-
pression functions) of a hash function are ideal (i.e., random oracles)
we do not get ambiguous results. If all components are non-ideal we
cannot use the indifferentiability framework to prove anything. But
if some of the primitives are ideal and some are not (as for example in
[11]) we can get ambiguous results for security proofs. Our research
seems to indicate that the indifferentiability model is of limited use
for proving the security of

• mixed-model hash functions (using complexity-theoretic and
ideal components at the same time) and

• practical hash functions (e.g., as the SHA-3 candidates).

One might conclude that if any possible description of a structure
is insecure in the indifferentiability framework (e.g., in the case for
Merkle-Damg̊ard) then the hash structure is flawed. But it is not clear
what we shall conclude for a concrete instantiation if one modeling is
secure but another is not.
Taking a secure function (using only ideal components) we have
shown in Section 10.2 and 10.3 how slight modifications (i.e., adding
a pre-processing or post-processing function) or partial instantiations
(i.e., starting our way towards an instantiated hash function) might
possibly drive them insecure.
But in addition to an inherent theoretical motivation, the notion

of security in [30] has also been motivated by the need to decide
if the structure of a hash function is sound or flawed. A criterion
for good hash function structures is very valuable for hash function
designers, indeed. On the strictly theoretical side, there is nothing
wrong, and studying this kind of security remains an interesting topic
for theoretical cryptography.

10.6.2. Final Remarks

The random oracle model makes it possible to design cryptographic
functions secure only in the ideal world. As discussed in Section 10.1,

182

10.6. Discussion

the notions of indistinguishability, preimage awareness, and indiffer-
entiability from a public-use random oracle seem to be too weak for
designing a secure, practical, and general purpose hash structure.
The right level of abstraction. If we state the discussion of

Section 10.6.1 somewhat different we can come up with the following:
For designing a hash function one might come up with a model/struc-
ture that describes the hash function on an abstract level. Then, one
might try to find an indifferentiability proof for this structure – given
that some of the components are ideal. This process usually involves
some sort of tweaking of the structure in order to ’find’ the proof.
Therefore, we state that this structure is secure. But if we start
with an implementation (i.e., a practical hash function) and want to
evaluate its security in terms of indifferentiability, we are faced with
the problem of the right level of abstraction/kind of modeling. If
we abstract away all the details and come up with a structure only
consisting of a random oracle, all hash functions are trivially secure
(again, in terms of indifferentiability). If we abstract nothing, the in-
distinguishability framework does not have an answer to our question
since we have no ideal components. But if we start abstracting some
of the components we might be faced with the problem of finding
some abstractions that are secure, and some that are not. And we
might not know what to conclude for the security of the implemen-
tation.
Open Problems. It remains an open problem to derive an ideal

world criterion to support the design of general purpose practical
hash functions – telling us if the internal structure of a hash function
is flawless or not. Certainly, a security proof (i.e., a proof of a hash
function being indifferentiable from a random oracle, when modeling
some or all the internal functions as random oracles) is comforting.
But pursuing this kind of security property requires great care since
authors of a new hash function could be tempted to change, e.g.,
some one-way final transform of their hash function into an easily
invertible transformation. This could enable a theoretical security
proof in the first place, while at the same time, practically weaken
the hash function.

183

10. Ambiguous Security Recommendations

Designers of practical hash functions, who accept the indifferentia-
bility framework at face value, may be tempted to make poor design
decisions. The indifferentiability framework suggests corrections to
structures which sometimes make only sense in the ideal world but
that have no real-word mapping. Even worse, the danger is that these
very corrections drive the corresponding real-world hash function less
secure.
Authors of new hash functions are well advised to prove other se-

curity properties, such as the established collision resistance, preim-
age resistance, and second-preimage resistance under some reason-
able standard-model assumptions, perhaps in addition to analyzing
theoretical security properties, such as the indifferentiability from a
random oracle.

184

Part IV.

On-Line Authenticated
Encryption for Practical

Applications

185

11
Results Summary

On-Line Authenticated Encryption (OAE) combines privacy with
data integrity and is on-line computable. Most block cipher-based
schemes for Authenticated Encryption can be run on-line and are
provably secure against nonce-respecting adversaries. But they fail
badly for more general adversaries. This is not a theoretical observa-
tion only – in practice, the reuse of nonces (a number used once) is a
frequent issue. A prominent example is the PlayStation 3 ’jailbreak’
[76], where application developers used a constant that was actually
supposed to be a nonce for a digital signature scheme.

In recent years and initiated by a seminal work of Rogaway and
Shrimpton [150], cryptographers developed misuse-resistant schemes
for Authenticated Encryption. These guarantee excellent security
even against general adversaries which are allowed to reuse nonces.
Their disadvantage is that encryption can be performed in an off-line
way, only.

We consider OAE schemes dealing both with nonce-respecting and
with general adversaries by introducingMcOEx, a construction based
only on a simple blockcipher E ∈ Block(n, n). It provably guaran-

187

11. Results Summary

tees reasonable security against general adversaries as well as stan-
dard security against nonce-respecting adversaries.
As an interesting side-effect of our analysis, it seems that this actu-

ally is the first practical scheme in literature that does require some
sort of related key security of a blockcipher. This draws attention
especially to AES where the relevance of related-key attacks is still
debated.

11.1. Introduction

On-Line Authenticated Encryption (OAE). Application software
often requires a network channel that guarantees the privacy and
authenticity of data being communicated between two parties. Cryp-
tographic schemes able to meet both of these goals are commonly
referred to as Authenticated Encryption (AE) schemes. The ISO/IEC
19772:2009 standard for AE [78] defines generic composition (Encrypt-
then-MAC [10]) and five dedicated AE schemes: OCB2 [145], SIV
[150] (denoted as “Key Wrap” in [78]), CCM [40], EAX [14], and
GCM [119]. To integrate an AE-secure channel most seamlessly into
a typical software architecture, application developers expect it to
encrypt in an on-line manner meaning that the i-th ciphertext block
can be written before the (i+1)-th plaintext block has to be read. A
restriction to off-line encryption, where usually the entire plaintext
must be known in advance (or read more than once), is an encum-
brance to software architects.

Nonces and their reuse. Goldwasser and Micali [69] formalized en-
cryption schemes as stateful or probabilistic, because otherwise im-
portant security properties are lost. Rogaway [144, 146, 148] proposed
a unified point of view, by always defining a cryptographic scheme
as a deterministic algorithm that takes a user supplied nonce. So
the application programmer – and not the encryption scheme – is
responsible for flipping coins or maintaining state. This reflects cryp-
tographic practice since the algorithm itself is often implemented by a

188

11.1. Introduction

multi-purpose cryptographic library which is more or less application-
agnostic.

In theory, the concept of a nonce is simple. In practice, it is chal-
lenging to ensure that a nonce is never reused. Flawed implemen-
tations of nonces are ubiquitous [20, 76, 97, 156, 168]. Apart from
implementation failures, there are fundamental reasons why software
developers can not always prevent nonce-reuse. A persistently stored
counter, which is increased and written back each time a new nonce
is needed, may be reseted by a backup – usually after some previous
data loss. Similarly, the internal and persistent state of an application
may be duplicated when a virtual machine is cloned, etc.

Related Work and Our Contribution. We aim to achieve both si-
multaneously : security against nonce-reusing adversaries (sometimes
also called nonce-misusing adversaries) and support for on-line en-
cryption in terms of an AE scheme. Apart from generic composition
(Encrypt-then-Mac, EtM), none of the ISO/IEC 19772:2009 schemes
– in fact, no previously published AE scheme at all – achieves both of
these goals, cf. Table 11.1. In this table, we classify a vast variety of
provably secure block cipher-based AE schemes with respect to their
on-line ability and against which adversaries (nonce-respecting versus
nonce-reusing) they have been proven secure.

Since EtM is not a concrete scheme but merely a generic construc-
tion technique, there are some challenges left in order to make it
secure in both ways: First, an appropriate on-line cipher has to be
chosen. Second, a suitable, on-line computable, secure deterministic
MAC must be selected. And, third, the EtM scheme requires at least
two independent keys to be secure and, since two schemes are used in
parallel, is likely to waste resources in terms of run time and – impor-
tant for hardware designers – in terms of space. Since EtM first has
to be turned into an OAE scheme by making the appropriate choices,
we do not include it in our analysis.

In order to close the apparent gap in the upper-right of Table 11.1,
we considered the schemes in the upper-left, whether they would fit.

189

11. Results Summary

As it turned out, we actually found nonce-reuse attacks for all of
those schemes. An overview of the workload of these attacks is given
in Table 11.2. The attack details are given in Chapter 12. We present
a new construction method for efficient AE schemes, called McOEx,
that is able to fill this gap.

security: nonce-respecting adv. nonce-reusing adv.

on-line CCFB[113] CHM[79] McOEx[53]

CIP[80] CWC[98]

EAX[14] GCM[119]

IACBC[85] IAPM[85]

McOEx[53]

OCB1-3[100, 145, 148]

RPC[25] TAE[111]

XCBC[67]

off-line BTM[81] CCM[40] BTM[81] HBS[82]

HBS[82] SIV[150] SIV[150]

SSH-CTR[135]

Table 11.1.: Classification of provably secure block cipher-based AE
Schemes. CCM and SSH-CTR are considered off-line be-
cause encryption requires prior knowledge of the message
length. Note that the McOEx scheme, because of be-
ing on-line, satisfies a slightly weaker security definition
against nonce-reusing adversaries than SIV, HBS, and
BTM.

Initial Value (IV) based AE schemes maximally forgiving of re-
peated IV’s have been addressed in [150], coining the notion of “mis-
use resistance” and proposing SIV as a solution. SIV and related

190

11.1. Introduction

privacy authenticity
attack attack

CCFB [113] O(1) O(1)

CCM [40] O(1) ≪ 2(n/2) [63]
CHM [79] O(1) O(1)
CIP [80] O(1) O(1)
CWC [98] O(1) O(1)
EAX [14] O(1) O(1)
GCM [119] O(1) O(1)
IACBC [85] O(1) O(1)

privacy authenticity
attack attack

IAPM [85] O(1) O(1)
OCB1 [148] O(1) O(1)
OCB2 [145] O(1) O(1)
OCB3 [100] O(1) O(1)
RPC [25] O(1) O(1)
TAE [111] O(1) O(1)

XCBC [67] O(2n/4) ?

Table 11.2.: Overview of our nonce-reuse attacks on published AE
schemes, excluding SIV, HBS, and BTM, which have
been explicitly designed to resist nonce-reuse. Almost
all attacks achieve an advantage close to 1. For the at-
tacks, the relevant workloads, e.g., W , are provided –
meaning that an adversary, restricted to W units of time
and W chosen plaintexts/ciphertexts is successful (with
overwhelming probability). Details are given in Chap-
ter 12.

schemes (HBS [82] and BTM [81]) actually provide excellent security
against nonce-reusing adversaries, though there are other potential
misuse cases we discuss in Section 12.2. The main disadvantage of
the mentioned schemes is that they are inherently off-line: For en-
cryption, one must either keep the entire plaintext in memory, or read
the plaintext twice.

Ideally, an adversary seeing the encryptions of two (equal-length)
plaintexts P1 and P2 can not even decide if P1 = P2 or not. When
using a nonce more than once, deciding about P1 = P2 is easy. SIV
and its relatives ensure that nothing else is feasible for nonce-reusing
adversaries. In the case of on-line encryption, where the first few
bits of the encryption of a lengthy message must not depend on the
last few bits of that message, there is unavoidably something beyond
P1 = P2. The adversary can compare any two ciphertexts for their

191

11. Results Summary

longest common prefix, and then conclude about common prefixes of
the secret plaintexts. Our notion of misuse resistance means that this
is all the adversary might gain. Even in the case of a nonce-reuse,
the adversary (1) can’t do anything beyond determining the length
of common plaintext prefixes and (2) the scheme still provides the
usual level authenticity for AE (INT-CTXT). The first property
is common for on-line ciphers/permutations (OPRP) [6]. Recently,
[154] studied the design of on-line ciphers from tweakable block ci-
phers bearing some similarities to our approach, especially to TC3.
In contrast to McOEx, the constructions from [154] provide no au-
thentication and the McOEx scheme can easily work with a ’normal’
blockcipher and does not require a tweakable blockcipher.

Design Principles for AE Schemes. The question how to provide
authenticated encryption (without stating that name) when given a
secure on-line cipher, is studied in [7], the revised and full version
of [6]. The first idea in [7] only provides security if all messages are
of the same length. The second idea repairs that by prepending the
message’s length to the message, at the cost of being off-line, since
the message length must be known at the beginning of the encryp-
tion process. The third idea is to prepend and append a random
W to a message M and then to perform the on-line encryption of
(W ||M ||W). This looks promising, but the same W is used for two
different purposes, putting different constraints on the generation of
W . For privacy, it suffices that W behaves like a nonce, not requir-
ing secrecy or unpredictability. Even if W is not a nonce, but the
same W is used for the encryption of several messages, all the ad-
versary can determine are the lengths of common plaintext prefixes,
as we required for nonce-reuse. On the other hand, authenticity ac-
tually assumes a secret or unpredictable W , rather than a nonce. If
the adversary can guess W before choosing a message, it asks for
the authenticated encryption of (M ||W). Then it can predict the
authenticated encryption of M without actually asking for it.

The McOEx scheme replaces the “random”W by a proper nonce

192

11.2. McOEx Instances

and a key-dependent and header-dependent value τ , performing a
nonce-dependent on-line encryption of (M ||τ). The encryption can
also depend on some associated data which is authenticated in the
process of encryption turning McOEx in an OAEAD (On-Line Au-
thenticated Encryption with Associated Data) scheme.

Roadmap. In Section 11.2 we show how the McOEx scheme works
and provide performance data when instantiated with either the AES-
128 or Threefish-512 as the underlying blockcipher. The security
analysis and formal notations are provided in Chapter 13 after show-
ing some attack details on how nonce-misuse attacks affect popular
AE schemes in Chapter 12.

