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Abstract

This thesis deals with the basic design and rigorous analysis of cryptographic schemes

and primitives, especially of authenticated encryption schemes, hash functions, and

password-hashing schemes.

In the last decade, security issues such as the PS3 jailbreak demonstrate that

common security notions are rather restrictive, and it seems that they do not model

the real world adequately. As a result, in the first part of this work, we introduce

a less restrictive security model that is closer to reality. In this model it turned out

that existing (on-line) authenticated encryption schemes cannot longer be considered

secure, i.e., they can guarantee neither data privacy nor data integrity. Therefore, we

present two novel authenticated encryption schemes, namely COFFE and McOE,

which are not only secure in the standard model but also reasonably secure in our

generalized security model, i.e., both preserve full data inegrity. In addition, McOE

preserves a resonable level of data privacy.

The second part of this thesis starts with proposing the hash function Twisterπ,

a revised version of the accepted SHA-3 candidate Twister. We not only fixed all

known security issues of Twister, but also increased the overall soundness of our

hash-function design.

Furthermore, we present some fundamental groundwork in the area of password-

hashing schemes. This research was mainly inspired by the medial omnipresence of

password-leakage incidences. We show that the password-hashing scheme scrypt is

vulnerable against cache-timing attacks due to the existence of a password-dependent

memory-access pattern. Finally, we introduce Catena the first password-hashing

scheme that is both memory-consuming and resistant against cache-timing attacks.
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Zusammenfassung

Diese Dissertation widmet sich dem Design und der Analyse von kryptographischen

Primitiven und deren korrekte Anwendung. Im Mittelpunkt dieser Arbeit stehen da-

her das Design von beweisbar sichere Verfahren zur authentisierten Verschlüsselung,

kryptographische Hashfunktionen sowie Passwort-Hashing-Algorithmen.

In der Vergangenheit haben Sicherheitslücken wie beispielsweise der PS3-Jailbreak

gezeigt, dass die gängigen Sicherheitsmodelle zu restriktiv sind und daher die Praxis

eher unangemessen widerspiegeln. Der erste Hauptteil dieser Arbeit beschäftigt sich

daher mit der Einführung eines realitätsnäheren Sicherheitsmodelles unter dem prak-

tisch alle bestehenden On-line-Verfahren zur authentisierten Verschlüsselung als un-

sicher anzusehen sind. Weder Vertraulichkeit noch Integrität der zu schützenden

Daten können noch sichergestellt werden. Aus diesem Grund stellen wir in dieser

Arbeit zwei neue On-line-Verfahren zur authentisierten Verschlüsselung vor. Bei

dem ersten handelt es sich um COFFE. Dieser Betriebsmodus für Hashfunktionen

schützt selbst in unserem realitätsnäheren Sicherheitsmodelles noch die Integrität der

verarbeiteten Daten. Das zweite ist McOE. Es ist ein äusserst robustes Verfahren

– basierend auf einer Blockchiffre – welches auch in dem neuen Modell vollständige

Integrität und angemessene Vertraulichkeit von den verarbeiteten Daten sicherstellt.

Im zweiten Hauptteil dieser Arbeit wird als Erstes die kryptographische Hashfunk-

tion Twisterπ vorgestellt. Hierbei handelt es sich um eine überarbeitete Version

von Twister (akzeptierter SHA-3-Kandidat). Zum einem behebt Twisterπ alle

bekannten Sicherheitsprobleme der ursprünglichen Version, zum anderen bietet es im

Vergleich noch signifikant höhere Performance.
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Weiterhin werden neue Anforderungen für Sicherheit und Funktionalität an Passwort-

Hashing-Verfahren vorgestellt. Im Zuge dessen wurde ein akademischer Cache-Timing-

Angriff auf das derzeit führende Passwort-Hashing-Verfahren scrypt entwickelt, mit

dessen Hilfe sich ein sehr effizienten Filter für Passwortkandidaten konstruieren lässt.

Letzlich stellen wir in dieser Arbeit noch Catena vor. Hierbei handelt es sich um

das erste beweisbar sichere Passwort-Hashing-Verfahren welches sowohl speicherin-

tensiv als auch sicher gegen Cache-Timing-Angriffe ist.
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1
Introduction

No amount of experimentation can

ever prove me right; a single

experiment can prove me wrong.

Albert Einstein

This thesis is dedicated to provable security wich is an essential part of modern cryp-

tography. It deals with the formalization and the rigorous analysis of cryptographic

schemes with the goal to turn an ancient art into a science.

Foundations of Provable Security. Provable security arised in the late 1970s and

was shaped in the 1980s. In 1976, Diffie and Hellman pioneered the public-key

cryptography when they presented a key-exchange protocol based on the foundations

of abstract mathematics [79]. This enabled them to justify their security claims by

mathematical arguments. Furthermore, they introduced the concept of a Trap-Door

One-Way Function (TDOWF), a function which can only be inverted when knowing

auxiliary (trap-door) information, i.e., the secret key. However, without giving an

example. Two years later, in 1978, Rivest et al. introduced the first instance of a

TDOWF: the famous RSA encryption scheme [202].

In 1982, Goldwasser and Micali showed that the concept of a TDOWF is not sound

since it allows to leak certain information about the encrypted plaintext such as its

parity [116]. Therefore, they introduced a superior security notion, probabilistic en-

cryption1. This revolutionary work paved the way for the theory of provable security.

1Ciphertext indistinguishability where a secure encryption scheme must not leak any information

about the plaintext, except its length.

1



1. Introduction

In 2012, the importance of their work was dignified by The Association for Computing

Machinery Advancing Computing as a Science & Profession with the Turing Award.

Polynomial Security. The security notions introduced by Goldwasser and Micali in

[116] have their roots in complexity theory and the intractability of well-known and

hard mathematical problems, e.g., the discrete logarithm problem or the integer fac-

torization problem. This allows cryptographers to apply polynomial-time reductions

to proof the security of an encryption scheme. However, such a reduction does not

make any statements about the choice of the security parameter, e.g., the key length.

Practitioner have to guess reasonable values. Therefore, polynomial security results

are rather unsatisfactory for practical applications, but very crucial for the field of

information-theoretic cryptography.

Concrete Security. In 1993, Bellare and Rogaway introduced the random oracle

model [24] where a cryptographic primitive is modeled as a random oracel, i.e., a

black box that always returns a random value that does not depend on its input. An

adversary, allowing to ask queries to such an oracle, is modeled as a computationally

unbounded algorithm which is only limited by the number of oracle queries. For the

first time, this approach allowed to observe, in some very limited way, the behavior

of an adversary during the attack by recording the queries to the oracle. Moreover,

it allowed to upper bound the concrete success probability of adversaries in breaking

encryption schemes.

Security proofs in the random oracle model are controversial. In 1998, Canetti et

al. presented a separation result [59]: “There exist signature and encryption schemes

which are secure in the Random Oracle Model, but for which ANY implementation

of the random oracle results in insecure schemes”. Nevertheless, concrete security

bounds derived from security proofs in this model are meaningful since they enable

practitioners to apply reasonable security parameters.

A much less controversial approach is the standard model where a cryptographic

primitive, e.g., a hash function or a block cipher, is replaced by a (keyed) pseudoran-

dom counterpart ,e.g., Pseudorandom Function (PRF) [114] or Pseudorandom Per-

mutation (PRP) [20], instead of an ideal one. An adversary A is modeled as a (time-

and) computationally bounded algorithm since an unbounded algorithm can apply

an exhaustive search on the key space to reveal the secret key. Like in the random

oracle model, A has black-box access to the cryptographic scheme Π. In the standard

model, the concrete security of a scheme against an adversary A is determined by

the success probability of A in breaking Π. A scheme is considered to be secure if the

2



maximum success probability over all adversaries that ask at most q oracle queries

is negligible. In 1994, Bellare et al. introduced concrete security in the standard

model by presenting a security notion for Message Authentication Codes (MACs)

[20]. In the following years, Bellare et al. introduced several standard-model security

notions for all common cryptographic schemes such as digital signatures [26], sym-

metric encryption [18], and authenticated encryption schemes [21]. Starting from the

last decade, it is costume to introduce a novel cryptographic scheme along with a

concrete security claim supported by a security proof given either in the standard or

in the stronger random oracle model.

Misuse Resistance. A provably secure cryptographic scheme provides rigorous secu-

rity properties, e.g., integrity and confidentiality, only under well-defined assumptions

against well-defined adversaries. Hence, the term secure is a placeholder for to protect

something against a well-defined class of adversaries. In contrast to cryptographers,

who exactly know what is meant by referring a cryptographic algorithm to be secure,

regular users implicitly assume that a secure scheme matches any of their security

requirements; without further investigation. This common misconception causes se-

rious security issues and is typical for the human nature. Thomas Gray pointed this

out by the felicitous idiom: “Where ignorance is bliss, ’tis folly to be wise”2. Hence,

re-education of all users is an enormous hard task for the cryptographic community.

This virtuality leads to the conclusion that cryptographers should take responsiblility

and should design their algorithms in a way that the naive usage of their algorithms

should not end up into big security disasters.

But, this is easier said than done. On the one hand, it is not the task of a digital

signature scheme to provide any kind of data privacy. On the other hand, a digital

signature scheme should not reveal the secret key when one of its security assumption

is violated once such as the ECDSA signature scheme [128]. It is a good starting

point to design robust algorithms that still offer some decent level of security, even

when a security assumption is occasionally violated. In this thesis we introduce

the first authenticated encryption scheme that provides full security under standard

assumptions, and still a reasonable level of security under much weaker assumptions.

Therefore, such an algorithm provides a second line of defense in a misuse scenario,

e.g., faulty random number generator.

2Ode on a Distant Prospect of Eton College
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1. Introduction

Outline

In the first part of this work we introduce the concepts, security notions, and def-

initions needed to grasp the latter parts. Nevertheless, the experienced reader can

directly start with the second part of this thesis.

The essential elements of this work, namely Part II and Part III, are partitioned

as follows:

Part II: First, in Section 5 we introduce the concept of robust authenticated en-

cryption schemes. Then we show in Section 6 that published authenticated

encryption schemes are not robust, so far. In Section 7 we present COFFE,

a partially robust On-line Authenticated Encryption (OAE) scheme. Finally,

in Section 8 we introduce McOE, the first robust OAE scheme. Note that a

preliminary version of McOE was published before in [98, 100], and has been

thoroughly revised.

Part III: First, in Section 9 we present Twisterπ, a family of cryptographic hash

functions. It is a rigorously improved revision of the accepted SHA-3 can-

didate Twister [93]. Furthermore, in Section 10 we introduce Catena, a

novel memory-consuming password scrambling framework that is based on a

cryptographic hash function. Note that a preliminary version of Catena was

published before in [103] and the extended abstract will be appear at ASI-

ACRYPT’14 [104].

Further notable results of my studies that are not mentioned in this work can be

found in [1–4, 92, 94, 95, 97, 99, 101, 102]. A complete list of my publications, so far,

is given in Section 12.
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Foundations
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2
Hash Functions

Nothing in life is to be feared, it is

only to be understood. Now is the

time to understand more, so that we

may fear less.

Marie Curie

The concept of hash functions was introduced in the early 1950s [142], and became

vital in the field of modern cryptography. Informally, a hash function compresses an

input of arbitrary length to a fixed-length output which is usually referred to as a

hash value or message digest. Today, hash functions have many applications and are

virtually used everywhere in, e.g., encryption schemes [25], digital signature schemes

[26, 108], key derivation schemes [131, 191], key exchange protocols [109], and MACs

[17, 240]. Due to the wide range of use-cases, a good hash function should be both

memory- and time-efficient to be applicable on restricted devices, e.g., wireless sensor

nodes [244], trusted computing modules [228], and smart meters [172]. In this thesis

we borrow the notion of unkeyed hash function that was presented by Rogaway in

[207].

Definition 2.1 (Hash Function). An n-bit hash function H is a function

H : {0, 1}∗ → {0, 1}n, n ∈ N
+.

In practice, the notion arbitrary-length input is usually interpreted as messages up

7



2. Hash Functions

to 2r bits for a reasonable large r with r ≪ n/2. Cryptographic hash functions have

this limitation since their expected security properties cannot longer be guaranteed

if the length of an input exceeds 2n/2 bits [238]. Considering the fact that contem-

porary hash functions have an output length of 256 or 512 bits, this observation is

only of academical interest. Anyway, common hash functions follow an iterative ap-

proach to process a long message M ; they divide M into m blocks of n bits, i.e.,

M = M1, . . . ,Mm, where |Mi| = n for i = 1, . . . ,m. Individual message blocks are

processed iteratively by a compression function.

Definition 2.2 (Compression Function). A compression function F is a func-

tion

F : {0, 1}h × {0, 1}n → {0, 1}h, h, n ∈ N
+,

where h denotes the size of the chaining value and n the size of the message block.

In the area of cryptography, the majority of iterative hash functions are based

on the Merkle-Damg̊ard design [72, 171] where the message blocks are sequentially

processed by a fixed-length compression function.

This approach obtained its popularity for being property-preserving, i.e., certain

properties of the hash function are inherit from the compression function. In the

light of the SHA-3 competition, the recent research has put a focus on designing

constructions that preserve as many properties of the compression function as possible

[36, 41].

2.1. Security Notions

2.1.1. Random Oracle Model

Ideally, a hash function should be indistinguishable from a random oracle [24] with

fixed output size. A random oracle is an abstract and ideal primitive that returns

a random bit string for each fresh input. Thus, the output of a random oracle is

independent of the input, except that repeated queries are always treated consistently,

i.e., the function property is always fulfilled. Furthermore, random oracles are atomic

building blocks, i.e., they cannot be decomposed. In the context of provable security,

random oracles are used for hiding implementation details, e.g., the insides of a

specific hash function like MD5 [200] or SHA-256 [184]. Random oracles become

handy when no known implementable function provides the mathematical properties

8
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required for the proof – or when it gets too tedious to formalize these. A security

proof of a cryptographic scheme using a random oracle as a component function is

said to be in the random oracle model. From a theoretical point of view, it is clear

that such a security proof is only a heuristic indication of the security of the scheme

when instantiated with a specific hash function.

In fact, many recent separation results [16, 60, 81, 115, 163, 179] illustrate that

various cryptographic schemes are secure in the random oracle model, but completely

insecure for any efficient instantiation. According to [144], all such counterexamples

are artificial and do not seem to attack any practically relevant scheme directly.

Nevertheless, a security proof in the random oracle model is at least an indication

for the soundness of the analyzed scheme.

2.1.2. Standard Model

Beside the random oracle model, the security of a hash function can also be de-

termined under the three much weaker standard model assumptions: (1) collision

resistance, (2) preimage resistance, and (3) 2nd-preimage resistance. The insecurity

of a cryptographic function is quantified by the success probability of an optimal

and resource-bounded adversary A. Depending on the setting, different notions of

success and different limitations of the resources apply for the adversary. Actually,

the standard model does only work for families of hash functions H where H is con-

sidered to be secure if there exists no efficient adversary A that violates at least

one out of the three standard assumptions for H
$
← H. The standard model is not

suitable to prove the security of a single n-bit hash function H such as SHA-256

[184] since here A is not restricted in the access to SHA-256. Suppose AX,Y with

some fixed X,Y ∈ {0, 1}2n is an adversary that just outputs the two 2n-bit values X

and Y . By the pigionhole principle, there must be two values X ′ and Y ′ such that

H(X ′) = H(Y ′) and thus, there exists an efficient adversary, namely AX′,Y ′ . In 2006,

Rogaway introduced a way to analyze the security of a single hash function in the

standard model by bringing human ignorance into equation [207] which means that

H is secure if there is no efficient algorithm which is known to man that violates at

least one out of the three standard assumptions. Thus, a hash function is considered

to be secure if mankind is unable to find an efficient adversary.

Next, we introduce a common hybrid model where an adversary has only restricted

access to a hash function.

9
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2.1.3. Hybrid Standard Model

In this thesis, any analyzed cryptographic system is an algorithm that uses (at least

one) other component function – the primitive – inside. As the adversary is assumed

to have no knowledge about the inner workings of these primitives – in the past

always formalized by assuming a secret key – these are accessed by the adversary

via an oracle interface. Such an oracle interface essentially formalizes the black-box

mode of operation of an adversary towards the scheme or primitive being attacked. It

provides a clearly defined set of exposed functions an adversary is able to send queries

to and can expect to get an answer from. We always assume that such an adversary

is an efficient algorithm, i.e., it has resource-bounded access to the compression or

hash function. Next, we give formal definitions of the mentioned standard model

assumptions.

Collision Resistance. A hash function H is collision resistant if it is hard to find two

distinct inputs that are mapped to the same output. More formally, the advantage

of an adversary A with oracle access to H is defined as follows:

Definition 2.3 (Collision Resistance). Let H be a hash function and A be an

adversary. Then, the collision advantage of A against H is given by

Advcoll
H (A) = Pr

[
(M,M ′)← AH : H(M) = H(M ′) ∧M 6= M ′

]
.

Note that the adversary A is only limited by the number of queries to its oracles.

Thus, we write

Advcoll
H (q, t) = max

A

{
Advcoll

H (A)
}
,

where the maximum is taken over all adversaries that ask at most q oracle queries

and run in time at most t.

For an n-bit hash function, the number of message pairs with q messages is
(
q
2

)
=

q(q − 1)/2 ≈ q2/2. An ideal n-bit hash function returns random n-bit strings. Since

two of these are equal with probability 2−n, one needs 2n pairs before a collision can

be expected. More precisely with q = 2(n+1)/2 queries, the probability of a collision is

greater than 0.5, i.e., 1− 1
e ≈ 0.63. This generic attack works for any hash function

and is commonly known as the birthday attack.
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Preimage Resistance. A hash function H is preimage resistant if, given a hash

value, it is hard to find a message that hashes to this value.

More formally, the advantage of an adversary A with oracle access to H is defined

as follows:

Definition 2.4 (Preimage Resistance). Let H be a hash function and A be an

adversary. Then, we define the preimage advantage of A against H as

Advpre
H (A) = Pr

[
Y

$
← {0, 1}n,M ← AH,Y : H(M) = Y

]
,

and

Advpre
H (q, t) = max

A

{
Advpre

H (A)
}

as the maximum advantage over all preimage adversaries that ask at most q oracle

queries and run in time at most t.

A method for finding preimages that works for any hash function is the brute-force

attack, i.e., one hashes random messages until the hash value Y is reached. Assuming

that the output of the hash function is uniformly balanced, an adversary is expected

to try 2n distinct messages in order to be successful.

2nd-Preimage Resistance. A hash function H is 2nd-preimage resistant if, given a

hash value message pair (Y ,M) where Y = H(M), it is hard to find a fresh message

that also produces the same hash value. More formally, the advantage of an adversary

A with oracle access to H is defined as follows:

Definition 2.5 (2nd-Preimage Resistance). Let H be a hash function and A be

an adversary. Then, the 2nd-preimage advantage of A against H for a random mes-

sage M
$
← {0, 1}∗ is defined as

Adv2nd-pre
H (A) = Pr

[
Y ← H(M),M ′ ← AH,M,Y : H(M ′) = Y ∧M ′ 6= M

]
,

and

Adv2nd-pre
H (q, t) = max

A

{
Adv2nd-pre

H (A)
}

as the maximum advantage over all 2nd-preimage adversaries that ask at most q

oracle queries and run in time at most t.
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2.2. Iterated Hash Functions

At CRYPTO’98, Damg̊ard [72] and Merkle [171] proposed – independently from

each other – an iterative approach to construct a collision resistant hash function

based on a fixed-input length compression function. This idea has influenced the

design of virtually all popular hash functions such as MD4 [201], MD5 [200], SHA-

0/1 [183, 185], and the SHA-2 family [184].

Definition 2.6 (Iterated Hash Function). Let F : {0, 1}h×{0, 1}n → {0, 1}h be

a compression function and let M = M1, . . . ,Mm be a message with Mi ∈ {0, 1}
n

for i = 1, . . . ,m. For a fixed inital value V0 ∈ {0, 1}
h, the iterated hash function

H : ({0, 1}n)∗ → {0, 1}h is defined as

Vi ← F(Vi−1,Mi), where Y = H(M) = Vm+1 with i = 1, . . . ,m

Usually, the message length in bits, denoted by |M |, is not necessarily a multiple

of n. Thus, a padding procedure is required. Note that it can also be applied if the

message length is already a multiple of n bits since it can serve as a pre-processing

function. This step is sometimes called message expansion. The most common

padding procedure is the so called 10∗-padding specified in [200].

Definition 2.7 (10∗-Padding). Suppose M is an ℓ-bit input message. Then,

b = n− (ℓ+ 1) (mod n)

denotes the number of appended zero bits. And the padded message is computed by

the following rule:

M ′ ←M || 1 || 0b,

where ’1’ denotes a single one-bit and ’0b’ denotes a sequence of b zero-bits.

There are numerous further padding rules known and the choice depends on the

application. More examples are given in [123, 213, 221].

Next, we discuss why the length of the message might also be included into the

padding as a security measure. Damg̊ard and Merkle independently provided theo-

rems in their papers that essentially show Theorem 2.8.
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Theorem 2.8 (Merkle-Damg̊ard Security [72, 171]). Suppose H is an iterated

hash function as in Definition 2.6 and F its underlying compression function. If the

initial chaining value V0 is fixed and if the padding procedure includes the message

length into the padding bits, it holds that

F is collision resistant =⇒ H is collision resistant.

Fixing the initial value and adding a representation of the message length, is

called MD-strengthening. Unfortunately, this result does not extend to pre- and 2nd-

preimage resistance. Recent results highlight some intrinsic limitations of the Merkle-

Damg̊ard approach. This includes being vulnerable to multi-collision attacks [129],

long 2nd-preimage attacks [135], and herding attacks [134]. Even though the prac-

tical relevance of these attacks is unclear, they highlight some security issues which

designers should take care of. Therefore, in recent years, research has put a focus on

designing constructions that preserve as many properties of the compression function

as possible, e.g., [9, 10, 23, 36, 41, 64, 91].

2.3. Generic Attacks

On one hand, the iterative structure of cryptographic hash functions makes it possible

to design time- and memory-efficient hash functions, and handling inputs of arbitrary

length. On the other hand, iterative modes of operation for compression functions

allow generic attacks; even for an ideal compression function, i.e., a random oracle.

Next, we give a brief introduction to generic attacks on hash functions.

Length-Extension Attacks. Given a Merkle-Damg̊ard -based hash function H. If

one can find a collision for two messages M and M ’ with M 6= M ′, such that H(M) =

H(M ′), then, one can apply a length-extension attack. For any message M ′′, one can

easily produce a collision for M || M ′′ and M ′||M ′′.

Multi-Collision Attacks. Joux [129] found that when iterative hash functions are

used, finding a set of 2k message all colliding on the same hash value (a 2k-multi-

collision) is as easy as finding k collisions for the hash function. After finding a colli-

sion in the compression function, one can find k of such collisions each starting from

the chaining value produced by the previous one-block collision. In other words, one
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has to find two distinct messages blocks Mi and M ′i with F(Vi−1,Mi) = F(Vi−1,M
′
i),

where F(·, ·) represents the compression function and Vi the chaining value. Then, it

is possible to construct 2k messages with the same hash value by choosing for block

i either the message block Mi or M ′i . This attack can find 2k-way internal multi-

collisions with a complexity of k · 2n/2 compression function calls. Joux also showed

that the concatenation of two different hash functions is not more secure against

collision attacks than the strongest one.

Herding Attacks. The herding attack [134] works as follows: An adversary A takes

2k chaining values which are fixed or randomly chosen. Then, A chooses O(2n/2−k/2)

message blocks. Next, A computes the output of the compression function for each

chaining value and each block. It is expected that for each chaining value there exists

another chaining value, such that both collide to the same value. Then, A stores the

message block that leads to such a collision in a table and repeats this process again

with the newly found chaining values. Once the adversary has only one chaining

value, it is used to compute the hash value to be published. To find a message whose

chaining value is among the 2k original values, the attacker has to perform O(2n−k)

operations. For such a message, the attacker can retrieve from the stored messages

the message blocks that would lead to the desired hash value. The time complexity

of this attack is about O(2n/2+k/2) operations for the first and O(2n−k) operations

for the second step.

Long 2nd-Preimage Attacks. Dean [74] found that fix points in the compression

function F , i.e., a point (Yi,Mi) ∈ {0, 1}
h×{0, 1}n with Yi = F(Yi,Mi), can be used

for a 2nd-preimage attack against long messages in time O(n·2n/2) and memory O(n·

2n/2). Kelsey and Schneier [135] extended this result and provided an attack to find a

2nd-preimage on aMerkle-Damg̊ard construction with MD-strengthening much faster

than the expected workload of O(2n). The complexity of the attack is determined by

the complexity of finding expandable messages. These are messages of varying sizes

such that all these messages collide internally for a given initial value. Expandable

messages can either be found using internal collisions or fix points between a single-

block message and a multi-block message. The complexity of the generic attack to

find a 2nd-preimage for a 2k-block message is about k · 2n/2+1 + 2n−k+1 compression

function calls.

Andreeva et al. [8] showed that a combination of the attacks from [74, 134, 135]

can be mounted on dithered hash functions, i.e., hash functions based on compression

functions with an additional input, which gives an adversary A more control on the

14



2.4. Keyed Hash Functions

2nd-preimage since A can choose about the first half of the message in an arbitrary

way. This attack can be done in time 2n/2+k/2+2 + 2n−k. Although, it is more

expensive than the attack of Kelsey and Schneier [135]. As a hash function designer,

one has to make the dithering as huge as possible, such that there are no small cycles.

Slide Attacks. Slide attacks are common in block-cipher cryptanalysis, but also

applicable to hash functions. Given a hash function H and two messages M and M ′,

where M is a prefix of M ′, one can find a slide pair of messages (M,M ′) such that

the last message block of the longer message M ′ performs only an additional blank

round, e.g., for sponge constructions. These two messages are then slide by one blank

round. This attack allows to recover the internal state of a slide pair of messages and

even to perform backward computation, as shown in [118].

Differential Attacks. The essential idea of differential attacks on hash functions [61],

as used to break MD5 [200] and SHA-0/1 [183, 185], is to exploit a high probability

input/output differential over some component of the hash function, e.g., in the form

of a ’perturb-and-correct’ strategy for the latter functions, exploiting high probability

linear/non-linear characteristics.

2.4. Keyed Hash Functions

In 1992, Tsudik introduced the concept of keyed hash functions which compress a

k-bit key and an input of arbitrary length to an output of fixed length [230]. From

start, they were used to generate MACs [17, 32, 223, 230].

Definition 2.9 (Keyed Hash Function). A keyed hash function H is a function

H : {0, 1}k × {0, 1}∗ → {0, 1}n, n, k ∈ N
+.

Any hash function H(·) can be easily transformed into a keyed hash function H(·, ·)

by prepending the key to the message, i.e., H(K,M) = H(K || M) with K ∈ {0, 1}k

and M ∈ {0, 1}∗. In the following we use HK(M) and H(K,M) as synonymes.

Pseudorandom Function (PRF) Model. Let $n : {0, 1}∗ → {0, 1}n be a random

oracle (random function). An n-bit keyed hash function HK , under a secret key
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K
$
← {0, 1}k, can be considered as secure, namely PRF-secure, if it is indistinguishable

from $. This security notion can be formalized by giving an adversary A either black-

box (oracle) access to HK (under a random key K) or to $. Suppose the choice is

based on the result of a fair coin toss. Let denote heads (’1’) the case where A gets

oracle access to the keyed hash function, and let denote tails (’0’) the case where A

gets oracle access to the random function. The task of A is to guess the result of the

coin toss after a certain amount of oracle queries. More formally, the advantage of A

can be defined as follows:

Definition 2.10 (PRF Advantage). Let $ : {0, 1}∗ → {0, 1}n be a random func-

tion and H : {0, 1}k × {0, 1}∗ → {0, 1}n be a keyed hash function. Then, we define

the PRF advantage of an adversary A against H as

AdvPRF
H (A) =

∣∣∣Pr
[
K

$
← {0, 1}k : AH(K,·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]∣∣∣ ,

and

AdvPRF
H (q, t) = max

A

{
AdvPRF

H (A)
}

as the maximum advantage over all PRF adversaries that ask at most q oracle queries

and run in time at most t.
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Block Ciphers

An expert is a person who has made

all the mistakes that can be made in

a very narrow field.

Niels Bohr

A block cipher is a cryptographic primitive with a fixed input and output size, e.g.,

64 or 128 bit, to either encrypt or decrypt blocks of data. In modern cryptography,

block ciphers are the most common building blocks for symmetric encryption schemes.

They are omnipresent to provide confidentiality (data privacy) for both network

traffic [58, 78, 138, 196] and data storage [49, 89, 160]. Furthermore, several MACs

are based on block ciphers [19, 46, 125].

Definition 3.1 (Block Cipher). Let E : {0, 1}k × {0, 1}n → {0, 1}n be a family

of functions for some k, n ∈ N
+. We denote E as a (k, n)-block cipher iff for any

K ∈ {0, 1}k it holds that

E(K, ·) is a permutation.

We denote the first input as key, the second input as message or plaintext, and the

output as ciphertext.

Mathematically, a (k, n)-block cipher E is a keyed family of permutations, i.e.,

a set of 2k n-bit permutations. Since for a fixed key K ∈ {0, 1}k, E(K, ·) is a
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Algorithm 1 Random Permutation P Implemented via Lazy Sampling

Init()

X ← ⊥

Y ← ⊥

D← ∅

R← ∅

P(M)

if X[M ] = ⊥ then

X[M ]
$
← {0, 1}n \R

Y [X[M ]]←M

D← D ∪ {X[M ]}

R← R ∪ {M}

end if

return C ← X[M ]

P−1(C)

if Y [C] = ⊥ then

Y [C]
$
← {0, 1}n \D

X[Y [C]]← C

D← D ∪ {C}

R← R ∪ {Y [C]}

end if

return M ← Y [C]

bijection, it has an inverse, namely E−1(K, ·), i.e., for all M ∈ {0, 1}n it holds

that M = E−1(K,E(K,M)). In this thesis we use E(K, ·) and EK(·) as synonyms.

Furthermore, we denote Block(k, n) as the set of all (k, n)-block ciphers. Note that

for each key, there exists 2n! n-bit permutations, and any permutation can be assigned

to a given key. Thus, we have a huge set of (2n!)2
k
possible block ciphers.

3.1. Security Notions

Ideal Cipher Model. Let Permn denote the family of all possible n-bit permuta-

tions. We denote by P
$
← Permn a random permutation. In the ideal cipher model

[48, 87, 139], the block cipher is modeled as a family of 2k random permutations P.

Let denote Pi the i-th element of P. Ideally, under a secret key a (k, n)-block cipher

should be computationally indistinguishable from P, i.e., it should not be possible to

distinguish EK from PK . Similar to the random oracle model, there are also separa-

tion results published for the ideal cipher model [44]. Hence, a cryptographic scheme

proven to be secure in the ideal cipher model does not preserve its security properties

– such as collision resistance – when instantiated with a real block cipher like the

Advanced Encryption Standard (AES) [176] or the Data Encryption Standard (DES)

[186].

Pseudorandom Permutation (PRP) Model. Beside the artificial strong ideal cipher

model, the security of a block cipher can also be determined by the common notion

of a PRP. A family EK of n-bit permutations is called PRP when the input-output

behaviour of EK is computationally indistinguishable from that of an n-bit random

permutation. Next, we introduce the security notion of (strong) Indistinguishability

from a Pseudorandom Permutation (IND-PRP).
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Suppose, depending on the result of a coin toss, an adversary A has either black-

box access to a block cipher E ∈ Block(k, n) under a secret key K
$
← {0, 1}k,

or to an n-bit random permutation P which is independent from K. We denote

EK as IND-PRP-secure when A cannot distinguish between these two scenarios.

Let ‘1’ denote the real scenario where A has access to the block cipher and ‘0’ the

random scenario, where A has access to a random permutation, which is usually

implemented in an efficient way using the lazy-sampling technique (cf. Algorithm 1).

Then, Pr[K
$
← {0, 1}k : AEK(·),E−1

K (·) ⇒ 1] denotes the success probability that A

guesses ‘1’ when in the real scenario. Then, the formal definition of the IND-PRP-

advantage is defined as follows.

Definition 3.2 (IND-PRP-Advantage). Let E ∈ Block(k, n) be a block cipher

and P
$
← Permn a random permutation. Then, we define the IND-PRP advantage

of an adversary A as

AdvPRP
E,E−1(A) =

∣∣∣Pr
[
K

$
← {0, 1}k : AEK(·),E−1

K (·) ⇒ 1
]
− Pr

[
AP(·),P

−1(·) ⇒ 1
]∣∣∣ ,

and

AdvPRP
E,E−1(q, t) = max

A

{
AdvPRP

E,E−1(A)
}

as the maximum advantage over all IND-PRP adversaries that run in time at most

t and ask a total maximum of q queries to the encryption and decryption oracles.

PRP under Related-Key Attacks. In a related-key scenario we assume that an

adversary A has partial control over the secret key K
$
← {0, 1}k of a block cipher

E ∈ Block(k, n). Following the security notions of Lucks [154], the partial control

over the key is modeled as a key-transformation function ϕ : {0, 1}k × {0, 1}k →

{0, 1}k. In this thesis we assume that ϕ(K, ·) is the XOR-operation. In contrast

to the IND-PRP security model, in the Pseudorandom Permutation under Related-

Key Attacks (PRP-RKA) model the adversary A has either access to the related-key

encryption oracle Eϕ(K,·)(·) or to a set of 2k random permutations P ∈ Permk
n,

where Permk
n = Permn × . . .×Permn︸ ︷︷ ︸

2k times

. Depending on the setting, the first input is

either the key relation or an index that determines a specific random permutation,

and the second input is the plaintext. The PRP-RKA advantage is defined as follows:
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Definition 3.3 (PRP-RKA Advantage). Let E ∈ Block(k, n) be a block cipher

and let P
$
← Permk

n be a family of random permutations. Let ϕ : {0, 1}k×{0, 1}k →

{0, 1}k is a key transformation function, and K
$
← {0, 1}k. Then, we define the

PRP-RKA-advantage of an adversary A as

AdvPRP-RKA
E,E−1 (A) =

∣∣∣Pr
[
A

Eϕ(K,·)(·),E
−1
ϕ(K,·)

(·)
⇒ 1

]
− Pr

[
AP(·,·),P−1(·,·) ⇒ 1

]∣∣∣ ,

and

AdvPRP-RKA
E,E−1 (q, t) = max

A

{
AdvPRP-RKA

E (A)
}

as the maximum advantage over all PRP-RKA adversaries that run in time at most

T and ask a total maximum of q queries to the encryption and decryption oracles.

