
Hybrid 3D simulation methods for the damage

analysis of multiphase composites

(Hybride 3D Simulationsmethoden zur Abbildung der

Schädigungsvorgänge in Mehrphasen-Verbundwerkstoffen)

DISSERTATION

zur Erlangung des akademischen Grades

Doktor-Ingenieur (Dr.-Ing.)

an der Fakultät Bauingenieurwesen

der Bauhaus-Universität Weimar

vorgelegt von

Dipl.-Ing. Kai Schrader

geboren am 17.09.1977 in Schmalkalden

Weimar, Dezember 2012

Mentor:

Univ.-Prof. Dr.-Ing. habil. Carsten Könke

Gutachter:

Prof. Dr. Ir. Jan G. Rots, Delft University of Technology

Univ.-Prof. Dr. rer. nat. habil. Klaus Gürlebeck,

Bauhaus-Universität Weimar

Tag der Disputation: 21. Juni 2013

Abstract

Modern digital material approaches for the visualization and simulation of heterogeneous

materials allow to investigate the behavior of complex multiphase materials with their

physical nonlinear material response at various scales. However, these computational

techniques require extensive hardware resources with respect to computing power and

main memory to solve numerically large-scale discretized models in 3D. Due to a very

high number of degrees of freedom, which may rapidly be increased to the two-digit mil-

lion range, the limited hardware ressources are to be utilized in a most efficient way to

enable an execution of the numerical algorithms in minimal computation time. Hence,

in the field of computational mechanics, various methods and algorithms can lead to an

optimized runtime behavior of nonlinear simulation models, where several approaches are

proposed and investigated in this thesis.

Today, the numerical simulation of damage effects in heterogeneous materials is performed

by the adaption of multiscale methods. A consistent modeling in the three-dimensional

space with an appropriate discretization resolution on each scale (based on a hierarchical

or concurrent multiscale model), however, still contains computational challenges in re-

spect to the convergence behavior, the scale transition or the solver performance of the

weak coupled problems. The computational efficiency and the distribution among avail-

able hardware resources (often based on a parallel hardware architecture) can significantly

be improved. In the past years, high-performance computing (HPC) and graphics pro-

cessing unit (GPU) based computation techniques were established for the investigation

of scientific objectives. Their application results in the modification of existing and the

development of new computational methods for the numerical implementation, which en-

ables to take advantage of massively clustered computer hardware resources. In the field

of numerical simulation in material science, e.g. within the investigation of damage effects

in multiphase composites, the suitability of such models is often restricted by the number

of degrees of freedom (d.o.f.s) in the three-dimensional spatial discretization. This proves

to be difficult for the type of implementation method used for the nonlinear simulation

procedure and, simultaneously has a great influence on memory demand and computa-

tional time.

In this thesis, a hybrid discretization technique has been developed for the three-dimensio-

nal discretization of a three-phase material, which is respecting the numerical efficiency of

K. Schrader, PhD-thesis ii

ABSTRACT iii

nonlinear (damage) simulations of these materials. The increase of the computational ef-

ficiency is enabled by the improved scalability of the numerical algorithms. Consequently,

substructuring methods for partitioning the hybrid mesh were implemented, tested and

adapted to the HPC computing framework using several hundred CPU (central processing

units) nodes for building the finite element assembly. A memory-efficient iterative and

parallelized equation solver combined with a special preconditioning technique for solving

the underlying equation system was modified and adapted to enable combined CPU and

GPU based computations.

Hence, it is recommended by the author to apply the substructuring method for hybrid

meshes, which respects different material phases and their mechanical behavior and which

enables to split the structure in elastic and inelastic parts. However, the consideration

of the nonlinear material behavior, specified for the corresponding phase, is limited to

the inelastic domains only, and by that causes a decreased computing time for the non-

linear procedure. Due to the high numerical effort for such simulations, an alternative

approach for the nonlinear finite element analysis, based on the sequential linear analy-

sis, was implemented in respect to scalable HPC. The incremental-iterative procedure in

finite element analysis (FEA) during the nonlinear step was then replaced by a sequence

of linear FE analysis when damage in critical regions occured, known in literature as

saw-tooth approach. As a result, qualitative (smeared) crack initiation in 3D multiphase

specimens has efficiently been simulated.

K. Schrader, PhD-thesis

Kurzfassung

Moderne digitale Ansätze zur Visualisierung und Simulation heterogener Materialien

ermöglichen eine detaillierte Analyse der Strukturantworten auf unterschiedlichen räumli-

chen Skalen. Zur rechnerinternen Abbildung von nichtlinearen Schädigungsvorgängen im

dreidimensionalem Raum werden sehr hohe Computer-Hardwareressourcen (bezogen auf

die Rechenleistung und verfügbaren Hauptspeicher) für akzeptable Rechenzeiten benötigt,

da bei dieser Art der Untersuchung die Anzahl der Freiheitsgrade in den zugrundeliegen-

den Finite-Elemente-Modellen rasant ansteigt. Die Implementierung der hierzu benötigten

Algorithmen muss daher so effizient wie möglich vorgenommen und an die verfügbare

Rechnerinfrastruktur angepasst sein. Die numerische Umsetzung von diskreten Riss-

oder kontinuumsmechanischen Schädigungsmodellen in hierarchischen oder konkurrenten

Mehrskalensimulationen für mehrphasige Materialien mit entsprechender Auflösung birgt

weiteres Optimierungspotenzial, insbesondere im Hinblick auf eine konsistente Model-

lierung in 3D. Der detaillierten und damit aufwendigen geometrischen Modellierung der

Teilchenverbunde und deren Diskretisierung sowie der durch die Diskretisierung adap-

tierten nichtlinearen Konstitutivbeziehungen zur Abbildung von Schädigungsphänomenen

steht die begrenzte Rechenleistung verfügbarer Workstation-Computer gegenüber. Zudem

kompensiert eine weitreichende Modellidealisierung bzw. Abstraktion den Rechenauf-

wand auf Kosten der Ergebnisqualität des komplexen Strukturantwortverhaltens. Diese

Arbeit verfolgt den Ansatz, die für die Initiierung und Ausbreitung von Schädigungsvorgän-

gen massgebende materielle Phase in heterogenen Mesoskalen-Modellen (zum Beispiel eine

volumenbezogenen Interfacezone in klassischen Matrix-Einschluss-Verbunden) hochaufge-

löst zu diskretisieren und simultan die zugrundeliegenden Algorithmen hochskalierbar zu

parallelisieren, um damit ein effizientes (wiederholtes) Lösen der verteilten globalen Glei-

chungssysteme im Rahmen von Schädigungssimulationen zu gewährleisten.

Zusätzlich besteht die Möglichkeit, durch eine hybride Diskretisierung elastische und in-

elastische Materialbereiche initial festzulegen, um Schädigungsvorgänge ausschliesslich

in den inelastischen Bereichen zuzulassen, wodurch sich die Modelldimension (z.B. in

Bezug auf die zu speichernden Geschichtsvariablen) signifikant reduzieren lässt. Das

Schädigungsverhalten in den inelastischen Bereichen wird dabei vereinfachend als isotrop

beschrieben und partiell regularisiert und fungiert damit als stabilisierend für die Kon-

vergenzfindung. Weiterhin können Methoden zur sequentiellen linearen Analyse mit

K. Schrader, PhD-thesis iv

DEUTSCHE KURZFASSUNG v

Steifigkeitsdegradation numerisch sehr flexibel adaptiert und parallelisiert werden.

Die stetige Zunahme und Verfügbarkeit von massiv-parallelen Computer-Hardwareressour-

cen in Form von Hochleistungsclustern und -rechenzentren bietet zudem die Möglichkeit

die entsprechenden Algorithmen bezüglich ihrer Skalierbarkeit an diese Systeme anzu-

passen. Unter Nutzung von mehreren hundert simultan arbeitenden many-core Rechenein-

heiten können dann numerische Simulationen unter Berücksichtigung von Schädigungsef-

fekten in dreidimensional aufgelösten, mit mehreren Millionen Freiheitsgraden beschriebe-

nen Modellen, durchgeführt werden. Weitere Effizienzsteigerungen können zudem durch

den Einsatz von hybriden Architekturen mit mehreren CPU-GPU Knoten (unter zusätzli-

cher Berücksichtigung von graphischen Recheneinheiten) realisiert werden.

Im Rahmen dieser Arbeit ist die numerische Effizienz der implementierten Algorithmen

durch Cluster-basiertes High-Performance Computing des Höchstleistungsrechenzentrums

Stuttgart (HLRS) evaluiert worden. Dabei wurde unter anderem der hybride NEC Ne-

halem Cluster sowie der seit Anfang des Jahres 2012 zur Verfügung stehende Cray XE6

Cluster mit bis zu 512 CPU-Einheiten zur Berechnung herangezogen. Die hier vorgelegte

Arbeit stellt dabei einen entscheidenden Schritt für zukünftige Mehrskalensimulationen

von schädigungsinduzierten heterogenen Werkstoffen unter Nutzung von High-Performan-

ce Computerarchitekturen dar.

K. Schrader, PhD-thesis

Nomenclature

Abbreviations

3D three-dimensional

ccNUMA cache-coherent non-unified memory access

CG conjugate gradients

coo coordinate storage format

CPU central processing unit

csr compressed sparse row as well as compressed row storage (crs)

CUDA compute unified device architecture

CZM cohesive zone model

d.o.f.s degrees of freedom

DD domain decomposition

DMP distributed memory processing

DN Dirichlet-Neumann

FCM fictitious crack model

FE finite element

FEA finite element analysis

FEM finite element method

FETI-DP finite element tearing and interconnecting method - dual primal

GPGPU general-purpose graphics processing unit

GPU graphics processing unit

HG hourglass stabilization

HLRS high-performance computing center Stuttgart

HPC high-performance computing

ITZ interfacial transition zone

LD load-displacement curve

LEFM linear-elastic fracture mechanics

LU cholesky factorization

mJPCG modified Jacobi-point based preconditioned conjugate gradients

MPI message-passing interface

ndcsr nodal compressed sparse row

NN Neumann-Neumann

NR Newton-Raphson

NUMA non-unified memory access

K. Schrader, PhD-thesis vi

NOMENCLATURE vii

openMP open specifications for multi-processing

PCG preconditioned conjugate gradients

PDE partial differential equation

PPCG parallelized preconditioned conjugate gradients

SI international system of units

SLA sequential linear analysis

SMP shared memory processing

SP saddle-point

SPE saddle-point equation

STS saw-tooth softening

VITZ volumetric interfacial transition zone

XFEM extended finite element method

General notations

δ(·) variation of ·
‖·‖ euclidian vector norm of · , also defined as ‖·‖2
|·| absolute value of a scalar expression ·
O(·) mathematical term depending on ·
det(·) determinant of ·
e(·) exponential function of ·
grad(·) gradient of ·
lin(·) linearization of ·
ln(·) natural logarithm of ·
(·)T transpose of ·
(·)−1 inverse of ·
⊗ tensor product

ν Poisson’s ratio

E Young’s modulus

ft tensile strength

Gf fracture energy

gf specific fracture energy

Kbb assembled submatrix respecting the boundary nodal d.o.f.s

Kbi assembled submatrix respecting the coupled terms bi

Kii assembled submatrix respecting the interior nodal d.o.f.s

S Schur complement operator

B element-wise strain displacement matrix

De,Dk differential operators

f ext external load vector

f gl global load vector

K. Schrader, PhD-thesis

NOMENCLATURE viii

f int internal load vector

Kgl global stiffness matrix

Ke local element stiffness matrix

N element-wise matrix of shape functions

S̃ global assembled Schur complement operator

ugl vector of global nodal degrees of freedom

E fourth order material tensor

σ stress tensor

ε strain tensor

εel elastic strain tensor

εinel inelastic strain tensor

εtot total strain tensor

τ Kirchhoff stress tensor

C Cauchy-Green tensor

E Green-Lagrange strain tensor

F tensorial deformation gradient

I identity matrix

S material stress tensor

T Cauchy stress tensor

T P1
first Kirchhoff stress tensor

T P2
second Kirchhoff stress tensor

σY yield stress

K. Schrader, PhD-thesis

Contents

Nomenclature vi

List of figures xiv

List of tables xx

1 Introduction 1

1.1 Motivation . 1

1.2 Intention of this work . 6

2 State-of-the-art simulation models for small interface regions

in multiphase materials 8

2.1 Continuum models for heterogeneous materials 8

2.2 Material damage modeling . 10

2.3 Discrete models . 12

2.3.1 Cohesive zone model (CZM) . 12

2.3.2 Material discontinuum models . 13

2.4 Continuum softening models . 14

2.4.1 Strain-softening driven energy dissipation 14

2.4.2 Fracture energy based regularization 15

3 Notations for the finite element based discretization

of multiphase materials 16

3.1 Continuum mechanics . 16

3.1.1 Kinematics . 16

3.1.2 Stress tensors . 18

3.1.3 Constitutive relations of linear elasticity 18

3.1.4 Equilibrium equation and Navier differential equation 19

3.1.5 Extension to material inelasticity 20

3.1.6 The Rankine criterion . 23

3.2 Finite element method . 25

3.3 Conclusion . 27

K. Schrader, PhD-thesis x

CONTENTS xi

3.4 Efficient element formulations . 28

3.4.1 Finite element integrands in 3D . 28

3.4.2 Reduced integration for 3D finite elements 30

3.4.3 Hourglass stabilization technique 31

3.4.4 Voxel-based integration technique and global matrix assembly . . . 33

3.4.5 Notes on nodally integrated finite elements and smoothed finite el-

ement methods (S-FEM, FS-FEM, ES-FEM) 36

3.4.6 Concluding remarks . 36

4 Numerical discretization of multiphase materials 37

4.1 Discretization: Multiphase geometry and meshing in 3D 37

4.1.1 Introduction . 37

4.1.2 Inclusion-matrix geometry model 38

4.1.3 Hybrid 3D meshing techniques . 40

4.2 FE discretization with initial elastic-inelastic domain split 43

4.3 Graph based FE mesh partitioning . 44

4.3.1 FE mesh partitioning for static load balancing 44

4.3.2 FE mesh partitioning for dynamic load balancing 45

4.3.3 Partitioning of hybrid meshes respecting a load-balanced damage

zone . 46

4.3.4 Parameter evaluation and performance of mesh partitioning algo-

rithms . 47

5 Linearized (time-independent) solution methods based on

domain decomposition 50

5.1 Numerical computation of linear systems of equations 50

5.2 Special iterative solution methods . 51

5.3 Domain decomposition methods . 52

5.3.1 (Direct) Schur complement method 52

5.3.2 Dirichlet-Neumann and Neumann-Neumann method 54

5.3.3 FETI-DP method . 55

5.3.4 Modified FETI-DP Saddle-point problem 57

5.4 Numerical testing . 60

5.4.1 Direct versus iterative solving . 60

5.4.2 Modified FETI-DP SPE . 61

5.4.3 Concluding remarks . 65

5.5 (Hybrid) parallelized preconditioned conjugate gradients 65

5.6 Preconditioning techniques for conjugate gradients 67

5.6.1 In general . 67

5.6.2 Regular eigenvalue problems . 68

K. Schrader, PhD-thesis

CONTENTS xii

5.6.3 Jacobi-point preconditioning . 69

5.6.4 Approximation of the condition number and preconditioning 70

5.6.5 Approximation of the scaling range 71

5.6.6 Modified and parallelized Jacobi preconditioning 72

5.6.7 Schur preconditioning . 74

5.6.8 Modified Schur preconditioning . 75

6 Hybrid high-performance computing 77

6.1 Parallel hardware architectures . 77

6.1.1 Shared memory processing (SMP) 77

6.1.2 Distributed memory processing (DMP) 79

6.1.3 Graphics processing unit (GPU) and general-purpose graphics

processing unit (GPGPU) . 79

6.2 Parallel programming techniques . 79

6.2.1 Open specifications for multi-processing (openMP) 79

6.2.2 Message-passing interface (MPI) . 80

6.2.3 Compute unified device architecture (CUDA) 81

6.2.4 Performance characteristics . 81

6.2.5 Implementation characteristics . 82

6.2.6 Concluding remarks . 85

6.3 Sequential CPU and GPU computing . 86

6.3.1 Hardware architecture . 86

6.3.2 Example: Elastic-inelastic domain split 86

6.3.3 Benchmark . 87

6.4 Distributed computing . 88

6.4.1 Hardware architecture . 88

6.4.2 Examples for homogeneous and hybrid meshed

three-phase specimens . 89

6.4.3 Benchmark: Homogeneous mesh . 90

6.4.4 Benchmark: Hybrid mesh . 92

6.4.5 Benchmark: Scaling range of the modified Jacobi preconditioning . 93

6.4.6 Final remarks . 95

6.5 HPC framework 1: NEC Nehalem cluster 96

6.5.1 Hybrid (CPU-GPU) NEC Nehalem cluster at HLRS 96

6.5.2 Benchmark: 3D poriferous bone specimen 96

6.5.3 Benchmark: Multiple CPU nodes 98

6.5.4 Benchmark: Hybrid multiple CPU-GPU nodes 99

6.6 HPC framework 2: CRAY XE6 cluster . 103

6.6.1 CRAY XE6 cluster at HLRS . 103

6.6.2 HPC Cray XE6 cluster batch system 105

K. Schrader, PhD-thesis

CONTENTS xiii

6.6.3 Benchmark: 3D large-scale casted nickel-alloy specimen 105

6.7 Concluding remarks . 110

7 Nonlinear material modeling including damage effects 112

7.1 Nonlinear finite element method . 113

7.2 Smeared damage approach: Local isotropic damage model 114

7.3 Effects caused by mesh bias and necessary regularization 115

7.4 Alternative approach: Saw-tooth softening model 116

7.4.1 Model description: Evolution of the saw-tooth approach

with tensile-softening . 116

7.4.2 Combined strain and strength regularization 120

7.5 Modified STS model: Scalable SLA with tensile-softening 120

7.5.1 Elastic-inelastic decomposition . 120

7.5.2 Implementation characteristics . 121

7.6 Numerical example: 3D notched beam . 122

7.7 Numerical example: Hybrid meshed multiphase specimen 125

7.7.1 Scalable SLA: Evolution of delamination effects 125

7.7.2 Scalable SLA: Evolution of smeared crack initiation and

propagation . 127

7.8 Concluding remarks . 130

8 Summary 133

9 Conclusions and outlook 135

Bibliography 137

Appendix 145

A MDiSP C Library 145

A.1 I/O data based function calls . 146

A.2 MPI based function calls . 146

A.3 Saw-tooth softening material model based function calls 150

K. Schrader, PhD-thesis

List of Figures

1.1 Visualization of concrete (left, [Möser 2006]) and lime mortar (right, [ETH

Zürich 2004]) at the microscale, using the scanning electron microscope

(SEM). 2

1.2 Topical overview involved with creating a scalable nonlinear FE simulation

model in 3D. 7

2.1 2D representation of a multiphase continuum model and resulting crack

patterns [Wang et al. 1999]. 10

2.2 3D representation of multiphase continuum models and resulting crack pat-

tern (left) [Caballero et al. 2006, Wriggers et al. 2006]. 11

2.3 Fracture process in quasi-brittle materials (e.g. concrete) utilizing the FCM

model of Hillerborg. 13

2.4 Exponential tensile-softening curve and the evolution of fracture energy Gf

in the post-peak region with ft as the tensile strength, εel as the elastic

and the εinel as inelastic strain component. 15

3.1 Illustration of the motion at material point level from the reference to the

momentary position. 17

3.2 Illustration of the closest point projection as implicit return mapping proce-

dure evaluating plastic strains: Iterative backtracking scheme of the elastic

trial stress state σtrial, at last hitting the flow condition f(σn+1) = 0 (left)

and the improved closest point projection. 20

3.3 Transformation of the original Cartesian to the principle coordinate system. 21

3.4 Illustration of the material domain G discretized by finite element patches

Ge. 25

3.5 Regular voxel discretization (left) with equivalent element stiffnesses. . . . 34

4.1 Combining different discretization and decomposition techniques. 39

4.2 Initial inclusion-matrix geometry (left) and heterogeneous modeling with

three distinct phases: inclusion (zone 1), matrix material (zone 2) and

volumetric interfacial transition zone (zone 3). 40

K. Schrader, PhD-thesis xiv

LIST OF FIGURES xv

4.3 Coarse and fine Delaunay triangulation to obtain different aggregate shapes

and sizes. 40

4.4 Random based selection of 13% of total tetrahedrons. 41

4.5 Geometrical degenerated tetrahedrons. 41

4.6 Geometrical models of embedded inclusions made of degenerated tetrahe-

drons of two different triangulations. 41

4.7 Embedding of bounding boxes (including the aligned mesh) in the regular

matrix grid. 42

4.8 Geometrical degenerated tetrahedrons as initial inclusions obtained from

the Delaunay triangulation (left) and the underlying orthogonal grid with

the detection of inclusion-free volume (right). 42

4.9 Load-balanced mesh partitioning based on sparse graphs: Left: Coarsening

the initial sparse graph G0 (representing the finite element mesh) to obtain

an initial coarse partitioning of the smaller graph G4. After, incremental

un-coarsening of G4 and its corresponding partitioning to generate the final

partitioning of the original graph G0. 46

4.10 Left: Initial three-phase matrix-inclusion system applying the mesh parti-

tioning with nodal (middle) and dual mesh partitioning (right) results of

the library METIS (four subdomains). 46

4.11 Consideration of the heterogeneity during domain decomposition: One elas-

tic domain d0 including the inelastic region partitioned in four domains d1

till d4. 47

4.12 Consideration of the heterogeneity in domain decomposition: Regular grid-

based elastic domain and aligned mesh of the inelastic region. Left: Aligned

mesh of VITZ and irregular mesh of inclusions. Right: aligned mesh tran-

sition into inclusions. 48

4.13 Consideration of the heterogeneity in domain decomposition: Nodal mesh

partitioning applied for the aligned mesh as a decomposed volumetric in-

terfacial zone. 48

5.1 Substructuring based on displacement based finite element method and

non-overlapping domain decomposition. 52

5.2 Simple block structure decomposed in two domains with a maximum of

150,000 d.o.f.s. 60

K. Schrader, PhD-thesis

LIST OF FIGURES xvi

5.3 Mesh refinement and computing time of partial factorization for a dual

domain split (left) and solver times for different meshes according to di-

rect factorization (sequential on Intel iCore2: direct/seq/Core2; sequen-

tial on AMD Opteron: direct/seq/Opt; parallel on AMD Opteron: di-

rect/par/Opt) and following the Dirichlet-Neumann iteration (sequential

D-N on AMD Opteron: D-N/seq; parallel D-N on AMD Opteron with four

MPI processes: D-N/par/np=4). 62

5.4 Example of one element per domain (left), the resulting FETI-DP dis-

cretization (middle) and the duplication of the dual node (right). 64

5.5 Example of FETI-DP discretization for three domains with two elements

per domain: Partitioning in three domains (upper left); FETI-DP dis-

cretization (upper right); duplication of the dual nodes (bottom). 64

6.1 Architectural topology of a multicore shared memory CPU system: De-

tailed view of one socket (of a four socket system) with two ccNuma nodes

(16 GB memory for each node) equipped with a 12-core AMD Opteron

CPU 6100 series (Magny-Cours). 78

6.2 GPU advantage: More GPU transistors as algorithmic logic units (ALU,

right) are devoted to data processing rather than data caching and flow

control compared to CPU (left). 80

6.3 Memory demand (in Gigabyte, GB) of a ndcsr storage scheme compared

to standard coo and csr storage format depending on the number of global

d.o.f.s. (left), Scaling of the memory efficiency of ndcsr and csr storage

schemes compared to the standard coo storage format (1.0) depending on

the relation of the number of matrix entries and global d.o.f.s. 83

6.4 Nvidia Quadroplex D2 system (left) including two Quadro 5800 FX cards

(right). 86

6.5 Numerical example applying the elastic-inelastic domain split with corre-

sponding boundary and loading conditions. 87

6.6 Initial heterogeneous specimens and three different meshing techniques

(from top-left): Homogeneous aligned mesh, the combined regular and

aligned tetrahedral mesh, the hybrid mesh (resulting from the regular grid),

the aligned tetrahedral mesh (bottom-left) as well as the refined hybrid

mesh. 89

6.7 Initial boundary and loading conditions applied to all specimens which are

investigated. 90

6.8 Nodal partitioning of an aligned tetrahedral mesh in four nodally equal-

sized domains. 92

K. Schrader, PhD-thesis

LIST OF FIGURES xvii

6.9 Nodal partitioning of a hybrid mesh in four equal-sized domains: Consid-

ering the irregular tetrahedral mesh (embedded in a coarse grid) for the

load-balanced partitioning (msh2): total view (top-left) and two clippings

to the inside (top-right, bottom). 93

6.10 Scaling parameters, solution errors and speed-ups for the manually-scaled

Jacobi preconditioning considering different load cases: Surface tensile trac-

tion (left) and dead (body) load. 94

6.11 Cabinets of the NEC Nehalem cluster at the High-Performance Computing

Center Stuttgart (left) equipped with 32 of Tesla GPU S1070 1U rack

system (right). 96

6.12 3D poriferous bone specimen as FE structure based on voxel data (perspec-

tive view) and the load-balanced decomposed FE structure in four nodally

equal-sized domains (8.9 million d.o.f.s). 97

6.13 NEC Nehalem cluster (CPU): Total computational time for the parallel

assembly of global stiffness matrices (including the numerical integration)

with increasing number of subdomains (8.9 million d.o.f.s) and the resulting

speed-ups (right). 100

6.14 NEC Nehalem cluster (CPU): Total computational time for the parallelized

preconditioned conjugate gradient method (8.9 million d.o.f.s) and the re-

sulting speed-ups (right). 100

6.15 NEC Nehalem cluster (CPU): Accumulated time for sparse matrix-vector

operations of the PPCG method (8.9 million d.o.f.s) and the resulting

speed-ups (right). 101

6.16 NEC Nehalem cluster (CPU): Scaling of accumulated computational times

for non-matrix-vector operations of the PPCG method (8.9 million d.o.f.s)

and the resulting speed-ups (right). 101

6.17 NEC Nehalem cluster (CPU): Scaling of accumulated computational times

for MPI based communication of the PPCG method (8.9 million d.o.f.s)

and the resulting speed-ups (right). 102

6.18 NEC Nehalem cluster (CPU-GPU): Accumulated computational times for

sparse matrix-vector operations of the PPCG method using the CPU-only

and the hybrid CPU-GPU cluster, respectively (8.9 million d.o.f.s) and the

resulting speed-ups (right). 102

6.19 NEC Nehalem cluster (CPU-GPU): Accumulated computational times for

sparse matrix-vector operations of the PPCG method using the CPU-

only and hybrid CPU-GPU cluster with synchronous (hybrid-sync), asyn-

chronous (hybrid-async) and mapped memory (hybrid-mapped) CPU-GPU

data transfer for the coo matrix storage format and the resulting speed-ups

(right). 103

K. Schrader, PhD-thesis

LIST OF FIGURES xviii

6.20 NEC Nehalem cluster: Initial FE model und deformation state (right), cut

view (8.9 million d.o.f.s). 103

6.21 NEC Nehalem cluster: Vertical and horizontal (right) displacement state

in uniaxial tension case, cut view (8.9 million d.o.f.s). 104

6.22 NEC Nehalem cluster: First principle strain und stress state (right) in

uniaxial tension case, cut view (8.9 million d.o.f.s). 104

6.23 38 cabinets with 96 compute dual socket nodes of the Cray XE6 cluster at

HLRS. 104

6.24 Nickel alloy specimen geometry based on computer-tomographic scans: To-

tal view (left), and cut view with visualization of micropores (right). 106

6.25 Nickel alloy specimen based on computer-tomographic scans: Irregular

pores (left) and boundary and loading conditions. 106

6.26 Cray XE6 cluster: Total computational time for the parallel assembly

of global stiffness matrices (including the numerical integration) with in-

creasing number of subdomains (42.8 million d.o.f.s) and the resulting

speed-ups (right). 108

6.27 Cray XE6 cluster: Total computational time in respect to the parallelized

preconditioned conjugate gradient method (42.8 million d.o.f.s) and the

resulting speed-ups (right). 109

6.28 Cray XE6 cluster: Accumulated time for sparse matrix-vector operations of

the PPCG method (42.8 million d.o.f.s) and the resulting speed-ups (right). 109

6.29 Cray XE6 cluster: Scaling of accumulated computational times for non-

matrix-vector operations of the PPCG method (42.8 million d.o.f.s) and

the resulting speed-ups (right). 110

6.30 Cray XE6 cluster: Scaling of accumulated computational times for MPI

based communication of the PPCG method (42.8 million d.o.f.s) and the

resulting speed-ups (right). 110

7.1 Nonlinear load-displacement path followed by the Newton-Raphson algo-

rithm. 114

7.2 Bilinear tensile-softening stress-strain curve and the evolution ofD depend-

ing on the current Young’s modulus Ei. 117

7.3 Dimension and parameter of the 3D notched beam. 123

7.4 Hybrid decomposition for the parallel SLA procedure: Initial decomposi-

tion (top) and partitioning of the inelastic domain by using METIS. 124

7.5 Maximum principle stress distribution for the initial load step reaching the

limit stress state close to the tensile strength. 124

7.6 Deformation state including the removed elements (as a smeared crack)

after 10,000 parallel SLA cycles. 124

K. Schrader, PhD-thesis

LIST OF FIGURES xix

7.7 Example: Saw-tooth diagram and resulting load-displacement curve with

tensile-softening (right) with two different values for the crack band width

(cbw). 125

7.8 Hybrid meshed three-phase specimen: Surfaces of the inclusions and the

regular grid (left), the inclusions with the VITZ (colored, middle) and the

hybrid mesh with the VITZ (yellow), embedded in the linear-elastic matrix

(blue, right). 126

7.9 Hybrid partitioning: Left: Initial decomposition of the hybrid mesh with

the transition zone in high resolution also prepared for the partitioning

(gray), middle: Irregular meshing of the transition zone; Right: Load-

balanced decomposition of the inelastic VITZ prepared for the nonlinear

simulation. 126

7.10 Element-based delamination in the region of the VITZ after 1000 (left),

2000 (middle) and 4000 (right) parallel SLA cycles, evaluated by the von-

Mises condition as critical criterion. 126

7.11 Hybrid meshed heterogeneous specimen: Concentration of the first princi-

ple stress distribution in respect to linear-elastic FEA, evaluated by com-

mercial FE code (ANSYS). 129

7.12 Hybrid meshed heterogeneous specimen: (Smeared) crack initiation and

propagation after 1000 (left) and 2000 SLA cycles respectively (inclusions

excluded). 129

7.13 Hybrid meshed heterogeneous test specimen: Extended (smeared) crack

expansion after 10,000 SLA cycles in the VITZ (left) and fracture of the

specimen by propagating crack pattern into the matrix material after more

than 50,000 SLA cycles (coarse regular grid, inclusions excluded). 130

7.14 Hybrid meshed heterogeneous test specimen: Smeared crack propagation

after more than 50,000 SLA cycles through different subdomains of the

initial partitioning of the hybrid mesh (left) as well as through the parti-

tioning of the aligned mesh as the adaptive damage zone considered by the

scalable SLA procedure (inclusions excluded). 130

7.15 Hybrid meshed heterogeneous test specimen and scalable SLA: Evolution

of the number of PPCG iterations during the SLA considering different

preconditioning techniques. 131

K. Schrader, PhD-thesis

List of Tables

3.1 One-point integration rules for linear tetrahedron, linear hexahedron and

linear pyramid solid elements. 30

3.2 Von-Mises-Wielandt algorithm: Determination of the maximum eigenvalue

of matrix K. 34

4.1 Parameter options for the mesh partitioning algorithms of the open-source

library METIS. 48

4.2 Parameter and performance evaluation: Speed-ups using different option

sets of METIS for the partitioning of homogeneous meshes. 49

4.3 Parameter and performance evaluation: Speed-ups using different option

sets of METIS for the partitioning of hybrid meshes. 49

5.1 Algorithm for the boundary-related solution applying the Dirichlet-Neumann

substructuring technique. 55

5.2 Direct factorization versus explicit Schur complement extraction (as partial

factorization) with an increasing mesh refinement. 61

5.3 Comparison of direct factorization based computation (direct) with iter-

ative Dirichlet-Neumann (D-N) method, sequential times (seq.) for Intel

iCore2 and AMD Opteron (Opt./seq.), parallel times for the Opteron ar-

chitecture using four MPI processes (Opt./np=4); accuracy: 10−6, time in

seconds and number of iterations given in brackets. 61

5.4 Uzawa algorithm with exact iteration steps for FETI-DP SPE. 62

5.5 CG version of Uzawa algorithm for FETI-DP SPE. 63

5.6 Iteration steps and accuracy for a varity of different iteration techniques. . 65

5.7 Overview of different preconditioning matrices. 66

5.8 Relative error norm for different approximated preconditioning matrices

replacing the interior-dual Schur complement operator. 66

5.9 Algorithm for the parallelized preconditioned conjugate gradient method

(PPCG). 67

5.10 Algorithm for the vector-based Schur preconditioning according to eq. (5.104). 75

6.1 Different matrix storage formats for CPU and GPU computing. 82

K. Schrader, PhD-thesis xx

LIST OF TABLES xxi

6.2 Memory demand (in byte) of the global matrix for different matrix storage

schemes: n as the number of nonzero matrix entries and m as the number

of nodal degrees of freedom (d.o.f.s). 83

6.3 Algorithm for matrix-vector operations considering diagonal and off-diagonal

nodal block matrices B
(k)
D and B

(k)
L per domain k. 85

6.4 Size of the two decomposed domains related to the number of degrees of

freedom. 87

6.5 Comparison of the computation times of the CPU and GPU architecture

using different preconditioning techniques. 87

6.6 Comparison of the performance results of the GPU architecture using dif-

ferent matrix storage formats in relation to the coordinate format (coo). . . 88

6.7 Size of problems according to homogeneous (msh1) and mixed meshes

(msh2 and msh3). 90

6.8 Nodal block allocation (sequential): Number of off-diagonal blocks, time

for nodal block allocation and allocated memory for the ndcsr storage of

the final coefficient matrix. 91

6.9 Material properties for the homogeneous and heterogeneous mesh applied

for the benchmark. 91

6.10 Absolute time in seconds and the corresponding speed-ups for assembling

the finite element data and for solving the global system of equations with

the PPCG solver (msh1). 91

6.11 Absolute time in seconds for assembling the finite element data and building

the global coefficient matrices (msh2, 3.4 million d.o.f.s). 92

6.12 Absolute times for solving the global equation system with the parallelized

preconditioned conjugate gradient method (msh2, 3.4 million d.o.f.s). . . . 93

6.13 Scaling parameter, solution error, number of iterations and speed-up in re-

spect to manually-scaled Jacobi preconditioning and considering a eigenvalue-

based computation of αLω. 94

6.14 Type of concurrency of the numerical tasks. 95

6.15 Technical description of the hardware features of NEC Nehalem cluster at

HLRS Stuttgart. 96

6.16 Dimensions of the FE problem: Number of elements, number of nodes,

number of d.o.f.s, number of nodal FE blocks and memory demand for

matrix storage in gigabyte. 97

6.17 Dimension of the decomposed FE problem: Number of coupled nodes,

number of nodes, number of off-diagonal nodal FE blocks and memory

demand for the matrix storage in gigabyte and the relative load imbalance. 97

K. Schrader, PhD-thesis

LIST OF TABLES xxii

6.18 Integration time in seconds with eight and six Gauss points, using one

Gauss point for reduced integration with hourglass stabilization (HG) and

the voxel integration technique for one and four MPI processes and the

resulting speed-ups (including the time for the global matrix assembly). . . 98

6.19 NEC Nehalem cluster (CPU): Quantitative values of total computational

time for the parallel assembly of the global stiffness matrices (including the

numerical integration). 99

6.20 NEC Nehalem cluster (CPU): Resulting speed-ups for the parallel assembly

of global stiffness matrices (including numerical integration, 8.9 million

d.o.f.s). 100

6.21 Technical description of the Cray XE6 cluster ’Hermit’ at HLRS. 105

6.22 Torque header options used in the batch file to launch and run batch jobs

at the CRAY XE6 cluster. 105

6.23 Cray XE6 cluster: Element type, the total number of elements and FE

nodes as well as the total number of global d.o.f.s. 106

6.24 Cray XE6 cluster: Quantitative values of the total (three by three) FE

blocks, the total number of block entries, the memory demand and assembly

time for the sequential case (42.8 million d.o.f.s). 107

6.25 Cray XE6 cluster: Computing time (sec) for the nodal block allocation, the

distribution of FE data, the modified Jacobi-point preconditioning with the

eigenvalue scaling strategy for 2 and 256 subdomains, respectively (42.8

million d.o.f.s). 107

6.26 Cray XE6 cluster: Quantitative values of total computational time for the

decomposed preconditioning matrix and resulting divergency in time with

increasing the MPI processes to 256 (42.8 million d.o.f.s). 107

6.27 Number of MPI processes, the scaling parameters for the preconditioning,

the number of PPCG iterations and the speed-ups in respect to the modified

Jacobi-point preconditioning. 107

6.28 GNU compiler options used for the Cray XE6 cluster ’Hermit’ at HLRS. . 110

7.1 Algorithm of the scalable SLA technique with tensile-softening. 121

7.2 Nodal diagonal and off-diagonal blocks with corresponding matrix entries

for several standard 3D finite elements. 122

7.3 Initial saw-tooth parameters for the SLA procedure applied for the 3D

notched beam. 123

7.4 Overall computational effort of the scalable SLA technique. 123

7.5 Efficient reduction of the number of nodal d.o.f.s by converting the mesh

considering special integration schemes with a constant number of elements

and their orientation. 125

K. Schrader, PhD-thesis

LIST OF TABLES xxiii

7.6 Material properties and initial saw-tooth parameters for the SLA procedure

applied for the three-phase hybrid meshed specimen. 128

7.7 Overall computational effort of the scalable SLA technique. 131

K. Schrader, PhD-thesis

Chapter 1

Introduction

1.1 Motivation

The life-time assessment of engineering structures relies on sophisticated material models,

integrating all different aspects of damage initiation and deterioration over the expected

life-time of a structure. Therefore, the current material models in engineering applica-

tions are integrating modern approaches from material science via multiscale methods.