11.2. McOEx Instances

We give two concrete instances of our OAE schemes including perfor-
mance data. One instance, McOEx-AES uses AES-128 as the core
component while McOEx-Threefish uses the blockcipher Threefish-
512, a cipher with 512-bit block size and key size, which is the core
working component inside the SHA-3 finalist Skein[126]. We assume
in our discussion that the plaintext is padded using the 10∗ padding
procedure as discussed in Section 1.2.2.
Let E ∈ Block(k, n). Note that for our chosen instances, AES-

128 and Threefish-512, we have n = k. The pseudo code for these
two McOEx instances is given in Table 11.4.
The algorithms, EncryptAuthenticate and DecryptAuthenti-

cate are given for messages that are aligned on n-bit boundaries, i.e.,
M = (M1, . . . ,ML) ∈ ({0, 1}n)L and a header H = (H1, . . . , HLH

) ∈
({0, 1}n)LH for some integers L,LH ≥ 1. Note that the header H is
required to be at least one block in length since this then represents
essentially the initial value. If the header is longer than one block,
we might opt for header precomputation and actually choose the last
block of the header (HLH

) to be our ’nonce’. See Figure 11.1 and
Table 11.4.

193

11. Results Summary

H1 HLH−1

K K KKKK

HLH M1 ML

τ

E E EEEE

C1 CL

τ

0n

T

Figure 11.1.: The McOEx-AES/McOEx-Threefish encryption pro-
cess. The key used for the blockcipher E is com-
puted by the injective function ϕ(K,V) = K ⊕ V with
the secret key K and the chaining value V as inputs.
The tag returned is the n-bit value T . The output is
(T,C1, . . . , CL). The decryption process works in a sim-
ilar way from ’left to right’, only the blockcipher compo-
nent Eϕ is replaced by its counterpart E−1ϕ apart from
one exception: when processing the header to compute
τ .

Block cipher impl. type
Message length in bytes (no extra header)

16 40 128 256 576 1500 4096 32768
AES-128 software 62.9 42.6 26.8 24.3 22.9 22.3 22 21.8
AES-128 AES-NI 72.2 19.4 12.7 11.7 11.2 10.9 10.8 10.7
Threefish-512 software 82.3 33.9 13.3 10.1 8.3 7.6 7 6.8

Table 11.3.: Performance values (cycles-per-byte), measured on an
Core i5 540M for AES-128 and Threefish-512. The
AES software implementation is based on Gladman [66],
whereas the hardware implementation is based on the
Intel AES-NI Sample Library [32]. The Threefish im-
plementation uses the NIST/SHA-3 reference source as
provided by the Skein authors [126]. Any implementa-
tion is some sort of ’naive’ and no special optimizations
have been performed.

194

11.2. McOEx Instances

EncryptAuthenticate(H,M)
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH

)
4. U ← ϕ(K,HLH

⊕ τ)
5. for i = 1, . . . , L do

Ci ← EU (Mi)
U ← ϕ(K,Mi ⊕ Ci)

6. T ← EU (τ)
7. return (C1, . . . , CL, T)

DecryptAuthenticate(H,C, T)
1. U ← ϕ(K, 0n)
2. for i = 1, . . . , LH − 1 do

U ← ϕ(K,Hi ⊕ EU (Hi))
3. τ ← EU (HLH

)
4. U ← ϕ(K,HLH

⊕ τ)
5. for i = 1, . . . , L do

Mi ← E−1U (Ci)
U ← ϕ(K,Mi ⊕ Ci)

6. if T = EU (τ) then
return (M1, . . . ,ML) else re-
turn ⊥

Table 11.4.: McOEx using a blockcipher E ∈ Block(n, n);
H1, . . . HLH−1 is the optional header; HLH

is the manda-
tory initial value; M,C ∈ ({0, 1}n)L is the plaintext/ci-
phertext and T ∈ {0, 1}n is the tag; ϕ(A,B) = A⊕B

Remarks. Note that we actually do need some form of (restricted)
related key resistance for the blockcipher E in the case of using a
blockcipher from Block (128,128) – since the adversary can ’par-
tially control’ some relations among keys used in the computation.
Interestingly, the search for high-performance ciphers seems still not
to be over. It is worth mentioning, that software Threefish-512 per-
forms considerably better than hardware AES-128. This seems to be
mainly due to the slow key scheduler implementation of AES-128 and
the shorter block size. Naturally, this leads to the question whether
a 128-bit block size might be somewhat disadvantageous in nowadays
big-memory environments.

195

196

12
Misuse Attacks on Authenticated

Encryption Schemes

12.1. Schemes Without Claimed Resistance
Against Nonce-Misuse

Cipher-block-chaining (CBC) is an unauthenticated encryption mode
which is sometimes used as the encryption component of an AE
scheme. But one can easily distinguish CBC encryption from a good
on-line cipher, if the nonce (or the IV) is constant. The attack from [6]
only needs three chosen plaintexts. Counter mode, which has been
very popular among the designers of AE schemes, fails terribly in
nonce-misuse settings, since it generates exactly the same key stream
twice when the nonce is repeated. It was to be expected that a scheme
using counter mode (CTR) or CBC inherits the nonce-misuse issue
from that mode. But, as it turned out, common AE schemes also fail
at the authenticity frontier, see Table 11.2 for an overview. This is an
unpleasant surprise, since the cryptographic community has known
well deterministic MACs for a long time – so why is the authenticity

197

12. Misuse Attacks on Authenticated Encryption Schemes

provided by most authenticated encryption schemes so much more
fragile than the authenticity provided by well-known MACs?
The following two attack patterns will be used in most of our at-

tacks.

Repeated Key Stream. Many AE schemes generate a key stream
S = FK(V) of length |M |, depending on the secret key K and the
nonce V , and encrypt the message M by computing the ciphertext
C = S⊕M , typically by applying a blockcipher in CTR mode. If the
same nonce is used more than once, the following attack straightfor-
wardly breaks the privacy:

• Encrypt a plaintext M under the nonce V to a ciphertext C
with tag T .

• Encrypt a plaintext M ′ 6= M under the same V to a ciphertext
C ′ and a tag T ′.

• It turns out that C ′ = C ⊕M ⊕M ′ holds.

Linear Tag. Many AE schemes, which generate a key stream S =
FK(V) as above, apply the encrypt-then-authenticate paradigm and
allow to rewrite the authentication tag T as

T = f(V)⊕ g(C),

where V is the nonce, C is the ciphertext, and f and g are some
key-dependent functions. This enables the adversary to mount the
following attack:

• Encrypt the plaintext M under the nonce V to (C, T) with
T = f(V)⊕ g(C).

• Encrypt the plaintext M ′ 6= M with |M ′| = |M | under the
nonce V ′ 6= V to (C ′, T ′) with the tag T ′ = f(V ′)⊕ g(C ′).

• Set M ′′ := M ′ ⊕ C ′ ⊕ C. Encrypt M ′′ under the nonce V ′ to
(C ′′, T ′′). Observe C ′′ = C, thus T ′′ = f(V ′)⊕ g(C).

198

12.1. Schemes Without Claimed Resistance Against Nonce-Misuse

• Set T ∗ = T ⊕ T ′ ⊕ T ′′ = f(V) ⊕ g(C ′), The adversary accepts
(C ′, T ∗) under V .

Two-Pass AE(AD) Modes: CWC [98], GCM [119], CCM [40],
EAX [14], CHM [79] . All the common two-pass AE(AD) modes,
CHM, CWC, GCM, CCM, and EAX use CTR mode as the underly-
ing encryption operation and are thus vulnerable to the repeated key
stream attack pattern. Four of them, CHM, CWC, GCM, and EAX,
are designed according to the encrypt-then-authenticate paradigm,
and are thus vulnerable to the linear tag attack pattern. The de-
signers of CCM followed authenticate-then-encrypt, which seems to
defend against the linear tag pattern. Forgery attacks against CCM
have been presented in [63], though.

Mixed AE(AD) Modes: RPC [25] and CCFB [113]. RPC com-
bines the CTR and electronic codebook mode. Given an n-bit block-
cipher E under a key K and a c-bit counter cnt, RPC takes an
(n − c)-bit plaintext block Mi and computes the ciphertext block
Ci := EK(Mi||(cnt + i) mod 2c). Authentication is performed lo-
cally for each ciphertext block: During decryption, RPC computes
(Mi||Xi) = E−1K (Ci) and accepts Mi as authentic if and only if
Xi = (cnt + i) mod 2c. The nonce defines cnt.

Under nonce-misuse, the same sequence (cnt+i) mod 2c of counter
values is used for different messages. This makes it easy to attack
the privacy – essentially, when encrypting messages of m (n − c)-
bit blocks, RPC degrades into m independent electronic codebooks.
Also, given two authentic ciphertexts, (C0

1 , . . . , C
0
L) and (C1

1 , . . . , C
1
L),

any ciphertext (C
σ(1)
1 , . . . , C

σ(L)
L) with σ(i) ∈ {0, 1} is valid, since au-

thenticity is verified locally for each C
σ(i)
i . Similarly to RPC, CCFB

is a combination of the CTR mode and the cipher feedback mode
(CFB). Unlike RPC, CCFB generates a single “global” authentica-
tion tag. Variants of the repeated key stream pattern and the linear
tag pattern apply to CCFB.

199

12. Misuse Attacks on Authenticated Encryption Schemes

One-Pass AE(AD) Modes: IAPM [85], OCB1[148], OCB2[145],
OCB3[100], TAE [111]. Given a nonce IV and a secret key K, the
IAPM mode [85] encrypts a plaintext (M1, . . . ,Mm) to a ciphertext
(C1, . . . , Cm) and an authentication tag T as follows.

Initial step: Generate m+2 values s0, s1, . . . , sm+1 depending on IV
and K, but not on the plaintext (M1, . . . ,Mm).

Encryption: For i ∈ {1, . . . ,m}: Ci := EK(Mi ⊕ si)⊕ si.

Authentication tag: T := EK(sm+1 ⊕
∑

1≤i≤m Mi)⊕ s0.

Similarly to RPC, IAPM behaves like a set of m independent elec-
tronic codebooks and is vulnerable to the same distinguishing attack.
A forgery can exploit the fact that two different equal-length messages
(M1, . . . ,Mm) and (M ′1, . . . ,M

′
m), encrypted under the same nonce,

have the same authentication tag T = EK(sm+1⊕
∑

1≤i≤m Mi)⊕s0 =
EK(sm+1 ⊕

∑
1≤i≤m M ′i)⊕ s0 if

∑
1≤i≤m Mi =

∑
1≤i≤m M ′i .

As much as our attacks are concerned, OCB1–3 and TAE are quite
similar to IAPM, and the attacks are the same.

More One-Pass Modes: IACBC [85] and XCBC [67]. Given a
nonce IV and a secret key K, the IACBC mode [85] encrypts a
plaintext (M1, . . . ,Mm) to (C1, . . . , Cm) and an authentication tag
T as follows.

Initial step: Generatem+1 values s0, s1, . . . , sm depending on V and
K, but not on the plaintext (M1, . . . ,Mm).

Encryption: x0 := IV ; For i ∈ {1, . . . ,m}: xi := EK(Mi ⊕ xi−1),
Ci := xi ⊕ si.

Authentication tag: T := EK(xm ⊕
∑

1≤i≤m Mi)⊕ s0.

The following nonce-misuse attack distinguishes IACBC encryption
from an on-line permutation and also provides an existential forgery.
For simplicity, we only consider 1-block messages IV =: V 6= W ,

200

12.1. Schemes Without Claimed Resistance Against Nonce-Misuse

which we also use as nonces: Encrypt W under V to (C1, T). En-
crypt V under W to (C ′1, T

′). Encrypt V under V to (C ′′1 , T
′′). Set

C ′′′1 := C1 ⊕ C ′1 ⊕ C ′′1 and T ′′′ := T ⊕ T ′ ⊕ T ′′.
(C ′′′1 , T) is a valid encryption of W under W .

Given a nonce V and secret keys K and K ′, XCBC encrypts a
plaintext (M1, . . . ,Mm) to a ciphertext (C1, . . . , Cm) and an authen-
tication tag T as follows.

Initial step: Generate m+1 values s1, . . . sm+1 depending on V and
K, but not on the plaintext (M1, . . . ,Mm).

Encryption:

1. C0 := EK(V); x0 := EK′(V);

2. Generate an additional message word Mm+1 := x0⊕M1⊕
· · · ⊕Mm for authentication.

3. For i ∈ {1, . . . ,m + 1}: xi := EK(Mi ⊕ xi−1), Ci :=
(xi + si) mod 2n.

The best attack we have found for XCBC is not quite as damaging as
the attacks on the other schemes, as the attack workload is atO(2n/4),
and the attack only provides a distinguisher, not a forger. For this
nonce-misuse chosen-plaintext attack, we ignore the authentication
tag:

1. Generate 2n/4 encryptions of messages M i
1 under a nonce V to

Ci
1.

Statistically, expect one pair i 6= j such that the least significant
n/2 bits of Ci

1 are identical to the least significant n/2 bits of
Cj

1 .

2. Generate 2n/4 encryptions of messages (M i
1,M

k
2) and (M j

1 ,M
ℓ
2)

under V to (Ci
1, C

k
2) and (Cj

1 , C
ℓ
2), where the least significant

n/2 bits of Mk
2 and M ℓ

2 are the same.

Statistically, expect one pair k 6= ℓ such that Ck
2 = Cℓ

2 holds.

201

12. Misuse Attacks on Authenticated Encryption Schemes

3. Choose an arbitraryM3. Encrypt (M
i
1,M

k
2 ,M3) and (M j

1 ,M
ℓ
2 ,M3)

under V to (Ci
1, C

k
2 , C

i,k
3) and (Cj

1 , C
ℓ
2, C

j,ℓ
3).

Observe Ci,k
3 = Cj,ℓ

3 .