3.2. Tweakable Block Ciphers

The concept of tweakable block ciphers was introduced by Liskov et al. in [153]. The

design is based on a common block cipher, which is extended by a so called tweak. A

tweakable block cipher Ẽ : {0, 1}k × {0, 1}u × {0, 1}n → {0, 1}n is defined as follows:

Definition 3.4 (Tweakable Block Cipher). Let Ẽ : {0, 1}k×{0, 1}u×{0, 1}n →

{0, 1}n be a family of functions for some k, u, n ∈ N
+. We denote Ẽ as a tweakable

(k, u, n)-block cipher iff for any key tweak tuple (K,U) ∈ {0, 1}k × {0, 1}u it holds

that

Ẽ(K,U, ·) is a permutation.

We denote the first input as key, the second input as tweak and the third input as

message or plaintext, and the output as ciphertext.

We denote Ẽ−1K (U, ·) as the inverse of ẼK(U, ·), i.e., for all M ∈ {0, 1}n it holds

that M = Ẽ−1K (U, ẼK(U,M)). Furthermore, we denote Block(k, u, n) as the set of

all tweakable (k, u, n)-block ciphers.

A tweakable block cipher Ẽ ∈ Block(k, u, n) is considered to be secure if it is

computationally indistinguishable from a family of 2u random n-bit permutations.

20



3.2. Tweakable Block Ciphers

The formal definition of the IND-PRP advantage for tweakable block ciphers is similar

to Definition 3.3.

Definition 3.5 (IND-PRP Advantage). Let Ẽ ∈ Block(k, u, n) be a tweakable

block cipher and let P
$
← Permk

n be a family of random permutations. Suppose that

K
$
← {0, 1}k. Then, we define the IND-PRP advantage of an adversary A as

AdvIND-PRP

Ẽ,Ẽ−1 (A) =
∣∣∣Pr
[
AẼK(·,·),Ẽ−1

K (·,·) ⇒ 1
]
− Pr

[
AP(·,·),P−1(·,·) ⇒ 1

]∣∣∣ ,

and

AdvIND-PRP

Ẽ,Ẽ−1 (q, t) = max
A

{
AdvIND-PRP

Ẽ,Ẽ−1 (A)
}

as the maximum advantage over all IND-PRP adversaries that run in time at most

t and ask a total maximum of q queries to the encryption and decryption oracles.
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4
Authenticated Encryption Schemes

Any sufficiently advanced technology

is indistinguishable from magic.

Arthur C. Clarke

A common requirement for cryptographic applications is to establish a secure channel

between a sender and a receiver – usually referred to as Alice and Bob – who share

a secret key. It may well be the case that sender and receiver represent the same

entity, e.g., the same person can first write sensitive data to an insecure storage,

and later read these data. Usually, a secure channel should provide data privacy

to prevent an eavesdropper from revealing any information about a message sent

from Alice to Bob, except its length. The cryptographic technique to ensure this

requierement is “encryption”. Sometimes, data authenticity/integrity is required,

i.e., an adversary should not be able to manipulate messages without being noticed.

This is cryptographically ensured by “authentication”. Nevertheless, most of the

time, users need both encryption and authentication: authenticated encryption (AE).

An authenticated encryption scheme is a special kind of an encryption scheme that

encrypts plaintext to authenticated ciphertexts.

Nonce. Goldwasser and Micali [117] formalized encryption schemes as stateful or

probabilistic: otherwise, the data privacy is lost. Rogaway [204, 206, 208] proposed a

unified point of view, by defining a cryptographic scheme as an always-deterministic

algorithm that takes a user-supplied state called nonce (a number used once). We

assume that an adversary is nonce-respecting when not stated otherwise. This type of
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adversary has full control over a nonce with the restriction to never choose the same

value twice. This limitation only holds for encryption queries. Thus, an adversary is

allowed to use a nonce multiple times when query the decryption oracle.

Deterministic Authenticated Encryption (DAE). In [209], Rogaway and Shrimp-

ton addressed authenticated encryption schemes which provide security against re-

peated nonces . Furthermore, the authors shaped the notion of misuse-resistance and

they proposed Synthetic Initialization Vector (SIV) as a solution. SIV and related

schemes (Bivariate Tag Mixing (BTM) [126] and Hash Block Stealing (HBS) [127])

actually provide excellent security against nonce-reusing adversaries. Though, they

are inherently off-line, i.e., for encryption, one must either keep the entire plaintext

in memory, or read the plaintext twice. This renders such deterministic approaches

only practical for small messages.

On-line Authenticated Encryption (OAE). It is folklore that application program-

mers are used to process messages in an on-line manner. Hence, to seamlessly in-

tegrate authenticated encryption schemes into a typical software architecture, they

should be on-line, i.e., plaintexts and ciphertexts are split into conveniently-sized

blocks, and the i-th ciphertext block can be written before the (i + 1)-th plaintext

block has to be read. An AE scheme fulfilling the on-line requirement is referred to

as an OAE scheme.

4.1. Authenticated Encryption with Associated Data

Schemes

An authenticated encryption scheme is a triple Π = (K, E ,D) of three algorithms.

1. The key-generation algorithm K takes no input and returns a randomly chosen

key K from the key space {0, 1}k.

2. The deterministic encryption algorithm

E : {0, 1}k × ({0, 1}n)∗ × ({0, 1}n)∗ → ({0, 1}n)∗ × {0, 1}r

maps a key-header-message tuple (K,H,M) to a ciphertext-tag-tuple (C, T )

3. The deterministic decryption algorithm

D : {0, 1}k × ({0, 1}n)∗ × ({0, 1}n)∗ → {({0, 1}n)∗,⊥}
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maps a header-ciphertext-tag-tuple (H,C, T ) either to the authentic plaintext,

if the input is valid, or returns ⊥.

Usually, AE schemes operate on n-bit blocks, where n is the block length of the

underlying primitive, e.g., a block cipher. This is reflected by the notion ({0, 1}n)∗

where M ∈ ({0, 1}n)m implies that the message M consists of m message blocks,

m−1 blocks of n-bit and a final message block Mm that can contain less then n-bits,

i.e., M = M1, · · · ,Mm with |Mi| = n and |Mm| ≤ n with i = 1, . . . ,m− 1.

It always holds that |M | ≤ |C| + |T | where C denotes the ciphertext and T the

(authentication) tag. Note that OAE schemes require a nonce N ∈ {0, 1}v. In our

notation N is a mandatory part of the header, whereas the optional part consists of

associated data or meta data of the plaintext, e.g., the TCP/IP header. Usually, for

the sake of simplification, the nonce size v matches the block size n of the underlying

primitive, e.g., a (k, n)-block cipher.

An Authenticated Encryption with Associated Data (AEAD) scheme ensures pri-

vacy and integrity for the plaintext; in addition, it ensures the integrity of the header.

This renders those schemes useful in settings where the associated data of messages

is predictable.

4.2. Generic Composition

An AE scheme can be generated by combining a secure encryption scheme with a

secure MAC. Given two independent keys K and L, the common literature lists three

construction approaches for such a generic composition [22].

Encrypt-and-Mac. Encrypt the plaintext M and append a MAC of the plaintext to

the ciphertext: EK(M) || MACL(M). Variants of this method are used in the

transport layer of the SSH protocol [242].

Mac-then-Encrypt. Append a MAC of the plaintext to the plaintext and then en-

crypt them together. Here, the output is EK(M || MACL(M)). Variants of

this method are used in the TLS protocol version 1.0 and 1.1 [76, 77].

Encrypt-then-Mac. Encrypt the plaintext to get a ciphertext and append a MAC of

this ciphertext: EK(M) || MACL(EK(M)). Variants of this method are used

in the IPSec protocol [137].

Out of these, only the Encrypt-then-Mac scheme is free of weaknesses [22]. Note that

this approach can fail trivially by key management errors: suppose the receiver side
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only updates the authentication key, but not the encryption key. Then, Encrypt-

then-Mac will decrypt a ciphertext into “authentic” random garbage. Therefore, it is

less error-prone to use a dedicated authenticated encryption scheme and not a generic

composition.

4.3. Security Notions

Authenticated encryption schemes require security notions for both privacy and in-

tegrity. Notions and their relations were introduced for deterministic schemes in [210]

and for nonce-based schemes in [22, 27, 133, 204, 208]. In this thesis we adopt the

notion of Chosen-Ciphertext Attack 3 (CCA3) security suggested in [210]. Similar to

the security definition of IND-PRP (cf. Definition 3.2), a CCA3 adversary A has to

distinguish between the real world, where it has oracle access to EK(·, ·) and DK(·, ·, ·)

of an AE scheme Π = (K, E ,D), and the random world, where A has access to the

oracles $(·, ·) and ⊥(·, ·, ·). The random oracle $(·, ·) returns a string of random bits,

whereas ⊥(·, ·, ·) always returns ⊥. Note that the equation |$(H,M)| = |EK(H,M)|

holds for all header-plaintext tuple (H,M). For the sake of simplification, we assume

that an adversary never asks a query to which the corresponding answer is already

known.

Definition 4.1 (CCA3 Advantage). Let Π = (K, E ,D) be an authenticated en-

cryption scheme as described in Section 4.1. The advantage of an adversary A in

breaking Π is defined as

AdvCCA3
Π (A) =

∣∣∣Pr
[
K ← K : AEK(·,·),DK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ ,

and

AdvCCA3
Π (q, ℓ, t) = max

A

{
AdvCCA3

Π (A)
}

as the maximum advantage over all nonce-respecting CCA3-adversaries that run in

time at most t, ask total maximum of q queries to the encryption and decryption

oracles, and whose total query length is at most ℓ blocks.
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It is easy to see that we can rewrite the term given in Definition 4.1 as

AdvCCA3
Π (A) =
∣∣∣Pr
[
K ← K : AEK(·,·),DK(·,·,·) ⇒ 1

]
− Pr

[
K ← K : AEK(·,·),⊥(·,·,·) ⇒ 1

]
(4.1)

+ Pr
[
K ← K : AEK(·,·),⊥(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ . (4.2)

One can interpret (4.1) as the advantage that an adversary has on the integrity of

the ciphertext and (4.2) as the advantage an adversary has on the privacy. We use

this decomposition as a motivational starting point to define ciphertext integrity and

what we mean by an Indistinguishability under Chosen-Plaintext Attack (IND-CPA)

adversary against authenticated encryption schemes.

Indistinguishability under Chosen-Plaintext Attack (IND-CPA). Let Π = (K, E ,D)

be an authenticated encryption scheme and A an IND-CPA adversary. The task of

A is to distinguish the real world, where it is given oracle access to EK(·, ·) under

a secret key K ∈ {0, 1}k, from the random world, where A has access to a random

oracle $(·, ·) which returns, consistent, random ciphertexts, as described earlier in this

section. If no such adversary A can perform significant better than random guessing,

then, Π protects the privacy of encrypted messages. The IND-CPA advantage is

defined as follows:

Definition 4.2 (IND-CPA Advantage). Let Π = (K, E ,D) be an authenticated

encryption scheme as described in Section 4.1. Then, the IND-CPA advantage of a

nonce-respecting adversary A is defined as

AdvIND-CPA
Π (A) =

∣∣∣Pr
[
K ← K : AEK(·,·) ⇒ 1

]
− Pr

[
A$(·,·) ⇒ 1

]∣∣∣ ,

and

AdvIND-CPA
Π (q, ℓ, t) = max

A

{
AdvIND-CPA

Π (A)
}

as the maximum advantage over all nonce-respecting IND-CPA-adversaries that run

in time at most t, ask a total maximum of q queries to the encryption oracle, and

whose total query length is not more than ℓ blocks.

Integrity of Ciphertext (INT-CTXT). The security notion INT-CTXT is defined

by the game-playing approach [29], where the advantage of an adversary is measured
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Algorithm 2 INT-CTXT Game

Initialize()

K
$
← K

win← false

Q← ∅

Finalize()

return win

Encrypt(H,M)

(C, T )← EK(H,M)

Q ∪ {(H,C, T )}

return (C, T )

Verify(H,C,T )

M ← DK(H,C, T )

if ((H,C, T ) /∈ Q) ∧ (M 6= ⊥)

then

win← true

end if

return M

as the success probability of winning a (cryptographic) game G. Each game consists

of three functions: An initialization function Initialize(), a finalization function

Finalize(), and oracle functions. Any adversary A that is playing a game calls

the Initialize() function first. In the following, A then makes some queries to the

encrypt and decrypt oracles, and finally, A ends the game by invoking Finalize().

To A, every function of a game is a black box, i.e., it has no access to internal

variables. An adversary wins the game if and only if Finalize() returns true. We

denote Pr[AG ⇒ 1] as the probability that the adversary wins the Game G.

An AE scheme Π = (K, E ,D) protects the ciphertext integrity against an adversary

A when it is not able to come up with a fresh authentic ciphertext tuple (H,C, T ),

i.e., DK(H,C, T ) 6= ⊥, where (H,C, T ) is not the result of a previous query of A.

The INT-CTXT advantage based on the the Game GINT-CTXT (cf. Algorithm 2)

is formally defined as follows:

Definition 4.3 (INT-CTXT Advantage). Let Π = (K, E ,D) be an authenticated

encryption scheme as introduced in Section 4.1, and let GINT-CTXT denote the game

from Algorithm 2. Then, the INT-CTXT advantage of a nonce-respecting adversary

A is defined as

AdvINT-CTXT
Π (A) = Pr

[
AGINT−CTXT ⇒ 1

]
,

and

AdvINT-CTXT
Π (q, ℓ, t) = max

A

{
AdvINT-CTXT

Π (A)
}

as the maximum advantage over all nonce-respecting INT-CTXT-adversaries that

run in time at most t, ask a total maximum of q queries to the encryption and

decryption oracles, and whose total query length is at most ℓ blocks.
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Upper-Bounding the CCA3 Advantage. Bellare and Namprempre showed in [22]

that an authenticated encryption scheme that is both IND-CPA- and INT-CTXT-

secure, is also CCA3-secure. This notable observation is formalized as follows:

Theorem 4.4 (CCA3 Advantage [22]). Let Π = (K, E ,D) be an authenticated

encryption scheme as introduced in Section 4.1, and let A be a nonce-respecting

CCA3Π adversary that runs in time t, and makes q queries with a total length of at

most ℓ blocks. Then, there exists an IND-CPAΠ-adversary Ap and an INT-CTXTΠ

adversary Ac such that

AdvCCA3
Π (A) ≤ AdvIND-CPA

Π (Ap) +AdvINT-CTXT
Π (Ac),

where both Ap and Ac run in time O(t) and make at most q queries.

Proof Sketch. By applying the triangle inequality on Definition 4.1, we haveAdvCCA3
Π (A) =

∣∣∣Pr
[
K ← K : AEK(·,·),DK(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·,·) ⇒ 1

]∣∣∣

≤
∣∣∣Pr
[
K ← K : AEK(·,·),DK(·,·,·) ⇒ 1

]
− Pr

[
K ← K : AEK(·,·),⊥(·,·,·) ⇒ 1

]∣∣∣

+
∣∣∣Pr
[
K ← K : AEK(·,·),⊥(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·,·) ⇒ 1

]∣∣∣

For a key K
$
← K, we design two adversaries Ap and Ac so that

∣∣∣Pr
[
AEK(·,·),⊥(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ ≤ AdvIND-CPA
Π (Ap)

∣∣∣Pr
[
AEK(·,·),DK(·,·,·) ⇒ 1

]
− Pr

[
AEK(·,·),⊥(·,·,·) ⇒ 1

]∣∣∣ ≤ AdvINT-CTXT
Π (Ac).

Ap: Adversary Ap runs A and answers A’s queries to the function Encrypt and

Decrypt by using its own Encrypt oracle or returning ⊥, respectively. Ap outputs

whatever A outputs.

Ac: Adversary Ac runs A, and answers A’s queries to the function Encrypt by

using its own Encrypt oracle. It submits A’s queries to the Decrypt oracle to its

own Verify oracle and, regardless of the response, returns ⊥. Note that the Verify

oracle sets win to true if and only if a fresh Decrypt query of Ac is valid. �
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4.4. Game-Based Proofs

The majority of the upcoming proofs in this paper are based on common game-playing

arguments. In this thesis, all games are written in a language similar to L that was

introduced by Bellare and Rogaway in [28]. The basic concept of this proof technique

is called game hopping. It is a formalized way to transform a cryptographic scheme

into an ideal scheme, e.g., a random function by a series of minor modifications. We

denote G0, . . . , Gn as a series of games, where G0 denotes the initial game and Gn

the final game. As usual, our adversary A has only black-box access to any Game

Gi. Thus, the advantage of A to distinguish Game Gi from Game Gj is given by

Adv
Gj

Gi
(A) =

∣∣Pr
[
AGi ⇒ 1

]
− Pr

[
AGj ⇒ 1

]∣∣ .

Game-playing proofs become handy when it is hard to compute AdvGn
G0

(A) in a

straightforward manner. The difference between subsequent games Gi and Gi+1 is,

by construction, easy to compute. Finally, from the common triangle inequality, we

have Adv
Gi+2

Gi
(A) ≤ Adv

Gi+1

Gi
(A) +Adv

Gi+2

Gi+1
(A), and thus,

AdvGn
G0

(A) ≤
n∑

i=1

AdvGi
Gi−1

(A).
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You are never too old to set another

goal or to dream a new dream.

C. S. Lewis

During the past decade, many AE schemes were proposed – usually with a formal

proof of their respective CCA3 security. Up to now, CCA3 proofs used to rely on two

common assumptions: (1) nonce-respecting adversaries, and (2) secure underlying

primitives. While both aspects are well-understood in theory, they are hard to guar-

antee in practice. Thus, security issues were overlooked or ignored in various cases

and security applications were put at high risk. In this thesis we highlight two blind

spots in the established security definitions: nonce misuse and decryption misuse.

5.1. Nonce Misuse

The standard requirement for encryption schemes – authenticated or not – is to

prevent leakage of any information about the plaintext except for its length. A

stateless deterministic authenticated encryption scheme cannot fulfill this security

requirement since an adversary can easily detect, if a plaintext was encrypted multiple

times or not. Thus, the user must provide a fresh additional auxiliary input (called

nonce) for each encryption. We speak of a nonce misuse, if a nonce value is reused.

In theory, the concept of nonces is simple. In practice, it is challenging to ensure

that nonces never repeat. Flawed implementations of nonces are ubiquitous [51, 122,

146, 214, 239], but, apart from implementation failures, cases exist where software
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developers cannot always prevent nonce reuse. For example, a persistently stored

counter that is increased and written back each time a new nonce is needed may be

reset by a backup – usually after some previous data loss. Similarly, the internal

and persistent state of an application may be duplicated when a virtual machine is

cloned, etc.

Our analysis in Section 6.1 shows that almost all previously published OAE schemes

cannot longer ensure the privacy, integrity, or both for encrypted messages when

threatened by a nonce-ignoring adversary.

Ideally, an adversary that is given the encryption of two (equal-length) plaintexts

M1 and M2 cannot even decide if M1 = M2 or not. When a nonce is used more than

once, deciding if M1 = M2 becomes easy. Deterministic encryption schemes, such

as SIV [209], ensure that they do not leak any other additional information about

plaintexts, even when exposed to a nonce-reusing adversary. In the case of on-line

encryption, where the i-th ciphertext block is independend of all message blocks Mj

with j > i, it is unavoidably to leak information beyond M1 = M2. The adversary

can compare any pair of ciphertexts for their Longest Common Prefix (LCP), and

then derive the longest common prefix of their corresponding plaintexts. We propose

to call an (on-line) AE scheme misuse resistant if the only information an adversary

can obtain from ciphertexts are their lengths, and the LCP of its plaintexts. In the

following we first formally define the length of the LCP.

Definition 5.1 (Length of the Longest Common Prefix (LLCP)). Let

M,M ′ ∈ ({0, 1}n)∗ denote two messages. Then, we define the length of the longest

common n-prefix of M and M ′ as

LLCPn(M,M ′) = max
i

{
M1 = M ′1, . . . ,Mi = M ′i

}
.

For a non-empty set Q of elements of ({0, 1}n)∗, we define

LLCPn(M,Q) = max
X∈Q

{LLCPn(M,X)} .

On-line Permutation (OPerm). We aim for larger permutations that not only per-

mute single blocks but can handle messages of multiple blocks. Such a permutation,

from {0, 1}na to {0, 1}na for a > 1, is (n-)on-line if the i-th block of the output is

completely determined by the first i blocks of the input. Let OPermn denote the set

32



5.1. Nonce Misuse

Algorithm 3 Random On-Line Permutation Implemented via Lazy Sampling

Init()

XI ← ⊥

YI ← ⊥

DI ← ∅

RI ← ∅

P(M)

for i← 1, . . . , |M |/n do

I ←M1, . . . ,Mi−1

Z ← XI [Mi]

if Z = ⊥ then

Z
$
← {0, 1}n \DI

XI [Mi]← Z

YI [Z]←Mi

RI ← RI ∪ {Z}

DI ← DI ∪ {Mi}

end if

Ci ← Z

end for

return (C1, . . . , C|M |/n)

P−1(M)

for i← 1, . . . , |C|/n do

I ← C1, . . . , Ci−1

Z ← YI [Ci]

if Z = ⊥ then

Z
$
← {0, 1}n \RI

YI [Ci]← Z

XI [Z]← Ci

DI ← DI ∪ {Z}

RI ← RI ∪ {Ci}

end if

Mi ← Z

end for

return (M1, . . . ,M|C|/n)

of all on-line permutations from ({0, 1}n)∗ to ({0, 1}n)∗. It is easy to extend the def-

inition with a state space {0, 1}v. Let OPermv
n denote the set of all functions from

{0, 1}v × ({0, 1}n)∗ → ({0, 1}n)∗. Then, for each G ∈ OPermv
n and N ∈ {0, 1}v,

the function G(N, ·) is an (n-)on-line permutation. We define an On-line Pseudo-

random Permutation (OPRP) as a family of n∗-bit on-line permutations with the

property that the input-output behaviour of a randomly chosen member of this fam-

ily is computationally indistinguishable from a set of 2v n∗-bit random permutations

P(·, ·)
$
← OPermv

n. An efficient lazy-sampling implementation of a random on-line

permutation is given in Algorithm 3. Note that in the first iteration the prefix I is

always set to the empty string ǫ since neither M0 nor C0 exists.

Since AE schemes do not only output ciphertexts but also authentication tags,

our encryption oracle has to simulate the computation of an authentication tag by

returning a random bitstring that matches the length of the tag. Thus, our encryption

oracle OP processes a header-message tuple (H,M) as follows:

1. Compute C ← P(H,M).

2. Compute T
$
← {0, 1}r.

3. Append some random bits to C if necessary so that the equation |EK(H,M)| =

|C|+ |T | always holds.
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4. Finally, output the ciphertext-tag tuple (C, T ).

To achieve length preserving encryption, i.e., |M | = |C| for all messages M ∈ {0, 1}∗,

OAE schemes usually have a special treatment for the last message block, e.g., cipher-

text stealing where the final message block Mm is padded with the ciphertext block

Cm−1. Thus, it is quite easy to distinguish such an OAE scheme from the encryption

oracle OP. At first, we can send any encryption query (H,M) with M = M1, . . . ,Mm

to the encryption oracle. Then we query (H,M ′) where M ′ = M || Z for any

Z ∈ {0, 1}n. Let (C, T ) denote the output of our first query and (C ′, T ′) the output

of the second query. Then we output 1 if Cm 6= C ′m, and 0 otherwise. Thus, we have

to update the definition of the random encryption oracle OP by an intermediate Step

1b: Replace the final ciphertext block (Cm) by a random bitstring when EK treats

the final message block special.

Definition 5.2 (IND-OPRP Advantage). Let Π = (K, E ,D) be an OAE scheme,

and let P
$
← OPermn+

n . Then, we define the IND-OPRP advantage of a nonce-

ignoring adversary A as

AdvIND-OPRP
Π (A) =

∣∣∣Pr
[
K ← K : AEK(·,·) ⇒ 1

]
− Pr

[
AO

P(·,·) ⇒ 1
]∣∣∣ ,

and

AdvIND-OPRP
Π (q, ℓ, t) = max

A

{
AdvIND-OPRP

Π (A)
}

as the maximum advantage over all IND-OPRP adversaries that run in time at most

t, ask a total maximum of q queries to the encryption oracles, and whose total query

length is at most ℓ blocks.

In the spirit of the CCA3 security definition (cf. Definition 4.1), we introduce the

notion of On-line Chosen-Ciphertext Attack 3 (OCCA3) security.

Definition 5.3 (OCCA3 Advantage). Suppose Π = (K, E ,D) is an OAE scheme,

and let P
$
← OPermn be a random on-line permutation. Then, we define the OCCA3

advantage of a nonce-ignoring adversary A as

AdvOCCA3
Π (A) =

∣∣∣Pr
[
K ← K : AEK(·,·),DK(·,·,·) ⇒ 1

]
− Pr

[
AO

P(·,·),⊥(·,·,·) ⇒ 1
]∣∣∣ ,

and

AdvCCA3
Π (q, ℓ, t) = max

A

{
AdvCCA3

Π (A)
}
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as the maximum advantage over all nonce-ignoring OCCA3 adversaries that run in

time at most t, ask a total maximum of q queries to the encryption and decryption

oracles, and whose total query length is at most ℓ blocks.

Using similar arguments as in the proof of Theorem 4.4, one can show that for any

(q, ℓ, t)-bounded adversary A, there exists a (q, ℓ, O(t))-bounded Ap such that

∣∣∣Pr
[
K ← K : AEK(·,·),⊥(·,·) ⇒ 1

]
− Pr

[
AO

P (·,·),⊥(·,·) ⇒ 1
]∣∣∣ ≤ AdvIND-OPRP

Π (A).

Corollary 5.4 (Bound for the OCCA3 Advantage). Suppose Π = (K, E ,D) is

an OAE scheme. Then, it holds that

AdvOCCA3
Π (q, ℓ, t) ≤ AdvIND-OPRP

Π (q, ℓ, t) +AdvINT-CTXT
Π (q, ℓ, t).

5.2. Decryption Misuse

The decryption algorithm of an authenticated encryption scheme either outputs a

plaintext, or the bot symbol ⊥, depending on whether a ciphertext is authentic or

not. A decryption misuse describes the event that information about the would-be

plaintext of an invalid ciphertext leaks. An adversary might use this leaked informa-

tion to break the privacy (or integrity) of an AE scheme. A generic way to get rid of

this problem is the Decrypt-Then-Mask approach by Fouque et al. [105], where the

would-be plaintext is blinded after decryption by XORing it with a pseudorandom

sequence of bits generated by a Pseudorandom Number Generator (PRNG). After

successful authentication, the blinding is removed. Unfortunately, this technique is

not applicable in low-end environments since required temporary storage for the de-

crypted data may just not exist. In high-speed environments, e.g., optical networks,

the increased latency for the waiting period that is required until the plaintext au-

thenticity has been established may be prohibitive.

We strive for an authenticated encryption scheme where any change to a valid

ciphertext causes its entire post-decryption plaintext to be pseudorandom. Such a

scheme is clearly decryption-misuse resistant since the decryption of a manipulated

ciphertext results in uncontrollable random noise. Unfortunately, this strong defini-

tion of decryption-misuse resistance and on-line encryption are mutually exclusive:
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If an adversary manipulates the i-th block of a ciphertext, an OAE scheme leaves

the previous (i − 1) blocks unchanged. Therefore, we will introduce two flavours

of decryption-misuse resistance, one for deterministic AE schemes and one for OAE

schemes.

Indistinguishability under Chosen-Ciphertext Attack (IND-CCA). For determin-

istic authenticated encryption schemes, we can adapt the CCA3 notion (see Defini-

tion 4.1) by slightly modifying the behavior of the decryption oracle. Let D̂ denote

the faulty version of the decrypt and verify algorithm D, i.e., D̂ omits the verifi-

cation and always returns the decryption for authentic as well as for unauthentic

ciphertexts. Thus, in the decryption-misuse setting, an adversary has to distinguish

(EK , D̂K) with K ← K from two independent random oracles ($E , $D). Note that

the equation |EK(H,M)| = |$E(H,M)| holds for header-message tuple (H,M) and

|D̂K(H,C, T )| = |$D(H,C, T )| holds for all header-ciphertext-tag tuples (H,C, T ).

Furthermore, we assume that an adversary never asks a query for which the cor-

responding answer is already known. Then, we define the IND-CCA advantage as

follows:

Definition 5.5 (IND-CCA Advantage). Let Π = (K, E ,D) be a determinisitc

AE scheme, and let the faulty decryption oracle D̂ be defined as above. Then, we

define the IND-CCA advantage of a nonce-respecting adversary A in breaking Π

with K ← K as

AdvIND-CCA
Π (A) =

∣∣∣Pr
[
AEK(·,·),D̂K(·,·,·) ⇒ 1

]
− Pr

[
A$E (·,·),$D(·,·,·) ⇒ 1

]∣∣∣

and

AdvIND-CCA
Π (q, ℓ, t) = max

A

{
AdvIND-CCA

Π (A)
}

as the maximum advantage over all nonce-respecting IND-CCA adversaries that run

in time at most t, ask a total maximum of q queries to the encryption and decryption

oracles, and whose total query length is at most ℓ blocks.

The following Lemma discloses the relation between the IND-CPA and the IND-CCA

security notions.
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Lemma 5.6 (IND-CCA =⇒ IND-CPA). Let Π = (K, E ,D) be a deterministic

AE scheme, and let A be an IND-CPA adversary that runs in time t, and makes

q queries with a total length of at most ℓ blocks. Then, there exists an IND-CCA

adversary A′ such that

AdvIND-CPA
Π (A) ≤ AdvIND-CCA

Π (A′).

Proof. The adversary A′ runs A and answers A’s queries to its encryption oracle.

Furthermore, A′ outputs whatever A outputs. �

Indistinguishability under On-Line Chosen-Ciphertext Attack (IND-OCCA). We

can adapt the IND-CCA notion by replacing the random oracle for decryption ($D)

by a random permutation-based oracle ÔP with P
$
← OPermn+

n . The construction

of this new oracle is quite similar to the construction of the OPerm-based encryp-

tion oracle OP from Section 5.1. Thus, ÔP processes a header-ciphertext-tag tuple

(H,C, T ) as follows: (1) It computes the plaintext M ← P(H,C) and if necessary,

replaces the final message block with random bits. (2) It appends random bits to

M if necessary, so that the equation |D̂K(H,C, T )| = |M | always holds, and finally,

outputs M .

Definition 5.7 (IND-OCCA Advantage). Let Π = (K, E ,D) be an OAE scheme.

Then, we define for P
$
← OPermn+

n the IND-OPRP advantage of a nonce-respecting

adversary A as

AdvIND-OCCA
Π (A) =

∣∣∣Pr
[
K ← K : AEK(·,·),D̂(·,·,·) ⇒ 1

]
− Pr

[
A$(·,·),ÔP(·,·,·) ⇒ 1

]∣∣∣ ,

and

AdvIND-OCCA
Π (q, ℓ, t) = max

A

{
AdvIND-OCCA

Π (A)
}

as the maximum advantage over all IND-OCCA adversaries that run in time at most

t, ask a total maximum of q queries to the encryption and decryption oracles, and

whose total query length is at most ℓ blocks.

Remark. In 2014, Andreeva et al. introduced the notion of integrity of unverified

plaintext release INT-RUP [6]. In their model, an adversary A has access to an AE
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scheme Π = (K, E ,D,V) with separate decryption and verification algorithms D and

V , respectively. A wins if it can forge. Furthermore, the authors also introduced the

notion of plaintext awareness PA, where an adversary has to distinguish between the

real and a simulated world, where the decryption oracle is replaced by a simulator S

that has no access to the secret key. In addition, Andreeva et al. propose two different

notion of plaintext awareness, named PA1 and PA2. Both differ in the fact that the

simulator has aceess to the query history of EK in the former notion. Note that PA2

security implies PA1 security since every PA2-simulator is also a PA1-simulator.

We want to emphasize that despite the close relations of our work to that by [6],

both are results of completely independent efforts. Analyzing the relations among our

and their notions and unifying them is still an open research topic.

5.3. Robustness

This section concludes this chapter by answering the question whether an authenti-

cated encryption scheme in this thesis is considered robust or not.

Deterministic Authenticated Encryption Schemes. It is not hard to tell if a de-

terministic AE scheme Π = (K, E ,D) is robust or not. It is robust iff it is CCA3-

secure in the nonce-respecting and nonce-misuse setting, and IND-CCA-secure in

the decryption-misuse setting. The following corollary upper bounds the Nonce- and

Decryption-Misuse Attack (NDMA) advantage of a nonce-ignoring adversary A. It

can be derived from Theorem 4.4, which tells us that IND-CPA plus INT-CTXT se-

curity implies CCA3 security, and Lemma 5.6, which states that IND-CCA security

implies IND-CPA security. Thus, NDMA security implies robustness.

Corollary 5.8 (NDMA Advantage). Let Π = (K, E ,D) be a deterministic AE

scheme. Let A be a nonce-ignoring NDMA adversary that runs in time t, and asks

at most q queries with a total length of at most ℓ blocks. Then, there exists a nonce-

ignoring IND-CCA adversary Ap and a nonce-ignoring INT-CTXT adversary Ac

such that

AdvNDMA
Π (A) ≤ AdvIND-CCA

Π (Ap) +AdvINT-CTXT
Π (Ac),

where both Ap and Ac run in time O(t) and make at most q queries with a total

length of at most ℓ blocks.