Especially for heterogeneous materials, these multiscale approaches allow a detailed in-

sight into the material physics on appropriate scales [Raabe 2004]. In (material) engineer-

ing science, the investigation of 3D material behavior, such as the damage initiation and

propagation at different scales, is based on complex simulation models, which may require

extensive resources, if they capture the heterogeneous nature and also include the specific

material behavior of each material phase. By this, they are able to represent the damage

behavior of the quasi-brittle material (such as concrete or mortar mixtures as complex

matrix-inclusion based composites) up to the macroscale, where the damage is induced

by accumulated effects of micro-cracking. A detailed illustration of these phenomena at

microscale, observed in ultra high-performance concrete [Möser 2006] and in lime mor-

tar [ETH 2004], is given in figure 1.1. As an additional benefit of multiscale modeling, the

parameter identification for separate phases is easier to investigate than identifying the

constitutive parameters for heterogeneous material mixtures. The necessary up-scaling

of the results at micro- and mesoscale to macroscale can either be done by analytical

or numerical homogenization techniques or by applying concurrent multiscale methods.

In general, a major drawback of using multiscale methods is the tremendous increase in

degrees of freedom (d.o.f.s.) of the resulting equation systems when studying models at

micro- or mesoscale. In damage simulations, the incremental-iterative approach requires

the repeated solution of the linearized equation system, resulting in an even more crucial

computing time consumption.

K. Schrader, PhD-thesis 1

INTRODUCTION 2

Figure 1.1: Visualization of concrete (left, [Möser 2006]) and lime mortar (right, [ETH Zürich 2004]) at

the microscale, using the scanning electron microscope (SEM).

The ’close to reality description’ of the material behavior of multiphase composites at

sub-macroscale (under specific boundary and loading conditions) is associated with the

characterization of very complex physical processes, not only in the state of damage and

collapse, but also in the initial configuration. Additionally, numerical models in 2D do

not cover important out-of-plane effects in these materials at meso- or microscale, so that

the final simulation model should be built in 3D, if at all numerically possible. There,

different material phases are connected over a small interfacial transition zone (ITZ),

which is dedicated to be the weakest link and therefore, the beginning of the initiation

of (micro-) cracks and their accumulation and propagation to and through other phases,

which often results in macroscale failure in materials and consequently, in the entire en-

gineering structure. To capture the behavior of such critical zones in a more realistic

way, it is necessary to obtain a deep insight into the geometrical and mechanical charac-

teristics and to transfer this information in corresponding numerical models. At a first

step meso- or microscale models are considered with a high resolution of such zones and,

hence, the phenomenological description of physical processes in 3D should be limited to

the representation of mechanical degradation effects. The evolution of the initiation and

propagation of damage effects, which has to be described, is based on the fundamentals

of continuum mechanics and continuum damage mechanics. The type of material law

considered for the phenomenological model of the ITZ is essential for a representation of

the close to reality damage effects in multiphase materials. Here, the phenomenological

model is often based on observed physical characteristics quantified in corresponding ma-

terial properties and the resulting mathematical description of the physical (mechanical)

problem results in partial differential equations (PDEs). However, in most cases, the an-

alytical solution of this type of equations is not feasible. Today, in technical engineering

modern approaches for the numerical computation of such differential equation systems

are available. The finite element method (FEM, [Bathe 1995]) as a standard discretiza-

tion technique can be applied to solve such system of PDEs numerically, similar to the

K. Schrader, PhD-thesis

INTRODUCTION 3

analysis of mechanical problems at the macroscale.

The (nonlinear) finite element method is a robust and approved technique, which can

be used for the computational representation and discretization of material failure in

multiphase composites. This numerical approximation technique is the result of the weak

variational form of equilibrium described by the underlying Navier partial differential

equation. It is respecting the kinematic relation, the material law as well as the equi-

librium of the internal and external forces. The large-scale simulation of heterogeneous

material specimens strongly depends on the type of the applied computational method

(in respect to the phenomenological description) and on its efficiency and performance in

order to obtain qualitative and quantitative results, being close to realistic observations in

acceptable computing time. In this thesis, combined (hybrid) approaches for the suitable

discretization, the efficient solution and the sophisticated representation of damage effects

in multiphase materials are addressed. The main content is the investigation of a general

hybrid discretization technique for three-phase materials and a distributed solution strat-

egy adapted for the final system of equations. This hybrid discretization considers a

volumetric ITZ in high-resolution around the inclusions, which are embedded in a regu-

lar grid. Due to the high numerical effort for the memory demand and the computing

time, which is mainly caused by the high number of unknowns of the resulting system

of equations in 3D, a scalable computing framework for the application of the developed

algorithms on high-performance computers is proposed to be analysed. The initial sepa-

ration of sub-domains governed by their fundamentally different material behaviors leads

to the separation and decomposition of elastic and inelastic subproblems. This enables

a drastic reduction in global degrees of freedom (d.o.f.s) and, consequently, results in

a significant decrease of the solution time. Furthermore, the author will use an initial

and updated decomposed damage zone during the nonlinear (damage) simulation. This

strategy should reduce the high memory demand required for storing all necessary history

data, which can be extensive for large-scale FE models in 3D. The first objective of this

thesis is the

• development of algorithms for the coupling of adaptive (irregular polyhedron) and

grid-based (regular Cartesian hexahedron) meshes and applying a discretization tech-

niques for the 3D hybrid meshing of multiphase materials in 3D, including the aligned

meshed transition regions describing the volumetric ITZ

The most time-consuming task of the computation procedure is the numerical solution

of the underlying equation system, which also depends on the level of detail used for

the discretized mechanical task. Therefore, it is necessary to develop adequate numeri-

cal methods for an efficient computation of the linearized problem and simultaneously,

to use the available hardware resources in the most efficient way. In recent years, the

distributed computing based on the message-passing interface standard (MPI) has been

K. Schrader, PhD-thesis

INTRODUCTION 4

proven valuable, enabling the distributed computation of linear equation systems, utilizing

as many computational nodes available in a high-performance computing framework [Ce-

havir et al. 2010]. Furthermore, during the past years, hybrid CPU-GPU architectures

were developed using multiple graphic processing units (GPU), which advance within a

high-scalable implementation of basic linear algebra subroutines compared to ’CPU only’

computations. By this, the parallel code execution using different hardware architectures

(based on CPU and GPU) may simultaneously be utilized. Consequently, a memory-

advantageous iterative MPI-solver strategy based on the conjugate gradient method (CG)

may be chosen and accelerated by an efficient preconditioning technique. The execution

of the sparse-matrix vector product, which occurs during the preconditioned conjugate

gradient method (PCG), is the most time-consuming task (per iteration step), and has

to be evaluated in respect to different matrix storage formats and hardware architec-

tures. In general, the parallelization techniques are based on standard overlapping or

non-overlapping domain decomposition methods for FE problems. They can be improved

by considering an elastic-inelastic domain split and thereby, enabling the decomposition of

a reduced nonlinear domain. Hence, the implementation concept should respect different

parallel hardware architectures as well as its application on high-performance computers,

also being an other important aim of this thesis. The developed algorithms should then be

evaluated on the hybrid CPU-GPU NEC Nehalem cluster and on the new petaflop system

CRAY XE6 (available since the beginning of 2012) at the high-performance computing

center Stuttgart (HLRS).

The utilization of memory-efficient iterative solver techniques combined with domain de-

composition (DD) methods can lead to a significantly improved computational perfor-

mance. Due to the fact that the solution of the linearized global equation system is the

most time-consuming task in linear as well as nonlinear simulations (with the repeated so-

lution of the linearized step), it is important to select an optimal combination of the solver,

the preconditioning and the parallelization techniques as well as considering the architec-

tural features of the hardware applied. In large-scale finite element analysis, with many

million degrees of freedom, direct solver techniques based on the Gaussian elimination

or Cholesky (LU) factorization may no longer be suitable due to their memory-extensive

application. However, direct parallel solvers [Amestoy et al. 2007] have the disadvantage

of a high-memory demand induced by the direct factorization of the assembled matri-

ces for each sub-domain. Therefore, the classical use of the Schur complement method

(where the Schur complement matrix is explicitly extracted for each sub-domain) requires

extensive computing time and memory demand. Due to the dense matrix structure of the

Schur complement system it is difficult to store, to factorize and to solve the assembled

Schur complement system directly. This issue has an increasing influence when the num-

ber of degrees of freedom is increasing. Improvements, such as out-of-core strategies for

the memory-extensive factorization task, may simultaneously increase the computational

K. Schrader, PhD-thesis

INTRODUCTION 5

solver time due to the slower access to the workspace medium. Modern FETI (Finite

element tearing and interconnecting) and FETI-DP (dual-primal) methods however, can

decrease the memory demand. On one hand, the solver stability mainly depends on the

separation of the boundaries discretized in primal and dual nodes, which are difficult

to arrange for irregular aligned or hybrid FE meshes by embedding fine aligned meshed

domains in a regular grid. On the other hand, for iterative solution methods, the used

preconditioning technique can be critical either in regards to computing time or to exten-

sive memory demand (depending on the type of discretized problem). Due to the high

number of unknowns in the resulting equation system, an efficient parallelization tech-

nique should be implemented to simultaneously store and solve the distributed equation

system. Therefore, the second aim of this work is

• the development and parallelization of algorithms for the partitioned solution strate-

gies based on the hybrid discretization technique and their resulting decomposed

systems of equations for the efficient 3D simulation of the delamination and degra-

dation behavior between different phases during the linear and nonlinear FE analysis

In this thesis, firstly, a parallelized version of the preconditioned conjugate gradient

method (PPCG) based on domain decomposition is used without explicitly building the

Schur complement system. By this, the numerically expensive usage of the classical

Schur complements is avoided. The iterative computation of the resulting equation sys-

tem for the nonlinear problem is also executed by using the preconditioned conjugate

gradient method (CG, [Kelley 1995]). Furthermore, the influence of different precondi-

tioning techniques [Basermann et al. 1997] for the CG computation is investigated and

the parallelization of the preconditioned conjugate gradient method, which is based on

the synchronous computation of the assembled substructures, is addressed. Secondly, the

preconditioning technique is restricted to a scaled main-diagonal precondition strategy

with a special scaling parameter taking the upper or lower bound of the spectral radius

of the assembled sub-matrices into account. This reduces the computing time of building

the preconditioning matrix as well as memory demand and also the time needed to exe-

cute the matrix-vector product involved by the preconditioning matrix. Moreover, for the

computation of the sparse matrix-vector products for each sub-domain several different

matrix storage formats are taken into account. Due to the implementation of a nodal

storage scheme of the distributed FE data, a nodal compressed row storage is used to

improve the performance (compared to standard coordinate storage (coo) or compressed

row storage (csr or crs)). Furthermore, the solver concept is adapted to multiprocessor

systems as well as to hybrid CPU-GPU clusters, such as the NEC Nehalem cluster with

access up to 32 GPU nodes, namely the Nvidia Tesla technology of 2010. There, the

sparse matrix-vector operations (spmv) is distributed and outsourced to several graphics

processing units (GPU) based on the Nvidia Tesla architecture. This enables the high-

scalable spmv execution in a hybrid CPU-GPU approach. As a result of the combined

K. Schrader, PhD-thesis

INTRODUCTION 6

spmv execution on CPU and GPU hardware devices [Papadrakakis et al. 2011], a hybrid

computation model with further improvements in regards to acceptable memory demand

and computing time is implemented. The programming framework used for the GPUs is

based on CUDA, which was introduced in 2007.

Finally, in this work the parallelized HPC computing framework is applied for hybrid

meshed and partitioned multiphase specimens, especially for the numerical evaluation of

the qualitative initiation of damage effects in multiphase materials. Other approaches

than the conventional way of modeling material nonlinearities [Wriggers 2008], like the

consideration of material discontinuities by using the extended finite element method

(XFEM) or the classical material point based nonlinear simulation techniques such as the

Newton-Raphson (NR), modified NR or arc-length methods often lead to numerical in-

stabilities and convergence problems during the establishment of the nonlinear post-peak

paths. This is more crucial in the three-dimensional case of modeling material failures,

especially with heterogeneous characteristics or multi-physical properties. Due to this,

the saw-tooth softening approach introduced by [Rots et al. 2006] provides an alterna-

tive approach to model material nonlinearities in a sequential way due to the repeated

computation of the stepwise modified linearized problem. Hence, one important feature

of this advance is the ensured convergence of the underlying procedures. By this, the re-

alistic representation of softening branches for quasi-brittle materials can be reproduced.

This is even the case for three-dimensional models and for critical branching points of

the post-peak slopes where numerical problems due to the inexact convergence behavior

of classical iteration schemes (NR or modified NR, arc-length) could occur. In this work,

a scalable version of the sequential linear analysis (SLA) will be implemented applied

for the hybrid-meshed heterogeneous specimens for the representation of induced damage

effects in a nonlinear simulation model. By this, the developed solver strategy will be

also adapted for hybrid high-performance computing frameworks taking different parallel

hardware architectures into account.

1.2 Intention of this work

To summarize, the overall intention of this work is

• to develop a hybrid discretization technique for multiphase composites,

• to adapt a high-scalable solver strategy for the hybrid discretization technique and

• to simulate the nonlinear material behavior induced by damage effects in multiphase

composites applied for a volumetric interfacial transition zone

Consequently, some important criteria are to be respected in this work for the three-

dimensional modeling and simulation of multiphase materials such as

• 3D modeling is necessary for the investigation of out-of-plane effects

K. Schrader, PhD-thesis

INTRODUCTION 7

• Increased computational efficiency is required for the numerical methods in 3D

• Concentration on the qualitative description of the damage behavior in 3D

• Highly-scalable computations based on a parallelized implementation as well as the

suitability of the programming framework for HPC is proposed.

The remainder of the thesis is structured as follows: Chapter 2 will give an overview of

state-of-the-art simulation models respecting small interface regions in multiphase mate-

rials. Chapter 3 will describe theoretical notations in respect to continuum mechanics and

to the finite element discretization technique. In chapter 4, the numerical discretization of

multiphase specimens at mesoscale as well as the numerical decomposition technique suit-

able for the proposed scalable simulation approach is presented. In chapter 5, linearized

solution techniques based on non-overlapping domain decomposition methods will be

reviewed. While in chapter 6, the hybrid computing model for a high-performance com-

puting framework will be described also including the evaluation of numerical examples

for the linear-elastic finite element analysis. Chapter 7 will then state the extension of the

adapted distributed and linearized solution technique, considering a nonlinear material

model to allow damage simulations of hybrid 3D multiphase specimens. Chapter 8 will

include the summary of the investigations made in this thesis and finally, chapter 9 will

give concluding remarks and an outlook for potential future research activities.

Figure 1.2: Topical overview involved with creating a scalable nonlinear FE simulation model in 3D.

K. Schrader, PhD-thesis

Chapter 2

State-of-the-art simulation models

for small interface regions

in multiphase materials

This chapter gives an overview of and an introduction to the theory of material model-

ing of failure in heterogeneous and quasi-brittle materials. The aim is, to adapt these

phenomenological models to small interface regions between distinct phases in multiphase

materials. Starting with the introduction to continuum mechanics, the author follows con-

cepts of damage modeling for material continuum and discontinuum, being essential for

the numerical representation of failure and fracture of heterogeneous materials. Concrete,

as a very complex heterogeneous and quasi-brittle material, continues to be the subject

of research in material science as well as in the community of computational mechanics,

which in the past decades led to many major developments in the field of continuum and

discontinuum modeling of damage in multiphase composites. Such approaches are, among

others, proposed in [Rots 1988], [Mazars et al. 1989], [Schlangen et al. 1992], [C̆ervenka

1994], [Ozbolt et al. 1996] and [Feenstra et al. 1996]. Furthermore, in the field of model-

ing failure and fracture one differs between smeared and discrete damage models in respect

to the investigation of the initiation and propagation of cracks, since here the irreversible

effects are addressed in combination with aspects of different regularization techniques to

enable the representative numerical application of such models and also their validation

with experimental data.

2.1 Continuum models for heterogeneous materials

Quasi-brittle materials, such as different mortar or concrete mixtures, rough ceramics,

multiphase composites etc., often show a very complex geometrical structure, which can

be classified and disclosed in several material phases and investigated at various spatial

sub-macro scales. The complexity of the geometrical description as well as the partial me-

K. Schrader, PhD-thesis 8

CONTINUUM MODELS 9

chanical characteristics of these materials lead to the conclusion that these characteristics

need to be taken into account for a phenomenological representation of the constitutive

behavior. To analyse this, the continuum modeling approach at numerical level can be

used, which is the so-called smeared (macroscale) approach for specimens or components

of real-life structures and materials. The smeared modeling of material nonlinearity at

macro-level was state-of-the-art for a long time.

During the past decade, phenomenological relations were developed to describe the mate-

rial behavior of heterogeneous materials at macroscale in the field of continuum mechanics

and material science. Moreover, this approach was extended for the mesoscale, the micro-

scale as well as even for the nanoscale, capturing the natural heterogeneous characteristic

at these scales in numerical models. By this sophisticated approach, several distinct ma-

terial phases as well as their coupling are described according to their phenomenological

characteristics observed from reality. It particularly considers specific material properties,

where actual approaches also tend to take quantified parameters at the corresponding

spatial scale into account. The connection to the next close scale is mainly driven by

the so-called scale transition techniques, also known as homogenization or scale-bridging

techniques, leading to hierarchical (separated) or concurrent (simultaneous) multiscale

models. Due to the high numerical effort which is necessary to realize such simulation

models, the spatial extension and order of dimension, the resolution or the number of

phases and also the complexity of the material laws applied are often limited, particu-

larly for three-dimensional models. This is even more crucial, if the proposed material

behavior is induced by irreversible damage effects, often the case in modeling failure and

fracture. Even the way to the collaps of a structure, like e.g. caused by tensile softening,

is generally a highly nonlinear process.

A meso- or microscale related continuum, e.g. for concrete, may be analysed as a com-

posite of different (geometrical) complex inclusions embedded in a (more or less) homo-

geneous mortar matrix with a small interface region connecting the inclusions with the

matrix material: the so-called interfacial transition zone (ITZ). The ITZ is geometrically

and chemically complex, and finally, from a mechanical point of view, a sensitive link of

bonding. This phase is dedicated to the beginning of (diffuse) micro-cracking and their

cumulation results in a softening response behavior as well as in the generation of macro-

cracks. An important research aim was and still is to describe the damage effects in an

appropriate way to enable the resulting response behavior of the complete composite to

be optimized to enable a transfer from the fine to the coarse scale. Beside the geometrical

and physical information of the individual phases, damage based information can be illus-

trated in a qualitative way, like e.g. by the representation of initialization or propagation

of existing crack patterns. Figure 2.1 and 2.2 illustrate the realization of some compu-

tational continuum models with heterogeneous characteristics as well as their damage

behavior caused by the crack propagation induced by applying tensile loading conditions.

K. Schrader, PhD-thesis

CONTINUUM MODELS 10

This led to the development of various techniques in the field of the continuum damage

mechanics, yielding to the continuum and discontinuum damage models. Some of which

are described in the following sections.

2.2 Material damage modeling

Damage occurs by the initiation and propagation of accumulated micro-cracks. In real-life

this can lead to material failure, fracture and fatigue over time and finally, to a higher

sensitivity to such phenomena since this increases the probability of an abrupt structural

collapse. The micro-cracking ’localizes’ in zones of high stress concentration and their

evolution to one large macroscopic crack in the fracture process zone or in a localized

crack band. Continued increasing or cyclic loading conditions yield to exceeded inelas-

tic strains or discrete crack openings causing degradation effects and release debonding

forces within increased dissipated energy which finally results in a stress-free crack at

the macroscale. The modeling of such material failures in solid mechanics is classified by

two major techniques depending on the type of the kinematic description: a) the discrete

damage modeling, with the explicit representation of strong or weak discontinuities (e.g.

considering a jump in the displacement or strain field) and b) the continuous representa-

tion of the localized strains.

The first type of discontinuous damage models is ideally compromised by the well-known

fictitious crack model (FCM, [Hillerborg et al. 1976]), which was introduced for linear-

elastic fracture mechanics (LFEM). The development of discrete crack modeling tech-

niques including several modifications was the result. The consideration of zero-thickness

interface elements at the cracking surfaces within a stress-free tipping point of the macro-

crack (also realized in 3D) is recommended in [Carol et al. 1997b]. Further developments

yield to discrete cohesive zone models (CCM, see section 2.3.1).

Figure 2.1: 2D representation of a multiphase continuum model and resulting crack patterns [Wang et

al. 1999].

K. Schrader, PhD-thesis

CONTINUUM MODELS 11

Figure 2.2: 3D representation of multiphase continuum models and resulting crack pattern (left) [Ca-

ballero et al. 2006, Wriggers et al. 2006].

The second type of continuum damage mechanics is based on smeared continuous crack

approaches as stated in [Ozbolt et al. 1996] and [Oliver 1996]. Here, the crack initiation is

caused by a specific criterion evaluating the critical stress state (e.g. initiated by the max-

imum principle stress in case of tensile-softening in LFEM) depending on the actual stress

state at material point level of the material continuum, which can be seen as the spatial

initial point of cracking. The propagation is evaluated corresponding to the adapted ap-

proaches from the classical theory of inelasticity and plasticity. There, the inelastic state

of the strain field can represent the (smeared) crack expansion, which then leads to the

development of the strain-softening models [Simo et al. 1994]. A simple technique to

observe this phenomena is to use a (local or non-local) isotropic damage law. Indepen-

dently from the orientation of the crack, the resulting effects of degradation is assumed

to be equal in all directions. Furthermore, the exceeded dissipation of energy during the

fracture process yields to a degradation of the material stiffness. There are issues with

these smeared models which are induced by mesh size dependencies and by localization

phenomenon as well as the underestimation of the dissipated energy. Therefore, the de-

mand to discover regularization techniques for mesh-size objectivity (see section 2.4.1)

was the result. A further critical point is the path following which is applied to represent

the post-peak softening slope with multiple, and thus, ambiguous branching points, of-

ten leading to convergence problems. This is particularly a challenge in three-dimensional

damage modeling. A common point in all developments is their demand for regularization

strategies yielding to non-local formulations [Pijaudier-Cabot et al. 1987], [Jirásek 1998].

Further extensions combine the elasto-plastic and the (non-local) damage formulation for

the initiation and propagation of smeared cracks adapted for the simulation of material

nonlinearities in mesoscale models.

Microplane models [Carol et al. 1997a] and rotating crack models [Jirásek et al. 1998]

delivered further innovations for the discontinuous modeling of damage and fracture. A

K. Schrader, PhD-thesis

CONTINUUM MODELS 12

further innovative concept, as proposed in this work, is the sequentially linear analy-

sis which considers saw-tooth diagrams at material point level as distinguished in [Rots

2001], [Rots et al. 2004] and [Rots et al. 2006].

2.3 Discrete models

2.3.1 Cohesive zone model (CZM)

In linear-elastic fracture mechanics (LEFM), where an abrupt material failure at material

point level occurs, the fictitious crack model of [Hillerborg et al. 1976] was introduced

for the application to quasi-brittle materials, such as concrete. The mechanical approach

however, is based on the assumption that propagating micro-cracks, which are accumu-

lated during the fracture process, are smeared as one macroscopic or fictitious crack only

within the corresponding fracture process zone (fig. 2.3). This results in a macroscopic

stress-free crack tip as well as in a fracture zone close to the crack, still enabling the stress

to transfer between the opposite fracture surfaces of the crack. Some approaches only con-

sider normal stresses in relation to the normal direction of the crack opening. The typical

cohesive zone model, as e.g. described in [Galvez et al. 2002] shows an extended approach

taking the tangential stress components into account. Furthermore, Carol et al. use a non-

associative plasticity formulation for the evaluation of the crack initiation and propagation

combined with a coupled normal/shear interface model suitable for discrete crack analy-

sis [Carol et al. 1997b]. This kind of mixed formulation also considers Mode-I (for uniaxial

tension) and Mode-IIa (for compression with shear) fracture energy dissipation and en-

ables the presentation of tangential debonding and damage effects. Volume expansion

such as the dilatancy effect (e.g. which is observed for concrete) and material interlocking

processes can also be handled by this method. Hence, these models can explicitly repre-

sent cohesive cracking among the element boundaries considering zero-thickness interface

elements [Carol et al. 2002]. However, here the numerical effort increases specifically due

to the indispensable necessity of adaptive remeshing. A threedimensional implementation

with a modified (hyperbolic) yield condition (as the corresponding cracking criteria and

representative numerical tests in 2D) can be found in [Schrader 2005] and, moreover,

with modifications considering degradation effects during cyclic loading in [Most et al.

2006]. The softening behavior described in such formulations is specified by using linear

and bilinear functions [Hillerborg et al. 1976] as well as exponential functions [Peters-

son 1981]. Further remarks on softening functions (especially for the concrete material)

can be found in [Rots 1992] and [C̆ervenka 1994]. The numerical disadvantages of such

discrete modeling concepts are induced by the non-symmetric matrix structure of the

consistent tangential material modulus, which demands a suitable solution technique for

the global system of equations. Moreover, during the chosen path following algorithm, the

stress state at each integration point and at each load step is evaluated, often realized

K. Schrader, PhD-thesis

CONTINUUM MODELS 13

by implicit return mapping techniques [Simo et al. 1994], which are more compromising

in comparison to explicit methods. Newer approaches tend to an improved version of an

implicit closed point projection as mentioned in [Prokop 2008].

To summarize, CZM is applicable for a three-dimensional discretization, but still is critical

at numerical level.

2.3.2 Material discontinuum models

To avoid mesh dependencies and the necessity of remeshing in crack growth simulation

models, displacement based discontinuity formulations were developed. The extended

finite element method (XFEM, [Sukumar et al. 2000]), for example, is an improved tech-

nique, which respects discontinuities inside of the finite element patches extending the

partition of unity concept [Melenk et al. 1996], [Sukumar et al. 2004]. Within the XFEM,

mesh independent material interfaces and discontinuities may be represented without the

explicit discretization along the element boundaries. Here, the extention to the standard

displacement based FE evolution results in the enrichment of the original shape func-

tions by special functional terms of the heaviside or levelset function, existing in several

modifications [Sukumar et al. 2001]. These mathematical operators are used for the ap-

proximation of the discontinuous displacement field, which represents the crack trajectory

inside of the finite element. Thereby, this technique enables the modeling of a propagat-

ing crack through an initial and constant finite element mesh by additional introduced

degrees of freedom along the crack path up to the element edge. Further developments are

taking the cohesive characteristic of the crack interfaces into account [Moës et al. 2002],

avoiding stress singularities near the tipping point of the crack. This approach also avoids

the explicit representation of cracks by interface elements [Carol et al. 2002] as well as

the remeshing, which in general, is a numerical expensive task [Belytschko et al. 1999].

Figure 2.3: Fracture process in quasi-brittle materials (e.g. concrete) utilizing the FCM model of

Hillerborg.

K. Schrader, PhD-thesis

CONTINUUM MODELS 14

However, applying the XFEM technique to compute complex problems in 3D including

material failure still comprises unsolved issues and numerically yields to an ill-conditioned

system of equations.

2.4 Continuum softening models

2.4.1 Strain-softening driven energy dissipation

Continuum damage models represent opening cracks as smeared displacement jumps,

which finally result in inelastic strains. In such a smeared approach of continuum soften-

ing models, the strain-softening occurs by the establishment of a softening band, which is

characterized by localized strains in the fracture process zone and can be classified as a

separated zone of material softening. The softening band, which is then surrounded by in-

tact material, typically has a thickness corresponding to the size of the finite element mesh

density as a constraint and may generally localize in one layer of finite elements [Jirásek

et al. 2003]. This introduces an objective mesh bias, since the mesh density is usually not

consistent. Motivated by the consideration of the thickness as a fixed design parameter,

several approaches recommend that the value of such a crack band width may correspond

to the smallest element size used in the analysis and also depends on the orientation of

the crack band. However, the orientation of the softening band is generally unknown and

may cause problems in respect to the objectivity of the resolved softening band and also

to refined meshes, as the resulting strain field tends to a solution with strong discontinu-

ities. Moreover, the material heterogeneity, the criterion of crack initiation, and the type

of crack trajectory led to several damage models [Jirásek 1998], such as

(i) Isotropic damage models

(ii) Anisotropic damage models

(iii) Rotating crack models

Isotropic damage models are very sensitive to the mesh density and tend to localize along

the mesh lines. In comparison to the rotating crack model the mesh-size objectivity has

been improved, but stress locking influences the strain localization and, by this, the es-

tablishment of a potential softening band occurs, resulting in unconverged solutions. The

transition of such models to scalar damaging, however, may overcome the stress locking

phenomena. Finally, continuum softening models respecting an anisotropic damage law

can represent the trajectory of the localized strain band more realistically. The evalua-

tion of the crack initiation is based on the maximum principle stress or the Rankine-like

crack criterion, also used in the field of the fracture mechanics. Since the softening be-

havior is strongly indicated by the dissipated energy during the degradation process and

simultaneously depends on the thickness of the softening band, the adjustment of the

post-peak softening modulus according to the element size is recommended. This leads

K. Schrader, PhD-thesis

CONTINUUM MODELS 15

Figure 2.4: Exponential tensile-softening curve and the evolution of fracture energy Gf in the post-peak

region with ft as the tensile strength, εel as the elastic and the εinel as inelastic strain component.

to several regularization techniques to obtain mesh-size objectivity for arbitrary meshes.

Some regularization techniques considering the fracture-energy approach are proposed in

this work, and therefore, will be reviewed in detail in the following section.

2.4.2 Fracture energy based regularization

The fracture-energy regularization is motivated by ensuring the correct energy dissipation

in the localized softening band, which is corresponding to the area under the post-peak

stress-strain curve. In case of material tensile softening, the proposed dissipation per unit

area may be determined by considering the Mode-I fracture energy as a known material

property as well as the crack band width resulting from the spatial discretization. Here,

the achieved dissipated energy arises from the (internal) incremental deformation work

(induced by the post-peak (inelastic) stress and strain states) and is cumulated during

the structural fracture process, being equal to the fracture energy - an important material

property in simulation models for fracture. Further developments yield to partial or full

regularized continuum softening models, where strong displacement-based discontinuities

(cracks) are smeared over the thickness of the softening band and may be replaced by

corresponding inelastic strains with an adjusted energy dissipation. Other approaches

result in non-local continuum damage models, also with higher order gradients of the

internal variables [Baz̆ant et al. 2002]. In [Rots et al. 2006] three techniques for a

strain-based, a stress-based and a combined strain-stress based regularization approach

are suggested for the saw-tooth model with tensile-softening.

In the next chapter (followed this overview) notations of the continuum mechanics and

the finite element based discretization technique will be presented.

K. Schrader, PhD-thesis

Chapter 3

Notations for the finite element

based discretization of multiphase

materials

The mechanical behavior of a material continuum with bulk material properties can be

described by fundamental formulations of the continuum mechanics, whereby a compre-

hensive overview is given in [Jog 2007]. The three main differential equations, which are

induced in the Navier differential equation system, are described by the kinematic equation

(to obtain the deformation gradient), the constitutive relation (to derive internal forces

from the deformation gradient) and the equilibrium equation (coupling internal and exter-

nal forces). In the following, a comprehensive notation for the evolution of the theory of

linear elasticity and nonlinear inelasticity is given. Later in this chapter, the finite ele-

ment method will be introduced as numerical approximation technique for the solution of

the Navier differential equation system followed by efficient element formulations adapted

for the discretization of multiphase specimens.

3.1 Continuum mechanics

3.1.1 Kinematics

The motion of a single material point of a continuum [Wriggers 2008], which is changing

the position from the reference to the momentary position (see fig. 3.1) can be described

by the equation

x = φ(X; t) = x(X) (3.1)

with the momentary position x being described by a function of the reference coordinate

position X at a discrete time t. The corresponding material deformation gradient F is

defined by

F =
∂x

∂X
= x ·� (3.2)

K. Schrader, PhD-thesis 16

CONTINUUM MECHANICS 17

This causes the transformation of a material line element ∂X at the reference position to

a material line element ∂x at the momentary position by

∂x = F ∂X (3.3)

in which F , generally is an unsymmetric tensor. Moreover, the material penetrability is

avoided by the introduction of the condition

J = det(F) > 0 (3.4)

Here, the determinant J of the deformation gradient F describes the volume ratio between

reference and momentary configuration of a differential volume element deformed by F ,

such as

J =
∂VR

∂VM
(3.5)

with VR as the volume of the reference configuration and VM as the volume of the mo-

mentary configuration. Additionally, F enables the derivation of different deformation

measurements. The right Cauchy-Green deformation tensor yields to

C = FTF (3.6)

as well as the Green-Lagrange strain tensor

E =
1

2
(C − I) (3.7)

The left Cauchy-Green deformation tensor (Finger tensor) is defined by

b = FFT (3.8)

where b, the Hencky strain tensor, can be expressed by

ε =
1

2
ln(b) (3.9)

x(X)

X

Figure 3.1: Illustration of the motion at material point level from the reference to the momentary

position.

K. Schrader, PhD-thesis

CONTINUUM MECHANICS 18

3.1.2 Stress tensors

The Cauchy stress tensor T induces an infinitesimal surface force related to the deformed

momentary configuration of a surface element. Based on T , several stress measurements

can be defined. Therewith, the Kirchhoff stress tensor results in

τ = JT (3.10)

The material stress tensor is defined by

S = F−1TF−T (3.11)

and consequently

T = FSFT (3.12)

The first Piola-Kirchhoff stress tensor yields to

T P1
= JTFT (3.13)

and the symmetric second Piola-Kirchhoff stress tensor is given by

T P2
= F−1T P1

= JF−1TFT (3.14)

Finally, the Mandel stress tensor is

M = SC = F−1TF (3.15)

Strain and stress tensors can be used to formulate constitutive relations for the linear

elasticity and, furthermore, for their extension to the material inelasticity.

3.1.3 Constitutive relations of linear elasticity

The constitutive relation between the Green-Lagrange strain tensor E and the second

Piola-Kirchhoff stress tensor is defined by

T P2
= CE (3.16)

which is also known as Hook’s law for linear elastic materials with C as the fourth order

elasticity tensor. The linearization of the Green-Lagrange strain tensor results in the

linearized strain tensor ε

ε = linE (3.17)

The linearized stress tensor σ results in

σ = Eε (3.18)

K. Schrader, PhD-thesis

CONTINUUM MECHANICS 19

with E as the elastic material matrix. Respecting the stress and strain components, eq.

(3.17) and eq. (3.18), respectively, Hook’s law can be written as⎛⎜⎜⎜⎜⎜⎜⎜⎝

σxx

σyy

σzz

τxy

τxz

τyz

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= E

⎛⎜⎜⎜⎜⎜⎜⎜⎝

εxx

εyy

εzz

γxy

γxz

γyz

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.19)

In case of isotropic material behavior, the material elasticity matrix considering the ma-

terial properties ν (Poisson’s ratio) and E (Young’s modulus) can be stated as

E =
E

(1 + ν)(1− 2ν)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2 0 0

0 0 0 0 1−2ν
2 0

0 0 0 0 0 1−2ν
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.20)

The kinematic and the constitutive relation are completed by the differential equilibrium

formulation connecting internal and external physical components in respect to the first

law of thermodynamics (where consistent conversion of physical energy is assumed). The

energy law of mechanics provides variational principles leading to the weak form of the

final Navier differential equation. The solution of such PDEs can be done approximately

by a numerical discretization technique: The finite element method (FEM) which will be

used in this work and by this, is being introduced later in this chapter.

3.1.4 Equilibrium equation and Navier differential equation

The internal forces are represented by the linearized stress tensor σ and the external

forces p (e.g. body loads) are connected by a differential operator. The notation results

in

−p = σ ·� = De · σ (3.21)

With the constitutive relation of eq. (3.18), the introduction of differential operator Dk

and the external displacements u (describing the change from the reference X to the

momentary position x) eq. (3.17) changes to

ε = Dk · u (3.22)

Finally, the fundamental Navier differential equation considering eq. (3.18) and (3.22) is

given with

−p = De E ε = De E Dk u (3.23)

K. Schrader, PhD-thesis

CONTINUUM MECHANICS 20

Figure 3.2: Illustration of the closest point projection as implicit return mapping procedure evaluating

plastic strains: Iterative backtracking scheme of the elastic trial stress state σtrial, at last hitting the

flow condition f(σn+1) = 0 (left) and the improved closest point projection.

In the following, some notations are described in respect to material inelasticity, which

are then closing this section.

3.1.5 Extension to material inelasticity

Following the classical plasticity formulation [Simo et al. 1998], the linearized strain

tensor is separated in an elastic and an inelastic part with

ε = εtot = εel + εpl (3.24)

The linear-elastic constitutive relation regarding Hook’s law of eq. (3.18) is modified to

σ = E(εtot − εpl) (3.25)

The evaluation of the stress state (elastic or inelastic) is performed by using a defined

yield condition f(σ). This depends on the actual stress state σ and the material specific

yield stress σY as a scalar value. In general, f (without the consideration of hardening

effects) can be expressed as

f(σ) = |σ| − σY =

{
< 0 elastic

= 0 inelastic
(3.26)

Since the evaluation of f(σ) for multiaxial stress states (resulting from inelastic material

behavior) does not exactly result in zero, mapping techniques such as return mapping

methods were developed for the computation of the inelastic stress and strain components.

One technique is the ’closest point projection’ algorithm where the back-mapping starts

from an initial elastic trial stress state σtrial and goes on in direction of the surface of the

elastic stress domain Eσ (fig. 3.2). This approach is performed at material point level,

e.g. at each integration point of a finite element. However, this is numerically expensive

K. Schrader, PhD-thesis

CONTINUUM MECHANICS 21

(with an increasing order of finite elements) and more importantly, depending on the

complexity of the underlying constitutive law, for which the convergence behavior is not

always guaranteed. Additionally, the closed form of these rate-independent (plasticity)

formulations require a relation, which quantifies the evolution of the inelastic strains beside

the flow condition and the definition of a plastic potential: the so-called plastic flow rule.

The change of the material tensor during the inelastic state is characterized by the elasto-

plastic tangent modulus. Further evolution equations are pointed out in [Simo et al. 1998]

with some algorithmic experience in respect to implicit return mapping techniques by the

author shown in [Schrader 2005].

For ductile materials the von-Mises yield condition [Mises 1913] considers the equivalent

von-Mises stress in respect to the second invariant of the stress tensor and, by that,

evaluates the inelastic stress state as follows

σV =
√

3 · I2 (3.27)

Hence, considering the second invariant of the stress tensor σ (with sij as components of

deviatoric part σdev) which is given with

I2 =
1

2
sijsij = τxy

2 + τ2yz + τzx
2 − (σxxσyy + σyyσzz + σzzσxx) (3.28)

the von-Mises yield condition (assuming isotropic material) results in

f(σ) = |σ| − σY =
√

3 · I2 − σY (3.29)

in which σY describes the initial state of the plastic flow, e.g considering the tensile

strength as a material property used for uniaxial tensile loading conditions.

An alternative flow hypothesis according to the Tresca flow condition can be evaluated

Figure 3.3: Transformation of the original Cartesian to the principle coordinate system.