12.2. Off-Line Schemes Defeating

Nonce-Misuse

We now give attacks on SIV [150], HBS [82], and BTM [81]. These
type of attacks is different than the ones presented in the previous
section.
Given a nonce N , a message M , and associated Data H, these

schemes perform two steps:

1. Generate the authentication tag T from H, M , and N .

2. Encrypt M in CTR mode, using T as the nonce.

This is inherently off-line, because one must finish Step 1 before one
can start Step 2. All of SIV, HBS, and BTM perform CTR mode
encryption, but employ different MAC schemes to generate the tag
T .
This usage of the CTR mode is vulnerable in an on-line decryp-

tion misuse case, where, during decryption, a would-be plaintext is
compromised before the tag has been verified. A chosen-ciphertext
adversary can exploit that to determine an unknown key stream and
then to decrypt an unknown message.
Another misuse case may apply when nonce-misuse is possible and

the sender reads the message twice, once for each of the two steps – if
there is any chance that the message has been modified between the
two read operations.
Note that both misuse cases become quite harmless if one replaces

the CTR mode encryption by the application of an on-line permuta-
tion.

202

13
Security Analysis of McOEx

13.1. Preliminaries

Length of Longest Common Prefix (LLCPn) The length of a string
x ∈ {0, 1}n is denoted by |x| := n. For integers n, ℓ, d ≥ 1, set
Dd

n = ({0, 1}n)d, D∗n :=
⋃

d≥0 D
d
n, and Dℓ,n =

⋃
0≤d≤ℓ D

d
n. Note

that D0
n only contains the empty string. For M ∈ Dd

n; we write
M = (M1, . . . ,Md) with M1, . . . ,Md ∈ Dn. For P,R ∈ D∗n, say,
P ∈ Dp

n and R ∈ Dr
n, we define the length of the longest common

n-prefix of P and R as

LLCPn(P,R) = max
i
{P1 = R1, . . . , Pi = Ri} .

For a non-empty set Q of strings in D∗n, we define LLCPn(Q, P)
as max

q∈Q
{LLCPn(q, P)}. For example, if P ∈ Q, then LLCPn(Q, P) =

|P |/n.

For convenience, we introduce a notation for a restriction on a set.
If Q = {0, 1}a × {0, 1}b × {0, 1}c, we write Q|b,c = {(B,C) | ∃A :

203

13. Security Analysis of McOEx

(A,B,C) ∈ Q}. This generalizes in the obvious way.

On-Line Permutations We aim for larger permutations that not
only permute single blocks but can handle multiple/variable block
messages. Such a permutation, from D∗n to D∗n, is (n-)on-line if the
i-th block of the output is determined completely by the first i blocks
of the input.

Definition 13.1. Let n, k ≥ 0, K ∈ {0, 1}k, HLH
∈ Dn. A func-

tion Π : {0, 1}k × D∗n → D∗n is an (n-)on-line permutation if for
any fixed K,HLH

the function Π(K,HLH
, ·) is a permutation and

there exists for any message M = (M1,M2, . . . ,Mm) a family of
functions π̃i : {0, 1}k ×{0, 1}n ×Di

n → Dn, i = 1, . . . ,m, such that

Π(K,HLH
,M) = π̃1

K(HLH
,M1)||π̃2

K(HLH
,M [1..2])

|| . . . ||
π̃m−1
K (HLH

,M [1..m− 1])||π̃m
K (HLH

,M [1..m]),

where M [a . . . b] := Ma||Ma+1|| . . . ||Mb with “||” being the concate-
nation of strings, holds.

An encryption scheme is (n-)on-line if the encryption function is
(n-)on-line. A thorough discussion of on-line encryption and its prop-
erties can be found in [6].

Authenticated Encryption (With Associated Data) An authenti-
cated encryption (AE) scheme is a tuple Π = (K, E ,D). Its aim is
to provide privacy and data integrity. The key generation function
K takes no input and returns a randomly chosen key K from the
key space, e.g., from {0, 1}k. The encryption algorithm E and the
decryption algorithm D are deterministic algorithms that map values
from {0, 1}k × H × D∗n to a string or – if the input is invalid – the

204

13.2. Security Notions

value ⊥. The header H consists either only of the initial value/nonce
HLH

∈ Dn (if no associated data is to be authenticated/checked in
the encryption/decryption process) or is a combination of HLH

and
a value from D∗n. So H ⊂ D+

n in either case. For sake of convenience,
we usually write EHK (M) for E(K,H,M) and DH

K(M) for D(K,H,M),
where the message M is chosen from D∗n, H ∈ H, and a key from the
key space. We require DH

K(EHK (M)) = M for any possible K,M,H,
and define the tag size for a message M ∈ D∗n and header H ∈ H as
tag(H,M) := |EHK (M)| − |M |. We denote an authenticated encryp-
tion scheme with the requirement that the initial vector HLH

is only
used once in a nonce based scheme. Otherwise, we call such a scheme
deterministic. Similarly, we call an adversary nonce-respecting (nr)
if no nonce is used twice for any query. Otherwise, the adversary is
called nonce-ignoring (ni).

13.2. Security Notions

(On-line) Authenticated Encryption schemes (OAE) try to achieve
privacy and authenticity at the same time. Therefore, we need secu-
rity notions to handle this twofold goal. For AE, there have been no-
tions and their relations introduced for deterministic [151] and nonce
based [10, 13, 86, 144, 148] AE schemes. In order to have one con-
venient toolset of notions, we adopt the notion of CCA3 security
suggested in [151] as a natural strengthening of CCA2 security.

We parametrize our definition in order to define different – but
closely related – notions by explicitly stating whether we mean an
on-line or off-line scheme, ω ∈ {ae,aoe} and stating the adversary
behavior as either nonce-respecting or nonce-ignoring, ν ∈ {nr,ni}.

Definition 13.2 (CCA3(ω, ν)). Let Π = (K, E ,D) be an authen-
ticated encryption scheme with header space H and message space
D∗n, and fix an adversary A. The advantage of A breaking Π is

205

13. Security Analysis of McOEx

1 In i t i a l i z e (ω, ν)

2 b
$
← {0, 1} ;

3 i f (b=1) then

4 K ← K() ;

10 Encrypt(H,M)
11 i f (ν = nr and HLH

∈ B)

then

12 return ⊥ ;
13 i f (b=1) then

14 C ← EK (H,M) ;
15 else

16 C ← $ω(H,M) ;
17 B ← B ∪ {HLH

} ;

18 Q ← Q∪ {(H,C)};

19 return C;

5 Finalize(d)
6 return (b = d) ;

20 Decrypt (H,C)
21 i f ((H,C) ∈ Q) then

22 return ⊥ ;
23 i f (b=1) then

24 M ← DK (H,C) ;
25 else

26 M ← ⊥(H,C) ;
27 return M;

Figure 13.1.: GCPA(ω, ν) is the CPA
(ω,ν)
Π game and GCCA3(ω, ν)

the CCA3
(ω,ν)
Π game, where Π = (K, E ,D). Game

GCCA3 contains the code in the box while GCPA does
not. The oracle $ae(H,M) returns a string of length
|M | + tag(H,M), this string is on-line compatible if
ω = aoe. HLH

denotes the last block of the header
representing the nonce/initial value.

defined as

Adv
CCA3(ω,ν)
Π (A) = |Pr

[
K

$← K : AEK(·,·),DK(·,·) ⇒ 1
]
−

Pr
[
A$ω(·,·),⊥(·,·) ⇒ 1

]
|.

The adversary’s random-bits oracle, $ae(·, ·) or $aoe(·, ·), return
on a query with header H ∈ H and plaintext X ∈ D∗n a random
string of length |EK(M)| which is either on-line or not, depending

206

13.2. Security Notions

on the variable ω. The ⊥(·, ·) oracle returns ⊥ on every input. We
assume wlog. that the adversary A never asks a query which answer
is already known. It is easy to see that we can rewrite the term given
in Definition 13.2 as

Adv
CCA3(ω,ν)
Π (A) =|Pr

[
K

$← K : AEK(·,·),DK(·,·) ⇒ 1
]

(13.1)

− Pr
[
K

$← K : AEK(·,·),⊥(·,·) ⇒ 1
]

(13.2)

+ Pr
[
K

$← K : AEK(·,·),⊥(·,·) ⇒ 1
]

(13.3)

− Pr
[
A$ω(·,·),⊥(·,·) ⇒ 1

]
|. (13.4)

One can interpret (13.1)/(13.2) as the advantage that an adversary
has on the integrity of the ciphertext and (13.3)/(13.4) as the advan-
tage that an CPA adversary has on the privacy. Using this decom-
position as a motivational starting point, we now define ciphertext
integrity and what we mean by a CPA adversary on authenticated
encryption schemes. From now on, our definitions are based on the
game playing methodology. For example, we can restate Definition
13.2 using the game GCCA3 given in Figure 13.1 as

Adv
CCA3(ω,ν)
Π (A) = 2|Pr[AGCCA3(ω,ν) ⇒ 1]− 0.5|.

We denote Adv
CCA3(ω,ν)
Π (q, t, ℓ) as the maximum advantage over all

CCA3(ω, ν) adversaries run in time at most t, ask a total of q queries
to E and D, and whose total query length is not more than ℓ blocks.

13.2.1. Privacy and Integrity Notions for
Authenticated Encryption Schemes.

Similarly, we define the privacy and integrity of an authenticated
(on-line) encryption scheme Π = (K, E ,D) with header space D+

n ,
message space D∗n, and tag-size function tag(H,M) as follows.

207

13. Security Analysis of McOEx

Definition 13.3. Let GCPA(ω, ν) be the CPA
(ω,ν)
Π game given in

Figure 13.1. Fix an adversary A. The advantage of A breaking Π
is defined as

Adv
CPA(ω,ν)
Π (A) = 2|Pr[AGCPA(ω,ν) ⇒ 1]− 0.5|.

Definition 13.4. Let GINT-CTXT(ν) be the INT-CTXTν
Π game

given in Figure 13.2. Fix an adversary A. The advantage of A
breaking Π is defined as

Adv
INT-CTXT(ν)
Π (A) = Pr[AGINT-CTXT(ν) ⇒ 1].

We denote Adv
CPA(ω,ν)
Π (q, t, ℓ) and Adv

INT-CTXT(ν)
Π (q, t, ℓ) as the

maximum advantage over all CPA(ω, ν) resp. INT-CTXT(ν) ad-
versaries run in time at most t, ask a total of q queries to E and D,
and whose total query length is not more than ℓ blocks.

13.2.2. CCA3 is equal to INT-CTXT plus CPA.

We now give a generalization of Theorem 3.2 from Bellare and Nam-
prempre [10]. It simply states the equivalence of a scheme being
CCA3 secure and both INT-CTXT and CPA secure. These state-
ments hold in the on-line and off-line case.

Theorem 13.5. Let Π = (K, E ,D) be an authenticated encryp-
tion scheme. Fix ω ∈ {ae,aoe} and ν ∈ {nr,ni}. Let A be a
CCA3(ω, ν)Π adversary running in time t, making q queries with

208

13.2. Security Notions

1 In i t i a l i z e (ν)
2 K ← K();

10 Encrypt (H,M)
11 i f (ν = nr and HLH

∈ B)

12 then return ⊥ ;
13 C ← EK (H,M) ;
14 B ← B ∪ {HLH

} ;

15 Q ← Q∪ {(H,C)} ;
16 return C ;

3 Finalize ()
4 return win ;

20 Verify (H,C)
21 M ← DK (H,C) ;
22 i f ((H,C) 6∈ Q and M 6= ⊥)
23 then win ← true ;
24 return (M 6= ⊥) ;

Figure 13.2.: Game GINT−CTXT (ν) is the INT-CTXTν
Π game where

Π = (K, E ,D). HLH
denotes the last block of the header

representing the nonce/initial value.
.

a total length of at most ℓ blocks. Then, there are a CPA(ω, ν)
adversary Ap and an INT-CTXT(ν) adversary Ac such that

Adv
CCA3(ω,ν)
Π (A) ≤ Adv

CPA(ω,ν)
Π (Ap) +Adv

INT-CTXT(ν)
Π (Ac).

Furthermore, Ac and Ap run in time O(t) and both make at most
q queries in each case.

Proof. Consider games G0, G1 and G2 of Figure 13.3. For a fixed
CCA3(ω, ν) adversary A on the scheme Π it holds that

Pr[A
CCA3(ω,ν)
Π ⇒ 1] = Pr[AG0 ⇒ 1]

= Pr[AG1 ⇒ 1] + (Pr[AG0 ⇒ 1]−
Pr[AG1 ⇒ true])

≤ Pr[AG1 ⇒ 1] + Pr[AG1sets bad].

209

13. Security Analysis of McOEx

Since the Decrypt oracles of G1 and G2 always return ⊥,

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

Now, we design two adversaries Ac and Ap so that

Pr[AG1sets bad] ≤ Pr[Ac
INT-CTXT(ν)
Π ⇒ 1] and

Pr[AG2 ⇒ 1] ≤ Pr[Ap
CPA(ω,ν)
Π ⇒ 1].

Ap: Adversary Ap simply runs A answering A’s Encrypt queries
using its own Encrypt oracle, and answers Decrypt queries with ⊥.
Ap outputs whatever A outputs.

Ac: Adversary Ac runs A answering A’s Encrypt queries using its
own Encrypt oracle. It submits A’s Decrypt queries to it’s Verify
oracle and, regardless of the response, returns ⊥. Note that the
Verify oracle sets win to true if and only if a fresh Decrypt query
is valid. Just such a query would set the variable bad to true. �

13.3. The McOEx Scheme

In this section, we give an analysis of the McOEx scheme introduced
by Figure 11.1 and Table 11.4
We prove that McOEx actually achieves our two-fold goal. First,

it guarantees a certain minimum, well defined, security against a
nonce-ignoring adversary. And, second, we argue that McOEx is
fully secure against a nonce-respecting adversary.