38



5.3. Robustness

On-Line Authenticated Encryption Schemes. We denote an OAE scheme Π =

(K, E ,D) robust iff it is (1) CCA3-secure in the nonce-respecting setting, (2) OCCA3-

secure in the nonce-misuse setting, and (3) IND-OCCA-secure in the decryption-

misuse setting. In the following we introduce the definition of an Indistinguishability

under On-Line Chosen-Ciphertext Attack 2 (IND-OCCA2) advantage, which is a

generalisation of the IND-OCCA advantage by replacing the nonce-respecting adver-

sary with a nonce-ignoring adversary. It is basically the same as the generalisation of

the IND-CPA advantage by introducing the IND-OPRP advantage. For the follow-

ing definition, we borrow the notion of the encryption oracle OP and the decryption

oracle D̂ from the Sections 5.1 and 5.2, respectively.

Definition 5.9 (IND-OCCA2 Advantage). Let Π = (K, E ,D) be an OAE

scheme. Then, we define for P
$
← OPermn+

n the IND-OCCA2 advantage of a

nonce-ignoring adversary A as

AdvIND-OCCA2
Π (A) =

∣∣∣Pr
[
K ← K : AEK(·,·),D̂(·,·,·) ⇒ 1

]
− Pr

[
AO

P (·,·),ÔP (·,·,·) ⇒ 1
]∣∣∣ ,

and

AdvIND-OCCA2
Π (q, ℓ, t) = max

A

{
AdvIND-OCCA2

Π (A)
}

as the maximum advantage over all IND-OCCA2 adversaries that run in time at

most t, ask a total maximum of q queries to the encryption and decryption oracles,

and whose total query length is at most ℓ blocks.

It is easy to see that IND-OCCA2 securtiy implies IND-OPRP security by using

similar arguments as in the proof of Lemma 5.6. Therefore, the notion of IND-OCCA2

covers nonce-misuse restricted to data privacy. Now, we put all bits and pieces of this

Chapter together and unite them to the following definition of the On-line Nonce-

and Decryption-Misuse Attack (ONDMA) advantage:

Definition 5.10 (ONDMA Advantage). Let Π = (K, E ,D) be an OAE scheme.

Then, we define the ONDMA advantage of a nonce-ignoring adversary A as

AdvONDMA
Π (A) = AdvIND-OCCA2

Π (A) +AdvINT-CTXT
Π (A),

and

AdvONDMA
Π (q, ℓ, t) = max

A

{
AdvONDMA

Π (A)
}
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as the maximum advantage over all ONDMA adversaries that run in time at most

t, ask a total maximum of q queries to the encryption and decryption oracles, and

whose total query length is at most ℓ blocks.

Note that any random OPerm which is only queried once cannot be distinguished

from a random function since it is impossible to exploit the common-prefix charac-

teristic of an on-line permutation. Thus, for any nonce-respecting adversary, it is

impossible to distinguish the IND-CPA from the IND-OPRP setting. This implies

that we can call an ONDMA-secure OAE scheme robust.
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6
Robustness of Authenticated Encryption Schemes

To invent, you need a good

imagination and a pile of junk.

Thomas A. Edison

6.1. Nonce-Misuse Resistance

In this section we analyze the nonce-misuse resistance of existing OAE schemes. Note

that none of them claims nonce-misuse resistance, and efficient misuse attack does

not automatically invalidate the security of those schemes. Nevertheless, ensuring

that an implemented authenticated encryption scheme is resistant against misuse

attacks is a difficult task for implementors, especially when the software is running

in environments like inside a virtual machine.

A summary of our analysis including a brief discussion is given at the end of this

chapter.

6.1.1. Generic Attacks

In the following we introduce two generic attack patterns on which the majority of

the nonce-misuse attacks are based on.

Repeated-Keystream Attack Pattern. Assume that the encryption routine E of

an on-line authenticated encryption scheme Π = (K, E ,D) generates a keystream

S = FK(N) of length |M |, i.e., |S| = |M |, depending on a secret key K and a nonce
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N . The ciphertext of a message M is typically computed by C = S ⊕M , where S is

generated by applying a block cipher in counter mode [30, 147, 164]. Assume that A

is a nonce-ignoring IND-OPRP adversary, with access to an encryption oracle, that

tries to distinguish real from random by comparing the difference of two single-block

messages with that of their ciphertexts. It easy to see that A’s advantage is almost

1− 2−n. A formal definition of A is given in Algorithm 4.

Algorithm 4 Repeated-Keystream Adversary

(C, T )← O(M,N) { first encryption query with (N,M)
$
← {0, 1}v × {0, 1}n) }

(C ′, T ′)← O(M ′, N) { second encryption query with (M ′
$
← {0, 1}n \M) }

return (M ⊕M ′ = C ⊕ C ′)

Linear-Tag Attack Pattern. Common stateful authenticated encryption schemes

such as Galois/Counter Mode (GCM) [164] or Counter with CBC-MAC (CCM) [85],

apply the Encrypt-then-Mac paradigm (cf. Section 4.2), i.e., they compute a tag T

by:

T = FK(N)⊕GK(M),

where N is the nonce, M is the plaintext, FK is a key-dependent function and GK

is a key-dependent permutation with C = GK(M). Suppose Π = (K, E ,D) is such a

stateful scheme. This enables an efficient nonce-ignoring adversary A to mount an

INT-CTXT attack with an advantage of 1 by solving a simple linear equation system.

A formal definition of A is given in Algorithm 5.

Algorithm 5 Linear-Tag Adversary

(C, T ) ← E(N,M) { first encryption query with (N,M)
$
← {0, 1}v × {0, 1}n) }

(C ′, T ′) ← E(N ′,M ′) { second encryption query with (N ′ 6= N) ∧ (M ′ 6= M) }

(C ′′, T ′′)← E(N,M ′) { third encryption query with T ′′ = FK(N)⊕GK(M ′) }

return D(N ′, C, T ⊕ T ′ ⊕ T ′′) { forgery since T ⊕ T ′ ⊕ T ′′ = FK(N ′)⊕GK(M) }

6.1.2. Misuse Attacks against Previously Published Authenticated

Encryption Schemes

CWC, GCM, CCM, EAX, and CHM. Usually, common two-pass OAE schemes,

Carter–Wegman Counter (CWC) [147], GCM [164], CCM [85], EAX [30], and CENC
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with Hash-based MAC (CHM) [124], use the Counter (CTR) mode as their un-

derlying encryption operation [30, 85, 124, 164]. These schemes are vulnerable to

repeated-keystream attacks. Four of them, CHM, CWC, GCM, and EAX, are de-

signed according to the Encrypt-then-Mac paradigm, and are thus vulnerable to the

linear-tag attacks. The designers of CCM follow the Mac-then-Encrypt approach,

which seems to defend against linear-tag attacks. Though, forgery attacks against

CCM were presented in [106].

RPC. Related Plaintext Chaining (RPC) [55] combines two coommen modes of

operations: CTR and Electronic Codebook (ECB). Given an n-bit block cipher E

under a key K and a v-bit nonce N , RPC takes an (n − v)-bit plaintext block Mi

and computes the ciphertext block

Ci ← EK(Mi || (N + i) mod 2v).

Authentication is performed locally for each ciphertext block: During decryption,

RPC computes (Mi || Xi) = E−1K (Ci) and accepts Mi as authentic iff

Xi = (N + i) mod 2v.

In the nonce-misuse setting, the same sequence of counter values is used for different

messages. This makes it easy to attack the privacy – especially when encrypting

messages of m ·(n−v)-bit blocks. Then, RPC degrades into m independent electronic

code books.

More precisely, any adversary that obtains two authentic m-block ciphertexts,

(C0
1 , . . . , C

0
m) and (C1

1 , . . . , C
1
m) with the same nonce N , can forge 2m new authentic

ciphertexs (C
σ(1)
1 , . . . , C

σ(m)
m ) with σ(i) ∈ {0, 1} since authenticity is verified locally

for each C
σ(i)
i .

CCFB. Similar to RPC, the Counter-CipherFeedback (CCFB) mode [156] is a com-

bination of CTR and Cipher Feedback (CFB) mode. Given an (n − a)-bit nonce N

and (n− a)-bit plaintext blocks M1 . . . ,Mm CCFB works as follows:

Initial Step: C0 ← N

Encryption: For i ∈ {1, . . . ,m}: (Zi || Ti)← EK(Ci−1 || i), Ci ←Mi ⊕ Zi

Authentication: (∗, Tm+1)← EK(Cm || m+ 2), T ←
m+1⊕
1

Ti
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Note that the first ciphertext block C1 is essentially the plain encryption of M1 in

CTR Mode. Thus, a variant of the repeated-keystream attack (cf. Algorithm 4) is

also applicable to CCFB. Moreover, the following variant of the linear-tag attack

pattern (cf. Algorithm 5) applies to CCFB:

1. Encrypt the plaintext M1 under N to (C1,T ).

2. Encrypt the plaintext M ′1 6= M1 under N ′ 6= N to (C ′1, T
′).

3. Set M ′′1 ←M ′1⊕C
′
1⊕C1. Encrypt M

′′
1 under N ′ to (C ′′1 , T

′′). Observe C ′′1 = C1.

4. The triple (N,C ′1, T ⊕ T ′ ⊕ T ′′) is a valid forgery.

IAPM, OCB1–3, and TAE. Given a nonce N and a secret key K, Integrity Aware

Parallelizable Mode (IAPM) [130] encrypts a message M = (M1, . . . ,Mm) to a ci-

phertext C = (C1, . . . Cm) and an authentication tag T as follows.

Initial Step: Generate m+ 2 pseudorandom values s0, s1, . . . , sm+1 depending on N

and K, but not on the message M .

Encryption: For i ∈ {1, . . . ,m} : Ci ← EK(Mi ⊕ si)⊕ si.

Authentication: T ← EK(sm+1 ⊕ M̂)⊕ s0 with M̂ =
m⊕
i=1

Mi.

When encrypting messages of m blocks, IAPM behaves like a set of m independent

instances of the common ECB mode. Hence, IAPM is vulnerable to the same forgery

attack as the one that applies to RPC. An adversary who can encrypt two messages

M and M ′ under the same nonce only has to take care that they produce the same

checksum M̂ = M̂ ′ to create a valid forgery since than we have

T = EK(sm+1 ⊕ M̂)⊕ s0 = EK(sm+1 ⊕ M̂ ′)⊕ s0.

All three versions of the Offset Codebook (OCB) mode family (i.e., OCB1 [208],

OCB2 [205], and OCB3 [148]) and Tweakable Authenticated Encryption (TAE) [153]

work similar to IAPM, and thus the same attack also applies to them.

IACBC. Given a nonce N and a secret key K, Integrity Aware Cipher Block

Chaining Mode (IACBC) [130] encrypts the message M = (M0, . . . ,Mm) to C =

(C1, . . . , Cm) and an authentication tag T as follows:
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Initial Step: Generate m+1 values s0, s1, . . . sm depending on N and K, but not on

the Message M and compute C0 ← x0 ← EK(N).

Encryption: For i ∈ {1, . . . ,m}: xi ← EK(Mi ⊕ xi−1), Ci ← xi ⊕ si.

Authentication: T ← EK(xm ⊕ M̂)⊕ s0 with M̂ =
m⊕
i=1

Mi.

The following attack distinguishes IACBC from a random on-line permutation and

also provides an existential forgery.

1. Encrypt M1 under the nonce 0 to (C0, C1, T ).

2. Encrypt the nonce 0 under M = (C0, C0, C0, C0) to (C ′, T ′).

3. Set C ′′ = (C0, C
′
1, C

′
2, T

′)

Note that (C ′′, T ) is a valid encryption of M = (C0, C0) since it holds that

C0 ⊕ C0 = C0 ⊕ C0 ⊕ C0 ⊕ C0.

XCBC-XOR. Given a nonce N and secret keys K and K ′, eXtended Ciphertext

Block Chaining with XOR (XCBC-XOR) [113] encrypts a messageM = (M1, . . . ,Mm)

to a ciphertext C = (C1, . . . , Cm) and an authentication tag T as follows:

Initial Step: Generate m + 1 values s0, . . . , sm depending on N and K ′, but not on

the plaintext (M1, . . . ,Mm).

Encryption:

1. C0 ← EK(N); x0 ← EK′(N);

2. For i ∈ {1, . . . ,m}: xi ← EK(Mi ⊕ xi−1), Ci ← (xi + si) mod 2n.

Authentication: T ← EK(M̂ ⊕ xm) + s0 (mod 2n) with M̂ = x0 ·
m⊕
i=1

Mi.

The following attack provides an existential forgery:

1. Encrypt the message (0n, 0n, 0n) under the nonce N to (C0, C1, C2, C3, T ).

2. Then, (C0, C1, C2, T
′ = C3) is a valid forgery.

The best IND-PRP attack we found for XCBC-XOR has a workload of O(2n/4)

instead of O(1). Note that for this reuse-nonce chosen-plaintext attack, we ignore

the authentication tag.
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1. Generate 2n/4 encryptions of messages Mα
1 under the same nonce N to C1. Let

denote Cα
1 the encryption of the α-th message Mα

1 with α = 1, . . . , n/4.

Statistically, we can expect one pair (M i
1,M

j
1 ) with i 6= j such that the least

significant n/2 bits of Ci
1 and Cj

1 are equal.

2. Generate 2n/4 encryptions of messages (M i
1,M

α
2 ) and (M j

1 ,M
α
2 ) underN , where

the n/2 least significant bits of all message blocks Mα
2 are equal.

Statistically, we can expect one pair (Mk
2 ,M

ℓ
2) with k 6= ℓ such that Ck

2 = Cℓ
2

holds.

3. Choose an arbitrary M3. Encrypt (M i
1,M

k
2 ,M3) and (M j

1 ,M
ℓ
2 ,M3) under N

to (Ci
1, C

k
2 , C

i,k
3 ) and (Cj

1 , C
ℓ
2, C

j,ℓ
3 ).

Observe Ci,k
3 = Cj,ℓ

3 .

6.2. Decryption-Misuse Resistance

In this section we analyze the decryption-misuse resistance of previously published

authenticated encryption schemes. Similar to the nonce-misuse setting, none of them

claims decryption-misuse resistance. Hence, our presented attacks do not invalidate

their claimed security.

BTM, CCM, CHM, CWC, EAX, GCM, HBS, and SIV These schemes use the

CTR mode as their underlying encryption operation. Thus, they are vulnerable to

decryption-misuse attacks. Assume (C, T ) is the encryption of M . Then, we can

determine the would-be plaintext M ′ of the unauthentic tuple (C ′, T ) since – for the

same counter value – it must hold that C ⊕ C ′ = M ⊕M ′. This observation can be

exploited by an efficient IND-CCA adversary.

IAPM, OCB1–3, RPC, and TAE. These OAE schemes behave like the ECB mode

and are therefore vulnerable in the decryption-misuse setting. Assume two unauthen-

tic ciphertexts that only differ in the i-th block. The decryptions of those produce

two messages that also differ only in the i-th block. Thus, these schemes are not

IND-CCA-secure.
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6.2. Decryption-Misuse Resistance

CCFB. This mode generates a keystream based on the previous ciphertext block

and a counter:

Ci = EK(Ci−1 || i)⊕Mi.

Thus, it must hold that Ci⊕C ′i = Mi⊕M ′i for Ci−1 = C ′i−1. This observation can

be exploited by an IND-CCA adversary.

IACBC and XCBC-XOR. Both schemes are based on the concept of the Cipher

Block Chaining (CBC) mode, i.e., the i-th message block Mi depends only on the

ciphertext blocks Ci−1 and Ci. Therefore, the decryption of the two nonce-ciphertext-

tag triples (N,C1 || C2 || C3, T ) and (N,C ′1 || C2 || C3, T ) with C1 6= C ′1 produces

two messages that share the same final message block. In general, schemes based on

the CBC approach are not IND-CCA secure in the decryption-misuse setting.

COPA. In 2013, Andreeva et al. introduced COPA [7], a nonce-misuse resistant

and parallelizable OAE scheme inspired by McOE (cf. Chapter 8). It combines

the XOR-Encrypt-XOR (XEX) encryption with the Encrypt-Mix-Encrypt (EME)

approach. Therefore, two block-cipher calls are needed to process a single message

block.

Initial Step: Y0 ← EK(N), L← EK(0),∆0 = 3L, and ∆1 = 2L.

Encryption: For i ∈ {1, . . . ,m}: Xi ← EK(Mi ⊕ 2i−1∆0), Yi ← Xi ⊕ Yi−1,

Ci ← EK(Yi)⊕ 2i−1∆1.

Tag Generation: Xm+1 ← EK(M̂ ⊕ 2m−132L), Ym+1 ← Xm+1 ⊕ Ym with M̂ =
m⊕
i=1

Mi, and

T ← EK(Ym+1)⊕ 2m−17L.

Let Ma 6= Mb be two distinct message blocks. Then, we define Ya = EK(Ma⊕∆0)⊕

L⊕ Y0 and Yb = EK(Mb ⊕∆0)⊕ L⊕ Y0.

1. Encrypt (N,Ma,Mc) to (Ca, C(a,c)) with

Xc = EK(Mc ⊕ 2∆0),

Y(a,c) = Ya ⊕Xc, and

C(a,c) = EK(Y(a,c))⊕ 2∆1.
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2. Encrypt (N,Mb,Mc) to (Cb, C(b,c)) with

Xc = EK(Mc ⊕ 2∆0),

Y(b,c) = Yb ⊕Xc, and

C(b,c) = EK(Y(b,c))⊕ 2∆1.

3. Decrypt (Ca, C(b,c)) to (Ma,M(a,bc)). It applies that

Y(b,c) = E−1K (C(b,c) ⊕ 2∆1), and

X(a,bc) = Y(b,c) ⊕ Ya = Yb ⊕Xc ⊕ Ya.

4. Decrypt (Cb, C(a,c)) to (Mb,M(b,ac)). It applies that

Y(a,c) = E−1K (C(a,c) ⊕ 2∆1), and

X(b,ac) = Y(a,c) ⊕ Yb = Ya ⊕Xc ⊕ Yb = X(a,bc).

From X(a,bc) = X(b,ac) follows that M(a,bc) = M(b,ac). This observation can be used

to distinguish COPA from a random OPERM with probability 1− 2−n.

In the following we extend the IND-OPRP attack on COPA into an INT-CTXT

attack. The first three queries of this attack are identical to those in the IND-OPRP

attack. With their help, we can form a collision in the chaining values for two

messages (Ma,M(a,bc)) and (Mb,M(a,bc)) since it must hold that X(a,bc) = X(b,ac).

Thus, we can apply a common length-extension attack to create an existential forgery:

4. Encrypt (Ma,M(a,bc),Md) to (Ca, C(a,bc), Cd, T ), where T is the authentication

tag.

5. Then, craft the existential forgery (Ca, C(b,ac), Cd, T ).

6.3. Results Summary

As it turned out, we actually found nonce and decryption-misuse attacks for all

previously published OAE schemes. Table 6.1 summarizes our results. For over a

decade, it has been common knowledge how to design a secure, an efficient, and

stateless MAC [17, 125]. Therefore, it is surprising that none of the analyzed on-

line schemes provide integrity protection. Only CCM offers some weak integrity

protection against nonce-ignoring adversaries, but it does not provide any privacy

protection.
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Outlook. In the following we present two novel families of OAE scheme: COFFE

and McOE. Their designs were inspired by the results of our robustness studies

that we summarized in this chapter. The former scheme is the first OAE scheme

based on a hash function. It suits very well for resource-restricted devices and offers

INT-CTXT security even in the nonce-misuse scenario. McOE is the first published

robust OAE scheme.
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Scheme Nonce Misuse Decryption Misuse

privacy integrity

on-line

CCFB [156] O(1) O(1) O(1)

CHM [124] O(1) O(1) O(1)

COPA [7] N/A N/A O(1)

CWC [147] O(1) O(1) O(1)

EAX [30] O(1) O(1) O(1)

GCM [164] O(1) O(1) O(1)

IACBC [130] O(1) O(1) O(1)

IAPM [130] O(1) O(1) O(1)

OCB1 [208] O(1) O(1) O(1)

OCB2 [205] O(1) O(1) O(1)

OCB3 [148] O(1) O(1) O(1)

RPC [55] O(1) O(1) O(1)

TAE [153] O(1) O(1) O(1)

XCBC-XOR [113] O(2n/4) O(1) O(1)

off-line

BTM [126] N/A N/A O(1)

CCM [85] O(1) ≪ 2(n/2) [106] O(1)

HBS [127] N/A N/A O(1)

SIV [209] N/A N/A O(1)

Table 6.1.: Workloads of our robustness studies on previously published authenticated

encryption schemes. Almost all attacks achieve an advantage close to 1.

The workloads cover the computational effort, the amount of required

memory, as well as the time complexity. Note that we classify CCM as

off-line because the message-encryption process requires prior knowledge

of the message length.
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7
COFFE: Ciphertext Output Feedback Faithful Encryption

Insight is the first condition of Art.

George Henry Lewes

In this Chapter we aim to provide authenticated encryption in constrained imple-

mentation environments where communication security is required, such as devices

connected to the Internet of Things (IoT). Designing a sound authenticated en-

cryption scheme is in fact challenging, but designing sound authenticated encryption

scheme for constraint environments is a science of its own. Typically, restricted IoT

devices have (very) limited computational power and no direct hardware support

for any cryptographic primitives, so that all cryptography must be implemented in

software. There is only limited memory available to hold executable object code on

these processors, so it is imperative to provide the needed cryptographic services in

the most compact way possible. One way to achieve this compactness is through

the careful implementation of cryptographic primitives. However, it is also possible

to facilitate compactness for an overall system by minimizing the number of primi-

tives that must be included in an implementation. In this work we present a design

for an on-line authenticated encryption (AE) scheme suitable for restricted devices

using a standardized or soon-to-be standardized hash function, e.g., SHA-1 [183],

SHA-2 [184], or SHA-3 [34]. Implementations of this scheme can omit a block cipher

mode of operation; this is a useful approach since the code size for the block cipher

is typically greater than that of the hash function, and hash functions are used in

public key cryptography as well.

We focus on the challenge of providing an authenticated encryption scheme that
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7. COFFE: Ciphertext Output Feedback Faithful Encryption

is easily accessible to developers. To provide this accessibility, we take the approach

of defining a hash function mode of operation. That is, our AE scheme uses a

cryptographic hash function as its only primitive, and does not require direct access to

any hash function internals such as the compression function. We chose this approach

based on feedback from the practice community. Hash function implementations

are widely available, but these implementations do not provide interfaces to the

compression function.

Note that to provide data privacy and data integrity, we transform the given hash

function into a keyed hash function (PRF. On systems using restricted devices, due to

the limited resources, it is desirable to minimize the cost of the code and the circuits

for encrypting a message block [11], i.e., keep the size of the cryptographic footprint

small. This means that we want only one costly operation per message block. We

denote a scheme satisfying this property as a Rate-1 scheme. For example, the GCM

authenticated encryption mode is not a Rate-1 AE scheme, since it needs not only one

block cipher call per message block, but also an additional galois field multiplication

per message block, rendering GCM to be a Rate-2 AE scheme. Another example

would be a Feistel-based scheme which requires at least three or four block cipher

calls rendering such a scheme to a low-performance Rate-3 or Rate-4 scheme.

Since the implementation of an encryption scheme can be error prone (e.g., [51, 122,

146, 214, 239] it would be desirable to provide a second line of defense to minimize the

security fallout. A further preferable goal for our construction is to provide built-in

resistance against side-channel attacks. Actually, the overlaying protocols, using an

AE scheme, are responsible to provide this goal in an adequate form, e.g., TLS [78]

and IPsec [120, 137] generate a new key for each session minimizing the number

of measurements which can be done on the secret key. Obviously, an adversary

can do a certain amount of measurements (depending on the size of the message)

on the session key, but revealing the session key only compromises security for this

specific encryption/decryption/authentication. Note that it does not compromise the

currently used secret key. But, nevertheless, we provide side-channel resistance even

if a protocol may fail to provide this kind of security.

We started our research by analyzing existing authenticated encryption schemes,

where the block cipher within these schemes can be easily replaced by a keyed hash

function. Unfortunately, none of those fulfill our requirements (see Table 7.1). As one

can see, SpongeWrap [38] seems to be a very promising candidate, since it only lacks

of built-in side-channel resistance. But, it belongs to the class of compression func-

tion based AE schemes, which yields to the fact that the internal used compression

function can be seen as the real primitive to be used both for hashing and for authenti-

54



7.1. Specification

Scheme On-line Side-Channel Res. Rate-1

COFFE (this work) X X X

CHM [124] X X X

CWC [147] X X X

EAX [30] X X X

GCM [164] X X X

Generic Composition [22] X X X

HBS [127] X X X

SIV [209] X X X

Table 7.1.: Comparison of selected authenticated encryption schemes that can be

instantiated with a hash function.

cated encryption. This is basically not a technical problem, but, while cryptographers

know what is meant by the internal compression function, typical standards, such as

the SHA-2 standard [184], do not formally define it. So, without an explicit specifi-

cation of a “new” cryptographic primitive, engineers (non-cryptographers) would not

be likely to properly implement the authenticated encryption scheme. Also, while

on many constrained devices “jumping” to the address of the internal compression

function may be easy, this may be not the case for all such devices. In fact, we did

consider this approach at the beginning of our research. It would even allow us to

design a more efficient AE scheme than the one we actually propose. But, due to

the reasons discussed here, we made a decision against a purely compression function

based AE scheme in favour of a hash function based AE scheme.

Outlook. In Section 7.1 we give a formal specification of Ciphertext Output Feed-

back Faithful Encryption (COFFE). In Section 7.2 we introduce a practical instan-

tiation based on SHA-224. In Section 7.3 we show that COFFE is secure in the

standard PRF model and in addition, it provides INT-CTXT security in the nonce-

misuse setting. Finally, Section 7.4 summarize our contribution.

7.1. Specification

Ciphertext Output Feedback Faithful Encryption (COFFE) is inspired by the CFB

and Output Feedback (OFB) modes of operation [84]. It uses the chaining value Vi
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Figure 7.1.: Illustration of the encryption and authentication process of COFFE,

where C0 denotes the first α/4 post-decimal hex digits of the number π.

and the previous ciphertext block Ci−1 as inputs for the computation of the subse-

quent ciphertext block Ci (see Figure 7.1). The integrity of the ciphertext does not

depend on the uniqueness of a nonce, but only on the security of the underlying n-bit

hash function H. The definition of COFFE is given in Algorithm 6; both functions

Encrypt and Decrypt consist of the following four steps:

Step 1: Session Key Generation. COFFE is following the domain separation ap-

proach. Domain 0 is used to generate the session key S (short-term key) which is

derived from the secret key K (long-term key) and the nonce N as shown in Lines 10

and 20 of Algorithm 6. Note that the lengths of the key |K| and nonce |N | are

encoded as single- or two-byte values. The actual encoding depends on the size of

the key. Nevertheless, the domain always describes the least significant byte of the

input. For practical applications, we recommend to use a key size of n bits, where

n denots the output size of the underlying hash function H. The session-key gener-

ation provides a built-in side-channel resistance since hash function do not have key

schedules. Thus, COFFE can update K for every new message without additional

performance costs.

The term ’0∗’ – which is used in each call to the hash function H – denotes a

zero-padding, where the number of zeros depends on (1) the input size of the under-

lying compression function and (2) the internal message padding. Thus, it is always

chosen such that one needs only one compression function call for one hash function

invocation, which complies with our Rate-1 design goal. Therefore, we consider a
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Algorithm 6 COFFE

Encrypt(N , H, M)

10: S ← H(K || N || 0∗ || |K| || |N | || 0)

11: (x, V0)← ProcessHeader(H)

12: (C, Vm)← ProcessMessage(S, V0,M, x)

13: T ← H(S ⊕ Vm || Cm || 0
∗ || LT || |Mm|+ 5)

14: return (C, T )

Decrypt(N , H, C, T )

20: S ← H(K || N || 0∗ || |K| || |N | || 0)

21: (x, V0)← ProcessHeader(H)

22: (M,Vm)← ProcessCiphertext(S, V0, C, x)

23: T ′ ← H(S ⊕ Vm || Cm || 0
∗ || LT || |Cm|+ 5)

24: if T 6= T ′ then

25: M ← ⊥

26: end if

27: return M

constant σ-bit input for H, producing an n-bit output with σ ≥ n.

Step 2: Header Processing. In this step we describe the processing of the asso-

ciated data H, which can be of arbitrary length. For the sake of optimization, we

invoke the hash function H only if indispensable, i.e., when the header is larger than

the output length of H. This allows us to process messages with a small header, e.g.,

IP packets, much faster by simply applying the 10∗-padding. The domain x indicates

the length of the original header before the processing. A formal description of our

length-dependent header processing is given next:

(x, V0)← G(H) :=





1, H || 10∗ if |H| < n,

2, H if |H| = n,

3,H(H) else.

The goal of G is to achieve pair-wise distinct tuples (x, V0) for pair-wise distinct values

H and H ′. Under the assumption that there is no collision for the hash function G,

we have

H 6= H ′ =⇒ (x, V0) = G(H) 6= G(H ′) = (x′, V0
′),

not necessarily meaning that x 6= x′.
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Algorithm 7 ProcessMessage/ProcessCiphertext

ProcessMessage(S, V0,M, x)

10: C0 ← ToHex(π)

11: V1 ← H(S ⊕ V0 || C0 || 0
∗ || x)

12: C1 ←M1 ⊕ V1

13: for i = 2, . . . ,m do

14: Vi ← H(S ⊕ Vi−1 || Ci−1 || 0
∗ || 4)

15: Ci ←Mi ⊕ Vi

16: end for

17: return C

ProcessCiphertext(S, V0, C, x)

20: C0 ← ToHex(π)

21: V1 ← H(S ⊕ V0 || C0 || 0
∗ || x)

22: C1 ← C1 ⊕ V1

23: for i = 2, . . . ,m do

24: Vi ← H(S ⊕ Vi−1 || Ci−1 || 0
∗ || 4)

25: Mi ← Ci ⊕ Vi

26: end for

27: return M

Step 3: Plaintext/Ciphertext Processing. COFFE is generating a keystream for

either encryption or decryption. Since our scheme is designed to comply with the

requirements of the use of standardized building blocks, it works with hash functions

like SHA-1 and SHA-2. Thus, the input of the compression function is usually limited

to less than 2n bits, due to the message padding. Note that the n-bit session key S

and the domain separation value are mandatory inputs and hence, we have only less

then n bits remaining for the message input. To provide adequate security against

forgery attacks, we need to additionally process two out of three of the following

values: keystream block Vi−1, message block Mi−1, and ciphertext block Ci−1. More

precisely, if we only use Vi−1 in the next iteration step, the tag would become message-

independent, i.e., the tag would not provide any integrity at all. Furthermore, if we

use only Ci−1 or Mi−1, omitting Vi−1, the tag value would only depend on the last

ciphertext or plaintext block, respectively. We decided to use the inputs to H in the

following manner:

• n-bit value S ⊕ Vi−1

• δ-bit domain-separation value

• (α < n− δ)-bit ciphertext block Ci−1.

Our approach puts the hash function under a lot of stress since it violates the PRF-

independency assumption. Thus, we require H to be indistinguishable from a PRF

in the related-key model. More precisely, an adversary has partial control over the

key-input to H, resulting in a chance to produce a collision S ⊕ Vi−1 = S′ ⊕ Vj−1

for two distinct keys S 6= S′. Our security analysis in Section 7.3 shows that our

approach still satisfies the birthday-bound security.
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Let M = M1, . . . ,Mm denote the message, where m =
⌈
|M |/α

⌉
is the number of

message blocks processed. Here, all but the last blocks of M and C are of size α

bits. The final blocks of M and C consist of at most α bit. Then, the encryption

and decryption process of COFFE is defined in Algorithm 7, where ToHex(π) (see

Lines 10 and 20) outputs the first α/4 post-decimal numbers of π interpreted as hex

values (C0 = 0x1415926 . . .).

Step 4: Tag Generation. In the final step we derive the authentication tag from

the final chaining value Vm and the final ciphertext block Cm as shown in Lines 13

and 23 of Algorithm 6. Note that the length of the tag is constrained by the output

size of H, e.g., at most n bits. The last domain allows a user to authenticate the

header without any message to encrypt. Thus, |Mm| can become zero, but for H,

|Mm|+ 5 is always in the range [5, . . . , n+ 5].

7.2. COFFE-SHA-224 – A Practical Instantiation

In this section we discuss a practical instantiation of COFFE using SHA-224 as the

underlying hash function – called COFFE-SHA-224. First, we justify our usage of

SHA-224 over SHA-256.

Hash Function Choice. For the practical instantiation of COFFE, we searched

for a standardized hash function which is suitable for restricted devices, where the

usual size of a register is at most 32 bits. Thus, we made our choice in favour of

a 32-bit-optimized hash function, which renders SHA-224 and SHA-256 reasonable

candidates. Both SHA-224 and SHA-256 share the same compression function f :

{0, 1}256×{0, 1}512 → {0, 1}256. It compresses a 256-bit chaining value and a 512-bit

message block into a 256-bit output value. These two hash-function standards differ

in two properties: 1) they use different initial values, and 2) SHA-224 truncates

the output of the final compression function invocation while SHA-256 does not.

Following the Merkle-Damg̊ard paradigm [72, 171], SHA-224 and SHA-256 apply the

secure 10∗-padding followed by a 64-bit value encoding the message length. Thus,

the maximum possible input size to fit our requirements would be 512−1−64 = 447

bits. Due to the sake of simplification, we consider only byte-aligned values and we

assume all values to be encoded as octet-strings. Thus, we can only process message

blocks with a size up to only 440 bits, i.e., 55 bytes. Using SHA-256 implies a 256-bit

chaining value and thus, only 184 bits were left for the remaining input, including

the domain separation byte and the previous ciphertext block. Furthermore, the tag
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generation step requires two additional input bytes – the length of the last message

block β and the tag length |T |. Hence, we can process 160-bit message blocks. Since

the size of the hash value of SHA-224 is reduced by 32 bits in comparison to the usage

of SHA-256, we can process message blocks of 192 bits, which leads to an estimated

performance speedup of about 20% in comparison to SHA-256. Furthermore, the

224-bit session key used in SHA-224 is sufficient to make practical attacks infeasible.