K. Schrader, PhD-thesis

CONTINUUM MECHANICS 22

by

f(σ) = (σmax − σmin)− σY (3.30)

with σmax and σmin indicating the maximum and minimum principle stress defined in the

principle coordinate system (fig. 3.3). The corresponding (principle) stress tensor σ̂ with

zero shear components in diagonal form results in

σ̂ =

⎛⎜⎝σ1 0 0

0 σ2 0

0 0 σ3

⎞⎟⎠ (3.31)

with

σmin ∪ σmax ∈ {σ1; σ2; σ3} (3.32)

The transformation of the stress tensor into the principle stress components considering

the transformation matrix T results in

σ̂ = TσT T (3.33)

with

T =

⎛⎜⎝t11 t12 t13

t21 t22 t23

t31 t32 t33

⎞⎟⎠ (3.34)

Since T is orthogonal, it yields to

T T = T−1 (3.35)

According to figure 3.3, the cosine of the angles α, β and γ determines the entries of

matrix T with

t11 = cosα (3.36)

for x′1 and x1 and

t12 = cosβ (3.37)

for x′1 and x2 and

t13 = cosγ (3.38)

for x′1 and x3, where the angles result from the rotated x′1 axis in relation to the original

axis x1, x2 and x3, respectively. To obtain the principle stress state, the solution of the

following eigenvalue problem

|σij − λδij | =

∣∣∣∣∣∣∣
σ11 − λ σ12 σ13

σ21 σ22 − λ σ23

σ31 σ32 σ33 − λ

∣∣∣∣∣∣∣ = 0 (3.39)

K. Schrader, PhD-thesis

CONTINUUM MECHANICS 23

delivers three eigenvalues λi for the cubic equation resulting from the computation of the

determinant

det|σij − λδij | = −λ3 + I1λ
2 − I2λ+ I3 = 0 (3.40)

with

σ1 = max(λ1, λ2, λ3) (3.41)

and

σ3 = min(λ1, λ2, λ3) (3.42)

Considering σ1 and σ3 as well as the first invariant of the stress tensor, the second com-

ponent of the principle stress tensor σ2 results in

σ2 = I1 − σ1 − σ3 (3.43)

with the first invariant

I1 = σ11 + σ22 + σ33 (3.44)

3.1.6 The Rankine criterion

Considering the classical plasticity formulation, the yield condition gives the criterion of

a limit state of a bounded elastic domain. This limit state can be seen as the initiation

of plastic flow in ductile materials for which the von-Mises yield condition is widely used.

Nevertheless, there are several criterions, which are evaluating the stress state of the

material softening, especially in quasi-brittle materials. For this reason, the Rankine

criterion [Carol et al. 2001], which is widely accepted in the field of fracture mechanics,

is introduced. The elastic peak following the Rankine criterion can be defined for three

cases considering the principle stresses σ1, σ2 and σ3 as well as the tensile strength ft

according to the following equation with

fR(σ) =

⎧⎪⎨⎪⎩
σ1 − ft σi < 0 i = 2, 3√
σ21 + σ22 − ft σi < 0 i = 3√
σ21 + σ22 + σ23 − ft σi ≥ 0 i = 1, .., 3

(3.45)

The evaluation of such criterions demands for return mapping techniques for the back-

tracking of a trial elastic stress state to the initial inelastic stress state of plastic flow or

also to the state of smeared crack initiation in respect to physically nonlinear (damage)

modeling approaches. Alternatively, the sequential linear analysis is based on the saw-

tooth softening model [Rots et al. 2006], which is reviewed in chapter 7 and which is

adapted in this work for hybrid meshed 3D multiphase specimens. It offers a sophisti-

cated alternative in modeling nonlinear material behavior. Since mapping techniques are

K. Schrader, PhD-thesis

CONTINUUM MECHANICS 24

no longer needed, the evaluation of eq. (3.26) is imminent. In this work, the framework

of a sequential linear analysis for the stiffness degradation of multiphase composites will

be using the Rankine criterion at material point level to detect tipping points for the ini-

tiation of material softening mechanism. The notation for the mathematical constructs of

continuum mechanics is complemented by some fundamental formulations of the finite el-

ement method (FEM) as numerical solution technique for the partial differential equation

systems. An introduction is given in the next section.

K. Schrader, PhD-thesis

FINITE ELEMENT METHOD 25

3.2 Finite element method

The finite element method [Bathe 1995] describes an approximative solution technique

for partial differential equations resulting from the discretization of different physical

problems. The main approach is to separate the (material) domain of interest G in n

finite elements Ge as subparts of G (see fig. 3.4)

G =

n⋃
e=1

Ge (3.46)

Starting with a 3D elasticity problem V which is bound by domain Ω, this problem can

be described by the equilibrium equation

σij,j + bi = 0 (3.47)

with the constitutive relation

σij = Cijklεkl (3.48)

and the kinematic equation of

εkl =
1

2
(Uk,l + Ul,k) ≡ �s(U)kl (3.49)

The boundary conditions are subjected to

Ω = Ωt + Ωu, Ωt ∩ Ωu = ∅ (3.50)

and

σijnj = ti on Ωt ui = Ûi on Ωu (3.51)

Here, σij are the components of the stress tensor, bi the components of the body force

and ni the unit outward normal. Ui are the displacement field, Ûi are the displacement

X3

X2

X1

Ge

G

Figure 3.4: Illustration of the material domain G discretized by finite element patches Ge.

K. Schrader, PhD-thesis

FINITE ELEMENT METHOD 26

based boundary conditions and Cijkl is the material tensor. The variational weak form of

eq. (3.47) with zero body force is given as∫
V
δ�s(U)ijCijkl�s(U)kldV −

∫
Ω

δUitidΩ = 0 (3.52)

With the introduction of the strain-displacement operator Bij and ui as the component

of displacements eq. (3.49) changes to

εi = Bijuj (3.53)

Furthermore, with the operator Nij (including the shape functions) and ui as the compo-

nent of the displacement, the interpolation field results in the relation

Ui = Nijuj (3.54)

Respecting eq. (3.53) and eq. (3.54) the weak form of eq. (3.52) changes to∫
V
δ(Bijuj)

TCijklBkluldV −
∫
Ω

δ(Nijuj)
T tidΩ = 0 (3.55)

Reformulation and separation of virtual displacements yields to

δuTj

(∫
V
BT
ijCijklBkldVul −

∫
Ω

NT
ij tjdΩ

)
= 0 (3.56)

which is in equilibrium for any virtual displacements. Therewith and with the extraction

of the components of the element stiffness

Kij =

∫
V
BT
ijCijklBkldV (3.57)

and the components of the force vector

fi =

∫
Ω

NT
ij tjdΩ (3.58)

the final element-based relationship between stiffness and corresponding external forces

can be rewritten to

Kijuj = fi (3.59)

Considering the assembly operator R for the element stiffness matrix Kk
e such as

Kgl =

n∑
k=1

RTKk
eR (3.60)

and for the element forces

f gl =

n∑
k=1

Rfk (3.61)

K. Schrader, PhD-thesis

FINITE ELEMENT METHOD 27

the global system of equations in matrix-vector notation is given as

Kglugl = f gl (3.62)

The approach in this thesis separates the material region in elastic (e.g. matrix material)

and inelastic (e.g. inclusion material and volumetric ITZ) parts to solve efficiently the

resulting partial differential equation systems using the FEM. Introducing the elastic-

inelastic (element-based) domain split, which is proposed in this work, eq. (3.62) changes

to (
Kgl

(el)
+Kgl

(inel)

)
ugl = f gl

Finally, the element stiffness matrix corresponding to the elastic or inelastic domain is

obtained by

K(el) =

∫
V1

BTC(el)BdV1 (3.63)

and

K(inel) =

∫
V2

BTC(inel)BdV2 (3.64)

with C(el) as the elastic and C(inel) as the inelastic material tensor equal to E as described

in section 3.1.3.

3.3 Conclusion

Notations of the continuum mechanics and of the finite element method provide theore-

tical instruments, which can be applied to the mathematical formulation of the physi-

cal problem, especially the material inelasticity resulting from the material heterogen-

ity of a multiphase specimen. The numerical approximation of the partial differential

equations resulting from the physical description is based on the standard finite element

discretization yielding to the numerical representation of simulation models. Their exten-

sion considering material nonlinear effects should enable the simulation of damage-induced

multiphase composites. Due to this, the following sections include

• the evaluation of efficient finite element formulations (section 3.4),

• the discretization of the multiphase geometry (section 4.1) as well as

• the partitioning of regular and hybrid finite element meshes (section 4.3).

K. Schrader, PhD-thesis

EFFICIENT ELEMENT FORMULATIONS 28

3.4 Efficient element formulations

3.4.1 Finite element integrands in 3D

Respecting the shape functions Ni of the used element type, the interpolation scheme for

the coordinates and for the displacement field of one element in respect to the isopara-

metric concept in 3D is given as

Xe =

n∑
i=1

Ni(ξ, η, ζ)Xi (3.65)

with n as the number of integration points and

ue =

n∑
i=1

Ni(ξ, η, ζ)ui (3.66)

The gradients of the displacement field are given with

grad ue =

n∑
i=1

ui ⊗�xNi (3.67)

being equivalent to the notation of the derivatives with

∂ue

∂X
=

n∑
i=1

∂Ni(ξ, η, ζ)

∂X
ui (3.68)

used to obtain the strains or variations of the strains. The computation of the derivates

requires the transformation of the derivatives (using the local coordinates ξ, η and ζ) into

a global space of coordinates where the displacement field is defined. The derivatives of

the displacement field respecting the local to global transfer of coordinates results in

∂ue

∂X
=

∂ue

∂ξ

∂ξ

∂X
=

(n∑
i=1

∂Ni(ξ)

∂ξ
ui

)
∂ξ

∂X
with ξ = {ξ, η, ζ} (3.69)

Considering the interpolation function of eq. (3.65), the derivatives of ξ can be determined

by

∂ξ

∂X
=

(
∂X

∂ξ

)−1

=

(n∑
i=1

∂Ni(ξ)

∂ξ
Xi

)−1

= Je(ξ)
−1 (3.70)

This is the so-called Jacobi transformation where the Jacobi matrix Je can efficiently be

calculated using the chain rule

Je =

n∑
i=1

Xi ⊗�ξNi =

⎛⎜⎝X1,ξ X1,η X1,ζ

X2,ξ X2,η X2,ζ

X3,ξ X3,η X3,ζ

⎞⎟⎠ (3.71)

K. Schrader, PhD-thesis

EFFICIENT ELEMENT FORMULATIONS 29

with the computation of the components Xn,m

Xm,k =

n∑
i=1

Ni,kXmi (3.72)

The integration of the shape functions and their derivatives via the element domain Ωe to

the local space as well as the local to global transformation of coordinates for one element

is represented as∫
Ωe

g(X)dΩe =

∫
Ωe

g(ξ) | Je | dΩe

=

∫ +1

−1

∫ +1

−1

∫ +1

−1

g(ξ, η, ζ) | Je | dξdηdζ
(3.73)

where the numerical approximation of this integral using n integration points and the

corresponding weights wi of the Gaussian quadrature has the following notation∫ +1

−1

∫ +1

−1

∫ +1

−1

g(ξ, η, ζ) | Je | dξdηdζ ≡

=

n∑
i=1

g(ξi, ηi, ζi) | Je(ξi, ηi, ζi) | wi

(3.74)

Finally, the general shape functions of some 3D finite elements with m nodes according

to the isoparametric concept are given as follows

• for the trilinear (m = 8) and quadratic (m = 20, m = 27) hexahedral element

Ni(ξ, η, ζ) =
1

2
(1 + ξiξ)

1

2
(1 + ηiη)

1

2
(1 + ζiζ) with i = 1, ...,m (3.75)

• for the linear 4-noded tetrahedral element

N1 = 1− ξ − η − ζ (3.76)

N2 = 1− ξ − η − ζ (3.77)

N3 = 1− ξ − η − ζ (3.78)

N4 = 1− ξ − η − ζ (3.79)

• as well as for the quadratic 10-noded tetrahedral element

N1 = λ(2λ− 1) N2 = ξ(2ξ − 1) (3.80)

N3 = η(2η − 1), N4 = ζ(2ζ − 1) (3.81)

N5 = 4ξλ, N6 = 4ξη (3.82)

N7 = 4ηλ, N8 = 4ζλ (3.83)

N9 = 4ξζ, N10 = 4ηζ (3.84)

with λ = 1− ξ − η − ζ.

K. Schrader, PhD-thesis

EFFICIENT ELEMENT FORMULATIONS 30

• for the linear 5-noded pyramid solid element

Ni(ξ, η, ζ) =
1

2
(1 + ξiξ)

1

2
(1 + ηiη)

1

2
(1 + ζiζ) with i = 1, ..., 4 (3.85)

N5 =
1

2
(1 + ζ) (3.86)

These basic shape functions were then used for the implementation of the standard (full)

finite element integration in 3D. Regarding the computational efficiency, the integration

concept has been compared to the reduced integration and to the voxel integration tech-

nique, which was also applied to the grid-based part of hybrid meshes used in this work.

3.4.2 Reduced integration for 3D finite elements

The most efficient method for the numerical integration of finite elements of 3D elasticity

problems is a reduced integration strategy, comparable to [Wriggers 2009], where the

necessary number of Gauss integration points is decreased and consequently, the numerical

effort and memory demand required. The simplest way to reduce the computing time is to

use a one-point integration rule for the element midpoint. By this, the volume integration

defined by function g with the natural coordinates ξ, η and ζ leads to

K1×1
e = K1×1

e |ξ=η=ζ=0 =

∫ 1

−1

∫ 1

−1

∫ 1

−1

g(ξ, η, ζ) | Je | dξdηdζ (3.87)

In general, one distinguishes between two types of reduced integration

• the stabilization-free reduced integration or

• the reduced integration with stabilization

Reviewing the linear tetrahedron and the linear pyramid solid the reduced integration

technique will not lead to a rank-insufficient stiffness matrix, if only one integration point

is used. Therefore, it is not necessary to use a stabilization technique for the element

stiffess matrix compensating the rank decrease. For a linear hexahedral element with

eight regular integration points the one-point Gaussian quadrature approximation yields

to

K1×1
e ≡

n∑
i=1

n∑
j=1

n∑
k=1

g(ξi, ηj , ζk) | J ijk | wiwjwk =

= 8g(ξ1, η1, ζ1) | J111 |
(3.88)

element type interpolation type point natural coordinates weight

i ξ, ηi, ζi wi

tetrahedron solid linear 1 {0.25; 0.25; 0.25} 0.166667

hexaeder solid linear 1 {0; 0; 0} 2.0

pyramid solid linear 1 {0; 0;−0.5} 4.740740

Table 3.1: One-point integration rules for linear tetrahedron, linear hexahedron and linear pyramid

solid elements.

K. Schrader, PhD-thesis

EFFICIENT ELEMENT FORMULATIONS 31

with the characteristics as follows

• n = 1 as the number of Gaussian points

• ξ1 = η1 = ζ1 = 0 as the natural coordinates for the element mid point

• wi = wj = wk = 2 as the weighting factors

• | J111 | as the Jacobian determinant

according to table 3.1. Here, the increase in computational efficiency will be offset, since

the underintegrated elements alone are no longer stable due to the resulting rank decrease

of the element matrix. Hence, stabilization techniques for underintegrated elements were

developed. In the following, the hourglass stabilization for a reduced integrated linear

hexahedral element will be reviewed.

3.4.3 Hourglass stabilization technique

The basic concept of the stabilization of finite elements results in the eigenvalue analysis

applied to a single finite element. Zero eigenvalues are related to rigid body modes, which

do not influence the element stiffness. Additional zero eigenvalues are occuring from the

so-called hourglass modes which, however, contribute to the element stiffness and hence,

artificial stiffness for the underintegrated elements needs to be added for an application

of such elements. The final element stiffness matrix Ke with stabilization is composed

by [Belytschko 1984] with

Ke ≡ Ke = K1×1
e +Kstab

e (3.89)

The stabilized stiffness matrix for hexahedral elements considering the stabilization vec-

tors γ results in

Kstab
e =

12∑
i=1

αiγiγ
T
i (3.90)

To construct these stabilization vectors, four hourglass base vectors are introduced

h1 = { 1,−1, 1,−1, 1,−1, 1,−1 }T (3.91)

h2 = { 1, 1,−1,−1,−1,−1, 1, 1 }T (3.92)

h3 = { 1,−1,−1, 1,−1, 1, 1,−1 }T (3.93)

h4 = { 1,−1, 1,−1,−1, 1,−1, 1 }T (3.94)

Moreover, the geometry-dependent hourglass shape vectors with their values γij [Flana-

gan et al. 1981] and [Belytschko 1984] avoiding the hourglass modes are given with

γij = hij −Nj,k

8∑
n=1

xnkhin (3.95)

K. Schrader, PhD-thesis

EFFICIENT ELEMENT FORMULATIONS 32

where Nj,k denotes the derivatives of the shape functions and xnk the nodal coordinates.

The resulting 12 stabilization vectors can be written as

γi = {γk1, 0, 0, γk2, 0, 0, ..., γk8, 0, 0}T (3.96)

with i = k and k = 1, .., 4,

γi = {0, γk1, 0, 0, γk2, 0, ..., 0, γk8, 0}T (3.97)

with i = 5, .., 8 and k = 1, , , 4,

γi = {0, 0, γk1, 0, 0, γk2, ..., 0, 0, γk8}T (3.98)

with i = 9, .., 12 and k = 1, , , 4.

According to [Wriggers 2009], the stabilization parameters αi have less influence on the

application in respect to standard 3D engineering problems in solid mechanics and can

be selected with high flexibility. In this approach, eq. (3.90) following [Belytschko 1984]

is modified using β as a scaled parameter, which is derived from the relation between the

maximum eigenvalue λ1×1
max of the reduced integrated stiffness matrix and the maximum

eigenvalue λstabmax of the stabilized part of the stiffness matrix (resulting from the spectral

decomposition). The resulting eigenvalue problems which then need to be solved are

(K1×1
e − λ1×1

i I)ve = 0 with K1×1
e ∈ Rn×n and i = 1, ..., n (3.99)

for the part of the stiffness matrix respecting the reduced integration and

(Kstab
e − λstabi I)ve = 0 with Kstab

e ∈ Rn×n and i = 1, ..., n (3.100)

for the stabilizing term. Assuming the stabilization parameters αi

αi = β = const. (3.101)

as well as the modification of eq. (3.90)

Kstab
e =

12∑
i=1

αiγiγ
T
i = β

12∑
i=1

γiγ
T
i (3.102)

this leads to the α-free and also β-free stabilized stiffness part K
stab
e

K
stab
e =

12∑
i=1

γiγ
T
i (3.103)

The scaling parameter β results in

β =
λ1×1
max

λstabmax

(3.104)

K. Schrader, PhD-thesis

VOXEL-BASED ELEMENT INTEGRATION 33

By this, as well as by considering eq. (3.103), the computation of the reduced integrated

and stabilized element stiffness matrix according to eq. (3.89) changes to

Ke = K1×1
e + βK

stab
e (3.105)

The kinematic relation is modified by

ε = Bu =

(
ε0

ε̃

)
=

(
B1×1 0

0 Bstab

)
u (3.106)

with operator B1×1 resulting from the reduced integration and operator Bstab taking the

stabilized part into account, and is defined as follows when considering eq. (3.96) up to

eq. (3.98)

Bstab =

⎛⎜⎝γT
u 0 0

0 γT
v 0

0 0 γT
w

⎞⎟⎠ (3.107)

with

γT
u =

4∑
i=1

γT
i , γT

v =

9∑
i=5

γT
i , γT

w =

12∑
i=9

γT
i (3.108)

Due to the modified material operator C, the conjugate stresses σ̃ and extended strains

ε̃ are introduced by the following constitutive relation

σ = Cε =

(
σ0

σ̃

)
=

(
Ce 0

0 Cstab

)(
ε0

ε̃

)
(3.109)

with the fictitious material operatorCstab for the stabilized part constructed by the scaling

parameter β

Cstab =

⎛⎜⎝β 0 0

0 β 0

0 0 β

⎞⎟⎠ (3.110)

For the computation of the corresponding eigenvalue problems of eq. (3.99) and eq.

(3.100), the von-Mises-Wielandt algorithm [Golub et al. 2000] was used.

3.4.4 Voxel-based integration technique and global matrix assembly

If the finite element mesh is based on a regular grid (which is the case in voxel discretiza-

tions (fig. 3.5, left)) respecting a different element length per Cartesian direction (but

with constant element lengths over all elements), the resulting element stiffness matrix

(assuming material homogeneity) is identical and has to be calculated only once. This

is the result of an equivalent Jacobi transformation and provides a constant Jacobi de-

terminant for all (voxel) elements. Furthermore, the nodal incidence of each element or

K. Schrader, PhD-thesis

VOXEL-BASED ELEMENT INTEGRATION 34

1. INIT: K ∈ Rnxn
3 ; x0 /∈ 0

2. yi = Kxi−1

3. ωi = yT
i · xi−1

4. xi =
yi

||yi||
5. IF ωi − ωi−1 < TOL BREAK; ELSE GOTO 2.

6. SET: λmax = ωi

Table 3.2: Von-Mises-Wielandt algorithm: Determination of the maximum eigenvalue of matrix K.

its corresponding voxel combined with the initial element stiffness matrix is taken into

account for an efficient (and also parallel) assembly of the global matrix. For isotropic

material and assuming a constant Poisson’s ratio eq. (3.63) can then be rewritten as

K =

∫
V
BTCBdV = E

∫
V
BTC0BdV = E ·K0 (3.111)

which leads to a constant initial stiffness K0 and thereby, still enables the variation of

the material property E per element. For the assembly of the global stiffness Kgl of such

voxel discretizations (taking the initial stiffness K0 into account), the following definition

describes all stiffness parts as nodal blocks of K

1

E
Kij =

NA⋃
m=1

A(m)
ij = const. (3.112)

In this formula, all components A(m)
ij of one nodal block m are associated with the entries

of a n by n nodal block matrix. Here, n is the number of existing degrees of freedom per

FE node (e.g. 3 by 3 for three translational d.o.f.s per node) and NA denotes the number

of nodal blocks depending on the order of the finite element used for the initial stiffness

Figure 3.5: Regular voxel discretization (left) with equivalent element stiffnesses.

K. Schrader, PhD-thesis

VOXEL-BASED ELEMENT INTEGRATION 35

computation. The nodal FE block m results from node k and node l which are included

in the node set Ne defining the actual finite element with

{k ∪ l} ⊂ Ne (3.113)

and

Ne = {N1, ..., NN} (3.114)

Therefore, the global assembly based on all nodal blocks of the initial stiffness matrix

considering a variation of Young’s modulus E of element n can be formulated as

Kgl
ij =

Ne⋃
n=1

NA⋃
m=1

E(n)A(m)
ij (3.115)

Considering the cholesky decomposition scheme, the global stiffness can be expressed as

Kgl = LTDL (3.116)

However, the storage of the assembled stiffness only considers the upper or the lower

triangle matrix of nodal blocks with non-zero entries. The (off-diagonal) nodal block-

based storage of the upper or lower tringle matrix L results in

Lij =

Ne⋃
n=1

NL⋃
m=1

E(n)A(m)
ij if k �= l (3.117)

The block-based storage of the diagonal matrix D yields to

Dij =

Ne⋃
n=1

ND⋃
m=1

E(n)A(m)
ij if k = l (3.118)

The number of nodes N of the finite element (assuming a fixed element type for the voxel

discretization) determines the number of off-diagonal nodal blocks NL with

NL =
1

2
· (N2 −N) (3.119)

and the number of diagonal nodal blocks ND with

ND = N (3.120)

The storage scheme, denoted as nodal compressed sparse row storage (ndcsr), will be

applied for the distributed computation of the global equation system, particularly suit-

able for repeated matrix-vector operations, where more algorithmic details are given in

chapter 5.

K. Schrader, PhD-thesis

VOXEL-BASED ELEMENT INTEGRATION 36

3.4.5 Notes on nodally integrated finite elements and smoothed finite ele-

ment methods (S-FEM, FS-FEM, ES-FEM)

A new direction of improving the element formulation in respect to the classical ele-

ment integration concept, like e.g. the Gaussian quadrature, is based on a concept of

nodally integrated finite elements applicable for 2D and also 3D finite element problems

[Tanaka et al. 2006], [Liu et al. 2009]. The element integration is based on the nodes

defining the element edges, the element faces as well as the corresponding volume of the

finite element. The nodal integration directly considers the nodal coordinates as limit

values for the integration over the defined edges and faces and, additionally, a special

smoothing function which fulfills the partition of unity requirement, is introduced. The

FS-FEM technique [Nguyen-Thoi et al. 2009] improves this approach by a strain smooth-

ing technique applied for each coincident face of two different 3D finite elements defining a

smoothed volume, which is considered for the nodal integration. The computational effort

for 3D finite element meshes using S-FEM concepts is numerically more expensive than

the conventional quadratures based on integration points. This results from an increased

bandwidth of the global system of equations as stated also in [Nguyen-Thoi et al. 2009],

where the FS-FEM technique was applied to 3D visco-elastoplastic mechanical problems.

Even though an increased accuracy was achieved in respect to the FE error estimation,

but due to the lack of performance increase in 3D the implementation of such integration

techniques was not considered in this work.

3.4.6 Concluding remarks

With the basic constructs of continuum mechanics, a FE based discretization technique

considering three phases of a multiphase specimen may result in a hybrid mesh. There,

each distinct phase is described by a specific material behavior, which is enabled by the

elastic-inlastic domain split of the whole specimen. The hybrid usage of grid-based and

aligned meshing techniques in 3D demands to efficient element integration techniques

such as the reduced integration and a grid-based voxel element integration, which were

reviewed in this chapter. Additionally, a scalable nodal block based storage of the finite

element data may enable a fast simultaneous element integration and the assembly of

the global matrix with improved speed-up and scalability by its parallel execution. For

the nonlinear simulation model this is a fast technique for the nodal block based re-

integration of the finite elements, which are involved with a change in the material tensor

(e.g. if nonlinear material effects are considered) and with that, a fast modification of the

distributed coefficient matrices is being proposed. This is also an important preliminary

step for the adaption of a scalable solver strategy, being suitable for its application on high-

performance computers. Due to this, numerical experiences regarding a hybrid meshing

technique and also the partitioning approach for the application of domain decomposition

methods will be presented in the following chapter.

K. Schrader, PhD-thesis

Chapter 4

Numerical discretization of

multiphase materials

In this work, the main focus is on the discretization of 3D multiphase materials based

on a volumetric interfacial transition zone (VITZ) in high resolution, coupling different

material phases, e.g. the matrix material and the inclusion material. For the VITZ, an

aligned meshing procedure is prefered, which enables the necessary discretization among

the material boundaries of inclusions and the smooth transition as well as the conform

connection to a regular grid. The main research interest is to get an inside view of the

material behavior of the VITZ in 3D, especially the successive process of degradation in

the case of initiated damage in multiphase composites.

4.1 Discretization: Multiphase geometry and meshing in 3D

4.1.1 Introduction

An initial underlying grid, which is proposed for obtaining the hybrid mesh, is describ-

ing the matrix material zone and is meshed as coarse as possible. By this, an imminent

reduction of the number of nodal d.o.f.s may be realized (compared to the standard

meshing techniques applied to the whole specimen resulting in one irregular mesh only).

Additionally, a linear-elastic constitutive law is applied to the matrix zone, also decreas-

ing the number of history data to be stored. Consequently, the reduced numerical ef-

fort with respect to the evaluation of strain and stress states (in conjuction with return

mapping techniques during a nonlinear simulation framework) is decreased. This results

in an overall higher computational efficiency, which constitutes another aim of this work.

Furthermore, the technique of an initial elastic-inelastic domain split (fig. 4.1 (1)), di-

vides the structural specimen in zones of grid-based matrix material (with linear-elastic

structural behavior) and irregular meshed bounding boxes including inclusions and its

surrounding interfacial transistion zone, the VITZ. This zone may be considered as the

weakest coupling link for the bonding between the matrix and the inclusion material,

K. Schrader, PhD-thesis 37

MULTIPHASE GEOMETRY AND MESHING 38

where the initiation and accumulation of micro-cracks mostly starts and thereby, the

material behavior of the whole specimen is significantly influenced and appropriated up

to the point of the abrupt structural failure. Due to this, the material behavior of the

VITZ may be assumed to be physically nonlinear. This approach is a preliminary step to

consider computer-tomographic (ct) based voxel models, see figure 4.1 (2), where regions

of main interest may be replaced by a large-scale aligned mesh with a high resolution

in a similar way. Additionally, in such models, the random based heterogeneity of the

material properties of the matrix material may also be considered as illustrated in figure

4.1 (3, middle). The combination of these techniques then results in hybrid meshed and

partitioned multiphase specimens ([Mandel 1994], see fig. 4.1, bottom).

4.1.2 Inclusion-matrix geometry model

Establishing a numerical simulation model for heterogeneous materials on the mesoscale

requires two basic steps: firstly, the description of the heterogeneous geometry and sec-

ondly, its effective discretization. In a first approach, the chosen geometry modeling is

based on the Delaunay tesselation [Caballero et al. 2006], appropriating the final shape

of the inclusion. The Delaunay tessilation has the main advantage of capturing the het-

erogeneous nature of the shape of composites more precisely, as this is not the case for

ellipsoidal or spherical modeling approaches of such entities [Häfner et al. 2003], [Wriggers

et al. 2006]. The resulting heterogeneous geometries consist of three distinct phases at

mesoscale (fig. 4.2):

• the inclusions of any irregular shape (zone 1)

• which are embedded in homogeneous matrix material (zone 2)

• a volumetric interfacial transition zone (VITZ) between inclusion and matrix material

(zone 3)

Two different strategies allow the generation of these types of heterogeneous models: Ei-

ther by direct transferring the 3D image data ([Garboczi 2002], [Shan et al. 2004]), namely

the voxel models, on the appropriate scales [Kim et al. 2003] or the models may artificially

be generated based on the statistical information of their geometry [Wang et al. 1999].

The proposed modeling technique of this work follows the second approach. Here, a special

algorithm randomly selects different area-non-coadjacent or cone-point-adjacent tetrahe-

drons starting with the coarsest triangulation, respecting specific parameters: These can

be the number of selections, the factor of density package as the volume ratio or the kind

of selection of coadjacent connected tetrahedrons to vary the quantity and arrangements

of the final inclusions (see fig. 4.3, fig. 4.4 and fig. 4.6). The degenerated geometry in

shapes of a single inclusion (fig. 4.5, 4.7) is then obtained by cutting through the selected

tetrahedron with a fixed distance from each cone point. To improve the performance of

nonlinear simulations in 3D, one needs to differenciate between the elastic, (e.g. the region

K. Schrader, PhD-thesis

MULTIPHASE GEOMETRY AND MESHING 39

Elastic-inelastic domain split (1):

Voxel based discretization and partitioning (2):

Heterogeneous materials and random distribution of material properties (3):

Combination (1)-(3):

Figure 4.1: Combining different discretization and decomposition techniques.

K. Schrader, PhD-thesis

MULTIPHASE GEOMETRY AND MESHING 40

Figure 4.2: Initial inclusion-matrix geometry (left) and heterogeneous modeling with three distinct

phases: inclusion (zone 1), matrix material (zone 2) and volumetric interfacial transition zone (zone 3).

of homogeneous matrix material) and the inelastic regions (e.g. the aggregates or inclu-

sions and the volumetric ITZ around them, where damage effects are mainly initiated).

Each inclusion has its own bounding box, which represents a separated material phase, if

the volume of the corresponding inclusion is excluded: a volumetric interfacial transition

zone. The reduction of the orthogonal grid by such bounding boxes describes the vol-

ume of the homogeneous matrix respecting the linear-elastic material behavior. Finally,

this approach leads to a geometrically three-phase as well as heterogeneous modeling of

multiphase materials with different shape and sizes of the inclusions (fig. 4.8), [Schrader

et al. 2011]. In these examples, the volume ratio of (non-smeared and coarse mesh based)

inclusions totals to approximately 10%.

Figure 4.3: Coarse and fine Delaunay triangulation to obtain different aggregate shapes and sizes.

4.1.3 Hybrid 3D meshing techniques

Here, firstly, the boundary between the inclusions und their bounding boxes and secondly,

the bounding boxes and the inclusions themself are converted to a Delaunay mesh. After,

K. Schrader, PhD-thesis

MULTIPHASE GEOMETRY AND MESHING 41

Figure 4.4: Random based selection of 13% of total tetrahedrons.

Figure 4.5: Geometrical degenerated tetrahedrons.

Figure 4.6: Geometrical models of embedded inclusions made of degenerated tetrahedrons of two dif-

ferent triangulations.

an element shifting enables the modification of the number of elements belonging either

to the inclusions or to the volumetric ITZ. Consequently, this yields to an improvement

of the irregularity of the meshed shapes and results in an increase of the volume ratio.

K. Schrader, PhD-thesis

MULTIPHASE GEOMETRY AND MESHING 42

Figure 4.7: Embedding of bounding boxes (including the aligned mesh) in the regular matrix grid.

The remaining orthogonal grid then represents the linear-elastic matrix material, which is

converted to a regular mesh based on hexahedral elements with linear shape functions (as

illustrated in fig. 4.8). The elastic region is to be meshed as coarse and regular as possible

to reduce the number of d.o.f.s. Additionally, the stiffness of this domain is assumed to be

constant during the simulation time in respect to linear-elasticity, where return mapping

techniques are not required, and hence, the simulation time is reduced as well as it is

not necessary to update the material tensor and the stiffness matrix of the corresponding

elements of this domain. Consequently, a structured grid discretization is applied in the

matrix region and the bounding boxes in inclusion regions with its interfacial transition

zone are created. The material region within the boxes is then discretized by an aligned

mesh and the total volume of the cube is discretized as an orthogonal grid (fig. 4.8, right).

Figure 4.8: Geometrical degenerated tetrahedrons as initial inclusions obtained from the Delaunay

triangulation (left) and the underlying orthogonal grid with the detection of inclusion-free volume (right).

K. Schrader, PhD-thesis

MULTIPHASE GEOMETRY AND MESHING 43

4.2 FE discretization with initial elastic-inelastic domain split

The aligned meshing technique for the VITZ ensures that there are no material discon-

tinuities within the elements. Since the cracking phenomena in quasi-brittle materials,

specially in high-performance concrete (UPC), occurs not only in areas around, but also

within the major aggregates, the material behavior may be described as nonlinear. There-

fore, it is necessary to separate the discretization of the aggregates and their adjazent

zones, acting as a kind of volume interfacial transition zone with different material prop-

erties and specific material behavior based on a fine tetrahedron mesh. The advantage is

the material decomposition of the total structure in separate phases such as the aggregates

and the volumetric interfaces (inelastic) as well as the matrix material (linear-elastic), re-

sulting in the proposed elastic-inelastic domain split. The condensation of d.o.f.s related

to the interior matrix, denoted as el, is performed by using the Schur complement method,

since here the connecting boundary between matrix and volumetric ITZ is assumed to be

known. Based on the linear-elastic behavior of the matrix or the mortar phase, the entries

of the Schur complement operator are constant during the total nonlinear computation

procedure. The reduced global problem (iteratively be solved in respect to the d.o.f.s of

the interior inelastic problem only) is denoted as inel and the d.o.f.s of the connecting

boundaries are denoted as b. The global reordered FE problem, considering eq. (3.62) of

chapter 3 according to interior i and boundary b d.o.f.s yields to

f = Ku =
(
K(el) +K(inel)

)
u (4.1)

which in detail leads to

f =

⎛⎜⎜⎝
⎛⎜⎝Kii KT

bi 0

Kbi Kbb 0

0 0 0

⎞⎟⎠
(el)

+

⎛⎜⎝0 0 0

0 Kbb Kbi

0 KT
bi Kii

⎞⎟⎠
(inel)

⎞⎟⎟⎠u (4.2)

and

u =

⎛⎜⎝u
(el)
i

ub

u
(inel)
i

⎞⎟⎠ and f =

⎛⎜⎝f
(el)
i

f b

f
(inel)
i

⎞⎟⎠ (4.3)

with the assembled stiffness matrix K, the nodal force vector f and the vector u for the

unknown nodal d.o.f.s and the corresponding block matrices Knm. Respecting the phase

separation during the FE discretization, with v indicating the volumetric ITZ fraction,
a the aggregates and i the interfacial boundary surface between volumetric ITZ and the

aggregates, the nonlinear assembled matrix K(inel) may be written as

K(inel) =

⎛⎜⎜⎜⎝
Kbb Kbi 0 0

KT
bi Kv

ii 0 Kv
ij

0 0 Ka
ii Ka

ij

0 Kv
ij
T Ka

ij
T Ki

jj

⎞⎟⎟⎟⎠
(inel)

(4.4)

K. Schrader, PhD-thesis

GRAPH BASED MESH PARTITIONING 44

Consequently, if discrete (zero-thickness) interface elements between domains (denoted by
v and a) are inserted, the block Ki

jj corresponds to an assembled matrix resulting from

all interface elements. For the (static) condensation of the elastic d.o.f.s, the first row of

eq. (4.2) is used to isolate u
(el)
i

u
(el)
i = K

(el)
ii

−1(
f (el) −K

(el)
bi

T
ub

)
(4.5)

Respecting the above, and also the second row of eq. (4.2), the explicit expression of the

condensed operator Ξ(el) of the elastic domain is given as

Ξ(el) = K
(el)
bb −K

(el)
bi K

(el)
ii

−1
K

(el)
bi

T
(4.6)

and the condensed nodal force vector of the elastic domain results in

f
(el)
b = −K

(el)
bi K

(el)
ii

−1
f
(el)
i (4.7)

Thus, the inelastic problem of condensed d.o.f.s in the elastic domain is obtained by(
Ξ(el) +K

(inel)
bb K

(inel)
bi

K
(inel)
bi

T
K

(inel)
ii

)(
ub

u
(inel)
i

)
=

(
f b

0

)(el)

+

(
f b

f i

)(inel)

(4.8)

The idea of the initial elastic-inelastic domain split causes the question of the hybrid

decomposition or substructuring technique enabling a scalable computation of heteroge-

neous specimens. This and also the generation of an inital partitioned damage zone are

described in the next section.

4.3 Graph based FE mesh partitioning

4.3.1 FE mesh partitioning for static load balancing

For an ideal load-balanced performance of numerical parallel computation using the FE

method, there exist two opportunities: Either the partitioning of the finite element mesh

(non-overlapping or overlapping)

• with a fixed number of equal subdomains, in regards to the number of FE nodes,

• the domain-wise numerical integration of finite elements,

• the domain-wise assembly of the global coefficient matrix and

• the application of substructuring or domain decomposition methods for the numerical

solution of the global equation system

or the direct partitioning of the global coefficient matrix by

• the application of parallel solver techniques (with implicit substructuring or domain

decomposition methods) for the numerical computation of the distributed global

system of equations.

