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Kurzfassung

In der Quaternionenanalysis ist die Theorie der ψ-hyperholomorphen Funktionen ei-
ne Verallgemeinerung der Theorie monogener Funktionen, wobei die Standardbasis des
R4 durch eine sogenannte Strukturmenge ersetzt wird. Grundsätzlich wird diese Theorie
für eine beliebige Strukturmenge mit der Theorie monogener Funktionen zusammenfal-
len aber die Wahl verschiedener Strukturmengen führt zu der Möglichkeit der Behand-
lung verschiedener Problemen, die bezüglich einer Strukturmenge nicht betrachtet werden
können, wie zum Beispiel zu einem verallgemeinerten Π-Operator und zur Beschreibung
des Bergmanschen Projektionsoperators, der die quadratisch integrierbaren Funktionen
auf die ψ-hyperholomorphen Funktionen abbildet.

Diese Arbeit befasst sich mit der Theorie der ψ-hyperholomorphen Funktionen, defi-
niert in R3 mit Werten in der Menge der Paravektoren, die wieder mit dem 3-dimensionalen
Euklidischen Raum identifiziert werden kann.

Ziel ist es, einige theoretische Probleme sowie konkrete Anwendungen zu behandeln.
Im Detail geht es um geometrische Abbildungseigenschaften ψ- hyperholomorpher Funk-
tionen, um die additive Zerlegung harmonischer Funktionen und Anwendungen dieser
theoretischen Resultate in der linearen Elastizitätstheorie.

Der erste Teil der Arbeit dient dem Studium der geometrischen Abbildungseigen-
schaften ψ-hyperholomorpher Funktionen. Der Nachweis einer lokalen geometrischen Cha-
rakterisierung dieser Funktionen zeigt, dass es eine Eins-zu-Eins-Beziehung zwischen ψ-
hyperholomorphen Abbildungen und den Abbildungen mit der Eigenschaft gibt, lokal
Kugeln in spezielle Ellipsoide abzubilden. Dies ist die Grundlage, um zu beweisen, dass
eine Komposition einer monogenen Funktion und einer Möbius-Transformation immer
eine ψ-hyperholomorphe Funktion ist.

Eine globale Abbildungseigenschaft wird für den Fall abgeflachter Sphäroide unter-
sucht. Dabei kommt eine für den dreidimensionalen Fall angepasste Bergman - Kern -
Methode zum, Einsatz. Diese Methode erfordert die Konstruktion von speziellen mono-
genen Polynomen für abgeflachte Sphäroide.

Der zweite Teil der Arbeit steht im Zusammenhang mit additiven Zerlegungen har-
monischer paravektorwertiger Funktionen im R3. Unter Verwendung ψ-hyperholomorpher
Funktionen, die mittels einer Strukturmenge definiert werden, die verschieden von der
Standardstrukturmenge und deren Konjugation ist, kann man beweisen, dass eine har-
monische Funktion als die Summe einer monogenen, einer anti-monogenen und einer ψ-
hyperholomorphen Funktion dargestellt werden kann.

Schließlich wird dieses Resultat in der linearen Elastizitätstheorie angewendet, um
eine alternative Kolosov-Muskhelishvilli Formel für die Verschiebungen zu konstruieren
und eine Basis für die Lösungen der Lame-Navier Gleichung zu erhalten. Dieser Zugang
überwindet die Eindeutigkeits- bzw. Redundanzprobleme, die bisher mit dem Papkovich-
Neuber Ansatz und den Kolosov-Muskhelishvili Formeln verbunden sind. Abschliessend
werden numerische Beispiele untersucht, um die diskutierte Methode qualitativ mit be-
stehenden Methoden zu vergleichen.



Abstract

In quaternionic analysis, the theory of ψ-hyperholomorphic functions is a generali-
zation of the monogenic function theory, in which the standard basis of R4 is replaced
by a structural set ψ. Basically this theory coincides with the monogenic function theo-
ry but this approach leads to the possibility of dealing with several problems such as a
generalized Π-operator and the Bergman projection.

This thesis applies the theory of ψ-hyperholomorphic functions defined in R3 with
values in the set of paravectors, which is identified with the Eucledian space R3, to tackle
some problems in theory and practice: geometric mapping properties, additive decompo-
sitions of harmonic functions and applications in the theory of linear elasticity.

The first part of the thesis is in connection with geometric mapping properties. The
assertion of a local geometric characterization shows that there is a one-to-one relation
between ψ-hyperholomorphic mappings and a special kind of ellipsoids. This is a basis to
prove that a composition of a monogenic function and a Möbius transformation is in fact
a ψ-hyperholomorphic functions.

A global mapping property is investigated for the case of oblate spheroidal domains by
means of a 3D Bergman kernel method and construction of oblate spheroidal monogenic
polynomials.

The second part of the thesis is related to additive decompositions of harmonic para-
vector -valued functions in R3. Using ψ-hyperholomorphic functions with a structural set ψ
different from the standard basis and its conjugate, one can prove that a harmonic function
can be written as the sum of a monogenic, an anti-monogenic and a ψ-hyperholomorphic
function.

Finally, this result is applied to construct an alternative Kolosov-Muskhelishvilli for-
mula for displacements and a basis for the space of solutions of the Lamé-Navier equation
can be directly obtained. This approach will overcome the explicitness and uniqueness
problems related to the Papkovich-Neuber solution and previous generalized Kolosov-
Muskhelishvilli formulae. Numerical examples are investigated to compare with existing
methods.
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Introduction

For a long time, complex analysis has been used for the treatment of boundary value
problems of partial differential equations in the plane. One of its advantages is the ability
to transform boundary value problems for general (linear or non-linear) equations to
boundary value problems for holomorphic functions using the well-known weakly singular
and strongly singular T- and Π-operators, respectively. In addition, by means of the
Riemann mapping theorem and the invariance of holomorphic functions under conformal
mappings, the domain in which the problems are specified can be restricted to the case
of the unit disk. Besides, the Taylor series and the Laurent series expansion give us tools
to approximate holomorphic functions. These highlights, among other things, make the
complex function theory to be an important technique in the theory of partial differential
equations.

In the nineteenth century, after many attempts to find a possible algebraic structure for
the three-dimensional physical space the English mathematician, W.K. Hamilton (1845-
1879), discovered the algebra of real quaternions. Each quaternion can be represented in
the form

q := q0 + q1 i + q2 j + q3 k (q0, q1, q2, q3 ∈ R)

where i, j, k are unit vectors in R3 satisfying the multiplication rules

i j = −j i = k, j k = −k j = i, k i = −i k = j.

The multiplication of two quaternions is an R-linear extension of the multiplication of basis
vectors. Thus, the set of quaternions forms an algebra over R, denoted by H. Extending
this idea, mathematicians looked for algebras generated by an m-dimensional space and
thus the physical space is only one example. The Clifford algebra Cl0,m constructed over
the Euclidean space Rm belongs to this class with the multiplication of basis vectors

ej ek + ek ej = −2 δjk (j, k = 1, . . . ,m)

where ej (j = 1, . . . ,m) are unit vectors of Rm. Other algebras should be mentioned
including the Grassmann algebra, the algebra of Pauli matrices, the algebra of Dirac
matrices and the algebra of Majorana matrices.

To extend the theory of holomorphic functions to higher dimensions, a convenient
way is to generalize the Cauchy-Riemann system. In particular, the so-called Moisil-
Teodorescu system deals with quaternion-valued functions in R3 [95]. It has direct applic-
ations to physics, for instance, to describe an irrotational fluid without sources or sinks.

1



INTRODUCTION 2

The work of Fueter [46, 47] in the early 20th century established the basis for the devel-
opment of quaternionic analysis and Clifford analysis. The main object of investigation
is the so-called Fueter operator

∂q := ∂q0 + ∂q1 i + ∂q2 j + ∂q3 k.

Solutions of the differential equation

∂q f(q) = 0

are called monogenic functions which are considered as generalization of holomorphic func-
tions in complex analysis. In several researches, monogenic functions appeared with the
name regular functions or hyperholomorphic functions. To work with the 3-dimensional
physical space, the Fueter operator can be replaced by the generalized Cauchy-Riemann
operator in R3

∂ := ∂x0 + e1 ∂x1 + e2 ∂x2

or the Dirac operator in R3 (also called the Moisil-Teodorescu operator)

D := e1 ∂x1 + e2 ∂x2 + e3 ∂x3 .

The theories of monogenic functions share a lot of analogies with the theory of holo-
morphic functions, for example Cauchy’s integral formula, mean value theorems, max-
imum modulus principle, Taylor series, Laurent series, etc. However, one should not
expect them to be completely similar to the holomorphic function theory in the complex
plane. Influenced by the non-commutative property of the quaternion (Clifford) multi-
plication the product and composition of monogenic functions are no longer monogenic.
Also, conformal mappings in higher dimensional spaces cannot be represented by mono-
genic functions, but by Möbius transformations. Apart from these drawbacks monogenic
function theories have applications in many scientific areas such as electrostatics, mag-
netostatics, signal processing, elasticity, etc.

An important period of development of quaternionic analysis and Clifford analysis
started in the 1980s. Many important results were found so far including contribu-
tions from Brackx, Delanghe, Sommen, Soucek, Sudbery [21, 22, 23, 36, 39, 134] on
quaternionic analysis, Clifford analysis, conjugate harmonics; from Qian, Ryan [112, 118]
on conformal invariance; from Bock, Gürlebeck, Kähler, Malonek, Sprößig [15, 17, 54, 55,
58, 59, 69, 70, 89] on singular integral operators, boundary value problems and applica-
tions to physics and engineering; from Kraußhar, Malonek [37, 80, 90] on geometry; from
Kravchenko, Mitelman, Shapiro, Vasilevski [83, 93, 128, 137, 138] on quaternion-valued
ψ-hyperholomorphic functions, singular integrals and boundary value problems in math-
ematical physics; from Eriksson, Leutwiler [42, 43, 86] on modified quaternionic analysis
and hyperbolic geometry; from Bock, Cação, Gürlebeck, Lávička, Morais [13, 14, 18, 19,
24, 26, 27, 28, 29, 30, 38, 98, 99, 101] on complete orthogonal systems, among others. The
research of quaternionic and Clifford analysis also covers Clifford wavelets [31, 94], Dirac
operators on manifolds [35], Fourier transforms [74], discrete Clifford analysis [45, 56, 57],
etc.



INTRODUCTION 3

The theory of monogenic functions can be seen as a refinement of harmonic analysis.
One of the most important properties of monogenic (or holomorphic) functions is that
they are harmonic functions in all components of the vector functions. Already in 1989
in the thesis by Stern [132] (see also [133]) the question was asked which properties of
a first order partial differential operator ensure that all null solutions of this operator
are harmonic in all components. It was shown that the coefficients (matrices in this
work) must satisfy the multiplication rules of a Clifford algebra. Similar results were also
discovered by Nôno [109, 110] when he studied the factorization of the Laplace operator
in the framework of quaternionic and Clifford analysis.