This makes SHA-224 a logical choice for COFFE.

Parameter Choice. Here, we introduce a sound parameter choice for COFFE-SHA-

224 depending on the used hash function SHA-224. The first step is to replace the

function H from Algorithm 6 by SHA-224. This obviously leads to a size of 224 bits

for the chaining values Vi. Based on our discussion above, we can process message

blocks of up to 192 bits, i.e., we need only one byte to encode the domain specifier

for the tag generation (|Mm|+ 5 < 256). On one hand, the internal state of COFFE

is larger than those of other common published authenticated encryption schemes

like GCM, OCB, or EAX, which usually support a block size of 128 bits. On the

other hand, COFFE employs a slightly worse ratio between the block size and the

size of the internal state. Nevertheless, due to the larger block size, the performance

of COFFE is still reasonable, i.e., approximately 85% of SHA-224. To ensure an

adequate security, we set the default parameter of the size of the secret key to 224

bits. Therefore, we have up to 192 bits left for the nonce.

7.3. Security

This section describes the CCA3 security (cf. Definition 4.1) of COFFE considered

under the reasonable assumption that the size of the secret key K can be larger or

equal to the size of the session key S, i.e., |K| ≥ |S|. Therefore, at first we show

the IND-CPA security of COFFE when considering a nonce-respecting adversary

(cf. Definition 4.2), and then, we proof the INT-CTXT-security of COFFE against

generalize the adversary by allowing it to reuse a nonce (cf. Definition 4.3).

Note that the length of the secret keyK can differ from the length of the session key

S. If this is the case, we can partitionH into two keyed hashfunctions: H1 : {0, 1}
|K|×

{0, 1}∗ → {0, 1}n for the generation of the session key and H2 : {0, 1}
|S| × {0, 1}∗ →

{0, 1}n for the processing of the message and the generation of the authentication tag.

Due to the domain separation, the partitioning of H is still valid if |K| = |S|, i.e.,

the domain of the session key generation is always 0 and the domain of the message
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processing is always 4. In this section, for simplification, we define

AdvPRF
H∗

(q + ℓ, O(t)) = max
{
AdvPRF

H1
(q,O(t)),AdvPRF-RKA

H2
(q + ℓ, O(t))

}
.

Theorem 7.1 (CCA3 Security of COFFE). Suppose Π = (K, E ,D) is the

COFFE scheme as defined in Algorithm 6, i.e., K is the key derivation function,

E = EncryptAndAuthenticate and D = DecryptAndVerify. Then,

AdvCCA3
Π (q, ℓ, t) ≤

5ℓ2 + 3q2

2n
+ 2 ·AdvPRF

H∗
(q + ℓ, O(t))

+
2ℓ2 + 3q2

2n
+

q

2|T |
+ 2 ·AdvPRF

H∗
(q + ℓ, O(t))

≤
7ℓ2 + 6q2

2n
+

q

2|T |
+ 4 ·AdvPRF

H∗
(q + ℓ, O(t)).

Proof. The proof follows from Lemma 7.2 and Lemma 7.3. �

Lemma 7.2 (IND-CPA-security of COFFE). Let Π = (K, E ,D) denote the

COFFE scheme as defined in Algorithm 6. Then,

AdvIND-CPA
Π (q + ℓ, t) ≤

(ℓ+ q)2 + 2ℓ2 + 2q2

2n
+ 2 ·AdvPRF

H∗
(q + ℓ, O(t))

≤
5ℓ2 + 3q2

2n
+ 2 · 2 ·AdvPRF

H∗
(q + ℓ, O(t))

Proof. This proof is using common game-playing arguments. At first, we replace

the function H1 by a random n-bit function. The advantage therefore can be upper

bounded by

AdvPRF
H1

(q,O(t)).

Furthermore, we can also replace the functionH2 by a random n-bit function since the

adversary has partial control over the key S⊕Vi. The advantage of this can be upper

bounded by the PRF-RKA Advantage which is defined similar to the PRP-RKA

Advantage (see Definition 3.3). Thus, we have

AdvPRF-RKA
H2

(q + ℓ, O(t)).
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7. COFFE: Ciphertext Output Feedback Faithful Encryption

In the following we always consider the full output length n of the tag generation

step, i.e., even if |T | is smaller than n, we skip the truncation step for the proof.

This is valid since showing IND-CPA security for the tag generation step without

truncation implies IND-CPA security for the tag generation with truncation. From

each adversary A with an advantage of ǫ attacking the truncated version we can

construct an adversary A′ with the same advantage ǫ attacking the untruncated

version. The algorithm A′ is a simulator that forwards all queries from A to the

encryption oracle, truncates the tag output of the oracle responses before forwarding

them to A, and returns the same result as A.

In the following we denote V j
i as the i-th keystream block of the j-th query and

mj as the length of the j-th message in blocks. Let Q be the query history of the

adversary, where the subset Q|Vi,T consists of all the output values of H2, i.e., all

chaining values V j
i and authentication tags T j with i = 1, . . . ,mj and j = 1, . . . , q.

We can say that COFFE is IND-CPA-secure if the produced keystream and the tag

values within the query history are indistinguishable from a sequence of distinct n-bit

random values, where the length of this sequence is limited to ℓ+ q. It is easy to see

that the probability of a collision between two values can be upper bounded by

(ℓ+ q)2

2n
.

To complete our proof, we have to estimate the probability Pr[Dist] that all values

within the listQ|Vi,T are distinct. Therefore, we upper bound the probability Pr[Coll]

for a collision of at least two of the values within this list since

Pr [Dist] = 1− Pr [Coll] .

To upper bound Pr[Coll], we first consider the input parameter of H2 represented

by the quadruple zji = (Sj , V j
i , C

j
i , d

j
i ) where the domain dji is either 4 or |Mm| + 5.

Note that we ignore the 0∗-padding which leads to a higher success probability for

an adversary. Let (i, j) and (i′, j′) be two distinct input tuples. In the following, we

refer to the event zji = zj
′

i′ as input collision. This event implies that either a collision

for H2 occured or we have found a collision for the values Sj ⊕ T j
i = Sj′ ⊕ T j′

i′ .

For our case analysis (cf. Table 7.2), we encode the difference between two input

tuples zji and zj
′

i′ using a five-bit value. For example, the value “10110” defines the

62



7.3. Security

Case Event Case Event Case Event Case Event

00000 trivial 01000 – 10000 1 11000 2,4

00001 3 01001 – 10001 1 11001 3

00010 3 01010 – 10010 1 11010 3

00011 3 01011 – 10011 1 11011 3

00100 – 01100 3 10100 3 11100 1,3

00101 – 01101 3 10101 3 11101 3

00110 – 01110 3 10110 3 11110 3

00111 – 01111 3 10111 3 11111 3

Table 7.2.: This table illustrates the case analysis for the proof of Lemma 7.2, where each

case with a non-zero probability is covered by at least one event. The case“11000”

is covered by two events depending on the considered domains (Event 2 covers

the domain 1,2, and 3; Event 4 covers all other domains). The second special

case “11100” is covered by Event 1 if Sj = Sj′ and by Event 3 if Sj 6= Sj′ .

following case:

10110 :=





j 6= j′

V j
i = V j′

i′

Sj ⊕ V j
i 6= Sj′ ⊕ V j′

i′

Cj
i 6= Cj′

i′

dji = dj
′

i′ .

Note that Table 7.2 contains a complete case analysis since all possible cases are cov-

ered. The cases which occur with a zero probability are obviously impossible and

marked by ’–’. The reason for the occurrence of these cases is a violation of the

XOR-relation between the values Sj and V j
i or Sj′ and V j′

i′ , respectively. For exam-

ple, (Sj = Sj′ ∧V j
i = V j′

i′ )∧(S
j⊕V j

i 6= Sj′⊕V j′

i′ ) is an impossible case. Case “00000”

implies that a collision must have happened before in the same query and is already

covered by other cases. In the following we analyze four events which cover all cases

with a non-zero probability from Table 7.2.

After asking at most q queries, we check the query history Q of the adversary –

which contains all queries and their results – for the occurrence of bad events. We

let the adversary win immediately if one of the bad events becomes true. Let denote

Aα the α-th event. The occurrence of an event Aα implies that no event Aβ with

β ∈ {1, . . . , α− 1} occurred before. Hence, the order of the events matters.
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7. COFFE: Ciphertext Output Feedback Faithful Encryption

Event 1: Collision of two Session Keys. The first case describes the scenario

where an adversary finds two values Sj and Sj′ , generated using H1, with j 6= j′ and

Sj = Sj′ . The probability for this event can be upper bounded by

q2/2n.

Event 2: Input Collision – Associated Data. In this case we consider an adversary

which finds two colliding pairs (V j
0 ⊕ Sj , xj) and (V j′

0 ⊕ Sj′ , xj
′
) with j 6= j′. A pair

collides if it holds that (V j
0 ⊕ Sj = V j′

0 ⊕ Sj′) ∧ (xj = xj
′
). The occurence of this

event leads to two colliding inputs for H2 in the first iteration. Observe that if no

collision occurs, all V j
i are independent random values. The probability for this case

can be upper bounded by
q2

2n
.

Event 3: Output Collision. For this case we consider an adversary which finds two

values V j
i = V j′

i′ with (i, j) 6= (i′, j′). The probability for this event can be upper

bounded by

ℓ2/2n.

Event 4: Input Collision – Message and Tag. Here, we consider an adversary

which finds two tuples (V j
i , S

j) and (V j′

i′ , S
j′) with V j

i ⊕ Sj = V j′

i′ ⊕ Sj′ . This leads

to two colliding inputs for H2. Note that we assume that the adversary did not find

an output collision before. The probability for this event can be upper bounded by

ℓ2/2n.

Our claim follows by adding up the individual bounds. �

Lemma 7.3 (INT-CTXT Security of COFFE). Let Π = (K, E ,D) be the

COFFE scheme as defined in Algorithm 6. We assume the adversary to be nonce-

ignoring, i.e., it is able to choose two nonces N j = N j′ with j 6= j′. Then,

AdvINT-CTXT
Π (q, ℓ, t) ≤

2ℓ2 + 3q2

2n
+

q

2|T |
+ 2 ·AdvPRF

H∗
(q + ℓ, O(t)).

Proof. Our bound is derived by game-playing arguments. Consider Games G1-G3 of

Figure 7.2 and Figure 7.3, and a fixed adversary A asking at most q queries with a
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7.3. Security

1 In i t i a l i z e ( )

2 K
$
← K()

3 Q,B0,B1,B2,B3,B4,B5 ← ∅

4 win ← fa l se

5 Finalize ( )

6 return win

100 Encrypt(N,H,M) Game G1

101 S ← H(K || N || 0∗ || |K| || |N | || 0)

102 (x, V0)← G(H)

103 C0 ← ToHex(π)

104 I ← S ⊕ V0

105 V1 ← H2(I || C0 || 0∗ || x)

106 C1 ← V1 ⊕M1

107 for i = 2, ...,m do

108 I ← S ⊕ Vi−1

109 Vi ← H2(I || Ci−1 || 0∗ || 4)

110 Ci ← Vi ⊕Mi

111 I ← S ⊕ Vm

112 T ← H2(I || Cm || 0∗ || |T | || |Mm|+ 5)

113 Q← (N,H,C, T )

114 return (C, T )

120 Decrypt(N,H,C, T ) Game G1

121 S ← H(K || N || 0∗ || |K| || |N | || 0)

122 (x, V0)← G(H)

123 C0 ← ToHex(π)

124 I ← S ⊕ V0

125 V1 ← H2(I || C0 || 0∗ || x)

126 M1 ← V1 ⊕ C1

127 for i = 2, ...,m do

128 I ← S ⊕ Vi−1

129 Vi ← H2(I || Ci−1 || 0∗ || 4)

130 Mi ← Vi ⊕ Ci

131 I ← S ⊕ Vm

132 T ′ ← H2(I || Cm || 0∗ || |T | || |Cm|+ 5)

133 i f (T = T ′) ∧ (N,H,C, T ) 6∈ Q then

134 win ← true

135 return ⊥

Figure 7.2.: Game G1 for the proof of Lemma 7.3.

total length of at most ℓ blocks. We assume that the adversary never asks a query

for which the answer is already known. The functions Initialize and Finalize are

identical for all games in this proof. Let G0 denote the INT-CTXT Game as defined

in Algorithm 2 (cf. Section 4.3). Therefore, we have

AdvINT-CTXT
Π (A) ≤ Pr

[
AG0 ⇒ 1

]
.

In G1, the encryption- and decryption-placeholders are replaced by their generic

COFFE counterparts as of Algorithm 6 and, using similar arguments as in the proof

for Lemma 7.2, we can partition H into two independent PRFs H1 and H2. Thus,

Pr
[
AG0 ⇒ 1

]
≤ Pr

[
AG1 ⇒ 1

]
+ 2 ·AdvPRF

H∗
(q + ℓ, O(t)),

where

AdvPRF
H∗

(q + ℓ, O(t)) = max
{
AdvPRF

H1
(q,O(t)),AdvPRF-RKA

H2
(q + ℓ, O(t))

}
.

We now discuss the differences between G1 and G2. The sets B0, . . . ,B5 are initial-

ized as empty sets (cf. Line 3 of Figure 7.2) and collect fresh values as follows:

• B0 collects all fresh values V0, where |H| > n in Lines 207 and 247.
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7. COFFE: Ciphertext Output Feedback Faithful Encryption

Algorithm 8 LLCP’

Input: Q {Query History}, N {Nonce}, H {Header}, M {Message}

p← 0

for all (N ′, H ′,M ′) ∈ Q do

if (N = N ′) ∧ (H = H ′) then

p← max {p,LLCP(M,M ′)}

end if

end for

return p

• B1 collects all fresh pairs (V0, S, x) in Lines 212 and 252.

• B2 collects all fresh values I = V0 ⊕ S in Lines 213 and 253.

• B3 collects all fresh pairs (S ⊕ Vi, Ci) with i = 1, . . . ,m − 1. This is done in

Lines 221 and 261

• B4 collects all fresh values Vi with i = 1, . . . ,m in Lines 215, 225, 255, and 265.

• B5 collects all fresh pairs (S ⊕ Vm, Cm). This is done in Lines 233 and 270.

In Lines 201 and 241, the LLCP ′ oracle is inquired as defined in Algorithm 8.

Finally, the variable bad is set to true if one of the if-conditions in Lines 205, 210,

219, 223, 228, 245, 250, 259, 263, or 268 is true. None of these modifications affect

the values returned to the adversary and therefore,

Pr[AG1 ⇒ 1] = Pr[AG2 ⇒ 1].

It follows that

Pr
[
AG2 ⇒ 1

]
≤ Pr

[
AG3 ⇒ 1

]
+
∣∣Pr
[
AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]∣∣
≤ Pr

[
AG3 ⇒ 1

]
+ Pr

[
AG3sets bad

]
. (7.1)

We now proceed to upper bound the two terms contained in Equation (7.1) – in right

to left order.

The success probability of Game G3 does not differ from the success probability of

Game G2 unless one of the following cases occur, where each case causes a bad event,

i.e., the variable bad is set to true. In the following, the indices j and j′ denote the

j-th and j′-th query with j, j′ = 1, . . . , q, respectively.
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200 Encrypt(N,H,M) Game G2 and G3

201 p← LLCP′(Q|N,H,M , (N,H,M))

202 S ← H1(K || N || 0∗ || |K| || |N | || 0)

203 (x, V0)← G(H)

204 i f (x = 3) then

205 i f (H /∈ Q|H and V0 ∈ B0 ) then

206 bad← true V0
$
← {0, 1}n \B0

207 B0 ← B0 ∪ {V0}

208 C0 ← ToHex(π)

209 I ← S ⊕ V0

210 i f ((V0, S, x) /∈ B1 and I ∈ B2)

211 bad← true I
$
← {0, 1}n \B2

212 B1 ← B1 ∪ {(V0, S, x)}

213 B2 ← B2 ∪ {I}

214 V1 ← H2(I || C0 || 0∗ || x)

215 B4 ← B4 ∪ {V1}

216 C1 ← V1 ⊕M1

217 for i = 2, ...,m do

218 I ← S ⊕ Vi−1

219 i f ((I, Ci−1) ∈ B3 and i > p) then

220 bad← true I
$
← {0, 1}n \B3

221 B3 ← B3 ∪ {(I, Ci−1)}

222 Vi ← H2(I || Ci−1 || 0∗ || 4)

223 i f (Vi ∈ B4 and i > p) then

224 bad← true Vi
$
← {0, 1}n \B4

225 B4 ← B4 ∪ {Vi}

226 Ci ← Vi ⊕Mi

227 I ← S ⊕ Vm

228 i f ((I, Cm) ∈ B5) then

229 bad← true I
$
← {0, 1}n \B5

230 B5 ← B5 ∪ {(I, Cm)}

231 T ← H2(I || Cm || 0∗ || |T | || |Mm|+ 5)

232 Q← (N,H,C, T )

233 return (C, T )

240 Decrypt(N,H,C, T ) Game G2 and G3

241 p← LLCP′(Q|,N,H,C , (N,H,C))

242 S ← H1(K || N || 0∗ || |K| || |N | || 0)

243 (x, V0)← G(H)

244 i f (x = 3) then

245 i f (H /∈ Q|H and V0 ∈ B0 ) then

246 bad← true V0
$
← {0, 1}n \B0

247 B0 ← B0 ∪ {V0}

248 C0 ← ToHex(π)

249 I ← S ⊕ V0

250 i f ((V0, S, x) /∈ B1 and I ∈ B2)

251 bad← true I
$
← {0, 1}n \B2

252 B1 ← B1 ∪ {(V0, S, x)}

253 B2 ← B2 ∪ {I}

254 V1 ← H2(I || C0 || 0∗ || x)

255 B4 ← B4 ∪ {V1}

256 M1 ← V1 ⊕ C1

257 for i = 2, ...,m do

258 I ← S ⊕ Vi−1

259 i f ((I, Ci−1) ∈ B3 and i > p) then

260 bad← true I
$
← {0, 1}n \B3

261 B3 ← B3 ∪ {(I, Ci−1)}

262 Vi ← H2(I || Ci−1 || 0∗ || 4)

263 i f (Vi ∈ B4 and i > p) then

264 bad← true Vi
$
← {0, 1}n \B4

265 B4 ← B4 ∪ {Vi}

266 Mi ← Vi ⊕ Ci

267 I ← S ⊕ Vm

268 i f ((I, Cm) ∈ B5) then

269 bad← true I
$
← {0, 1}n \B5

270 B5 ← B5 ∪ {(I, Cm)}

271 T ′ ← H2(I || Cm || 0∗ || |T | || |Cm|+ 5)

272 i f (T = T ′) and (N,H,C, T ) 6∈ Q then

273 win ← true

274 return ⊥

Figure 7.3.: Games G2 and G3 for the proof of Lemma 7.3.
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Case 1 (Collision – Initial Chaining Value): In Lines 206 and 246 the initial chain-

ing value V0 is set to a new random value if the function G returns the same V0

twice for two distinct values Hj 6= Hj′ with j 6= j′ and Hj , Hj′ > n, i.e., in the

case when x = 3. The probability for such a collision can be upper bounded by

q2/2n.

Case 2 (Input Collision – Domain 1, . . . ,3): In Lines 211 and 251 the value I is set

to a new random value if there is a non-trivial input collision between two input

values Ij = Sj ⊕ V j
0 and Ij

′
= Sj′ ⊕ V j′

0 with xj = xj
′
, so that Ij = Ij

′
with

j 6= j′. We can upper bound the success probability for this case by

q2/2n.

Case 3 (Input Collision – Domain 4): In Lines 219 and 259 we test for a non-trivial

input collision (Sj⊕V j
i , C

j
i ) = (Sj′ ⊕V j′

i′ , C
j′

i′ ) with (i, j) 6= (i′, j′). The success

probability for this case can be upper bounded by

ℓ2/2n.

Case 4 (Output Collision – Domain 4): In Lines 223 and 263 we test if the adver-

sary has found a non-trivial collision of the form V j
i = V j′

i′ with (i, j) 6= (i′, j′).

The success probability can be upper bounded by

ℓ2/2n.

Case 5 (Input Collision – Domain 5): In Lines 228 and 268 we test for a non-trivial

input collision (Sj ⊕ V j
m, Cj

m) = (Sj′ ⊕ V j′

m′ , C
j′

m′) with j 6= j′. We can upper

bound the success probability for this case by

q2/2n.

By adding up the individual bounds, it follows that

Pr
[
AG3sets bad

]
≤

2ℓ2 + 3q2

2n
.

The adversary wins Game G3 iff the variable win is set to true, i.e., the if-condition

in Line 272 holds. This implies that the adversary can win only with a fresh query

to the Decrypt oracle, which leads to T = T ′, where T ′ is computed as shown in
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Line 271. Lines 268 and 269 ensure that the input for the hash function H2 in Line

271 is always a fresh value, i.e., it was never asked before. Since H2 is a PRF, the

probability for T = T ′ can be upper bounded by

1/2|T |.

As we allow the adversary to ask at most q queries, the success probability for Game

G3 can be upper bounded by

Pr
[
AG3 ⇒ 1

]
≤ q/2|T |.

Our claim follows by adding up the individual bounds. �

7.4. Results Summary

In this Chapter we presented COFFE, a novel hash function based OAE scheme

which, to the best of our knowledge, is the first scheme that fulfills our stated re-

quirements. It can be part of a minimal cryptographic suite that includes hashing and

digital signatures. Because it is an AEAD scheme, it could be used in the AEAD in-

terface of the Datagram Transport Layer Security (TLS) protocol [198] that has been

identified by the IETF Constrained Application Working Group as suitable for appli-

cations for the IoT. In the standard model, COFFE provides the regular INT-CTXT

and IND-CPA security plus INT-CTXT security in the nonce-misuse setting. Finally,

it is resistant against side-channel attacks, which is usually a matter of the imple-

mentation of a cryptosystem, rather than of the cryptosystem itself. Nevertheless,

we provide side-channel resistance even if an implementation lacks to provide this

kind of security.
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8
McOE: A Family of Robust

On-Line Authenticated Encryption Schemes

If I have seen further it is by

standing on the shoulders of Giants.

Isaac Newton

In recent years, cryptographers developed misuse-resistant schemes for authenticated

encryption [126, 127, 210]. These guarantee excellent security even against general

adversaries which are allowed to reuse nonces. Their disadvantage is that encryption

can be performed in an off-line way, only. In this chapter we introduce a novel family

of robust OAE schemes called McOE. Apart from the generic composition Encrypt-

then-Mac (EtM), none of the ISO/IEC 19772:2009 schemes – in fact, no previously

published authenticated encryption scheme at all – achieves both to be on-line and

robust (cf. Table 8.1). In this table we classify a variety of provably secure block

cipher based authenticated encryption schemes with respect to their on-line-ability

and against which adversaries (nonce-respecting vs. nonce-ignoring) they are proven

to be secure.

Encrypt-then-Mac (EtM). Since EtM is not a concrete scheme but a generic con-

struction, there are some challenges left in order to make it fully on-line-secure:

First, an appropriate on-line cipher has to be chosen. Second, a suitable, on-line-

computable, secure, and deterministic MAC must be selected. And, third, the generic

EtM scheme requires at least two independent keys to be secure. Since two schemes

are used in parallel, it is likely to squander resources in terms of run time and – im-
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Type CCA3-secure Robust

on-line CCFB CHM COFFE CWC EAX GCM IACBC IAPM McOE-X

McOE-G McOE-X OCB1-3 RPC TAE XCBC McOE-G

off-line CCM BTM HBS SIV

Table 8.1.: Classification of provably secure block cipher based authenticated encryp-

tion schemes.

portant for hardware designers – in terms of space. Since EtM first has to be turned

into an OAE scheme by making the appropriate choices, we do not consider it in our

analysis.

Design Principles for AE Schemes. The question of how to provide authenticated

encryption (without stating that name), when given a secure on-line cipher, is studied

in [15], the revised and full version of [14]. The first approach in [15] only provides

security if all messages are of the same length. The second approach repairs that by

prepending the length of the message, at the cost of being off-line since the length

must be known at the beginning of the encryption process. Their approach is to

prepend and append a random value N to a message M and then to perform the on-

line encryption of (N ||M ||N). This looks promising, but the same N is used for two

different purposes, putting different constraints on the generation of N . For privacy,

it suffices that N behaves like a nonce, not requiring secrecy or unpredictability. Even

if N is not a nonce, but the same N is used for the encryption of several messages,

all the adversary can determine are the lengths of common plaintexts prefixes, as

we required for nonce reuse. On the other hand, authenticity actually assumes a

secret or unpredictable N rather than a nonce. If the adversary A can guess N before

choosing a message, A asks for the authenticated encryption of (M ||N). Then, A

can predict the authenticated encryption of M without actually asking for it.

The general structure of McOE is based on the Tweak Chain Hash (TCH) from

[153] which itself is adapted from the Matyas-Meyer-Oseas (MMO) construction [170].

Thereby, McOE replaces the random N by a proper nonce and the key-dependent

tag computation value τ , performing a nonce-dependent on-line encryption of (M ||τ).

The encryption can also depend on some associated data, which turns McOE into a

family of schemes for on-line AEAD.
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K KKKK

N M1 Mm−1

Mm || τ
α

τ

Ẽ ẼẼẼẼ

C1 Cm−1

Cm || T
α

S

S

τ

0n

T β || Z

Figure 8.1.: The generic McOE construction. Tα and τα denote the lower α bits and

T β and τβ denote the upper β bits of T , respectively. Furthermore, S is

given by ẼK(1n, |M |).

Outlook. In Section 8.1 we introduce the generic specification of the McOE family

based on a tweakable block cipher, and in Section 8.2 we analyze its security. Section

8.3 introduces two practical instance of the McOE family, called McOE-X and

McOE-G. In Section 8.4 we present some performance benchmarks of both instances,

and finally, Section 8.5 gives a brief summary about our contribution.

8.1. Generic Specification

The structure of McOE bases on the TC3 construction, a tweakable block cipher

based encryption scheme, (cf. Figure 8.1), which was presented by Rogaway and

Zhan [211]. A formal definition of McOE is given in Algorithm 9. Both functions

Encrypt and Decrypt consist of the following three steps:

Step 1: ProcessHeader. In this step we describe the processing of the header H,

which can be of arbitrary length. In the case when the length of the header is not

a multiple of the block size n, we apply the common 10∗-padding. Furthermore, H

has to consist of at least one block since the tag computation value τ depends on it.

Hence, the whole header can be seen as a nonce. In the following, the lowest n−Mm

bits of τ are denoted by τα. A formal definition of the header processing is given in

Algorithm 10

Step 2: Plaintext/Ciphertext Processing. The plaintext/ciphertext blocks (except

for the final block, which is discussed in step 3) are processed in a straightforward way
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Algorithm 9 McOE

Encrypt(H, M)

1: m← |M |/n

2: (U, τ)← ProcessHeader(H)

3: for i = 1, . . . ,m− 1 do

4: Ci ← ẼK(U,Mi)

5: U ←Mi ⊕ Ci

6: end for

7: S ← ẼK(1n, |Mm|)

8: X ← (Mm || τ
α)⊕ S

9: Y ← ẼK(U,X)

10: (Cm || T
α)← Y ⊕ S

11: U ← X ⊕ Y

12: (T β || Z)← ẼK(U, τ)

13: T ← Tα || T β

14: return (C1, . . . , Cm, T )

Decrypt(H, C, T )

21: m← |C|/n

22: (U, τ)← ProcessHeader(H)

23: for i = 1, . . . ,m− 1 do

24: Mi ← Ẽ−1K (U,Ci)

25: U ←Mi ⊕ Ci

26: end for

27: S ← ẼK(1n, |Cm|)

28: Y ← (Cm || T
α)⊕ S

29: X ← Ẽ−1K (U, Y )

30: (Mm || τ
′)← X ⊕ S

31: U ← X ⊕ Y

32: (T ′||Z)← ẼK(U, τ)

33: if τ ′ = τα and T β = T ′ then

34: return (M1, . . . ,Mm)

35: end if

36: return ⊥

Algorithm 10 ProcessHeader

Input: H {Header}

Output: U {Tweak}, τ {Tag Computation Value}

1: U ← 0n

2: for i = 1, . . . , |H|/n do

3: τ ← ẼK(U,Hi)

4: U ← Hi ⊕ τ

5: end for

6: return (U, τ)
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by the underlying tweakable block cipher Ẽ or its inverse Ẽ−1 (cf. Algorithm 9, Lines

3–6 and Lines 23–26). The tweak U is computed by XORing the previous ciphertext

block Ci−1 and plaintext block Mi−1. The length of the final plaintext/ciphertext

block is between 1 bit and n bits since McOE allows to process arbitrary length

messages. A tweakable block cipher allows only to process n-bit message blocks.

Therefore, we process the final plaintext block Mm as follows: At first we pad it to

n bits by appending τ , before we XOR the padded value with the encryption of Mm

encoded as n-bit value with 1n as tweak (see Algorithm 9, Line 7). The final message

block can be computed by inverting this procedure (see Algorithm 9, Lines 27–28).

Step 3: Tag Generation/Verification. A common technique to support length-

preserving encryption is Ciphertext Stealing (CTS) [69]. Unfortunately, this approach

contradicts the on-line property of McOE since it requires to process the final block

before its predecessors. Therefore, we introduce a novel method, called Tag Splitting

(TS), where the n-bit tag T is split into an upper part Tα consisting of the α Most

Significant Bits (MSBs) of T and a lower part T β consisting of the β Least Significant

Bits (LSBs) of T . Note that α+β = n always holds. Furthermore, α can be 0 if Mm

is already an full n-bit block.

The final ciphertext block Cm together with the upper part of the authentication

tag Tα is derived from the padded message block M ′m = Mm || τ
α by applying (the

XEX block cipher mode introduced by Liskov et al. in [152]), i.e., (Cm || T
α) =

ẼK(U,M ′m ⊕ S) ⊕ S, where U is the current chaining value and S = ẼK(1n, |Mm|)

(see Algorithm 9, Lines 7–10). This step implements length-preserving encryption

since it ensures that |M | = |C| always holds. Moreover, for the sake of optimization,

the masking value S can often be computed in advance for all possible message

lengths. This allows to process the final blocks without an additional invocation of

the tweakable block cipher. The lower part of the authentication tag is computed

by the encryption of τ (see Algorithm 9, Line 12). The remaining α bits of the

encryption (Z) are discarded. The straightforward verification of the authentication

tag is given in Lines 29–34 of Algorithm 9.

8.2. Security Analysis

In this section we show that McOE is a robust OAE scheme, in the standard model.
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Theorem 8.1 (ONDMA Security). Let Π = (K, E ,D) be the McOE scheme as

defined in the previous section with E = Encrypt and D = Decrypt from Algo-

rithm 9. Then, for q ≤ 2n/2−2, we have

AdvONDMA
Π (q, ℓ, t) ≤

(q + ℓ+ 3)2 + 2(q + ℓ) + q2

2n−1 − q
+

q

2n/2 − q

+ 2AdvIND-PRP

Ẽ,Ẽ−1 (2q + ℓ, O(t)).

Proof. The proof follows from Lemmas 8.2 and 8.3. �

Lemma 8.2 (IND-OCCA2 Security). Let Π = (K, E ,D) be a McOE scheme as

defined in the previous section with E = Encrypt and D = Decrypt from Algo-

rithm 9 where the tag verification process (Lines 31–33 and 35–36) is omitted. Then,

for all M ∈ ({0, 1}n)∗, we have

AdvIND-OCCA21

Π (q, ℓ, t) ≤
(q + ℓ+ 3)2 + 2(q + ℓ) + q2

2n − q
+AdvIND-PRP

Ẽ,Ẽ−1 (2q + ℓ, O(t)).

Proof. The basic idea of this proof is to show that the absence of non-trivial collisions

in the tweak values (U) implies IND-CCA-security.

This proof borrows ideas from [211], proof of Theorem 3, and moreover, uses com-

mon game-playing arguments. The advantage of an adversary A to distinguish Gi

from Gj is given by

Adv
Gj

Gi
(A) =

∣∣Pr
[
AGi ⇒ 1

]
− Pr

[
AGj ⇒ 1

]∣∣ .

Let the tuple (E , D) denote the initial Game G0. The Game G1 is equal to the

game G0 except that the tweakable block cipher Ẽ is replaced by a set of pseudo

random permutations P
$
← Permn

n – which can be implemented efficiently via lazy

sampling. To process a total amount of q encryption and decryption queries requieres

ℓ+ 2q unique invocations of the tweakable block cipher. Thus, we have

AdvG1
G0

(A) ≤ AdvIND-PRP

Ẽ
(2q + ℓ, O(t)).

Game G1 is transformed into Game G2 as follows. First, we add a set Q, the query

history, collecting all output tuples (H,M,C, T ) consisting of a headerH, the authen-

tication tag T , the message M , and the corresponding ciphertext C (see Figure 8.2
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Lines 226 and 251). Then, the LLCP-oracle is called to compute the LCP between

the current query and all previously asked queries (Figure 8.2 Lines 203 and 233).

This is required to determine if a specific part of the message is a common prefix.

Furthermore we add three additional sets B1 −−B3 which are initialized as follows:

B1 = {0
n, 1n},B2 = ∅, and B3 = ∅. Set B1 collects all tweaks U that are computed

during the encryption or decryption process (see Figure 8.2 Lines 207, 213, 224, 237

and 243). Set B2 collects the input tuple (U,X) for the encryption of the final mes-

sage block – consisting of the masked final message block X and the corresponding

tweak U (see Figure 8.2, Line 219). Similarly, the set B3 collects the input tuples

(U, Y ) for the decryption of the final message block – consisting of the masked final

ciphertext block Y and the corresponding tweak U (see Figure 8.2 Line 249). Finally,

the variable bad is set to true if one of the if-conditions in lines 205, 211, 217, 222,

236, 241 or 247 is true. None of these modifications affect the values returned to the

adversary, and therefore, we have

Pr
[
AG1 ⇒ 1

]
= Pr

[
AG2 ⇒ 1

]
.