K. Schrader, PhD-thesis

GRAPH BASED MESH PARTITIONING 45

In this thesis, the first approach has been chosen using the initially decomposed finite ele-

ment mesh (which may be regular or irregular, aligned or grid-based) with the opportunity

to consider different types of finite elements in 2D or 3D. For the mesh partitioning, the

sequential open-source library METIS [Karypis et al. 1998] considering one element type

and an improved version [Karypis et al. 2011] for mixed finite element meshes involving

different types of finite elements has been applied. A parallel MPI-based partitioning

library (PARMETIS) is also available [Schloegel et al. 2002]. This leads to ideal load-

balanced partitionings especially for the aligned meshed compounds. The detection and

storage of the coupling nodes are independently performed (without the partitioning li-

brary) and therefore, the communication overhead between coupled subdomains is limited

to the number of the coupling nodes connecting the boundaries of the adjacent domains.

This information is then stored in a matrix M c

M c =

⎛⎜⎜⎜⎝
m2,1

m3,1 m3,2

... ...

mn,1 mn,2 ... mn,n−1

⎞⎟⎟⎟⎠ (4.9)

with the conditions for mij

mij =

{
1 Γi ∩ Γj �= 0

0 else
(4.10)

where entry mij is set to 1, if the domain i is connected to domain j, otherwise it is set

to 0. Matrix entries mii on the main diagonal are not considered.

Basically, METIS includes algorithms, which enable the conversion of a finite element

mesh into sparse graphs. The corresponding graph of a finite mesh is then to be used to

compute nodal or dual partitionings as illustrated in figure 4.10 for an academic three-

phase specimen based on a tetrahedral mesh. The partitioning is computed in three tasks

(fig. 4.9): the coarsening of the graph, the computation of an initial partitioning of the

coarse graph and the un-coarsening phase for a successively multilevel refinement of the

partitioning applied for the larger graphs.

4.3.2 FE mesh partitioning for dynamic load balancing

The dynamic load-balancing is necessary, if a change in the partial differential equations

occurs and a change in the finite element mesh is consequently imminent. In the field

of continuum mechanics, the simulation of physical or material nonlinearities in hetero-

geneous materials considering damage effects often leads to a localization of the damage

zone where the numerical effort for the subdomains involved increases disproportionately.

Due to this, the dynamic repartitioning is then to be used during the nonlinear simulation

(e.g. as an adaptive partitioning strategy). In this work, a simultaneous repartitioning of

K. Schrader, PhD-thesis

GRAPH BASED MESH PARTITIONING 46

Figure 4.9: Load-balanced mesh partitioning based on sparse graphs: Left: Coarsening the initial sparse

graph G0 (representing the finite element mesh) to obtain an initial coarse partitioning of the smaller

graph G4. After, incremental un-coarsening of G4 and its corresponding partitioning to generate the final

partitioning of the original graph G0.

Figure 4.10: Left: Initial three-phase matrix-inclusion system applying the mesh partitioning with

nodal (middle) and dual mesh partitioning (right) results of the library METIS (four subdomains).

an approximated damage zone, which has initially been described as inelastic, is applied.

Further details to this approach are given in the following section.

4.3.3 Partitioning of hybrid meshes respecting a load-balanced damage zone

Before the mesh partitioning is performed, a special elastic-inelastic domain split is applied

to improve the performance of the computational model illustrated in figure 4.11. In this

approach, proposing a nonlinear simulation model, material nonlinear effects are con-

sidered for the aligned mesh of the volume interfacial transition zone as well as for the

embedded inclusions. Consequently, a nonlocal response regarding the damage effects is

induced by a smaller domain and therewith, the overall numerical effort for the nonlin-

ear computational model is decreased. Due to the irregularity of such potential damage

zones, the aligned mesh including the VITZ in high resolution has to be (load-balanced)

K. Schrader, PhD-thesis

GRAPH BASED MESH PARTITIONING 47

partitioned, if the scalability of such a simulation model is also proposed. Thereby, stress

and strain state evaluation can simultaneously be executed and moreover, the change

of the mesh characteristics in this region (according to the induced damage effects, the

resulting crack band formation and/or failure of elements) can be analysed dynamically

during the simulation runtime. Thus, the repartitioning of such irregular inelastic do-

mains may be computed independently of the initial partitioning of the total mesh also

yielding to nodally equal-sized subdomains, suitable for the load-balanced substructuring

of heterogeneous and hybrid meshed specimens. The partitioning algorithms for mixed

meshes (fig. 4.13) was adapted from the latest stable METIS release [Karypis 2011], Ver-

sion 5.0.2. Furthermore, the elastic-inelastic domain split of a structure or specimen, as

illustrated in figures 4.11, 4.12 and 4.13, yields to a regular meshed domain with linear-

elastic material behavior. This elastic domain, which is meshed as coarse and regular as

possible, can be adapted to an efficient voxel integration technique. Consequently, the

element stiffness matrix is to be stored only once and does not have to be updated for

the assembled stiffness matrix, which is usually necessary. Additionally, this reduces the

numerical effort as well as the simulation time required.

Figure 4.11: Consideration of the heterogeneity during domain decomposition: One elastic domain d0

including the inelastic region partitioned in four domains d1 till d4.

4.3.4 Parameter evaluation and performance of mesh partitioning algorithms

METIS offers the possibility to activate several combinations of parameters (tab. 4.1)

which quantitatively and qualitatively lead to different mesh partitionings. The selected

parameters of the following table have the greatest influence on the computational time

needed to generate the substructuring. The parameter set for the evaluation of the METIS

software package (as illustrated in table 4.2 (for a homogeneous mesh) and table 4.3 (for

a hybrid mesh)) shows the influence on the computational time necessary for generating

the partitioning with the lowest and equal distributed number of coupling nodes. In

both cases, the default parameter set (tab. 4.2, third row) delivers the best performance

simultaneously with the lowest number of finite element nodes of a connecting boundary

K. Schrader, PhD-thesis

GRAPH BASED MESH PARTITIONING 48

Figure 4.12: Consideration of the heterogeneity in domain decomposition: Regular grid-based elastic

domain and aligned mesh of the inelastic region. Left: Aligned mesh of VITZ and irregular mesh of

inclusions. Right: aligned mesh transition into inclusions.

Figure 4.13: Consideration of the heterogeneity in domain decomposition: Nodal mesh partitioning

applied for the aligned mesh as a decomposed volumetric interfacial zone.

option task

METIS OPTION GTYPE specifies the graph type (nodal or dual)

METIS OPTION PTYPE specifies the partitioning type

METIS OPTION OBJTYPE specifies edge cut or communication minimization

METIS OPTION CTYPE specifies the coarsening strategy

METIS OPTION IPTYPE determines the algorithm used during initial partitioning

Table 4.1: Parameter options for the mesh partitioning algorithms of the open-source library METIS.

between the different subdomains. Regarding the METIS documentation the parameters

ncut, nseps and niter were used as default values. The parameter gtype = dual is the

default setting and delivers the best quantitative values for homogeneous and hybrid FE

meshes in respect to the number of FE nodes per domain and the number of coupling

nodes as well as the reduced load imbalance. For further information, the METIS manual

(version 5.0.2) is recommended [Karypis 2011].

K. Schrader, PhD-thesis

GRAPH BASED MESH PARTITIONING 49

ptype objtype ctype iptype speed-up

rb kway cut vol rm shem grow random

x x x x 0.69

x x x x 0.67

x x x x 0.64

x x x x -

x x x x 0.93

x x x x 0.73

x x x x 0.96

x x x x 0.79

Table 4.2: Parameter and performance evaluation: Speed-ups using different option sets of METIS for

the partitioning of homogeneous meshes.

ptype objtype ctype iptype speed-up

rb kway cut vol rm shem grow random

x x x 0.69

x x x 0.72

x x x 0.69

x x x 0.65

x x x 1.01

x x x 1.00

x x x 0.93

x x x 0.97

Table 4.3: Parameter and performance evaluation: Speed-ups using different option sets of METIS for

the partitioning of hybrid meshes.

In chapter 5, some substructuring and domain decomposition techniques are reviewed

presenting the fundamental formulations for the numerical parallel computation of various

decomposed problems discretized for the time-independent solution.

K. Schrader, PhD-thesis

Chapter 5

Linearized (time-independent)

solution methods based on domain

decomposition

The presented numerical discretization of multiphase material using the finite element

method requires efficient and scalable solution techniques for the numerical computa-

tion of the resulting linearized equation systems. In this chapter, iterative solver tech-

niques, typical substructuring and domain decomposition methods are reviewed and sev-

eral numerical experiments regarding the Dirichlet-Neumann substructuring, the Schur

complement method and also the finite element tearing and interconnecting dual-primal

method (FETI-DP) are evaluated. Furthermore, the preconditioned approach for the con-

jugate gradient method is described in repect to distributed computing for the application

in high-performance computing frameworks. Verified numerical results are then presented

in chapter 6.

5.1 Numerical computation of linear systems of equations

Following the standard displacement based finite element method (according to section

3.2) a linear system of equations is given with

Ku = f (5.1)

whereK ∈ Rn×n is the global stiffness matrix, u ∈ Rn the global displacement vector and

f ∈ Rn the global load vector. If K is a regular, symmetric and positive definite matrix

the above equation can be solved numerically using direct or iterative solver techniques

which are available in sequential and parallel algorithms. The parallelization technique of

such systems results in the decomposition of the underlying finite element discretization by

applying substructuring methods for which an overview is given in [Mandel 1994], [Farhat

et al. 1994] and [Toselli et al. 2005].

K. Schrader, PhD-thesis 50

DOMAIN DECOMPOSITION METHODS 51

Before classical approaches for (non-overlapping) domain decomposition (DD) are pre-

sented, the next section gives an overview on iterative solution techniques.

5.2 Special iterative solution methods

In general, the discretized problem (using FEM, extended FEM, or other numerical ap-

proximation techniques) leads to a linear (or nonlinear) system of equations, where spe-

cific characteristics of such systems (matrix bandwidth, ill-conditioned, unsymmetric or

decomposed problems, etc.) determine the a-priori type of a solution technique. There

are two standard approaches, namely

• direct and

• iterative

solver techniques. Due to the extensive memory and computing time consumption of

direct solution techniques (e.g. [PARDISO 2007]) within increasing dimension of the dis-

cretized problem in respect to degrees of freedom (as e.g. for the Gaussian elimination or

for the Cholesky factorization), the suitability of the type of solver is limited in regards to

large-scale linear equation systems and to domain decomposition, although the factorized

matrix has explicitly to be stored. Due to this limitation, an iterative solution technique

of the Krylov subspace type is applied in this work. Several of these iterative solution

strategies are available:

• Preconditioned Conjugate Gradient method (PCG)

• Bi-Conjugate Gradients stabilized (BiCGstab)

• Generalized Minimal Residual Method (GMRES)

• Conjugate Gradient Squared (CGS)

PCG [Basermann et al. 1997] is a preconditioned variant of the conjugate gradient

method. Here, memory demand and computing time are depending on the type of pre-

conditioning matrix (e.g. the preconditioner). Since there is no ideal preconditioning

technique available, a compromise strategy for building the preconditioning matrix has

to be found, combining reasonable solver speed-ups with acceptable memory demand and

also considering the special characteristics of the final system of equations. Further devel-

opments such as the BiCG method or the CGS method enable to handle an unsymmetric

linear system of equations, where modified versions of GMRES may be used to solve ill-

conditioned linear equation systems.

K. Schrader, PhD-thesis

DOMAIN DECOMPOSITION METHODS 52

5.3 Domain decomposition methods

Domain decomposition (DD), first described in [Schwarz 1890], is a numerical method

for solving a boundary value problem by decomposing the origin domain in several sub-

domains. There are two types of DD: the overlapping and the non-overlapping domain

decomposition. In the following sections, the non-overlapping DD method will be the

basic instrument for the developed solution strategy. Original non-overlapping domain

decomposition methods [Farhat et al. 1994] are generally divided into two groups: the

primal or the dual methods. The primal method is based on the Schur complement

method. The dual method is described by the so-called FETI (Finite Element Tearing

and Interconnecting) method, which originally derived from the Dirichlet-Neumann and

Neumann-Neumann substructuring techniques.

Figure 5.1: Substructuring based on displacement based finite element method and non-overlapping

domain decomposition.

All these techniques have the following in common: The DD notation of the assembled

submatrices (considering interior and boundary related matrix components according to

fig. 5.1) is given with

K(j) =

⎛⎜⎝K
(j)
ii K

(j)T

bi

K
(j)
bi K

(j)
bb

⎞⎟⎠ with j = 1, 2 (5.2)

splitting the stiffness parts in interior i and boundary b related d.o.f.s. By this, in the

following sections the iterative computation of the global vector of unknowns will be

described and an introduction to the Schur complement method will be given next.

5.3.1 (Direct) Schur complement method

The Schur complement operator [Schwarz et al. 2004] is basically a static condensation

of the interior nodal d.o.f.s. to the boundary related d.o.f.s if a domain is decomposed

in a fixed number of subdomains each with a corresponding Schur complement matrix.

K. Schrader, PhD-thesis

DOMAIN DECOMPOSITION METHODS 53

The assembly of such Schur complements considering all subdomains results in a reduced,

reordered and dense Schur complement system of equations. By this, eq. (5.1) can

be divided in the following components, representing two different adjacent subdomains,

which are denoted by (1) and by (2) and connected by a common boundary with assembled

stiffness parts (denoted by ˜)⎛⎜⎝K
(1)
ii 0 K

(1)
ib

0 K
(2)
ii K

(2)
ib

K
(1)
ib

T
K

(2)
ib

T
K̃bb

⎞⎟⎠
⎛⎜⎝u

(1)
i

u
(2)
i

ub

⎞⎟⎠ =

⎛⎜⎝f
(1)
i

f
(2)
i

f̃ b

⎞⎟⎠ (5.3)

After the decomposition, each domain has interior i and coupling or boundary b nodes,

which are connecting the adjacent domains with the corresponding nodal d.o.f.s, which

are included in the vectors ui and ub. The notation for the system of equations for one

domain j (no assembly regarding the boundary of adjacent subdomains) results in(
Kii Kib

KT
ib Kbb

)(j)(
ui

ub

)(j)

=

(
f i

f b

)(j)

(5.4)

Considering the second row of eq. (5.4) and the matrix Kii being regular, the vector ui

of the first row can be expressed by

u
(j)
i = K−1

ii

(j)
(f

(j)
i −K

(j)
ib ub) (5.5)

The substitution of eq. (5.4) into eq. (5.5) yields to(
Kbb −KT

ibK
−1
ii Kib

)(j)

ub =

(
f b −KT

ibK
−1
ii f i

)(j)

(5.6)

The so-called Schur complement S of the matrix Kii, which is condensed to the boundary

d.o.f.s. indexed by b then results in

S(j) =

(
Kbb −KT

ibK
−1
ii Kib

)(j)

(5.7)

Hence, the decomposition in n subdomains results in the global Schur complement system(
K̃bb −

n∑
j=1

K
(j)
ib

T
K

(j)
ii

−1
K

(j)
ib

)
ub = f̃ b −

n∑
j=1

K
(j)
ib

T
K

(j)
ii

−1
f
(j)
i

= f b,mod

(5.8)

with the Schur complement matrix

S̃ = K̃bb −
n∑

j=1

K
(j)
ib

T
K

(j)
ii

−1
K

(j)
ib (5.9)

and the assembled matrix with the connecting boundary related d.o.f.s

K̃bb =

n∑
j=1

K
(j)
bb (5.10)

K. Schrader, PhD-thesis

DOMAIN DECOMPOSITION METHODS 54

and also the connecting boundary related vector of nodal forces as

f̃ b =

n∑
j=1

f
(j)
b (5.11)

the final Schur complement system results in

S̃ub = f b,mod (5.12)

Since the global Schur matrix S̃ is a dense matrix with non-zero entries for nearly all

coefficients, it is numerically expensive to build, to store and to factorize it with direct

solvers. Therefore, it is recommended to solve the global decomposed system of equa-

tions iteratively without the necessity to compute such Schur complements S(j) explicitly.

Generally, the iterative procedure of solving the decomposed global system of equations

is based on the repeated computation of the matrix-vector product of eq. (5.4) and on

the assembly of all nodal load vectors f
(j)
b per subdomain j (during each iteration step

of the PCG method). This yields to the global assembled nodal load vector f̃ b in respect

to all boundary degrees of freedom

f̃ b =

n∑
j=1

f
(j)
b =

n∑
j=1

KT
ib

(j)
u
(j)
i + K̃bbub (5.13)

The Schur complement system, explicitly extracted or not, requires the partial factoriza-

tion of K
(j)
ii with direct solvers, which has then explicitly to be stored, which is a numeri-

cal memory-expensive task for a large-scale linear system of equations. Consequently,

the iterative computation seems more memory-efficient and, therefore, the D-N and N-N

substructuring techniques are reviewed as basic relaxation schemes for the solution of the

boundary-related d.o.f.s.

5.3.2 Dirichlet-Neumann and Neumann-Neumann method

Non-overlapping iterative domain decomposition is based on the Dirichlet-Neumann (D-

N) and the Neumann-Neumann (N-N) method [Klawonn et al. 2001]. These iterative

techniques differ from the direct Schur complement method where the Schur matrix is

explicitly extracted, following the previous section. Therefore, the Schur complement

boundary problem is iteratively computed based on the originally assembled submatrices

considering a relaxation scheme for the connecting d.o.f.s of the different subdomains. For

the first type (D-N), where two subdomains are taken into account, the Dirichlet problem

in Ω1 can be expressed by

KΩ1

ii · uΩ1

i = fΩ1

i,ext −KΩ1

ib · ub (5.14)

The coupling forces in Ω1 can be computed with

f b = KΩ1

bi · uΩ1

i +KΩ1

bb · ub (5.15)

K. Schrader, PhD-thesis

DOMAIN DECOMPOSITION METHODS 55

After, the Neumann problem in Ω2 may be solved as⎛⎜⎝KΩ2

bb KΩ2

bi

KΩ2

ib KΩ2

ii

⎞⎟⎠
⎛⎜⎝ ûb

uΩ2

i

⎞⎟⎠ =

⎛⎜⎝f b,ext − f b

fΩ2

i,ext

⎞⎟⎠ (5.16)

The relaxation in respect to the interface related boundary d.o.f.s (considering the relax-

ation parameter ωi) for the next iteration step results in

u
(i+1)
b = ωi · u(i)

b + (1− ωi) · û(i+1)
b (5.17)

Again, the interior d.o.f.s of the subdomain are denoted by index i, and the bound-

ary related d.o.f.s are denoted by index b, respectively. The external forces (subject to

boundary related d.o.f.s) are described by f b,ext. The algorithm for the solution of the

Dirichlet-Neumann problem has been summarized in table 5.1.

1. KΩ1
ii · uΩ1

i = fΩ1
i,ext −KΩ1

ib · ub Dirichlet problem in Ω1

2. f b = KΩ1

bi · uΩ1
i +KΩ1

bb · ub Coupling forces in Ω1

3.

⎛⎜⎝KΩ2

bb KΩ2

bi

KΩ2

ib KΩ2
ii

⎞⎟⎠
⎛⎜⎝ ûb

uΩ2
i

⎞⎟⎠ =

⎛⎜⎝f b,ext − f b

fΩ2
i,ext

⎞⎟⎠ Solve Neumann problem in Ω2

4. u
(i+1)
b = ωi · u(i)

b + (1− ωi) · û(i+1)
b

Relaxation

5. If ||εi|| < TOL Break

6. Else Goto 1.

Table 5.1: Algorithm for the boundary-related solution applying the Dirichlet-Neumann substructuring

technique.

5.3.3 FETI-DP method

Iterative domain decomposition methods for non-overlapped partitionings, such as e.g. the

FETI-DP method (Finite Element Tearing and Interconnecting, dual-primal, [Klawonn

et al. 2007]), are more efficient than the classical Schur complement method in respect

to memory demand. For any dual-primal FETI decomposition the d.o.f.s of the resulting

domain boundaries are split in primal and dual variables and are respectively indicated

by the indices Π and Δ. All other domain interior d.o.f.s are marked as interior variables.

Summarizing the dual and interior variables (denoted by index B) the unknown nodal

vector has three components

• the displacement vector with interior and dual variables uB,

• the displacement vector with primal variables ũΠ and

• the vector of Lagrangian multipliers λ

K. Schrader, PhD-thesis

DOMAIN DECOMPOSITION METHODS 56

The fundamental equation of the FETI-DP discretization is given as

⎛⎜⎜⎜⎜⎜⎝
KBB K̃

T

ΠB BT

K̃ΠB K̃ΠΠ 0

B 0 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
uB

ũΠ

λ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
fB

f̃Π

0

⎞⎟⎟⎟⎟⎟⎠ (5.18)

being rearranged in regard to its variables uB, ũΠ and λ. Consequently, the global

FETI-DP matrix in eq. (5.18) consists of the following components

• KBB as block-diagonal matrix resulting from global interior and dual d.o.f.s

• K̃ΠΠ as assembled block-diagonal matrix resulting from primal d.o.f.s and

• B as jump operator connecting dual d.o.f.s of different domains

Finally, the classical FE equation system can be reformulated using the above notation.

The local stiffness matrix is given with

K(i) =

⎛⎜⎜⎜⎜⎜⎝
K

(i)
II K

(i)T
ΔI K

(i)T
ΠI

K
(i)
ΔI K

(i)
ΔΔ K

(i)T
ΠΔ

K
(i)
ΠI K

(i)
ΠΔ K

(i)
ΠΠ

⎞⎟⎟⎟⎟⎟⎠ (5.19)

and the global vector of unknown variables as well as the global load vector result in

u(i) =

⎛⎜⎜⎜⎜⎜⎝
u
(i)
I

u
(i)
Δ

u
(i)
Π

⎞⎟⎟⎟⎟⎟⎠ ; f (i) =

⎛⎜⎜⎜⎜⎜⎝
f
(i)
I

f
(i)
Δ

f
(i)
Π

⎞⎟⎟⎟⎟⎟⎠ (5.20)

with I as interior, Δ as dual and Π as primal indices. The condition

BuB = 0 with bij ∈ {0; 1} (5.21)

has to be fulfilled in respect to the interior and dual d.o.f.s. The interior and dual variables

can be summarized and denoted by index B. Hence, the vectors are

u
(i)
B =

[
u
(i)
I u

(i)
Δ

]T
(5.22)

and

f
(i)
B =

[
f
(i)
I f

(i)
Δ

]T
(5.23)

K. Schrader, PhD-thesis

DOMAIN DECOMPOSITION METHODS 57

For the stiffness matrices (local, subdomain based and assembled) without primal d.o.f.s

follows

K
(i)
BB =

⎛⎜⎝K
(i)
II K

(i)T
ΔI

K
(i)
ΔI K

(i)
ΔΔ

⎞⎟⎠ (5.24)

and the assembly of all local matrices K
(i)
BB yields to the global block diagonal matrix

KBB = diagNi=1[K
(i)
BB] (5.25)

Moreover, the elimination of the interior, dual and primal d.o.f.s leads to⎛⎜⎜⎜⎜⎜⎜⎝
KBB K̃

T

ΠB BT

0 S̃ΠΠ −S̃
T

αΠ

0 0 −F

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
uB

ũΠ

λ

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
fB

f̃Π − K̃ΠBK
−1
BBfB

−d

⎞⎟⎟⎟⎟⎟⎠ (5.26)

with

S̃ΠΠ = K̃ΠΠ − K̃ΠBK
−1
BBK̃

T

ΠB (5.27)

as Schur complement operator in respect to K̃ΠΠ and the notation for F and d

F = BK−1
BBB

T +BK−1
BBK̃

T

ΠB S̃
−1

ΠΠ K̃ΠBK
−1
BBB

T (5.28)

d = BK−1
BBfB −BK−1

BBK̃
T

ΠB S̃
−1

ΠΠ

(
f̃Π − K̃ΠBK

−1
BBfB

)
(5.29)

Hence, the final reduced equation system, which reduces eq. (5.18) to the Lagragian

multipliers, is given as

Fλ = d (5.30)

In most cases F will not explicitly be generated and a (preconditioned) conjugate gradient

method has been used for the iterative computation of the particular equation system with

a specified preconditioning technique to approximate K
(i)
II . In the following section it is

shown how the Saddle-point equation system obtained from the above described FETI-DP

discretization will be solved. For this, a conjugate gradient version of an Uzawa [Wang

2009] iteration scheme is modified to solve the resulting FETI-DP Saddle-point equation

(SPE).

5.3.4 Modified FETI-DP Saddle-point problem

By eliminating the primal variables the basic formulation for FETI-DP discretizations

of the previous section can be reformulated as Saddle-point equation system (SPE). The

K. Schrader, PhD-thesis

DOMAIN DECOMPOSITION METHODS 58

basic notation of the FETI-DP Saddle-point system is given by⎛⎜⎝KBB BT

B 0

⎞⎟⎠
⎛⎜⎝uB

λ

⎞⎟⎠ =

⎛⎜⎝fB,mod

0

⎞⎟⎠ (5.31)

with

fB,mod = fB − K̃
T

ΠB ũΠ (5.32)

resulting from the first row of eq. (5.18). The second row of the basic equation system

(5.18) can be written as

K̃ΠΠ ũΠ = f̃Π − K̃ΠB uB (5.33)

Hence, the main feature of Saddle-point equation systems enables a comfortable solution

approach, which allows to utilize iterative solver techniques for eq. (5.31) without knowing

the exact inverse of KBB and without loss of the optimal scaling properties of the FETI-

DP algorithm. One additional advantage occurs at the resulting right hand side where

all terms according to Langragian multipliers λ are zero: It reduces the original problem

to block KBB and enables the iterative computation of uB. Using the first row of eq.

(5.31) it follows

KBB uB = fB − K̃
T

ΠB ũΠ −BTλ (5.34)

Transferring eq. (5.33) into eq. (5.34) results in

KBB uB = fB − K̃
T

ΠBK̃
−1

ΠΠ

(
f̃Π − K̃ΠBuB

)
−BTλ (5.35)

With the definition of f̃B,S

f̃B,S = K̃
T

ΠBK̃
−1

ΠΠ f̃Π (5.36)

and introduction of the interior-dual Schur complement operator S̃BB as

S̃BB = KBB − K̃
T

ΠBK̃
−1

ΠΠ K̃ΠB (5.37)

The final notation leads to

KBB uB = fB − f̃B,S +
(
KBB − S̃BB

)
uB −BTλ (5.38)

After, the reduced and inverted FETI-DP SPE is obtained by

uB = S̃
−1

BB

(
fB − f̃B,S −BTλ

)
= S̃

−1

BB

(
g̃B,S −BTλ

)
(5.39)

The modified FETI-DP SPE follows with⎛⎜⎝S̃BB BT

B 0

⎞⎟⎠
⎛⎜⎝uB

λ

⎞⎟⎠ =

⎛⎜⎝g̃B,S

0

⎞⎟⎠ (5.40)

K. Schrader, PhD-thesis

DOMAIN DECOMPOSITION METHODS 59

Taking the condition BuB = 0 and replacing uB with the first row of eq. (5.40) it results

in

BS̃
−1

BBB
Tλ = BS̃

−1

BBg̃B,S (5.41)

with

Q̃BB = BS̃
−1

BBB
T (5.42)

and

c̃B,S = BS̃
−1

BBg̃B,S (5.43)

The gradient of the quadratic function

F (λ) =
1

2
λT Q̃BBλ− c̃

T
B,Sλ (5.44)

results in

−∇F (λ(k)) = ‖c̃B,S − Q̃BBλ‖
= ‖BS̃

−1

BBg̃B,S −BS̃
−1

BBB
Tλ(k)‖

= ‖Bu
(k)
B ‖

= 0

(5.45)

which corresponds to the basic function of the conjugate gradient method. Back-substitution

into eq. (5.45) yields to

−∇F (λ(k)) =‖B
(
KBB − K̃

T

ΠBK̃
−1

ΠΠ K̃ΠB

)−1 (
fB − K̃

T

ΠBK̃
−1

ΠΠ f̃Π

)
−
(
B
(
KBB − K̃

T

ΠBK̃
−1

ΠΠ K̃ΠB

)−1

BT

)
λ(k)‖

= ‖Bu
(k)
B ‖

= 0

(5.46)

The convergence is ensured, if

ρ(BS̃
−1

BBB
T) <

2

α
(5.47)

is fulfilled - with α as a fixed step size and ρ as the spectral radius. The next section

includes several numerical tests, considering different methods to create a suitable precon-

ditioning matrix, either approximating the inverse of the interior-dual Schur complement

operator or using it implicitly as preconditioning matrix solving the Schur problem with

the conjugate gradient method iteratively and by this, to have the possibility to evaluate

the quality of such preconditioners.

K. Schrader, PhD-thesis

NUMERICAL TESTING 60

5.4 Numerical testing

5.4.1 Direct versus iterative solving

The first numerical test (results shown in table 5.2) is a simple, regular meshed FE block

structure, decomposed in two subdomains (D1 and D2, marked with different colors, see

figure 5.2). There, the total stiffness matrix for the assembled finite element stiffnesses of

both subdomains has been computed. The factorization of the total stiffness matrix and

the direct factorization as well as the partial factorization (explicitly extracting the Schur

complement matrix) for both subdomains were then performed for five different element

sizes (with up to 150,000 nodal d.o.f.s.). The computing times (measured in seconds) are

listed in table 5.2. This implementation is based on the multifrontal MPI-solver package

MUMPS [Amestoy et al. 2007], version 4.7.3. For the numerical evaluation the following

has been considered

• standard Linux workstation with 8GB RAM,

• basic linear algebra subroutines (BLAS) and

• two different CPU Architectures: iCore2 Duo (2.4GHz) and AMD Opteron (1.9GHz).

As highlighted in columns 6 and 8, the absolute times for the partial factorization and the

computation of the Schur complement matrix are always higher than the direct factor-

ization of the submatrix. If the factorization time of the total stiffness matrix is included

the efficiency is decreasing. A further disadvantage occurs since the computing time for

the direct factorization is exponentially increasing with each mesh refinement due to the

moderate increase of the number of nodal d.o.f.s, a more crucial task in the partial factor-

ization. Based on this strategy, as expected, the distributed computation of large-scale

linear equation systems is numerically expensive in respect to the computing time and

memory demand.

Hence, a second numerical test was performed for the same example of figure 5.2, taking

an iterative substructuring method based on Dirichlet-Neumann (as described in section

4.3.1) into account. The results for the same mesh refinements are listed in table 5.3,

comparing computational times for the sequential and parallel computation of the linear

Figure 5.2: Simple block structure decomposed in two domains with a maximum of 150,000 d.o.f.s.

K. Schrader, PhD-thesis

NUMERICAL TESTING 61

mesh d.o.f.s d.o.f.s d.o.f.s direct direct direct Schur Schur

total Ω1 Ω2 total Ω1 Ω2 Ω1 Ω2

1.0 50288 23876 25076 8.41 3.19 3.44 4.49 4.92

1.1 71409 26906 28206 9.15 3.90 4.20 5.65 6.12

1.2 97682 33712 35224 12.07 5.80 5.98 8.20 9.07

1.3 118342 55540 57652 28.17 13.56 14.79 20.01 21.42

1.4 154468 72318 74838 45.17 22.17 22.94 33.34 35.45

Table 5.2: Direct factorization versus explicit Schur complement extraction (as partial factorization)

with an increasing mesh refinement.

equation system, considering the direct factorization (using the multifrontal solver) and

the iterative Dirichlet-Neumann (D-N) substructuring technique. With an accuracy of

10−6, the iterative D-N method was more efficient for all investigated meshes in the se-

quential and also in the parallel case. All solver techniques react similarly in respect to

the numerical effort, if the mesh size is changed as illustrated in the diagrams of figure

5.3.

mesh d.o.f.s direct direct direct D-N D-N

iCore2/seq. Opt./seq. Opt./np=4 Opt./seq Opt./np=4

1.0 50288 12.56 12.02 5.27 8.27 (3) 3.46 (2)

1.1 71406 23.08 22.13 9.71 14.96 (4) 5.32 (2)

1.2 97682 38.88 37.07 16.17 24.00 (3) 11.01 (2)

1.3 118342 54.45 51.39 20.54 34.75 (3) 12.90 (3)

1.4 154468 89.48 82.98 31.74 54.79 (3) 20.04 (3)

Table 5.3: Comparison of direct factorization based computation (direct) with iterative Dirichlet-

Neumann (D-N) method, sequential times (seq.) for Intel iCore2 and AMD Opteron (Opt./seq.), parallel

times for the Opteron architecture using four MPI processes (Opt./np=4); accuracy: 10−6, time in

seconds and number of iterations given in brackets.

5.4.2 Modified FETI-DP SPE

Algorithmic implementation

The following sequential algorithms are describing the iterative solution process of the

FETI-DP Saddle-point equation. Here, the Uzawa iteration scheme for Saddle-point

problems was adapted and modified. The first version, as shown below in table 5.4, is

the standard Uzawa algorithm solving the FETI-DP SPE. After obtaining the solution

of the dual-interior d.o.f.s and the vector of the Langragian multipliers, an updated step

at the end of the iteration then computes the vector of primal nodal unknowns. A sec-

ond CG-based Uzawa version additionally includes the preconditioned CG method for

the iterative computation of the (interior-dual) Schur complement problem. With the

introduction of three additional vectors, the conjugate gradient version of the standard

K. Schrader, PhD-thesis

NUMERICAL TESTING 62

0

10

20

30

40

50

1.0 1.1 1.2 1.3 1.4

C
om

pu
tin

g
tim

e
[s

ec
]

Mesh refinement level

fac-total
fac-D
fac-N

Schur-D
Schur-N

0

20

40

60

80

100

1.0 1.1 1.2 1.3 1.4

C
om

pu
tin

g
tim

e
[s

ec
]

Mesh refinement level

direct/iCore2/1x
direct/AMD-Opteron/1x
direct/AMD-Opteron/4x

D-N/1x
D-N/4x

Figure 5.3: Mesh refinement and computing time of partial factorization for a dual domain split

(left) and solver times for different meshes according to direct factorization (sequential on Intel

iCore2: direct/seq/Core2; sequential on AMD Opteron: direct/seq/Opt; parallel on AMD Opteron:

direct/par/Opt) and following the Dirichlet-Neumann iteration (sequential D-N on AMD Opteron: D-

N/seq; parallel D-N on AMD Opteron with four MPI processes: D-N/par/np=4).

Uzawa algorithm is obtained. Furthermore, a preconditioned conjugate gradient method

is implicitly introduced for iteratively solving the Schur complement problem and, by this,

avoids the direct factorization of S̃BB. The algorithm is shown in table 5.5.

Require: S̃BB is invertible.

1. Choose λ(0) and u
(1)
B = S̃

−1

BB

(
fB − f̃B,S −BTλ(0)

)
Factorize K̃ΠΠ with f̃B,S = K̃

T

ΠBK̃
−1

ΠΠ f̃Π

and S̃
−1

BB =
(
KBB − K̃

T

ΠBK̃
−1

ΠΠ K̃ΠB

)−1

2. for k = 1, 2, ... do

3. q(k) = −Bu
(k)
B

4. p(k) = BTq(k)

5. h(k) = S̃
−1

BBp
(k)

6. α(k) = q(k)T q(k)

p(k)T h(k)

7. λ(k) = λ(k−1) − α(k)q(k)

8. u
(k+1)
B = u

(k)
B + α(k)h(k)

end for

9. Update ũ
(k+1)
Π = K̃

−1

ΠΠ

(
f̃Π − K̃ΠBu

(k+1)
B

)
Table 5.4: Uzawa algorithm with exact iteration steps for FETI-DP SPE.

Numerical convergence tests

To illustrate the (FETI-DP) discretization, an example in 2D with two elements (each for

one domain) is shown in figure 5.4, where the primal d.o.f.s are marked with a black dot at

K. Schrader, PhD-thesis

NUMERICAL TESTING 63

Require: S̃BB is invertable.

1. Choose λ(0) and u
(1)
B = S̃

−1

BB

(
fB − f̃B,S −BTλ(0)

)
Factorize K̃ΠΠ with f̃B,S = K̃

T

ΠBK̃
−1

ΠΠ f̃Π

and S̃BB =
(
KBB − K̃

T

ΠBK̃
−1

ΠΠ K̃ΠB

)
and build preconditioner M

2. Set d(1) = −q(1) = Bu
(1)
B

3. for k = 1, 2, ...do

4. p(k) = BTd(k)

5. h(k) = S̃
−1

BBp
(k) as

5.1 Choose h
(k)
0 and r̃0 = p(k) − S̃BBh

(k)
0

5.2 h̃0 = Mr̃0

5.3 d̃0 = h̃0

5.4 for j = 1, 2, ... do

5.5 α̃j =
r̃T
j
˜hj

˜d
T

j
˜SBB

˜dj

5.6 h
(k)
j+1 = h

(k)
j + α̃jd̃j

5.7 r̃j+1 = r̃j − α̃jS̃BBd̃j

5.8 h̃j+1 = Mr̃j+1

5.9 β̃j =
r̃T
j+1

˜hj+1

r̃T
j
˜hj

5.10 d̃j+1 = h̃j+1 + βjd̃j

5.11 end for (implicit PCG)

6. α(k) = q(k)T q(k)

p(k)T h(k)

7. λ(k) = λ(k−1) + α(k)d(k)

8. u
(k+1)
B = u

(k)
B − α(k)h(k)

9. q(k+1) = −Bu
(k+1)
B

10. β(k) = q(k+1)T q(k+1)

q(k)T q(k)

11. d(k+1) = −q(k+1) + β(k)d(k)

12. end for (Uzawa-CG)

13. Update ũ
(k+1)
Π = K̃

−1

ΠΠ

(
f̃Π − K̃ΠBu

(k+1)
B

)
Table 5.5: CG version of Uzawa algorithm for FETI-DP SPE.

the corresponding node. The duplicated dual d.o.f.s related to the node are marked with

a small rectangle. The numerical test is based on an example discretized by six elements

with two elements per domain and is partitioned in a way that all domains are sequentially

coupled and each boundary is connecting two domains only. Again, the primal nodes are

denoted with black dots and the dual nodes with small rectangles, respectively. The

partitioning is illustrated in figure 5.5 (upper left) the FETI-DP discretization (bottom

left) and the duplication of the dual nodes are shown (bottom, right). The computation

considers linear-elastic material behavior as well as a plane stress state. In this example,

K. Schrader, PhD-thesis

NUMERICAL TESTING 64

Figure 5.4: Example of one element per domain (left), the resulting FETI-DP discretization (middle)

and the duplication of the dual node (right).

the algorithms of the tables 5.4 and 5.5 were used for the computation of the unknowns

of vector uB and λ of the FETI-DP Saddle-point problem and compared to the D-N

relaxation procedure.