Definition 13.6 (McOEx). Let k, n ∈ N, E ∈ Block(n, n) and
ϕ : {0, 1}k × {0, 1}v → {0, 1}k such that ϕ(K, ·) is injective. The
encryption function takes a header H ∈ DLH

n , a message M , and
returns a ciphertext C and a tag T ∈ Dn. The decryption function

210

13.3. The McOEx Scheme

1 In i t i a l i z e (ω, ν)

2 b
$
← {0, 1} ;

3 i f (b = 1) then

4 K ← K();

5 Encrypt(H,M)
6 i f (ν = nr and HLH

∈ B) then

7 return ⊥ ;
8 else

9 B ← B ∪ {HLH
} ;

10 i f (b = 1) then

11 C ← EK (H,M) ;
12 else

13 C ← $ω (H,M) ;
14 Q ← Q∪ {(H,C)} ;
15 return C ;

5 Finalize(d)
6 return (d = b) ;

100 Decrypt(H,C) Game G0, G1

101 M ← ⊥ ;
102 i f ((H,C) 6∈ Q and b=1) then

103 M ← DK (H,C) ;
104 i f (M 6= ⊥) then

105 bad ← true ; M ← ⊥;

106 return M;

200 Decrypt(H,C) Game G2

201 return ⊥ ;

Figure 13.3.: Games G0, G1, and G2 for the proof of Theorem 13.5.
Game G1 contains the code in the box while G0 does
not. H0 denotes the first block of the header represent-
ing the nonce/initial value.

takes a header H ∈ DLH
n , a ciphertext C and a tag T ∈ Dn and re-

turns either a plaintext M or the fail symbol ⊥. Let M,C ∈ DL
N for

some integer L, then the OAEAD McOEx scheme Π = (K, E ,D)
is defined by the encryption algorithm E as EncryptAuthenticate,
the decryption algorithm D as DecryptAuthenticate – both given
in Table 11.4 – and a key derivation function K.

We now proceed to show the security of McOEx. For this we use
the results of Theorem 13.5 and show the INT-CTXT and CPA-PRP
security separately.

Theorem 13.7. Let Π = (K, E ,D) be a McOEx scheme as in

211

13. Security Analysis of McOEx

Definition 13.6. Then,

Adv
CCA3(aoe,ni)
Π (q, ℓ, t) ≤ 2(q + ℓ)(q + ℓ+ 1) + 3q + 2ℓ

2k − (q + ℓ)

+ 2AdvCCA-PRP
E (q + ℓ).

Proof. The proof follows from Theorem 13.5 together with Lemmas
13.8 and 13.9 by simple adding up the individual bounds. �

Lemma 13.8. Let Π = (K, E ,D) be a McOEx scheme as in Def-
inition 13.6 Let q be the number of total queries an adversary A is
allowed to ask and ℓ be an integer representing the total length in
blocks of the queries to E and D. Then,

Adv
INT-CTXT(ni)
Π (q, ℓ, t) ≤ (q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

2q + ℓ

2n − (q + ℓ)

+AdvCCA-PRP
E (q + ℓ).

Proof. Our bound is derived by game playing arguments. Consider
games G1-G3 of Figure 13.4 and a fixed adversary A asking at most
q queries with a total length of at most ℓ blocks. The functions
Initialize and Finalize are identical for all games in this proof. Lets
denote G0 as the Game INT-CTXT(ni) as defined in Figure 13.2.
Definition 13.4 states that

Adv
INT-CTXT(ni)
Π (A) ≤ Pr[AG0 ⇒ 1].

In G1, the encryption and verify placeholders are replaced by their
specificMcOEx counterparts as of Definition 13.6. Clearly, Pr[AG0 ⇒

212

13.3. The McOEx Scheme

1 In i t i a l i z e ()

2 K
$
← K() ;

3 B ← ϕ(K, 0n) ;

4 Finalize ()
5 return win ;

100 Encrypt(H,M) Game G1

101 LH ← |H|/n ; L← |M |/n ;
102 U ← ϕ(K, 0n) ;
103 for i = 1, ..., LH do

104 τ ← EU (Hi) ;
105 U ← ϕ(K,Hi ⊕ τ) ;
106 for i = 1, ..., L do

107 Ci ← EU (Mi) ;
108 U ← ϕ(K,Ci ⊕Mi) ;
109 T ← EU (τ) ;
110 Q ← (H,M,C, T) ;
111 return (C1, . . . , CL, T) ;

112 Verify(H,C, T) Game G1

113 LH ← |H|/n ; L← |C|/n ;
114 U ← ϕ(K, 0n) ;
115 for i = 1, ..., LH do

116 τ ← EU (Hi) ;
117 U ← ϕ(K,Hi ⊕ τ) ;
118 for i = 1, ..., L do

119 Mi ← E−1
U (Ci) ;

120 U ← ϕ(K,Ci ⊕Mi) ;
121 i f (T = EU (τ) and

122 (H,C) 6∈ Q|H,C) then

123 win ← true ;
124 Q ← (H,⊥, C,⊥) ;
125 return (T = EU (τ)) ;

200 Encrypt(H,M) Game G2, G3

201 LH ← |H|/n ; L← |M |/n ;
202 A← A ∪H ;
203 p← LLCPn(Q|H,M , (H,M)) ;

204 U ← ϕ(K, 0n) ;
205 for i = 1, . . . , LH do

206 τ ← EU (Hi) ;
207 U ← ϕ(K,Hi ⊕ τ) ;
208 i f (U ∈ B and i > p) then

209 bad ← true ;

210 U
$
← {0, 1}

n
\ B;

211 B ← B ∪ U ;

212 for i = 1, . . . , L do

213 Ci ← EU (Mi) ;
214 U ← ϕ(K,Ci ⊕Mi) ;
215 i f (U ∈ B and i + LH > p)
216 then

217 bad ← true ;

218 U
$
← {0, 1}

n
\ B;

219 B ← B ∪ U ;
220 T ← EU (τ) ;
221 Q ← (H,M,C, T) ;
222 return (C1, . . . , CL, T) ;

223 Verify(H,C, T) Game G2, G3

224 LH ← |H|/n ; L← |C|/n ;
225 p← LLCPn(Q|H,M , (H,M)) ;

226 U ← ϕ(K, 0n) ;
227 for i = 1, . . . , LH do

228 τ ← EU (Hi) ;
229 U ← ϕ(K,Hi ⊕ τ) ;
230 i f (U ∈ B and i > p) then

231 bad ← true ;

232 U
$
← {0, 1}

n
\ B;

233 B ← B ∪ U ;
234 for i = 1, . . . , L− 1 do

235 Mi ← E−1
U (Ci) ;

236 U ← ϕ(K,Ci ⊕Mi) ;
237 i f (U ∈ B and i + LH > p)
238 then bad ← true ;

239 U
$
← {0, 1}

n
\ B;

240 B ← B ∪ U ;

241 ML ← E−1
U (CL) ;

242 U ← ϕ(K,CL ⊕ML) ;
243 i f (U ∈ B and H 6∈ A) then

244 bad ← true ;

245 U
$
← {0, 1}

n
\ B;

246 i f (T = EU (τ) and

247 (H,C, T) 6∈ Q|H,C,T) then

248 win ← true ;
249 Q ← (H,⊥, C,⊥) ;
250 B ← B ∪ U ;
251 return (T = EU (τ)) ;

Figure 13.4.: Games G1-G3 for the proof of Lemma 13.8. Game G3

contains the code in the box while G2 does not. 213

13. Security Analysis of McOEx

1] = Pr[AG1 ⇒ 1]. We now discuss the differences between G1 and
G2. The set B is initialized to {ϕ(K, 0n)} and then collects new
key-input values U which are computed during the encryption or
verification process (in lines 204, 207, 213, 226, 229, 235, and 241).
We note that, since ϕ is injective, a collision for the chaining values
follows if there is a collision in the U values.

In lines 203 and 225, the function LLCPn is invoked. Finally, the
variable bad is set to true if one of the if-conditions in lines 208, 215,
230, 237, or 243 is true. None of these modifications affect the values
returned to the adversary and therefore,

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

For our further discussion, we require another game G4 which is ex-
plained in more detail later in this proof.1 It follows that

Pr[AG2 ⇒ 1] = Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1|
≤ Pr[AG3 ⇒ 1] + Pr[AG3sets bad]

≤ Pr[AG4 ⇒ 1] + |Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]|
+ Pr[AG3sets bad] (13.5)

We now proceed to upper bound any of the three terms contained in
(13.5) – in right to left order. The success probability of game G3

does not differ from the success probability of G2 unless a chaining
value U occurs twice. In this case, the adversary must (i) either have
’found’ a collision for Eϕ(K,X)(Y) ⊕ Y , i.e., it stumbles over (X,Y)
and (X ′, Y ′) such that Eϕ(K,X)(Y) ⊕ Y = Eϕ(K,X′)(Y

′) ⊕ Y ′ or (ii)
must have found a preimage of ϕ(K, 0n), which is always the starting
point of our chain. Note that the value ϕ(K, 0n) is initially stored
in the set B. In both cases, the variable bad would have been set to
true, and it follows by [19] that

Pr[AG3sets bad] ≤ (q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)

1Since the difference is very minor, we do not provide an extra figure.

214

13.3. The McOEx Scheme

We now describe the new game G4. It is equal to G3 except that the
blockcipher E (and E−1) is replaced by a randomly chosen function
EncryptBlock (and DecryptBlock), which is modeled as a pseudo
random permutation (PRP). We assume that they are implemented
via lazy sampling. More precisely, the call EK(A) is replaced by an
invocation of EncryptBlockK(A) and the call E−1K (A) is replaced
by an invocation of DecryptBlockK(A). We now upper bound the
difference between G3 and G4. So, by definition of G4, we have

|Pr[AG3 ⇒ 1]− Pr[AG4 ⇒ 1]| ≤ AdvCCA-PRP
E (q + ℓ).

Finally, we have to upper bound the advantage of the adversary A
to win the game G4. A can only win this game if the condition in
line 238 (resp. 438 for game G4) is true. As usual, we assume wlog.
that A does not ask a question if the answer is already known, which
implies that (H,C, T) 6∈ Q|H,C,T . For our analysis we distinguish
between three cases. So we formally adjust line 240 (i.e. choose as
the tag computation operation either E or E−1) such that we always
have enough randomness left for our result.

Case 1: H has already been used for an Encrypt or Verify query
before and U ∈ B. Since we already have computed τ in the
past, the chance of success is upper bounded by Pr[E−1U (T) = τ]
which can be upper bounded by 1/(2n − (q + ℓ)).

Case 2: H has never been used before, also U has never been used
as a chaining value. Then, the tagging operation uses a ’new
key’ – essentially since ϕ is injective – and therefore, the output
of EU (τ) is uniformly distributed and the success probability is
≤ 1/2n.

Case 3: H ∈ A, but U has never been used as a chaining value. The
chance of success is upper bounded by Pr[E−1U (T) = τ] which
can be upper bounded by 1/2n.

Note that the ’missing’ fourth case has been explicitly excluded by
line 240 (resp. 440). Since these three cases are mutually exclusive,

215

13. Security Analysis of McOEx

we can upper bound the success probability for q queries as

Pr[AG4 ⇒ 1]| ≤ q

2n − (q + ℓ)
.

Our claim follows by adding up the individual bounds. �

Lemma 13.9. Let Π = (K, E ,D) be a McOEx scheme as in Def-
inition 13.6. Let q be the number of total queries an adversary A
is allowed to ask and ℓ be an integer representing the total length of
the queries to E and D. Then,

Adv
CPA(aoe,ni)
Π (q, ℓ, t) ≤ (q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)

+AdvCPA-PRP
E (q + ℓ).

Proof. Our bound is derived by game playing arguments. Consider
games G1 and G2 of Figure 13.5. The functions Initialize and Fi-
nalize are identical for any of those games.
At first we investigate the differences between the CPA(aoe,ni)

game from Figure 13.1 and G1 from Figure 13.5. In G1 we have re-
placed E by its definition of McOEx and $w by an on-line encryption
oracle OnlinePermutation (line 102) that just models a ’perfect’
OPRP, i.e., for two plaintexts with an equal prefix it returns two
ciphertexts that also share a prefix of the same length. We again
assume this oracle to be implemented by lazy sampling. Then, set B
does only collect new chaining values (lines 115 and 123) in order to
intercept the occurrence of two equal chaining values which do lead
– due to the injectivity of ϕ – to two equal keys for the encryption of
a block.
In line 105, the oracle LLCPn is invoked returning the length of the

longest common prefix of (H,M) and Q|H,M . Finally, the variable
bad is set to true if (one of) the conditions of lines 111/211 or 119/219

216

13.3. The McOEx Scheme

are both true. These changes do not affect the success probability
of an adversary, because the output of the oracle remains unchanged.
More precisely, the distribution of the output does not change. This
means that – using a new game G3 described shortly –

Adv
CPA(aoe, ni)
Π (A) = 2 · |Pr[AG1 ⇒ 1]− 0.5|.

Therefore, by common game playing arguments,

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1] + |Pr[AG1 ⇒ 1]− Pr[AG2 ⇒ 1]

≤ Pr[AG2 ⇒ 1] + Pr[AG2sets bad]

≤ Pr[AG3 ⇒ 1] + |Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]|
+ Pr[AG2sets bad].

The success probability of game G2 does not differ from the success
probability of G1 unless a chaining value U occurs twice. In this case,
the adversary must either have found a collision for Eϕ(K,A)(B)⊕B,
i.e., it has found (A,B) and (A′, B′) such that Eϕ(K,A)(B) ⊕ B =
Eϕ(K,A′)(B

′) ⊕ B′ or must have found a preimage of ϕ(K, 0n). In
both cases, the variable bad would have been set to true, and it
follows again by [19] that

Pr[AG2sets bad] ≤ (q + ℓ)(q + ℓ+ 1)

2n − (q + ℓ)
+

q + ℓ

2n − (q + ℓ)
,

The aforementioned new game G3 is equal to the game G2 except
that the blockcipher E (and E−1) is replaced by a randomly chosen
function EncryptBlock (and DecryptBlock), which is modeled
as a pseudo random permutation (PRP). We assume that they are
implemented via lazy sampling. More precisely, the call EK(A) is re-
placed by an invocation of EncryptBlockK(A) and the call E−1K (A)
is replaced by an invocation of DecryptBlockK(A). We now upper
bound the difference between G2 and G3. So, by definition of G4, we
have

|Pr[AG2 ⇒ 1]− Pr[AG3 ⇒ 1]| ≤ AdvCPA-PRP
E (q + ℓ).