In Game G3 we eliminate the effects of bad events – immediately after setting

the variable bad to true. After every collision between two chaining values occurs,

the current value is replaced by a fresh value (see Figure 8.2 Lines 206, 212, 223,

236, and 242). Furthermore, the encryption of the masked final plaintext block is

replaced when an input collision for P occurs (see Figure 8.2 Line 218). Finally, the

decryption of the masked final ciphertext block is replaced when an input collision for

P−1 occurs (see Figure 8.2 Line 248). Since G2 and G3 only differ when the variable

bad is set to true, we have

AdvG3
G2

(A) = Pr
[
AG3sets bad

]
.

We upper bound the probability for this event by a case analysis.

Collision in B1. In this case the adversary must have found either a collision for

P(V,W )⊕W (i.e., it has found two input tuples (V,W ) 6= (V ′,W ′) such that

P(V,W ) ⊕W = P(V ′,W ′) ⊕W ′) or it must have found a preimage of 0n or

1n. In both cases the variable bad would have been set to true, and it follows

from [47] that the success probability for this event can be upper bound by

(q + ℓ+ 2)(q + ℓ+ 3)

2n − q
+

2(q + ℓ)

2n − q
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200 Encrypt(H,M) Game G2 and G3

201 m← |M |/n

202 h← |H|/n

203 p← LLCP(Q|H,M , (H,M))

204 (U, τ)← ProcessHeader(H)

205 i f ((p < h) and (U ∈ B1))

206 bad← true; U
$
← {0, 1}n \B1

207 B1 ← B1 ∪ {U}

208 for i = 1, . . . ,m− 1

209 Ci ← P(U,Mi)

210 U ←Mi ⊕ Ci

211 i f ((p < h+ i) and (U ∈ B1))

212 bad← true; U
$
← {0, 1}n \B1

213 B1 ← B1 ∪ {U}

214 S ← P(1n, |Mm|)

215 X ← (Mm || τα)⊕ S

216 Y ← P(U,X)

217 i f ( (U,X) ∈ B2 )

218 bad← true; Y
$
← {0, 1}n

219 B2 ← B2 ∪ {(U,X)}

220 (Cm || Tα)← Y ⊕ S

221 U ← X ⊕ Y

222 i f (U ∈ B1)

223 bad← true; U ← {0, 1}n \B1

224 B1 ← B1 ∪ {U}

225 (Tβ || Z)← P(U, τ)

226 Q← Q ∪ {(H,M,C, T )}

227 return (C, T )

230 Decrypt(H,C, T ) Game G2 and G3

231 m← |C|/n

232 h← |H|/n

233 p← LLCP(Q|H,C , (H,C))

234 (U, τ)← ProcessHeader(H)

235 i f ((p < h) and (U ∈ B1))

236 bad← true; U
$
← {0, 1}n \B1

237 B1 ← B1 ∪ {U}

238 for i = 1, . . . ,m− 1

239 Mi ← P−1(U,Ci)

240 U ←Mi ⊕ Ci

241 i f ((p < h+ i) and (U ∈ B1))

242 bad← true; U
$
← {0, 1}n \B1

243 B1 ← B1 ∪ {U}

244 S ← P(1n, |Cm|)

245 Y ← (Cm || Tα)⊕ S

246 X ← P−1(U, Y )

247 i f ( (U,X) ∈ B3 )

248 bad← true; X
$
← {0, 1}n

249 B3 ← B3 ∪ {(U, Y )}

250 (Mm || τα)← X ⊕ S

251 Q← Q ∪ {(H,M,C, T )}

252 return M

Figure 8.2.: The IND-OCCA2 games G2 and G3 for the proof of Lemma 8.2. Game

G3 contains the code in the box while G2 does not.

Collision in B2. In this case we can assume that no bad event has occurred so far.

Therefore, the adversary can only win if it finds two colliding message blocks

Mm and M ′m sharing the same common prefix, i.e., M = M1, ...,Mm−1,Mm

and M = M1, ...,Mm−1,M
′
m with Mm 6= M ′m. Now, we have to upper bound

the success probability for the event

(Mm || τ
α)⊕P(1n, |Mm|) = (M ′m || τ

α)⊕P(1n, |M ′m|).

Note that the equation above can hold only for |Mm| 6= |M
′
m|. Since P(1n, ·) is
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a random permutation, we can upper bound the success probability of A by

q2

2n−1 − q
.

Collision in B3. This case is similar to the previous one, and therefore, we can upper

bound the success probability of an adversary by

q2

2n−1 − q
.

By adding up the individual bounds it follows that

Pr
[
AG3sets bad

]
≤

(q + ℓ+ 3)2 + 2(q + ℓ) + q2

2n − q
.

Let the tuple (O1
P,1, Ô

1
P−1,1) denote the final game G4 where O1

P and Ô1
P−1 comply

with the encryption and decryption oracles from Definition 5.5. Note that in G3

the chaining value U cannot collide and it is not possible to compute a preimage for

any query. This implies that P is always invoked with a fresh tweak input, except

two queries share a common prefix. Furthermore, we ensure by Lines 218 and 223

that both the final message block tag value is always a fresh random value. The

same arguments hold for the decryption oracle. Thus, G3 and G4 have identical

input-output behaviours and we have,

AdvG4
G3

(A) = 0.

Our claim follows by adding up the individual bounds. �

Lemma 8.3 (INT-CTXT Security). Let Π = (K, E ,D) be a McOE scheme as

in the previous section with E = Encrypt and D = Decrypt from Algorithm 9.

Then, for q ≤ 2n/2−2 we have

AdvINT-CTXT
Π (q, ℓ, t) ≤

(q + ℓ+ 3)2 + 2(q + ℓ) + q2

2n − q
+

q

2n/2 − q

+AdvIND-PRP

Ẽ,Ẽ−1 (2q + ℓ, O(t)).

Proof. Our bound is derived with the help of game-playing arguments. Consider

Games G1-G3 of Figures 8.3 and 8.4 and a fixed adversary A asking at most q queries
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1 In i t i a l i z e ( )

2 K
$
← K()

3 B1 ← {0n, 1n}

4 Finalize ( )

5 return win

100 Encrypt(H,M) Game G1

101 m← |M |/n

102 h← |H|/n

103 U ← 0n ;

104 for i = 1, . . . , h do

105 τ ← ẼK(U,Hi)

106 U ← Hi ⊕ τ

107 for i = 1, . . . ,m− 1 do

108 Ci ← ẼK(U,Mi)

109 U ←Mi ⊕ Ci

110 S ← ẼK(1n, |Mm|)

111 X ← (Mm || τα)⊕ S

112 Y ← ẼK(U,X)

113 (Cm || Tα)← Y ⊕ S

114 (Tβ || Z)← ẼK(U, τ)

115 Q← Q ∪ {(H,M,C, T )}

116 return (C1 || . . . || Cm, Tα || Tβ)

140 Verify(H,C, T ) Game G1

141 m← |C|/n

142 h← |H|/n

143 U ← 0n

144 for i = 1, . . . , h do

145 τ ← ẼK(U,Hi)

146 U ← Hi ⊕ τ

147 for i = 1, . . . ,m− 1 do

148 Mi ← Ẽ−1
K (U,Ci)

149 U ←Mi ⊕ Ci

150 S ← ẼK(1n, |Mm|)

151 Y ← (Cm || Tα)⊕ S

152 X ← Ẽ−1
K (U, Y )

153 (Mm || τ ′)← X ⊕ S

154 U ← X ⊕ Y

155 (T ′||Z)← ẼK(U, τ)

156 i f (τ ′ = τα and Tβ = T ′ and

157 (H,C, T ) /∈ Q|H,C,T )

158 win← true

159 Q← Q ∪ {(H,⊥, C,⊥)}

160 return ⊥

Figure 8.3.: Game G1 for the proof of Lemma 8.3.

with a total length of at most ℓ blocks. The functions Initialize and Finalize are

identical for all games in this proof. Let G0 denote as the INT-CTXT Game defined

in Algorithm 2. Definition 4.3 states that

AdvINT-CTXT
Π (A) ≤ Pr

[
AG0 ⇒ 1

]
.

In Game G1, the encrypt and verify placeholders are replaced by their McOE coun-

terparts including two mentionable tweaks which does not effect the success proba-

bility of any adversary. First, the oracle Verify returns win instead of (M 6= ⊥), and

second, the query history collects additional data which is required to compute the

LCP in the Games G2 and G3.

We now discuss the differences between G1 and G2. The set B1 is initialized

with {0n, 1n} before it collects all new tweak values U that are computed during

the encryption or verification process (in Lines 210, 216, 227, 250, 256, and 267).

Furthermore, set B2 collects the input tuples (U,X) consisting of the masked final

message blockX and the corresponding tweak U (see Figure 8.4, Line 222). Similarly,

the set B3 collects the input tuples (U, Y ) consisting of the masked final ciphertext
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block U and the corresponding tweak U (see Figure 8.4, Line 262).

In Lines 203 and 243, the LLCP oracle is inquired. Finally, the variable bad is set

to true if one of the if-conditions in Lines 208, 214, 220, 225, 248, 254, 260 or 265

holds. None of these modifications affect the values returned to the adversary and

therefore

Pr
[
AG1 ⇒ 1

]
= Pr

[
AG2 ⇒ 1

]
.

For our further discussion, we require another Game G4 which is explained in more

detail later in this proof1. It follows that

Pr
[
AG2 ⇒ 1

]
≤ Pr

[
AG3 ⇒ 1

]
+
∣∣Pr
[
AG2 ⇒ 1

]
− Pr

[
AG3 ⇒ 1

]∣∣
≤ Pr

[
AG3 ⇒ 1

]
+ Pr

[
AG3sets bad

]

≤ Pr
[
AG4 ⇒ 1

]
+
∣∣Pr
[
AG3 ⇒ 1

]
− Pr

[
AG4 ⇒ 1

]∣∣
+ Pr

[
AG3sets bad

]
.

Next, we upper bound the three terms in the line above from right to left. Using

similar arguments as in the proof of Lemma 8.2 we can upper bound Pr
[
AG3sets bad

]

by
(q + ℓ+ 3)2 + 2(q + ℓ) + q2

2n − q
.

Now, we describe the new Game G4, which is equal to G3 except that the block

cipher Ẽ is replaced by a set of random permutations P
$
← Permn

n – which can be

implemented efficiently via lazy sampling. To process a total amount of q encryption

and decryption queries implies at most ℓ + 2q unique invocations of the tweakable

block cipher. Thus, we have

AdvG1
G0

(A) ≤ AdvIND-PRP

Ẽ,Ẽ−1 (2q + ℓ, O(t)).

Finally, we have to upper bound the advantage for the adversary A to win the Game

G4. A can win this game only if the condition in Line 269 (resp. Line 469 for Game

G4) holds. Without loss of generality, we assume that A does not ask a question if the

answer is already known. This implies that (H,C, T ) 6∈ Q|H,C,T . We formally adjust

Line 269 (i.e., choose as the tag computation operation either P or P−1) such that

we always have enough randomness left for our result. For the sake of simplicity, we

denote the two final chaining values by Um and Um+1. For our analysis, we distinguish

between two main scenarios: (1) |Mm| = n, and (2) |Mm| 6= n

1Since the difference is minor, we do not provide an extra figure.
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200 Encrypt(H,M) Game G2 and G3

201 m← |M |/n

202 h← |H|/n

203 p← LLCP(Q|H,M , (H,M))

204 U ← 0n

205 for i = 1, . . . , h

206 τ ← ẼK(U,Hi)

207 U ← Hi ⊕ τ

208 i f (U ∈ B1 and p < i) then

209 bad← true; U
$
← {0, 1}n \B1

210 B1 ← B1 ∪ U

211 for i = 1, . . . ,m− 1

212 Ci ← ẼK(U,Mi)

213 U ←Mi ⊕ Ci

214 i f ((p < h+ i) and (U ∈ B1))

215 bad← true; U
$
← {0, 1}n \B1

216 B1 ← B1 ∪ {U}

217 S ← ẼK(1n, |Mm|)

218 X ← (Mm || τα)⊕ S

219 Y ← ẼK(U,X)

220 i f ( (U,X) ∈ B2 )

221 bad← true; Y
$
← {0, 1}n

222 B2 ← B2 ∪ {(U,X)}

223 (Cm || Tα)← Y ⊕ S

224 U ← X ⊕ Y

225 i f (U ∈ B1)

226 bad← true; U
$
← {0, 1}n \B1

227 B1 ← B1 ∪ {U}

228 (Tβ || Z)← ẼK(U, τ)

229 Q← Q ∪ {(H,M,C, T )}

230 return (C1 || . . . || Cm, Tα || Tβ)

240 Verify(H,C, T ) Game G2 and G3

241 m← |C|/n

242 h← |H|/n

243 p← LLCP(Q|H,C,T , (H,C, T ))

244 U ← 0n

245 for i = 1, . . . , h

246 τ ← ẼK(U,Hi)

247 U ← Hi ⊕ τ

248 i f (U ∈ B1 and p < i) then

249 bad← true; U
$
← {0, 1}n \B1

250 B1 ← B1 ∪ U

251 for i = 1, . . . ,m− 1

252 Mi ← Ẽ−1
K (U,Ci)

253 U ←Mi ⊕ Ci

254 i f ((p < h+ i) and (U ∈ B1))

255 bad← true; U
$
← {0, 1}n \B1

256 B1 ← B1 ∪ {U}

257 S ← ẼK(1n, |Mm|)

258 Y ← (Cm || Tα)⊕ S

259 X ← Ẽ−1
K (U, Y )

260 i f ((p < h+m) and ((U, Y ) ∈ B3 ) )

261 bad← true; X
$
← {0, 1}n \B1 ⊕ Y

262 B3 ← B3 ∪ {(U, Y )}

263 (Mm || τ ′)← X ⊕ S

264 U ← X ⊕ Y

265 i f ((p < h+m) and (U ∈ B1))

266 bad← true; U
$
← {0, 1}n \B1

267 B1 ← B1 ∪ {U}

268 (T ′||Z)← ẼK(U, τ)

269 i f (τ ′ = τα and Tβ = T ′ and

270 (H,C, T ) /∈ Q|H,C,T )

271 win← true

272 Q ← Q∪ {(H,⊥, C,⊥)}

273 return win

Figure 8.4.: Games G2 and G3 for the proof of Lemma 8.3. Game G3 contains the

code in the box while G3 does not.
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Scenario 1: (|Mm| = n). For our analysis, we distinguish between two mutually

exclusive cases.

Case 1 (Um+1 ∈ B1):

In this case we first consider that Um+1 is not fresh. This implies that the

ciphertext (C1, . . . , Cm) must be part of a common prefix of a previous query.

The adversary can win only if T is a fresh value, i.e., not a part of a previously

occurred prefix. Since P is a set of random permutations, the upper bound is

then given by

Pr
[
P−1(Um+1, T ) = τ

]
= 0.

Case 2 (Um+1 /∈ B1):

If Um+1 is fresh, we can upper bound the success probability for one query by

1/(2n − q). Hence, for q queries, we can upper bound the success probability

by
q

2n − q
.

Due to the fact that Case 1 and Case 2 are mutually exclusive, we can upper bound

the success probability for q queries by

max

{
0,

q

2n − q

}
≤

q

2n − q
.

Scenario 2: (|Mm| 6= n). As in Scenario 1 we analyze two mutually exclusive cases.

Case 1 (Um+1 ∈ B1):

This case implies that the ciphertext-tag tuple (C1, . . . , Cm, Tα) must be part

of a prefix previously occured query. Hence, the adversary can win only if T β

is new. Though, it is impossible, i.e., for all ∀Z ∈ {0, 1}α it holds that

Pr
[
P−1(Um+1, T

β || Z) = τ
]
= 0

since P(Um+1, ·) is a random permutation.

Case 2 (Um+1 /∈ B1):

This case implies that Cm||T
α must be fresh. The probability that the condition

τ ′ = τα from Line 469 holds, can be upper bounded by

Pr
α

= max
Mm

{
Pr
[
P−1(Um, Cm || T

α) = (Mm || τ
α)
]}
≤

1

2(n−|Cm|) − q
.
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Hence, the probability for q queries can be upper bounded by q
2(n−|Cm|)−q

. From

the assumption Um+1 /∈ B1 follows that Um+1 is new. SinceP is a set of random

permutations, we can upper bound the probability that the condition T β = T ′

from Line 469 holds by

Pr
β

= max
Z

{
Pr
[
P(Um+1, τ) = T β || Z

]}
≤

1

2|Cm| − q
.

Then, the probability for q queries can be upper bound by q/(2|Cm| − q).

The (total) success probability of this case depends on the length of |Cm|. So

we can distinguish between the following three subcases:

Subcase 2.1 (|Cm| < n/2):

In this case we can upper bound Prα by 1
2n/2−q

and Prβ by 1. Hence, the

total success probability for q queries is at most q
2n/2−q

.

Subcase 2.2 (|Cm| = n/2):

In this case we can upper bound Prα by 2
2n/2−2q

and Prβ by 1
2n/2−q

. Hence,

the total success probability for q queries is at most 2q2

2n−1−q2 .

Subcase 2.3: (|Cm| > n/2):

In this case we can upper bound Prα by 1 and Prβ by 1
2n/2+1−q

. Hence,

the total success probability for q queries is at most q
2n/2+1−q

.

Since all three subcases are mutually exclusive, we can upper bound the success

probability for q ≤ 2n/2−2 queries by

max

{
q

2n/2 − q
,

2q2

2n−1 − q2
,

q

2n/2+1 − q

}
≤

q

2n/2 − q
.

Due to the fact that Case 1 and Case 2 are mutually exclusive, we can upper bound

the success probability for q queries by

max

{
0,

q

2n/2 − q

}
≤

q

2n/2 − q
.

Since both scenarios are mutually exclusive, we can upper bound the success proba-

bility for q queries by
q

2n/2 − q
.

Our claim follows by adding up the individual bounds. �
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For simplification, we provide an upper bound that is easier to grasp than the

original bound, but not as tight as the original bound given above.

Corollary 8.4 (Simplified ONDMA Bound). Lets assume that 16 ≤ q ≤ ℓ and

the IND-PRP advantage is at most ǫ for an adversary which amount of queries is at

most 2n/2−2. Then the following bound holds:

AdvONDMA
Π (q, ℓ, t) ≤

6ℓ2 + 9

2n−1 − q
+

q

2n/2 − q
+ 2ǫ.

Discussion. The proofs in this chapter show that any IND-CCA-secure on-line en-

cryption scheme can be easily transformed into a full-fleged robust OAE scheme by

simply (a) prepending the associated data and (b) appending the tag generation

procedure to the message.

8.3. Practical Instances

The generic McOE scheme is based on a tweakable block cipher Ẽ ∈ Block(k, n, n).

Usually, an (efficient) tweakable block cipher is constructed out of a standard n-bit

block cipher [15, 63, 152, 205]. Threefish [90] is the only native tweakable block

cipher, published so far. Since the tweak size (128-bit) of Threefish is smaller than

its block size (256, 512 or 1024 bit) it does not match our requirements. In the

following we introduce two block cipher based instances of McOE: McOE-X and

McOE-G.

8.3.1. McOE-X

The McOE-X scheme uses a regular block cipher E ∈ Block(k, n) (e.g., AES [71])

which is converted to a tweakable block cipher, namely TX, by mixing the tweak

(i.e., the chaining value) into the key K by using the XOR operation (cf. Figure

8.5). A formal definition of TX follows.

Definition 8.5 (TX). Let E ∈ Block(k, n) be a block cipher, M,C, T ∈ {0, 1}n,

and K ∈ {0, 1}k. Then, the tweakable block cipher TX-E ∈ Block(k, n, n) is defined

by

TX-EK(U,M) := EK⊕U (M),
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K

M

C

E
U

Figure 8.5.: Constructed tweakable block cipher TX.

.

and its inverse is defined by

TX-E−1K (U,C) := E−1K⊕U (C).

Note that we can generalize the XOR operation between the key and the tweak by

a function ϕ : {0, 1}k×{0, 1}n → {0, 1}n. For any fixed key K, ϕ(K, ·) and the XOR

operation are injective. Therefore, we can replace the XOR operation by the function

ϕ. It is easy to see that a secure instance of TX requires related-key resistance for

the block cipher E since the adversary can partially control some relations among

the keys used in the computation. Thus, we have

AdvPRP
(TX-E,TX-E−1)(q, t) = AdvPRP-RKA

E,E−1 (q,O(t)).

Therefore, we can deduce the OCCA3 security of McOE-X from Theorem 8.1 and

thus, from Corollary 8.4.

Corollary 8.6 (McOE-X Security). For 16 ≤ q ≤ ℓ and q ≤ 2n/2−2 we have

AdvONDMA
McOE-X(q, ℓ, t) ≤

6ℓ2 + 9

2n−1 − q
+

q

2n/2 − q
+ 2AdvPRP-RKA

E,E−1 (2q + ℓ, O(t)).

Key-Recovery Attack. In [165], Mendel et al. showed a key-recovery attack on

McOE-X with a birthday-bound complexity. The adversary is allowed to query the
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McOE-X encryption oracle E and to access the block cipher E itself. In general,

this is a reasonable assumption since we can assume E to be a common block cipher

like AES. The attack works as follows:

1. Choose an arbitrary value a, compute bi = EKi(a) for i = 1, . . . , q and store all

pairs (bi, ki) in a list L.

2. Choose an arbitrary constant value M1, and set M2 = a. Then, choose an

arbitrary nonce value Ni. Thus, set M = M1 || M2 and ask for C = E(Ni,M)

with C = C1 || C2.

3. If C2 ∈ L|b, compute the secret key by K = ki ⊕M1 ⊕ C1, otherwise, go back

to Step 2.

Let us denote q′ as the number of iterations for the loop described in Steps 2 and 3.

The total number of block cipher invocations ℓ is restricted to ℓ ≤ q + 4q′ since for

one query to E , four block cipher calls are necessary to compute the pair (C, T ). If

we choose ℓ ≈ 2n/2, there exists an adversary with a success probability of at most

1/2, which is able to recover the secret key K using the presented attack. Note that

this attack does only confirm with our security claim, but also requires more queries

then our security bound. Nevertheless, this attack shows that it is very crucial to

change the cipher key after ≪ 2n/2 invocations of the block cipher E . The proposed

attack can be avoided by increasing the key size to, e.g., 2n.

8.3.2. McOE-G

The McOE instance McOE-G updates the chaining value by applying an almost-

XOR-universal (ǫ-AXU) hash function H to the XOR result of the previous message

block and ciphertext block (see Figure 8.6). In our practical implementation, we

use the Galois-Field multiplication for H, i.e., the key K2 is multiplied with the

chaining value over GF(2128) defined by the low-weight irreducible polynomial g(x) =

x128 + x7 + x2 + x+ 1 as used in OCB [208] and GCM [164].

Definition 8.7 (TG). Let E ∈ Block(k, n) be a block cipher, and H : {0, 1}n ×

{0, 1}n → {0, 1}n be an ǫ-AXU hash function. Suppose M,C, T ∈ {0, 1}n and

(K1,K2) ∈ {0, 1}
k × {0, 1}n with K = K1 || K2. Then, the tweakable block cipher

TG-E ∈ Block(k + n, n, n) is defined by

TG-EK(U,M) = EK1(M ⊕HK2(U))⊕HK2(U),
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Figure 8.6.: Constructed tweakable block cipher TG.

.

and its inverse is defined by

TG-E−1K (U,C) = E−1(C ⊕HK2(U))⊕HK2(U).

Liskov et al. showed in Theorem 2 of [153] that TG is a secure tweakable block

cipher with

AdvPRP
TG-E,TG-E−1(q, t) ≤ 3q2ǫ ·AdvPRP

E,E−1(q,O(t)).

Therefore, we can deduce the ONDMA security of McOE-X from Theorem 8.1 and

from Corollary 8.4.

Corollary 8.8 (McOE-G Security). For 16 ≤ q ≤ ℓ and q ≤ 2n/2−2, we have

AdvOCCA3
McOE-G(q, ℓ, t) ≤

6ℓ2 + 9

2n−1 − q
+

q

2n/2 − q
+ 6q2ǫ ·AdvPRP

E,E−1(2q + ℓ, O(t)).

Remark. McOE-G is not secure if an adversary has oracle access to the internal

building blocks (i.e., the block cipher E and the ǫ-AXU hash functionH) [45]. Hence,

it is crucial that an adversary has only black-box oracle access to the tweakable block

cipher Ẽ.
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Block cipher Impl.
Message length in bytes

64 256 512 1024 4096 16384 32768

McOE-X-AES software 27.0 20.6 19.5 19.0 18.6 18.6 18.6

McOE-X-AES AES-NI 13.7 10.9 10.5 10.2 10.0 10.0 10.0

McOE-X-Threefish software 15.6 7.9 6.7 6.1 5.6 5.5 5.5

McOE-G-AES software 32.3 24.9 23.9 23.1 22.6 22.5 22.5

McOE-G-AES GF-NI/AES-NI 12.5 9.9 9.4 9.2 9.0 9.0 9.0

AES-CBC encryption software 18.6 18.0 16.4 15.5 14.2 11.4 11.4

AES-CBC encryption AES-NI 5.1 5.9 5.7 5.4 4.1 4.1 4.1

Table 8.2.: Performance values (cpb, single core), measured on a Core i5 540M for

AES-128 and Threefish-512.

8.4. Benchmarks

This section provides software-performance benchmarks of the two presented mem-

bers of the McOE family, i.e., McOE-X and McOE-G. All measurement results

are based on the real-time clock (RTC) and obtained by the median of 5,000 mea-

surements of the target function. The performance values are given in Cycles per

Byte (cpb). For the sake of comparison, we also provide performance benchmarks for

AES-CBC, a common encryption scheme without authentication, standardized by

the National Institute of Standards and Technology (NIST) [84]. The AES software

implementation is based on Gladman [111], whereas the hardware implementation

is based on the Intel AES-NI Sample Library [66]. The Threefish implementation is

based on the NIST/SHA-3 reference source as provided by the Skein authors [178].

Finally, the implementation of Galois-Field multiplication uses Intels carry-less mul-

tiplication instruction PCLMULQDQ that allows to compute the carry-less product of

two 64-bit operands in about 3.54 cpb [119]. Note that all performance benchmarks

are based on naive implementations based on reference code. Therefore, it is most

likely that the benchmarks can be further improved by the usage of sophisticated

optimization methods.

Target Platform. The benchmarks were performed on a single core of an Intel

Core i5-3210M CPU 2.50GHz computer. All software benchmarks were written in

C or ASM and compiled with the GNU C compiler (gcc) version 4.8.2 using the

optimization flag -O3.
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Results. The results of the 64-bit performance benchmarks are summarized in Table

8.2.

Further Implementation Results. Bogdanov et al. recently published a high-speed

implementation of McOE-G optimized for Haswell CPUs [50]. Their implementation

runs at about 6.24 cpb on a single core of an Intel Core i5-4300U CPU (1900 MHz)

processor. In addition, Bogdanov et al. also performed benchmarks in the multi-

message scenario. Here, McOE-G matches the performance of GCM at about 1.45

cpb. Their results show that scenarios exist where a conventional OAE scheme can

be replaced by a robust one without noticeable performance loss.

8.5. Results Summary

Originally, our research was inspired by the search for an authenticated encryption

scheme that can be used in a general-purpose cryptographic library. It should offer

by default a huge failure tolerance for practical software developers and still allow

being used in an on-line manner.

Since the well-known schemes (such as OCB and SIV) did not fit our requirements,

we developed McOE– the first robust OAE scheme. Furthermore, it is provably

secure in the standard model and fast enough for most common applications like

(full) hard-disk encryption or secure network communication. This renders McOE

a well-suited candidate for any general-purpose cryptographic library.

90



Part III

Design and Usage of

Cryptographic Hash Functions

91





9
Twisterπ – A Framework for Fast and Secure Hash

Functions

A person who never made a mistake

never tried anything new.

Albert Einstein

In this chapter we present Twisterπ, a framework for hash functions. It is an im-

proved version of Twister, one of the 51 accepted fist-round participants of the

SHA-3 Competition. Twisterπ is built upon the ideas of wide-pipe and sponge

functions. The core of this framework is a – very easy to analyze – Mini-Round,

providing both fast diffusion as well as collision-freeness. The total security level is

claimed to be not below 2n/2 for collision attacks and 2n for (2nd-) preimage attacks.

Twisterπ instantiations are secure against all known generic attacks. We also pro-

pose two instances Twisterπ-n for hash output sizes n = 256 and n = 512. These

instantiations are highly optimized for 64-bit architectures and run fast in hardware

and software. Furthermore, Twisterπ scales very well on low-end platforms.

Related Work. In the last decade, design flaws in popular hash functions such as

MD5 [200] and SHA-0 [185] were exposed, leading to a huge amount of attacks for

SHA-1 [183] [39, 40, 62, 80, 199, 234–236]. But, also newer hash functions, e.g.,

[12, 121, 140, 141] – which try to take care for weaknesses in the Merkle-Damg̊ard

construction itself – were broken soon after their publications [118, 162, 168, 192, 193].

Back then, some cryptographers were worried that the standardized SHA-2 [183,

184] family could also be vulnerable to state-of-the-art techniques in cryptanalysis.
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Therefore, in 2008, the NIST started the SHA-3 Competition [181] with the goal to

find a successor for the SHA-2 family. On October 2, in 2012, the NIST announced

Keccack [34], a sponge-function based software, as the winner of the SHA-3 Com-

petition. The concept of sponge functions [36] is given for example by a big internal

state that absorbs a message of infinite length and that later squeezes out a hash

value of variable size. In 2014, it will become the official SHA-3 standard.

Our Contribution. The design of secure and practical hash functions is of great

interest. Due to the SHA-3 Competition, many new proposals for hash functions have

been published during this process. In this chapter we present a new hash function

framework called Twisterπ. Our proposal is based on a sponge construction [37]

as well as on the wide-pipe approach [155]. The main goal is to present a fast and

secure hash function which is flexible to use and easy to analyze.

More precise, it uses XOR-sponges with a big internal state as proposed in [155].

The Grindahl design [141], which is the closest to our approach, but contains some

flaws which cannot be exploited in Twisterπ. We take advantage of the well studied

basic operations of AES [71] and adopt several of them, including some optimization

techniques.

Due to recent breakdowns of many proposed hash functions, we analyze the resis-

tance of Twisterπ against all known generic attacks on hash functions. We show

that the Twisterπ framework resists all of them if the size of the internal chaining

value is at least double the size of the hash output.

In 2009, Mendel et al. discovered a serious design flaw of Twister [166], the pre-

decessor of Twisterπ, leading to several attacks against Twister-512 [166]. Those

attacks are not transferable to Twisterπ-512 since it was especially designed to resist

them.

Outline. Section 9.1 points out the principles of Twisterπ. Section 9.2 specifies

Twisterπ and Section 9.3 briefly discusses its resistance against generic attacks.

Section 9.4 shows some optimization techniques related to the implementation of

Twisterπ on different platforms, and Section 9.5 provides software-performance

benchmarks. Section 9.6 introduces the differences between Twisterπ and its pre-

decessor Twister [93]. Finally, Section 9.8 summarizes our contribution.
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9.1. Design Principles of Twisterπ

In this section we explain our design purpose and point out the principles of the

Twisterπ design.

Security. The concept of Maximum Distance Separable (MDS) matrices allows us

to obtain a maximum of diffusion inside each column of the state matrix. Since the

message input is orthogonal with the diffusion of the state, i.e., a message word is

always injected into the last row of our state matrix, we allow a minimum of control

on the state for an adversary. Introducing a local feed-forward as well as the Blank-

Round (Twister-Round with no message input), furthe reduces the influence of an

adversary on the state.

Evolutionary. Throughout the last decade, a lot of hash functions using many dif-

ferent concepts have been broken. And often we had to learn that using newly

developed techniques lead to stronger attacks, which render pretended strong hash

functions weak.

The well-studied and analyzed block ciphers that were in the final round of the

AES Competition1 lead to some well established design principles offering a high

level of cryptographic knowledge. Therefore, Rijndael [70] can be seen as one of

the most studied block ciphers during this process and also in the time after. Its

concepts of simple byte-wise operations SubBytes, ShiftRows, and MixColumns, are

well-analyzed and it turns out that their combination can offer a high level of speed

and some form of provable security. We adopt a few of these concepts for Twisterπ

and we also learn from recent hash function breakouts.

Simplicity. A strong hash function should not be hard to analyze since not finding

an attack due to the algorithmic complexity does not mean that there is no simple

attack which breaks the whole function in an easy way. We therefore only use simple

and few components as building blocks for the Twister-Round. These components

have been studied before and are well known – but combining these components to

obtain a good hash function is new. Our clear design and straightforward structure of

Twisterπ makes cryptanalysis easy and serves the purpose that there are no simple

attacks which cannot be found due to a complex and unreadable algorithm.

1http://csrc.nist.gov/archive/aes/
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Portability and Scalability. A main design criteria of Twisterπ is its application

to a wide range of applications. Due to its byte-wise operations, it scales very neat

on 8-, 16-, 32-, and 64-bit platforms. Twisterπ can be very efficiently applied on

smart cards with small 8-bit processors. We also offer an optimized version for 32-

bit and 64-bit environments. The portability will be enhanced by its low-memory

requirements, which makes Twisterπ even valuable for low-end platforms.

Analyzability. Twisterπ consists of well-known and well-analyzed components.

The security level of Twisterπ can be proven for the inner components, which is

more worth than just a security claim. Using the concept of an MDS matrix, lead

to a very fast diffusion. After only two Twister-Round invocations, a full diffusion

is guaranteed (if no feed-forward has taken place). This high level of diffusion makes

Twisterπ very close to a randomized hash function offering a high level of security.