The numerical results can be seen in table 5.6 below, stating their necessary iteration steps

(TOL ≤ 10−6) and their accuracy. The results show the improved convergence behavior

when using a modified CG version of the Uzawa algorithm instead of the standard Uzawa

iteration procedure for the computation of the FETI-DP Saddle-point equation system.

For large discretized problems the Uzawa-CG with an implicit preconditioned conjugate

gradient method (iPCG) iteratively solving the Schur complement problem will lead to an

additional decrease of time. The motivation of the last numerical experiment was to get

an inside of the convergence behavior, if an explicit preconditioning matrix M−1 for the

Figure 5.5: Example of FETI-DP discretization for three domains with two elements per domain:

Partitioning in three domains (upper left); FETI-DP discretization (upper right); duplication of the dual

nodes (bottom).

K. Schrader, PhD-thesis

PRECONDITIONING TECHNIQUES FOR CONJUGATE GRADIENTS 65

preconditioning of S̃BB is applied. The following preconditioning matrices were adapted

for M−1 according to table 5.7 (and results are shown in table 5.8) stating the number

of iterations, the obtained accuracy and the relative solution error.

5.4.3 Concluding remarks

The numerical tests described in the previous sections have proven, that the FETI-DP

method is suitable, if orthogonal regular domain boundaries exist. This differs for the dis-

cretization of multiphase materials, if an aligned meshing strategy for the boundaries of

the material phases is used and a mixed mesh is proposed. Thereby, the lack of a setup for

defining the primal nodes (the so-called fixing nodes) leads to an unstable iterative com-

putation of the FETI-DP equation system, in most cases without numerical convergence.

Nevertheless, if such a fixing node strategy exists for large-scale material-heterogeneous

specimens, the FETI-DP problem can be modified to a Saddle-point problem. It is shown

that the restated notation can numerically be solved by modifying the Uzawa algorithm

in respect to different approximation techniques for a suitable preconditioning matrix.

Therefore, in this work, the memory saving FETI-DP method was replaced by the itera-

tive Schur complement method and has been combined with the preconditioned conjugate

gradient method. The occuring higher memory demand is compensated by avoiding the

explicit Schur complement extraction and by using a memory-efficient preconditioning

technique, which will be proposed in the following sections. Consequently, the imple-

mented iterative solver is based on a parallelized version of the preconditioned conjugate

gradient method (PPCG, [Basermann et al. 1997]) using the message-passing interface

standard 2.0 (MPI, [Gropp et al. 1999]). This is described in the next section. Results

for the efficiency of this approach are given in chapter 6.

5.5 (Hybrid) parallelized preconditioned conjugate gradients

The implementation of the MPI-parallelized sparse iterative solver is based on the itera-

tive conjugate gradient method (CG, [Kelley 1995]) and the preconditioned CG version

algorithm number accuracy residual norm note

iterations ||r̃k+1||F,iPCG

D-N >10 1.0e-06 – -

Uzawa 9 3.4e-07 – -

Uzawa-CG 4 exact – -

Uzawa-CG iPCG (1) 4 1.0e-06 1.6e-04 with implicit PCG

Uzawa-CG iPCG (2) 4 4.6e-10 2.5e-07 with implicit PCG

Uzawa-CG iPCG (3) 4 exact 6.4e-19 with implicit PCG

Table 5.6: Iteration steps and accuracy for a varity of different iteration techniques.

K. Schrader, PhD-thesis

PRECONDITIONING TECHNIQUES FOR CONJUGATE GRADIENTS 66

diag [KBB]
−1 the inverted main diagonal of KBB

diag
[
S̃BB

]−1
the inverted main diagonal of S̃BB

diagNj=1

[
S̃

(j)

BB

]−1

the inverted blockdiagonals of S̃
(j)

BB

S̃
−1

BB
the explicit inversion of S̃BB

Table 5.7: Overview of different preconditioning matrices.

preconditioner iterations accuracy relative error norm algorithm

M−1 lim‖E−M−1
˜SBB‖F

‖ ˜SBB‖F

diag [KBB]
−1 3 exact 0.038 Uzawa-CG

diag
[
S̃BB

]−1
3 exact 0.022 Uzawa-CG

diagNj=1

[
S̃

(j)

BB

]−1

4 exact 0.013 Uzawa-CG

S̃
−1

BB 4 exact 0 Uzawa-CG

Table 5.8: Relative error norm for different approximated preconditioning matrices replacing the

interior-dual Schur complement operator.

(PCG, [Loghin et al. 2003]). Steps 2 to 14 of table 5.9 are to be computed per iter-

ation step and per domain during the parallelized procedure with nd as the number of

domains obtained from the METIS partitioning. The global assembly of scalar values

(ã2, b̃1) as well as values of the vectors (ũb, d̃b) are then computed and transferred by

the MPI Allreduce operation. A hybrid approach is to outsource the algorithmic parts

of the PPCG to other hardware architectures, e.g. to graphics processing units. Such

a hybrid implementation concept was realized in chapter 6, with corresponding results

shown in section 6.5. There, the computation of the matrix-vector products (second row

of table 5.9 considering the domain stiffness matrix K(j)) is simultaneously executed

by several graphics processing units, based on the Nvidia Tesla architecture within a

high-performance computing framework. By applying this approach, the domain stiffness

matrix K(j) is built and assembled from all elements of the corresponding subdomain

of the decomposed finite element mesh (considering the partitioning techniques as de-

scribed in section 4.3) and is stored at the corresponding graphics processing unit. A

suitable and scalable preconditioning technique, which is adaptable for each subdomain

of the decomposed structural problem is necessary for the acceleration of the distributed

PCG iteration. The following sections give more details on the modified preconditioning

techniques used in this work.

K. Schrader, PhD-thesis

REGULAR EIGENVALUE PROBLEMS 67

1. INIT: r = f ; ã1 =< r; z > ; d = z = M̃−1r

2.

(
Kii Kib

KT
ib Kbb

)(j)(
di

db

)(j)

=

(
d̂i

d̂b

)(j)

3. a
(j)
2 =< d(j) ; d̂

(j)
>

4. ã2 =
∑nd

j=1 a
(j)
2 ; d̃b =

∑nd
j=1 d̂b

(j)
; d̂

(j)

b = d̃b

5. α = ã1ã
−1
2

6. z(j) = r(j) − αd̂
(j)

; r(j) = z(j) ; z(j) = M (j)−1
r(j)

7. h(j) = h(j) + αd(j)

8. b
(j)
1 =< r(j) ; z(j) >

9. b̃1 =
∑nd

j=1 b
(j)
1

10. β = b̃1ã
−1
1 ; ã1 = b̃1

11. IF

√
b̃1 < TOL GOTO 14.

12. ELSE d(j) = z(j) + βd(j) ; d̂
(j)

= 0

13. b
(j)
1 = a

(j)
2 = b̃1 = ã2 = 0 GOTO 2.

14. SET ũb =
∑nd

j=1 h
(j)
b ; u

(j)
b = ũb ; u

(j)
i = h

(j)
i

Table 5.9: Algorithm for the parallelized preconditioned conjugate gradient method (PPCG).

5.6 Preconditioning techniques for conjugate gradients

5.6.1 In general

The preconditioning technique used is crucial for the memory demand and computing time

required. The construction of the preconditioning matrix can be extensive in respect to

main memory and determines the computing time of the CG iteration procedure itself. In

this work, firstly, a parallelized version of the preconditioned conjugate gradient method

(PPCG) was implemented based on domain decomposition without explicitly building

the Schur complement system. Secondly, the preconditioning technique was restricted to

a scaled main diagonal precondition technique with a special scaling parameter based on

the upper or lower bound of the spectral radius of the assembled submatrices. This has

the advantage that it reduces the time for building the preconditioning matrix as well as

the memory demand and also the time for executing the matrix-vector product involving

the preconditioning matrix. Finally, the sparse matrix-vector product performed for each

subdomain considers different matrix storage formats. Due to the nodal storage scheme

of the distributed FE data, a nodal compressed row storage can be used to improve the

performance compared to the standard coordinate storage (coo) or the compressed row

storage (csr).

K. Schrader, PhD-thesis

REGULAR EIGENVALUE PROBLEMS 68

5.6.2 Regular eigenvalue problems

In general, the FE discretization in quasi-static or time-independent discretizations in

solid mechanics yields to a regular, symmetric and positive definite coefficient matrix K

and by this, to a regular and solvable system of equations if the vector of nodal unknowns

u as well as the vector of nodal forces f are taken into account. If K is a real matrix and

the vector f is equal to zero such

Ku = 0 (5.48)

a linear homogeneous problem occurs. The assumption of

det(K) �= 0 (5.49)

and the extension of eq. (5.48) such as the matrix entries of K depend on the term λ

yields to

K(λ) · u = 0 (5.50)

with

K(λ) = [kij(λ)] (5.51)

The solution of this equation leads to a trival (u = 0) or a non-trival solution of u,

whereby the non-trival solution occurs, if one value λi yields to the singularity of K with

u ∈ Rn and λi = 1, 2, ..., n (5.52)

so that

det[K(λ)] = 0 (5.53)

The solution for the values of λ are the eigenvalues λi with corresponding eigenvectors ui.

In general, the determination of all eigenvalues results in the solution of the eigenvalue

problem of eq. (5.53), leading to a crucial computation of many determinants. The

regular eigenvalue problem is defined as

K(λ) = K0 − λ · I (5.54)

with I being the identity matrix. Considering eq. (5.54) and eq. (5.50), the regular

eigenvalue problem results in

(K0 − λ · I) · u = 0 (5.55)

or respectively

K0u = λu (5.56)

K. Schrader, PhD-thesis

MODIFIED JACOBI-POINT PRECONDITIONING 69

The assumption

K0 = K (5.57)

then leads to the solution of

det(K − λ · In) = 0 ≡ pn(λ) (5.58)

as the n-fold characteristic polynomial of the grade n with

pn(λ) = (−λ)n +

n∑
i=1

ai · (−λ)n−i (5.59)

and ai as the reel coefficients of pn.

The minimum and maximum eigenvalue are in (close) relation with the condition number

of the coefficient matrix K. In this work, the idea is to determine a global approximated

(minimum and/or maximum) eigenvalue by minimum and/or maximum eigenvalues for

each corresponding subdomain matrix of the distributed system of equations or the dis-

tributed eigenvalue problem, respectively. These global (minimum and/or maximum)

eigenvales can be used for approximating the condition number of the matrix K and can

then be considered for a numerical scaling strategy building the distributed precondition-

ing matrix and accelerating the distributed solver based on the preconditioned conjugate

gradient method. For this reason, preconditioning techniques involving the numerical

solution of corresponding eigenvalue problems will be presented in the following sections.

5.6.3 Jacobi-point preconditioning

The most memory-efficient preconditioning for a linear equation system results in a pre-

conditioning matrix M−1, which approximates the inverse of matrix K such that

M−1Ku = M−1f (5.60)

results from the consideration of the main diagonal of matrix K with

D = diag[K] (5.61)

Therefore, the preconditioning matrix M−1, which is the so-called Jacobi-point precon-

ditioner, as

M−1 = ωD−1 (5.62)

is taking a scalar value ω into account. Eq. (5.62) is addressed in the following section,

where the development of a technique for the determination of the scaling parameter ω

and the adaption for a distributed preconditioning technique are the focus. Hence, a

distributed and scalable computation based on preconditioned conjugate gradients (ac-

cording to eq. (5.60)) with a maximized efficiency in respect to memory and time demand,

is aimed.

K. Schrader, PhD-thesis

MODIFIED JACOBI-POINT PRECONDITIONING 70

5.6.4 Approximation of the condition number and preconditioning

The convergence behavior of such CG algorithms depends on the condition number of the

global stiffness matrix K, as well as on the preconditioning matrix, which in best case

approximates the inverse of K. Here, the relation between the condition number and a

suitable preconditioning technique is described in regards to computational efficiency of

such iterative solvers.

Lemma 1.1.

Let Kn = [kij] ∈ Rn×n be a n-by-n matrix, symmetric, positive definite and regular, and

I the identity matrix. Then

KK−1 = I. (5.63)

The definition of the condition number considering lemma 1.1 for the regular matrix K

of eq. (5.60) is given by

κ(K,K−1) = ‖KK−1‖ = ‖I‖
= 1

(5.64)

with I as the identity matrix, K as the global coefficient matrix, K ∈ Rn×n, and

κ(K) as the condition number of matrix K. Based on the Jacobi preconditioning, the

approximation of K−1 or the computation of the preconditioner M−1 is defined as

K−1 ∼ M−1 = diag[K]−1 = D−1 (5.65)

Using eq. (5.65), the condition number according to eq. (5.64) will change to

κ(K,D−1) = ‖KD−1‖
≥ 1

(5.66)

By introducing the scaling parameter ω for the relation between the condition numbers

κ(K,K−1) and κ(K,D−1), ω results in

ω =
κ(K,K−1)

κ(K,D−1)
(5.67)

Lemma 1.2.

Let Kn = [kij] ∈ Rn×n be a n-by-n matrix, symmetric, positive definite and regular.

Then

KI = K. (5.68)

With lemma 1.2 and consideration of eq. (5.64) and eq. (5.66) changes eq. (5.67) to

ω =
‖KK−1‖
‖KD−1‖ =

‖I‖
‖KD−1‖ ∼ ‖D‖

‖K‖ (5.69)

K. Schrader, PhD-thesis

MODIFIED JACOBI-POINT PRECONDITIONING 71

Lemma 1.3.

Let Kn = [kij] ∈ Rn×n be a n-by-n matrix, symmetric, positive definite and regular.

Then

ω‖Kn‖ = ‖ωKn‖. (5.70)

With lemma 1.3 eq. (5.69) leads to

‖K−1‖ ∼ ‖ωD−1‖ = ‖M−1‖ (5.71)

Therefore, the preconditioning Matrix M−1 is equivalent to

M−1 = ωD−1 ∼ K−1 (5.72)

Due to the presentation of the condition number as the upper bound of the spectral radius

expressed by the maximum eigenvalue of a regular, symmetric und positive definite matrix

(which is generally fulfilled), the scaling parameter ω can be computed as

ω =
‖D‖
‖K‖ =

λmax(D)

λmax(K)
(5.73)

5.6.5 Approximation of the scaling range

By using the scaled Jacobi preconditioning the induced solution error is limited to an

automized approximation of the scaling range of the values for ω. Due to this, a second

scaling parameter αL is introduced which modifies eq. (5.72) to

M−1 = αLωD
−1 (5.74)

The preconditioned vector of residuals z considering eq. (5.9) results in

z = M−1r

= αLωD
−1r

= αL
λmax(D)

λmax(K)
D−1r

(5.75)

With

b1 = zTr (5.76)

the square root of the norm of the residuals as the break criteria of the chosen tolerance

t for the PPCG interation considering eq. (5.12) leads to√
b1 =

√(
αLωD

−1r
)T

r ≤ t (5.77)

K. Schrader, PhD-thesis

MODIFIED JACOBI-POINT PRECONDITIONING 72

or

t2(
αLωD

−1r
)T

r
≥ 1 (5.78)

with eq. (5.78), the limit value of αL can be expressed as

αL ≥ t2(
ωD−1r

)T
r

(5.79)

By restricting the limit value of αL and decreasing it by 10−1 a minimum of PCG iterations

is assured. This will change eq. (5.79) to

αL =
10 t2(

ωD−1r
)T

r
(5.80)

Moreover, the scaling range for the values of αL can be given as

10 t2 ≤ αL

(
ωD−1r

)T
r ≤ (

ωD−1r
)T

r (5.81)

which is equivalent to

10 t2(
ωD−1r

)T
r
≤ αL ≤ 1 (5.82)

The induced residual error ε will be computed by

ε =
‖f − r‖F
‖f‖F (5.83)

with vector f containing the values of the right hand side of the equation system, required

to be preconditioned. In the following section the eigenvalue scaling strategy is adapted

to a modified and parallelized version of the Jacobi preconditioning technique.

5.6.6 Modified and parallelized Jacobi preconditioning

To obtain a scalable version of this type of preconditioning, the Jacobi-point precondi-

tioning technique and the scaling strategy are being combined and modified. The paral-

lelization based on the domain decomposition method then simultaneously considers the

main diagonal of each domain matrix. Moreover, the modified preconditioning technique

(to obtain M (j)−1
per domain) results from the scaled main diagonal or the scaled block

diagonal of the global domain matrices K(j) such that

M (j) =

(
M ii 0

0 M bb

)(j)

=

(
diag

[
Kii

]
0

0 diag
[
Kbb

])(j)

(5.84)

where the necessary assembly (MPI Allreduce) of the connecting boundaries results in

M̃ bb =

nd∑
j=1

M
(j)
bb (5.85)

K. Schrader, PhD-thesis

MODIFIED SCHUR PRECONDITIONING 73

The matrix inversion and modified scaling then yields to

M (j)−1
= αLω

(
M

(j)
ii 0

0 M
(j)
bb

)−1

(5.86)

= αLω

(
diag

[
Kii

]−1
0

0 M̃
−1

bb

)(j)

(5.87)

with the determination of the values for ω and αL resulting from the findings of the

previous section. The resulting eigenvalue problem which is to be solved to obtain ω in

regard to eq. (5.73) can be given as

(K − λiI)v = 0 with K ∈ Rn×n and i = 1, ..., n (5.88)

Then, all eigenvalues can be computed by

det(K − λiI) = 0 with K ∈ Rn×n and i = 1, ..., n (5.89)

and from the set of solutions for λ the maximum eigenvalue will be chosen. Respectively,

for the determination of λmax(D) eq. (5.89) changes to

det(D − λiI) = 0 with D ∈ Rn and i = 1, ..., n (5.90)

with D as the main diagonal of K. Considering a non-overlapping domain decomposition

method, the eigenvalues problem for each subdomain j results in as follows

det(K(j) − λ
(j)
i I) = 0 (5.91)

and will consequently result in

det(D(j) − λ
(j)
i I) = 0 (5.92)

For the computation of the upper bound of the spectral radius (which is equivalent to

the maximum eigenvalue), the von-Mises-Wielandt algorithm as described in chapter 3

(section 3.4.3) is adapted. A decreased accuracy still yields to reasonable eigenvalues in

acceptable computational time. Considering the maximum eigenvalue λ
(j)
max per domain j

if n domains are taken into account, the average maximum eigenvalue for K is computed

as

λ̃max(K) =
1

n

n∑
j=1

λ
(j)
max(K) (5.93)

as well as for D

λ̃max(D) =
1

n

n∑
j=1

λ
(j)
max(D) (5.94)

K. Schrader, PhD-thesis

MODIFIED SCHUR PRECONDITIONING 74

and, by that, a consistent global scaling parameter ω for each domain is obtained by

ω = ω(j) = f(λ̃max(K), λ̃max(D)) = const. (5.95)

This kind of determination of the scaling parameter is also shown in the following section,

here respecting an alternative preconditioning approach, the so-called Schur precondition-

ing.

5.6.7 Schur preconditioning

In order to gain an optimal convergence rate for the iterative computation of the final

equation system and for a comparison to the Jacobi-point preconditioner, a modified

Schur preconditioning technique is applied ([Loghin et al. 2003], [Langer 2008]). The

construction of the preconditioning matrix M (j)−1
derives from the original LU factor-

ization (which is shown in the following notation for M (j)−1
) as the exact inverse of

K(j)

M (j)−1
= K(j)−1

(5.96)

=

(
I −K−1

ii KT
biS̃bb

−1

0 S̃bb
−1

)(j)(
K−1

ii 0

−KbiK
−1
ii I

)(j)

(5.97)

with S̃bb
−1

as the inverted assembled Schur complement of matrix K (according to the

nodal d.o.f.s of the connecting boundary) with

S̃bb
−1

=

(n∑
j=1

S
(j)
bb

)−1

=

(n∑
j=1

(
Kbb −KbiK

−1
ii KT

bi

)(j))−1

(5.98)

However, the exact construction of S̃bb
−1

and M (j)−1
per domain is numerically ex-

pensive. Moreover, the quality of the preconditioning matrix related to its convergence

properties for the iterative CG solver depends on the quality of the approximation of the

inverse of Kii. Hence, the approximated inverses M̃S
−1

and M−1
Kii

are introduced, where

M̃S
−1

describes the approximation of S̃bb
−1

and M−1
Kii

of K−1
ii , respectively. Now, the

modified notation for M (j)−1
decomposed in M

(j)
1

−1
and M

(j)
2

−1
yields to

K(j)−1 ∼= M (j)−1
= M

(j)
1

−1
M

(j)
2

−1
(5.99)

using the LU factorization leading to

M (j)−1
=

(
I −M−1

Kii
KT

biM̃
−1

S

0 M̃
−1

S

)(j)(−M−1
Kii

0

−KbiM
−1
Kii

I

)(j)

(5.100)

The scaling strategy with parameter ω for such decomposed preconditioning matrices

M (j)−1
(as described in the previous section) consequently results in a modified version

of the Schur preconditioning corresponding to the notation presented in the next section

5.6.8.

K. Schrader, PhD-thesis

MODIFIED SCHUR PRECONDITIONING 75

1. INIT: z(0) = d(0) and ẑ = 0; determine αLω

2. ẑi = M
(j)
Kii

−1
di

3. z
(1)
b = z

(0)
b −Kbiẑi

4. z
(1)
b = αLωM̃

−1

S z
(1)
b

5. z
(1)
i = z

(0)
i −Kbi

Tz
(1)
b

6. z
(1)
i = αLωM

−1
Kii

z
(1)
i

7. SET: z =

(
z
(1)
i

z
(1)
b

)

Table 5.10: Algorithm for the vector-based Schur preconditioning according to eq. (5.104).

5.6.8 Modified Schur preconditioning

In this work, two versions of the modified Schur preconditioning are compared: firstly,

using the factorized matrix of K
(j)
ii , secondly the inverted and scaled main diagonal of

K
(j)
ii asM

(j)
Kii

−1
. In both cases the non-scaled inverted main diagonal of S̃bb

(j)
as M̃

(j)

S has

been proven to be sufficient in comparison to the performance of the CG method without

any preconditioning. There, a main diagonal preconditioning based on diag[K(j)] was

used to avoid an explicit factorization of Kii. By this

M
(j)
Kii

−1
=
(
diag

[
K

(j)
ii

])−1

(5.101)

and

M̃
(j)

S

−1

=
(
diag

[
S̃bb

])−1

(5.102)

can explicitly be formulated. Considering the scaling parameters this leads to

M (j)−1
= αLω

⎛⎜⎝I −
(
diag

[
Kii

])−1

KT
bi

(
diag

[
S̃bb

])−1

0
(
diag

[
S̃bb

])−1

⎞⎟⎠
(j)

⎛⎜⎝ −
(
diag

[
Kii

])−1

0

−Kbi

(
diag

[
Kii

])−1

I

⎞⎟⎠
(j)

(5.103)

Consequently, this results in an efficient vector scaling rather than in a numerically-

expensive matrix factorization which would finally lead to a dense matrix-vector operation

caused by the preconditioning. For the implementation of the Schur preconditioning

technique it is required to reduce the number of numerical operations involving M
(j)
1 and

M
(j)
2 to a minimum in order to enable an efficient execution of the Schur preconditioning

during the iterative CG procedure. Hence, the following algorithm of table 5.10 has been

developed for the precondition of vector d to obtain vector z. After initialization of z, five

K. Schrader, PhD-thesis

MODIFIED SCHUR PRECONDITIONING 76

computational steps of the algorithm need simultaneously to be performed per subdomain

(equal to eq. (5.104)) such as

z(j) = M (j)−1
d(j) = M

(j)
1

−1
M

(j)
2

−1
(
di

db

)(j)

=

(
zi

zb

)(j)

(5.104)

This and the previous chapter provide the mechanical and mathematical background for a

scalable implementation concept with the addressed goal to enable large-scale simulations

of the (nonlinear) material behavior of multiphase specimens. With the special focus on

the computational efficiency respecting memory and time demand, a high-performance

framework was therefore developed and evaluated. The resulting hybrid computing ap-

proach combines the scalablility of different hardware architectures. Numerical results for

the scalability of the implemented algorithms on two high-performance computers (e.g.

both provided by the high-performance computing center Stuttgart - HLRS) are then

being presented.

K. Schrader, PhD-thesis

Chapter 6

Hybrid high-performance

computing

The following sections give a short overview of and an indroduction to the hardware ar-

chitectures and parallel programming concepts currently available. In general, there are

two different hardware architectures (taking the type of parallel processing into account):

namely the shared memory processing (SMP) and also the distributed memory proces-

sing (DMP). In the past decades these concepts were technically realized by using central

processing units (CPUs). However, with the introduction of the graphics processing unit

(GPU) as a computational SMP unit, this hardware architecture has been led to a new era

of scientific computing, which is nowadays used in hybrid CPU-GPU high-performance

computers. After the technical overview this chapter closes with several benchmarks in

respect to linear-elastic FEA of different large-scale discretized problems.

6.1 Parallel hardware architectures

6.1.1 Shared memory processing (SMP)

According to [Robbins et al. 2003] and [Chapman et al. 2007], shared memory computer

systems typically use a large block of random access memory which is accessed by sev-

eral central processing units (CPUs) in a multiple-processor computer system. A shared

memory system requires relatively simple programming constructs, since all processors

share a single view of data and the communication between the processors can be as fast

as their memory accesses to the same location. The challenge of shared memory systems

is that many CPUs need fast access to the global memory and therefore also to its cache

memory. This has main disadvantages. Firstly, the CPU-to-memory connection causes

a bottleneck for the data transfer and secondly, shared memory computers are not scal-

ing well. However, the cache coherence is crucial for the overall performance of these

systems. Whenever one cache is updated with information which may be used by other

processors, the change in data is to be transmitted to the other processors, otherwise

K. Schrader, PhD-thesis 77

HIGH-PERFORMANCE COMPUTING 78

the different processors will be working with incoherent data. Coherence protocols for

cache and memory coherence can provide an extremely high-performance access to infor-

mation shared between multiple processors, but on the other hand, there is a risk that

they become overloaded, which will result in a reduced data transfer. The programming

construct using shared memory processing is the open specifications for multiprocessing

(openMP) interface, which was introduced as an open standard in 1997. Here, SMP hard-

ware architectures (e.g. a CPU-socket with multiple CPU-cores) use the cache-coherent

non-uniform memory access (ccNUMA, fig. 6.1) to communicate. Other than the unified

memory access systems (UMA), the memory location and latency are important for the

performance of the ccNUMA systems. Moreover, NUMA systems are distributed shared

Figure 6.1: Architectural topology of a multicore shared memory CPU system: Detailed view of one

socket (of a four socket system) with two ccNuma nodes (16 GB memory for each node) equipped with

a 12-core AMD Opteron CPU 6100 series (Magny-Cours).

memory systems, where each NUMA node is connected to its own local memory. Simulta-

neously, each NUMA node has full access to the non-local memory, but with an increased

latency.

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING 79

6.1.2 Distributed memory processing (DMP)

Distributed memory processing occurs, if several symmetric memory-based NUMA or

ccNUMA nodes are connected by network communication links and standard network

protocols, such as e.g. the InfiniBand, which is mainly used for the interconnection in

high-performance computing. It allows programs to interact with all available processors.

The key issue in the programming of distributed memory systems is, how to efficiently

distribute the data among the different memories, a task being one of the main responsi-

bility of the programmer. Moreover, the implementation concept often differs depending

on the problem which is to be investigated. Hence, a suitable parallel programming

environment for DMP systems is to be sought. Due to this, the message-passing inter-

face standard (MPI, [Gropp et al. 1999]) was developed as a standardized and portable

message-passing system to concurrently utilze all connected local or non-local ccNuma

nodes. This parallelization approach is used and further investigated in this work.

6.1.3 Graphics processing unit (GPU) and general-purpose graphics

processing unit (GPGPU)

With the availability of the CUDA programming framework in 2007, basic mathematical

operations such as routines of linear algebra can numerically be executed on the GPU.

Today, a varity of tools and free software packages are available to enable access to the

GPU hardware resources. Currently, hybrid platforms in high-performance supercom-

puters are used, which provide many GPU boards, as for example are included in rack

based systems based on the Tesla or Fermi architecture [NVIDIA 2009e]. The evalua-

tion of the performance of large-scale finite element models using a hybrid CPU-GPU

high-performance computing cluster, such as the NEC Nehalem at the high-performance

computing center Stuttgart, is one of the objectives of this work. This also creates new

opportunities to use general-purpose computations on graphics hardware with multiple

graphics processing units (GPGPU, [NVIDIA 2009d], [NVIDIA 2009c], [NVIDIA 2009a]).

6.2 Parallel programming techniques

6.2.1 Open specifications for multi-processing (openMP)

OpenMP [Chapman et al. 2007] is an open standard which implements multithreading

for SMP systems, a method of parallelization whereby the master ’thread’ (a series of

instructions executed consecutively) is managing a specified number of slave threads and

divides the tasks among them. The threads then run concurrently within the runtime

environment and are allocated to different processors. The section of parallel code is

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING 80

Figure 6.2: GPU advantage: More GPU transistors as algorithmic logic units (ALU, right) are devoted

to data processing rather than data caching and flow control compared to CPU (left).

induced by a preprocessor directive (usually starting with ’#pragma omp ...’), causing

the threads to be initialized before the section is executed. Each thread has an id attached

to it (as an integer data type), which starts at the master thread with a value of zero.

After the execution of the parallelized code, the threads join back into the master thread

and the code runs sequentially to the next parallelized section. This procedure continues

until the end of the program. By default, each thread executes the parallelized section

of code independently. Work-sharing constructs can be used to divide a task among

the threads, enabling each thread to execute its allocated part of the code. Both tasks,

parallelism and data parallelism are achieved using openMP in this way. The runtime

environment allocates threads to processors depending to the type of usage, the machine

load and the scheduling factors of the running hardware system. Moreover, the number

of threads is defined by the runtime environment based on the environment variables

or, alternatively, directly in the programming code by using openMP functions. These

functions are included in the header file omp.h which is available in C and C++ language

bindings.

6.2.2 Message-passing interface (MPI)

According to [Forum 2008] MPI is a message-passing library interface specification. MPI

primarily addresses the message-passing parallel programming model, in which data is

moved through cooperative operations on each individual process from the address space

of one process to that of another process. Extensions to the classical message-passing

model are provided in collective operations, remote-memory access operations, the dy-

namic process creation and the parallel input and output (I/O). MPI is a specification,

not an implementation, however, multiple implementations of MPI are existing. Its spec-

ification is suitable for a library interface. Furthermore, MPI is also not a language, and

all MPI operations are expressed as functions, subroutines, or methods according to the

appropriate language bindings for C, C++, Fortran-77 and Fortran-95, all being part of

the MPI standard. The basic goal of the message-passing interface is to develop a widely

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING 81

used standard for writing message-passing programs. This interface was established as a

portable and efficient standard for message-passing. In 1994, the first official MPI version

was introduced [Gropp et al. 1994], with updated versions and specifications available

today. Furthermore, hybrid programming frameworks enable the combination of openMP

and MPI parallelization techniques.

6.2.3 Compute unified device architecture (CUDA)

The compute unified device architecture (CUDA, [NVIDIA 2009f], [NVIDIA 2009g]) is a

parallel computer architecture, which was developed by Nvidia. In February 2007, the

initial CUDA SDK was published for Microsoft Windows and Linux [NVIDIA 2009b].

CUDA is the computing engine used in Nvidia graphics processing units (GPUs), which

is available to software developers in a varity of standard programming languages. Pro-

grammers can use C for CUDA, which basically is ISO C with specific Nvidia extensions

(with several restrictions) compiled through a PathScale Open64 C compiler to code

algorithms for the execution on the GPU. CUDA provides a range of computational in-

terfaces also available for Python, Perl, Fortran, Java, Ruby, Lua, MATLAB/Jacket and

IDL. CUDA grants the developers access to the virtual instruction set and memory of

the parallel computational elements in CUDA GPUs. Using CUDA, the latest Nvidia

GPUs become accessible for computation like CPUs. Unlike CPUs however, GPUs have

a parallel throughput architecture which executes many concurrent threads slowly, rather

than quickly executing a single thread in CPUs. This approach of solving general purpose

problems on GPUs is known as GPGPU. In addition to graphics rendering, GPUs are

used in game physics calculations in the computer game industry include PhysX. Hence,

CUDA is also applied to accelerate non-graphical applications in computational biology,

cryptography and various other fields of application. CUDA also works with all Nvidia

GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. Initial

tests in this work have been executed on a GeForce GTX 280 graphic card, followed

by the evaluation of the scalability at multiple Tesla units, which was used in a hybrid

high-performance computing framework. This is described in section 6.3 and 6.5.1.

6.2.4 Performance characteristics

Sparse storage formats

In CPU as well as in GPU based computations, several matrix storage formats according

to table 6.1 can be used to linear algebra operations, such as e.g. the numerical com-

putation of matrix-vector products. The performance of such matrix-vector operations

depends on the chosen storage format in conjuction with the hardware architecture (e.g.

CPU or GPU). This is crucial for the efficiency of the distributed iterative solution tech-

nique based on the parallelized preconditioned conjugate gradients. Conventional matrix

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING 82

storage formats are the coordinate format (coo), which stores the row index, the column

index and the value of each matrix entry or the compressed row storage format, which

improves coo by using index points of the length of each row, storing these row pointers

and its column index plus the value of the corresponding matrix entry. In this work, a

nodal compressed sparse row storage ndcsr format based on FE node incidences was im-

plemented using the advantage of index-free storage of the matrix values. Special storage

formats for GPU computing are the ellpack format ell and also the hybrid version hyb,

combining the ellpack with the coordinate storage format. The adequate application of

coo row and column index, value of matrix value (CPU and GPU)

csr row pointer, column index, value of the matrix entry (CPU and GPU)

ndcsr nodal csr storage based on nodal FE incidencies (CPU)

ell ellpack format for graphics processing units (GPU)

hyb hybrid format as combination of coordinate and ellpack storage formats (GPU)

Table 6.1: Different matrix storage formats for CPU and GPU computing.

such matrix storage schemes depends on the hardware architecture used and on the matrix

sparsity, emphased by numerical tests for which results are illustrated later in this chapter.

Memory demand and computing time

The advantage of the ndcsr storage format is a decrease of memory demand, as shown

in table 6.2, where the matrix entries are stored in double precision (eight bytes for one

matrix entry) and the indices as integer data type (four bytes for one index). The scaling

of the memory demand is shown in the diagram in figure 6.3 (right) and is compared to

the coo and csr storage scheme. With n as the number of nonzero matrix entries, m as

the number of d.o.f.s (assuming three translational d.o.f.s. per finite element node) and

n > m, the memory efficiency over the standard coo format is improving, if the relation

n by m is increasing. This is the case for large-scale high-dimensional finite element

problems in 3D. Furthermore, the ndcsr matrix storage enables a faster execution of the

matrix-vector products, being essential for the performance of the iterative solver tech-

nique. Numerical results considering a PPCG solver which are comparing the influence

of the storage scheme to the solver performance are also shown in the next subsections.

6.2.5 Implementation characteristics

Framework of nodal block allocation

The numerical integration of the element stiffness matrix for all elements of the specific

subdomain and the assembly of the global stiffness matrix per subdomain is executed in

parallel. For an accelerated computation, the nodal compressed row storage (ndcsr) of

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING 83

10-2

10-1

100

101

102

104 105 106 107 108 109

M
em

or
y

de
m

an
d

[G
B

]

Number of d.o.f.s

coo
csr

ndcsr

1.0

1.2

1.4

1.6

1.8

2.0

1 2 5 10 20 50

M
em

or
y

ef
fi

ci
en

cy
 o

ve
r

co
o

Relation: Number matrix entries / number d.o.f.s

csr
ndcsr

Figure 6.3: Memory demand (in Gigabyte, GB) of a ndcsr storage scheme compared to standard coo

and csr storage format depending on the number of global d.o.f.s. (left), Scaling of the memory efficiency

of ndcsr and csr storage schemes compared to the standard coo storage format (1.0) depending on the

relation of the number of matrix entries and global d.o.f.s.

the finite element data was implemented allowing fast access to specific positions of the

coefficient matrices where the indices are determined by the position of the corresponding

nodal block instead considering the nodal d.o.f.s. It also enables efficient matrix-vector

operations, while comparing it to the standard coordinate storage (coo), or alternatively,

to the compressed row storage (csr). The computational efficiency in regards to the

numerical integration, the assembly of the global stiffness matrix and the solution of

the resulting equation system are compared and investigated for several FE examples,

starting in section 6.4. In this approach, the assembled global stiffness matrix is stored

among the finite element nodes in assembled blocks B̃
(j)
per subdomain, with j storing

all matrix entries without the necessity to separately store the indices of the matrix

entries. Moreover, the incidencial nodes of one finite element are defining one nodal

stiffness block (after the numerical integration of that element) in conjunction with the

neighboring nodes of the same element. One nodal block A
(j)
i of subdomain j contains all

n by n matrix entries of the corresponding nodal block with n as the number of d.o.f.s per

node (e.g. n = 3 in case of three translational d.o.f.s considered for 3D finite elements).

storage format memory memory memory efficiency

entries indices total n:m=3 n:m=5

coo 8n 8n 16n 1.0 1.0

csr 8n 4n+4m 12n+4m 1.2 1.25

ndcsr 8n 8m 8n+8m 1.5 1.67

Table 6.2: Memory demand (in byte) of the global matrix for different matrix storage schemes: n as

the number of nonzero matrix entries and m as the number of nodal degrees of freedom (d.o.f.s).

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING 84

Consequently, the set of assembled nodal blocks Ã(j)
i stored in B̃

(j)
can be expressed as

B̃
(j)

=

n(j)⋃
i=1

Ã(j)
i = {1, ..., n(j)} (6.1)

with

Ã(j)
i ∩ Ã(j)

k = ∅, 1 ≤ i < k ≤ n(j) (6.2)

All nodal blocks are stored respecting their neighboring nodes in ascending order. As

an advantage, this kind of nodal block assembly can be done independently and simul-

taneously for all subdomains, which leads to ideal parallel performance scalings, also if

the number of subdomains is increasing. Therewith, B̃
(j)

can be split by the type of the

global location in the global block matrix, a diagonal or off-diagonal block position

B̃
(j)

=

{
B̃

(j)

D nodal blocks of the main diagonal

B̃
(j)

L else
(6.3)

with the specification of the assembled block diagonals

B̃
(j)

D =

n
(j)
D⋃

i=1

Ã(j)
i,D = {1, ..., n(j)D } (6.4)

and for the off-diagonal position, respectively, with

B̃
(j)

L =

n
(j)
L⋃

i=1

Ã(j)
i,L = {1, ..., n(j)L } (6.5)

Using this notation, the nodal compressed row storage format, fully scalable based on

decomposed finite element meshes, may also be used for the efficient computation of

matrix-vector products [Bell et al. 2008a].