217

13. Security Analysis of McOEx

1 In i t i a l i z e ()

2 b
$
← {0, 1};

3 K
$
← K() ;

4 B ← {ϕ(K, 0n)};

5 Finalize (d)
6 return (b = d) ;

100 Encrypt(H,M) Game G1, G2

101 i f (b = 0) then

102 C ← OnlinePermutation(H,M) ;
103 else

104 LH ← |H|/n ; L← |M |/n ;
105 p← LLCPn(Q, (H,M)) ;
106 Q ← Q∪ (H,M) ;
107 U ← ϕ(K, 0n);
108 for i = 1, . . . , LH do

109 τ ← EU (Hi);
110 U ← ϕ(K,Hi ⊕ τ) ;

111 i f (U ∈ B and i > p)
112 then

113 bad ← true ;

114 U
$
← {0, 1}

n
\ B;

115 B ← B ∪ U ;
116 for i = 1, . . . , L do

117 Ci ← EU (Mi) ;
118 U ← ϕ(K,Ci ⊕Mi) ;
119 i f (U ∈ B and i + LH > p)
120 then

121 bad ← true ;

122 U
$
← {0, 1}

n
\ B;

123 B ← B ∪ U ;
124 return C ;

Figure 13.5.: Games G1 and G2 for the proof of Lemma 13.9. Game
G2 contains the code in the box while G1 does not. If
G2 is addressed, the numbering changes to 2xx.

Finally, we have to upper bound the advantage for an adversary
A to win the game G3. Since the values of U cannot ’collide’ and it
is not possible to compute a preimage for any query, the algorithm
for b = 0 is an OPRP, and therefore, the success probability to win
G3 for any adversary is 0.5, i.e., it has no advantage in winning this
game. �

218

Conclusions

We now conclude with a commented summary of the thesis contribu-
tions and some research outlook.

Summary

Blockcipher Based Double Length Hashing One of the main topics
of this thesis has been the analysis and design of blockcipher based
double length hash functions. During our research we helped es-
tablishing security bounds for three of the for classic constructions
(Abreast-DM, Tandem-DM, MDC-2, MDC-4).
As we started our research in 2008, there had been surprisingly

little public research on this topic. Apart from the initial introduc-
tion of Abreast-DM and Tandem-DM at Eurocrypt 1992 – where
the authors claimed that they had not found any attacks on them –
no security results were known. But, as experience tells for double
length hash functions, this seemed to be a good sign, since attacks
are not known either. This is especially true as a lot of blockcipher

219

Conclusions

based hash function proposals – most of them have been designed
in the early 90s – have been successfully attacked since at that time
providing security proofs was rather uncommon. Our security anal-
ysis of Abreast-DM and Tandem-DM and its generalizations like
Cyclic-DL, Serial-DL, and Generic-DL helped closing this gap.
Besides establishing new security bounds for known constructions,
we also introduced new designs, e.g., Cube-DM, Add/k-DM, and
Weimar-DM, that still are the blockcipher based double length dou-
ble call compression functions with the best collision security bounds
known in literature.

For MDC-4, the story is somewhat similar. It was made openly
available in 1988. But, in contrast to Abreast-DM and Tandem-
DM, it faced some attack-based cryptanalysis. Motivated by the
analysis of MDC-2, we applied these techniques to MDC-4 and es-
tablished a quite weak, but still non-trivial, collision security bound.

Ideal World Model for Hash Functions In the first two parts of
this thesis, we tried to build good compression functions from ’ideal’
ciphers inside. In the third part, we discuss the problem of building
a ’good’ hash function from ’ideal’ compression functions. Although,
being somewhat similar at this level of abstraction, we here have
added complexity as a hash function must be able to deal with inputs
of arbitrary size.

Trying to answer one of the more pressing questions in hash func-
tion research, ’when is an iterated hash function perfect’, the notion
of indifferentiability of a hash function was established by Dodis et
al. But although researchers celebrated this as a huge breakthrough
(and for sure it is) we have shown that security proofs in cryptogra-
phy are quite special in nature. It is another example that it is not
enough to prove that a (secret key) scheme is secure but one also has
to take other factors into account. For example, depending on the
level of abstraction, we can prove one and the same practical scheme
secure and insecure. And choosing that ’right’ level of abstraction
is still more a matter of feeling and experience, i.e., an art, than a

220

science.

On-Line Authenticated Encryption The second main topic of this
thesis, presented in the fourth part, is authenticated encryption. We
introduced a new scheme called McOEx that is the first dedicated
scheme in the pool of tenths of AE schemes that combines resistance
against nonce-misuse and the ability of being on-line computable.
While no scheme can cope with all possible misuse scenarios available
to a novice application developer, it seems to cover a lot of practically
relevant cases by still offering very pleasant performance.

Further Research

It is fair to say that the research for double length double call hash
functions using block ciphers able to compress a 3n-bit string to an
n-bit string arrived at a mature state. But other blockcipher based
compression function scenarios are much less clear. Some examples
are:

• There is no blockcipher based double length compression func-
tion known using a blockcipher from Block(n, n) that comes
with a decent collision security bound.

• Taken a blockcipher like AES-192, i.e., from Block(3/2n, n),
how can these types of ciphers impact efficient compression
function design?

• There are virtually no results in literature that analyze multi-
length scenarios. Stam gave a multi-length framework in [133]
that might serve as a starting point. Such an analysis should
help understand the interaction between the single components
better.

In the field of hash function indifferentiability, the framework es-
tablishes itself as the defacto gold standard for secure hash functions.

221

Conclusions

Even though the random oracle model is very convenient for finding
security proofs, further research should be undertaken especially for
security definitions relying on random oracles. Since, in that case,
even the security definition itself gets meaningless if the random or-
acle world is left.
Authenticated encryption is forecasted a vivid research future2 as

there are a lot of practically relevant issues that still need to be re-
solved. First of all, there seems to be some agreement that authenti-
cated encryption truly is the right notion of security for a vast ma-
jority of communication issues. Based on this, some of the questions
that arise are:

• Is it possible to design an integrated AE scheme that is more
efficient than the combined ones currently discussed in cryptog-
raphy?

• What about the hardware efficiency of such a combined scheme?

• Is it possible to design an AE scheme that can also be used as a
hash function, e.g., by simply discarding the ciphertext outputs
and only taking the tag value? This might be one of the big
steps what cryptography can do for the people in the future.

• How can on-line computability be handled efficiently in an AE
scheme without neglecting security standards?

• Are there, apart from nonce-reuse, other relevant misuse sce-
narios research should take a look at?

• More generally, the issue of nonce-reuse should be discussed
more thoroughly (in the secret-key community, as well as in the
public-key community).

2Dagstuhl Seminar of Symmetric Cryptography 2012

222

Notations

List of Abbreviations

AES Advanced Encryption Standard
CF Compression Function
DES Data Encryption Standard
DL Double (Block) Length
DM Davies-Meyer
HF Hash Function
HMAC Hash-based MAC
iff if and only if
MAC Message Authentication Code
MD Merkle-Damg̊ard
MMO Matyas-Meyer-Oseas
NMAC Nested MAC
MP Miyaguchi-Preneel
SL Single (Block) Length

List of Symbols

|| concatenation of bit strings, e.g., A ∈ {0, 1}a, B ∈ {0, 1}b,
then A||B denotes the concatenated string
A||B ∈ {0, 1}a+b

◦ in formulas: Composition of functions,
in figures: bit-by-bit complement

A bit-by-bit complement of the binary string A

K
$
←{0, 1}k K is selected uniformly at random from the set {0, 1}k

A⊞B modular addition of A and B
A⊕B exclusive-or (XOR) of A and B
|A| bit length of variable A
N 2n

N ′ 2n − q
N ′′ 2n − 2q

List of Publications

The lists are ordered by the date of publication.

Lecture Notes in Computer Science

1. Ewan Fleischmann, Michael Gorski, and Stefan Lucks: On
the Security of Tandem- DM. Orr Dunkelman (Editor): Fast
Software Encryption, 16th International Workshop, FSE 2009,
Leuven (Belgium), Lecture Notes in Computer Science 5665,
pages 84 - 103, Springer, 2009. [60]

2. Ewan Fleischmann, Christian Forler, Michael Gorski, and
Stefan Lucks: Twister - A Framework for Secure and Fast
Hash Functions. Bao et al. (Editors): Information Security
Practice and Experience, 5th International Conference, ISPEC
2009, Xi’an (China), Lecture Notes in Computer Science 5451,
pages 257 - 273, Springer, 2009. [46]

225

List of Publications

3. Ewan Fleischmann, Michael Gorski, and Stefan Lucks: Mem-
oryless Related-Key Boomerang Attack on 39-Round SHACAL-
2. Bao et al. (Editors): Information Security Practice and
Experience, 5th International Conference, ISPEC 2009, Xi’an
(China), Lecture Notes in Computer Science 5451, pages 310 -
323, Springer, 2009. [58]

4. Ewan Fleischmann, Michael Gorski, and Stefan Lucks: Mem-
oryless Related-Key Boomerang Attack on the Full Tiger Block-
cipher. Bao et al. (Editors): Information Security Practice and
Experience, 5th International Conference, ISPEC 2009, Xi’an
(China), Lecture Notes in Computer Science 5451, pages 298 -
309, Springer, 2009. [59]

5. Ewan Fleischmann, Michael Gorski, and Stefan Lucks: At-
tacking 9 and 10 Rounds of AES-256. C. Boyd and J. Gonzàlez
Nieto (Editors), Information Security and Privacy, 14th Aus-
tralasian Conference, ACISP 2009, Brisbane (Australia), Lec-
ture Notes in Computer Science 5594, pages 60 - 72, Springer,
2009. [57]

6. Ewan Fleischmann, Michael Gorski, and Stefan Lucks: Se-
curity of Cyclic Double Block Length Hash Functions. M. G.
Parker (Editor), 12th IMA International Conference, Cryptog-
raphy and Coding 2009, Cirencester (UK), Lecture Notes in
Computer Science 5921, pages 153 - 175, Springer, 2009. [61]

7. Orr Dunkelmann, Ewan Fleischmann, Michael Gorski, and
Stefan Lucks: Related- Key Rectangle Attack of the Full 80-
Round HAS-160 Encryption Mode. In R. Roy and N. Sendrier
(Editors), Progress in Cryptology - INDOCRYPT 2009, 10th
International Conference on Cryptology in India, New Delhi
(India), Lecture Notes in Computer Science 5922, pages 157 -
168, Springer, 2009. [39]

8. Ewan Fleischmann, Michael Gorski, Jan-Hendrik Hühne, and
Stefan Lucks: Key Recovery Attack on full GOST Blockcipher

226

with Negligible Time and Memory. Proceedings of the Second
Western European Workshop on Research in Cryptology, WE-
WoRC 2009, Graz (Austria), to appear in Lecture Notes in
Computer Science. [55]

9. Ewan Fleischmann, Michael Gorski, and Stefan Lucks: Some
observations on Indifferentiability. Information Security and
Privacy, 15th Australasian Conference, ACISP 2010, Sydney
(Australia), Lecture Notes in Computer Science 6168, pages
117 - 134, Springer 2010. [62]

10. Ewan Fleischmann, Christian Forler, Michael Gorski, and
Stefan Lucks: Collision Resistant Double-Length Hashing. The
4th International Conference on Provable Security, ProvSec 2010,
Malacca (Malaysia), Lecture Notes in Compute Science 6402,
pages 102 - 118, Springer, 2010. [47]

11. Ewan Fleischmann, Christian Forler, Michael Gorski, and
Stefan Lucks: New Boomerang Attacks on ARIA. Progress in
Cryptology - INDOCRYPT 2010 - 11th International Confer-
ence on Cryptology in India, Hyderabad (India), Lecture Notes
in Computer Science 6498, pages 163 - 175, Springer, 2010. [48]

12. Ewan Fleischmann, Christian Forler, and Stefan Lucks: Gam-
ma-MAC[H,P] - A new universal MAC scheme. Proceedings of
the Third Western European Workshop on Research in Cryp-
tology, WEWoRC 2011, Weimar (Germany), Lecture Notes in
Computer Science 7242, pages 83-98, Springer 2012, [50]

13. Frederik Armknecht, Ewan Fleischmann, Matthias Krause,
Jooyoung Lee, Martijn Stam, and John P. Steinberger: The
Preimage Security of Double-Block-Length Compression Func-
tions. Dong Hoon Lee, Xiaoyun Wang (Eds.): Advances in
Cryptology - ASIACRYPT 2011 - 17th International Confer-
ence on the Theory and Application of Cryptology and Informa-
tion Security, Seoul (South Korea), Lecture Notes in Computer
Science 7073, pages 233 - 251, Springer, 2011. [3]

227

List of Publications

14. Ewan Fleischmann, Christian Forler, Michael Gorski, and
Stefan Lucks: McOE – A Family of Almost Foolproof On-line
Authenticated Encryption Schemes. Fast Software Encryption,
19th International Workshop, FSE 2012, Washington DC (United
States of America), Lecture Notes in Computer Science 7549,
pages 196-215, Springer, 2012. [53]

15. Ewan Fleischmann, Christian Forler, and Stefan Lucks: On
the Collision Security of MDC-4. Progress in Cryptology -
AFRICACRYPT 2012 - 5th International Conference on Cryp-
tology in Africa, Ifrane (Morocco), Lecture Notes in Computer
Science 7374, pages 252-269, Springer, 2012. [52]

16. Ewan Fleischmann, Christian Forler, Stefan Lucks, and Jakob
Wenzel: Weimar-DM – A Secure Double Length Compression
Function. Information Security and Privacy, 17th Australasian
Conference, ACISP 2012, Wollongong (Australia), Lecture Notes
in Computer Science 7372, pages 152-165, Springer, 2012 [54]

International Publications in Journals

1. Ewan Fleischmann, Christian Forler, Michael Gorski, and
Stefan Lucks: Twisterπ - a framework for secure and fast hash
functions. International Journal of Applied Cryptography (IJACT)
Volume 2 Number 1, pages 68 - 81, Inderscience, 2010. [49]

Further International Publications

1. Ewan Fleischmann, Christian Forler, and Michael Gorski:
The Twister Hash Function Family, Submission for the NIST
SHA-3 Competition. Presented at NIST first hash function
workshop, Leuven, 2009. Available at
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1

/submissions_rnd1.html. [56]

228

2. Ewan Fleischmann, Christian Forler, and Michael Gorski:
Classification of SHA-3 Candidates, IACR Cryptology ePrint,
2008/511. [45]

3. Matthias Krause, Frederik Armknecht, andEwan Fleischmann:
Preimage Resistance Beyond the Birthday Bound: Double-Length
Hashing Revisited, IACR Cryptology ePrint, 2010/519. [99]

4. Ewan Fleischmann, Christian Forler, Stefan Lucks, and Jakob
Wenzel: McOE – A Family of Almost Foolproof On-line Au-
thenticated Encryption Schemes, full version of [53], IACR Cryp-
tology ePrint, 2011/644. [51]

229

230

Bibliography

[1] Elena Andreeva, Gregory Neven, Bart Preneel, and Thomas
Shrimpton. Seven-Property-Preserving Iterated Hashing:
ROX. In Kurosawa [101], pages 130–146.