Independent from Nôno’s investigation Shapiro and Vasilevski introduced in the late
1980’s the theory of so-called ψ-hyperholomorphic quaternion-valued functions (see [137,
138] and later [128]). In this theory the standard basis vectors from quaternionic analysis
are replaced by a more general structural set. Seen as vectors from R4 the elements of the
structural set must be an orthonormal set with respect to the standard inner product in
R4. Gürlebeck [58] used this approach to study some singular integral operators in spaces
of quaternion-valued functions. In particular a generalized Π-operator was studied and
relations of this Π-operator to the Bergman projection could be proved. The work on
the Π-operator continued some earlier work by Shevchenko [129] who studied special Π-
operators based on modified generalized Cauchy-Riemann operators which are covered by
the theory of ψ-hyperholomorphic functions. In 1998 it was shown by Gürlebeck [54] that
the class of ψ-hyperholomorphic functions is more than what we get by rotations from
the class of monogenic functions. In this line are also the results in [58] where it could
be shown that a special Π-operator is invertible in L2 and how the mapping properties
of the operator change with the structural set. Recently this topic was studied again in
[2, 3] for Π-operators defined on domains with fractal boundaries.

In this thesis we propose a study on the theory of ψ-hyperholomorphic functions
defined in R3 with values in the subset of reduced quaternions, denoted by A. This
is motivated by applications in R3 and the observation that A-valued functions share
more properties with holomorphic functions [101, 102] than general H-valued monogenic
functions. The research is done in three main lines: geometric mapping properties,
harmonic decompositions and applications to engineering.

The first line of the research on ψ-hyperholomorphic functions is related to geo-
metric mapping properties which attracts the attention of several mathematicians. The
well-known Liouville’s theorem [87] shows that in Rn (n ≥ 3) conformal mappings are
restricted only to the class of Möbius transformations (including compositions of transla-
tions, dilations, rotations and inversion in the unit sphere). Unlike holomorphic functions
in the complex plane, monogenic functions are not conformal. This fact has the root from
the concept of the hypercomplex derivative of monogenic functions or in other words,
the concept of monogenic functions. At the first stage the hypercomplex derivative was
defined as the limit of a quotient of Euclidean increments. However, this definition leads
to a very narrow class of functions: a+x b. To obtain a richer function theory, the hyper-
complex derivative of monogenic functions is defined by means of differential forms and
Clifford measures (see [59, 88, 134]). Later on Malonek [90] proved that this definition
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of monogenic functions leads to the concept of M-conformal mapping which describes a
geometric characterization of monogenic mapping.

The effort of finding a visible geometric characterization of monogenic functions was
given firstly by Haefeli in 1947. He [73] proved that a monogenic function is related to
certain hyperellipsoids. In the sequel, Morais in [97, Chap. IV] (see also [62]) pointed out
for mappings f : R3 −→ A that a certain property of ellipsoids in the range of the mapping
is locally connected with M-conformal mappings. Particularly, the length of one semiaxis
must be equal to the sum of the lengths of the other two semiaxes. However this geometric
characterization does not ensure a mapping to be monogenic. For example, the conjugate
of a monogenic function also has such a property. In [37] and [80] the investigation to
characterize conformal mappings in R4 by a formal differentiability condition found a
connection with the structural set ψ. This is a suggestion to complete a local geometric
characterization of monogenic functions by considering the geometric mapping problem in
the context of ψ-hyperholomorphic functions. Particularly, we could prove a one-to-one
relation between ψ-hyperholomorphic functions and aforementioned ellipsoids (see [64,
H.M.Nguyen et al.]).

An old problem in quaternionic analysis and Clifford analysis is about a composition
of a monogenic function and a Möbius transformation. In [134] it is proved that the
composition itself is no longer monogenic but the product of it and a factor is again
monogenic. Such a factor depends only on the composed Möbius transformation. This
fact later on was generalized to Clifford analysis and the factor is called conformal weight
factor (c.f. [118]). Since a Möbius transformations is conformal, the composition of a
monogenic function with a Möbius transformation should not change the local mapping
property (with respect to aforementioned ellipsoids) of the monogenic function. It leads
to the request for the explanation of the role of the conformal weight factor from the
geometric viewpoint. The explanation is supported by the idea of ψ-hyperholomorphic
functions (see [64, H.M.Nguyen et al.]).

Due to the Riemann’s mapping theorem in complex analysis a simply connected do-
main can be mapped onto the unit disk by a conformal (holomorphic) mapping. So far
one still expects such a similar result for M-conformal mappings because of many diffi-
culties concerned the non-commutative structure of quaternion algebra. One difficulty is
that the product of monogenic functions is no longer monogenic. Thus one cannot apply
analogous techniques in complex function theory in higher dimensional spaces. Recently,
the construction of the conformal mapping in the complex plane was tried to generalize to
R3. In particular a generalized Bergman kernel method [16, 121] was studied. It is based
on the relation of the conformal mapping and the Bergman kernel in a domain of the
complex plane. Several trials on this method show that it could be a potential approach
for investigations. A problem in the use of the 3D Bergman kernel method is that the
constructed mappings are represented by functions from R3 to R4. If these mappings are
mappings in R3, one of their components must be vanishing. Up to now this desired res-
ult has been checked by numerical simulations only. We will prove in this thesis that for
oblate spheroidal domains the mapping constructed by the 3D Bergman kernel method
is a mapping in R3. It is based on the construction of orthonormal oblate spheroidal
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monogenic polynomials which were done in [108, H.M.Nguyen et al.] following the ideas
in construction of spherical monogenic functions by Cação [28], recurrence formulae and
Appell monogenic polynomials by Bock [13, 18] and an extension to the case of prolate
spheroidal domains by Morais [98, 99].

The second line of research is concerned with the refinement of harmonic analysis.
A relation between monogenic (or holomorphic) functions and harmonic functions is de-
scribed through the concept of conjugate harmonic functions. In complex analysis: given
a real harmonic function u, there exists a real harmonic function v so that f = u+ i v is a
holomorphic function. Such a pair (u, v) is called a pair of conjugate harmonic functions.
In the quaternionic setting, a conjugate harmonic function of a real harmonic function u
can be given due to the construction of a monogenic function f (c.f [134, Sudbery]):

f(x) = u(x) + 2Vec

(∫ 1

0

s2∂Hu(sx)x ds

)
.

This result is valid for star-shaped domains. In [63, 100], a quaternion-valued harmonic
conjugate of a real harmonic function is constructed based on spherical monogenic poly-
nomials. Hence this approach can be applied for domains fulfilling the polynomial ap-
proximation property. In the framework of Clifford analysis, the research of a conjugate
harmonic function pair (U, V ) is given in [22, 23], where U and V take values in a Clifford
algebra.

Another problem related to conjugate harmonic function pairs is finding additive de-
compositions of harmonic functions. It is well known in complex analysis that a harmonic
function can be decomposed into the sum of a holomorphic and an anti-holomorphic func-
tion. An analogous result holds for H-valued harmonic functions which can be represented
as the sum of a monogenic and an anti-monogenic H-valued function. Recently the theory
of A-valued monogenic and harmonic functions found some interest and the question of
additive decompositions was studied again for harmonic functions in R3. Alvarez and
Porter [5] made the surprising observation that A-valued functions cannot be written as
the sum of a monogenic and an anti-monogenic A-valued function. They found that in
the 6n+ 3-dimensional subspace of homogeneous harmonic polynomials of degree n there
is a 2n−1-dimensional subspace orthogonal to the sum of monogenic and anti-monogenic
polynomials of the same degree, called contragenic functions. However it will be shown
in this thesis that contragenic functions cannot be solutions of a first order system of
partial differential equations [64]. So, the main question is if there are other first order
systems such that we can decompose harmonic functions into the sum of three subspaces
of null solutions of first order systems of partial differential equations with the property
that all solutions of those systems are harmonic in all coordinates. We answer the funda-
mental question of the existence of such additive decompositions by the help of monogenic,
anti-monogenic and ψ-hyperholomorphic A-valued functions (see [66, 68, H.M.Nguyen et
al.]).

The third line of research is related to applications to engineering problems. In
the linear elasticity theory the physical state of each continuum model is described by
three fundamental equations: the equilibrium equations, the constitutive equations, and
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the strain-displacement relations. For the case of a homogeneous isotropic linear elastic
material without volume forces the vector of displacements u = (u0, u1, u2)T satisfies the
homogeneous Lamé-Navier equation in Cartesian coordinates as follows:

µ∆u + (λ+ µ) grad div u = 0, (1)

where λ, µ are the Lamé constants.
A powerful idea for dealing with elasticity problems is the explicit construction of

representations based on potential functions for the displacements such that they solve the
governing equations. As examples the strain potential, the Galerkin vector, the Boussinesq
potential and the Papkovic-Neuber solution have to be mentioned (see [7]). Among others,
the Papkovic-Neuber formula is widely used to represent the general solution of the Lamé-
Navier equation. The Papkovic-Neuber solution was discovered in the 1930s by Papkovic
in [111] and independently by Neuber in [106]. Precisely, the 3D displacement field can
be represented by

2µuj = − ∂F
∂xj

+ 2αΦj, j = 0, 1, 2

(
α =

λ+ 2µ

λ+ µ

)
,

where Φj, j = 0, 1, 2 are real harmonic functions and F is a biharmonic function satisfying

F = Ψ0 + x0Φ0 + x1Φ1 + x2Φ2,

with a real harmonic function Ψ0. The representation is complete as it was proved by
Mindlin [92] and Gurtin [72, 71] for bounded and unbounded domains, respectively.

It should be noticed that the Papkovic-Neuber solution is not unique. That means
for a given displacement field u one can find more than one set of harmonic functions
{Ψ0, Φ0, Φ1, Φ2}. Concerning polynomials solutions of equation (1) Bauch [8, 1981] could
show a one-to-one relation between solutions of equation (1) and solid spherical harmonics
and as a result, the space of homogeneous polynomial solutions of degree n has dimension
6n + 3. However by approximating each harmonic component in the Papkovic-Neuber
solution one obtains a set of 8n+ 4 polynomial solutions of (1). These numbers underline
the idea that three harmonic functions may be enough to represent the displacement
field. A question arises under which conditions the displacement field can be represented
by three harmonic functions? In other words, can one remove completely one harmonic
function from the Papkovic-Neuber formula?