Nodal compressed row storage for sparse matrix-vector operations

To improve the performance of the PPCG procedure, the matrix-vector product (step 2 of

table 5.9) in conjunction with the assembled submatrix of the corresponding subdomain

can efficiently and blockwise be performed [Bulu et al. 2009], using the nodal compressed

row storage, which results from the nodal block allocation and the storage scheme of the

finite element data [Bell et al. 2008b]. The proposed algorithm of table 6.3 then computes

the matrix-vector product while separately considering the entries of the diagonal as well

as of the off-diagonal nodal blocks B̃
(k)

D and B̃
(k)

L , respectively, (with n as the number of

nodal d.o.f.s) and replaces the second line of the PPCG algorithm, which is listed in table

5.9. Later in this chapter 6, the time benefits are shown compared to the standard coor-

dinate (coo) and the standard compressed row storage (csr) schemes for sparse matrices

resulting from several benchmark tests.

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING 85

1. for ii = 0 to nn − 1 do (Loop over all nodes)

2. i = ii · n2

3. r = ii · n
4. for j = 0 to n (Loop over all diagonal block entries)

5. for k = 0 to n

6. p1 = r + j

7. p2 = r + k

8. q = i+ n · j + k

9. d̂
(k)
p1 = d̂

(k)
p1 +B

(k)
D,qkd

(k)
p2

10. end for

11. end for

12. for l = 0 to nc
ii − 1

13. c = n · l
14. for j = 0 to n (Loop over all off-diagonal block entries)

15. t = pm + j

16. for k = 0 to n

17. p = r + j

18. q = c+ k

19. d̂
(k)
p = d̂

(k)
p +B

(k)
L,tkd

(k)
q

20. p = c+ j

21. q = r + k

22. d̂
(k)
p = d̂

(k)
p +B

(k)
L,tkd

(k)
q

23. end for

24. end for

25. end for

26. end for

Table 6.3: Algorithm for matrix-vector operations considering diagonal and off-diagonal nodal block

matrices B
(k)
D and B

(k)
L per domain k.

6.2.6 Concluding remarks

The computational performance of the different algorithms presented will be evaluated

by a benchmark for the sequential comparison between GPU (type of GTX285, GeForce

architecture) and CPU (standard linux workstation) computing as shown in section 6.3.

Hence, an example for a simplified elastic-inelastic decomposition is considered and the

iterative PCG computation is performed, taking different preconditioning techniques into

account and especially the modified version of the Schur preconditioning (table 6.5).

Section 6.4 will show several scaling tests where homogeneous as well as hybrid meshed

and also partitioned specimens were used. The benchmark was executed on a standard

four-socket server. Section 6.5 states the results of large-scale computations of micro-

structural bone material embedded in a hybrid high-performance computing framework.

There, the PPCG method is taking the scaling strategy for building the preconditioning

K. Schrader, PhD-thesis

SEQUENTIAL CPU AND GPU COMPUTING 86

matrix into account, where the computation of the matrix-vector products is outsourced

to several graphics processing units (based on the Nvidia Tesla technology). The hardware

used is provided by the NEC Nehalem high-performance computing cluster at the HLRS.

A second high-performance computing framework in combination with the CRAY XE6

cluster (in operational mode since the beginning of 2012) allows to increase a large-scale

finite element model based on computer-tomographic scans using a casted nickel-alloy

specimen up to more than 42 million d.o.f.s (see section 6.6).

6.3 Sequential CPU and GPU computing

6.3.1 Hardware architecture

The chosen CPU system is a four-noded AMD Opteron rack system, where each node

contains a six-core Istanbul Opteron with a local memory of 32 GB RAM and 9 MB

common L3 cache. The cores have a clock speed of 2800 MHz with 128 kB L1 and 512

kB L2 cache configuration. Additionally, the rack system is connnected to an external

graphical subsystem containing two Nvidia Quadro FX 5800 graphic cards with 2 x 4 GB

of local memory and a clockspeed of 1300 MHz per computation unit. An illustration of

the hardware used is shown in figure 6.4.

Figure 6.4: Nvidia Quadroplex D2 system (left) including two Quadro 5800 FX cards (right).

6.3.2 Example: Elastic-inelastic domain split

The first example evaluated is a simple block structure with a mixed mesh, where a

homogeneous and an aligned meshing technique for one of the two domains was used

(as shown in figure 6.5). The resulting domain stiffness matrix of the coarse and regular

meshed part was condensed to the boundary d.o.f.s using the Schur complement method.

Here, the assembled subdomain matrix of the aligned mesh was iteratively solved involving

the Schur complement of the first domain as well as several preconditioning techniques

(with the corresponding notation as stated in section 5.6.7).

K. Schrader, PhD-thesis

SEQUENTIAL CPU AND GPU COMPUTING 87

Figure 6.5: Numerical example applying the elastic-inelastic domain split with corresponding boundary

and loading conditions.

6.3.3 Benchmark

Table 6.5 shows the results of using one CPU unit and different preconditioning techniques

for solving the linear equation system considering an elastic-inelastic decomposition. The

results were then compared to the execution time obtained from a Nvidia Quadro Plex

2200 system, as described in the previous section. According to the Quadro Plex 2200, the

performance evaluation considers the standard coordinate format for the matrix storage

with double precision for the algebraic computations and the texture cache of the GPU

unit. The time was measured considering double precision and was moderately higher

than the time measured based on 32 bit floating point operations. Additionally, the use

of graphical texture cache led to further reductions in execution time and, thereby, com-

pensated some of the computational effort caused by the increase in precision.

domain mesh type d.o.f.s sparsity

elastic regular ∼ 70000 dense

inelastic aligned ∼ 90000 sparse

Table 6.4: Size of the two decomposed domains related to the number of degrees of freedom.

precond. architecture matrix format iterations time approximation

[sec]

- 1cpu coo 786 15 -

diag 1cpu coo 578 11 D−1

scaled diag 1cpu coo 333 7 αD−1

Schur 1cpu coo 410 9 M−1
Kii

& M−1
S

Schur 1cpu coo 58 1 M−1
S

scaled diag 1gpu coo 326 2 αD−1

Table 6.5: Comparison of the computation times of the CPU and GPU architecture using different

preconditioning techniques.

However, the GPU computation time does not include the time for transferring the (input

and result) data between the GPU und the CPU, which is a relatively slow process. There-

K. Schrader, PhD-thesis

DISTRIBUTED COMPUTING 88

fore, the implementation of an asynchronous memory copying is necessary, for which an

extented implementation based on the CUDA framework was used. Exemplary numerical

results obtained from such a hybrid technique are given in section 6.5.4. Since different

storage schemes may improve the performance of the GPU (as shown in table 6.6), three

different matrix storage formats (applied to sparse and dense matrices) were analysed in

relation to the performance of the coo format. Additionally, for a performant thread-based

parallelization on the graphic processing unit, the GPU-based ellpack format (ell) and the

hybrid storage format (hyb) as combination of the ellpack and the coordinate format were

taken into account.

architecture matrix sparsity matrix format performance (coo)

1gpu sparse csr -12%

1gpu sparse ell +16%

1gpu sparse hyb +30%

1gpu dense csr +24%

1gpu dense ell -180%

1gpu dense hyb -160%

Table 6.6: Comparison of the performance results of the GPU architecture using different matrix storage

formats in relation to the coordinate format (coo).

The next step addresses the development of the MPI implementation, which enables

a memory-consistent usage of more than one CPU node. By this, creating a high-

performance computing framework with a distributed memory processing or a cache-

coherent non-uniform memory architecture (ccNUMA), often realized in systems with

multiple CPU sockets, is an objective of this work. The performance evaluation of such

frameworks, also considering multiple GPU nodes is realized by using verified numerical

results from large-scale linear-elastic finite element analysis (FEA) of several numerical

specimens, which are benchmarked in the next sections.

6.4 Distributed computing

6.4.1 Hardware architecture

The applied CPU system to all following examples is a four-socket AMD Opteron rack

server of type HP ProLiant DL585 G7 with 128 GB of total memory. Here, each socket

contains a 12-core Opteron 6174 processor resulting in eight ccNuma nodes with dis-

tributed memory access and with a local size of memory of 16 GB RAM for each socket.

Furthermore, each core has a clock speed of 2200 MHz with 128 kB L1 and 512 kB L2

cache configuration. The unidirectional interconnection between the ccNuma nodes is

the HyperTransport bus standard 3.0 and the operating system is the openSUSE Linux

Enterprise Server (x86 64).

K. Schrader, PhD-thesis

DISTRIBUTED COMPUTING 89

6.4.2 Examples: Homogeneous and hybrid meshed three-phase specimens

For the investigation of various types of FE meshes a scalable finite element kernel was

implemented, being suitable for distributed computing and tested for the execution on

multi-socket servers (HP ProLiant DL585 G7) as well as on the high-performance comput-

ing cluster NEC Nehalem at the HLRS. Different finite element discretization techniques

were applied (see fig. 6.6). Moreover, a homogeneous aligned mesh (fig. 6.6, top-left)

and a combination of a regular (grid-based) mesh with different element sizes (fig. 6.6,

top-right) was generated to finally obtain the hybrid mesh with aligned meshed inclusions

embedded in a regular grid (fig. 6.6, bottom left and right).

Figure 6.6: Initial heterogeneous specimens and three different meshing techniques (from top-left): Ho-

mogeneous aligned mesh, the combined regular and aligned tetrahedral mesh, the hybrid mesh (resulting

from the regular grid), the aligned tetrahedral mesh (bottom-left) as well as the refined hybrid mesh.

From the performance point of view the hybrid meshing technique can significantly reduce

the computation time caused by the numerical integration of the finite elements, since

here a one-time grid-based element integration is sufficient to generate the initial element

stiffness matrix as stated in section 3.4.4. This is applicable to all elements of the region

within the grid, if mechanical isotropy (with a constant Poisson’s ratio) is assumed. This

material region or distinct phase is denoted as a material elastic domain based on one

element type and similar material properties. After applying the aligned as well as the

hybrid meshing technique, the partitioning of the aligned mesh in statically load-balanced

K. Schrader, PhD-thesis

DISTRIBUTED COMPUTING 90

domains was performed by using METIS (as illustrated in figure 6.9). In comparison to a

purely tetrahedral mesh, a nodal partitioning for the resulting irregular mesh was applied,

as shown in figure 6.8. For all decomposed meshes, the numerical integration was per-

formed as well as the assembly of the decomposed global coefficient matrices and finally,

the distributed system was solved by an iterative MPI-based preconditioned conjugate

gradient method with the boundary and loading conditions as given in fig. 6.7. Table 6.7

shows the number of tetrahedrons, the number of hexahedrons and the total number of

elements at the three different discretization levels: msh1 (homogeneous), msh2 and msh3

(heterogeneous). Table 6.8 shows the number of off-diagonal nodal blocks, the time for

creating the nodal compressed row storage of the finite element data and the necessary

memory demand for storing the global coefficient matrix when using the nodal block al-

location technique. Moreover, the distributed numerical integration and global matrices

assembly were executed measuring the respective elapsed computing times required for

these tasks. Table 6.9 states the material properties used for the generation of the ho-

mogeneous and heterogeneous test specimens. It is to be noted that the loading case is

limited to uniaxial tension induced by an unit load of 1N/mm2 applied as surface traction

of the top.

Figure 6.7: Initial boundary and loading conditions applied to all specimens which are investigated.

mesh tetrahedrons hexahedrons total nodes d.o.f.s

msh1 2,807,107 - 2,807,107 473,716 1,421,148

msh2 5,126,122 247,000 5,373,122 1,146,016 3,438,048

msh3 38,664,482 247,000 38,911,482 6,904,392 20,713,176

Table 6.7: Size of problems according to homogeneous (msh1) and mixed meshes (msh2 and msh3).

6.4.3 Benchmark: Homogeneous mesh

The following numerical results were obtained for the decomposed homogeneous tetrahe-

dral mesh (msh1) and are illustrated in figure 6.8. Here, the MPI-parallelized computation

of the global stiffness matrix and the parallel solution of the linear equation system with

K. Schrader, PhD-thesis

DISTRIBUTED COMPUTING 91

mesh 1 mesh 2 mesh 3

d.o.f.s 1,421,148 3,438,048 20,713,176

nodal ij blocks 3,297,880 9,359,748 49,067,679

sequential time [sec] for

nodal block allocation 3.0 5.6 39.7

allocated memory [GB] 0.242 0.679 3.599

Table 6.8: Nodal block allocation (sequential): Number of off-diagonal blocks, time for nodal block

allocation and allocated memory for the ndcsr storage of the final coefficient matrix.

mesh type phase property symbol value unit

homogeneous - Young’s modulus E 30000 [N/mm2]

Poisson’s ratio ν 0.18 [-]

heterogeneous matrix Young’s modulus Emat 31000 [N/mm2]

Poisson’s ratio νmat 0.18 [-]

inclusion Young’s modulus Einc 62500 [N/mm2]

Poisson’s ratio νinc 0.18 [-]

interface Young’s modulus Eint 25000 [N/mm2]

Poisson’s ratio νint 0.18 [-]

Table 6.9: Material properties for the homogeneous and heterogeneous mesh applied for the benchmark.

over 1.4 million d.o.f.s were distributed to up to 12 MPI processes. The resulting com-

puting times with respect to the numerical integration and matrix assembly as well as the

(ideal) corresponding speed-ups are shown in table 6.10. Furthermore, table 6.10 contains

the computing times for the parallel iterative equation solver based on the preconditioned

conjugate gradient method, which respects a (residual) error tolerance smaller than 10−6.

It is a main disadvantage, if the number of the MPI processes is higher than the number of

available ccNuma nodes, since in this case the performance abruptly decreases due to the

multiple memory access between different MPI processes (np=12) to the same ccNuma

node, mainly being caused by the common L3 cache of each socket.

np assembly assembly solver solver ansys pcg ansys pcg

ndcrs (sec) speed-up ndcrs (sec) speed-up csr (sec) speed-up

1 37.3 1.0 77.1 1.0 94.0 1.0

2 18.3 2.0 42.8 1.8 58.8 1.6

4 9.1 4.0 23.1 3.3 33.6 2.8

6 6.0 6.0 16.1 4.8 25.4 3.7

8 4.5 8.0 13.1 5.9 21.9 4.3

12 3.2 11.7 16.0 4.8 - -

Table 6.10: Absolute time in seconds and the corresponding speed-ups for assembling the finite element

data and for solving the global system of equations with the PPCG solver (msh1).

K. Schrader, PhD-thesis

DISTRIBUTED COMPUTING 92

Figure 6.8: Nodal partitioning of an aligned tetrahedral mesh in four nodally equal-sized domains.

np format format format ansys speed-up

coo [sec] csr [sec] ndcsr [sec] csr [sec] ndcsr over ansys

1 142.1 143.0 142.6 282.0 2.0

2 74.4 73.9 72.3 149.5 3.9

4 40.2 39.9 39.1 - 6.9

6 30.1 31.0 30.6 - 9.2

8 25.5 25.5 24.2 - 11.7

Table 6.11: Absolute time in seconds for assembling the finite element data and building the global

coefficient matrices (msh2, 3.4 million d.o.f.s).

6.4.4 Benchmark: Hybrid mesh

For the mixed mesh test the remeshing of the geometry compounds was performed. Here,

material homogeneous regions around the cells with embedded inclusions (as a regular

grid) were used and an aligned mesh for the remaining volume was considered, resulting

in a hybrid mesh (fig. 6.6, bottom). The aligned mesh in this example is partitioned

in four nodally equal-sized subdomains, as shown in figure 6.9. Again, the results in-

clude the computational times for the numerical integration, the global assembly and the

parallelized computation with the PCG method. As previously stated, various storage

techniques were investigated and the results based on the ndcsr storage were analysed in

comparison to the computational time occurring from standard coordinate format (coo)

and standard compressed sparse row (csr, equal to compressed row storage (crs)). Table

6.11 states the absolute times for the stiffness assembly including the numerical integra-

tion with comparable speed-ups. In table 6.12, the computational times for solving the

global equation system with the parallelized PCG method is shown with the correspond-

ing speed-ups. To produce these results the HP ProLiant hardware platform has been

used.

K. Schrader, PhD-thesis

DISTRIBUTED COMPUTING 93

Figure 6.9: Nodal partitioning of a hybrid mesh in four equal-sized domains: Considering the irregular

tetrahedral mesh (embedded in a coarse grid) for the load-balanced partitioning (msh2): total view

(top-left) and two clippings to the inside (top-right, bottom).

np format format format ansys speed-up

coo [sec] csr [sec] ndcsr [sec] csr [sec] ndcsr over ansys

1 196.3 164.1 135.5 248.4 1.8

2 112.0 91.2 75.3 193.0 3.3

4 57.4 50.4 40.8 - 6.1

6 38.4 35.5 29.8 - 8.3

8 31.2 28.9 24.2 - 10.3

Table 6.12: Absolute times for solving the global equation system with the parallelized preconditioned

conjugate gradient method (msh2, 3.4 million d.o.f.s).

6.4.5 Benchmark: Scaling range of the modified Jacobi preconditioning

The distributed solver performance can also be increased by setting an optimized scaling

parameter for the preconditioning procedure. This can separately and simultaneously

be determined for each subdomain in respect to eq. (5.95) of section 5.9 and an aver-

age of a globally suitable value was chosen. This results in an improved preconditioning

scaling although the error in the global solution is increasing (in an acceptable manner).

The scaling parameters differ when the condition number of the assembled submatrices is

changed, mainly being induced by mesh dependencies such as the use of different element

types and are influenced by the applied material properties. Nevertheless, the scaling

strategy is robust for homogeneous or hybrid meshes. Especially for hybrid meshes (e.g.

the discritization of the multiphase material), the influence of different material proper-

ties, specified for each phase, as well as the mixture of different element types is relatively

low and does not lead to a critical convergence behavior of the proposed solver technique.

Table 6.13 shows the convergence behavior and the induced resulting error in the global

solution. The global scaling parameters are approximated values (manually as well as

computationally), which are obtained from the eigenvalue strategy. A quantitative il-

lustration of the relation between the solution error and the resulting solver speed-up

K. Schrader, PhD-thesis

DISTRIBUTED COMPUTING 94

is given in figure 6.10, where speed-ups are obtained in the 2.0 - 3.0 range accordingly

with a corresponding error in the 0.03 - 0.06 range. As stated in table 6.13, the scaling

strategy for the preconditioning results in a solver speed-up of 2.22 with an acceptable

error of 0.06, respectively. This numerical example corresponds to the example from the

previous section, which had been partitioned in eight subdomains and similar boundary

and loading conditions according to the previous example were also applied.

It is to be mentioned, that the robustness of this type of scaling strategy was investigated

for the uniaxial loading scenario as well as for the case of dead load in the threedimen-

sional space, by means, that the induced solution error in relation to the resulting solver

speed-up may differ for biaxial or multiaxial load cases. If the worst case arises, this tech-

nique is not such a suitable scaling method for the preconditioning as it is for uniaxial

loading conditions and thereby, further investigations as well as numerical modifications

may be necessary.

0.02

0.04

0.06

0.08

0.10

100 10-1 10-2
1

2

3

4

E
rr

or
 in

 g
lo

ba
l s

ol
ut

io
n

Sp
ee

d-
up

Global scaling parameter

error
speed-up

Figure 6.10: Scaling parameters, solution errors and speed-ups for the manually-scaled Jacobi precon-

ditioning considering different load cases: Surface tensile traction (left) and dead (body) load.

scaling parameter solution error iterations speed-up note

αLω εF

1.00 0.0 485 1.00 no preconditioning

1.00e-07 0.022923 218 1.87 manually

5.00e-08 0.032267 206 1.87 manually

5.00e-09 0.101021 175 2.65 manually

4.74e-08 0.060387 187 2.22 eigenvalue-based

Table 6.13: Scaling parameter, solution error, number of iterations and speed-up in respect to manually-

scaled Jacobi preconditioning and considering a eigenvalue-based computation of αLω.

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: NEC NEHALEM CLUSTER 95

6.4.6 Final remarks

After applying the first numerical tests evaluating the distributed computing model for

different finite element based specimens, a framework for high-performance computing

was implemented including the full adaption of the MPI-based programming model. Fur-

thermore, a hybrid parallelization technique was implemented respecting the different

hardware architectures and also the extension to a hybrid computing model was ad-

dressed to enable the use of combined CPU-GPU based architectures. Here, the CUDA

programming environment was used, which is accessible for graphics processing units such

as the Nvidia Tesla architecture.

The following two sections include the performance measurements and the scaling analysis

at two different high-performance clusters. Therefore, a classical finite element analysis in

the threedimensional space with respect to linear elasticity was applied to large-scale FE

models, built from computer-tomographic scans. The evaluation reviews the computing

time for the following numerical tasks

(i) numerical integration and global matrix assembly

(ii) solving the resulting equation system with the PPCG method

(iii) executing the sparse matrix-vector product during the PPCG iterations

(iv) executing of the non-matrix-vector products during the PPCG iterations

(v) communication overhead caused by MPI during the PPCG iterations

The dependencies or the concurrency between the different (MPI-based) processes are

given in table 6.14.

task type of concurrency

(i) simultaneously, independent

(ii simultaneously, partial dependent

(iii) simultaneously, fully independent

(iv) simultaneously, fully independent

(v) simultaneously, fully dependent

Table 6.14: Type of concurrency of the numerical tasks.

The NEC Nehalem cluster at the high-performance computing center Stuttgart (HLRS)

with its Intel Xeon architecture was used, since it provides the architectural features neces-

sary for this type of hybrid computing. Additionally, the relatively new Cray XE6 cluster

(AMD Interlagos CPU architecture) was used. The technical details of the equipment

and the numerical tests for both systems are given in the following sections.

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: NEC NEHALEM CLUSTER 96

6.5 HPC framework 1: NEC Nehalem cluster

6.5.1 Hybrid (CPU-GPU) NEC Nehalem cluster at HLRS

The NEC Nehalem cluster at the high-performance computing center Stuttgart (fig. 6.11)

consists of several frontend nodes for interactive access as well as several computing nodes

for the execution of parallelized numerical applications. Before the utilization of this

cluster in 2010, it was placed at 77th position of the TOP 500 list in June 2009 with a peak

performance of 62 TFlops. The operating system is based on Scientific Linux SL (release

5.3). For the execution of the binary code the qsub batch system is used, enabling several

options of the parallel computation to be chosen individually. As a special characteristic,

the HPC system is equipped with 32 GPU nodes based on the Nvidia Tesla architecture

(fig. 6.11, right) for the extended acceleration of purely CPU-based computations. The

Figure 6.11: Cabinets of the NEC Nehalem cluster at the High-Performance Computing Center

Stuttgart (left) equipped with 32 of Tesla GPU S1070 1U rack system (right).

main hardware features of the NEC Nehalem cluster [HLRS 2011] are given in table 6.15.

Peak Performance 62 TFlops

Number of Nodes 700 Dual Sockel Quad Core

Processor Intel Xeon (X5560) Nehalem, 2.8 GHz, 8MB Cache

Memory/node 12 GB / 24 GB / 48 GB / 144 GB

Disk 80 TB shared scratch (lustre)

Interconnection Infiniband, GigE

Accelerators 32 nodes Nvidia Tesla S1070 GPGPU

Table 6.15: Technical description of the hardware features of NEC Nehalem cluster at HLRS Stuttgart.

6.5.2 Benchmark: 3D poriferous bone specimen

Another numerical analysis of the solver scaling was investigated at the NEC Nehalem

cluster, respecting a large-scale 3D microstructural bone specimen ([Perilli et al. 2003],

fig. 6.12). This FE model is characterized by a voxel discretization resulting in several

million degrees of freedom. Due to the highly poriferous material, this numerical example

leads to an inappropriate matrix structure of the global stiffness matrix (in respect to

matrix bandwidth and condition number) compared to the previous examples.

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: NEC NEHALEM CLUSTER 97

Figure 6.12: 3D poriferous bone specimen as FE structure based on voxel data (perspective view) and

the load-balanced decomposed FE structure in four nodally equal-sized domains (8.9 million d.o.f.s).

elements number of nodes d.o.f.s nodal FE blocks memory [GB]

2,434,993 2,987,933 8,963,799 36,824,835 2.403

Table 6.16: Dimensions of the FE problem: Number of elements, number of nodes, number of d.o.f.s,

number of nodal FE blocks and memory demand for matrix storage in gigabyte.

In table 6.16, the dimension of the problem such as the number of elements, the number

of nodes, the number of resulting d.o.f.s and the number of nodal FE blocks as well as

the memory demand are given.

domain coupled nodes number of nodes nodal FE blocks memory load balance

j [GB]

1 5,108 488,783 5,418,438 0.547 1.002

2 5,896 487,927 5,548,558 0.546 1.000

3 4,399 489,546 5,545,580 0.554 1.003

4 3,198 488,472 5,570,790 0.550 1.001

Table 6.17: Dimension of the decomposed FE problem: Number of coupled nodes, number of nodes,

number of off-diagonal nodal FE blocks and memory demand for the matrix storage in gigabyte and the

relative load imbalance.

Here, the voxel model was converted to a regular grid consisting of hexahedral elements

with linear shape functions. Furthermore, the decomposition of the FE (voxel) model was

done by applying a nodal partitioning of the hexahedral mesh by using METIS. In fig-

ure 6.12 (right) the mesh partitioning in four nodally equal-sized partitioned subdomains

is illustrated. Moreover, table 6.17 gives quantitative results of the mesh partitioning,

including the number of nodes, of coupled nodes and of nodal FE blocks and also the

memory demand as well as the load balance factor for each of the four subdomains. For

the numerical integration of the finite elements respecting their element stiffness matrix,

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: NEC NEHALEM CLUSTER 98

different numerical integration techniques were applied yielding to different computational

efficiencies. Due to this, the tests were performed and then compared regarding their

(elapsed) computational time and their resulting speed-ups considering one and four MPI

processes (np), respectively. The influence on the computational performance is stated in

table 6.18, where the time (in seconds) for the numerical integration of the finite elements

and the time for the sequential assembly of the global stiffness matrix (np=1) or the simul-

taneous assembly of the global stiffness submatrices (np=4) is compared. The integration

techniques involved are eight or six Gauss points, one Gauss point (reduced integration

with hourglass stabilization, HG), and the voxel integration technique. Thereby, it is

assumed that all voxels correspond to the same resulting element stiffness matrix and

thereby, the numerical integration needs to be executed only once.

integration Gauss points time / np=1 time / np=4 speed-up speed-up

type [sec] [sec] [-] over full integr.

full ip = 8 236 61 3.86 3.86

special ip = 6 202 52 3.88 4.54

reduced ip = 1 (+ HG) 157 41 3.82 5.76

voxel ip = 8 78 20 3.90 11.8

Table 6.18: Integration time in seconds with eight and six Gauss points, using one Gauss point for

reduced integration with hourglass stabilization (HG) and the voxel integration technique for one and

four MPI processes and the resulting speed-ups (including the time for the global matrix assembly).

The linear-elastic FEA considers the boundary and loading conditions of the previous

benchmarks corresponding to fig. 6.7. The measurements which were done during the

numerical tests include the times for

• building the element stiffness matrices and the assembly of the global stiffness (do-

main) matrices

• building the preconditioning matrix including the eigenvalue-scaling strategy

• the distributed solving of the global equation system with the PPCG method

• scaling up to 64 MPI processes (equivalent to the number of subdomains).

with results being analysed in detail considering a) multiple CPU nodes and b) multi-

ple CPU-GPU nodes in the following two subsections, also published in [Schrader et al.

2013b].

6.5.3 Benchmark: Multiple CPU nodes

This benchmark was used to evaluate the poriferous bone specimen taking multiple CPU

nodes into account. Here, each MPI process uses one cache coherent NUMA node (cc-

NUMA), with two ccNUMA nodes per CPU socket. Consequently, the dual socket quad-

core system as one CPU node provides four ccNUMA nodes.

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: NEC NEHALEM CLUSTER 99

In figure 6.13, the scaling of the computational time which is needed for the assembly

of the global matrix is illustrated. This task can be performed independently for each

subdomain, when the load-balanced partitioning is ensured. In all cases the measured

time includes the time for the (full) numerical integration of the finite elements as well as

the time to build the global matrix (sequential case) or the global submatrices (parallel

case). The scaling is performed with 1 up to 128 MPI processes and in table 6.19 and 6.20

the absolute values of the computing time as well as the resulting speed-ups are given for

the three matrix storage formats (coo, csr, ndcsr).

Figure 6.14 states the total computing required time in relation to the number of MPI

processes (equal number of subdomains or ccNUMA nodes) used, being necessary for

solving the global equation system with the parallelized PCG method. The solver time is

analysed in respect to the cumulated time which is required for the matrix-vector opera-

tions, for the non-matrix-vector operations as well as the elapsed time caused by the MPI

communication overhead cumulated during all PPCG iterations. Furthermore, in figure

6.15 the scaling of the computational time considering the computation of the sparse

matrix-vector products during the PPCG iterations is illustrated, which is performed si-

multaneously as an independent task and does thereby not have a negative influence on

the performance of the solver. Figure 6.16 illustrates the scaling of the iterative solver,

if the time for the computation of the sparse matrix-vector product in each iteration is

excluded. Here, the scaling considering the ndcsr matrix storage format is equivalent to

the scaling of the computing time of the matrix-vector product with equal computational

speed-ups (without any loss of performance). Finally, in figure 6.17, the computing time

of the MPI communication between the different MPI processes is shown, mainly induced

by the MPI Allreduce operation during the PPCG iteration. By increasing the number

of subdomains the scaling behavior of the PPCG solver (with respect to fig. 6.14) is

mostly influenced by a moderately increase in the overall computing time caused by the

MPI communication.

matrix np=1 np=2 np=4 np=8 np=16 np=32 np=64 np=128

coo 422.4 239.6 107.8 60.0 31.1 15.8 7.2 -

csr 485.0 242.5 121.2 60.5 27.6 14.3 7.2 -

ndcsr 416.4 236.0 106.3 55.9 27.2 14.2 6.9 3.7

Table 6.19: NEC Nehalem cluster (CPU): Quantitative values of total computational time for the

parallel assembly of the global stiffness matrices (including the numerical integration).

6.5.4 Benchmark: Hybrid multiple CPU-GPU nodes

This benchmark considers the implementation of a hybrid parallelization technique for

the PPCG method combining the CPU and GPU and by this, being suitable for up to

16 Tesla GPU nodes at the NEC Nehalem cluster. Here, each MPI process has access

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: NEC NEHALEM CLUSTER 100

101

102

103

1 2 4 8 16 32 64 128

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

coo
ndcsr
csr
1000-ideal

 1

 2

 4

 8

 16

 32

 64

 128

1 2 4 8 16 32 64 128

C
om

pu
tin

g
sp

ee
d-

up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

csr
ideal

Figure 6.13: NEC Nehalem cluster (CPU): Total computational time for the parallel assembly of global

stiffness matrices (including the numerical integration) with increasing number of subdomains (8.9 million

d.o.f.s) and the resulting speed-ups (right).

matrix np=1 np=2 np=4 np=8 np=16 np=32 np=64 np=128

coo 1.0 1.76 3.92 7.04 13.58 26.72 58.64 -

csr 1.0 2.00 4.00 8.02 17.57 33.91 67.36 -

ndcsr 1.0 1.76 3.92 7.45 15.31 29.32 60.35 112.54

Table 6.20: NEC Nehalem cluster (CPU): Resulting speed-ups for the parallel assembly of global

stiffness matrices (including numerical integration, 8.9 million d.o.f.s).

102

103

104

1 2 4 8 16 32 64

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

coo
ndcsr
csr

 1

 2

 4

 8

 16

 32

 64

1 2 4 8 16 32 64

C
om

pu
tin

g
sp

ee
d-

up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

csr
ideal

Figure 6.14: NEC Nehalem cluster (CPU): Total computational time for the parallelized preconditioned

conjugate gradient method (8.9 million d.o.f.s) and the resulting speed-ups (right).

to one GPU-based subsystem, namely the Nvidia Tesla S1070 GPU. The numerical task

to improve the performance results in the outsource of the computation of the sparse

matrix-vector product to the GPU, consuming almost 90 percent of the time required for

one CPU-based PPCG iteration. Generally, the allocation and execution of the sparse

matrix-vector products of the PPCG solver is performed by one Tesla unit. Therefore, the

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: NEC NEHALEM CLUSTER 101

102

103

104

1 2 4 8 16 32 64

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

coo
ndcsr
csr

 1

 2

 4

 8

 16

 32

 64

1 2 4 8 16 32 64

C
om

pu
tin

g
sp

ee
d-

up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

csr
ideal

Figure 6.15: NEC Nehalem cluster (CPU): Accumulated time for sparse matrix-vector operations of

the PPCG method (8.9 million d.o.f.s) and the resulting speed-ups (right).

101

102

103

1 2 4 8 16 32 64

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

coo
ndcsr
csr

 1

 2

 4

 8

 16

 32

 64

1 2 4 8 16 32 64

C
om

pu
tin

g
sp

ee
d-

up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

csr
ideal

Figure 6.16: NEC Nehalem cluster (CPU): Scaling of accumulated computational times for non-matrix-

vector operations of the PPCG method (8.9 million d.o.f.s) and the resulting speed-ups (right).

global submatrices are initially allocated by the GPU considering two vectors: one for the

input and one for the result data. For the matrix storage of the assembled and distributed

stiffness matrix per subdomain or MPI process, the coo storage format is applied on the

corresponding GPU unit. The subdomain matrix is then distributed along the maximum

number of available GPU threads per GPU, which enables a simultaneous sparse matrix-

vector multiplication per matrix block and GPU thread. The results from the hybrid

model are then compared to the computational times for the spmv operation on the CPU

nodes, which is illustrated in figure 6.18, where the different storage formats investigated

for CPU-based computation are taken into account. In figure 6.19, an improved data

transfer of the nodal result vectors between CPU and GPU was realized and was com-

pared to two other data transfer techniques from and to the host memory. Here, the

computational time of the hybrid model includes the time for the memory transfer from

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 102

101

102

2 4 8 16 32 64

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

coo
ndcsr

csr

 1

 2

 4

 8

 16

2 4 8 16 32 64

1
/ C

om
pu

tin
g

sp
ee

d-
up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr
ndcsr

Figure 6.17: NEC Nehalem cluster (CPU): Scaling of accumulated computational times for MPI based

communication of the PPCG method (8.9 million d.o.f.s) and the resulting speed-ups (right).

102

103

104

1 2 4 8 16 32

C
om

pu
tin

g
tim

e
[s

ec
]

Number of CPU-GPU units (Tesla)

cpu-coo
cpu-ndcsr

cpu-csr
gpu-sync-coo

 1

 2

 4

 8

 16

 32

1 2 4 8 16 32

C
om

pu
tin

g
sp

ee
d-

up

Number of CPU-GPU units (Tesla)

cpu-coo
cpu-ndcsr

cpu-csr
gpu-sync-coo

ideal

Figure 6.18: NEC Nehalem cluster (CPU-GPU): Accumulated computational times for sparse matrix-

vector operations of the PPCG method using the CPU-only and the hybrid CPU-GPU cluster, respec-

tively (8.9 million d.o.f.s) and the resulting speed-ups (right).

the CPU host to the GPU device and vice versa, before and after each spmv computation

per subdomain. Moreover, the time for synchronous (hybrid-sync), asynchronous (hybrid-

async) and mapped memory (hybrid-mapped) data transfer techniques are compared to

the computing time required for the CPU-only spmv computation using the coo matrix

storage format (fig. 6.19). The hybrid implementation was realized with the CUDA en-

vironment, release 3.1., and combined with the C/MPI programming framework. Results

of the linear-elastic FE analysis considering the scalable PCG solver are illustrated (cut

view): the initial FE model and the deformation state (fig. 6.20), the displacement state

(fig. 6.21) and the strain and stress states for the uniaxial tension loading case (fig. 6.22),

which were validated with different commercial and non-commercial FE code ([ANSYS

2012], [Bucher et al. 2007]).

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 103

102

103

104

1 2 4 8 16 32

C
om

pu
tin

g
tim

e
[s

ec
]

Number of CPU-GPU units (Tesla)

cpu
gpu-sync-coo

gpu-async-coo
gpu-mapped-coo

 1

 2

 4

 8

 16

 32

1 2 4 8 16 32

C
om

pu
tin

g
sp

ee
d-

up

Number of CPU-GPU units (Tesla)

cpu-coo
gpu-sync-coo

gpu-async-coo
gpu-mapped-coo

ideal

Figure 6.19: NEC Nehalem cluster (CPU-GPU): Accumulated computational times for sparse matrix-

vector operations of the PPCG method using the CPU-only and hybrid CPU-GPU cluster with syn-

chronous (hybrid-sync), asynchronous (hybrid-async) and mapped memory (hybrid-mapped) CPU-GPU

data transfer for the coo matrix storage format and the resulting speed-ups (right).

Figure 6.20: NEC Nehalem cluster: Initial FE model und deformation state (right), cut view (8.9

million d.o.f.s).

6.6 HPC framework 2: CRAY XE6 cluster

6.6.1 CRAY XE6 cluster at HLRS

The second high-performance computing framework was tested at the Cray XE6 cluster

’Hermit’ (fig. 6.23) at the HLRS, which is in production mode since the beginning of the

year 2012. With a computational power of over 3,552 compute nodes (where each XE6

node consists of one AMD Opteron 6276 Interlagos), it is possible to scale parallelized

applications up to several ten thousand cores with a total peak performance of nearly

one petaflop. Here, the AMD Interlagos processor is a 32-core x86-64 architecture, a

composition of a number of ’bulldozer’ core modules. It was introduced in 2011 and

enables the Cray XE6 cluster to be the fastest system in Europe (at the beginning of the

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 104

Figure 6.21: NEC Nehalem cluster: Vertical and horizontal (right) displacement state in uniaxial

tension case, cut view (8.9 million d.o.f.s).

Figure 6.22: NEC Nehalem cluster: First principle strain und stress state (right) in uniaxial tension

case, cut view (8.9 million d.o.f.s).

year 2012). The main hardware features of the cluster [HLRS 2012], are listed in table

Figure 6.23: 38 cabinets with 96 compute dual socket nodes of the Cray XE6 cluster at HLRS.

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 105

6.21 below.

Peak performance around 1.045 PFlops

Number of nodes 3552 compute nodes

Number of cores 113,664

Processor node Dual socket AMD Interlagos, 2.3 GHz, 16-core each

Memory/node 32 GB / 64 GB

Disk capacity 2.7 PB (lustre)

Interconnection Cray Infiniband

Accelerators Special pre/post-processing nodes

Table 6.21: Technical description of the Cray XE6 cluster ’Hermit’ at HLRS.