[2] Elena Andreeva and Bart Preneel. A Three-Property-Secure
Hash Function. In Roberto Maria Avanzi, Liam Keliher, and
Francesco Sica, editors, Selected Areas in Cryptography, vol-
ume 5381 of Lecture Notes in Computer Science, pages 228–244.
Springer, 2008.

[3] Frederik Armknecht, Ewan Fleischmann, Matthias Krause,
Jooyoung Lee, Martijn Stam, and John P. Steinberger. The
Preimage Security of Double-Block-Length Compression Func-
tions. In Dong Hoon Lee and Xiaoyun Wang, editors, ASI-
ACRYPT, volume 7073 of Lecture Notes in Computer Science,
pages 233–251. Springer, 2011.

231

BIBLIOGRAPHY

[4] Daniel Augot, Matthieu Finiasz, and Nicolas Sendrier. A Fam-
ily of Fast Syndrome Based Cryptographic Hash Functions. In
Ed Dawson and Serge Vaudenay, editors, Mycrypt, volume 3715
of Lecture Notes in Computer Science, pages 64–83. Springer,
2005.

[5] Feng Bao, Hui Li, and Guilin Wang, editors. Information Se-
curity Practice and Experience, 5th International Conference,
ISPEC 2009, Xi’an, China, April 13-15, 2009, Proceedings,
volume 5451 of Lecture Notes in Computer Science. Springer,
2009.

[6] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and
Chanathip Namprempre. Online Ciphers and the Hash-CBC
Construction. In Joe Kilian, editor, CRYPTO, volume 2139 of
Lecture Notes in Computer Science, pages 292–309. Springer,
2001.

[7] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and
Chanathip Namprempre. Online Ciphers and the Hash-CBC
Construction. Cryptology ePrint Archive, Report 2007/197;
full version of [6], 2007. http://eprint.iacr.org/.

[8] Mihir Bellare, Alexandra Boldyreva, and Adriana Palacio. An
Uninstantiable Random-Oracle-Model Scheme for a Hybrid-
Encryption Problem. In Cachin and Camenisch [26], pages
171–188.

[9] Mihir Bellare and Tadayoshi Kohno. Hash Function Balance
and Its Impact on Birthday Attacks. In Cachin and Camenisch
[26], pages 401–418.

[10] Mihir Bellare and Chanathip Namprempre. Authenticated En-
cryption: Relations among Notions and Analysis of the Generic
Composition Paradigm. J. Cryptology, 21(4):469–491, 2008.

232

BIBLIOGRAPHY

[11] Mihir Bellare and Thomas Ristenpart. Multi-Property-
Preserving Hash Domain Extension and the EMD Transform.
In Lai and Chen [102], pages 299–314.

[12] Mihir Bellare and Phillip Rogaway. Random Oracles are
Practical: A Paradigm for Designing Efficient Protocols. In
Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S.
Sandhu, and Victoria Ashby, editors, ACM Conference on
Computer and Communications Security, pages 62–73. ACM,
1993.

[13] Mihir Bellare and Phillip Rogaway. Encode-Then-Encipher En-
cryption: How to Exploit Nonces or Redundancy in Plaintexts
for Efficient Cryptography. In Tatsuaki Okamoto, editor, ASI-
ACRYPT, volume 1976 of Lecture Notes in Computer Science,
pages 317–330. Springer, 2000.

[14] Mihir Bellare, Phillip Rogaway, and David Wagner. The EAX
Mode of Operation. In Roy and Meier [155], pages 389–407.

[15] Kamel Bentahar, Dan Page, Markku-Juhani O. Saarinen,
Joseph H. Silverman, and Nigel Smart. LASH. In NIST: The
Second Cryptographic Hash Workshop. Online, August 2006.

[16] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van
Assche. On the Indifferentiability of the Sponge Construction.
In Smart [159], pages 181–197.

[17] Eli Biham and Orr Dunkelman. The SHAvite-3 Hash Function.
Submission to NIST (Round 2), 2009.

[18] John Black. The Ideal-Cipher Model, Revisited: An Uninstan-
tiable Blockcipher-Based Hash Function. In Robshaw [143],
pages 328–340.

[19] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-
Box Analysis of the Block-Cipher-Based Hash-Function Con-
structions from PGV. In Yung [169], pages 320–335.

233

BIBLIOGRAPHY

[20] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting
Mobile Communications: The Insecurity of 802.11. In MOBI-
COM, pages 180–189, 2001.

[21] Joppe W. Bos, Onur Özen, and Martijn Stam. Efficient Hashing
Using the AES Instruction Set. In Bart Preneel and Tsuyoshi
Takagi, editors, CHES, volume 6917 of Lecture Notes in Com-
puter Science, pages 507–522. Springer, 2011.

[22] B. Brachtl, D. Coppersmith, M. M. Hyden, C. H. Meyer, S. M.
Matyas, J. Oseas, S. Pilpel, and M. Schilling. Data authentica-
tion using modification detection codes based on a public one
way encryption function. U.S. Patent No. 4,908,861, March 13,
1990.

[23] Gilles Brassard, editor. Advances in Cryptology - CRYPTO ’89,
9th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 20-24, 1989, Proceedings, vol-
ume 435 of Lecture Notes in Computer Science. Springer, 1990.

[24] Lawrence Brown, Josef Pieprzyk, and Jennifer Seberry. LOKI
- A Cryptographic Primitive for Authentication and Secrecy
Applications. In Jennifer Seberry and Josef Pieprzyk, editors,
AUSCRYPT, volume 453 of Lecture Notes in Computer Sci-
ence, pages 229–236. Springer, 1990.

[25] Enrico Buonanno, Jonathan Katz, and Moti Yung. Incremental
Unforgeable Encryption. In Matsui [116], pages 109–124.

[26] Christian Cachin and Jan Camenisch, editors. Advances in
Cryptology - EUROCRYPT 2004, International Conference on
the Theory and Applications of Cryptographic Techniques, In-
terlaken, Switzerland, May 2-6, 2004, Proceedings, volume 3027
of Lecture Notes in Computer Science. Springer, 2004.

[27] Ran Canetti, Oded Goldreich, and Shai Halevi. The random
oracle methodology, revisited. J. ACM, 51(4):557–594, 2004.

234

BIBLIOGRAPHY

[28] Donghoon Chang, Sangjin Lee, Mridul Nandi, and Moti Yung.
Indifferentiable Security Analysis of Popular Hash Functions
with Prefix-Free Padding. In Lai and Chen [102], pages 283–
298.

[29] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. VSH, an
Efficient and Provable Collision-Resistant Hash Function. In
Vaudenay [164], pages 165–182.

[30] Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and
Prashant Puniya. Merkle-Damg̊ard Revisited: How to Con-
struct a Hash Function. In Shoup [158], pages 430–448.

[31] IBM Corp. FIPS140-2 Security Policy for IBM
CryptoLite in C (CLiC). October 2003. Available at
http://csrc.nist.gov/groups/STM/cmvp/documents/140-

1/140sp/140sp356.pdf.

[32] Intel Corporation. AES-NI Sample Library v1.2.
http://software.intel.com/en-us/articles/download-

the-intel-aesni-sample-library/, October 2010.

[33] Ronald Cramer, editor. Advances in Cryptology - EURO-
CRYPT 2005, 24th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Aarhus,
Denmark, May 22-26, 2005, Proceedings, volume 3494 of Lec-
ture Notes in Computer Science. Springer, 2005.

[34] Ivan Damg̊ard. A Design Principle for Hash Functions. In
Brassard [23], pages 416–427.

[35] Bert den Boer and Antoon Bosselaers. Collisions for the Com-
pressin Function of MD5. In Tor Helleseth, editor, EURO-
CRYPT, volume 765 of Lecture Notes in Computer Science,
pages 293–304. Springer, 1993.

[36] Yevgeniy Dodis, Roberto Oliveira, and Krzysztof Pietrzak. On
the Generic Insecurity of the Full Domain Hash. In Shoup [158],
pages 449–466.

235

BIBLIOGRAPHY

[37] Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton.
Salvaging Merkle-Damg̊ard for Practical Applications. In EU-
ROCRYPT, pages 371–388, 2009.

[38] Orr Dunkelman, editor. Fast Software Encryption, 16th In-
ternational Workshop, FSE 2009, Leuven, Belgium, February
22-25, 2009, Revised Selected Papers, volume 5665 of Lecture
Notes in Computer Science. Springer, 2009.

[39] Orr Dunkelman, Ewan Fleischmann, Michael Gorski, and Ste-
fan Lucks. Related-Key Rectangle Attack of the Full HAS-160
Encryption Mode. In Bimal K. Roy and Nicolas Sendrier, edi-
tors, INDOCRYPT, volume 5922 of Lecture Notes in Computer
Science, pages 157–168. Springer, 2009.

[40] Morris Dworkin. Special Publication 800-38C: Recommendation
for blockcipher modes of operation: the CCM mode for authen-
tication and confidentiality. National Institute of Standards and
Technology, U.S. Department of Commerce, May 2005.

[41] Eberhard Freitag and Rolf Busam. Complex Analysis, Springer;
1st edition, 2005.

[42] Shimon Even and Yishay Mansour. A Construction of a Ci-
pher From a Single Pseudorandom Permutation. In Hideki
Imai, Ronald L. Rivest, and Tsutomu Matsumoto, editors, ASI-
ACRYPT, volume 739 of Lecture Notes in Computer Science,
pages 210–224. Springer, 1991.

[43] Niels Ferguson, Stefan Lucks, Bruce Schneier, Doug
Whiting, Mihir Bellare, Tadayoshi Kohno, Jon
Callas, and Jesse Walker. The Skein Hash Funci-
ton Family. Available online at http://www.skein-

hash.info/sites/default/files/skein1.2.pdf, February
2010.

[44] Marc Fischlin and Anja Lehmann. Multi-property Preserving
Combiners for Hash Functions. In Ran Canetti, editor, TCC,

236

BIBLIOGRAPHY

volume 4948 of Lecture Notes in Computer Science, pages 375–
392. Springer, 2008.

[45] Ewan Fleischmann, Christian Forler, and Michael Gorski. Clas-
sification of the SHA-3 Candidates. Cryptology ePrint Archive,
Report 2008/511, 2008. http://eprint.iacr.org/.

[46] Ewan Fleischmann, Christian Forler, Michael Gorski, and Ste-
fan Lucks. Twister- A Framework for Secure and Fast Hash
Functions. In Bao et al. [5], pages 257–273.

[47] Ewan Fleischmann, Christian Forler, Michael Gorski, and Ste-
fan Lucks. Collision Resistant Double-Length Hashing. In
Swee-Huay Heng and Kaoru Kurosawa, editors, ProvSec, vol-
ume 6402 of Lecture Notes in Computer Science, pages 102–118.
Springer, 2010.

[48] Ewan Fleischmann, Christian Forler, Michael Gorski, and Ste-
fan Lucks. New Boomerang Attacks on ARIA. In Guang Gong
and Kishan Chand Gupta, editors, INDOCRYPT, volume 6498
of Lecture Notes in Computer Science, pages 163–175. Springer,
2010.

[49] Ewan Fleischmann, Christian Forler, Michael Gorski, and Ste-
fan Lucks. TWISTERπ - a framework for secure and fast hash
functions. IJACT, 2(1):68–81, 2010.

[50] Ewan Fleischmann, Christian Forler, and Stefan Lucks. Γ-
MAC[H, P] - A New Universal MAC Scheme. In Frederik
Armknecht and Stefan Lucks, editors, WEWoRC, volume 7242
of Lecture Notes in Computer Science, pages 83–98. Springer,
2011.

[51] Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE:
A Foolproof On-Line Authenticated Encryption Scheme. IACR
Cryptology ePrint Archive, 2011:644, 2011.

237

BIBLIOGRAPHY

[52] Ewan Fleischmann, Christian Forler, and Stefan Lucks. The
Collision Security of MDC-4. In Aikaterini Mitrokotsa and
Serge Vaudenay, editors, AFRICACRYPT, volume 7374 of Lec-
ture Notes in Computer Science, pages 252–269. Springer, 2012.

[53] Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE:
A Family of Almost Foolproof On-Line Authenticated Encryp-
tion Schemes. In Anne Canteaut, editor, FSE, volume 7549 of
Lecture Notes in Computer Science, pages 196–215. Springer,
2012.

[54] Ewan Fleischmann, Christian Forler, Stefan Lucks, and Jakob
Wenzel. Weimar-DM: A Highly Secure Double-Length Com-
pression Function. In Willy Susilo, Yi Mu, and Jennifer Seberry,
editors, ACISP, volume 7372 of Lecture Notes in Computer Sci-
ence, pages 152–165. Springer, 2012.