This problem has been recognized and studied for years. Neuber in [107] claimed that
one can remove any harmonic function in the formula without changing its completeness.
However, Eubanks and Sternberg in [44] showed that the choice of the removable har-
monic component depends on the domain’s geometry. In particular, Φj, j = 0, 1, 2 can
be removed if the domain Ω is xj-convex. The scalar harmonic component Ψ0 can be
removed if Ω is a star-shaped domain. The conditions to remove Ψ0 were also studied by
Tran-Cong and Steven in [136]. If Ω is a convex domain, one can remove any function
from the Papkovic-Neuber representation. In general, it is impossible simply to remove
any harmonic component. Thus in construction of a basis for the space of solutions of
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system (1) one obtains a redundant set of solutions. It is difficult to remove these re-
dundancies and a constructive approach to establish basis solutions is desired. A possible
solution can be found due to the use of complex methods in the theory of elasticity.

The treatment of plane elasticity problems using the complex function theory is an
elegant and effective method. For the 2D case, the displacement and the stress field can
be represented by a holomorphic and an anti-holomorphic function, by the well-known
Kolosov-Muskhelishvili formulae (c.f [105]). We refer to [41, 124] for more information
about the complex function theory and its applications to elasticity. It should be emphas-
ized that recently function theoretic methods were applied to industrial problems. For
example a contact-stress problem in rolling mills was solved in [140].

Like the generalization of complex analysis to higher dimensional spaces, there are two
main ways to generalize Kolosov-Muskhelishvili formulae from 2D to 3D. In the late 1980s,
Piltner in [113, 114] extended some basic ideas from 2D to 3D for elasticity problems.
Using the Papkovic-Neuber formula he represented solutions of 3D elasticity problems
in terms of six complex-valued functions. However, by this extension it is difficult to
construct a basis for the space of solutions of equation (1). One remarkable point in the
generalization of Piltner is the introduction of three complex variables

ξ1 = ix+ b1 y + c1 z,

ξ2 = a2 x+ i y + c2 z,

ξ3 = a3 x+ b3 y + i z,

where


b2

1 + c2
1 = 1,

a2
2 + c2

2 = 1,

a2
3 + b2

3 = 1.

Surprisingly, the description of these variables is close to the definition of the structural
set ψ which is the starting point of the ψ-hyperholomorphic function theory.

Another generalization to higher dimensional cases of complex analysis is quaternionic
analysis. Recently there are several attempts to establish generalized Kolosov- Muskhel-
ishvili formulae in R3, such as formulae introduced by Bock, Gürlebeck in [17], and by
Weisz-Patrault, Bock, Gürlebeck in [139]. These works are based on monogenic functions
defined on Ω ⊂ R3, taking values in H. Therefore, the obtained results have the advant-
ages from the construction of monogenic basis functions such as Appell properties, power
series expansions (see [13, 14]), etc.

Related to the problem of removing redundant functions in the construction of a basis
for the space of solutions of equation (1), the Papkovic-Neuber formula can be used for a
certain class of geometries such as convex domains. An advantage of generalized Kolosov-
Muskhelishvili formulae is to implement a procedure to remove redundancies for more
general domains. In particular, the extended displacement field u∗ := u + χe3 (χ ∈ R)
has the representation

2µu∗ = 4(1− ν)Φ− 1

2
∂(xΦ + Φx)− Ψ̂,

where Φ, Ψ are (H-valued) monogenic functions, the involution Ψ̂ defines an anti-monogenic
function. Note that the adopted notation u = u0+u1 e1+u2 e2 defines a solution of Lamé-
Navier equation (1). Approximating Φ and Ψ by homogeneous monogenic polynomials
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of degree n, one obtains a set of 8n + 4 functions u∗, corresponding to 8n + 4 solutions
u. Consequently, 2n + 1 of these functions are linear dependent. These functions are
removed by combining certain functions u∗ in such a way that the e3-part is vanishing.
In [15, 139] this process is described explicitly by 2n + 1 additional equations for each
degree n.

The question is if we can solve 3D elasticity problems without leaving R3 and con-
struct directly a basis for the space of solutions of equation (1). Notice that the previous
generalized Kolosov-Muskhelishvili formulae are based on the additive decomposition of
harmonic functions: H = Φ + Ψ, where H, Φ and Ψ are harmonic, monogenic and anti-
monogenic functions, respectively (see [139]). Therefore, we can use the decomposition
of harmonics into the sum of monogenic and anti-monogenic and ψ-hyperholomorphic
A-valued functions as another choice to establish a new representation for the general
solution of the Lamé-Navier equation (see [20, 65, 67, H.M.Nguyen et al.]).

This thesis is organized into five chapters and the outline of each chapter is what
follows.

Chapter 1: The chapter presents some basic elements of quaternionic analysis. First of
all we introduce the algebra of real quaternions. Theories of monogenic functions
are reviewed through a short survey of monogenic functions and the hypercomplex
derivative. Concerning geometric characterizations, the concept of M-conformal
mapping is introduced due to the work of Malonek. Because many results in this
thesis are related to construction of (solid) spherical monogenic functions, several
existing complete systems of H- or A-valued monogenic functions are briefly de-
scribed. It should be mentioned that these complete systems are written in terms
of spherical harmonic functions which are easy to calculate by computer programs.

Chapter 2: This chapter presents ψ-hyperholomorphic functions defined in R3 with val-
ues in A and related geometric characterizations. In particular, we start with
the definitions of a structural set ψ in A, ψ-Cauchy-Riemann operator and ψ-
hyperholomorphic functions. An equivalent representation of ψ is described by an
orthogonal matrix. A local geometric mapping property relates ψ-hyperholomorphic
functions to a certain kind of ellipsoids with the property that the length of one semi-
axis is equal to the sum of the lengths of the other two semiaxes. Unlike in the case
of monogenic mappings, the inverse theorem can be proved. This theorem shows
that to satisfy the local geometric mapping property the structural set ψ can vary
with position, i.e. ψ = ψ(x), x ∈ R3. An example of a varying structural set is
given by the reciprocal of a monogenic function. It is pointed out that in general the
reciprocal of a ψ-hyperholomorphic function is a φ-hyperholomorphic function with
a structural set φ 6= ψ. This result cannot be seen if we just stay inside the space of
(classical) monogenic functions. To this end, an old problem about a composition
of a monogenic function and a Möbius transformation is re-considered. The com-
position is proved to be a ψ-hyperholomorphic function. The explicit structural set
ψ is constructed and a connection with the conformal weight factor is given.
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Chapter 3: This chapter presents a complete system of orthogonal monogenic H-valued
polynomials in the interior of an oblate spheroid and a global mapping property via
a 3D Bergman kernel method. To begin with, oblate spheroidal monogenic polyno-
mials are constructed by applying the generalized Cauchy-Riemann operator ∂ to
oblate spheroidal harmonics. We prove that the obtained functions are orthogonal
with respect to the L2-inner product over an oblate spheroidal domain. Although
these functions are not homogeneous polynomials, it does not influence the com-
pleteness of the system. It would be useful in practice if one has a complete system
having the orthogonal Appell property also. The previous researches are much con-
cerned with spherical domains where such a basis system exists. We prove in the
case of an oblate spheroid that a complete system can only be either orthogonal
or Appell system. Consequently, when we apply the hypercomplex derivative (or
a monogenic primitive) operator to a polynomial of degree n in the system, the
obtained result is not a member of the system with degree n − 1 (or n + 1) like in
cases of Appell systems. Basically, the results can be represented by all polynomials
of degree at most n−1 (for derivative) or n+1 (for primitive). We prove that only a
few are needed and explicit formulae are given. It means the amount of calculations
of oblate spheroidal monogenics can be reduced. The L2-norm, recurrence formulae
and the explicit form in Cartesian coordinates of solid oblate spheroidal monogenic
polynomials are presented for the aim of a fast computation. Finally solid oblate
spheroidal monogenic polynomials will be applied in a 3D Bergman kernel method
to construct a mapping which possibly maps oblate spheroidal domains to balls. It
will be proved that the constructed mapping is a mapping in R3 and some examples
are given.

Chapter 4: The chapter presents additive decompositions of harmonic functions in R3.
Firstly, contragenic polynomials which were found by Alvarez and Porter will be
briefly reviewed. Then it is proved that these functions are not null-solutions
to any linear first order partial differential operator. Secondly, to show that an-
other additive decomposition of harmonics is possible with three spaces of solu-
tions of generalized Cauchy-Riemann operators, namely the spaces of monogenic,
anti-monogenic and ψ-hyperholomorphic A-valued polynomials, we consider a spe-
cial case of ψ = {1, e2, −e1}. A representation of contragenic polynomials via
ψ-hyperholomorphic polynomials is explicitly shown and it leads to the existence of
such an additive decomposition. Next, this result is extended to a general case of
ψ different from the standard structural set and its conjugate. At last an additive
decomposition of harmonic functions in exterior domains is studied.

Chapter 5: The chapter presents an application of ψ-hyperholomorphic functions to
elasticity. We begin with the Lamé-Navier equation which describes the displace-
ment field of a continuum model. Several existing methods to solve the equation are
revisited such as the Papkovic-Neuber solution, Bauch’s basis solutions and gener-
alized Kolosov-Muskhelishvili formula: H-valued function approach. Applying the
result in chapter 4 we establish an alternative Kolosov-Muskhelishvili formula based
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on an A-valued function approach. Polynomial basis solutions of equation (1) are
constructed explicitly. It is also shown that the alternative Kolosov-Muskhelishvili
formula is applicable for exterior domains.

Next, numerical experiments with bases obtained by the alternative Kolosov -
Muskhelishvili formula will be investigated. In particular, the convergence property
of basis solutions is studied in approximation of the solution of the Kelvin problem.
To compare with other mentioned methods the numerical stability is computed for
each subset of polynomial solutions of (1) corresponding to each method. Finally,
a relation between polynomial basis solutions obtained by different methods will be
investigated.



Chapter 1

Basics of quaternionic analysis

In this chapter we introduce a collection of known results on quaternion-valued mono-
genic functions which is a basis for further discussions in this thesis. We start with the
definitions of quaternions. Monogenic functions which play a central role in the qua-
ternionic analysis will be defined based on a generalized Cauchy-Riemann operator in R3.
In fact, the definition of monogenic functions has a long history of discovery and it shares
several similar properties with the definition of holomorphic functions in complex analysis.
In connection with geometric characterizations of monogenic functions, hypercomplex de-
rivability and M-conformality are briefly introduced as generalizations from the complex
case to the quaternionic case. Finally, to prepare for upcoming chapters constructions of
solid spherical/spheroidal monogenic functions with values in A or H will be reviewed.
These functions form orthogonal complete systems in corresponding Hilbert spaces.

1.1 Quaternions

Quaternions were discovered by sir William Rowan Hamilton in the nineteenth century
as an extension of complex numbers. Later on, it becomes more and more popular in
many branches of science such as mathematics, physics, informatics, etc. One can find
the legend of their discovery in [55] and following details as well.