6.6.2 HPC Cray XE6 cluster batch system

The job launch of a batch application can be done by using the qsub job submission

command. Moreover, to run the batch application, the ALPS (application level placement

scheduler) uses aprun in conjuction with some specified arguments listed in one line of

the specified batch file. In combination with the Torque header and the aprun command

the characteristics of the setted job environment can be defined by Torque options within

the batch file. In table 6.22 some of the Torque options are listed.

Torque options description

-l mppwidth=<PE-value> the number of MPI processes or processing elements (PE)

-l mppdepth=<OMP-value> the number of (OpenMP-) threads per PE

-l mppnppn=<PN-value> the number of PEs per node

-l mem=<memory-value> as the number of memory per node (32GB or 64GB)

-l walltime=<hh:mm:ss> as the maximum elapsed time of the job

Table 6.22: Torque header options used in the batch file to launch and run batch jobs at the CRAY

XE6 cluster.

6.6.3 Benchmark: 3D large-scale casted nickel-alloy specimen

The second benchmark, performed at the Cray XE6 cluster, evaluates an example which

is based on a 3D large-scale voxel discretization of a casted nickel-alloy specimen with

visual analytics of geometry characteristics, as given in figure 6.24. Here, the total FE

model results in more than 160 million nodal d.o.f.s. Considering the biaxial symmetry of

the geometry, the exported FE mesh is equivalent to one quarter of the total specimen (as

illustrated in figure 6.24) and was solved by the implemented PPCG solver. The numeri-

cal effort needed for the generation of the FE model is shown in table 6.23 and 6.24.

Comparing the matrix storage formats coo and ndcsr in regards to their memory demand

(as illustrated in table 6.24), the ndcsr storage format decreases the memory demand by

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 106

Figure 6.24: Nickel alloy specimen geometry based on computer-tomographic scans: Total view (left),

and cut view with visualization of micropores (right).

Figure 6.25: Nickel alloy specimen based on computer-tomographic scans: Irregular pores (left) and

boundary and loading conditions.

element type elements total FE nodes total d.o.f.s total

linear hexhedron 14,093,177 14,292,274 42,876,822

Table 6.23: Cray XE6 cluster: Element type, the total number of elements and FE nodes as well as the

total number of global d.o.f.s.

nearly 18 percent. This is necessary for storing the distributed FE data which are allo-

cated by an equal number of FE blocks storing more than one billion matrix entries. The

computational time for the numerical integration and the assembly (measured in the se-

quential case) is given with around 3,000 seconds for both storage formats. Additionally,

in table 6.25, the time needed for the distribution of the data among all MPI processes,

the FE nodal block allocation, as well as the preconditioning are determined considering 2

or 256 subdomains (in respect to the number of MPI processes, np). Moreover, the table

gives a performance indication regarding the building of the preconditioning matrix for

each of the subdomains, including the computations resulting from the eigenvalue scaling

strategy. In table 6.26 the computing time for building the preconditioning matrix for up

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 107

matrix storage FE blocks total block entries total memory (GB) seq. assembly

[GB] [sec]

coo 184,005,692 1,061,464,238 17.095 3,079

ndcsr 184,005,692 1,061,464,238 12.977 3,001

Table 6.24: Cray XE6 cluster: Quantitative values of the total (three by three) FE blocks, the total

number of block entries, the memory demand and assembly time for the sequential case (42.8 million

d.o.f.s).

storage np block allocation distribution eigenvalue scaling preconditioning

[sec] [sec] [sec] [sec]

coo 2 19.7 2.0 21.4 4.9

ndcsr 2 19.6 2.0 17.4 4.7

coo 256 2.8 366.8 23.8 5.7

ndcsr 256 2.9 366.4 23.9 5.7

Table 6.25: Cray XE6 cluster: Computing time (sec) for the nodal block allocation, the distribution

of FE data, the modified Jacobi-point preconditioning with the eigenvalue scaling strategy for 2 and 256

subdomains, respectively (42.8 million d.o.f.s).

time of np=1 np=2 np=4 np=8 np=16 np=32 np=64 np=128 np=256

eigenvalue scaling 19.56 17.35 18.66 19.59 21.13 21.66 22.73 23.38 23.92

precond. matrix 4.70 4.73 4.78 5.40 5.48 5.57 5.77 5.72 5.78

divergency 1.00 0.88 0.95 1.00 1.08 1.11 1.16 1.19 1.22

Table 6.26: Cray XE6 cluster: Quantitative values of total computational time for the decomposed

preconditioning matrix and resulting divergency in time with increasing the MPI processes to 256 (42.8

million d.o.f.s).

npi αLω divergency npi−1 iterations speed-up npi−1

1 6.1283e-09 0.000 1425 1.00

2 7.3572e-09 0.200 1434 1.99

4 8.4492e-09 0.148 1446 1.96

8 8.9042e-09 0.054 1447 1.83

16 9.8197e-09 0.103 1451 1.95

32 1.0326e-08 0.052 1454 1.99

64 1.0773e-08 0.043 1456 1.69.

128 1.1126e-08 0.033 1457 1.71

256 1.1461e-08 0.030 1463 1.48

Table 6.27: Number of MPI processes, the scaling parameters for the preconditioning, the number of

PPCG iterations and the speed-ups in respect to the modified Jacobi-point preconditioning.

to 256 MPI processes is shown, separated by the numerical operations of the eigenvalue

scaling and of the matrix inversion. Due to the allocation of one global vector considering

the entries of the global main diagonal only, it is not expected to achieve a time reduction

by increasing the number of MPI processes, because of the equal number of numerical op-

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 108

erations running. The overall computing time is moderately increasing, which is induced

by the MPI communication for data exchange of vector entries at the domain boundaries.

Nevertheless, the computing time is comparably low, e.g. in regards to the computing

time required for the sequential matrix assembly (see tab. 6.24) or to the time required

for solving the global equation system. Therefore, an optimized implementation was not

a main task during this work, but the usage of a compressed vector (with only non-zero

vector entries) for each subdomain will finally lead to a parallelization of this type of

preconditioning technique among all MPI processes. The robustness of the precondition-

ing technique in uniaxial load cases is shown in table 6.27, where the computed scaling

parameter αLω has a maximum divergence of 20 percent with a nearly constant number

of iterations and more importantly with an equal error in the global vector of nodal so-

lution. The measured speed-ups of the PPCG solver applied with the modified Jacobi

preconditioning are in the 1.83 - 1.99 range, if the number of MPI processes is doubled

and is finally addressing up to 64 MPI processes. The speed-up decreases mainly due to

the increased MPI communication, which is also illustrated in figure 6.30, and indicates

some further optimization of the data exchange regarding the domain boundaries.

The scaling starts with one single node up to 256 CPU nodes at the Cray XE6 cluster,

which is building the distributed FE model and is solving it by using the PPCG method

with an accuracy as break criterion of 10−6. For the evaluation of the performance, the

times for the assembly of the stiffness matrices (including the numerical integration of

finite elements) are illustrated in figure 6.26. The times for the PPCG solver (fig. 6.27)

were analysed in respect to the cumulated times for the matrix-vector products (fig. 6.28),

as well as the times for the non-matrix-vector products (fig. 6.29) and the communication

overhead caused by the MPI itself (fig. 6.30). In all diagrams the ndcsr and coo matrix

storage format were compared.

101

102

103

104

1 2 4 8 16 32 64 128 256

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

 1

 2

 4

 8

 16

 32

 64

 128

 256

1 2 4 8 16 32 64 128 256

C
om

pu
tin

g
sp

ee
d-

up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

Figure 6.26: Cray XE6 cluster: Total computational time for the parallel assembly of global stiffness

matrices (including the numerical integration) with increasing number of subdomains (42.8 million d.o.f.s)

and the resulting speed-ups (right).

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 109

102

103

104

1 2 4 8 16 32 64 128 256

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

ndcsr - 4 byte halo data
ndcsr - ideal

 1

 2

 4

 8

 16

 32

 64

 128

 256

1 2 4 8 16 32 64 128 256

C
om

pu
tin

g
sp

ee
d-

up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

ndcsr - 4 byte halo data
ideal

Figure 6.27: Cray XE6 cluster: Total computational time in respect to the parallelized preconditioned

conjugate gradient method (42.8 million d.o.f.s) and the resulting speed-ups (right).

101

102

103

104

105

1 2 4 8 16 32 64 128 256

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (ccNUMA nodes)

 coo
ndcsr - 4 byte halo data

ndcsr

 1

 2

 4

 8

 16

 32

 64

 128

 256

1 2 4 8 16 32 64 128 256

C
om

pu
tin

g
sp

ee
d-

up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr
ideal

Figure 6.28: Cray XE6 cluster: Accumulated time for sparse matrix-vector operations of the PPCG

method (42.8 million d.o.f.s) and the resulting speed-ups (right).

Due to an increased MPI communication between the MPI processes, especially induced

by nodal d.o.f.s of the boundaries of connected subdomains, the modified data transfer

was implemented by switching the data type of the corresponding halo vectors to single

precision. The modified PPCG solver converged to the exact solution of the original im-

plementation in respect to the memory-efficient ndcsr storage scheme. By this approach,

the scalability of the PPCG solver can be improved. This is illustrated in figure 6.27, 6.28

as well as in 6.30, and is significantly better if more than 64 subdomains are used. Further

improvements can be obtained by the consideration of compressed halo vectors. Also, the

AMD Interlagos processor of the Cray XE6 cluster contains the new AVX instruction set

which can be activated by using the GNU compiler environment [GNU 2011]. Specific

details are shown in table 6.28.

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 110

101

102

103

104

1 2 4 8 16 32 64 128 256

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

 1

 2

 4

 8

 16

 32

 64

 128

 256

1 2 4 8 16 32 64 128 256

C
om

pu
tin

g
sp

ee
d-

up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr
ideal

Figure 6.29: Cray XE6 cluster: Scaling of accumulated computational times for non-matrix-vector

operations of the PPCG method (42.8 million d.o.f.s) and the resulting speed-ups (right).

100

101

102

103

2 4 8 16 32 64 128 256

C
om

pu
tin

g
tim

e
[s

ec
]

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

ndcsr - 4 byte halo data

 1

 2

 4

 8

 16

 32

 64

2 4 8 16 32 64 128 256

1
/ C

om
pu

tin
g

sp
ee

d-
up

Number of subdomains (equal ccNUMA nodes)

 coo
ndcsr

ndcsr - 4 byte halo data

Figure 6.30: Cray XE6 cluster: Scaling of accumulated computational times for MPI based communi-

cation of the PPCG method (42.8 million d.o.f.s) and the resulting speed-ups (right).

compiler option value description

-march= bdver1 the bulldozer flag activating the AVX instruction set

-msse4a - latest version of the SSE instruction set

-O3 - code optimization of level 3 (highest)

Table 6.28: GNU compiler options used for the Cray XE6 cluster ’Hermit’ at HLRS.

6.7 Concluding remarks

The previous sections of this chapter have given an overview of the scalability and ef-

ficiency of FE routines considering the linear-elastic analysis of different large-scale 3D

homogeneous and heterogeneous material specimens as well as of artificial composites at

different high-performance computers. It was proven, that the storage scheme applied for

K. Schrader, PhD-thesis

HIGH-PERFORMANCE COMPUTING: CRAY XE6 CLUSTER 111

the core FE data and for the resulting (sparse) matrices as well as for the chosen pre-

conditioning technique are crucial to reduce the memory demand required. Furthermore,

the eigenvalue scaling for the preconditioning, with its notation given in chapter 5, is

time-efficient and robust in regards to the solver performance and in respect to the qual-

ity of the nodal FE solution. Moreover, the implementation of the parallelized conjugate

gradient method, using the modified Jacobi preconditioning with its special eigenvalue

scaling (applied for each of the subdomains) and a special nodal compressed row storage

of the submatrices significantly improved the solver performance. Additionally, as a final

step, the code was adapted for the application on high-performance computers with mul-

tiple CPU or multiple CPU-GPU nodes, which improves the performance and scalability

even further. In chapter 7 these findings are utilized to improve the performance and to

allow a scalability of a nonlinear simulation model, especially adaptable for multiphase

composites with a volume-based interfacial transition zone involved with an aligned mesh

in high resolution (as described in chapter 4). Here, the special focus is the representa-

tion of the softening behavior of such specimens in the critical zone (mainly induced by

damage effects), which occurs if the degradation process of the material stiffness initially

starts and irreversibly continues under certain loading conditions. This is the reason why

the iterative (PPCG) solver technique combined with the elastic-inelastic domain split

and the sequential linear analysis (SLA) will be adapted in chapter 7 to enble a scalable

incremental-iterative computation of degradation processes in multiphase material.

K. Schrader, PhD-thesis

Chapter 7

Nonlinear material modeling

including damage effects

In this final chapter all numerical investigated instruments will be unified in one numerical

nonlinear simulation model. Here, the nonlinearity is restricted to consider a nonlinear

material behavior only and thereby, a geometric linear structural behavior with small de-

formations. The proposed nonlinear model is focused on the initiation and propagation

of damage effects in multiphase composites, especially an academic example of a hybrid-

meshed specimen decribed in the previous chapters. Therefore, a smeared strain-softening

damage approach is chosen without the necessity to involve return mapping techniques,

which iteratively separate plastic terms from the total terms of tensorial strain and stress

components. As a result, a scalable saw-tooth tensile-softening model was developed based

on [Rots et al. 2006] and applied for the sensitive volumetric interfacial zone of the de-

cribed three-phase material specimen. The scalable PPCG solver with the modified Jacobi-

point preconditioning (chapter 5) was adapted and the high-performance computing frame-

work, as proposed for the large-scale linear-elastic FEA (as described in chapter 6), was

taken into account. In the following sections the notation of the nonlinear finite element

method is presented followed by the basic description of an isotropic damage law and by

regularization techniques to overvome resulting mesh bias occuring in such smeared crack

analysis. After, the saw-tooth approach will be presented as well as its modified scalable

algorithm. Then follows the numerical verification within 3D notched beam examples.

Finally, results of the scalable damage analysis applied to the hybrid-meshed three-phase

specimen which considers the elastic-inelastic domain split in combination with efficient

element formulations and assembly strategies and also its hybrid partitioning (chapter 3

and 4, respectively) including a initial decomposition and a load-balanced damage zone,

are given.

K. Schrader, PhD-thesis 112

NONLINEAR FINITE ELEMENT METHOD 113

7.1 Nonlinear finite element method

The physical nonlinearity induced by the applied material law, which is considered in

the Navier differential equation system, its numerical FE based approximation yields to

a change in the stationary global equilibrium equation where the stress-strain relation is

no longer to be assumed as linear. This is the case, if a limit load state of a material is

reached and the softening process starts to initiate, such as e.g in quasi-brittle materials,

where the history of the deformation state has nummerically to be taken into account.

Therefore, path following algorithms were developed to solve such types of nonlinear

equation systems stepwise, whereby the Newton method (also known as Newton-Raphson

method) is a basic numerical technique. Here, it is assumed that the nonlinearity is caused

by the nonlinear material law applied for the elements in combination with a constant

displacement-strain matrix. This results in an update of the global stiffness matrix in

each iterative step due to the corresponding elements which are dedicated to a change of

their material tensor based on the (nonlinear) constitutive relation.

Basically, it is assumed that the internal forces (now depending on the deformation state)

and external forces are in equilibrium, such as

f int(u) = f ext (7.1)

with f ext as the vector of external forces as given in eq. (3.58) of chapter 3. The internal

forces can be determined by

f inti (u) =

∫
Ω

BT
ijσj(ε)dΩ (7.2)

Moreover, for a deformation state u with known stresses and also known internal forces

f int(u) considering its neighboring state u+ δu, the relation between the corresponding

internal forces can be described by

f int(u+ δu) = f int(u) +G(u)δu (7.3)

whereby the tangential stiffness matrix G can be expressed as

Gij =
∂fi
∂uj

(7.4)

The load-controlled Newton iteration incrementally applies the final external load f ext

in k steps such that firstly, for the kth load increment the current ith increment of the

deformation state δuk,i is computed by

G(uk,i−1)δuk,i = rk,i−1 i = 1, 2, ... (7.5)

and secondly, the update of the vector of displacements is done by

uk,i = uk,i−1 + δuk,i (7.6)

K. Schrader, PhD-thesis

ISOTROPIC DAMAGE MODEL AND REGULARIZATION 114

Figure 7.1: Nonlinear load-displacement path followed by the Newton-Raphson algorithm.

Hence, the vector of residuals is defined as

rk,i−1 = f ext,k − f int(uk,i−1) (7.7)

In general, load-controlled Newton schemes are incrementally applicable to reach the

maximum structural load (load-carrying capacy). The nonlinear response path can nu-

merically be followed up to its peak, as illustrated in fig. 7.1. Other solution strategies

such as the displacement-controlled analysis or the load-displacement-constraint methods

overcome this issue, but will not be presented in detail in this work. A further instrument

is the applied material model enabling the representation of damage effects. By this, a

local isotropic damage formulation will be reviewed in detail in the following section.

7.2 Smeared damage approach: Local isotropic damage model

Assuming mechanical isotropy for the material tensor (constant Poisson’s ratio), the sim-

plest notation of an isotropic damage law occurs by

σi = (1− ω)Cijεj = (1− ω)σeffi (7.8)

with σ as the nominal stresses and ε as the vector of total strains. The determination of

the scalar damage parameter ω can be done by considering the effective strain as

εeff =
1

E
λmax(σ

eff
i) (7.9)

whereby the scalar term εeff is equivalent to the maximum eigenvalue of the effective stress

tensor σeff divided by the Young’s modulus, also called the equivalent strain. After, the

damage parameter ω (depending on εeff) results in

ω =

{
0 εeffmax < ε0

1− β εeffmax ≥ ε0
(7.10)

K. Schrader, PhD-thesis

ISOTROPIC DAMAGE MODEL AND REGULARIZATION 115

for which β results in

β =
ε0

εeffmax

e−α with α =

(
εeffmax − ε0
εu − ε0

)
(7.11)

Here, the ultimate strain εu is

εu =
2gf
ft

(7.12)

considering the tensile strength parameter ft and the adjusted specific fracture energy gf .

However, the local isotropic strain-softening approach still leads to mesh dependencies

mainly influencing the orientation of the localized crack band and moreover, often to an

underestimation of the dissipated energy during the fracture process. Therefore, regula-

rization strategies are developed to reduce the mesh bias, where a short explanation of

the determination of gf is given in the following section.

7.3 Effects caused by mesh bias and necessary regularization

In general, continuum damage models can be adapted for the representation of smeared

strain-softening bands in quasi-brittle continuums. The softening mechanism is caused

by a decreasing stress-strain relation within the post-peak region which area represents

the current fracture energy dissipated within the (smeared) crack surfaces. Due to the

localization of the damage in one layer of finite elements, the element shape and size and

by this, the resulting mesh bias influences the correct orientation of the smeared crack as

well as the energy dissipated. By this reason, based on the crack band theory the damage

is to assumed as a crack band with a characterisic thickness. This parameter will be taken

into account to adjust the fracture energy Gf resulting in the specific fracture energy gf

and consequently, is set to the equivalent element length h of the spatial discretization

such that

h =

⎧⎪⎨⎪⎩
le line elements

A
1
2
e plane elements

V
1
3
e volume elements

(7.13)

Then, the adjusted parameter of the fracture energy yields

gf =
Gf

h
(7.14)

In most case it is recommended to set h to the minimal equivalent element length, which

is proposed in this thesis, also if irregular meshes are being used. When considering the

crack band thickness, it must to be mentioned, that the width of the fracture process

zone still depends on the element size but nevertheless, a realistic value of the dissipated

energy can be represented. Moreover, several approaches of regularization exist to decrease

the effects caused by mesh bias and finally, leading to a mesh independent size of the

K. Schrader, PhD-thesis

SAW-TOOTH TENSILE-SOFTENING MODEL 116

fracture process zone by considering a so-called localization limiter. This is the objective

of nonlocal damage models for which the author recommends the literature [Jirásek et al.

2003].

7.4 Alternative approach: Saw-tooth softening model

The saw-tooth approach (STS) with tensile-softening [Rots et al. 2006] enables a repeated

linear-elastic analysis including an update of the specific material and design or model

parameters during the so-called sequential linear analysis (SLA). This results in an inelas-

tic response behavior of the investigated material specimen. The update of the material

tensor and the tensile strength depends on the current stress state resulting from the

deformation state of the previous load step. This leads to a nonlinear post-peak softening

branch without the necessity to apply a (Newton-like) nonlinear solution technique, which

is often combined with computationally-expensive return mapping techniques (applied to

each integration point) to quantify the history variables of the inelastic state. During the

SLA, the STS model specifies the corresponding saw-tooth diagram, which describes the

linear or nonlinear stress-strain relation for the softening slope and by this, the overall

nonlinear material behavior. In general, the saw-tooth softening diagram basically de-

fines the incremental modification of the material tensor mainly changed by the reduction

of the Young’s modulus (in isotropic case) and by the tensile strength within a (fixed)

number of reduction steps. In [Rots et al. 2004] similar approaches are developed and

validated for regular meshed and notched beam examples in 2D.

This chapter includes two major tasks: Firstly, to obtain a robust and stable scalable SLA

technique which is based on the STS model within a high-performance computing frame-

work, and secondly, to adapt the saw-tooth model with tensile-softening for large-scale

FE models in terms of hybrid discretized multiphase specimens. Additionally, for perfor-

mance aspects, the characteristics of mesh dependencies and of (partial) regularization

techniques are numerically investigated.

7.4.1 Model description: Evolution of the saw-tooth approach

with tensile-softening

For uniaxial tensile load cases, the following notations capture the numerical evolution

of the stiffness degradation induced by the saw-tooth model with tensile-softening. Here,

the stress state in an element is evaluated by a scalar functional term f(σ), resulting

from the invariants or from the combination of the invariants of the stress tensor. Within

this condition, for example considering the maximum principle stress (in LEFM) or the

Rankine criterion adapted from the discrete or smeared crack analysis, the current stress

state nears or exceeds the tensile strength such as

0 ≤ f(J)− ft with Ji ∈ {J1, J2, J3} (7.15)

K. Schrader, PhD-thesis

SAW-TOOTH TENSILE-SOFTENING MODEL 117

Figure 7.2: Bilinear tensile-softening stress-strain curve and the evolution of D depending on the current

Young’s modulus Ei.

the Young’s modulus of this element is reduced in the following way

Ei =
E

ai
for i = 1, 2, ..., N (7.16)

with ai as the fixed reduction factor of the current stage of the tensile stress-strain soft-

ening curve. For each current step Ei of the critical element will be modified from the

previous SLA step according to

Ei =
1

a
Ei−1 (7.17)

Additionally, the tensile strength for the corresponding critical element is also updated

during each global load step. Assuming a bilinear stress-strain curve, as illustrated in

figure 7.2, the notation for the update at a critical step i is based on the following criterion

considering a linear softening slope: Within the constant scalar tangent modulus D the

current tensile strength is described as the distance of the actual (total) strain state to

the ultimate strain (representing the smeared crack fully evoluted in the element), which

is nearly decreasing to zero, if smeared crack effects are starting to initiate. By this, it

follows

ft,i = D(εu − εi) (7.18)

The current total strain εi can then be determined considering the actual Young’s mod-

ulus Ei with

εi =
ft,i
Ei

(7.19)

The substitution to eq. (7.18) yields to

ft,i = Dεu −DEi
−1ft,i (7.20)

Then, the isolation of ft,i leads to

ft,i = Dεu
(
1 +DE−1

i

)−1
(7.21)

K. Schrader, PhD-thesis

SAW-TOOTH TENSILE-SOFTENING MODEL 118

which finally results in

ft,i = Eiεu
(
Ei +D

)−1
D (7.22)

Since the softening modulus D remains constant during the saw-tooth procedure with

linear tensile-softening, a closed form can be presented by modifying eq. (7.18), if the

total inelastic strain (as the difference of the ultimate strain to the maximum elastic

strain) is considered

ft = D(εu − εel) (7.23)

The elastic peak result in

ft = Eεel (7.24)

and modifies eq. (7.23) to

D = ft
(
εu − ftE

−1
)−1

(7.25)

Therewith, eq. (7.21) and eq. (7.25) deliver the exact result for the update of ft,i and for

the scalar softening modulus D (as recommended in [Rots et al. 2006]). Here, for linear

tensile-softening the tensile strength f it is updated with

f it = εuEi
D

Ei +D
with D =

ft

εu − ft
E

(7.26)

considering the fracture energy Gf of Mode I cracking, the current Young’s modulus Ei

and the ultimate strain εu with

εu =
2Gf

fth
(7.27)

Moreover, the design parameter h describes the dimension of the element size, which

indicates the crack band width. In the threedimensional space, the value of this parameter

can be approximated as

h = (Ve)
1
3 (7.28)

with Ve as the volume of the smallest element or as the average element volume. For lower

order elements the crack band width h may be set corresponding to the avarage element

size, which is recommended in [Rots et al. 2004] and which is adapted for mixed 3D

FE meshes in this work. The number of saw-teeth N represents the number of updates

before a critical element is removed. This parameter is fixed and is also equal for all

elements. Finally, the update of the element stiffness matrix considers the modification

of the Young’s modulus of the material tensor E for the isotropic case with

E = EiE0 (7.29)

K. Schrader, PhD-thesis

SAW-TOOTH TENSILE-SOFTENING MODEL 119

and is computed by

Ki =

∫
V
BT

EB∂V = Ei

∫
V
BT

E0B∂V =
1

a
Ei−1K0 (7.30)

since in this case the displacement-strain matrix B is constant. Moreover, the stiffness

degradation can be expressed as stiffness decrement −ΔKi with

−ΔKi = Ki −Ki−1 (7.31)

and

ΔKi = Ki−1 −Ki

= (Ei−1 − Ei)K0

=

(
1− 1

a

)
Ei−1K0

(7.32)

The introduction of the scalar factor b leads to

ΔKi = biEi−1K0 (7.33)

with b depending on the number of stiffness reductions N until the element is completely

removed

bi =

{
1
a − 1 0 ≤ i < N − 1

−1 i = N − 1
(7.34)

Furthermore, this requires the update of the assembled nonlinear matrix Gi at step i for

the kth damaged element with

Gi = Kgl
i−1 +ΔK

(k)
i

gl
=

n∑
j=1

RTK
(j)
i−1R+RTΔK

(k)
i R (7.35)

and yields to a nonlinear tensile-softening load-displacement response for the structural

post-peak behavior. The remaining stiffness matrix G (which exists due to the accumu-

lated stiffness reductions of m removed elements) results in

G = Kgl +

m∑
k=1

ΔK
(k)
i

gl
(7.36)

whereby b will be equal to −1 which finally, after N steps, leads to the complete loss of

the stiffness of element k

ΔK
(k)
i = −Ei−1K

(k)
0 = −K

(k)
i−1 (7.37)

and moreover, at the last step, respectively

K
(k)
i−1 +ΔK

(k)
i = 0 (7.38)

K. Schrader, PhD-thesis

SCALABLE SLA METHOD 120

7.4.2 Combined strain and strength regularization

Since the described linear STS model depends on the mesh size, [Rots et al. 2006] rec-

ommends a mesh regularization strategy. The technique involves a combined update of

the ultimate strain εu and the tensile strength ft to achieve a mesh size objectivity and

by that, to avoid an underestimation of the dissipated energy. This is valid for non-

regularized meshes and is mainly caused by the characteristic of the saw-tooth diagram,

where, the cumulated area of each saw-tooth corresponds to the dissipated energy being

less than the fracture energy Gf . Moreover, the regularization is based on the fact, that

the ultimate strain depends on the crack band width h and always tends to the quantity

of the crack opening. Considering the saw-tooth diagram, an increase of the dissipated

energy results in an update of the ultimate strain as well as the tensile strength after each

SLA step such as

f it = k · ft and εiu = k · εu (7.39)

in which the scalar value of k can be determined with

k =

√
k1
k2

(7.40)

as the relation of the adjusted fracture energy

k1 =
Gf

h
(7.41)

and the actual energy resulting from the saw-tooth diagram

k2 =
1

2

N−1∑
i=0

f it
2

Ei
bi (7.42)

with bi corresponding to eq. (7.34). The following section describes a scalable approach

for the saw-tooth based SLA technique with tensile-softening.

7.5 Modified STS model: Scalable SLA with tensile-softening

7.5.1 Elastic-inelastic decomposition

The main effort of a parallelized numerical computation model of a sequential linear

analysis results in repeated solving and post-processing procedures, e.g. when extracting

and evaluating the global stress and strain tensors to find the most critical element. This

can efficiently be executed in parallel for all subdomains. Consequently, the sequential

stiffness update of one critical element per iteraton step will have a relatively low impact on

the computational time compared to the overall computing time required within one SLA

step. The elastic-inelastic domain split allows to reduce the numerical effort by applying

the SLA only for the inelastic domain which is considering a load-balanced partitioning.

K. Schrader, PhD-thesis

SCALABLE SLA METHOD 121

1. INIT: f (j) = f and Elim = 10−6

2. Distributed solve K(j)u(j) = f (j)

3. Extract strains and stresses ε(j) and σ(j) per subdomain j

4. Evaluate σ
(j)
cr = max f(σ)

(j)
for all elements of subdomain j

5. IF i=N: SET E
(k)
i = Elim and f

(k)
t,i = 0.01ft THEN GOTO 10.

6. ELSE GOTO 7.

7. Get global critical stress σ̃cr = max σ
(j)
cr,k close to f

(k)
t,i for element k of subdomain j

8. Reduce E
(k)
i = biE

(k)
i−1

9. Update tensile strength f
(k)
t,i = εuE

(k)
i D(E

(k)
i +D)−1 of critical element k

10. Compute element stiffness decrement ΔK
(k)
i of critical element k and current SLA step i

11. Update global stiffness matrix K(j) of subdomain j which includes the critical element k

12. Update global nodal forces f̃ =
f
(k)
t,i

σ̃cr
f (j) with f (j) = f̃

13. GOTO 2.

Table 7.1: Algorithm of the scalable SLA technique with tensile-softening.

Thereby, one important task is to communicate the id of the critical element found at the

subdomain n of the decomposed damage zone to the initial subdomain m where the FE

data of this element are allocated.

7.5.2 Implementation characteristics

The efficient ndcsr storage of the global assembled stiffness matrix, as mentioned in chap-

ter 3, section 3.4.4, only considers nodal blocks with non-zero entries with a continued

symmetric character of the global stiffness matrix G during the update. This is split as

follows

Gij = GL
ij + GD

ij (7.43)

and thereby results in

GL
ij =

Ne⋃
n=1

NL⋃
m=1

E
(n)
0 L(m,n)

ij −
Nd⋃
k=1

NL⋃
l=1

E(k)L(l,d)
ij (7.44)

The block-based reduction of the diagonal part D is then given as

GD
ij =

Ne⋃
n=1

ND⋃
m=1

E
(n)
0 D(m,n)

ij −
Nd⋃
k=1

ND⋃
l=1

E(k)D(l,d)
ij (7.45)

with E0 as the initial Young’s modulus for each element. As mentioned before, based

on the nodal storage scheme (ndcsr) storing the FE data, the stiffness reduction can

efficiently be performed at the corresponding subdomain, where the critical element k has

been identified. Considering eq. (7.33) and eq. (7.34) the ndcsr update of the critical

K. Schrader, PhD-thesis

SCALABLE SLA: 3D NOTCHED BEAM 122

element d.o.f.s diag. blocks entries off-diag. blocks entries

ND total NL total

linear tetrahedron 12 4 24 6 54

linear pyramid solid 15 5 30 10 90

linear hexahedron 24 8 48 28 252

quadratic tetrahedron 30 10 60 45 405

quadratic hexahedron 60 20 120 190 1710

Table 7.2: Nodal diagonal and off-diagonal blocks with corresponding matrix entries for several standard

3D finite elements.

element stiffness at the qth SLA step for the diagonal nodal FE blocks follows with

[GD
ij

](j)
(q)

=

[
N

(j)
e⋃

n=1

ND⋃
m=1

E
(n)
0 D(m,n)

ij

](j)

(q−1)

+ bqE
(k)
q

[
ND⋃
l=1

D(l,k)
ij

](j)

(q)

(7.46)

and the off-diagonal nodal FE blocks, respectively, with

[GL
ij

](j)
(q)

=

[
N

(j)
e⋃

n=1

NL⋃
m=1

E
(n)
0 L(m,n)

ij

](j)

(q−1)

+ bqE
(k)
q

[
NL⋃
l=1

L(l,k)
ij

](j)

(q)

(7.47)

The number of diagonal and off-diagonal blocks of the critical element (which are modi-

fying the global stiffness matrix of the corresponding subdomain at each SLA step due to

the reduced element stiffness matrix) are listed in table 7.2 for several 3D finite elements.

In the following two examples are presented adapting the scalable SLA technique for the

nonlinear simulation model [Schrader et al. 2013a].

7.6 Numerical example: 3D notched beam

Two threedimensional notched beam examples are taken from the literature: [Hannawald

2010] (with numerical results presented in the following) and [Voormeeren 2011] (consid-

ered for further optimizations) were applied to verify the numerical model in respect to

the proposed parallelization and solver technique combined with the saw-tooth softening

model. In figure 7.3a the dimensions of the 3D notched beam are given considering a

thickness t of 160 mm. Table 7.3b contains the used material properties: E as Young’s

modulus, ν as Poisson’s ratio, ft as the tensile strength and Gf as the Mode I fracture

energy. Considering these parameters, the initial SLA values in respect to the saw-tooth

tensile-softening diagram are computed for each subdomain before starting the SLA. All

relevant values are given in the table of fig. 7.3b.

The hybrid decomposition (as illustrated in fig 7.4) considers the initial load-balanced

METIS partitioning for the distributed solver as well as a decomposed damage zone cor-

responding to the inelastic domain in the region around the notch of the beam considered

by the scalable SLA technique and resulting from the elastic-inlastic domain split. The

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 123

SLA parameter description value unit

N number of saw-teeth 20 -

a−1 reduction factor 0.5 -

E limit Young’s modulus 0.03 N/mm2

D damage modulus 29.25 N/mm2

εu ultimate strain 0.06 -

h crack band width / element size 2.04 mm

gf,A1
STS diagram fracture energy 0.04 N/mm2

gf,A2
specific fracture energy 0.06 N/mm2

k regularization term 1.17 -

Table 7.3: Initial saw-tooth parameters for the SLA procedure applied for the 3D notched beam.

remaining region is characterized by linear-elastic material behavior. Fig. 7.5 shows the

deformed structure and the distribution of the maximum principle stress concentrated

around the notch. As a result of the SLA, the smeared crack, as illustrated in fig. 7.6

considering all degradated elements, propagates along the straight mesh lines of the hex-

ahedral FE mesh. Moreover, fig. 7.7 shows the applied saw-tooth diagram describing the

linear softening post-peak slope (left) and the load-displacement curve extracted during

the SLA cycles with a corresponding control point in the middle of the beam (right). Some

computational aspects in respect to the numerical simulation considering the CRAY XE6

cluster are given in table 7.4.

(a) Dimensions of the 3D notched beam.

property value unit

E 26700 N/mm2

ν 0.18 -

ft 1.93 N/mm2

Gf 0.13 N/mm

t 160 mm

(b) Material properties.

Figure 7.3: Dimension and parameter of the 3D notched beam.

Hardware CRAY XE6 cluster

CPU architecture multi-core AMD Interlagos

ccNUMA nodes 16

number of d.o.f.s 390,000

average SLA time 1.4 sec

number of SLA cycles 10,000

overall (elapsed) SLA time 4 h 13 min

Table 7.4: Overall computational effort of the scalable SLA technique.

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 124

Figure 7.4: Hybrid decomposition for the parallel SLA procedure: Initial decomposition (top) and

partitioning of the inelastic domain by using METIS.

Figure 7.5: Maximum principle stress distribution for the initial load step reaching the limit stress state

close to the tensile strength.

Figure 7.6: Deformation state including the removed elements (as a smeared crack) after 10,000 parallel

SLA cycles.

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 125

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

0.003 0.006 0.009 0.012 0.015

St
re

ss
 in

 N
/m

m
2

Total strain [-]

20 saw-teeth
Ei reduced

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

L
oa

d
[N

]

Displacement [mm]

cbw of 1.25mm
cbw of 1.55mm

LD reference

Figure 7.7: Example: Saw-tooth diagram and resulting load-displacement curve with tensile-softening

(right) with two different values for the crack band width (cbw).

7.7 Numerical example: Hybrid meshed multiphase specimen

7.7.1 Scalable SLA: Evolution of delamination effects

The application of the hybrid discretization and decomposition technique in combina-

tion with the implemented scalable SLA algorithm is done by investigating a three-phase

matrix-inclusion model with a very fine mesh for the aligned transition zone (fig. 7.8).

Due to using a commercial mesher the mesh is converted by reducing the order of the

shape function for chosen elements or by preparing the mesh for the consideration of spe-

cial integration techniques but at the same time keeping the number of elements and their

orientation constant. This enables a further significant reduction in nodal d.o.f.s. The

comparison between the commercial software ANSYS and the inhouse library MDiSP is

given in table 7.5. The hybrid decomposition evolves, firstly, from the initial load-balanced

partitioning of the total hybrid mesh and, secondly, from the initial load-balanced parti-

tioning of the aligned mesh or parts of it including the VITZ separated as a damage zone

(fig. 7.9), which has been considered during the scalable SLA. This enables the PPCG

technique (based on the initial decomposition) to solve the distributed system of equations

in conjuction with the SLA computational procedures. Additionally, this also involves the

simultaneous element-based evaluation of the critical stress states for each domain of the

second decomposition, a decomposed damage zone (resulting from the elastic-inelastic

mesh nodes hexaeder tetraeder pyramid solid d.o.f.s

original 2,064,663 1,936 2,842,487 1,132 6,193,989 (100%)

converted 486,104 1,936 2,842,487 1,132 1,458,312 (23.5%)

Table 7.5: Efficient reduction of the number of nodal d.o.f.s by converting the mesh considering special

integration schemes with a constant number of elements and their orientation.

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 126

Figure 7.8: Hybrid meshed three-phase specimen: Surfaces of the inclusions and the regular grid (left),

the inclusions with the VITZ (colored, middle) and the hybrid mesh with the VITZ (yellow), embedded

in the linear-elastic matrix (blue, right).

Figure 7.9: Hybrid partitioning: Left: Initial decomposition of the hybrid mesh with the transition zone

in high resolution also prepared for the partitioning (gray), middle: Irregular meshing of the transition

zone; Right: Load-balanced decomposition of the inelastic VITZ prepared for the nonlinear simulation.

Figure 7.10: Element-based delamination in the region of the VITZ after 1000 (left), 2000 (middle) and

4000 (right) parallel SLA cycles, evaluated by the von-Mises condition as critical criterion.

domain split). This yields to modified material properties of the critical element (Young’s

modulus as well as tensile strength) and also to its reduction of the element stiffness,

which directly influences the entries of the global distributed stiffness matrices.