9.2. Specification of the Twisterπ Hash-Function Family

Algorithm 11 Twisterπ

Input: M {Message to Hash}, n {Output Length}

Output: Y {Hash Value}

T ← 0

S ← Init(π)

S(1→) ← S(1→) ⊕ n

if n ≤ 256 then

T ← null

end if

M ′ ←M || 10∗

for i = 1, . . . , |M ′|/512 do

(S, T )← Twister-Round(S, T,M ′i)

end for

S ← State-Finalization(S, T, |M |, n)

return Y ← Output-Round(S, n)

In this section we specify the overall structure and the individual building blocks of

Twisterπ, a byte-oriented hash function family, operating on a square state matrix

S. The core primitive of each individual Twisterπ hash function is the underlying

compression function, Twister-Round, processing 512-bit message blocks together
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with a 512-bit state (i.e., the chaining value) and outputs a 512-bit value. Messages

are padded using the 10∗-Padding-Rule (cf. Definition 2.7) to become a multiple of

512 bits. The compression function is based on an AES-like round function Mini-

Round, processing a 64-bit message word. The 512-bit checksum T can be seen as

an optional parameter, only needed for computing a message digest greater than 256

bits, otherwise it is set to null. It serves as an additional state to preserve our

wide-pipe approach where the state is at least twice as large as the message digest.

In the following, Twister-Round (S,Mi) denotes the invocation of Twister-Round

where the parameter T is either null or omitted. Thus,

Twister-Round(S,Mi) = Twister-Round(S, null,Mi).

The finalization phase starts after the padded message was fully processed, i.e., the

message is completely absorbed by the state S. At first, the message length and

the checksum – if present – is absorbed into the state by the means of the State-

Finalization. Finally, the message digest is computed by following the design ideas

of the sponge function [36]; instead of presenting the complete internal state to the

attacker, the Output-Round computes as many 64 bit output slices as needed. A

description of Twisterπ in pseudo-code notation is shown in Algorithm 11. Next,

we give an in-depth description of the individual components of Twisterπ.

9.2.1. Context

The State S. Twisterπ operates on a square state matrix S = (Si,j), 1 ≤ i, j ≤ 8,

consisting of eight rows and columns, where each cell Si,j represents one byte.

S1,1 S1,2 . . . S1,8

S2,1 S2,2 . . . S2,8

...
...

. . .
...

S8,1 S8,2 . . . S8,8

Note, S(i→) := (Si,1, . . . , Si,8) denotes the i-th row vector and S(j ↓) := (S1,j , . . . , S8,j)

the j-th column vector. similar to Blowfish [220], the initial state of Twisterπ is

given by the first 64 hex digits of the fractional portion of π. After the initialization
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the internal state S is given by the following matrix:

24 3F 6A 88 85 A3 08 D3

13 19 8A 2E 03 70 73 44

A4 09 38 22 29 9F 31 D0

08 2E FA 98 EC 4E 6C 89

45 28 21 E6 38 D0 13 77

BE 54 66 CF 34 E9 0C 6C

C0 AC 29 B7 C9 7C 50 DD

3F 84 D5 B5 B5 47 09 17

Checksum T . The checksum enlarges the state of Twisterπ-384 and Twisterπ-

512 to stick to our wide-pipe design [155] decision. In other words: using the check-

sum, we can double size of the internal state.

similar to the state S, the checksum T is represented by a square matrix T = (Ti,j),

1 ≤ i, j ≤ 8, consisting out of eight rows and columns, where each cell Ti,j represents

one byte.

T1,1 T1,2 . . . T1,8

T2,1 T2,2 . . . T2,8

...
...

. . .
...

T8,1 T8,2 . . . T8,8

We define a checksum-update operation as

T(i↓) = (3T(i↓))⊕ (T(i+1↓) ⊞ S(i↓)),

where ⊞ denotes an addition modulo 264. The initial checksum state is given by the

all zero state, i.e., Ti,j = 0 with 1 ≤ i, j ≤ 8

9.2.2. Mini-Round

The Mini-Round (cf. Algorithm 12) is the basic building block of any Twisterπ

hash function. The design of this primitive follows the lead of the AES round trans-

formation and thus, prefers simple components over complex ones. The main purpose

of this non-linear permutation is to inject a message word W , (InjectMessage) and

to take care of the diffusion of the state matrix S. The core of the Mini-Round is

the MixColumns operation where S is multiplied with an MDS matrix to achieve a
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Algorithm 12 Mini-Round

Input: S {State}, W {Message word}

Output: S {Updated state}

S ← InjectMessage(S,W )

S ← AddTwistCounter(S)

S ← SubBytes(S)

S ← ShiftRows(S)

S ← MixColumns(S)

return S

proper diffusion. The Mini-Round is visualized in Figure 9.1. Twisterπ can han-

dle at most 264 Mini-Rounds. This limitation is caused by the AddTwistCounter

operation where a 64-bit counter is added. Each Mini-Round can process 64 bits

of message data. Therefore, with a native usage of a Mini-Round it is possible to

process up to 264 · 64 message bits. If this limitation becomes a real world issue in

the future, it is possible to increase the size of the TwistCounter to 128s bit with

almost no performance loss.

InjectMessage (IM). A 64-bit message word W is XOR-injected into the last row.

Let W = W [1], . . . ,W [8] where W [i] denotes the i-th significant byte of W , e.g.,

W [8] denotes the most significant byte of W . Then, we define the message-injection

process by

S(8→) ⊕W := S(8,1) ⊕W [1] || · · · || S(8,8) ⊕W [8].

AddTwistCounter (AC). The TwistCounter ctr is an unsigned 64-bit integer ini-

tialized by the maximum value, i.e., 0xFFFF_FFFF_FFFF_FFFF. It is XORed byte by

byte into the first row of the state S.

S(1→) ⊕ ctr := S(1,1) ⊕ ctr[1] || . . . || S(1,8) ⊕ ctr[8]

After successful addition, ctr is decreased by 1.

SubBytes (SB). This function is defined as a bijection

SubBytes : {0, 1}8 → {0, 1}8
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a SB(a)SubBytes

AddTwistCounter

ShiftRows

MixColumns

InjectMessage

Figure 9.1.: Illustration of a Mini-Round.

and is used as an S-box for each byte. It should, among other properties, be highly

non-linear. A discussion on how to obtain such cryptographically strong S-boxes (for

8x8 S-boxes) can be found in [241]. Twisterπ uses the well-known and intensively

studied AES S-Box which can be found in [71].

We define the SubBytes operation by

S(i,j) := SB(S(i,j)) with 1 ≤ i, j ≤ 8.

ShiftRows (SR). ShiftRows is a cyclic left shift similar to the ShiftRows operation

of AES. It rotates Row j by (j−1) mod 8 bytes to the left. Suppose S←j(i→) denotes

the i-th row rotated by j bytes to the left. Then, the ShiftRows operation is defined
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by

S(i→) := S←i−1(i→) with 1 ≤ i ≤ 8.

MixColumns (MC). The MixColumns step is a permutation operation on the state.

It applies a N ×N -MDS A (a maximum distance separable matrix as defined below)

to each column, i.e., A · S(j ↓) for 1 ≤ j ≤ 8.

Definition 9.1 (MDS Matrix). An [n, k, d]-code with a generator matrix

G =
[
Ik×k Ak×(n−k)

]

is an MDS code if every square submatrix of A is non-singular, i.e., d 6= 0, where d

denotes the determinant of A. The matrix A is called an MDS matrix.

The MDS matrix chosen for Twisterπ is cyclic, i.e., its i-th row can be obtained

by a cyclic right rotation of (02 01 01 05 07 08 06 01) by i entries. It has a branch

number of 9 meaning that if two 8-byte input vectors differ in 1 ≤ k ≤ 8 bytes, the

output of the MixColumns operation differs in at least 9 − k bytes. More precisely,

the approximate probability that two 8-byte input words with DI different bytes

on predefined positions maps to two 8-byte output words with DO different bytes

on predefined positions by the MixColumns operation is given in Table 9.1. The

8× 8-MDS matrix used for all proposed instances of Twisterπ is:

MDS =




02 01 01 05 07 08 06 01

01 02 01 01 05 07 08 06

06 01 02 01 01 05 07 08

08 06 01 02 01 01 05 07

07 08 06 01 02 01 01 05

05 07 08 06 01 02 01 01

01 05 07 08 06 01 02 01

01 01 05 07 08 06 01 02




All of the byte-entries are considered to be elements of GF (28). An element of GF (28)

is represented by
∑7

i=0 ai2
i. The reduction polynomial R(x) of GF (28) is defined by

R(x) = x8 + x6 + x3 + x2 + 1.

A detailed discussion about the properties of MDS matrices/codes is given in [158].
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DI/DO 0 1 2 3 4 5 6 7 8

0 1 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞

1 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ 1

2 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ 2−8 0.99

3 - ∞ - ∞ - ∞ - ∞ - ∞ - ∞ 216 2−8 0.99

4 - ∞ - ∞ - ∞ - ∞ - ∞ 2−24 216 2−8 0.99

5 - ∞ - ∞ - ∞ - ∞ 232 2−24 216 2−8 0.99

6 - ∞ - ∞ - ∞ 2−40 232 2−24 216 2−8 0.99

7 - ∞ - ∞ 2−48 2−40 232 2−24 216 2−8 0.99

7 - ∞ 2−56 2−48 2−40 232 2−24 216 2−8 0.99

Table 9.1.: Column properties of the state matrix after multiplication with an MDS

matrix.

9.2.3. Compression Function

Mini

Round

Mini

Round
... Mini

Round

Mini

Round

Mini

Round
S

W1 W2 W7 W8 0

Figure 9.2.: Illustration of a Twister-Round.

The compression function

Twister-Round : {0, 1}512 × [{0, 1}512]× {0, 1}512 → {0, 1}512

maps three 512-bit input values (i.e., the state, an optional checksum and a message

block) to a 512-bit output value. It consists of nine Mini-Rounds. Each of the first

eight rounds absorbs a 64-bit word (i.e., W1, . . . ,W8) of the message block into the

state. The last Mini-Round is invoked with a virtual all-zero message word to limit

an adversaries control over the internal state of the hash function. Such a Blank-

Round is a common building component in the design of cryptographic hash functions

[35, 141, 180]. The individual Mini-Rounds are separated by a feed-forward operation

with the state before its invocation (cf. Figure 9.2) to guarantee the one-wayness of

Twister-Round since the remaining Mini-Round operations are invertible. The feed-

forward operation is defined by

S := S ⊕ Mini-Round(S,X),
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Algorithm 13 Twister-Round

Input: S {State}, T {Checksum}, W {Message Block}

Output: S {Updated State}, T {Updated Checksum}
1: for i = 1, . . . , 8 do

2: if T 6= null then

3: T(i↓) ← 3 · T(i↓) ⊕ (T(i+1)↓ ⊞ S(i↓))

4: end if

5: S ← Mini-Round(S,Wi)⊕ S

6: end for

7: S ← Mini-Round(S, 0)⊕ S

8: return (S,T )

whereX is either a message word or a sequence of 64 zero-bits. The optional checksum

for computing a message digest longer than 256 bits is updated before processing a

message word. A description of Twister-Round in pseudo-code notation is given in

Algorithm 13.

9.2.4. Post-Processing

This section describes the Twisterπ finalization process. It starts after the message

is completely processed by iterating the compression function over all message blocks.

The post-processing consists of the following two steps:

State Finalization. At first, to prevent length-extension attacks (see Section 2.3),

the state is updated by processing the bit-length |M | of the unpadded message M ,

encoded as a 64-bit value, together with the current state by means of a Mini-Round

(i.e., S ← Mini-Round(S, |M |)). Afterwards, the state finalization ends with either

a Blank-Round or the processing of the checksum with the state by means of a

Twister-Round, depending on the length of the message digest. In the latter case,

the checksum T is transformed in a 64-byte message block M = M [1], . . . ,M [64]

column by column where

(M [(i · 8)− 7], . . . ,M [i · 8])← T(i↓) with 1 ≤ i ≤ 8.

A formal definition of State-Finalization is given in Algorithm 14.

Message Digest Computation. The task of Output-Round is the computation of

the actual message digest from a given state S. A description in pseudo-code notation
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Algorithm 14 State-Finalization

S ← Mini-Round(S, |M |)

if n ≤ 256 then

S ← Mini-Round(S, 0)

else

S ← Twister-Round(S, null, T )

end if

is shown in Algorithm 15. For every 64 bits of the message digest, the current state is

first saved, and then updated by a Blank-Round followed by a feed-forward operation

with the saved state, and finally, an additional invocation of a Blank-Round (see Lines

3-6). A 64-bit output value is then obtained by XOR-ing the first column of S with

the first column of the saved state (see Line 7). This procedure is repeated until the

needed amount of message digest bits is obtained. The last output stream can be

varied between 32 bits and 64 bits by taking only the first half of the output value.

This allows to vary the output size for a huge amount of applications. Note that due

to Output-Round, Twisterπ can theoretically produce hash values up to 264 bits.

This limitation results from the initial step where the output length is written into

to first row of the state (cf. Algorithm 11). In some particular scenarios, long hash

values can become handy, e.g., full domain hashing [26]. Anyway, the security of

Twisterπ is limited by the state size.

Algorithm 15 Output-Round

Input: S {State}, n {Output Length}

Output: Y {Hash Value}

1: Y ← ∅

2: for i = 1, . . . , ⌈n/64⌉ do

3: X ← S

4: S ← Mini-Round(S, 0)⊕ S

5: S ← Mini-Round(S, 0)

6: Y ← Y || (S(1↓) ⊕X(1↓))

7: end for
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9.3. Security against Generic Attacks

In this section we give a brief discussion why Twisterπ is resistant to existing generic

attacks.

Length-Extension Attacks. The combination of the Twisterπ padding rule and

the processing of the message length in the post-processing phase avoids such type

of attacks. Another possible attack can be as follows:

For a known hash value H(M), one can compute the hash value H(M || Y || Z) for

any suffix Z if the length of an unknown message M is known as well as the padding

Y of M . Twisterπ is secure against such attacks due to two countermeasures: (1)

By knowing only the hash value, an attacker cannot easily determine the state S after

the last compression function call as it has only access to the hash value generated by

the Output-Round, which squeezes out some bits of the state by applying the output

transformation. The bits of the squeezing process do not leave enough information

to recover the internal state; (2) The multiple feed-forward does also prevent any

attacker to successfully gain any knowledge about prior state information. In each

squeezing process, one feed-forward is applied.

Multi-Collision Attacks. An instance of Twisterπ fully resists a multi-collision

attack if 8 · 82 = 512 ≥ n since the complexity is determined by k · 2512/2. All

instances of Twisterπ have this feature, although the state of Twisterπ-384 and

Twisterπ-512 is not big enough to prevent this attack by itself, but including the

checksum can be viewed as an enlargement of the state which then provides resistance

against this kinds of attacks.

Herding Attacks. For Twisterπ-256 (Twisterπ-512), we have an internal state

of 512 bits (|S|+ |T | = 1024) and with 512 > 3·256−5
2 = 381.5 bits (1024 > 3·512−5

2 =

765.5). The attack has the same complexity as for a (2nd-) preimage attack on a

random oracle. The complexity of this attack decreases with increased size of the

message. If the message is of size about 2ℓ, the complexity of the attack is 2(2n−5)/3−ℓ.

It is easy to see that all of our proposed instances of Twisterπ provides resistance

against this kind of attacks.

Long 2nd-preimage Attacks. Long 2nd-preimage attacks cannot be applied to the

Twisterπ framework for three reasons. First, in each Mini-Round, the Twist-

Counter ctr is added to the second column of the state S which does not allow to
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find expandable messages. Second, Twisterπ uses multiple feed-forwards and third,

the internal chaining value is in general much larger than n. This makes it harder

to find collisions and fix points since we essentially have constructions similar to the

wide-pipe design [155].

Slide Attacks. The TwistCounter ctr prevents slide attacks since in each iteration

of the Mini-Round, a fresh value is injected into the state matrix which does not allow

an adversary to find slid pairs of messages. Furthermore, the last inserted message

block cannot be the all-zero block due to the padding rules. Thus, slide attacks are

not possible for Twisterπ.

9.4. Implementation Details

In this section we discuss issues related to the implementation of Twisterπ on differ-

ent platforms. Test vectors to verify a specific implementaion are given in Appendix

A.

In essence, our techniques for implementing this cryptographic hash function rely

on the following key sources of information:

• Optimization techniques as given in [71] and

• some of the new techniques on how to reduce the number of instructions for an

AES implementation as given in [33].

Most of the discussed issues are relevant for more than one platform.

Note that there are no multiplications of two arbitrary values of GF (28), but

only multiplications of a variable with some fixed constants. The latter is easier to

implement than the former – especially in the context of hardware and high-speed

software implementations.

9.4.1. 64-Bit Platforms

All steps of the round transformation, (i.e.,SubBytes, ShiftRows, and MixColumns)

can be combined in a single set of lookup tables, allowing for very fast implementa-

tions on processors with word length greater equal 64 bits. The following notations
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will be used for the elements at matrix position (i, j) and for (for 1 ≤ i, j < 8):

ai,j input state matrix element,

bi,j state matrix element after SubBytes,

ci,j state matrix element after ShiftRows,

di,j state matrix element after MixColumns.

After finishing the MixColumns operation, we have for 1 ≤ j ≤ 8:



d1,j
d2,j
d3,j
d4,j
d5,j
d6,j
d7,j
d8,j




=




02 01 01 05 07 08 06 01

01 02 01 01 05 07 08 06

06 01 02 01 01 05 07 08

08 06 01 02 01 01 05 07

07 08 06 01 02 01 01 05

05 07 08 06 01 02 01 01

01 05 07 08 06 01 02 01

01 01 05 07 08 06 01 02




×




SB[a1,j ]

SB[a2,j+1]

SB[a3,j+2]

SB[a4,j+3]

SB[a5,j+4]

SB[a6,j+5]

SB[a7,j+6]

SB[a8,j+7]




where SB : {0, 1}8 → {0, 1}8 denotes the S-Box operation, and where ’+’ denotes a

wraparound addition, e.g., j + 6 ≡ 2 for j = 4. This matrix multiplication can be

interpreted as a linear combination of all eight column vectors:



d1,j
d2,j
d3,j
d4,j
d5,j
d6,j
d7,j
d8,j




=




02

01

06

08

07

05

01

01




SB[a1,j ]⊕




01

02

01

06

08

07

05

01




SB[a1,j+1]⊕ . . .⊕




01

06

08

07

05

01

01

02




SB[a1,j+7].

We now define eight V -tables: V1, V2, . . . , V8:

V1[α] =




02

01

06

08

07

05

01

01




SB[α], V2[α] =




01

02

01

06

08

07

05

01




SB[α], . . . V8[α] =




01

06

08

07

05

01

01

02




SB[α].
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It follows that we can write the combined operation of SubBytes, ShiftRows, and

MixColumns as




d1,j
d2,j
d3,j
d4,j
d5,j
d6,j
d7,j
d8,j




= V1[a1,j ]⊕ V2[a1,j+1]⊕ . . . ⊕ V1[a1,j+7].

So, there are only 64-bit XOR operations involved in the computation of a Twister-

Round that can be implemented quite efficiently on most platforms.

9.4.2. 32-Bit Platforms

By splitting the 64-bit lookup tables V1, . . . , V8 into 32-bit chunks, it takes twice as

much operations as compared to the 64-bit variant. More general, this Twister-

Round implementation has the desirable feature of scaling down linearly in terms of

speed depending on the available word size of the platform.

9.4.3. Specific Remarks for 8-Bit Platforms

The performance on 8-bit processors is an important issue since most smart cards with

cryptographic applications are restricted to their usage. There are several options

for implementing Twisterπ, depending on whether the requirements demand for

minimum space (i.e., low memory for storing lookup tables) or maximum speed. If

minimum space is requested, the multiplication of two elements in GF (28) has to be

performed in software and should not be stored as a lookup table. Specific details for

such issues can be found in [71, Chapter 4.1.1]. If space limitations are not an issue,

the technique for implementing Twisterπ via lookup tables should be chosen as

discussed in Section 9.4.1 or by splitting them up into single operations as discussed

in Section 9.4.2. As all operations linearly scale down in terms of speed, i.e., a 64-bit

XOR can be easily implemented via eight times an 8-bit XOR, the running time is

eight times the running time on a 64-bit platform.
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9.4.4. Dedicated Hardware

Twisterπ is suited to be implemented in dedicated hardware. There are several

tradeoffs between chip area and speed possible. Since the implementation in software

on general-purpose processors is already very fast, the need for hardware implemen-

tation will probably be limited to very specific cases like:

1. Extreme high-speed chips with no area restrictions: The tables V1, . . . , V8 can

be hard-wired and the XOR operations can be conducted in parallel.

2. Compact coprocessors on smart cards: There can either be only the S-Box hard-

wired or, additionally (and if enough memory is available), the tables V1, . . . , V8

be generated at runtime.

3. If there is essentially no space to hard-wire anything, even the S-Box can be gen-

erated at runtime. Since Twisterπ uses the Rijndael S-Box, one can assemble

it using two transformations:

SB[α] = f(g(α)),

where g(α) is defined as

α→ α−1 in GF (28)

and f(α) is an affine transformation.

Note that there are finite-field multiplier over GF (2n) available in hardware that

execute in a single clock cycle. More information is available in , e.g., [188] or, for a

short summary, in [71].

9.5. Benchmarks

This section provides software-performance benchmarks for the Twisterπ reference

implementation. All measurement results are based on the real-time clock (RTC)

and obtained by the median of 5,000 measurements of the target function. The

performance values are given in cpb. For the sake of comparison, we also provide

performance benchmarks for SHA-256 and SHA-512, where we used the implemen-

tation from OpenSSL2 version 1.0.1e.

2http://www.openssl.org, last access: July 2013
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Bytes SHA-256 Twisterπ-256 SHA-512 Twisterπ-512

20 40.2 86.6 49.8 160.2

64 22.8 41.0 15.6 64.1

256 13.5 20.5 10.4 26.4

512 12.0 17.1 8.4 20.1

576 11.8 16.7 7.6 19.4

1024 11.5 15.3 7.5 16.9

1500 10.7 14.5 6.8 15.6

4096 10.6 14.0 6.8 14.4

10000 10.5 13.8 6.6 14.0

16384 10.3 13.7 6.6 13.9

32768 10.3 13.7 6.6 13.8

Table 9.2.: The benchmark results for 64-bit platforms in cpb on an Intel Core i5-

3210M CPU 2.50GHz; OS: Linux 3.9-1-amd64; Compiler: gcc 4.7.3.

Bytes SHA-256 Twisterπ-256 SHA-512 Twisterπ-512

20 137.3 223.9 456.0 415.4

64 71.7 105.3 142.7 165.8

256 39.4 53.0 92.6 68.6

512 34.0 44.3 74.9 52.5

576 33.4 43.3 66.6 50.7

1024 31.4 39.9 66.0 44.3

1500 30.0 37.9 59.7 41.1

4096 29.5 36.7 59.3 38.3

10000 29.1 36.0 57.9 37.0

16384 29.0 35.9 57.7 36.8

32768 29.0 35.8 57.4 36.5

Table 9.3.: The benchmark results for 32-bit platforms in cpb on an Intel Core i5-

3210M CPU 2.50GHz; OS: Linux 3.9-1-amd64; Compiler: gcc 4.7.3.
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Round

Maxi-Round

Round Round Round

Maxi-Round

Round Round Round

Maxi-Round

Round Round

B1 B2 B3 B4 B5 B6 B7 B8 0

Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-

Si−1
Si

Figure 9.3.: The compression function Twister-Round-256.

Target Platform. The benchmarking took place on a single core of an Intel Core

i5-3210M CPU 2.50GHz processor. All of the software benchmarking was written

in C or ASM and compiled with the GNU C compiler (gcc) version 4.7.3 using the

optimization flag -O3.

Implementation Remarks. Twisterπ was especially designed with 64-bit plat-

forms in mind by making it possible to aggregate eight times an 8-bit table lookup

into one single 64-bit table lookup.

Results. The results of the 64-bit and 32-bit performance benchmarks are summa-

rized in Tables 9.2 and 9.3, respectively.

9.6. From Twister to Twisterπ

The task of this section is to introduce the differences between Twisterπ and its

predecessor Twister [93]. All modifications have been taken into account as a

results of the external Twisterπ cryptanalysis from Mendel et al. [166]. A detailed

discussion on their findings is given in Section 9.7. The major change between the

two hash function families lies in the structure of the compression function. All

members of the Twisterπ family use the same compression function, independent

of the length of the message digest. On the other hand, the Twister family uses

two similar compression functions, (1) Twister-Round-256, for the computation of

message digest up to 256 bits and (2) Twister-Round-512 to compute message digests

longer than 256 bits. Both hash functions follow the Min-Max approach, i.e., either

three or four Mini-Rounds are pooled to a Maxi-Round. The feed-forward operation

(as visualized in Figure 9.3 and 9.4) is only performed after each Maxi-Round and not

after each Mini-Round since two consecutive Mini-Rounds without a feed-forward

in between guarante full diffusion – a nice property which unfortunately does not

imply either collision or preimage security. In Twisterπ, we perform a feed-forward

after each Mini-Round to thwart rebound attacks. Furthermore, in Twisterπ, we
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Round

Maxi-Round

Round Round Round

Maxi-Round

Round Round Round

Maxi-Round
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Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-Mini-
Si−1 Si

Figure 9.4.: The compression function Twister-Round-512.

Type Compression Function Calls Memory Requirement

collision attack 2251 29

2nd-preimage attack 2384 264

preimage attack 2456 210

Table 9.4.: Cryptanalytic results for Twister-512 [166].

improved the checksum algorithm by a non-linear operation, namely multiplication

by 3. Finally, Twister injects the TwistCounter into the second column. Twisterπ

injects the TwistCounter into first row to circumvent a cancellation of a non-zero

difference between two message words W and W ′.

9.7. Untwisting the Myth – Cryptanalysis of Twister

This section consists of three parts. The first part introduces the preliminaries needed

for understanding differential cryptanalysis. The second part presents the cryptan-

alytic results for Twister-512 from Mendel et al. [166] – summarized in Table 9.4

– and the third part discusses why those attacks are not applicable to Twisterπ

anymore.

9.7.1. Preliminaries of Differential Cryptanalysis

Differential cryptanalysis, introduced by Biham and Shamir at Crypto’90 [42], turned

out to be one of the most powerful techniques to attack cryptographic primitives

like hash functions and block ciphers. It follows differential trails that occur with

a significant probability, instead of looking at specific values. Next, we give a brief

introduction about the basic definitions that are needed in the following cryptanalysis

of Twister. The notions are borrowed from [219].
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Definition 9.2 (XOR Difference). Suppose x1 and x2 are two n-bit values. Then,

the (n-bit) XOR difference is defined by

∆x = x1 ⊕ x2.

Definition 9.3 (Differential Probability). Let F : {0, 1}n → {0, 1}m be a func-

tion. Suppose ∆x is an n-bit input difference and ∆y is an m-bit output difference.

Then, we define the differential probability by

Pr
[
∆x

F
→ ∆y

]
= 2−m

2n−1∑

i=0

(F (i)⊕ F (i⊕∆x) = ∆y).

In this thesis we name ∆x input difference, ∆y output difference and ∆x
F
→ ∆y

differential. Note that differentials with a differential probability of zero are called

impossible differentials.

Difference-Distribution Table (DDT). The number of right pairs of a differential

∆x
F
→ ∆y denoted as NF (∆x

F
→ ∆y) is the number of pairs which satisfy that an

input difference ∆x leads to an output difference ∆y. Usually, cryptanalysts are

interested in the number of right pairs for all possible input and output values of a

non-linear function, e.g., an S-box, which can be encoded as DDT.

Definition 9.4 (Difference-Distribution Table (DDT)). Let F be an n×m S-

Box. Then, the DDT of F is a 2n × 2m table whose entries are the number of right

pairs NF (∆x
F
→ ∆y) for all differentials ∆x

F
→ ∆y. The rows and columns of the

DDT are indexed by the input differences ∆x and output differences ∆y, respectively.

Due to the fact that the XOR operation is commutative, all entries of a DDT are

even values, and the sum of each row must be 2n. A toy example is given in Figure

9.5.
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F (x) =





1, x = 0

3, x = 1

2, x = 2

0, x = 3

∆x/∆y 0 1 2 3

0 4 0 0 0

1 0 2 2 0

2 0 2 0 2

3 0 4 0 0

Figure 9.5.: Example computation of a DDT for a 22 × 22 S-box.

AES S-box. The 28 × 28 AES S-box SB – which is also used in Twisterπ and

Twister – provides a nearly uniform distribution of XOR differentials. More pre-

cisely, the 65,536 entries of the SB-DDT are given by 33,150 entries 0, 32,130 entries

2, 255 entries 4, and one entry of 256 [219]. So, the probability that an entry chosen

uniformly at random contains a value greater than zero is about 1/2. A more formal

description of this observation is given in the following proposition:

Proposition 9.5 (Non-Zero Probability of the AES S-Box). Suppose SB is

the AES S-box, and let (∆x,∆y) a fixed tuple of input-output differences. Then,

it holds that

Pr
[
NSB(∆x

SB
→ ∆y) > 0

]
=

32386

65536
≈ 1/2.

9.7.2. Collision Attack on Twisterπ-512

The core of the collision attack is a semi-free-start collision attack for the compression

function based on a rebound attack presented at FSE’09 by Mendel et al. [167]

– about four months after the SHA-3 submission deadline. This attack was then

developed into a collision attack for the hash function using Wagner’s generalized

birthday attack [233].

Semi-Free-Start Collision Attack. This attack only considers the first Maxi-Round

of the Twister-Round-512 compression function. This operation updates the state

S0 by processing the first message words W1,W2, and W3 of a 512-bit message block

Mi by three consecutive invocations of the Mini-Round, i.e., S′ = (Mini-RoundW3 ◦

Mini-RoundW2 ◦ Mini-RoundW1)(S
0) = Maxi-Round(S0,W1,W2,W3). Note that we

can further decompose a Mini-Round into its individual basic operations:

Mini-Round(S0,Wi) = (MC ◦ SR ◦ SB ◦AC ◦ IMWi)(S
0).
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MI

AC
SB
SR

MI

AC
SB

SR

MC

MI

MC
AC

MC

W1 W2 W3

S0 S1 S2 S3 S4 S5 S6 S′

Inbound step Inbound stepOutbound step

Figure 9.6.: A schematic view of the semi-free-start collision attack of Twister-512.

Black state bytes are active.

Then, we have

S′ = Maxi-Round(S0,W1,W2,W3) =(MC ◦ SR ◦ SB ◦AC ◦ IMW3◦

MC ◦ SR ◦ SB ◦AC ◦ IMW2◦

MC ◦ SR ◦ SB ◦AC ◦ IMW1)(S
0).

The basic idea of the attack is to inject a message-word difference ∆W1 into the first

Mini-Round, which can be canceled by the message-word difference ∆W3 in the third

Mini-Round. The rebound attack can then be described by an inbound step and an

outbound step (cf. Figure 9.6). The inbound step propagates differences in W1 and

W3 forwards and backwards through the MixColumns operation with a probability of

1. The goal of the outbound step is to find matches for the resulting differences of

the SubBytes operation of the second round and propagate them outwards.

Inbound Step. Let S0, . . . , S6, and S′ be the internal states of Twister as shown in

Figure 9.6. First, a message word of eight active bytes, i.e., an XOR difference

unequal zero, is injected into the last row of the State S1 by means of the

InjectMessage operation followed by another message injection into the state

S5 to cancel out the remaining active bytes in the last row. Then, the two

active States S2 and S4 are computed by forward and backward computation,

respectively. The column property of the MixColumns operation and its inverse

(see Section 9.2.2) ensures that all 64 bytes of S3 and S4 are active.

Outbound Step. In this step, the adversary has to find a match for the input and

output differences of the SubBytes operation of the second Mini-Round. Note

that all 64 bytes of S3 and S4 are active. So, we have to estimate the effort

for the adversary in finding 64 matches. For a single S-box call, the probability

that a fixed ∆x
SB
→ ∆y exists is about 2−1 (see Proposition 9.5). For such a

differential, it is possible to assign at least two possible values to the S-box, due
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to the symmetry of XOR differences. Next, the adversary chooses a random

difference for the active Byte S2
(8,1) and then, computes the first column of the

interim state S3. The probability of finding non-zero differentials for all entries

of this column is 2−8. After finding a match, the adversary continues with the

next column, until all columns are successfully processed. The complexity of

this step is less than 28 compression function calls.

After executing the outbound step, the adversary has found a differential match for

the SubBytes operation and can choose from at least 28 possible states for S3. Each

of those states can be computed forwards or backwards and produces a semi-free-

start collision for a Maxi-Round. Each computation determines as well the State S0

as the values and differences of W1 and W3, where the value of the message word W2

can be freely chosen.

Next, we show how this semi-free-start collision attack can be extended to a collision

attack on Twister-512.

Collision Attack on the Compression Function. At first, the adversary A computes

2224 semi-free-start collisions for the last Maxi-Round of Twister-Round-512 and

stores them in a list L. This has a time complexity of about 2224 compression function

calls. By varying the values for the massage word W7, A can gain additional 264

degree of freedom. After this pre-computations step, A randomly chooses some values

for the message words W1 − W5 and computes the input of the last Maxi-Round.

Statistically, the adversary finds a match in L after 2224 tries. The complexity for

this step of the attack is about 2/3 · 2224 compression function calls. In total, this

collision attack has a time complexity of at most 2225 compression function calls and

a memory complexity of 2224. The adversary can get rid of the memory complexity

by applying the memory-less variant of the meet-in-the-middle attack introduced by

Quisquater and Delescaille [195].

In the next paragraph we discuss how A can extend a collision for the compression

function into a genuine collision for Twister-512.

Collision Attack on the Hash Function. In addition to the 8 × 8 state matrix

S, Twister also has an 8 × 8 checksum matrix T which is updated immediately

before the processing of a message word by a Mini-Round. In the post-processing,

T is absorbed into the state via the compression function. Therefore, to construct

a collision for Twister-512, an adversary has to implement a collision for both

the chaining value represented by the state S and the checksum T . This can be
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done by applying the multi-collision attack introduced by Joux [129]. The effort to

construct 2t multi-collisions is t · α where α denotes the complexity for constructing

a single collision. A collision for the compression function of Twister-512 can be

constructed with a time complexity of about 2225. Thus, an adversary can construct

2256 collision with a time complexity of about 256 · 2225 = 2233 evaluations of the

compression function. The memory complexity for this attack is about 29 to store

the 2256 multi-collisions. Due to the birthday paradox, the probability that two out

of 2256 corresponding checksums are equal is greater than 1/2. Thus, we can assume

that the set of multi-collisions also contains a collision for Twister-512. The time

complexity to find a colliding checksum pair is about 2256 checksum computations,

i.e., 16 integer operations consisting of eight XOR operations and eight modular

additions per checksum computation. In contrast, a Twister-Round-512 evaluation,

omitting the checksum computation, can be done in 684 integer operations and 64

load/store operations. The individual numbers can be computed by adding up the

cost of the individual operations which are

• 3 · 8 XOR operations for the feed-forward operations,

• 10 · 1 XOR operations for the InjectMessage step,

• 10 ·64 XOR operations for a combined operation that consists of the SubBytes,

ShiftRows, and MixColumns step, and

• 10 · 64 table lookups for such a combined operation.