The algebra of real quaternions may be constructed by introducing a multiplication
of vectors as an operator in R4. Like 4-dimensional vectors, each quaternion q is an
ordered quadruple of real numbers q = (q0, q1, q2, q3), which are called coordinates of q.
Let q = (q0, q1, q2, q3) and p = (p0, p1, p2, p3) be two quaternions. One can add two
quaternions or multiply a real number by a quaternion as follows:

q + p = (q0 + p0, q1 + p1, q2 + p2, q3 + p3)

λq = (λq0, λq1, λq2, λq3).

Denote the standard basis of R4 by

e0 := (1, 0, 0, 0), e1 := (0, 1, 0, 0), e2 := (0, 0, 1, 0), e3 := (0, 0, 0, 1).

11
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One can define a multiplication of the basis elements as

e0 ei = ei, i = 0, 1, 2, 3

eiej + ejei = −2δij, i, j = 1, 2, 3

e1e2 = e3,

where δij is the Kronecker symbol. The element e0 plays the role of the unit element
of multiplication. Thus, e0 may be simply omitted in expressions. Sometimes, one uses
notations {i, j, k} instead of {e1, e2, e3} but that is not the case in this thesis.

Each quaternion q has the unique representation:

q = q0 + q1e1 + q2e2 + q3e3.

Therefore, multiplication of two quaternions is an R-linear extension of multiplication of
basis elements. The set of all quaternions with defined addition and multiplications forms
the algebra of real quaternions, denoted by H. It should be remarked that multiplication
is not commutative (e.g., e1e2 = − e2e1). Thus H is not a field, rather a noncommutative
or skew field.

Like in the complex case, the conjugate of q is defined by

q = q0 − q1e1 − q2e2 − q3e3

and the absolute value or modulus |q| of q is

|q| =
√
q q =

√
q q =

√√√√ 3∑
j=0

(qj)2.

The scalar and vector parts of q are denoted by

Sc(q) := q0,

Vec(q) := q1e1 + q2e2 + q3e3,

respectively. The real vector space R3 may be embedded in H by identifying the element
x = (x0, x1, x2) ∈ R3 with the reduced quaternion x = x0 + x1e1 + x2e2. The set of all
reduced quaternions is denoted by A. It should be noticed that reduced quaternions do
not form a sub-algebra of H because A is not closed under multiplication of quaternions.

The algebra of real quaternions is isomorphic to algebra Cl0,2 which is a concrete
example of a more general structure, called Clifford algebra. Let the space Rn+1 be given
with the basis {e1, e2, . . . , en}. For the multiplication let the following rules hold:

e0ei = eie0 = ei, i = 1, . . . , n

eiej = −ejei, i 6= j, i, j = 1, . . . , n

e2
0 = e2

1 = · · · = e2
p = 1, e2

p+1 = · · · = e2
p+q = −1,
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where p ∈ {0, . . . , n} and q = n− p.
The addition and the multiplication with a real number are defined coordinatewise.

Further, let the condition holds

e1e2 . . . en 6= ±1 if p− q ≡ 1 (mod 4).

The algebra found in this way is called (universal) Clifford algebra, denoted by Clp,q.
Thus a basis of Clp,q is

e0; e1, . . . , en; e1e2, . . . , en−1en; . . . ; e1e2 . . . en,

with e0 as the unit element.
Let the set Pn contain all subsets of {1, . . . , n} where in these subsets the numbers

are naturally ordered. We adopt the following representation of basis elements:

ei1i2...ik := ei1ei2 . . . eik .

Then every numbers in Clp,q can be represented as

x =
∑
A∈Pn

xAeA.

If |A| = k, the Clifford number of the form xAeA is called a k-vector. Let

[x]k :=
∑
|A|=k

xAeA,

then every element x ∈ Clp,q can be expressed in the form

x = [x]0 + [x]1 + · · ·+ [x]n.

The elements of the form [x]0, [x]1 and [x]0+[x]1 are called scalars, vectors and paravectors,
respectively.

Following are some examples of Clifford algebras.

Example 1.1.1.

(i) If n = 0, we obtain the real number R as a Clifford algebra.

(ii) If n = 1, p = 0, Cl0,1 ∼= C.

(iii) If n = 2, p = 0, Cl0,2 ∼= H.

(iv) If n = 4, p = 1, Cl1,3 is called the Minkowski space.
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1.2 Monogenic functions in R3

The theory of monogenic functions (sometimes called regular or hyperholomorphic
functions) plays a central role in quaternionic analysis. A monogenic function is a null-
solution of the Dirac operator or of the generalized Cauchy-Riemann operator, which will
be defined in the sequel.

1.2.1 Holomorphic functions revisited

The concept of holomorphy was originally developed in the complex function theory
and then it was generalized to higher dimensions. We will start by visiting the complex
case.

Let f(z) = u(z) + iv(z) be a complex function, where z = x0 + i x1 ∈ G ⊂ C with the
imaginary unit i. Suppose further that u(z), v(z) are in C1(G), the set of continuously
differentiable real-valued functions in G. Then its differential can be written as

df =
∂f

∂x0

dx0 +
∂f

∂x1

dx1 = (ux0 + i vx0) dx0 + (ux1 + i vx1) dx1. (1.1)

Using the following notations

∂z :=
1

2
(∂x0 − i ∂x1) , ∂z :=

1

2
(∂x0 + i ∂x1) ,

one can rewrite (1.1) by
df = (∂zf) dz + (∂zf) dz. (1.2)

If ∂zf = 0, (1.2) can be interpreted that the increment of f depends only on the increment
of z. That is the idea of the definition of holomorphic functions. Particularly, one has the
definition (see [55]).

Definition 1.2.1 (Holomorphic function). A function f ∈ C1(G) in a domain G ⊂ C is
called holomorphic, if for each point z ∈ G, a complex number f ′(z) exists, such that for
h→ 0,

f(z + h) = f(z) + f ′(z)h+ o(h).

The number f ′(z) is called the (complex) derivative of f at z.

In this definition, the notion o(h) is the Bachmann-Landau symbol. Consequently,
it leads to the following theorem which can be considered as another definition of holo-
morphic functions.

Theorem 1.2.1 (Cauchy-Riemann equations). A function f ∈ C1(G) in a domain G ⊂ C
is holomorphic in G if and only if one has

∂f = 2∂zf = ux0 − vx1 + i (ux1 + vx0) = 0.
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The equations
∂f = 2∂zf = 0,

or
ux0 − vx1 = 0, ux1 + vx0 = 0

are called Cauchy-Riemann equations and ∂z is called Cauchy-Riemann operator.

1.2.2 Definitions and notations

A simple way to generalize the concept of holomorphy to R3 is related to the generalized
Cauchy-Riemann operator which is given in the following definition.

Definition 1.2.2 (Generalized Cauchy-Riemann operator). The generalized Cauchy -
Riemann operator and its adjoint operator in R3 are given by

∂ :=
∂

∂x0

+ e1
∂

∂x1

+ e2
∂

∂x2

, (1.3)

∂ :=
∂

∂x0

− e1
∂

∂x1

− e2
∂

∂x2

. (1.4)

Definition 1.2.3 (Monogenic function). Let Ω be a domain in R3. A function f ∈
C1(Ω,H) is called (left-) monogenic in Ω if ∂f(x) = 0 for all x ∈ Ω.

Remark 1.2.1.

(i) The Laplace operator can be factorized by means of the generalized Cauchy-Riemann
operator and its conjugate as follows:

∆R3 = ∂∂ = ∂∂.

It means that monogenic functions are harmonic in all coordinates.

(ii) The definition of monogenic functions can be extended to functions defined in a do-
main of Rn with values in Cl0,n. In this case, the corresponding generalized Cauchy-
Riemann operator is

∂ =
n∑
k=0

ek
∂

∂xk
.

Let us consider a monogenic function with values in A

f = f0 + f1e1 + f2e2.
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The equation ∂f(x) = 0 is equivalent to the following system

∂f0

∂x0

−∂f1

∂x1

−∂f2

∂x2

= 0

∂f1

∂x0

+
∂f0

∂x1

= 0

∂f2

∂x0

+
∂f0

∂x2

= 0

∂f2

∂x1

−∂f1

∂x2

= 0.



(1.5)

System (1.5) is a concrete example of the more general system studied in [131] by E. Stein
and G. Weiss. A 3-tuple of harmonic functions f0, f1, f2 which satisfies system (1.5) forms
a system of conjugate harmonic functions (in the sense of M. Riesz [119]). System (1.5)
is usually called the 3D Riesz system.

In the previous section, two ways of defining a holomorphic function, based on the
Cauchy-Riemann operator and complex derivability, are shown equivalently. It leads to a
question of ’hypercomplex derivability’ in the case of monogenic functions. This question
was already studied by Sudbery [134] in quaternionic analysis, by Shapiro et al. [128]
for ψ-hyperholomorphic functions and by Gürlebeck, Sprößig [59] in Clifford analysis.
Because hypercomplex derivability has a close relation with geometric characterizations
of monogenic functions, we will spend a whole section to review it. Here, we define
formally a hypercomplex derivative as the following.

Definition 1.2.4 (Hypercomplex derivative). Let f be a monogenic function in Ω ⊂ R3

with values in H. The expression
(

1
2
∂f
)

is called hypercomplex derivative of f in Ω.

Definition 1.2.5 (Monogenic constant). A monogenic function with an identically van-
ishing hypercomplex derivative is called monogenic constant.

Remark 1.2.2. A monogenic constant f depends only on variables x1 and x2.

Indeed, since ∂f = 0 and ∂f = 0 one gets

∂f

∂x0

= 0.

It means that f does not depends on x0.

Definition 1.2.6 (Anti-monogenic function). An H-valued function f is called anti-
monogenic in Ω ⊂ R3 if ∂ f = 0 in Ω.

In [13] Bock introduced a mapping that transforms a monogenic function to an anti-
monogenic function.
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Definition 1.2.7 (H-involution). Let f = f0 + f1 e1 + f2 e2 + f3 e3 be a function in Ω.

Then its H-involution, f̂ , is defined by

f̂ = −e3 f e3 = f0 − f1 e1 − f2 e2 + f3 e3.

We obtain immediately the following result.

Corollary 1.2.1 ([13]). The H-involution of a monogenic function f in Ω ⊂ R3 defines

an anti-monogenic function in Ω, i.e. ∂ f̂ = 0.

Since the e3-component of an A-valued function f in Ω is vanishing, the conjugate
and the H-involution of f are identical. Thus if f is a monogenic function, f defines an
anti-monogenic function.

Definition 1.2.8 (Monogenic primitive). A function F ∈ C1(Ω;H) is called monogenic
primitive of a monogenic function f with respect to the hypercomplex derivative

(
1
2
∂
)
, if

F ∈ ker ∂ and 1
2
∂F = f . If for a given function F ∈ ker ∂ such a function F exists, it

will be denoted by P f := F .