[55] Ewan Fleischmann, Michael Gorski, Jan-Hendrik Hühne, and
Stefan Lucks. Key Recovery Attack on full GOST Blockcipher
with Negligible Time and Memory. Proceedings of the Second
Western European Workshop on Research in Cryptology, WE-
WoRC 2009, to appear in Lecture Notes in Computer Science.

[56] Ewan Fleischmann, Michael Gorski, and Stefan Lucks.
The Twister Hash Function Family, Available on-
line at http://csrc.nist.gov/groups/ST/hash/sha-

3/Round1/submissions_rnd1.html. Submission to NIST
(Round 1), 2008.

[57] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Attack-
ing 9 and 10 Rounds of AES-256. In Colin Boyd and Juan
Manuel González Nieto, editors, ACISP, volume 5594 of Lec-
ture Notes in Computer Science, pages 60–72. Springer, 2009.

[58] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Memo-
ryless Related-Key Boomerang Attack on 39-Round SHACAL-
2. In Bao et al. [5], pages 310–323.

238

BIBLIOGRAPHY

[59] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Memo-
ryless Related-Key Boomerang Attack on the Full Tiger Block-
cipher. In Bao et al. [5], pages 298–309.

[60] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. On the
Security of Tandem-DM. In Dunkelman [38], pages 84–103.

[61] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Security
of Cyclic Double Block Length Hash Functions. In Parker [134],
pages 153–175.

[62] Ewan Fleischmann, Michael Gorski, and Stefan Lucks. Some
Observations on Indifferentiability. In Ron Steinfeld and Philip
Hawkes, editors, ACISP, volume 6168 of Lecture Notes in Com-
puter Science, pages 117–134. Springer, 2010.

[63] Pierre-Alain Fouque, Gwenaëlle Martinet, Frédéric Valette, and
Sébastien Zimmer. On the Security of the CCM Encryp-
tion Mode and of a Slight Variant. In Steven M. Bellovin,
Rosario Gennaro, Angelos D. Keromytis, and Moti Yung, edi-
tors, ACNS, volume 5037 of Lecture Notes in Computer Science,
pages 411–428, 2008.

[64] Praveen Gauravaram, William Millan, and Lauren May.
CRUSH: A New Cryptographic Hash Function using Iterated
Halving Technique. In Ed Dawson and Wolfgang Klemm, ed-
itors, Cryptographic Algorithms and their Uses, pages 28–39.
Queensland University of Technology, 2004.

[65] Henri Gilbert and Helena Handschuh, editors. Fast Software
Encryption: 12th International Workshop, FSE 2005, Paris,
France, February 21-23, 2005, Revised Selected Papers, volume
3557 of Lecture Notes in Computer Science. Springer, 2005.

[66] Brian Gladman. Brian Gladman’s AES Imple-
mentation, 19th June 2006. Available online at
http://gladman.plushost.co.uk/oldsite/AES/index.php.

239

BIBLIOGRAPHY

[67] Virgil D. Gligor and Pompiliu Donescu. Fast Encryption and
Authentication: XCBC Encryption and XECB Authentication
Modes. In Matsui [116], pages 92–108.

[68] Shafi Goldwasser and Yael Tauman Kalai. On the (In)security
of the Fiat-Shamir Paradigm. In FOCS, pages 102–113. IEEE
Computer Society, 2003.

[69] Shafi Goldwasser and Silvio Micali. Probabilistic Encryption.
J. Comput. Syst. Sci., 28(2):270–299, 1984.

[70] H. Dobbertin. The status of MD5 after a recent attack, 1996.

[71] Bart Preneel Hans Dobbertin, Anton Bosselaers. RIPEMD
(RACE integrity primitives evaluation message digest), 1996.

[72] Mitsuhiro Hattori, Shoichi Hirose, and Susumu Yoshida. Anal-
ysis of Double Block Length Hash Functions. In Kenneth G.
Paterson, editor, IMA Int. Conf., volume 2898 of Lecture Notes
in Computer Science, pages 290–302. Springer, 2003.

[73] Shoichi Hirose. Provably Secure Double-Block-Length Hash
Functions in a Black-Box Model. In Choonsik Park and Seong-
taek Chee, editors, ICISC, volume 3506 of Lecture Notes in
Computer Science, pages 330–342. Springer, 2004.

[74] Shoichi Hirose. Some Plausible Constructions of Double-Block-
Length Hash Functions. In Robshaw [143], pages 210–225.

[75] Walter Hohl, Xuejia Lai, Thomas Meier, and Christian Wald-
vogel. Security of Iterated Hash Functions Based on Block Ci-
phers. In Stinson [163], pages 379–390.

[76] George Hotz. Console Hacking 2010 - PS3 Epic Fail.
27th Chaos Communications Congress, Available online at
http://events.ccc.de/congress/2010/Fahrplan/attach-

ments/1780_27c3_console_hacking_2010.pdf, 2010.

240

BIBLIOGRAPHY

[77] ISO/IEC. ISO DIS 10118-2: Information technology - Security
techniques - Hash-functions, Part 2: Hash-functions using an
n-bit blockcipher algorithm. First released in 1992, 2000.

[78] ISO/IEC. 19772:2009, Information technology – Security tech-
niques – Authenticatd Encryption, 2009.

[79] Tetsu Iwata. New Blockcipher Modes of Operation with Beyond
the Birthday Bound Security. In Robshaw [143], pages 310–327.

[80] Tetsu Iwata. Authenticated Encryption Mode for Beyond
the Birthday Bound Security. In Serge Vaudenay, editor,
AFRICACRYPT, volume 5023 of Lecture Notes in Computer
Science, pages 125–142. Springer, 2008.

[81] Tetsu Iwata and Kan Yasuda. BTM: A Single-Key, Inverse-
Cipher-Free Mode for Deterministic Authenticated Encryption.
In Michael J. Jacobson Jr., Vincent Rijmen, and Reihaneh
Safavi-Naini, editors, Selected Areas in Cryptography, volume
5867 of Lecture Notes in Computer Science, pages 313–330.
Springer, 2009.

[82] Tetsu Iwata and Kan Yasuda. HBS: A Single-Key Mode of Op-
eration for Deterministic Authenticated Encryption. In Dunkel-
man [38], pages 394–415.

[83] John P Steinberger. The Collision Intractability of MDC-2 in
the Ideal Cipher Model. 2006. http://eprint.iacr.org/.

[84] Antoine Joux. Multicollisions in Iterated Hash Functions. Ap-
plication to Cascaded Constructions. In Matthew K. Franklin,
editor, CRYPTO, volume 3152 of Lecture Notes in Computer
Science, pages 306–316. Springer, 2004.

[85] Charanjit S. Jutla. Encryption Modes with Almost Free Mes-
sage Integrity. J. Cryptology, 21(4):547–578, 2008.

241

BIBLIOGRAPHY

[86] Jonathan Katz and Moti Yung. Unforgeable Encryption and
Chosen Ciphertext Secure Modes of Operation. In FSE, pages
284–299, 2000.

[87] John Kelsey and Tadayoshi Kohno. Herding Hash Functions
and the Nostradamus Attack. In Vaudenay [164], pages 183–
200.

[88] John Kelsey and Bruce Schneier. Second Preimages on n-Bit
Hash Functions for Much Less than 2n Work. In Cramer [33],
pages 474–490.

[89] Aggelos Kiayias, editor. Topics in Cryptology - CT-RSA 2011
- The Cryptographers’ Track at the RSA Conference 2011, San
Francisco, CA, USA, February 14-18, 2011. Proceedings, vol-
ume 6558 of Lecture Notes in Computer Science. Springer, 2011.

[90] Joe Kilian and Phillip Rogaway. How to Protect DES Against
Exhaustive Key Search. In Neal Koblitz, editor, CRYPTO,
volume 1109 of Lecture Notes in Computer Science, pages 252–
267. Springer, 1996.

[91] Lars R. Knudsen. Hash Functions and SHA-
3. Invited Talk at FSE 2008, available at
http://fse2008.epfl.ch/docs/slides/day_1_sess_2/Knud-

sen-FSE2008.pdf, 2008.

[92] Lars R. Knudsen and Xuejia Lai. New Attacks on all Double
Block Length Hash Functions of Hash Rate 1, including the
Parallel-DM. In Alfredo De Santis, editor, EUROCRYPT, vol-
ume 950 of Lecture Notes in Computer Science, pages 410–418.
Springer, 1994.

[93] Lars R. Knudsen, Xuejia Lai, and Bart Preneel. Attacks on Fast
Double Block Length Hash Functions. J. Cryptology, 11(1):59–
72, 1998.

242

BIBLIOGRAPHY

[94] Lars R. Knudsen, Florian Mendel, Christian Rechberger, and
Søren S. Thomsen. Cryptanalysis of MDC-2. In Antoine Joux,
editor, EUROCRYPT, volume 5479 of Lecture Notes in Com-
puter Science, pages 106–120. Springer, 2009.

[95] Lars R. Knudsen and Frédéric Muller. Some Attacks Against a
Double Length Hash Proposal. In Bimal K. Roy, editor, ASI-
ACRYPT, volume 3788 of Lecture Notes in Computer Science,
pages 462–473. Springer, 2005.

[96] Neal Koblitz and Alfred Menezes. Another Look at ”Provable
Security”. II. In Rana Barua and Tanja Lange, editors, IN-
DOCRYPT, volume 4329 of Lecture Notes in Computer Sci-
ence, pages 148–175. Springer, 2006.

[97] Tadayoshi Kohno. Attacking and Repairing the WinZip En-
cryption Scheme. In ACM Conference on Computer and Com-
munications Security, pages 72–81, 2004.

[98] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC:
A High-Performance Conventional Authenticated Encryption
Mode. In Roy and Meier [155], pages 408–426.

[99] Matthias Krause, Frederik Armknecht, and Ewan Fleischmann.
Preimage Resistance Beyond the Birthday Bound: Double-
Length Hashing Revisited. Cryptology ePrint Archive, Report
2010/519, 2010. http://eprint.iacr.org/.

[100] Ted Krovetz and Phillip Rogaway. The Software Performance
of Authenticated-Encryption Modes. In Antoine Joux, editor,
FSE, volume 6733 of Lecture Notes in Computer Science, pages
306–327. Springer, 2011.

[101] Kaoru Kurosawa, editor. Advances in Cryptology - ASI-
ACRYPT 2007, 13th International Conference on the Theory
and Application of Cryptology and Information Security, Kuch-
ing, Malaysia, December 2-6, 2007, Proceedings, volume 4833
of Lecture Notes in Computer Science. Springer, 2007.

243

BIBLIOGRAPHY

[102] Xuejia Lai and Kefei Chen, editors. Advances in Cryptology -
ASIACRYPT 2006, 12th International Conference on the The-
ory and Application of Cryptology and Information Security,
Shanghai, China, December 3-7, 2006, Proceedings, volume
4284 of Lecture Notes in Computer Science. Springer, 2006.

[103] Xuejia Lai and James L. Massey. Hash Function Based on
Block Ciphers. In Rainer A. Rueppel, editor, EUROCRYPT,
volume 658 of Lecture Notes in Computer Science, pages 55–70.
Springer, 1992.

[104] Jooyoung Lee and Daesung Kwon. The Security of Abreast-DM
in the Ideal Cipher Model. Cryptology ePrint Archive, Report
2009/225, 2009. http://eprint.iacr.org/.

[105] Jooyoung Lee and Daesung Kwon. The Security of Abreast-DM
in the Ideal Cipher Model. IACR Cryptology ePrint Archive,
2009:225, 2009.

[106] Jooyoung Lee and Martijn Stam. MJH: A Faster Alternative
to MDC-2. In Kiayias [89], pages 213–236.

[107] Jooyoung Lee, Martijn Stam, and John P. Steinberger. The
Collision Security of Tandem-DM in the Ideal Cipher Model.
In Phillip Rogaway, editor, CRYPTO, volume 6841 of Lecture
Notes in Computer Science, pages 561–577. Springer, 2011.

[108] Anja Lehmann and Stefano Tessaro. A Modular Design for
Hash Functions: Towards Making the Mix-Compress-Mix Ap-
proach Practical. In Mitsuru Matsui, editor, ASIACRYPT,
volume 5912 of Lecture Notes in Computer Science, pages 364–
381. Springer, 2009.

[109] Gaëtan Leurent, Charles Bouillaguet, and Pierre-Alain Fouque.
SIMD Is a Message Digest. Submission to NIST (Round 2),
2009.

244

BIBLIOGRAPHY

[110] Moses Liskov. Constructing an Ideal Hash Function from
Weak Ideal Compression Functions. In Eli Biham and Amr M.
Youssef, editors, Selected Areas in Cryptography, volume 4356
of Lecture Notes in Computer Science, pages 358–375. Springer,
2006.

[111] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable
Block Ciphers. In Yung [169], pages 31–46.

[112] Stefan Lucks. Ciphers Secure against Related-Key Attacks. In
Roy and Meier [155], pages 359–370.

[113] Stefan Lucks. Two-Pass Authenticated Encryption Faster Than
Generic Composition. In Gilbert and Handschuh [65], pages
284–298.

[114] Stefan Lucks. A Collision-Resistant Rate-1 Double-Block-
Length Hash Function. In Eli Biham, Helena Handschuh, Ste-
fan Lucks, and Vincent Rijmen, editors, Symmetric Cryptogra-
phy, volume 07021 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007.

[115] M. Rabin. Digitalized Signatures: In R. DeMillo, D. Dobkin,
A. Jones and R.Lipton, editors, Foundations of Secure Compu-
tation, Academic Press, pages 155-168, 1978.

[116] Mitsuru Matsui, editor. Fast Software Encryption, 8th Interna-
tional Workshop, FSE 2001 Yokohama, Japan, April 2-4, 2001,
Revised Papers, volume 2355 of Lecture Notes in Computer Sci-
ence. Springer, 2002.

[117] S. Matyas, C. Meyer, and J. Oseas. Generating strong one-
way functions with cryptographic algorithm. IBM Technical
Disclosure Bulletin, 27:5658–5659, 1985.