The decomposed damage zone is dedicated to the scalable computation of the strain and

the stress tensors and to the update process of the corresponding current material tensor

during the scalable SLA procedures and is based on the saw-tooth approach with tensile-

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 127

softening and also uniaxial tensile loading conditions (with a initial surface traction of

1N/mm2 on the top). Fig. 7.10 illustrates the application of the suggested method with

the scalable SLA solver for a heterogeneous specimen and the resulting hybrid mesh and

decomposition. As a result, the accumulated delamination effects arise in the transition

zone (using the von-Mises yield condition as critical criterion) which are discovered after

1000, 2000 and 4000 parallel SLA cycles, resulting in an equal number of stiffness reduc-

tions distributed via the detected critical finite elements of the decomposed specimen.

By this, the successive element failure in the transition zone yields to the delamination

between the matrix and the inclusion related material phases.

7.7.2 Scalable SLA: Evolution of smeared crack initiation and

propagation

Based on the results of the previous section, the final investigation is related to the prac-

tical application of the developed scalable SLA procedures for the smeared crack analysis,

here especially interesting in the initiation and also the propagation of cracks in the

volumetric interfacial transition zone of the three-phase hybrid meshed specimen. The

Rankine cracking criterion for the evaluation of critical elements was adapted and had

been combined with a tensile strength based regularization technique, being performed

during the update process of the SLA. The regularization parameter represents the re-

lation between the input fracture energy (as material property per unit area) and the

fracture energy computed as the area of the defined stress-strain saw-tooth diagram. Fur-

thermore, the preconditioning matrix, which is based on the main-diagonal of the stiffness

matrix of the corresponding subdomain, was rebuilt for each SLA cycle where the degra-

dation occurs - assuming an improvement of the overall performance of the nonlinear

simulation model. By this approach, the initial scaling values for ω and αL (using the

presented eigenvalue strategy) were used as constant and consequently, had to be com-

puted only once before the SLA was started. The material properties and the proposed

parameters for the SLA are given in table 7.6. To validate the qualitative results of a

smeared crack analysis by using the scalable SLA with tensile-softening, the linear-elastic

FEA in uniaxial tension case was performed with a commercial FE code. Moreover, the

hybrid three-phase specimen was tested with and without inclusions and with a small

volumetric interfacial zone in high-resolution of the corresponding aligned FE mesh, also

applying a decreased Young’s modulus. Thereby, the first principle stress evaluation in-

dicated a high stress concentration starting in the VITZ around different inclusions. The

objective was then to evaluate the results in respect to the initiation of smeared cracks

(as inelastic strains) and to the successive strain-softening concerning the SLA model over

hundreds and thousands of SLA cycles with an update of the applied loading conditions.

The illustration of the smeared cracks (as cumulated degradated finite elements) is shown

in figure 7.12, where the crack was initiated exactly in the region of the maximum stress

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 128

SLA parameter description value unit

ν Poisson’s ratio (constant) 0.18 −
EVITZ Young’s modulus VITZ 25000 N/mm2

Em Young’s modulus matrix 31000 N/mm2

Ea Young’s modulus aggregates 62000 N/mm2

ft tensile strength (constant) 3.00 N/mm2

Gf fracture energy 0.10 N/mm

N number of saw-teeth 5 −
a−1 reduction factor 0.5 −
Elim limit Young’s modulus 0.02 N/mm2

D damage modulus 21.37 N/mm2

εu ultimate strain 0.14 −
h crack band width / element size 0.47 mm

gf,A1 STS diagram fracture energy 0.15 N/mm2

gf,A2 specific fracture energy 0.21 N/mm1

k regularization term 1.18 −
Table 7.6: Material properties and initial saw-tooth parameters for the SLA procedure applied for the

three-phase hybrid meshed specimen.

concentration. This effect has also been verified by the commercial FE software ANSYS

(release 14), given in figure 7.11, where the smeared cracks nearly propagate orthogonal

to the uniaxial tension (unit) load. After more than 15,000 SLA cycles, the plane region

in the middle of the VITZ was completely filled with critical degradated elements. After

25,000 and more load cycles, a multiple crack expansion occured. A further modification

extending the inelastic domain into parts of the grid-based matrix material results in the

complete failure of the specimen (shown in figure 7.13). There, the crack path was devel-

oping along the straight mesh lines of the regular grid. Moreover, for the extraction of

corresponding load-displacement curves four control points were placed at the edge nodes

within the half height of the specimen.

The transition of critical elements through the connecting boundary of different subdo-

mains was also possible by the hybrid partitioning approach, where two partitionings are

handled at runtime: the initial decomposed mesh and the partitioning of the damage

zone (shown in figure 7.14). Additionally, it is recommended by the author to update

the preconditioning matrix of the PPCG solver resulting from the modified Jacobi-point

preconditioner (considering the eigenvalue scaling strategy), where a performance com-

parison (considering three different Jacobi-point based preconditioners) is shown in figure

7.15. Due to the change of the condition numbers of the distributed global stiffness ma-

trices induced by the successive degradation of the element stiffnesses during the SLA,

the update of the preconditioning matrix of the critical subdomain was necessary. As a

result, the memory-efficient main-diagonal update of the preconditioning matrix during

each SLA step did not influence the overall SLA performance in respect to the increased

computing time of one SLA step. In comparison to the SLA computations where the pre-

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 129

Figure 7.11: Hybrid meshed heterogeneous specimen: Concentration of the first principle stress distri-

bution in respect to linear-elastic FEA, evaluated by commercial FE code (ANSYS).

Figure 7.12: Hybrid meshed heterogeneous specimen: (Smeared) crack initiation and propagation after

1000 (left) and 2000 SLA cycles respectively (inclusions excluded).

conditioning submatrix had not been rebuilt (where the degradation occurs), considering

the update keeps the number of iterations required by the PPCG solver significantly low.

Additionally, an overall (moderate) increase in the number of iterations was observed dur-

ing the scalable SLA. A summary concerning some data of the computational performance

are listed in table 7.7.

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 130

Figure 7.13: Hybrid meshed heterogeneous test specimen: Extended (smeared) crack expansion after

10,000 SLA cycles in the VITZ (left) and fracture of the specimen by propagating crack pattern into the

matrix material after more than 50,000 SLA cycles (coarse regular grid, inclusions excluded).

Figure 7.14: Hybrid meshed heterogeneous test specimen: Smeared crack propagation after more than

50,000 SLA cycles through different subdomains of the initial partitioning of the hybrid mesh (left) as

well as through the partitioning of the aligned mesh as the adaptive damage zone considered by the

scalable SLA procedure (inclusions excluded).

7.8 Concluding remarks

All investigated and developed approaches in this work for the damage analysis of mul-

tiphase composites presented have been proven by numerical examples shown in the last

section. The hybrid discretization and decomposition technique for a three-phase hybrid

meshed specimen was combined with an iterative and scalable solver strategy based on

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 131

the preconditioned conjugate gradients. The distributed global system of equations had

been efficiently assembled respecting efficient element formulations and an effective nodal

storage scheme for the involved finite elements. Furthermore, the performance of the

solver had been improved by adapting an eigenvalue strategy for the preconditioning ma-

trix. Additionally, it could be confirmed, that the iterative PPCG solver is suitable for

the application of parallelized procedures for the saw-tooth tensile-softening model. This

enables to perform the nonlinear response behavior of heterogeneous specimens, especially

adapting the scalable SLA for the smeared crack analysis. For such an approach where

material nonlinearies with the SLA technique are being simulated, the algorithmic sta-

bility (also for the preconditioned solver), the improved parallel performance and the

ensurance of numerical convergence are the main advantages of the proposed technique.

Nevertheless, for hybrid meshes additional numerical investigations are necessary regard-

ing the softening behavior using regularized strategies based on the dissipated energy,

e.g. considering a nonlinear saw-tooth diagram at material point level. This has also to

be verified by comparing the results to other established methods of modeling material

nonlinearities. Compared to regular meshes of homogeneous structures the evolved stress

concentration differs and changes quickly during the SLA softening process when investi-

 0

 200

 400

 600

 800

 1000

0 3000 6000 9000 12000

N
um

be
r

of
 P

PC
G

 it
er

at
io

ns

Number of SLA cycles

Jacobi
modified Jacobi manually
modified Jacobi eigenvalue

Figure 7.15: Hybrid meshed heterogeneous test specimen and scalable SLA: Evolution of the number

of PPCG iterations during the SLA considering different preconditioning techniques.

Hardware HP ProLiant DL585 G7

CPU architecture AMD Opteron 6100

ccNUMA nodes 6

d.o.f.s 297,693

average SLA time 2.8 sec

number of SLA cycles 85,000

overall SLA time 2 days 18 h 6 min

memory per ccNUMA nodes 0.253 GB

Table 7.7: Overall computational effort of the scalable SLA technique.

K. Schrader, PhD-thesis

SCALABLE SLA: HYBRID MESHED HETEROGENEOUS SPECIMEN 132

gating three-phase material specimens (under monotonic loading conditions). Especially

the damage evolution in such hybrid meshed specimens considers an initial damage zone

including the VITZ and is compromising for the threedimensional damage modeling com-

pared to discrete or discontinuous approaches. Moreover, a high-performance computing

framework shows the high potential of the combined numerical methods regarding the

computational scalability and memory efficiency, which enables a high number of stable

load cycles characterized by a significant decrease in the computational (elapsed) time.

The decrease in memory also occurs by avoiding a direct factorization of the tangential

stiffness matrices for all subdomain, which is necessary, if a direct Schur complement

based solver strategy is used. One disadvantage of the iterative solver strategy is the lack

of the starting solution in each step (adapted from the previous step), which was difficult

to be realized in this work. The mathematical modification of the distributed solver in

combination with the used preconditioning technique (respecting the incremental change

of the condition number of the corresponding subdomain matrix involved with degrada-

tion effects) may solve this issue and therefore, may lead to an improved performance of

the scalable SLA technique.

K. Schrader, PhD-thesis

Chapter 8

Summary

A hybrid 3D discretization technique was applied to the artificial geometry of a heteroge-

neous three-phase material specimen, considering a volumetric interfacial transition zone

(VITZ) with high resolution. The inclusions and the surrounding VITZ were embedded

in a regular grid, with a strong coupling of the different discretized material regions. An

elastic-inelastic domain split was used separating the regular grid with linear-elastic ma-

terial behavior and the aligned mesh for the inelastic region including the VITZ. This

approach was motivated by the development of a scalable nonlinear simulation model

based on the finite element method. Therefore, a hybrid domain decomposition technique

was developed and adapted for heterogeneous specimens, taking into account an initial

partitioning of the complete configuration and a load-balanced partitioning for the in-

elastic damage zone simultaneously. After, the scalable assembly of the global stiffness

matrices of all subdomains, considering numerical techniques for the reduced element

integration, was implemented. Furthermore, the voxel integration of the corresponding

grid elements was also realized, using a memory-efficient allocation of the distributed

finite element data as well as a memory-efficient nodal storage scheme being also suitable

for fast matrix-vector operations. Moreover, based on a combination of the techniques

for preconditioned conjugate gradients and the iterative Schur complement method, a

scalable solution of the partitioned system of equations resulting from the hybrid dis-

cretization had been developed. After, the computational efficiency of the solver was

improved by applying an eigenvalue scaling strategy for the preconditioning matrices.

The scalable iterative solver concept, implemented with the message-passing interface

standard (MPI), was then realized for a distributed, consistent load-balanced computing

framework. This enabled the hybrid usage of multiple CPU as well as multiple GPU

computing nodes. As a result, the scalablility of the implemented algorithms within a

high-performance computing framework had been verified by a linear-elastic finite ele-

ment analysis of large-scale FE problems with several million degrees of freedom on two

high-performance clusters, namely the NEC Nehalem with several Tesla-GPU nodes and

the CRAY XE6 cluster, at the high-performance computing center Stuttgart. By this, a

K. Schrader, PhD-thesis 133

SUMMARY 134

nonlinear scalable simulation framework for the damage-based analysis of heterogeneous

hybrid-meshed specimens considering the sequential linear analysis (SLA) with a saw-

tooth approach for tensile-softening had been developed. Then, the damage initiation in

regions of the volumetric interfacial transition zone had been evaluated using a scalable

version of the SLA model in conjuction with the modified Jacobi-point based precondi-

tioned CG solver (considering the eigenvalue scaling strategy), improving the scalablility

of the nonlinear structural analysis.

A question, which remains unanswered, is the weak coupling between the different dis-

cretization techniques in respect to their material description for the scalable application

of (concurrent) multiscale models in 3D.

K. Schrader, PhD-thesis

Chapter 9

Conclusions and outlook

In the following concluding remarks (based on the investigations made in this thesis) in

respect to ongoing research activities for the mechanical damage analysis of multiphase

composites can be summarized as

• The hybrid 3D discretization approach for multiphase material in conjuction with

an iterative distributed solver technique is memory-efficient, relatively fast and also

robust regarding the convergence behavior, which was realized by a scalable SLA

technique to represent material nonlinearities such as damage effects (smeared cracks)

which in general is resulting in a strain-softening continuum approach. This differs

for Newton-Raphson based computations in conjunction with local or higher order

nonlocal damage formulations.

• Due to the regular grid (representing the linear-elastic material region) the definition

of the primal nodes, which was failed in this work, in respect to the application of

the FETI-DP method may be possible. The resulting distributed system of equa-

tions can be efficiently solved by a Saddle-point approximation technique, which was

investigated in this work.

• The proposed elastic-inelastic domain split should enable a weak coupling by dual or

mixed methods (e.g. the Mortar method) between the different discretizations used

for the elastic and for the inelastic region, respectively.

• A scalable HPC framework was realized, and moreover, a high-performance com-

puting center (HLRS), which provide the hardware resources being necessary for

large-scale nonlinear FE simulation models in 3D, was used and is recommended by

the author for the future work.

The limitation of the hybrid discretization technique applied for multiphase composites

to one scale only may be improved by considering a concurrent multiscale approach. Dual

methods such as the Mortar method may be used to couple the coarse regular meshed

domain (described by a linear-elastic material behavior) and the aligned meshed domain

K. Schrader, PhD-thesis 135

CONCLUSIONS AND OUTLOOK 136

involved with inelastic material behavior (including the representation of damage effects

in that region). The elastic-inelastic domain split presented in this work may be used to

model a distributed and concurrent two-scale approach. Therefore, the hybrid discretiza-

tion approach applied to the material three-phase system may enabling the transport of

damage effects to the initially elastic domain. Therefore, a special adaption strategy for

the moving boundary combined with the mortar coupling is to be developed to consider

continued damage propagation transferred between the different scales. Additionally,

methods are also necessary controlling the dynamic load-balancing for the modified sub-

domains during the simulation runtime.

The hybrid discretization technique enables a distributed computation simultaneously,

which reduces the number of degrees of freedom, specially for the 3D modeling of mi-

crostructural composites. The regular grid-based mesh or the resulting voxel discretiza-

tion of the coarse (elastic) problem has the advantage that the FETI-DP method may

be applied to such regions, because here it is possible to define the fixing (or primal)

nodes at the regular and orthogonal boundary. The resulting distributed FE problem

has then to be extended by the FETI-DP discretization of the initially elastic domains

and also the Mortar discretization for the scale transition between the elastic and the

inelastic subdomains. The consistence of the FETI computational parts (due to adaption

for the coarse linear-elastic regions) avoids instabilities of the iterative and distributed

solution procedure respecting the global nonlinear problem. Finally, the solution method

for the hybrid discretization technique based on the preconditioned conjugate gradient

method for a high-performance computing framework is to be extended, involving the

mixed Schur-FETI-Mortar coupling of the decomposed problem.

To realize the distributed and concurrent two-scale computation applied to a hybrid CPU-

GPU computation technique the hybrid HPC framework developed for the NEC Nehalem

and Cray XE6 cluster at HLRS (or at other high-performance computing centers) may

be used. The parallelization approach may then be improved by considering a hybrid

MPI-openMP framework.

K. Schrader, PhD-thesis

Bibliography

Amestoy P., Duff I., and L’Excellent J.-Y. (2007). Multifrontal massively parallel solver

- users guide. ERCIM News 50, 1–46.

ANSYS (2012). Commercial Finite Element Code ANSYS. ANSYS Inc., Release 14.0.

Basermann A., Reichel B., and Schelthoff C. (1997). Preconditioned cg methods for

sparse matrices on massively parallel machines. Parallel Computing 23 (3).

Bathe K. (1995). Finite Element Procedures. Prentice Hall.

Baz̆ant Z. and Jirásek M. (2002). Nonlocal integral formulations for plasticity and

damage: Survey of progress. Journal of Engineering Mechanics, ASCE 128(11),

1119–1149.

Bell N. and Garland M. (2008a). Efficient sparse matrix-vector multiplication on cuda

- part 1. NVIDIA Technical Report.

Bell N. and Garland M. (2008b). Efficient sparse matrix-vector multiplication on cuda

- part 2. NVIDIA Technical Report.

Belytschko T. (1984). Hourglass control in linear and nonlinear problems. Comp. Meth.

in Appl. 43, 251–276.

Belytschko T. and Black T. (1999). Elastic crack growth in finite elements with minimal

remeshing. Int. J. for Num. Meth. in Eng. 45 (5), 6001–6020.

Bucher C., Schorling Y., Brehm M., and Unger J. (2007). SLang the Structural Language

- Part I User’s Manual. Bauhaus-Universität Weimar. Version 5.1.0.

Bulu A., Fineman J. T., Frigo M., Gilbert J. R., and Leiserson C. E. (2009). Parallel

sparse matrix-vector and matrix-transpose-vector multiplication using compressed

sparse blocks. In SPAA 09: Proceedings of the twenty-first annual symposium on

Parallelism in algorithms and architectures New York, USA, ACM.

Caballero A., Lopez C., and Carol I. (2006). 3d meso-structural analysis of concrete

specimens under uniaxial tension. Computer Methods in Applied Mechanics and En-

gineering 195 (52), 7182–7195.

Carol I. and Baz̆ant Z. (1997a). Damage and plasticity in microplane theory. Interna-

tional Journal of Solids and Structures 34, 3807–3835.

K. Schrader, PhD-thesis 137

BIBLIOGRAPHY 138

Carol I., Brat P., and Lopez M. (1997b). Normal/shear cracking model: Application

for discrete crack analysis. Journal of Engineering Mechanics ASCE. 123, 765–773.

Carol I., Lopez M., and Roa O. (2002). Discrete crack analysis using zero-thickness

interface elements. Int. J. for Num. Meth. in Eng. 52 (1-2), 193–215.

Carol I., Rizzi E., and Willam K. (2001). On the formulation of anisotropic elastic

degradation : 2. generalized pseudo-rankine model for tensile damage. International

Journal of Solids and Structures 38(4), 519:546.

Cehavir A., Nukada A., and Matsuoka. A. (2010). High performance conjugate gradient

solver on multi-gpu clusters using hypergraph partitionings. Computer Science -

research and Development. 5, 83–91.

Chapman B., Jost G., and van der Pas R. (2007). Using OpenMP: Portable Shared

Memory Parallel Programming. ISBN-13:978-0-262-53302-7, Scientific and Engineer-

ing Computation.

ETH (2004). Sem for microstructure of lime mortar. Eidgenössische Technische

Hochschule (ETH) Zürich.

Farhat C. and L. Crivelli F. R. (1994). Extending substructure based iterative solvers

to multiple load and repeated analysis. Computer Methods in Applied Mechanics and

Engineering. 117, 195–209.

Feenstra P. and de Borst R. (1996). A composite plasticity model for concrete. Inter-

national Journal of Solids Structures 33, 707–730.

Flanagan D. and Belytschko T. (1981). An uniform strain hexahedron and quadrilateral

with orthogonal hourglass control (in one-point integration of isoparametric finite

element analysis). International Journal for Numerical Method in Engineering 17,

679–706.

Forum M.-P. I. (2008). MPI: A Message-Passing Interface Standard, Version 2.1. High-

Performance Computing Center Stuttgart.

Galvez J., Cervenka J., Cendon D., and Saouma V. (2002). A discrete crack approach

to normal/shear cracking of concrete. Cement and Concrete Research 32.

Garboczi E. J. (2002). Three-dimensional mathematical analysis of particle shape us-

ing x-ray tomography and spherical harmonics: Application to aggregates used in

concrete. Cement and Concrete Research 32, 1621–1638.

GNU (2011). gcc - gnu compiler collection. Version 4.6.2 (SUSE Linux), Free software

foundation, Inc.(c).

Golub G. H. and van der Vorst H. (2000). Eigenvalue computation in the 20th century.

Journal of Computational and Applied Mathematics 123.

Gropp W., Lusk E., and Skjellum A. (1994). Using MPI: portable parallel programming

with the message-passing interface. Cambridge, MA, USA:MIT Press Scientific And

K. Schrader, PhD-thesis

BIBLIOGRAPHY 139

Engineering Computation Series.

Gropp W., Lusk E., and Skjellum A. (1999). Using MPI: Portable Parallel Programming

with the Message-Passing Interface. MIT Press.

Häfner S., Eckardt S., Luther T., and Könke C. (2003). Mesoscale modeling of concrete:

Geometry and numerics. Computers and Structures 84, 450–461.

Hannawald J. (2010). Fracture of hollow clay units simulated by sequentially linear

analysis. Modeling of heterogeneous materials (HetMat), Proceedings of the Interna-

tional RILEM Conference on Material Science (MatSci), W. Brameshuber (eds.),

RILEM Publications S.A.R.L. II.

Hillerborg M., Modeer M., and Peterson P. (1976). Analysis of crack formation and crack

growth on concrete by means of fracture mechanics and finite elements. Cement and

Concrete Research 6, 773–782.

HLRS (2011). Technical description of the NEC Nehalem cluster.

https://wickie.hlrs.de/platforms/index.php/NEC Nehalem Cluster.

HLRS (2012). Technical description of the CRAY XE6 cluster.

https://wickie.hlrs.de/platforms/index.php/crayXE6.html.

Jirásek M. (1998). Nonlocal models for damage and fracture: Comparison of approaches.

International Journal of Solids and Structures 36, 4133–4145.

Jirásek M. and Patzák B. (2003). Adaptive resolution of localized damge in quasibrittle

materials. Journal of Engineering Mechanics, ASCE 130(6), 720–732.

Jirásek M. and Zimmermann T. (1998). Rotating crack model with transition to scalar

damage. Journal of Engineering Mechanics ASCE. 124, 277–284.

Jog C. S. (2007). Foundations and Applications of Mechanics: Volume I: Continuum

Mechanics (2nd ed.). CRC Press.

Karypis G. (2011). A software package for partitioning unstructured graphs, partition-

ing meshes, and computing fill-reducing orderings of sparse matrices, version 5.0.

User Manual, Department of Computer Science & Engineering, University of Min-

nesota, Minneapolis.

Karypis G. and Kumar V. (1998). A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of sparse matri-

ces. University of Minnesota, Department of Computer Science / Army HPC Re-

search Center Minneapolis, MN 55455 .

Karypis G. and Kumar V. (2011). A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of sparse matri-

ces. University of Minnesota, Department of Computer Science / Army HPC Re-

search Center Minneapolis, MN 55455 .

K. Schrader, PhD-thesis

BIBLIOGRAPHY 140

Kelley C. T. (1995). Iterative methods for linear and nonlinear equations. Frontiers in

Applied Mathematics, SIAM, Philadelphia (16).

Kim H. J. and Swan C. C. (2003). Voxel-based meshing and unit-cell analysis of textile

composites. International Journal of Numerical Methods in Engineering 56, 977–

1006.

Klawonn A. and Rheinbach O. (2007). Robust FETI-DP Methods for heterogeneous three

dimensional Elasticity Problems. Comput. Methods Appl. Mech. Engrg. vol 196, pp.

1400-1414..

Klawonn A. and Widlund O. B. (2001). Feti and neumann-neumann iterative substruc-

turing methods: Connections and new results. Comm. Pure Appl. Math. 54, 5790.

Langer U. (2008). Domain decomposition methods in science and engineneering xvii.

Proceedings of the 17th International Conference on Domain Decomposition Methods

at St. Wolfgang, Austria, Springer-Verlag .

Liu G., Nguyen-Thoi T., and Lam K. (2009). Application of s-fem to the problem

of composite materials with initial strain-like terms. Journal of Sound and Vibra-

tion 320(4-5).

Loghin D. and Wathen A. J. (2003). Schur complement preconditioning for elliptic

systems of partial differential equations. Numerical Linear Algebra with Applica-

tions 10 (Issue 5-6), 423–443.

Mandel J. (1994). Balancing domain decomposition. Communications in Numerical

Methods in Engineering 9, 233–241.

Mazars J. and Pijaudier-Cabot G. (1989). Continuum damage theory - application to

concrete. International Journal for Numerical Methods in Engineering 115, 345–365.

Melenk J. and Babus̆ka I. (1996). The partition of unity finite element method: Basic

theory and applications. Computer Methods in Applied Mechanics and Engineer-

ing 39, 289–314.

Mises R. (1913). Mechanics of structural solids in elasto-plastic deformation state.

Göttin. Nachr. Math. Phys. 1, 582–592.

Moës N. and Belytschko T. (2002). Extended finite element method for cohesive crack

growth. Engineering Fracture Mechanics 69, 812–833.

Möser B. (2006). Rem for the analyis of the microstructure of high-performance con-

crete. F.A. Finger-Institut für Baustoffkunde (FIB), Bauhaus-Universität Weimar .

Most T., Eckardt S., Schrader K., and Deckner T. (2006). An improved cohesive crack

model for combined crack opening and sliding under cyclic loading. In: K. Gürlebeck

and C. Könke (eds.), Proc. 17th Int. Conf. on the Applications of Computer Science

and Mathematics in Architecture and Civil Engineering (IKM 2006), Weimar, Ger-

many, 12-14 July, 2006..

K. Schrader, PhD-thesis

BIBLIOGRAPHY 141

Nguyen-Thoi T., Liu G., Vu-Du H., and Nguyen-Xuan H. (2009). A face-based

smoothed finite element method (fs-fem) for visco-elstoplastic analyses of 3d solids

using tetrahedral mesh. Comput. Methods Appl. Mech. Engrg. 198, 3479–3498.

NVIDIA (2009a). CUBLAS Library. Nvidia corporation.

NVIDIA (2009b). The CUDA Compiler Driver NVCC. Nvidia corporation.

NVIDIA (2009c). CUDA-GDB. Nvidia corporation.

NVIDIA (2009d). CUFFT Library. Nvidia corporation.

NVIDIA (2009e). Next Generation CUDA Compute Architecture: Fermi. NVIDIA.

NVIDIA (2009f). NVIDIA CUDA. Nvidia corporation. Version 2.3.

NVIDIA (2009g). NVIDIA CUDA C Programming - Best Practices Guide. Nvidia cor-

poration. CUDA Toolkit 2.3.

Oliver J. (1996). Modelling strong discontinuities in solid mechanics via strain soft-

ening constitutive equations. part 1: Fundamentals. part 2: Numerical simulation.

International Journal for Numerical Methods in Engineering 39, 3575–3624.

Ozbolt J. and Baz̆ant Z. (1996). Numerical smeared fracture analysis. International

Journal for Numerical Methods in Engineering 39, 635–661.

Papadrakakis M., Stavroulakis G., and Karatarakis A. (2011). A new era in scientific

computing: Domain decomposition methods in hybrid cpu-gpu architectures. Com-

putational Methods Appl. Mech. Eng. 200, 1490–1508.

PARDISO (2007). Parallel Sparse Direct Linear Solver - PARDISO. Computer Science

Department, University of Basel, Swiss. Version 3.2.

Perilli E. and Baruffaldi F. (2003). Proposal for shared collections of X-ray microCT

datasets of bone specimens. Zaragoza, Spain.

Petersson P. (1981). Crack growth and development of fracture process zone in plain

concrete and similar materials. Report TVBM-100, Division of Building Materials,

Lund Institute of Technology, Lund, Sweden.

Pijaudier-Cabot G. and Baz̆ant Z. (1987). Nonlocal damage theory. Journal of Engi-

neering Mechanics ASCE. 113, 1512–1533.

Raabe D. (2004). Continuum scale simulation of engineering materials: fundamentals

- microstructures - process applications. Wiley-VCH.

Robbins K. and Robbins S. (2003). UNIX systems programming: communication, con-

currency, and threads. (2 ed. ed.). Prentice Hall.

Rots J. (1988). Computational modeling of concrete fracture. Ph. D. thesis, Delft Uni-

versity of Technology, The Netherlands.

Rots J. (2001). Sequentially linear continuum model for concrete fracture. A.A. Balkema

Publisher , 831–839.

K. Schrader, PhD-thesis

BIBLIOGRAPHY 142

Rots J. G., Belletti B., and Invernizzi S. (2006). Event-by-event strategies for modelling

concrete structures. Computational Modelling of Concrete Structures, Proceedings of

EURO-C 2006 Meschke, de Borst, Mang and Bicanic (eds), Taylor and Francis

Group, London, 667–678.

Rots J. G. and Invernizzi S. (2004). Regularized sequentially linear saw-tooth softening

model. Journal for Numerical and Analytical Methods in Geomechanics 28, 821–856.

Rots R. (1992). Softening of concrete loaded in compression. PhD thesis, TU Eindhoven.

Schlangen E. and van Mier J. (1992). Experimental and numerical analysis of micro-

mechanisms of fracture of cement-based composites. Cement & Concrete 14, 105–

118.

Schloegel K., Karypis G., and Kumar. V. (2002). Parallel static and dynamic multi-

constraint graph partitioning. Concurrency and Computation: Practice and Experi-

ence 14, 219–240.

Schrader K. (2005). Algorithmic implementation of an elasto-plastic interface model

for discrete crack-face degradation of cohesive cracks. Diploma thesis, Institute of

Structural Mechanics, Bauhaus-Universität Weimar .

Schrader K. and Könke C. (2011). Hybrid computing models for large-scale heteroge-

neous 3d microstructures. International Journal for Multiscale Computational Engi-

neering 9 (4), 365–377.

Schrader K. and Könke C. (2013a). Distributed computing for the nonlinear analysis of

multiphase composites. Advances in Engineering Software 62-63, 20–32. Special Issue

dedicated to Professor Zdenék Bittnar on the occasion of his Seventieth Birthday:

Part I.

Schrader K. and Könke C. (2013b). Distributed fe analysis of multiphase composites

regarding 3d elasticity problems. In Nagel W. E., Kröner D. H., and Resch M. M.

(Eds.), High Performance Computing in Science and Engineering ’12, pp. 531–545.

Springer Berlin Heidelberg.

Schwarz H. (1890). Gesammelte mathematische Abhandlungen. Springer Verlag, Berlin,

2. Edition.

Schwarz H. and Koeckler N. (2004). Numerische Mathematik. Teubner Verlag Stuttgart.

Shan Z. and Gokhale A. M. (2004). Digital image analysis and microstructure model-

ing tools for microstructure sensitive design of materials. International Journal of

Plasticity 20, 1347–1370.

Simo J. and Hughes T. (1998). Computational Inelasticity. Springer-Verlag.

Simo J. and Oliver J. (1994). A new approach to the analysis and simulation of strain

softening in solids. In Fracture and Damage in Quasibrittle Structures.

K. Schrader, PhD-thesis

BIBLIOGRAPHY 143

Sukumar N., Chopp D., Moes N., and Belytschko T. (2001). Modeling holes and inclu-

sions by level sets in the extended finite elment method. Computation Methods in

Applied Mechanics and Enginnering 190, 6183–6200.

Sukumar N., Huang Z., Prevost J., and Suo Z. (2004). Partition of unity enrichment

for bimaterial interface cracks. International Journal for Numerical Methods in En-

gineering 59, 1075–1102.

Sukumar N., Moes N., Moran B., and Belytschko T. (2000). Extended finite element

method for three-dimensional crack modeling. International Journal for Numerical

Methods in Engineering 48, 1549–1570.

Tanaka S., Okada H., Watanabeand Y., and Wakatsuki T. (2006). Application of s-fem

to the problem of composite materials with initial strain-like terms. International

Journal of Multiscale Computational Engineering 4(4).

Toselli A. and Widlund O. (2005). Domain decomposition methods - algorithms and

theory. Springer series in computational mathematics, Springer-Verlag, Berlin, Ger-

many 34.

C̆ervenka J. (1994). Discrete crack modeling in concrete structures. Ph. D. thesis, Uni-

versity of Colorado, Boulder, Colorado.

Voormeeren L. (2011). Appendix of the master thesis: Sla for notched beams in 2d and

3d. Delft University of Technology, Faculty of Civil Enginnering, section of Structural

Mechanics, Delft, The Netherlands .

Wang Z. (2009). Optimization of the parameterized Uzawa Preconditioners for Saddle

Point Matrices. Journal of Computational and Applied Mathematics, vol. 226, pp.

136-154, Issue 1. 2009 .

Wang Z. M., Kwan A. K. H., and Chan H. C. (1999). Mesoscopic study of concrete 1:

generation of random aggregate structure and finite element mesh. Computers and

Structures 70 (5), 533–544.

Wriggers P. (2008). Nonlinear finite element methods. Springer Verlag.

Wriggers P. (2009). Mixed Finite Element Methods - Theory and Discretization, Volume

509 of CISM International Centre for Mechanical Sciences. Springer Verlag.

Wriggers P. and Moftah S. O. (2006). Mesoscale models for concrete: Homogenisation

and damage behaviour. Finite Elements in Analysis and Design 42, 623–636.

K. Schrader, PhD-thesis

Appendix A

MDiSP C Library

MDiSP: Multiple Domain iterative Solving Procedures

The following description of selected numerical functions in the C programming language

(sequantial and MPI-parallelized) are included in the MDiSP C Library created during

this work, which were used for all numerical experiments and results, for the benchmarking

and for the evaluation of their MPI-scaling within the hybrid high-performance computing

framework. The appendix contains:

• I/O data based function calls: Functions for reading the finite element (mesh) data

stored in a special (ASCII) format.

• MPI based function calls: MPI-functions involving all started MPI-processes.

• Saw-tooth softening material model based function calls.

K. Schrader, PhD-thesis 145

APPENDIX 146

A.1 I/O data based function calls

int FE READ EXAMPLE(FE STRUC *myFE,

int size,

char *dirname,

char *example,

char *incname,

char *mshtype

char *hextype

char *command

char *argv[]

char *ndsname

char *metis

char *metis v

char *output file)

Objective Reading the FE mesh and example data

for the distributed analysis.

Parameters myFE - structure containing all parameters

describing the fe model

dirname - folder of files

example - name of the FE example (subfolder)

mshtype - type of mesh (HEX, TET, HYBRID)

metis - graph type (DUAL or NODAL)

size - number of MPI processes

A.2 MPI based function calls

int GET BLOCK MAX NUM ij 1(FE STRUC *myFE,

int myid,

0)

Objective First computation and allocation of number

global FE blocks for each subdomain

among all MPI processes.

Parameters myFE - structure containing all parameters

describing the fe model

myid - id of MPI process

0 - optional

K. Schrader, PhD-thesis

APPENDIX 147

int GET BLOCK MAX NUM ij 2(FE STRUC *myFE,

int myid,

0)

Objective Second computation and allocation of number

global FE blocks for each subdomain

among all MPI processes.

Parameters myFE - structure containing all parameters

describing the fe model

myid - id of MPI process

0 - optional

int FE DATA DISTR SCALAR(FE STRUC *myFE,

MPI Comm *comm,

MPI Stat stat)

Objective Distributes finite element data from the MPI host

process to all remaining MPI processes.

Parameters myFE - structure containing all parameters

describing the fe model

comm - MPI communicator MPI COMM WORLD

stat - MPI status

int FE DATA DISTR VECTOR(FE STRUC *myFE,

MPI Comm *comm,

MPI Stat stat)

Objective Distributes finite element data from the MPI host

process to all remaining MPI processes.

Parameters myFE - structure containing all parameters

describing the fe model

comm - MPI communicator MPI COMM WORLD

stat - MPI status

K. Schrader, PhD-thesis

APPENDIX 148

int BUILD GLOBAL MATRIX MPI(FE STRUC myFE,

int myid,

int swDOF)

Objective Simultaneous assembly of global stiffness matrix

for each subdomain among all MPI processes.

Parameters myFE - structure containing all parameters

describing the fe model

myid - id of the MPI process

swDOF - considering nodal d.o.f.s (1 - yes, 0 - no)

int GET PRECONDG SCALING(FE STRUC *myFE,

char *mshtype,

double ev tol,

int myid,

0)

Objective
Eigenvalue based scaling of the modified Jacobi-

Point preconditioning matrix.

Parameters myFE - structure containing all parameters

describing the fe model

ev tol - accuracy for the eigenvalue iteration

mshtype - type of mesh (HEX, TET or HYBRID)

myid - id of the MPI process

0 - optional

int BUILD GLOBAL RHS MPI(FE STRUC *myFE,

int myid,

0)

Objective
Build global right hand side from the applied load

(surface tractions or deadload)

Parameters myFE - structure containing all parameters

describing the fe model

myid - id of the MPI process

0 - optional

K. Schrader, PhD-thesis

APPENDIX 149

int GET SOLUTION DISP MPI(FE STRUC *myFE,

int myid,

int *out)

Objective
Get displacement solution of the global distributed

system of equations.

Parameters myFE - structure containing all parameters

describing the fe model

myid - id of the MPI process

out - write solution to file (0 - no, 1 - yes)

int CG SOLVE NDCSR MPI(FE STRUC *myFE,

MPI Comm *MPI COMM WORLD,

MPI Stat *stat,

int *out,

int *alloc)

Objective
Preconditioned MPI-based CG solver using ndcsr

matrix storage.

Parameters myFE - structure containing all parameters

describing the fe model

MPI COMM WORLD - communicator including all

MPI processes

stat - pointer to the MPI status

alloc - allocate PPCG vectors (0 - no, 1 - yes)

out - write solution to file (0 - no, 1 - yes)

K. Schrader, PhD-thesis

APPENDIX 150

A.3 Saw-tooth softening material model based function calls

int PERFORM SLA ELEM MPI(FE STRUC *myFE,

int myid,

int out,

int cycles out,

int sw)

Objective Scalable SLA procedure based on MPI.

Parameters myFE - structure containing all parameters

describing the fe model

myid - id of MPI process

out - write solution to file (0 - no, 1 - yes)

cycles out - write solution of cycles to file (0 - no, 1

- yes)

sw - optional

intGET SLA ELEM STIFFNESS CRIT(FE STRUC *myFE,

int myid,

int swDOF,

int reduce)

Objective
MPI-based update procedure for the critical element

identified from the scalable SLA procedure

and update of the global distributed equation system

of the subdomain including the critical element.

Parameters myFE - structure containing all parameters

describing the fe model

myid - id of MPI process

reduce - optional

K. Schrader, PhD-thesis