In complex analysis, if f(z) is holomorphic in a simply connected domain G ⊂ C, there
exists a function F , holomorphic in G, such that F ′(z) = f(z) (see [1]). The function
F (z) is called holomorphic primitive (or anti-derivative) of f . Since the integration of f
along a path in G depends only on the endpoints, a holomorphic primitive of f can be
defined by

F (z) =

∫ z

z0

f(s) ds,

where the integral is taken along any path γ from z0 to z lying in G and it is unique
up to a constant. However, this construction is no longer valid for monogenic primitives.
The existence of monogenic primitives have been shown in [21] for monogenic functions
defined in a certain class of domains. Besides the restriction of geometry, this method is
not constructive. In [134] Sudbery proved the existence of monogenic primitives for the
case of monogenic polynomials. Later on the explicit representation of polynomial mono-
genic primitives were constructed in [59, 27] for Fueter polynomials and solid spherical
monogenic polynomials. Due to the Fourier series expansion of a monogenic function f
in terms of mentioned polynomials, its monogenic primitive can be calculated.

1.2.3 Hypercomplex derivability

In fact, the definition of monogenicity has a long history of development related to
the way how to generalize the complex derivative. In complex analysis, one can define
a holomorphic function by three different ways based on complex derivability, Cauchy-
Riemann equations and analyticity. Influencing by the noncommutative structure of H,
these approaches cannot be simply applied to define a monogenic function. Precisely, the
definition of monogenicity by means of a quotient of finite differences do not lead to the
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same set of functions as by the generalized Cauchy-Riemann operator. Thus people looked
for a new interpretation of complex derivative and generalize it to higher dimensions.

The first idea was introduced for functions f(x), x ∈ H, taking values in H, by means
of a limit of a difference quotient

[f(x+ h)− f(x)]h−1 or h−1[f(x+ h)− f(x)],

where h ∈ H is a quaternionic increment.

Theorem 1.2.2 (Krylov, Mejlikhzhon). Let f ∈ C1(G) be a function given in a domain
G ⊂ H with values in H. If for all points in G the limit

lim
h→0

h−1[f(x+ h)− f(x)],

exists, the function f in G has the form

f(x) = a+ xb (a, b ∈ H).

This theorem shows that the class of functions satisfying the definition of quaternionic
derivability in the sense of a difference quotient is very small. To obtain a rich function
theory, A. Sudbery in [134] proposed an alternative way to define a hypercomplex de-
rivative and monogenicity in terms of differential forms. The approach of A. Sudbery is
based on the representation of the complex derivative

df = f ′(z) dz.

Let q ∈ H be of the form q = x0 +x1e1 ++x2e2 +x3e3. Consider the following differential
forms

dq ∧ dq = e1dx2 ∧ dx3 + e2dx3 ∧ dx1 + e3dx1 ∧ dx2,

Dq = dx1 ∧ dx2 ∧ dx3 − e1dx0 ∧ dx2 ∧ dx3 − e2dx0 ∧ dx3 ∧ dx1 − e3dx0 ∧ dx1 ∧ dx2.

Definition 1.2.9 (Regular functions, [134]). A function f : H → H is left regular at
q ∈ H if it is real differentiable at q and there exists a quaternion f ′L(q) such that

d(dq ∧ dq f) = Dq f ′L(q).

It is right regular if there exists a quaternion f ′R such that

d(dq ∧ dq f) = f ′R(q)Dq.

f ′L(q) and f ′R(q) are called the left and the right derivative of f at q.

It is proved that f ′L = 1
2
∂H f , where

∂H =
∂

∂x0

− e1
∂

∂x1

− e2
∂

∂x2

− e3
∂

∂x3

.
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Moreover if f is regular, f ∈ ker ∂H. It means that the definitions of regularity and
monogenicity are coincide. A complete survey on the hypercomplex derivative in R4 can
be found in [88, Shapiro et al.] where its definition is generalized from a slightly different
representation of complex derivative:

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0

= lim
z→z0

∫
{z0,z} f(ζ)∫ z

z0
dζ

.

Here the numerator is the integral along its boundary:
∫
{z0,z} f(ζ) = f(z) − f(z0). This

representation of complex derivative looks similar to the areolar derivative given by Pom-
peiu [116, 117] for complex continuously differentiable functions. The areolar derivative
is the partial derivative ∂

∂z
written in a new formulation by means of an integral over the

boundary of a disk. It should be remarked that for holomorphic functions the areolar
derivative is vanishing and vise versa.

We introduce briefly the definitions and some properties of the hypercomplex derivative
by Shapiro et al. [88]. Let x0 ∈ Ω,

Π :=

{
x0 +

3∑
k=1

hktk ∈ R4 : (t1, t2, t3) ∈ [0, 1]3

}

be a parallelepiped with vertex x0 and

∂Π :=

{
x0 +

3∑
k=1

hktk ∈ R4 : (t1, t2, t3) ∈ ∂([0, 1]3)

}

be its boundary.

Definition 1.2.10 (Hyperderivability, [88]). Given a sequence {Πn}n∈N of parallelepipeds
with vertex x0 and such that diam Πn →

n→∞
0, if there exists

lim
n→∞

{(∫
Πn

Dq

)−1(∫
∂Πn

dq ∧ dq f
)}

then f is called hyperderivable at x0 and the limit itself, denoted by ′f(x0), is called the
hyperderivative of f at x0.

Theorem 1.2.3 ([88]). f ∈ ker ∂H in Ω iff f is hyperderivable in Ω and

′f(x) =
1

2
∂Hf(x) (x ∈ Ω).

An important property in complex analysis is that the directional derivative of a
complex function is identical in all directions for the case of holomorphic functions. One
can ask for a generalization of the directional derivative of an H-valued function so that
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it preserves the aforementioned property for monogenic functions. Let Λ ⊂ R4 be a
hyperplane given by the equation

γ(x) :=
3∑

k=0

nkxk + d = 0,

where d ∈ R and −→n = (n0, n1, n2, n3) is the unit normal vector to Λ, x0 ∈ Λ and f is
defined in a neighbourhood of x0, denoted by V (x0).

Definition 1.2.11 (Directional derivability, [88]). A function f is said to be hyperde-
rivable at a point x0 along Λ, if for any sequence {Πn}∞n=1 (Πn ⊂ Λ, n ∈ N) of non-
degenerated oriented 3-parallelepipeds with a vertex x0, the limit

lim
diam Πn→0

{(∫
Πn

Dq

)−1(∫
∂Πn

dq ∧ dq f
)}

=:′ fΛ(x0)

exists and does not depend on the choice of the sequence {Πn}∞n=1. ′fΛ(x0) is called left-
hyperderivate in a given 3-dimensional direction Λ.

Theorem 1.2.4 ([88]). Any function f ∈ C1(V (x0);H) is hyperderivable at x0 along
every plane Λ 3 x0 and

′fΛ(x0) =
1

2

(
∂Hf(x0)− n2∂Hf(x0)

)
with n =

∑3
k=0 nkek the normal to Λ.

It is clear that if f is monogenic in Ω, its directional derivative at x0 ∈ Ω does not
depend on the choice of directions. This result is analogous to the complex case. In [59],
the definition of the hypercomplex derivative of monogenic functions (in the sense of A.
Sudbery) was extended to Rn+1 by Gürlebeck and Malonek.

1.3 M-conformal mappings

The definition of monogenicity is closely related to geometric mapping properties of
monogenic functions. In complex analysis, every holomorphic function with non-vanishing
complex derivative realizes a conformal mapping which preserves angles between curves on
the complex plane. Hence, locally a conformal mapping maps circles to circles. Globally,
the well-known Riemann’s mapping theorem shows that one can map every simply con-
nected domain of C, except the whole complex plane, onto the unit disk. Since hypercom-
plex derivative cannot be defined by Euclidean measures, geometric mapping properties
of monogenic functions are going to change.

In 1850, J. Liouville in [87] proved that any conformal mapping on a domain of Rn, n ≥
3 can be represented by a composition of translations, dilations, rotations and inversions
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in the unit sphere which are called Möbius transformations. Unlike the complex case, it is
pointed out that Möbius transformations (or conformal mappings) are not monogenic. An
interesting question is what could be geometric characterizations of monogenic mappings?

Several attempts have been done to answer this question. In 2001, H. R. Malonek
([90]) introduced the concept of M-conformal mappings (M stands for monogenic) which
are realized by functions defined in a domain of Rn+1 with values in Cl0,n. To define
M-conformal mappings, we need the following notations (c.f [59]):

z = x0 +
1

n
(x1e1 + x2e2 + · · ·+ xnen),

dµ =
n∑
k=1

(−1)n−1+kek d x̂0,k,

dσ = dµ ∧ dz,

dσ = −dµ ∧ dz,

where
dx̂0,k = dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ · · · ∧ dxn.

Let Ω be a domain in Rn+1 and S be a positively oriented differentiable n-dimensional
hypersurface in Ω with coherent oriented boundary ∂Ω. Let further z∗ be a fixed point
in S. Consider now a so called regular sequence of subdomains {Sm} which is shrinking
to z∗ if m tends to infinity and whereby z∗ belongs to all Sm. Suppose further that

F : Ω ⊂ Rn+1 −→ Cl0,n

is an arbitrary real differentiable function. The outer product of dµ and dF admits the
representation

dµ ∧ dF = dµ ∧ dz 1

2
∂F + dµ ∧ dz 1

2
∂F.

Consequently, the hypercomplex derivative of a monogenic function F , i.e. ∂F = 0, can
be represented as the limit of the quotient of two integrals:

1

2
∂F (z∗) = (−1)n lim

m→∞

[∫
Sm
dµ ∧ dz

]−1 ∫
∂Sm

(dµF ),

in case the limit for all possible regular sequences exists. Now, we call the integrals

MS =

∫
S
dµ ∧ dz,

MS(F ) =

∫
S
dµ ∧ dF

the Clifford measures of S and F (S), respectively.
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Let S1 and S2 be two positively oriented differentiable n-dimensional hypersurfaces
with coherent oriented boundary in Ω. Consider also two regular sequences {Sm,k}, k =
1, 2 corresponding to the considered hypersurfaces Sk, k = 1, 2 and some fixed point
z = z∗ ∈ Ω which belongs to all Sm,k, k = 1, 2. Further we assume for simplicity that the
euclidean measures of both Sm,k, k = 1, 2 are the same for all m. Then we will call the
limits

αr1,2(z∗) = lim
m→∞

(MSm,1)
−1MSm,2

αl1,2(z∗) = lim
m→∞

MSm,2(MSm,1)
−1

 (1.6)

the right resp. left angle between S1 and S2 at the point z∗.
The case of hyperplanes with the normal vectorsN1 andN2 will give us the imagination

about the definition of the angle between hypersurfaces. Indeed, one has in this case

αr1,2(z∗) = N−1
1 N2

αl1,2(z∗) = N2N
−1
1 .