Thus, we can assume that the cost of evaluating the compression function is at least 32

times higher than the computation of a checksum, so, 2256 checksum computations has

an effort of at most 2251 compression function evaluations. The memory complexity

for this step is negligible when applying the memory-less variant of the birthday

attack [195].

9.7.3. 2nd-Preimage Attack on Twister-512

Let Si denote the state S after the invocation of the i-th Mini-Round within a

Twister-Round-512. The following 2nd-preimage attack has a minor limitation; it

only works for a given message-hash tuple (M ,Twister-512(M)), where the message

consists of at least 513 message blocks, i.e., |M | > 512 · 513. Without loss of gen-

erality, we assume that the message M consists of 513 message blocks. The process

of the 2nd-preimage adversary A can be described by the following six consecutive

steps:
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1. A applies the multi-collision attack to construct 2512 multi-collisions with a time

complexity of about 512·2225 = 2234 evaluations of the compression function and

a memory complexity of 29. After this step, A gets 2512 messages leading to the

same chaining value V512, i.e., the state after 512 iterations of the compression

function.

2. A chooses arbitrary values for the last message block M ′513 with correct padding

and computes the chaining value V513, i.e., the state which is used as input for

the post-processing step.

3. A chooses arbitrary values for the first five columns of the checksum T ′, i.e.,

T ′(1↓), . . . , T
′
(5↓). Then, it computes the interim state S6

F = V ′513⊕S3⊕S6 of the

last compression function call, Twister-Round-256(V ′513, T
′). From the first

preimage, A can compute S′ = Twister-Round-256(S0, T ), and then the value

S10 = S′ ⊕ S6
F .

4. For each of the 264 possible values of T ′(8↓), A computes backwards the values

S′7 = InjectMessage(S′7, T ′(7↓)) and stores them in the list L.

5. For each of the 264 possible values of T ′(6↓), A computes forwards from S6 to

the injection of the checksum word T ′(7↓), and then checks if the result matches

any element of the list L. Since A is still able to choose an arbitrary value for

T ′(7↓), it is sufficient to match all rows except the last. The probability that all of

those 448 bits – from the remaining seven rows – match, is about 2448−128 since

A has 2128 pairs to check. Statistically, A finds a match after 2320 iterations

of the Steps 3-5. So, we can upper bound the costs of finding such a pair by

about 2320+64 = 2384 compression function evaluations.

6. Once A found a 2nd-preimage for the iterative part of Twister-512, it has to

ensure that the checksum T ′ is valid. From the computation of Step 1, A has

access to 2512 checksums leading to the same chaining values V512,V513, and V514.

By applying a memory-less meet-in-the-middle-attack [195], the adversary can

construct the needed checksum value. The complexity for this attack is about

2257 checksum operations.

The introduced 2nd-preimage attack for Twister-512 has a time complexity of about

2384 and a memory complexity of 29+64. Due to the output transformation Output-

Round, the attack cannot be extended to a preimage attack on Twister-512 in a

straightforward way. But, in the next section we will present a sophisticated way to

use this attack as a key element of a preimage attack.
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Figure 9.7.: Inversion of the first 64-bit word of a Twister-512 hash value.

9.7.4. Preimage Attack on Twister-512

To construct a preimage for Twister-512, an adversary A has to invert the output

transformation OutputRound (see Section 9.2.4). Afterwards, it can apply the 2nd-

preimage attack former presented to construct a preimage. Suppose the adversary

has to find a preimage for the value Y = Y1 || . . . || Y8 where Yi denotes the i-th hash

word which was generated by the OutputRound function. Furthermore, we assume

without loss of generality that A produces a preimage M of 513 message blocks with

correct padding, such that Y = Twister-512(M). Let S1-S6 be the internal states

of Twister as shown in Figure 9.7, where S1 denotes the state after the invocation

of the function State-Finalization, i.e., V514. The OutputRound inversion attack

can be described by the following six consecutive steps:

1. A chooses an arbitrary value for the first column of S1 and sets the first column

of S6 using the first 64-bit hash word, i.e., S6
(1↓) = S1

(1↓) ⊕ Y1.

2. A computes forwards 64 bits from the state S1, the Byte S2
(1,1), and the seven

Bytes S2
(i,j) for 2 ≤ i ≤ 8 where j = 10− i.

3. A computes backwards from State S6 the first column of S5 and the diagonal

bytes of S4.

4. A chooses arbitrary values for the seven remaining diagonal bytes of State S1,

i.e., S1
(2,2), . . . , S

1
(8,8). This determines the first column of S2. Then, A computes

backwards the eight diagonal bytes S3
(i,i) = S1

(i,i) ⊕ S4
(i,i) for 1 ≤ i ≤ 8.

5. Next, A has to find a match of S2 and S3 through the MixColumns operation
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(cf. Figure (9.7). Note that the first column of S2 is already determined by the

previous step. First off all, A tests if the first Byte S3
(1,1) matches, if not, A

starts over again from Step 1. Statistically, A finds a match after 28 iterations of

Steps 1-4. Then, it find matches for the remaining columns of S2 by executing

the following two steps:

a) A chooses for each column 2 ≤ i ≤ 8 arbitrary values for the remaining

seven Bytes S2
(j,i) with 1 ≤ j ≤ 8 and j 6= 10 − i since S2

(10−i,i) is already

fixed due to Step 2.

b) Then, A computes the MixColumns operation and checks if Byte S3
(i,i)

matches, and repeates the previous step if not. This step has a time

complexity of 28 Mini-Round operations.

Note that each column can be modified independently. Therefore, this step

has a time complexity of about 8 × 28 = 211 Mini-Round operations. This

corresponds to about 28 compression function evaluations.

6. AfterA has found a match for all columns of S2, it computes S1 backwards from

S2. Note that the values fixed in Step 1 and Step 4 do not change anymore.

A can invert the OutputRound of Twister-512 by repeating Steps 1-6 about 2448

time. Thus, this inversion attack has a time complexity of about 2448+8 = 2456

compression function evaluations and a total memory complexity of 210. Now, A

can apply the 2nd-preimage attack of the previous section to the State S1 = V514 to

construct a preimage for Twister-512 which consists of 513 message blocks. This

preimage attack has a total time complexity of 2448+2456 ≈ 2456 compression function

operations and a total memory complexity of 210.

Remarks. None of the introduced collision, preimage, and 2nd-preimage attacks on

Twister-512 are practical due to the time complexity of at least 2384 compression

function calls. Nevertheless, they reveal non-random properties that are not present

in SHA-512. Due to the publication of those attacks, the committee of the SHA-3

Competition did not pass Twister-512 to the second round; a rightful choice.

9.7.5. Twisterπ Security Discussion

In this section we argue why the presented attacks on Twister-512 are not applicable

to Twisterπ-512.
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Collision Attacks. The semi-free-start collision attack exploits the invertibility of

a Maxi-Round. Twisterπ abandoned the concept of Maxi-Rounds and applies a

feed-forward after each Mini-Round. Thus, following the notations of Figure 9.6, we

have S6 = (AC ◦MI)(S5 ⊕ S2) instead of S6 = (AC ◦MI)(S5). Since S2 is a full

active state and the message word is injected in the last row, the interim state S6

has at least 56 active bytes. Therefore, it is no longer possible to achieve a state

containing an all-zero difference after three invocations of a Mini-Round. So, the ad-

ditional feed-forward operations thwart the proposed rebound attack. Furthermore,

this modification also thwarts the presented collision attack on Twister-512 since

it is just a sophisticated extension of the semi-free-start collision attack.

(2nd-) Preimage Attack. The preimage attack on Twister-512 presented in Sec-

tion 9.7.4 invokes the 2nd-preimage attack from Section 9.7.3. Thus, it is sufficient

to show why the 2nd-preimage attack is no longer applicable to Twisterπ-512.

Steps 3 and 4 of the 2nd-preimage attack on Twister-512, the adversary also

exploits the invertibility of a Maxi-Round to compute the interim states S10 and S′7.

The extra feed-forward operation would not allow to compute S10 without determin-

ing T(6↓), T(7↓), and T(8↓). But this would take away the freedom from an adversary

to choose an arbitrary value for T(7↓) and T(8↓), increasing the time complexity by

2128 from 2384 to 2512, which renders this attack not better than exhausting search.

9.8. Results Summary

We proposed a family of hash functions which overcomes several identified weaknesses

of the commonly used MD4/5 family of hash functions (MD4, MD5, SHA-0/1). By

using some of the well-analyzed building blocks and ideas of Rijndael, we obtained a

design for which we claim that no efficient differential collision structure exists. In

addition, we limit access to the internal structure and take care that any possible

difference quickly diffuses into the internal state. Furthermore, it is highly scalable as

there are – as proposed in, e.g.,Twisterπ-256 and Twisterπ-512 – many possible

ways to adopt our main building block, the Twister-Round.

Furthemore, we proposed two specific instantiations of the Twisterπ framework,

Twisterπ-256 and Twisterπ-512. The claimed security level for Twisterπ-256

with respect to collision resistance is 2128 and with respect to (2nd-) preimage re-

sistance 2256. For Twisterπ-512, the claimed security level for collision resistance

is 2256 and for (2nd-) preimage resistance 2512. The Twisterπ family of hash func-

tions exploits mathematical structures (i.e., MDS matrices) and, at the same time,
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has comparable speed to the SHA-2 family. Thus, instances of the Twisterπ fam-

ily are suitable for a huge range of applications from low-end 8-bit microcontroller

platforms up to high-end 64-bit software architectures.
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Talent hits a target no one else can

hit; Genius hits a target no one else

can see.

Arthur Schopenhauer

From the early 1960s [218] till now, the concept of textural passwords are dominant

in terms of human-computer authentication. In the context of this thesis we define a

password as a user-chosen secret, and thus, we also consider both a passphrase and

a Personal Identification Number (PIN) as a password. As observed by Wilkes in the

late 1960s [237], storing plain authentication passwords is insecure. Everybody that

is granted access to the password storage of a specific multi-user system, immediately

learns all user passwords, and can just impersonate any user by a legitimate login.

About a decade later, the UNIX system integrated some of Wilkes ideas [174] by de-

ploying a DES-based [175] one-way encryption function, called crypt. This function

is limited to passwords up to eight characters since the seven least significant bits

of each of the first eight characters of the password represents the 56-bit key of the

64-bit block cipher DES, which is used to encrypt iteratively – 25 times – a string of

64 zero-bits.

Under the assumption that crypt is preimage-secure, there is no efficient way to

recover the original password from its output, i.e., the password hash. Nevertheless,

this scheme can nowadays not longer be considered secure, due to its very small key

space of 56 bits. By the means of modern Graphical Processing Units (GPUs) with

hundreds of cores [67] – as embedded in all state-of-the art graphics cards – it is
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possible to recover the key in feasible time. For example, the advanced password-

recovery tool hashcat can process about 226 password candidates per second (c/s)

on a single AMD hd6990 graphics card [226]. An adversary with access to a GPU-

cluster with 128 nodes can compute a preimage in about four months. Thus, the

question of how to slow down such adversaries becomes a pressing one.

Memory is expensive; so, a typical GPU or other cheap massively-parallel hardware

with lots of cores can only have a limited amount of memory for each single core.

More importantly, each core will have only a very limited amount of fast memory

(cache). So, the way to prevent c-core adversaries from gaining some close-to-c-

times speed-up is by making a password scrambler not only intentionally slow on

standard sequential computers, but also intentionally memory consuming. Under

the preimage-security assumption, any adversary using c cores in parallel with less

than about c times the memory of a sequential implementation must experience a

strong slow-down. A formal definition of this property called sequential memory-

hardness is given in Section 10.3 (cf. Definition 10.3). The first password scrambler

that took this condition into account was scrypt [191].

In the light of the current situation, the designer of a modern password scrambler

is caught between Scylla and Charybdis. On the one hand, the acceptance of a

password scrambler depends on its time and memory usage. Usually, user want

to log in without noticeable delay [231], and especially on embedded devices, such

as routers or switches, it is unlikely that the developers choose to implement a login

process that consumes a significant amount of expensive memory. On the other hand,

the more time and memory a password scrambler needs to compute a hash from a

password, the less efficient are guessing attacks such as exhaustive search. This is

the reason why the password processing takes some time for both kinds of users

legitimate ones and attackers. Thus, a good password scrambler P has to satisfy at

least the following three basic conditions:

(1) Given a password pwd , computing P(pwd) should be“fast enough” for the user.

(2) Computing P(pwd) should be “as slow as possible”, without contradicting the

previous condition.

(3) Given h = P(pwd), there must be no significantly faster way to test q password

candidates x1, x2, . . . , xq for P(Xi) = Y than by actually computing P(xi) for

each xi.

124



10.1. Background

Memory-Access Pattern and Outline. Note that a memory-consuming password

scrambler may suffer from a new problem. If the memory-access pattern depends

on the password, and the adversary can observe that pattern, this may open the

way to another kind of shortcut attack. For example, a spy process running on the

same machine as the password scrambler P (without access to the internal memory

of P) may gather information about the memory-access pattern by measuring cache

timings. This information can be used to greatly speed-up massively-parallel attacks

with low memory for each core. In Section 10.4 we show that this is actually an

issue for scrypt, and then, in Section 10.5 we present a fix by introducing Catena,

a new password scrambler framework which consumes lots of memory (like scrypt),

but does not have a password-dependend memory-access pattern. In Section 10.6 we

formally analyze the security of Catena framework and its memory consumption.

Section 10.7 presents a secure Key Derivation Function (KDF) based on Catena. In

Section 10.8 we introduce an instantiation of Catena, namely Catena-DBG, and

in Section 10.9 we analyze its security and memory-hardness. Finally, Section 10.10

summarizes our contribution.

10.1. Background

Since the introduction of crypt, storing the hash of a password and avoiding to store

the plain password itself has become the minimum standard for secure password-

based user authentication. But, even as late as 2012, major players like Yahoo and

CSDN (China Software Developer Network) seem to store plain user passwords [157].

Two important innovations from crypt were key stretching and salts. Key stretch-

ing is the answer to the typically low entropy of user-chosen passwords: The pass-

word scrambler is intentionally slow, but not too slow for the regular operation, e.g., a

password-based login. This makes exhaustively searching through all likely passwords

more expensive.

Salt. A salt refers to an additional random input for the password scrambler and is

stored together with the password hash. It enables a password scrambler to derive

lots of different password hashes from a single password as an initialization vector

enables an encryption scheme to derive lots of different ciphertexts from a single

plaintext. Since the salt must be chosen uniformly at random, it is most likely that

different users have different salts. Thus, it defends against attacks where password

hashes from many different users are known to the attacker, e.g., against the usage

of rainbow tables [182].
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Pepper. There are different ways to perform key stretching. One is to keep p bits of

the salt secret, turning them into pepper [159]. Both attackers and legitimate users

have to try out all 2p values the pepper can have (or 2p−1 on the average). Note that

a careless implementation of this approach could leak a few bits of the pepper via

timing information when trying out all possible values in a specific order. Thus, a

recommended approach would be to start at a random value and wrap around at 2p.

Kelsey et al. [136] analyzed another key stretching approach where a cryptographic

operation is iterated n times. Boyen proposed in [52] a user-defined implicit choice

of n by iterating until the user presses a “halt” button.

10.2. Related Work

Table 10.1 provides an overview of password scramblers that are or have been in

frequent use, compared to Catena. It indicates whether the password scrambler

supports salt, server relief, and client-independent updates. Furthermore, the table

lists all possible values of the cost factor (security parameter) including the default

values, the memory usage, and issues from which the considered password scrambler

may suffer from.

Hash Function Based Password Scramblers. Not long ago, md5crypt [132] has

been used in nearly all Free-BSD and Linux-based systems to scramble user pass-

words. It is based on the well-known MD5 hash function with a fixed number of

1,000 iterations. Due to the fact that CPUs and GPUs become more and more pow-

erful, md5crypt can now be computed too fast, e.g., over 5 million times per second

on an AMD HD 6990 graphics card [226]. Additionally, its own author does not con-

sider md5crypt secure anymore [132]. Common Linux distributions nowadays employ

sha512crypt [82], e.g., Debian, Ubuntu, and Fedora. It provides similar features as

md5crypt, but uses SHA-512 instead of MD5. Furthermore, the number of iterations

can be chosen by the user; default is 5,000 iterations. NTLMv1 [112] is a fast password

scrambler which is deployed to generate hash values for several versions of Microsoft

Windows passwords. It is very efficient to compute: One can check over nine bil-

lion password candidates per second on a single Commercial Off-The-Shelf (COTS)

graphics card [226]. For this and other reasons, we recommend that NTLMv1 should

not be used anymore, if possible.

The Password-Based Key Derivation Function 2 (PBKDF2) has been specified

by the NIST [231]. It is widely used either as a KDF (e.g., in Wi-Fi Protected

Access (WPA), WPA2, OpenOffice, or WinZip) or as a password scrambler (e.g., in
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Password Scrambler Cost Factor Memory Server Client-Indep. Issues

Relief Updates

crypt [174] 25 small - - “too fast”

md5crypt [132] 1,000 small - - “too fast”

sha512crypt [82] 1,000–999,999 small - - small memory

NTLMv1 [112] 1 small - - “too fast”

PBKDF2 [231] 1–∞ small - - small memory

bcrypt [194] 24–299 4,168 bytes - - constant memory

scrypt [191] 1–∞ flexible, big - - cache-timing attacks

Catena (this work) 21–2∞ flexible, big X X new and untested

Table 10.1.: Comparison of contemporary password scramblers.

Mac OS X, and LastPass). The security of PBKDF2 is based on c iterations of Hash-

Based Message Authentication Code (HMAC) [17] instantiated with SHA-1, where c

is a user-chosen value which is given by default with c = 1, 000.

bcrypt. The bcrypt algorithm [194] is built upon the Blowfish block cipher [220].

Internally, Blowfish uses a slow key scheduler to generate an internal state of 4,168 bytes

for the key-dependent S-boxes (4×1, 024 bytes) and the round keys (72 bytes). Thus,

while bcrypt has not been designed with the intention to thwart parallelized attack-

ers by exhaustive memory usage, the state is sufficiently large to slow down bcrypt

significantly on current GPUs, e.g., it can only be computed about 4,000 times per

second on an AMD HD 7970 graphic card [226]. However, the state size is fixed – so

if future GPUs have a larger cache, it may actually run much faster. There is no

tunable parameter to increase the memory requirement. For key stretching, bcrypt

invokes the Blowfish key scheduler 2c times, e.g., OpenBSD uses c = 6 for users and

c = 8 for the superuser.

scrypt. Occupying a lot of memory hinders attacks using special-purpose hardware

(storage is expensive) and GPUs. We are aware of one single password-scrambler that

has been designed to fulfill this requirement: scrypt [191]. (There was HEKS [197],

but it has been broken by the author of scrypt [191].) As its core, scrypt uses the

sequentially memory-hard function ROMix, which can take G units of memory and

performs 2G operations. With only G/K units of memory, the number of operations

goes up to 2G ·K. In [191], Percival recommends G = 214 and G = 220 for password

hashing and key derivation, respectively. We will describe and analyze scrypt and

ROMix in Section 10.4.
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10.3. Memory-Related Properties

In this section we introduce a listing of desired properties a modern password scram-

bler should have – beyond salt and pepper. We start, by introducing the security

parameter g, called garlic. The notion of garlic reflects the property that incre-

menting this parameter by ’1’ doubles the memory usage and at least doubles the

computational time.

Memory-Hardness. To describe memory requirements, we adopt and slightly change

the notion from [191]. The intuition is that for any parallelized attack, using c cores,

the required memory per core is decreased by a factor of 1/c, and vice versa.

Definition 10.1 (Memory-Hard Function). For a memory-hard function F

which is computed on a Random Access Machine using S(g) space and T (g) op-

erations, it holds that

T (g) = Ω

(
G2

S(g)

)
,

where G = 2g.

Thus, for S(g) · T (g) = G2 with G = 2g, using c cores, it holds that

(1/c · S(g)) · (c · T (g)) = G2.

A formal generalization of this notion is given in the following.

Definition 10.2 (λ−Memory-Hard Function). For a λ-memory-hard function

F which is computed on a Random Access Machine using S(g) space and T (g) oper-

ations, it holds that

T (g) = Ω

(
Gλ+1

S(g)λ

)
,

where G = 2g.

Thus, if one has only 1/c of the memory available, one needs cλ processor units to

gain the same time-memory tradeoff, i.e.,

(1/c · S(g)λ) · (cλ · T (g)) = Gλ+1.

In the following we use S(g) and S as synonyms.
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Definition 10.3 (Sequential Memory-Hard Function). A sequential memory-

hard function is a function F with the following properties:

(a) F is memory-hard and

(b) there is no β > 0 such that F can be computed on a Parallel Random Access

machine with S∗(g) processors and S∗(g) space in expected time T ∗(g), where

S∗(g)T ∗(g) = O(T (g)2−β).

Password Recovery (Preimage Security). For a modern password scrambler it

must hold that the advantage of an adversary (modelled as a computationally un-

bounded but always-halting algorithm) for guessing a valid password should be rea-

sonable small, i.e., not higher than for trying out all possible candidates. Therefore,

given a password scrambler P, we define the password-recovery advantage of an ad-

versary A as follows:

Definition 10.4 (Password Recovery Advantage). Let s denote a randomly

chosen salt value and pwd a password randomly chosen from a source Q with m

bits of min-entropy. Then, given a hash value h← P(s, pwd), it holds that

AdvREC
P,Q (A) = Pr

s

[
pwd← Q, h← P(s, pwd) : x← AP,s,h : P(s, x) = h

]
.

Furthermore, by AdvREC
P (q) we denote the maximum advantage taken over all ad-

versaries asking at most q queries to P.

Client-Independent Update. According to Moore’s Law [173], the available re-

sources of an adversary increase continually over time – and so do those of the

legitimate user. Hence, a security parameter chosen once may be too weak after

some time and needs to be updated. This can easily be accomplished immediately

after the user has entered its password the next time. However, in many cases,

a significant amount of user accounts is inactive or rarely used, e.g., 70.1% of all

Facebook accounts experience zero updates per month [177], and 73% of all Twitter

accounts do not have at least one tweet per month [215]. Therefore, it is desirable

to be able to compute a new password hash (with some higher security parameter)
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from the old one (with the old and weaker security parameter), without having to

involve user interaction or otherwise having to know the password. We call this fea-

ture a client-independent update of the password hash. When key stretching is done

by iterating an operation, client-independent updates may or may not be possible,

depending on the details of the inner workings of a password scrambler. For example,

when the original password is one of the inputs for the final operation (see [191]),

client-independent updates are impossible.

Server Relief. A slow and – even worse – memory-demanding password-based login

process may be too much of a burden for many service providers. Server relief splits

the password-scrambling process into two parts: (1) a slow (and possibly memory-

demanding) one-way function F and (2) an efficient one-way function H. By default,

the server computes the password hash H(F(pwd , s)) from the password pwd and a

salt s. Alternatively, the server sends s to the client who responds x = F(pwd , s).

Finally, the server just computes H(x). While it is probably easy to write a generic

server-relief protocol using any password scrambler, none of the existing password

scramblers has been designed to naturally support this property.

Key Derivation Function (KDF). Beyond authentication, passwords are also used

to derive symmetric keys. Obviously, one can just use the output of the password

scrambler as a symmetric key – perhaps after truncating it to the required key size.

This is a disadvantage if one either needs a key that is longer than the password hash

or has to derive more than one key. Thus, it is prudent to consider a KDF as a tool

of its own right – with the option to derive more than one key and with the security

requirement that compromising some of the keys does not endanger the other ones.

Note that it is required for a KDF that the input and output behaviour cannot be

distinguished from that of a set of random functions.

Resistance against Cache-Timing Attacks. Password scramblers with a password-

dependent memory-access pattern risk to be vulnerable against cache-timing attacks.

Depending on the implementation and under certain circumstances, timing informa-

tion related to a given machine’s cache behavior may enable the adversary to ob-

serve which addresses have been accessed. This can be exploited to implement a

very efficient password-candidate sieve. Therefore, any password scrambler whose

memory-access pattern is independent from the password is not vulnerable against

cache-timing attacks.
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10.4. The scrypt Password Scrambler

Algorithm 16 describes the scrypt password scrambler and its core operation ROMix.

For pre- and post-processing, scrypt invokes the one-way function PBKDF2 to sup-

port inputs and outputs of arbitrary length. ROMix uses a hash function H with an

n-bit output where n is the size of a cache line (at current machines, often 512 bits).

To support hash functions with smaller output sizes, [191] proposes to instantiate

H by a function called BlockMix, which we will not elaborate on. For our security

analysis of ROMix, we modelled H as a random oracle.

ROMix takes two inputs: An initial state x which depends on both salt and pass-

word, and the array size G that defines the required storage. One can interpret

log2(G) as the garlic factor of scrypt. In the first phase (Lines 20–23), ROMix initial-

izes an array v, i.e., the array variables v0, . . . , vG−1 are set to x,H(x),H(H(x)), . . . ,

H(. . . (H(x))), respectively. In the second phase (Lines 24–27), ROMix updates x de-

pending on vj . The sequential-memory hardness comes from the way how the index

j is computed, depending on the current value of x, i.e., j ← x mod G. After G

updates, the final value of x is returned and undergoes the post-processing.

A minor issue is that scrypt uses the password pwd as one of the inputs for

post-processing (Line 12). Thus, it has to be in storage during the entire password-

scrambling process. This is risky if there is any chance that the memory can be

Algorithm 16 The scrypt Algorithm and its Core Operation ROMix [191].

scrypt

Input:

pwd {Password}

s {Salt}

G {Cost Parameter}

Output: x {Password Hash}

10: x← PBKDF2(pwd , s, 1, 1)

11: x← ROMix(x,G)

12: x← PBKDF2(pwd , x, 1, 1)

13: return x

ROMix

Input:

x {Initial State}

G {Cost Parameter}

Output: x {Hash Value}

20: for i = 0, . . . , G− 1 do

21: vi ← x

22: x← H(x)

23: end for

24: for i = 0, . . . , G− 1 do

25: j ← x mod G

26: x← H(x⊕ vj)

27: end for

28: return x
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Algorithm 17 ROMixMC

Input:

x {Initial State},

G {1st Cost Parameter},

K {2nd Cost Parameter}

Output: x {Hash Value}

1: for i = 0, . . . , G− 1 do

2: if i mod K = 0 then

3: vi ← x

4: end if

5: x← H(x)

6: end for

7: for i = 0, . . . , G− 1 do

8: j ← x mod G

9: ℓ← K(j/K)

10: y ← vℓ
11: for m = ℓ+ 1, . . . , j do

12: y ← H(y) { invariant: y ← vm }

13: end for

14: x← H(x⊕ y)

15: end for

16: return x

compromised during the time scrypt is running. Compromising the memory should

not happen anyway, but this issue could easily be fixed without any bad effect on

the security of scrypt, e.g., one could replace Line 12 of Algorithm 16 by x ←

PBKDF2(s, x, 1, 1).

10.4.1. Brief Analysis of ROMix

In the following we introduce a way to run ROMix with less than G units of storage.

Suppose we only have S < G units of storage for the values in v. For convenience,

we assume G is a multiple of S and set K ← G/S. As it will turn out, the memory-

constrained Algorithm ROMixMC (cf. Algorithm 17) generates the same result as ROMix

with less than G storage units and is Θ(K) times slower than ROMix. From the array

v, we will only store the values v0, vK , v2k, . . . , v(S−1)K – using all the S memory

units available.

At Line 9, the variable ℓ is assigned the biggest multiple of K less or equal j. By

verifying the invariant at Line 12, one can easily see that ROMixMC computes the same

hash value as the original ROMix, except that vj is computed on the fly, beginning

with vℓ. These computations call the random oracle on average (K − 1)/2 times.

Thus, the second phase of ROMixMC is about Θ(K) times slower than the second

phase of ROMix, and this dominates the workload for ROMixMC.

Next, we briefly discuss why ROMix is sequentially memory-hard (for the full proof

see [191]). The intuition is as follows: The indices j are determined by the output

of the random oracle H and thus, essentially, uniformly distributed random values

over {0, . . . , G − 1}. With no way to anticipate the next j, the best approach is to

132



10.4. The scrypt Password Scrambler

minimize the size of the “gaps”, i.e., the number of consecutively unknown vj . This

is indeed what ROMixMC does, by storing one vi every K’th step.

10.4.2. Cache-Timing Attacks

Algorithm 16 (scrypt/ROMix) revisited. What could possibly go wrong?

The Spy Process. As it turns out, the idea to compute an unpredictable index j

and then ask for the value vj , which is useful for sequential memory-hardness, is also

an issue. Consider a spy process running on the same machine as scrypt. This spy

process cannot read the internal memory of scrypt. But, as it is running on the

same machine, it shares its cache memory with ROMix. The spy process interrupts

the execution of ROMix twice:

1. When ROMix enters the second phase (Line 24 of Algorithm 17), the spy process

reads from a bunch of addresses, to force out all the vi that are still in the cache.

Thereupon, ROMix is allowed to run for another very short time.

2. Now, the spy process interrupts ROMix again. By measuring access times when

reading from different addresses, the spy process can figure out which of the vi
have been read by ROMix, in between.

So, the spy process can tell us the indices j for which vj has been read, and with this

information we can mount the following cache-timing attack.

The Preliminary Cache-Timing Attack. Let pwd ′ denote the current password can-

didate. Suppose x is the output of PBKDF2(pwd ′,salt,1,1). Then, we can apply the

following password candidate sieve:

1. Execute the first phase of ROMix, without storing the vi, i.e., skip Line 21 of

Algorithm 16.

2. Compute the index j ← x mod G.

3. If vj is one of the values that have been read by ROMix, then store pwd ′ in a

list.

4. Else, conclude that pwd ′ is a wrong password.
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This sieve can run in parallel on any number of cores, each core trying out another

password candidate pwd ′. Note that each core needs only a small and constant

amount of memory – the data structure to decide if j is one of the indices of the

value vj which has been read. Further, this can be shared between all the cores.

Hence, we can use exactly the kind of hardware that scrypt has been designed to

hinder.

Next, we discuss the gain of this attack. Let r denote the number of iterations

the loop in Lines 24–27 of ROMix has performed before the second interrupt by the

spy process. So, there are at most r indices j with vj being read. That means, we

expect this approach to sort out all but r/G candidates. If our spy process manages

to interrupt very soon after allowing it to run again, we have r ≪ G. This may

enable us to use conventional hardware to run full ROMix to search for the correct

password among the candidates on the list.

The Final Cache-Timing Attack. In this attack we allow the second interrupt to

arrive very late – maybe even as late as the termination time of ROMix. So, the loop

in Lines 24–27 of ROMix has been run r = G times. As it seems, each vi has been

read once. But actually, this is only true on the average; some vi have been read

more than once, and we expect about (1/e)G ≈ 0.37G array elements vi not being

read at all. So, applying the basic attack allows us to eliminate about 37% of all

password candidates – a rather small gain for such hard work.

In the following we introduce a way to push the attack further, inspired by Algo-

rithm 17, the memory-constrained ROMixMC. Our final cache-timing attack on scrypt

does only need the smallest possible amount of memory: S = 1,K = G/S = G, and

thus, we only have to store the single value v0. Like the second phase of ROMixMC,

we will compute the values vj on the fly when needed. Unlike ROMixMC, we will stop

execution whenever one of our values j is such that vj has not been read by ROMix

(according to the information from our spy process).

Thus, if the first vj has not been read, we immediately stop the execution without

any on-the-fly computation; if the first vj has been read, but not the second, we need

one on-the-fly computation of vj , and so forth.

Since a fraction, i.e., 1/e, of all values vi has not been read, we will need about

1/(1 − 1/e) ≈ 1.58 on the fly computations of some vj , each at the average price

of (G − 1)/2 times calling H. Additionally, each iteration needs one call to H for

computing x← H(x⊕ vj). Including the work for the first phase, with G calls to H,

134



10.4. The scrypt Password Scrambler

the expected number of calls to reject a wrong password is about

G+ 1.58 ·

(
1 +

G− 1

2

)
≈ 1.79G.

As it turns out, rejecting a wrong password with constant memory is faster than

computing ordinary ROMix with all the required storage, which actually makes 2G

calls to H, without computing any vi on the fly. We stress that the ability to abort

the computation, thanks to the information gathered by the spy process, is crucial.

10.4.3. Discussion

At the current point of time, our cache-timing attacks are theoretical. Even if one

manages to run a spy process on a machine using scrypt, the requirement to inter-

rupt ROMix twice at the right points of time is demanding. Nevertheless, even the

theoretical ability of mounting such attacks should be seriously taken into account.

The idea of attacking cryptographic algorithms from hardware side (side-channel

attacks) is not new [145], neither is the usage of a spy process for theoretical cache-

timing attacks [190]. In [31], Bernstein demonstrated practically how to recover AES

keys by using cache-timing information:

The problem lies in AES itself: it is extremely difficult to write constant-

time high-speed AES software [...]. Constant time low-speed AES software

is fairly easy to write but is also unacceptable for many applications.

Similarly, we argue that there is a problem in scrypt itself. One can certainly imple-

ment scrypt such that cache-timings do not leak information about the password.

But, we believe this would drastically reduce the performance of scrypt. As a com-

pensation – recall that password scramblers are intentionally slow, but must be “fast

enough” for the user – one would have to set the cost parameter G to some smallish

value. But, this would only make regular attacks more efficient since attackers can

use faster implementations. At the end of the day, this may defeat the entire point

of using scrypt at all.