245

BIBLIOGRAPHY

[118] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. In-
differentiability, Impossibility Results on Reductions, and Ap-
plications to the Random Oracle Methodology. In Moni Naor,
editor, TCC, volume 2951 of Lecture Notes in Computer Sci-
ence, pages 21–39. Springer, 2004.

[119] David A. McGrew and John Viega. The Security and Per-
formance of the Galois/Counter Mode (GCM) of Operation.
In Anne Canteaut and Kapalee Viswanathan, editors, IN-
DOCRYPT, volume 3348 of Lecture Notes in Computer Sci-
ence, pages 343–355. Springer, 2004.

[120] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[121] Ralph C. Merkle. One Way Hash Functions and DES. In Bras-
sard [23], pages 428–446.

[122] C.H. Meyer and M. Schilling. Secure program load with ma-
nipulation detection code. In SECURICOM’88, pages 111–130,
France, 1988. Paris.

[123] S. Miyaguchi, K. Ohta, and M. Iwata. 128-bit hash function
(N-Hash). In SECURICOM ’90, pages 123–137, 1990.

[124] Mridul Nandi, Wonil Lee, Kouichi Sakurai, and Sangjin Lee.
Security Analysis of a 2/3-Rate Double Length Compression
Function in the Black-Box Model. In Gilbert and Handschuh
[65], pages 243–254.

[125] National Bureau of Standards. FIPS Publication 46-1: Data
Encryption Standard, January 1988.

[126] Niels Ferguson and Stefan Lucks and Bruce Schneier and Doug
Whiting and Mihir Bellare and Tadayoshi Kohno and Jon
Callas and Jesse Walker. Skein source code and test vectors.
http://www.skein-hash.info/downloads.

246

BIBLIOGRAPHY

[127] Jesper Buus Nielsen. Separating Random Oracle Proofs from
Complexity Theoretic Proofs: The Non-committing Encryption
Case. In Yung [169], pages 111–126.

[128] NIST National Institute of Standards and Technol-
ogy. SHA-3 Cryptographic Hash Algorithm Com-
petition (2007-2012). More information available
at http://csrc.nist.gov/groups/ST/hash/sha-

3/index.html.

[129] NIST National Institute of Standards and Technology.
FIPS 180-1: Secure Hash Standard. April 1995. See
http://csrc.nist.gov.

[130] NIST National Institute of Standards and Technology.
FIPS 180-2: Secure Hash Standard. August 2002. See
http://csrc.nist.gov.

[131] NIST National Institute of Standards and Technology. NIST
Special Publication 800-57 Recommendation for Key Man-
agement - Part 1: General (Revised), March, 2007. Abailalbe
at http://csrc.nist.gov/publications/nistpubs/800-

57/sp800-57-Part1-revised2_Mar08-2007.pdf.

[132] NIST National Institute of Standards and Technology. Ten-
tative Timeline of the Development of New Hash Functions.
http://csrc.nist.gov/pki/HashWorkshop/timeline.html.

[133] Onur Özen and Martijn Stam. Another Glance at Double-
Length Hashing. In Parker [134], pages 176–201.

[134] Matthew G. Parker, editor. Cryptography and Coding, 12th
IMA International Conference, Cryptography and Coding 2009,
Cirencester, UK, December 15-17, 2009. Proceedings, volume
5921 of Lecture Notes in Computer Science. Springer, 2009.

247

BIBLIOGRAPHY

[135] Kenneth G. Paterson and Gaven J. Watson. Plaintext-
Dependent Decryption: A Formal Security Treatment of SSH-
CTR. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of
Lecture Notes in Computer Science, pages 345–361. Springer,
2010.

[136] B. Preneel. Analysis and Design of Cryptographic Hash Func-
tions. Thesis (Ph.D.), Katholieke Universiteit Leuven, Leuven,
Belgium, January 1993.

[137] Bart Preneel, Antoon Bosselaers, Rene Govaerts, and Joos Van-
dewalle. Collision-free hashfunctions based on blockcipher al-
gorithms. In Proceedings 1989 International Carnahan Confer-
ence on Security Technology (Oct 3–5 1989: Zurich, Switzer-
land), pages 203–210, pub-IEEE:adr, 1989. IEEE Computer So-
ciety Press. IEEE catalog number 89CH2774-8.

[138] Bart Preneel, René Govaerts, and Joos Vandewalle. Hash Func-
tions Based on Block Ciphers: A Synthetic Approach. In Stin-
son [163], pages 368–378.

[139] Vincent Rijmen and Paulo S. L. M. Barreto. TheWHIRLPOOL
Hash Function. World-Wide Web document, 2001.

[140] Thomas Ristenpart and Thomas Shrimpton. How to Build a
Hash Function from Any Collision-Resistant Function. In Kuro-
sawa [101], pages 147–163.

[141] R. L. Rivest. RFC 1321: The MD5 Message-Digest Algorithm.
Internet Activities Board, April 1992.

[142] Ronald L. Rivest. The MD4 Message Digest Algorithm. In
Alfred Menezes and Scott A. Vanstone, editors, CRYPTO, vol-
ume 537 of Lecture Notes in Computer Science, pages 303–311.
Springer, 1990.

[143] Matthew J. B. Robshaw, editor. Fast Software Encryption,
13th International Workshop, FSE 2006, Graz, Austria, March

248

BIBLIOGRAPHY

15-17, 2006, Revised Selected Papers, volume 4047 of Lecture
Notes in Computer Science. Springer, 2006.

[144] Phillip Rogaway. Authenticated-Encryption with Associated-
Data. In ACM Conference on Computer and Communications
Security, pages 98–107, 2002.

[145] Phillip Rogaway. Efficient Instantiations of Tweakable Blockci-
phers and Refinements to Modes OCB and PMAC. In Pil Joong
Lee, editor, ASIACRYPT, volume 3329 of Lecture Notes in
Computer Science, pages 16–31. Springer, 2004.

[146] Phillip Rogaway. Nonce-Based Symmetric Encryption. In Roy
and Meier [155], pages 348–359.

[147] Phillip Rogaway. Formalizing Human Ignorance. In Phong Q.
Nguyen, editor, VIETCRYPT, volume 4341 of Lecture Notes in
Computer Science, pages 211–228. Springer, 2006.

[148] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: a block-cipher mode of operation for efficient authenti-
cated encryption. In ACM Conference on Computer and Com-
munications Security, pages 196–205, 2001.

[149] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-
Function Basics: Definitions, Implications, and Separations for
Preimage Resistance, Second-Preimage Resistance, and Colli-
sion Resistance. In Roy and Meier [155], pages 371–388.

[150] Phillip Rogaway and Thomas Shrimpton. A Provable-Security
Treatment of the Key-Wrap Problem. In Vaudenay [164], pages
373–390.

[151] Phillip Rogaway and Thomas Shrimpton. Determinis-
tic Authenticated-Encryption: A Provable-Security Treat-
ment of the Key-Wrap Problem. Cryptology ePrint
Archive, Report 2006/221; full version of [150], 2006.
http://eprint.iacr.org/.

249

BIBLIOGRAPHY

[152] Phillip Rogaway and John P. Steinberger. Constructing Crypto-
graphic Hash Functions from Fixed-Key Blockciphers. In David
Wagner, editor, CRYPTO, volume 5157 of Lecture Notes in
Computer Science, pages 433–450. Springer, 2008.

[153] Phillip Rogaway and John P. Steinberger. Security/Efficiency
Tradeoffs for Permutation-Based Hashing. In Smart [159],
pages 220–236.

[154] Phillip Rogaway and Haibin Zhang. Online Ciphers from
Tweakable Blockciphers. In Kiayias [89], pages 237–249.

[155] Bimal K. Roy and Willi Meier, editors. Fast Software Encryp-
tion, 11th International Workshop, FSE 2004, Delhi, India,
February 5-7, 2004, Revised Papers, volume 3017 of Lecture
Notes in Computer Science. Springer, 2004.

[156] Todd Sabin. Vulnerability in Windows NT’s SYSKEY en-
cryption. BindView Security Advisory, 1999. Availalbe at
http://marc.info/?l=ntbugtraq&m=94537191024690&w=4.

[157] Satoh, Haga, and Kurosawa. Towards Secure and Fast Hash
Functions. TIEICE: IEICE Transactions on Communication-
s/Electronics/Information and Systems, 1999.

[158] Victor Shoup, editor. Advances in Cryptology - CRYPTO 2005:
25th Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 14-18, 2005, Proceedings, vol-
ume 3621 of Lecture Notes in Computer Science. Springer, 2005.

[159] Nigel P. Smart, editor. Advances in Cryptology - EUROCRYPT
2008, 27th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Istanbul, Turkey,
April 13-17, 2008. Proceedings, volume 4965 of Lecture Notes
in Computer Science. Springer, 2008.

[160] Martijn Stam. Blockcipher-Based Hashing Revisited. In
Dunkelman [38], pages 67–83.

250

BIBLIOGRAPHY

[161] John P Steinberger. The Collision Intractability of MDC-2 in
the Ideal Cipher Model. Cryptology ePrint Archive, Report
2006/294, 2006. http://eprint.iacr.org/.

[162] John P. Steinberger. The Collision Intractability of MDC-2 in
the Ideal-Cipher Model. In Moni Naor, editor, EUROCRYPT,
volume 4515 of Lecture Notes in Computer Science, pages 34–
51. Springer, 2007.

[163] Douglas R. Stinson, editor. Advances in Cryptology - CRYPTO
’93, 13th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 22-26, 1993, Proceedings,
volume 773 of Lecture Notes in Computer Science. Springer,
1994.

[164] Serge Vaudenay, editor. Advances in Cryptology - EURO-
CRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, St. Pe-
tersburg, Russia, May 28 - June 1, 2006, Proceedings, volume
4004 of Lecture Notes in Computer Science. Springer, 2006.

[165] Xiaoyun Wang, Xuejia Lai, Dengguo Feng, Hui Chen, and
Xiuyuan Yu. Cryptanalysis of the Hash Functions MD4 and
RIPEMD. In Cramer [33], pages 1–18.

[166] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Col-
lisions in the Full SHA-1. In Shoup [158], pages 17–36.

[167] Robert S. Winternitz. A Secure One-Way Hash Function Built
from DES. In IEEE Symposium on Security and Privacy, pages
88–90, 1984.

[168] Hongjun Wu. The Misuse of RC4 in Microsoft Word and
Excel. Cryptology ePrint Archive, Report 2005/007, 2005.
http://eprint.iacr.org/.

251

BIBLIOGRAPHY

[169] Moti Yung, editor. Advances in Cryptology - CRYPTO 2002,
22nd Annual International Cryptology Conference, Santa Bar-
bara, California, USA, August 18-22, 2002, Proceedings, vol-
ume 2442 of Lecture Notes in Computer Science. Springer, 2002.

252

Index

Abreast-DM, 28
collision security, 49

Abstract, v
Add/k-DM, 68
adversary

active, 20
passive, 20

AE modes
mixed, 199
off-line, 202
one-pass, 199

AES-NI, 195
authenticated encryption with

associated data, 204

blockcipher, 18
related key security, 21

security, 19

brute force attack, 11

BTM, 202

CBC, 197

CCFB, 199

CCM, 188, 199

CHM, 199

chosen ciphertext, 20

chosen plaintext, 20

ciphertext-only, 20

compression function, 12

blockcipher based, 18

collision security, 13

preimage security, 14

rate, 24

253

Index

second-preimage security,
15

counter mode, 197
cryptographic hash function, 7
cryptographic primitive, 8
CTR, 197
Cube-DM, 70
CWC, 199
Cyclic-DL, 37

collision security analysis,
59

Davies-Meyer, 21
DM, see Davies-Meyer
double length compression func-

tion, 24
classification, 34
collision security, 33
framework, 31
preimage security, 34

EAX, 188, 199
epre, 14
everywhere preimage resistance,

11, 14

feed-forward, 22
free queries, 52, 126

GCM, 188, 199
Generic-DL, 35

collision security analysis,
83

hash, 7
hash function, 7

attacks, 16
collision security, 10
ideal, 17
iterated, 12
Merkle-Damg̊ard, 15
number theoretic, 8
preimage security, 11
provably secure, 8
second-preimage security,

11
security, 9
separation results, 9
unkeyed, 7

hash value, 7
HBS, 202
Hirose-DM, 29

IACBC, 200
IAPM, 200
indifferentiability, 159
ISO/IEC 19772:2009, 188
iterated hash functions, 12

key-strem
repeated, 198

known plaintext, 20

List of Notations, 223
LLCP, 203

Matyas-Meyer-Oseas, 21
McOEx, 190

AES-128, 193
algorithms, 193
instances, 193

254

Index

Threefisch-512, 193
MDC-2, 25
MDC-4, 25, 93

collision security analysis,
96

collision security proof, 96
message digest, 7
message expansion, 15
Mix-Tandem-DM, 86

collision security, 87
Miyaguchi-Preneel, 21
MMO, see Matyas-Meyer-Oseas
MP, see Miyaguchi-Preneel

nonce-misuse, 188
nonce-respecting, 187
nonce-reuse, 188
none-misuse, 197

OAE, 188
OCB1, 200
OCB2, 188, 200
OCB3, 200
on-line authenticated encryp-

tion, 187
on-line permutation, 204

padding, 15
10∗, 15

post-output, 23
post-processing, 23
pre-processing, 15, 23
primitive, 8
PRP, see pseudorandom per-

mutation

pseudorandom permutation, 19

query
backward, 20
forward, 20

query history, 20

random oracle, 8, 159
security definitions, 162

related-key security, 19
restricition on a set, 203
RK-PRP, see related-key secu-

rity
RPC, 199

secure in the iteration, 22
Serial-DL, 35

collision security analysis,
73

single length compression func-
tion, 21

framework, 23
Type-I, 23
Type-II, 23

SIV, 188, 202
SL, see single length compres-

sion function, see sin-
gle length compression
function

TAE, 200
tag, 222
Tandem-DM, 28

collision security, 86
Threefisch-512, 193

255

Index

Weimar-DM
collision security analysis,

46

XCBC, 200

Zusammenfassung, vii

256