Definition 1.3.1 (M-conformal mappings, [90]). Let S1 and S2 be two positively oriented
differentiable n-dimensional hypersurfaces with coherent oriented boundary in Ω. If there
exists a mapping F defined on hypersurfaces in Ω which preserves the angle, i.e., such
that

αr1,2(z∗) = lim
m→∞

(MSm,1)
−1MSm,2 = lim

m→∞
MSm,1(F )−1MSm,2(F )

αl1,2(z∗) = lim
m→∞

MSm,2(MSm,1)
−1 = lim

m→∞
MSm,2(F )MSm,1(F )−1

then F is called a right resp. left M-conformal mapping.

Theorem 1.3.1 ([90]). Let F be a para-vector valued real differentiable function in Ω ⊂
Rn+1. This function realizes locally in the neighborhood of a fixed point z = z∗ a left
M-conformal mapping if and only if F is left monogenic and its left derivative is different
from zero.

This geometric characterization of monogenic functions is interpreted in a way so that
we can see the similarity between conformality and M-conformality. However, the angle
in (1.6) takes value in Clifford algebra and it is difficult to have an imagination about it.
To obtain a visible geometric characterization of monogenic mappings in Rn+1, we need to
consider these mappings as quasi-conformal mappings which are mappings with bounded
distortion from conformal mappings.

In particular, let f be a function in a domain Ω ⊂ Rn+1. At each point α ∈ Ω, we
define the coefficient k(f, α) of quasi-conformality of f as follows:

k(f, α) = lim sup
r→0

sup|x−α|=r |f(x)− f(α)|
inf |x−α|=r |f(x)− f(α)|

.
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The function f is called k-quasi-conformal in Ω if k(f, α) ≤ k < ∞ for all α ∈ Ω. The
coefficient of quasi-conformality of conformal mappings is k = 1. If f is differentiable at a
point α ∈ Ω, then f realizes in a neighbourhood of α a linear mapping which transforms
a sphere onto an ellipsoid.

A question arises whether there is a special kind of ellipsoids so that these ellipsoids
characterize monogenic mappings. First general results were already shown by Haefeli
who proved in 1947 in the paper [73] that a monogenic function is related to certain
hyperellipsoids. In the sequel, Morais in [97, Chap. IV] (see also [62]) pointed out for
mappings f : R3 −→ A that a certain property of ellipsoids in the range of the mapping
is locally connected with M-conformal mappings. Particularly, one has the following
theorem.

Theorem 1.3.2 ([62]). Let f be an A-valued real analytic function defined in a domain Ω
of R3 with non-vanishing Jacobian determinant. If the function f is monogenic, it maps
locally a sphere to an ellipsoid with the property that the length of one semi-axis is equal
to the sum of the lengths of the other two semi-axes.

This result is related to the fact that a monogenic function f describes a fluid without
sources or sinks:

div(f) = 0.

It is the physical meaning of the result.
The theorem shows a criterion to characterize monogenic mappings. Unfortunately,

the inverse theorem does not hold. To be precise, the criterion talks about the lengths of
semiaxes, but not about the orientation. If we apply a rotation first and then a monogenic
mapping to a ball, the obtained image is still the prescribed ellipsoid. However, the
composition of a monogenic function and a rotation (Möbius transformations in general)
is no longer monogenic. Thus for a prescribed ellipsoid one can construct many mappings
which map a ball to it. That means the inverse problem for the aforementioned geometric
characterization cannot be solved by using only monogenic functions. Fortunately, Möbius
transformations just map the set of unit vectors {1, e1, e2} in R3 to a structural set which
will be defined later. Hence, one can solve the inverse problem completely in the context
of ψ-hyperholomorphic functions.

1.4 Orthogonal complete systems of monogenics

Let Ω be a domain in R3. We denote the R-linear and H-linear Hilbert spaces of
square integrable A–valued or H–valued monogenic functions in Ω by

M(Ω;A;R) := L2(Ω;A;R) ∩ ker ∂,

M(Ω;H;R) := L2(Ω;H;R) ∩ ker ∂,

M(Ω;H;H) := L2(Ω;H;H) ∩ ker ∂.
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The spaces M(Ω;A;R) and M(Ω;H;R) are endowed with the inner product

〈f ,g〉L2(Ω;R) =

∫
Ω

Sc(f g) dV, (1.7)

and the space M(Ω;H;H) is endowed with the inner product

〈f ,g〉L2(Ω;H) =

∫
Ω

f g dV . (1.8)

The induced norm in both cases is denoted by

‖f‖L2(Ω) =


√
〈f , f〉L2(Ω;R),√
〈f , f〉L2(Ω;H).

There are many problems such as approximation of a monogenic function or construction
of reproducing kernels in a Hilbert space that require the knowledge of an orthonormal
complete system.

Definition 1.4.1 (Completeness, [55]). Let X be a right vector space with norm over K
(R or H). A set {x(i)} ⊂ X, i ∈ N, of elements of X is called K-complete if and only if
for all x ∈ X and for an arbitrary ε > 0 there is a finite right-linear combination Rε(x)
of the set {x(i)} so that

‖x−Rε(x)‖ < ε

holds.

An example of complete systems of monogenic functions in R3 can be given by shifted
fundamental solutions of the Dirac operator.

Theorem 1.4.1 ([55]). Let G, Gε be bounded domains in R3 whose boundaries Γ and Γ1

are at least C2-surfaces. Moreover let G ⊂ Gε and let {x(i)} be a dense subset of Γ1. The
system {φi} with

φi(x) =
x− x(i)

|x− x(i)|3

is then H-complete in L2(G) ∩ kerD where D =
∑3

k=1 ek∂k is the Dirac operator.

The calculation of functions in this system is quite simple but these functions are not
orthogonal. An orthogonalization procedure will destroy such a simple structure and one
has to pay for numerical costs. It is more dangerous if the orthogonalization is unstable.
In what follows, we will introduce several complete orthogonal systems due to the work
of Cação ([25, 26, 27, 28, 29, 30]) on spherical monogenic H- or A-valued polynomials,
the work of Bock ([12, 13, 14, 18, 19]) on an Appell system and the work of Morais
([97, 98, 99, 101]) on the construction of prolate spheroidal monogenic polynomials.
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1.4.1 Inner solid spherical monogenic functions

Let S be the unit sphere in R3

S = {(x0, x1, x2) ∈ R3 : x2
0 + x2

1 + x2
2 = 1}.

We adopt the notations S+ and S− for the interior and exterior domains bounded by S.
In fact S+ is the unit ball in R3.

The idea of construction of orthogonal monogenic functions in the unit ball S+ ⊂ R3

comes from the decomposition of the Laplace operator:

∆ = ∂∂ = ∂∂.

Thus a monogenic function can be obtained by applying the hypercomplex derivative 1
2
∂

to a harmonic function.
In the spherical coordinates

x0 = r cos θ, x1 = r sin θ cosϕ, x2 = r sin θ sinϕ

with r ∈ [0,∞), θ ∈ [0, π), ϕ ∈ [0, 2π), spherical harmonic functions are given byUm
n (r, θ, ϕ) = Pm

n (cos θ) cos(mϕ) ; m = 0, . . . , n,

V l
n(r, θ, ϕ) = P l

n(cos θ) sin(lϕ) ; l = 1, . . . , n,

where Pm
n (t) are the Ferrers’ functions associated with Legendre functions (or simply

called associated Legendre functions):

Pm
n (t) = (1− t2)m/2

dm

tm
Pn(t) (m = 1, . . . , n)

and Pn(t) are the Legendre polynomial of degree n corresponding to P 0
n(t). This definition

of Pm
n (t) is given for the case −1 ≤ t ≤ 1 (see [9, 115, 125]).

Associated Legendre functions are orthogonal in the following sense:∫ 1

−1

Pm
n (t)Pm

l (t) dt =

{
0, n 6= l

2
2n+1

(n+m)!
(n−m)!

, n = l.

Following [9, 115], associated Legendre functions satisfy recurrence relations:

√
1− t2 d

dt
Pm
n (t) = Pm+1

n (t)− mt√
1− t2

Pm
n (t),

(1− t2)
d

dt
Pm
n (t) = (n+m)Pm

n−1(t)− n t Pm
n (t),

√
1− t2 d

dt
Pm
n (t) =

mt√
1− t2

Pm
n (t)− (n+m)(n−m+ 1)Pm−1

n (t),
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√
1− t2 Pm

n (t) =
1

2n+ 1

[
Pm+1
n+1 (t)− Pm+1

n−1 (t)
]
,

(2n+ 1) t Pm
n (t) = (n+m)Pm

n−1(t) + (n−m+ 1)Pm
n+1(t),

√
1− t2 Pm

n (t) =
(n+m)(n+m− 1)

2n+ 1
Pm−1
n−1 (t)− (n−m+ 1)(n−m+ 2)

2n+ 1
Pm−1
n+1 (t),

Pm
n (t) = t Pm

n+1(t)− (n−m+ 2)
√

1− t2 Pm−1
n+1 (t),

Pm+1
n (t) =

2mt√
1− t2

Pm
n (t)− (n+m)(n−m+ 1)Pm−1

n (t),

Pm
n (t) = t Pm

n−1(t) + (n+m− 1)
√

1− t2 Pm−1
n−1 (t).

Solid spherical harmonic functions are defined by

Û0
n = rn U0

n, Ûm
n = rn Um

n , V̂ m
n = rn V m

n ,

for m = 1, . . . , n and n ∈ N0. The L2-norm of these functions in the unit ball is given as
follows:

‖Û0
n‖L2(S+) =

√
4π

(2n+ 1)(2n+ 3)
,

‖Ûm
n ‖L2(S+) = ‖V̂ m

n ‖L2(S+) =

√
2π

(2n+ 1)(2n+ 3)

(n+m)!

(n−m)!
.

We apply the hypercomplex derivative to solid spherical harmonic functions and use
notations

Xm
n :=

1

2
∂ [Ûm

n+1]; m = 0, . . . , n+ 1,

Y l
n :=

1

2
∂ [V̂ l

n+1]; l = 1, . . . , n+ 1.

 (1.9)

Notice that the conjugate of the generalized Cauchy-Riemann operator in the spherical
coordinates is of the form

∂ = ω
∂

∂r
+

1

r

∂

∂ω
,

where

ω = cos θ + sin θ cosϕ e1 + sin θ sinϕ e2,

∂

∂ω
= −(sin θ + cos θ cosϕ e1 + cos θ sinϕ e2)

∂

∂θ
+

1

sin θ
(sinϕ e1 − cosϕ e2)

∂

∂ϕ
.