Note that this cache-timing attack has even more severe consequences. It does

not only speed-up regular password-guessing attacks where the password hash is

already in possession of the adversary. It also enables an adversary A to recover a

password without knowing the password hash at all by just verifying the memory-

access pattern.

The core of the problem is the fact that ROMix reads a value vj , where the index

j ← x mod G depends on x and thus, on the password. It would be very convenient
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to have a password scrambler which is sequentially memory-hard and computes j in

some password-independent way, i.e., only depending on the loop index i. In the next

section we actually present such a λ-memory-hard password scrambler, Catena.

10.4.4. The Garbage-Collector Attack

Here we introduce another memory-based issue of the ROMix algorithm. Typical

attackers try plenty of password candidates in parallel, and this gets a lot more

costly if they need a huge amount of memory for each candidate. The defender, on

the other hand, will only compute a single hash, and the parameters (especially the

“garlic”) should be chosen such that the required amount of memory is easily available

to the defender.

But, memory-demanding password scrambling may also provide completely new

attack opportunities for the adversary. If we allocate a huge block of memory for

password scrambling, holding v0, v1, . . . , vG−1, this memory becomes “garbage” after

the password scrambler has terminated, and will be collected for reuse, eventually.

One usually assumes that the adversary learns the hash of the secret. The garbage-

collector attack assumes that the adversary additionally learns the memory content,

i.e., the values vi, after the termination of the password scrambler.

For ROMix, the value v0 = H(x) is a plain hash of the original secret x. Hence, the

garbage-collector adversary can bypass ROMix completely and search directly for x

with H(x) = v0, implying that each password candidate can be checked in time and

memory O(1). Thus, ROMix does not provide much defense against garbage-collector

attacks. As a possible countermeasure, one can simply overwrite v0, . . . , vG−1 after

running ROMix. But, this step might be removed by a compiler due to optimization,

since it is algorithmically ineffective.

10.5. Specification of Catena

In this section we introduce our password scrambler Catena. More detailed, we

first specify Catena and explain its properties regarding to password hashing, i.e.,

client-independent update and server relief. Afterwards, we present a instantiations

of Catena, called Catena-DBG.

A formal definition is shown in Algorithm 18, based on two building blocks: (1) the

cryptographic hash function H (see Lines 1 and 4) and (2) the memory-consuming

n-bit hash function Fλ (see Line 3). Note that we require that the function Fλ is

1. λ-memory hard,
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Algorithm 18 Catena

Input: λ {Depth}, g0 {Initial Garlic}, pwd {Password},

u {Tweak}, s {Salt}, g {Garlic}

Output: x {hash of the password}

1: x← H(u || pwd || s)

2: for c = g0, . . . , g do

3: x← Fλ(c, x)

4: x← H(c || x)

5: end for

6: return x

2. collision resistant and,

3. its memory-access pattern is independent of the password derived input x.

Note that the for loop (Line 2–5) is required to provide client-independent updates.

For the initial deployment of Catena, we recommend to set the initial garlic value

g0 to g to achieve the best ratio between running time and memory usage. For the

sake compatibility λ and g0 should never be updated.

Note that a secure password scrambler must satisfy preimage security. It is easy

to see that Catena inherits the preimage security from the underlying hash function

H.

Next, we discuss the tweak and two further novel features of Catena.

Tweak. The tweak u is an additional multi-byte value which is given by:

u← d || λ || n || |s| || H(H),

where the first byte d denotes the mode (domain) for which Catena is used: d = 0

when used as a password scrambler, and d = 1 when used as a KDF (see Section 10.7).

All remaining possible values for d are reserved for future applications. The second

byte λ (depth) defines together with the memory cost parameter g (garlic) the security

parameters for Catena. The next 16-bit value n denotes the output length of the

underlying hash function H in bits. The 32-bit value |s| denotes the total length

of the salt in bits. The last n-bit value H(H) is the hash of the associated data

H, which can contain additional information like hostname, user-ID, name of the

company, or the IP address of the host, with the goal to customize the password

hashes. The tweak is processed together with the secret password and the salt (see
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Algorithm 18, Line 1). Thus, the tweak u can be seen as a weaker version of a salt,

increasing the additional computational effort for an adversary when using different

values. Furthermore, it allows to differentiate between password hashing and key

derivation.

Client-Independent Update. Its sequential structure does enable Catena to pro-

vide client-independent updates. Let h = Catenaλ(pwd , u, s, g) be the hash of a

specific password pwd , where u, s, and g denote the tweak, the salt, and the garlic.

After increasing the security parameter from g to g′ = g+1, we can update the hash

value h without user interaction by computing:

h′ = H(g′ || Fλ(g
′, h)).

It is easy to see that the equation h′ = Catenaλ(pwd , u, s, g
′) holds.

Server Relief. In the last iteration of the for-loop in Algorithm 18, the client has

to omit the last invocation of the hash function H (see Line 4) and then transmits

the output of Catena to the server. Afterwards, the server computes the password

hash by applying the hash function H. Thus, the vast majority of the effort (memory

usage and computational time) for computing the password hash is handed over to

the client exonerating the server. This enables someone to deploy Catena even

under restricted environments or when using constrained devices – or when a single

server has to handle a huge amount of authentication requests.

Keyed Password Hashing. To further thwart off-line attacks, we introduce a tech-

nique to use Catena for keyed password hashing, where the password hash de-

pends on both a password and a secret key K. Note that K is the same for all

users, and thus, it has to be stored on the server. To preserve the server-relief prop-

erty (see above), we encrypt the output of Catena using the XOR operation with

H(K || userID || g || K), which, under the reasonable assumption that the value

(userID || g) is a nonce, was proven to be CPA-secure in [205]. Then, the keyed

password hash y is given by

y := Catenaλ(pwd , u, s, g)⊕H(K || userID || g || K),

where the userID is a unique and user-specific identification number which is assigned

by the server. Now, we show what happens during the client-independent update,

i.e., when g = g + r for arbitrary integer r > 0. The process takes the following four

steps:
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1. Given K and userID, compute w = H(K || userID || g || K).

2. Compute x = y ⊕ w, where y denotes the current keyed hash value.

3. Update x, i.e., x = H(c || Fλ(c, x)) for c ∈ {g + 1, . . . , g + r}.

4. Compute the new hash value y = y ⊕H(K || userID || g + r || K).

Remark. Obviously, it is a bad idea to store the secret key K on the same place as

the password hashes since it can be leaked in the same way as the password-hash

database. One possibility to separate the key from the hashes is to securely store

the secret key by making use of hardware security modules (HSM), which provide

a tamper-proof memory environment with verifiable security. Then, the protection

of the secret key depends on the level provided by the HSM (see FIPS140-2 [57] for

details). Another possibility is to derive K from a password during the bootstrapping

phase. Afterwards, K will be kept in the RAM and will never be on the hard disk

drive. Thus, the key and the password-hash database should never be part of the

same backup file.

10.6. Security Analysis of Catena

We denote a password scrambler to be secure if it provides at least 1-memory-hardness

and preimage security. Furthermore, it should be resistant against cache-timing at-

tacks. It is easy to see that Catena inherits its λ-memory-hardness from Fλ. Since

the memory-access pattern of Catena is static and therefore, independent from the

password, it provides resistance against cache-timing attacks. Finally, we show that

Catena is a secure passsword scrambler that behaves like a good random function,

which is useful for using Catena as a secure KDF. Before we present our claims, we

introduce some essential knowledge, which ease the understanding of our proofs.

Password-Recovery Resistance. In this section we show that Catena is a good

password scrambler, i.e., given the hash value h it is infeasible for an adversary to do

better than trying out password candidates in likelihood order to obtain the correct

password.

Theorem 10.5 (Catena is Password-Recovery Resistant). Let m denote the

min-entropy of a passwords source Q. Then, it holds that

AdvREC

Catena,Q
(q) ≤

q

2m
+Advpre

H (q, t).
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Proof. Note that an adversary A can always guess a (weak) password by trying

out about 2m password candidates. For a maximum of q queries, it holds that the

success probability is given by q/2m. Instead of guessing 2m password candidates,

an adversary can also try to find a preimage for a given hash value h. It is easy to

see from Algorithm 18 that an adversary thus has to find a preimage for H in Line

4. More detailed, for a given value h with h ← H(g, x), A has to find a valid value

for x. The success probability for this can be upper bounded by Advpre
H (q, t). Our

claim follows by adding up the individual terms. �

Pseudorandomness. In the following we analyze the advantage of an adversary A

in distinguishing the output of Catena from a random bitstring of the same length

as the output of Catena. Therefore, we model the internally used hash function

H : {0, 1}∗ → {0, 1}n as a random oracle.

Theorem 10.6 (PRF Security of Catena). Let q denote the number of queries

made by an adversary and s a randomly chosen salt value. Furthermore, let H be

modelled as a random oracle and g ≥ g0 ≥ 1. Then, it holds that

AdvPRF

Catenaλ
(q, t) ≤ (q · g + q)2/2n +Advcoll

Fλ
(g · q)

Proof. Suppose that ai = (pwd i || ui || si || g) represents the i-th query, where pwd i

denotes the password, ui denotes the tweak, si the salt, and g the garlic. For this

proof, we impose the reasonable condition that all queries of an adversary are distinct,

i.e., ai 6= aj for i 6= j.

Suppose that yj denotes the output of Fλ(g, a
j) of the j-th query (cf. Algorithm 18,

Line 3). Then, H(g || yj) is the output of Catenaλ(a
j). In the case that y1, . . . , yq

are pairwise distinct, an adversary A cannot distinguish H(g || ·) from a random

function $(·) since in the random-oracle model, both functions return a value chosen

uniformly at random from {0, 1}n.

Therefore, we have to upper bound the probability of the event yi = yj with i 6= j.

Due to the assumption that A′s queries are pairwise distinct, there must be at least

one collision for H or Fλ. For q queries, we have at most q(g + 1) invocations of H.

Thus, we can upper bound the collision probability by

(q · g + q)2/2n.
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Furthermore, we have q · g invocations of the memory-consuming function Fλ. We

can upper bound the probability of a collision by Advcoll
Fλ

(g · q). Our claim follows

from the union bound. �

10.7. The Catena-KG Key-Derivation Function

In this section, we introduce Catena-KG – a mode of operation based on Catena,

which can be used to generate keys of different sizes (even larger than the natural

output size of Catena (cf. Algorithm 19). To provide uniqueness of the inputs, the

domain value d of the tweak is set to 1, i.e., the tweak u′ is given by

u′ ← 0x01 || λ || n || |s| || H(H).

Then, the call of Catena is followed by an output transformation that takes the

output x of Catena, a key identifier I, and a parameter ℓK for the key length as

input, and generates key material of the desired output size. Catena-KG is even

able to handle the generation of extra-long keys (longer than the output size of H) by

applyingH in CTR Mode [84]. Note that longer keys do not imply improved security,

in that context. The key identifier I is supposed to be used when different keys are

Algorithm 19 Catena-KG

Input: pwd {Password}, u′ {Tweak}, s {Salt}, g {Garlic}, I {Key Identifier}

Output: K {ℓK-Bit Key Derived from the Password}

1: x← Catenaλ(pwd , u
′, s, g)

2: K ← ∅

3: for i = 1, . . . , ⌈ℓK/n⌉ do

4: K ← K || H(i || I || ℓK || x)

5: end for

6: return Truncate(K, ℓK) {truncate k to the first ℓK bits}

generated from the same password. For example, when Alice and Bob set up a secure

connection, they may need four keys: An encryption and a message-authentication

key for messages from Alice to Bob, and another two keys for the opposite direction.

One could argue that I should also become part of the associated data. Actually,

this would be a bad move. Setting up the connection would require legitimate users

to run Catena several times. But, the adversary can search for the password for one

key, and just derive the other keys, once that password has been found. Instead, one

should rather employ a single call to Catena with larger security parameters and
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then run the output transformation for each key. In contrast to the password-hashing

scenario, where a user want to log in without noticeable delay, users may tolerate

a delay of several seconds to derive an encryption key from a password [231], e.g.,

when setting up a secure connection, or when mounting a cryptographic file system.

Thus, we recommend to use higher values for g for key-derivation.

Security Analysis. It is easy to see thatCatena-KG inherits its λ-memory-hardness

from Catena since it invokes Catena (Line 1 of Algorithm 19). Next, we show the

PRF security of Catena-KG in the random-oracle model.

Theorem 10.7 (Catena-KG Security). Let H : {0, 1}∗ → {0, 1}n be a random

function. Then, for g ≥ g0 ≥ 1, it holds that

AdvPRF

Catena-KGλ
(q, t) ≤ (q · g + q)2/2n +Advcoll

Fλ
(g · q)

Proof. For the sake of simplification, we omit the truncation step and let the adver-

sary always get access to the untruncated key K. Since H is a random function, the

only chance for an adversary to distinguishCatena-KG(H,λ,g)(·) from a random n-bit

function is an input collision in Line 4 of Algorithm 19. Thus we have to upper bound

the probability that two outputs of Catena λ collide. Let ai = (pwd i || ui || si || gi)

denote the i-the query, where pwd i denotes the password, ui denotes the tweak, si

the salt, and gi the garlic. A collision between two distinct queries ai and aj , i.e.,

Catenaλ(a
i) = Catenaλ(a

j) with ai 6= aj , implies a collision in H. The probability

for this event can be upper bounded by

(q · g + q)2/2n +Advcoll
Fλ

(g · q),

using similar arguments as in the proof of Theorem 10.10. �

10.8. Catena-DBG

In this section we introduce Catena-DBG, a concrete instantiation of Catena

where Fλ is instantiated with the Double Butterfly Hashing (DBH) operation that is

based on a stack of λ G-superconcentrators. The following definition of a G-super-

concentrator is a slightly adapted version of that introduced in [151].
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Figure 10.1.: A Cooley-Tukey FFT graph with eight input and output vertices.

Definition 10.8 (G-Superconcentrator). A Directed Acyclic Graph (DAG) with

a set of vertices V and a set of edges E, a bounded indegree, G inputs, and G outputs

is called a G-superconcentrator if for every k such that 1 ≤ k ≤ G and for every pair

of subsets V1 ⊂ V of k inputs and V2 ⊂ V of k outputs, there are k vertex-disjoint

paths connecting the vertices in V1 to the vertices in V2.

Double Butterfly Graph (DBG). A DBG is a G-superconcentrator which is de-

fined by the graph representation of two back-to-back placed Fast Fourier Trans-

form (FFT) [53]. More detailed, it is a representation of twice the Cooley-Tukey

FFT algorithm [65] omitting one row in the middle (see Figure 10.1 for an example

where g = 3). Therefore, a DBG consists of 2g rows.

Based on the DBG we define the sequential and stacked (DBGg
λ) where the security

parameters λ and g determine the depth ( number of stacked superconcentrators)

and the width ( number of nodes per row, i.e., 2g), respectively. In the following,

we denote vki,j as the j-th vertex in the i-th row of the k-th superconcentrator. Note

that in this thesis we use the vertices vk0,j and vk−12g−1,j as synonyms since due to the

stacking of λ DBGs the last row of the k − 1-th DBG is identical to the first row of

the k-th DBG.
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front

vertical sequential + connecting layer

back

diagonal

Figure 10.2.: Types of edges of an (3, 1)-Double Butterfly Graph.

Definition 10.9 (DBGg
λ). Fix two integers g, λ ≥ 1, then the (g, λ)-Double Butter-

fly Graph (DBGg
λ) Π(V , E) consists of 2g(λ(2g − 1) + 1) vertices




2g−2⋃

i=0

2g−1⋃

j=0

λ⋃

k=1

{vki.j}


 ∪




2g−1⋃

j=0

{vλ2g−1,j}




and λ · (2g − 1) · (3 · 2g) + 2g − 1 edges

• vertical: 2g · (λ · (2g − 1)) edges

2g−2⋃

i=0

2g−1⋃

j=0

λ⋃

k=1

{vki,j , v
k
i+1,j}

• diagonal: 2g · λ · g + 2g · λ · (g − 1) edges

λ⋃

k=1

2g−1⋃

j=0



(

g−1⋃

i=0

{vki,j , v
k
i+1,j⊕2g−1−i}

)
∪




2g−2⋃

i=g

{vki,j , v
k
i+1,j⊕2i−(g−1)}






• sequential: (2g − 1) · (λ · (2g − 1) + 1) edges



2g−1⋃

i=1

2g−2⋃

j=0

λ⋃

k=1

{vki,j , v
k
i,j+1}


 ∪




2g−2⋃

j=0

{vλ2g−1,j , v
λ
2g−1,j+1}




• connecting layer: λ · (2g − 1) edges

2g−2⋃

i=1

λ⋃

k=1

{vki,2g−1, v
k
i+1,0}
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Figure 10.3.: An (3, 1)-Double Butterfly Graph.

For the parameter set g = 3 and λ = 1 Figure 10.2 illustrates the individual types

of edges we use in our Definition above. Moreover, an example for an (3, 1)-Double

Butterfly Graph (DBG) Figure 10.3.

Double Butterfly Hashing (DBH). The DBHg
λ operation is defined in Algorithm 20.

The structure is based of a DBGg
λ. Note that the function σ (see Lines 7 and 9) is

given by

σ(g, i, j) =

{
j ⊕ 2g−1−i if 0 ≤ i ≤ g − 1,

j ⊕ 2i−(g−1) otherwise.

Thus, σ determines the indices of the vertices of the diagonal edges.

Since the security of Catena in terms of password hashing is based on a time-

memory tradeoff, it is desired to implement it in an efficient way, making it possible

to increase the required memory. We recommend BLAKE2b [13] as the underlying

hash function, implying a block size of 1024 bits with 512 bits of output. Thus, it can

process two input blocks within one compression function call. For Catena-DBG,

we cannot simply concatenate the inputs to the hash function H while keeping the

same performance per hash function call, i.e., three inputs to H require two com-

pression function calls. Therefore, we compute H(X,Y, Z) = H(X,⊕Y || Z) instead

of H(X,Y, Z) = H(X || Y || Z). Obviously, this doubles the probability of input

collisions. Nevertheless, for a 512-bit hash function, the advantage for an adversary

is still negligible.
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Algorithm 20 Double Butterfly Hashing (DBH)

Input: g {Garlic}, x {Value to hash}, λ {Depth}, H {Hash Function}

Output: x {Password Hash}

1: v0 ← H(x)

2: for i = 1, . . . , 2g − 1 do

3: vi ← H(vi−1)

4: end for

5: for k = 1, . . . , λ do

6: for i = 1, . . . , 2g − 1 do

7: r0 ← H(v2g−1 ⊕ v0 || vσ(g,0,j))

8: for j = 1, . . . , 2g − 1 do

9: ri ← H(ri−1 ⊕ vi || vσ(g,i,j))

10: end for

11: ~v ← ~r

12: end for

13: end for

14: return x← v2g−1

10.9. Analysis of Catena-DBG

Next, we discuss the security of Catena-DBG against side-channel attacks. Fur-

thermore, we discuss the memory-hardness and collision resistance of the DBHg
λ op-

eration.

10.9.1. Side-Channel Attacks and Collision Resistance

Straightforward implementations of Catena-DBG have neither password-dependent

memory-access pattern nor have they password-dependent branches. Therefore, our

proposed instantiation of Catena is resistant against cache-timing attacks.

Considering a malicious garbage collector, Algorithm 20 exposes two arrays, namely

v and r. Both are overwritten multiple times. Therefore, Catena-DBG is resistant

against garbage-collector attacks. Note that Catena-DBG with some λ ≥ 2 is at

least as resistant to garbage-collector attacks as the same variant with λ− 1 without

a malicious garbage collector.

Next, we analyze the collsion resistance of DBHg
λ. Therefore, we model the inter-

nally used hash function H : {0, 1}∗ → {0, 1}n as a random oracle.
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Theorem 10.10 (Collision Security of DBHg
λ). Let q denote the number of

queries. Furthermore, let H be modelled as a random oracle for some fixed integers

g, g0, λ ≥ 1 with g ≥ g0 and G = 2g. Then, it holds that

Advcoll

DBHg
λ
(q, t) ≤

(q · λ · g)2

2n−2g−3
.

Proof. From Algorithm 20 it is easy to see that collision DBHg
λ(x) = DBHg

λ(x
′) for

x 6= x′ implies either a input or output collision for H.

For our analysis, we replace the random oracle H by H′(x) := H(truncaten(x))

that truncates any input to n bits before hashing. Thus, any collision in the first n

bits H in Line 7 and 9 of Algorithm 20 leads to a collision, regardless of the remaining

inputs.

Output Collision. In this case, we can upper bound the collision probability of H by

deducing the total amount of invocations of H′ per query. There are G invocations

of H′ in Lines 1–4. of Algorithm 20. In addition, there are λ(2g− 1)G invocations in

Lines 5-14 of Algorithm 20. In total, we have λ2gG invocations. Since H is modelled

as a random oracle, we can upper bound the collision probability for q queries by

(q · λ · 2g ·G)2

2n
≤

q2λ2g2

2n−2g−2
.

Input Collision. In this case, we have to take into account that a input collision for

distinct queries a and b in Line 7 and 9 can occur:

va2g−1 ⊕ va0 = vb2g−1 ⊕ vb0 (Algorithm 20, Line 7)

or

rai−1 ⊕ vai = rbi−1 ⊕ vbi (Algorithm 20, Line 9).

For each query this can happen λ · (2g − 1) · 2g times. Note that all values vi, ri are

outputs from the random oracle H′, except the initial value for v0. Hence, we can

upper bound the collision probability for this event by

(qλ · (2g − 1) · 2g)2

2n
≤

q2λ2g2

2n−2g−2
.

Our claim follows from the union bound. �
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10.9.2. Memory Hardness.

In 1970, Hewitt and Paterson introduced a method for analyzing Time-Memory

Tradeoffs (TMTOs) on directed acyclic graphs [189], called pebble game. While their

method has been known for decades, it was recently used in a cryptographic context,

see e.g., [86]. In general, a pebble game is a common model to derive and analyze

TMTOs as shown in [216, 217, 222, 227, 229].

The pebble-game model is restricted to DAGs with bounded in-degree and can be

seen as a single-player game. Let Π(V , E) be a DAG and let G = |V| be the number

of vertices within Π(V , E). In the setup phase of the game, the player gets S pebbles

(tokens) with S ≤ G. A pebble can be placed (pebble) or be removed (unpebble) from

a vertex v ∈ V under certain requirements:

1. A pebble may be removed from a vertex v at any time.

2. A pebble can be placed on a vertex v if all predecessors of the vertex v are

marked.

3. If all immediate predecessors of an unpebbled vertex v are marked, a pebble

may be moved from a predecessor of v to v.

A move is the application of either the second or the third action stated above. The

goal of the game is to pebble Π, i.e., to mark all vertices of the graph Π at least once.

The total amount of moves represent the computational costs.

In [151], Lengauer and Tarjan have already analyzed the TMTO for a stack of λ G-

superconcentrators. Since the double-butterfly is a special form of aG-superconcentrators

there bound also holds for DBGg
λ.

Theorem 10.11 (TMTO for a stack of λ G-Superconcentrators [151]). For

pebbling a stack of λ G-Superconcentrators using S ≤ G/20 pebbles it holds that

T ≥ G

(
λG

64S

)λ

.

Note that the DBH operation computes a special variations of the DBGg
λ where

each vertex represents the the hash values of its direct predecessors. Thus, DBHg
λ

and therefore Catena-DBG inherits the λ-memory hardness from DBGg
λ.
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Discussion. We have to point out that the computational effort for DBHg
λ with

reasonable values for G, e.g., G ∈ [217, 221], may stress the patience of many users

since the number of vertices and edges grows logarithmic with G. Thus, it remains an

open research problem to find a G-superconcentrator – or any other λ-memory-hard

function – that can be computed more efficiently than a DBHg
λ.

10.10. Results Summary

We introduced a new class of side-channel attacks, called garbage-collector attack,

which bases on a malicious garbage collector. We showed that the common password

scrambler scrypt is vulnerable to this kind of attacks. Furthermore, we presented

a (theoretical) cache-timing attack on scrypt that exploits its password-dependent

memory-access pattern. Both attacks allows an adversary to construct a memoryless

password filter that enables massively-parallel password-guessing attacks. Moreover,

we show that our attacks work even without knowledge of the password hash. All

regular implementations, i.e., implementations that are not hardened against side-

channel attacks, of password scramblers with a password-dependent memory-access

pattern appear to be vulnerable to these attacks.

As a remedy, we introduced a novel password-scrambler framework Catena, which

is based on a λ-memory-hard function. It is the first framework which naturally

supports client-independent updates and server relief. It consists of two security

parameters λ (depth) and g (garlic), where λ reflects the memory hardness and g the

memory consumption. In addition, we have shown that Catena is provably secure

in the random oracle model.

Furthermore, we presented a DBH based instantiatation ofCatena, Catena-DBG.

Note that DBH basically computes a stack of several Double Butterfly Graph where

each vertex of the graph is the hash value of its direct predecessors.

Finally, we want to stress out that the limited practicality of this implementation.

There is a good chance that the runtime of Catena-DBG might exceed the patience

of many users.
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11
Conclusion

Science never solves a problem

without creating ten more.

George Bernard Shaw

In this section we conclude this thesis by giving a brief summary of the main contri-

butions and emphasize some further work as well as open research topics.

11.1. Summary

Robustness. One of the main topics of this thesis is the analysis and design of

misuse-resistant authenticated encryption schemes. The field of robust authenticated

encryption schemes was pioneered by Rogaway and Shrimpton [210] who introduced

the notion of (nonce-) misuse resistance in 2006. During our research we came up

with a generalized definition of robustness as well as the security notion of decryption

misuse.

Moreover, we introduced two novel on-line authenticated encryption schemes: McOE

and COFFE. The latter one is the first provably secure OAE scheme that has been

designed for the usage of a hash function rather than a block cipher as the underlying

primitive. In contrast to conventional AE schemes, COFFE also provides ciphertext

integrity in the nonce-misuse scenario. The former one, McOE, was presented at FSE

2012 [98]. It was the first robust OAE scheme published by then. This academic work

inspired fellow researchers to introduce new nonce-misuse resistant OAE schemes

[5, 7, 73]. Our work seem to have influenced the submission requirements of the
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upcoming Competition for Authenticated Encryption: Security, Applicability, and

Robustness (CAESAR):

. . . that the cipher is designed to provide the maximum possible robustness

against message-number reuse1.

We expect that our contributions in terms of nonce- and decryption-misuse resistance

will foster misuse awareness in future (O)AE scheme designs. Furthermore, we do

believe that providing a second line of defence – by applying robust authenticated

encryption – helps to make the IT-world a little bit more secure.

Hash Function Design. Another main topic of this work is the presentation of

Twisterπ, a family of cryptographic hash functions. It is a revised version of the

SHA-3 submission Twister [88] that has some vulnerabilities against certain re-

bound attacks [166]. In the revision process we applied effective countermeasures to

overcome those weaknesses. Until now, no attacks are known.

Password Scrambler. Inspired by the discovery of cache-timing attacks on scrypt,

we designed Catena, the first provably secure and memory-consuming password

scrambler that does not only thwart GPU-based attacks, but also provide a pass-

word independent memory-access pattern to render cache-timing attacks infeasible.

Furthermore, Catena naturally supports client-independent updates and server re-

lief, and it is provable secure in the random oracle model. The program chair of the

Password Hashing Competition (PHC) has serendipitously added support for client-

independent update as a functional requirement and cache-timing resistance as a

security requirement2. Finally, we hope that our contribution lay the groundwork for

all subsequent password-hashing schemes.

11.2. Further Research

Due to the CAESAR contest, the design and analysis of authenticated encryption

schemes is a hot topic in the field of symmetric cryptography. Inside the cryptographic

community, there is a clear consensus about the fact that the notion of secure AE

(CCA3 security) is the de facto gold standard for the vast majority of secure channels.

Nevertheless, there are still some open research topics.

1http://competitions.cr.yp.to/caesar-call.html
2https://password-hashing.net/call.html
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11.2. Further Research

• Is it possible to design an integrated tweakable block cipher Ẽ ∈ Block(k, u, n)

which is more efficient than a constructed one? Instances of McOE or TC1

[211] would greatly benefit from such a primitive.

• What is about the software and hardware efficiency of such integrated primi-

tives?

• McOE is highly sequential. Is it possible to construct a provably secure on-line

authenticated encryption scheme which is both parallel and robust?

• Are there, apart from nonce and decryption misuse, any other misuse scenarios

that should be taken into account by the cryptographic community?

• Shall possible security issues in the case of robustness also be discussed in public-

key cryptography, e.g., digital signatures or fully homomorphic encryption?

Cryptographers have almost orphaned the field of password-hashing schemes in spite

of the medial omnipresence of leaked password databases. Therefore, designing a

good password-hashing scheme is more an art than a science. The PHC tries to raise

the awareness of this research topic. Imperatively, a solid theoretic foundation is

needed, i.e., rigorous analysis, formal definitions, and security notions.

• Is it possible to design a fast and parameterizable cryptographic hash function

which can be turned – by an appropriate parameter choice – into a memory-

hard KDF or password scrambler?

• How efficient would such a construction be in soft- or hardware?

• Are there any other relevant properties research should take a look at?

• Which reasonable security notions should become the gold standard for password-

hashing schemes?

• Is it possible to construct a λ-memory hard function that is more efficient than

our proposed DBG operation? For example, does a scalable G-superconentrator

exist, that can be computed more efficently, i.e., that has a linear number of

edges and vertices?
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A
Twisterπ: Test Vectors

A.1. Twisterπ-256

Input: 61 62 63 (3 octets)

Output: 12 f6 c9 7c 5a 07 22 ad a 16 0d 1c 92

32 f8 9d ed 3e ba e7 f8 39 14 28 3c 91

4f b1 41 17 71 83

(32 octets)

Input: 61 62 63 64 65 66 67 68 62 63 64 65 66

67 68 69 63 64 65 66 67 68 69 6a 64 65

66 67 68 69 6a 6b 65 66 67 68 69 6a 6b

6c 66 67 68 69 6a 6b 6c 6d 67 68 69 6a

6b 6c 6d 6e 68 69 6a 6b 6c 6d 6e 6f 69

6a 6b 6c 6d 6e 6f 70 6a 6b 6c 6d 6e 6f

70 71 6b 6c 6d 6e 6f 70 71 72 6c 6d 6e

6f 70 71 72 73 6d 6e 6f 70 71 72 73 74

6e 6f 70 71 72 73 74 75

(112 octets)

Output: 48 41 3c 68 03 45 7b 8f d9 22 23 10 a8

43 ef 0d 1d 3a 67 9b 1f a3 5e 0d 44 99

37 f9 d3 b7 8c 3e

(32 octets)

Input: 61 61 61 61 61 61 ...61 61 61 61 61 61 (1,000,000 octets)

Output: 5e ab cc 39 e6 0e e7 94 42 9d 88 0b 74

9b f3 13 47 58 52 88 37 ac 49 d7 c1 b6

16 50 39 b4 6b 9c

(32 octets)
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A. Twisterπ: Test Vectors

A.2. Twisterπ-512

Input: 61 62 63 (3 octets)

Output: d9 2e 69 c1 86 9e 0c c1 17 06 77 fc fb

79 b4 33 ea b9 23 93 b6 59 07 bb d1 69

0e f2 1f 69 d8 3a 72 ae 44 30 84 56 f0

49 e6 ec 38 64 bc 37 7a 47 76 02 ee 9e

98 67 48 50 09 66 6f 60 80 1d 16 2a

(64 octets)

Input: 61 62 63 64 65 66 67 68 62 63 64 65 66

67 68 69 63 64 65 66 67 68 69 6a 64 65

66 67 68 69 6a 6b 65 66 67 68 69 6a 6b

6c 66 67 68 69 6a 6b 6c 6d 67 68 69 6a

6b 6c 6d 6e 68 69 6a 6b 6c 6d 6e 6f 69

6a 6b 6c 6d 6e 6f 70 6a 6b 6c 6d 6e 6f

70 71 6b 6c 6d 6e 6f 70 71 72 6c 6d 6e

6f 70 71 72 73 6d 6e 6f 70 71 72 73 74

6e 6f 70 71 72 73 74 75

(112 octets)

Output: b0 e3 4b aa 3d a1 54 87 0f 1f 7a c4 ef

a1 5e 33 d6 d3 23 f0 74 c6 2f e1 40 ea

37 57 9e ee 1a 2e 4b ce 3e be 6c 0e 40

56 bb 83 57 e8 41 b0 05 0e 3d df ea e3

5a 02 49 0c ac 0f e0 1b dd 4a 7f f4

(64 octets)

Input: 61 61 61 61 61 61 ...61 61 61 61 61 61 (1,000,000 octets)

Output: 8b 99 35 5a 36 c6 29 53 62 02 4a de 91

94 b3 ab a9 d1 d0 b9 18 ce e4 c4 d2 2e

0d 92 bc ca 74 af 9e ad d3 9e 56 6e 4a

b6 b7 68 2b c6 14 9e 33 ec 37 d0 69 83

1e c1 3e fd f5 2e e3 3b 9a d9 36 c3

(64 octets)
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10∗ padding rule, 12

G-superconcentrator, 142

λ-memory hardness, 128

2nd-preimage resistance, 11

AEAD, 24

AES S-Box, 113

authenticated encryption, 23

block cipher, 17

brute force attack, 11

Catena, 123, 136

Catena-KG, 141

CCA3, 26, 29

CCA3 advantage, 26

client-independent update, 129

COFFE, 53

header processing, 57

parameter choice, 60

plaintext/ciphertext processing, 58

session key generation, 56

tag generation, 59

collision resistance, 10

compression function, 8

concrete security, 2

decryption misuse, 35

deterministic AE, 24

difference distribution table, 113

differential attack, 15

double-butterfly graph, 143

double-butterfly hashing, 145

Encrypt-and-Mac, 25

Encrypt-then-Mac, 25, 71

family of keyed permutation, 17

game-based proofs, 30

garbage-collector-attack, 136

garlic, 128

generic composition, 25

hash function, 7

herding attack, 14

hybrid standard model, 10
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