The explicit representations of functions (1.9) are given in terms of solid spherical
harmonic functions.
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Theorem 1.4.2 ([101]). The monogenic functions (1.9) can be represented in the follow-
ing way

X0
n =

n+ 1

2
Û0
n +

1

2
Û1
n e1 +

1

2
V̂ 1
n e2,

Xm
n =

n+m+ 1

2
Ûm
n −

[
cmn Û

m−1
n − 1

4
Ûm+1
n

]
e1 +

[
cmn V̂

m−1
n +

1

4
V̂ m+1
n

]
e2,

Y m
n =

n+m+ 1

2
V̂ m
n −

[
cmn V̂

m−1
n − 1

4
V̂ m+1
n

]
e1 −

[
cmn Û

m−1
n +

1

4
Ûm+1
n

]
e2,

where m = 1, . . . , n+ 1 and

cmn =
(n+m)(n+m+ 1)

4
.

Remark 1.4.1.

(i) Xm
n , Y

m
n are homogenous polynomials of degree n in the Cartesian coordinates.

(ii) Xn+1
n and Y n+1

n (n ∈ N0) are monogenic constants.

Example 1.4.1. Here are some first monogenic polynomials:

X0
0 = 1

2
, X1

0 = −1
2
e1, Y 1

0 = −1
2
e2

X0
1 = x0 + 1

2
x1e1 + 1

2
x2e2, X1

1 = 3
2
x1 − 3

2
x0e1, X2

1 = −3x1e1 + 3x2e2,

Y 1
1 = 3

2
x2 − 3

2
x0e2, Y 2

1 = −3x2e1 − 3x1e2.

The completeness of system (1.9) is asserted by the following theorem.

Theorem 1.4.3 ([26, 97]). For each degree n, the set

{Xm
n , Y

l
n : m = 0, . . . , n+ 1; l = 1, . . . , n+ 1}

forms an orthogonal basis of the space Mn(S+;A;R).

Remark thatMn(S+;A;R) is the subspace of homogenous monogenic polynomials of
degree n. Consequently, one gets

dimMn(S+;A;R) = 2n+ 3,

which was proved by H. Leutwiler in [86].
Based on results in [21] the following orthogonal decomposition holds

M(S+;A;R) =
∞⊕
n=0

Mn(S+;A;R).



CHAPTER 1. BASICS OF QUATERNIONIC ANALYSIS 28

It leads to the completeness of the system

{Xm
n , Y

l
n : m = 0, . . . , n+ 1; l = 1, . . . , n+ 1; n ∈ N0}

in the space M(S+;A;R).
Functions Xm

n and Y l
n are all A-valued functions. Therefore to construct orthogonal

complete systems for the spaces of H-valued monogenic functions, we need to introduce
the underlying functions:

Xm
n,j := Xm

n ej, Y l
n,j := Y l

nej (j = 0, 1, 2, 3)

for m = 0, . . . , n + 1 and l = 1, . . . , n + 1. Normalizing these functions, we adopt the
notations:

X̃m
n,j :=

Xm
n,j

‖Xm
n,j‖L2(S+)

, Ỹ l
n,j :=

Y l
n,j

‖Y l
n,j‖L2(S+)

,

where the L2-norm of spherical monogenic functions is given by:

Proposition 1.4.1 ([28]). Functions X0
n,j, X

l
n,j and Y l

n,j (l = 1, . . . , n+ 1; j = 0, 1, 2, 3)
have the norms:

‖X0
n,j‖L2(S+) =

√
π(n+ 1)

2n+ 3
,

‖X l
n,j‖L2(S+) = ‖Y l

n,j‖L2(S+) =

√
π(n+ 1)

2(2n+ 3)

(n+m+ 1)!

(n−m+ 1)!
.

Proposition 1.4.2 ([28]). Each of the following systems

{X0
n,0, X

m
n,0, Y

m
n,0 : m = 1, . . . , n+ 1; n ∈ N0},

{X0
n,3, X

l
n,3, Y

l
n,3 : l = 1, . . . , n; n ∈ N0}

is orthogonal in the space M(S+;H;R). Between these two systems, all functions are
orthogonal, except

〈
Xm
n,0, Y

l
n,3

〉
L2(S+;H;R)

= −
〈
Y m
n,0, X

l
n,3

〉
L2(S+;H;R)

= δml
π

2

m(n+m+ 1)!

(2n+ 3)(n−m+ 1)!
.

By modifying these two systems in the previous proposition, one can obtain several
orthonormal complete systems of the spaces M(S+;H;R) and M(S+;H;H) (see e.g [28,
18]).
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Theorem 1.4.4 ([12]). For each degree n ∈ N0, the system of monogenic functions

φ1,0
n := X̃0

n,0,

φ2,m
n := pn,m(X̃m

n,0 + Ỹ m
n,3),

φ3,m
n := pn,m(X̃m

n,3 − Ỹ m
n,0),

φ4,0
n := X̃0

n,3,

φ5,l
n := pn,−l(X̃

l
n,3 + Ỹ l

n,0),

φ6,l
n := pn,−l(X̃

l
n,0 − Ỹ l

n,3),



(1.10)

with m = 1, . . . , n + 1; l = 1, . . . , n and pn,m =
√

n+1
2(n+m+1)

, forms an orthonormal basis

of Mn(S+;H;R).

Corollary 1.4.1 ([12]). The system {φ1,0
n , φ2,m

n , φ3,m
n , φ4,0

n , φ5,l
n , φ

6,l
n }n∈N0 is an orthonor-

mal complete system of M(S+;H;R).

Theorem 1.4.5 ([18]). For each degree n ∈ N0, the following n+ 1 solid spherical mono-
genic functions form an orthonormal basis of Mn(S+;H;H):

φ0
n,H := X̃0

n,0,

φln,H := pn,−l(X̃
l
n,0 − Ỹ l

n,3),

 (1.11)

where pn,−l =
√

n+1
2(n−l+1)

and l = 1, . . . , n.

Corollary 1.4.2 ([18]). The system of solid spherical monogenic functions {φln,H : l =
0, . . . , n; n ∈ N0} is an orthonormal complete system in M(S+;H;H).

Remark that due to [134], we have

dimMn(S+;H;H) = n+ 1,

dimMn(S+;H;R) = 4n+ 4.

1.4.2 Appell polynomials and recurrence formulae

In complex analysis, it is well known that a holomorphic function f(z) in a neighbour-
hood of the origin can be represented by holomorphic polynomials {1, z, z2, . . . } via the
Taylor series

f(z) =
∞∑
n=0

zn
f (n)(0)

n!
.
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In higher dimensions, the Taylor series of a monogenic functions f is given in terms of
generalized powers

~zα = zα1
1 × zα2

2 = z1 × z1 × · · · × z1︸ ︷︷ ︸
α1 times

× z2 × z2 × · · · × z2︸ ︷︷ ︸
α2 times

=
1

n!

∑
π(i1,...,in)

zi1 . . . zin ,

where α = (α1, α2) is a multi-index (α1 + α2 = n), zj = xj − ejx0 (j = 1, 2) are Fueter
variables and the sum is taken over all permutations π(i1, . . . , in) of (1, 1, . . . , 1︸ ︷︷ ︸

α1

, 2, 2, . . . , 2︸ ︷︷ ︸
α2

).

Theorem 1.4.6 ([21, 89]). If f is monogenic in an open set Ω containing the origin
then there exists an open neighbourhood of the origin in which f can be developed into a
normally convergent series

f(x) =
∑
α

1

α!
~zα
∂|α|f(0)

∂~xα
,

where ~x = (x1, x2) and α! = α1!α2!.

It can be proved that

1

2
∂(zα1

1 × zα2
2 ) = −α1(zα1−1

1 × zα2
2 )e1 − α2(zα1

1 × zα2−1
2 )e2.

This result is different from the complex case where the polynomial set {1, z, z2, . . . } is
invariant under the complex derivative in the following sense

∂zz
n = n zn−1. (1.12)

Property (1.12) was generalized by P. Appell in [6, 1880] for more general polynomials
which are later called Appell polynomials. Let us start by giving a formal definition.

Definition 1.4.2 (Appell polynomials). Let {Pn(x), n = 0, 1, . . . } be a sequence of poly-
nomials and D is an operator. If Pn(x) satisfy the property

DPn(x) = nPn−1(x)

for n = 1, 2, . . . , then Pn(x) are called Appell polynomials.

The operator D plays the role of a derivative operator.

Example 1.4.2.

(i) Bernoulli polynomials Bn(x) are introduced by the formula

Bn(x) =
n∑
k=0

(
n

k

)
Bk x

n−k (n = 0, 1, 2, . . . ),
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where
(
n
k

)
are the binomial coefficients and Bn are Bernoulli numbers which are

defined by the recurrence relation

B0 = 1,
n−1∑
k=0

(
n

k

)
Bk = 0, n = 2, 3, . . .

Bernoulli polynomials have the properties

d

dx
Bn+1(x) = (n+ 1)Bn(x),

t ext

et − 1
=
∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π),

The function t ext

et−1
is called the generating function of Bernoulli polynomials.

(ii) We call polynomials defined by

En(x) =
n∑
k=0

(
n

k

)
Ek
2n

(
x− 1

2

)n−k
(n = 0, 1, 2, . . . ),

are Euler polynomials, where En are Euler numbers which are defined by the recur-
rence relation

n∑
k=0

(
2n

2k

)
E2k = 0 (even numbered),

E2n+1 = 0 (odd numbered)

with n = 0, 1, . . . . Euler polynomials satisfy

d

dx
En+1(x) = (n+ 1)En(x),

2 ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
(|t| < π).

The generating function of Euler polynomials is 2 ext

et+1
.

Nowadays systems having the Appell property are widely studied because of their
remarkable applications in approximation and computation. More precisely, the derivative
of a series expansion in terms of Appell polynomials gives directly the series expansion of
the derivative using the same Appell polynomials. Thus coefficients in the latter series
expansion can be easily calculated from the former series expansion. If given Appell
polynomials are orthogonal, local and global approximations can be related to each other.
For instance, one can find the explicit representation between coefficients of Taylor and
Fourier series expansions for a monogenic (holomorphic) function in terms of spherical
monogenic (holomorphic) functions (see [13, 18]). In the sequel, we will introduce some
known results on monogenic Appell polynomials which is constructed based on the study
of the hypercomplex derivative (c.f. [13, 18, 26, 29]).
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Theorem 1.4.7 ([29]). For each fixed n ∈ N0, i = 1, 2, . . .

(
1

2
∂)iXm

n =

(
i∏

h=1

[n+m+ 1− (h− 1)]

)
Xm
n−i, m = 0, . . . , n+ 1− i,

(
1

2
∂)iY m

n =

(
i∏

h=1

[n+m+ 1− (h− 1)]

)
Xm
n−i, m = 1, . . . , n+ 1− i

Let us denote by

Xm,]
n :=

1(
n+m+1

n

) Xm
n , m = 0, . . . , n+ 1

Y l,]
n :=

1(
n+l+1
n

) Y l
n, l = 1, . . . , n+ 1.

We have that (see [26])

1

2
∂Xm,]

n = nXm,]
n−1, m = 0, . . . , n+ 1

1

2
∂Y l,]

n = nY l,]
n−1, l = 1, . . . , n+ 1.

That means each following sequence of polynomials

{Xm,]
n : n = 0, 1, . . . }, {Y l,]

n : n = 0, 1, . . . }

is a set of Appell polynomials with respect to the derivative operator 1
2
∂.

A similar result can be proved for H-valued monogenic polynomials which are given
by (1.11).

Theorem 1.4.8 ([18]). For the polynomials φln,H, l = 0, . . . , n of system (1.11), the
following property holds

1

2
∂φkn,H =

√
(2n+ 3)(n− k)(n+ k + 1)

2n+ 1
φkn−1,H , k = 0, . . . , n− 1; n ∈ N.

By modifying coefficients, one can obtain Appell polynomials.

Theorem 1.4.9 ([18]). The system of homogeneous monogenic polynomials {Amn : m =
0, . . . , n} defined by

A0
n =

2

n+ 1
X0
n,0,

Amn =
2m+1n!

(n+m+ 1)!
(Xm

n,0 − Y m
n,3) , m = 1, . . . , n,

 (1.13)
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is an orthogonal complete set in M(S+;H;H) such that for each n ∈ N

1

2
∂Amn =

{
nAmn−1 : m = 0, . . . , n− 1

0 : m = n,

and
∂CA

n
n = nAn−1

n−1,

where

∂C :=
1

2

(
∂

∂x1

+ e3
∂

∂x2

)
.

Consequently, monogenic polynomials {Amn : n = 0, 1, . . . } are Appell polynomials
with respect to the hypercomplex derivative 1

2
∂ and {Ann : n = 0, 1, . . . } are Appell

polynomials with respect to the derivative ∂C.

Remark 1.4.2. Ann, n = 0, 1, . . . are monogenic constants.

Definition 1.4.3 ([18]). Let f ∈M(S+;H;H). The series representation

f :=
∞∑
n=0

n∑
m=0

Amn tn,m with tn,m =
1

n!
∂
m

C (
1

2
∂)n−m f(0)

is called generalized Taylor-type series in M(S+;H;H).

The Fourier series expansion of f ∈M(S+;H;H) is given by

f =
∞∑
n=0

n∑
m=0

φmn,H αn,m,

with

αn,m =

∫
S+
φmn,H f dV.

Comparing the Taylor-type series and Fourier series, one can obtain the explicit repres-
entation between coefficients ([18])

αn,m = 2m+1 n!

√
π

(2n+ 3) (n−m)! (n+m+ 1)!
tn,m.

In the theory of special functions, the spectral theorem for orthogonal polynomials
shows that such polynomials satisfy a three-term recursion relation (see [79, 78]). The set
of Legendre polynomials is an example with the recurrence formula

(n+ 1)Pn+1(t) = (2n+ 1)tPn(t)− nPn−1(t).

A question arises if one can find a recurrence formula for monogenic Appell polynomi-
als {Amn , m = 0, . . . , n; n ∈ N0}. This result is also useful to implement a fast com-
putation of polynomials {Amn } because in higher dimensions, calculations are specially
time-consuming.
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Theorem 1.4.10 ([13]). For each n ∈ N0 the elements of the monogenic Appell basis
(1.13) satisfy the recurrence formulae

xAmn =
1

2(n+ 1)

[
(2n+ 3)Amn+1 − (2m+ 1)Âmn+1

]
,

Amn+1 =
n+ 1

2(n−m+ 1)(n+m+ 2)

[
(2n+ 3)xAmn + (2m+ 1)x Âmn

]
with m = 0, . . . , n.

Notice that f̂ if the H-involution of f . Removing these involution in the previous
formulas, one get the three-term recursion formula.

Theorem 1.4.11 (Three-term recursion relation, [13]). For each n ∈ N and m = 0, . . . , n
the elements of the monogenic Appell basis (1.13) satisfy the three-term recursion relation

Amn+1 =
n+ 1

2(n−m+ 1)(n+m+ 2)

[(
(2n+ 3)x+ (2n+ 1)x

)
Amn − 2nxxAmn−1

]
with

Amm+1 =
1

4
[(2m+ 3)x+ (2m+ 1)x]Amm and Amm = (x1 − x2e3)m.

Solving the three-term recursion formula by induction, one obtains the explicit rep-
resentation in terms of Cartesian coordinates.

Theorem 1.4.12 (Closed-form, [13]). For each n ∈ N and m = 0, . . . , n the elements of
the monogenic Appell basis (1.13) have the explicit representation

Amn =
m!

22(n−m)n!(n+m+ 1)!(2m)!
×

[
n−m∑
h=0

(
n

h

)(
n

m+ h

)
(2n− 2h+ 1)!(2m+ 2h)!xh xn−m−h

]
Amm.

1.4.3 Outer solid spherical monogenic functions

Similar to inner solid spherical monogenics, the outer functions can be constructively
obtained by means of the hypercomplex derivative and spherical harmonic functions.

Let S− be a exterior domain bounded by the unit sphere S. Denote by

H−(n+1)(S−)

the space of real-valued homogeneous harmonic functions with degree of homogeneity
−(n+1) in S− with n ≥ 0. Following [75], a basis of H−(n+1)(S−) in spherical coordinates
is given by {

1

rn+1
U0
n,

1

rn+1
Um
n ,

1

rn+1
V m
n

}
,
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where m = 1, . . . , n.
By applying the hypercomplex derivative 1

2
∂ and straightforward calculations, one

obtains a system of monogenic functions defined in S− as follows:

X0
−(n+2) =− 1

rn+2

(
n+ 1

2
U0
n+1 −

1

2
U1
n+1e1 −

1

2
V 1
n+1e2

)
,

Xm
−(n+2) =− 1

rn+2

(
n−m+ 1

2
Um
n+1 +

[
cm−(n+2)U

m−1
n+1 −

1

4
Um+1
n+1

]
e1

−
[
cm−(n+2)V

m−1
n+1 +

1

4
V m+1
n+1

]
e2

)
,

Y m
−(n+2) =− 1

rn+2

(
n−m+ 1

2
V m
n+1 +

[
cm−(n+2)V

m−1
n+1 −

1

4
V m+1
n+1

]
e1

+

[
cm−(n+2)U

m−1
n+1 +

1

4
Um+1
n+1

]
e2

)
,

where

cmn =
(n+m)(n+m+ 1)

4
.

Note that 1
2
∂ establishes an isomorphism between H−(n+1)(S−) and

M−(n+2)(S−;A;R). The latter consists of all homogeneous monogenic functions with
degree of homogeneity −(n + 2). Due to [21], the following orthogonal decomposition
holds

M(S−;A;R) =
∞⊕
n=0

M−(n+2)(S−;A;R).

Theorem 1.4.13. The system

{X0
−(n+2), X

m
−(n+2), Y

m
−(n+2) : m = 1, . . . , n; n ∈ N0}

forms an orthogonal complete system of M(S−;A;R).

Basically, complete systems for M(S−;H;H) can be constructed by means of mono-
genic polynomials {X0

−(n+2), X
m
−(n+2), Y

m
−(n+2)}. Another way similar to the case of har-

monic functions is to use the Kelvin transformation. Thus the orthogonality will be
automatically transfered from the system of inner spherical monogenics to the system of
outer spherical monogenics.

Definition 1.4.4 (Kelvin transformation in H, [14]). Let f be a function ofM(S+;H;H).
The bijective mapping

K : M(S+;H;H) −→M(S−;H;H),
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given by

K[f ](x) =
x

|x|3
f

(
x

|x|2

)
(1.14)

is called the Kelvin transformation in H.

Remark 1.4.3.

(i) The proof that K[f ](x) is a monogenic function is given in [134].

(ii) The Kelvin transformation is a special case in the research of compositions between
monogenic functions and Möbius transformations in the framework of Clifford ana-
lysis. The coefficient

x

|x|3

is then called conformal weight factor (see [112, 118]).

Denoting by

Am−(n+2) =
(n+m+ 1)!(n−m)!

n!(n+ 1)!
K[Amn ], m = 0, . . . , n; n ∈ N0, (1.15)

we obtain an Appell system of outer solid spherical monogenic functions which is stated
in the underlying theorem.

Theorem 1.4.14 ([14]). The system {Am−(n+2) : m = 0, . . . , n; n ∈ N0} is an orthogonal

complete Appell system of M(S−;H;H), such that for each n ∈ N0

1

2
∂ Am−(n+2) = −(n+ 2)Am−(n+3), m = 0, . . . , n

and

An−(n+2) =
(−1)n(2n+ 1)!

n!(n+ 1)!

x (x1 − x2e3)n

|x|2n+3
.

1.4.4 Prolate spheroidal monogenic functions

Traditionally, spherical domains are considered as the reference domain when studying
realistic problems. With this, theories and applications of the considered methods become
much easier because of the perfect symmetry of domains. However, in many cases, the
use of the spherical reference domain seems to be inappropriate and spheroidal domains
are used instead, for example in astronomy and astrophysics to stimulate gravitational
potentials of small bodies of the solar system [120], in geodesy and geophysics to approx-
imate Earth’s gravity and magnetic fields [76, 77, 91, 127], in electrical engineering and
astrophysics to model a variety of different antenna shapes (from wire antennas, through
cylindrical antennas, to disk antennas), or to study the formation of planets, stars and
galaxies, and physical processes inside (cf. [4, 32, 33, 34, 40, 51, 96, 126, 130, 141]).
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Figure 1.1: Prolate spheroidal coordinates (µ, θ, ϕ)

In connection with methods of hypercomplex function theories, construction of ortho-
gonal complete systems of monogenic functions is needed. In the sequel we will intro-
duce the work of Morais for the case of prolate spheroidal domains in a series of articles
[49, 50, 98, 99, 103, 104].

Let Γpr be a prolate spheroid with x0-axis as the symmetry axis. The equation of Γpr
is given by

x2
0

a2
+
x2

1 + x2
2

b2
= 1,

where a = c coshµ0, b = c sinhµ0 with c > 0. For the sake of simplicity, it is assumed
that c = 1. We adopt the notations Γ+

pr and Γ−pr for the interior and exterior domains
bounded by Γpr, respectively. In particular, x = (x0, x1, x2) ∈ R3 in prolate spheroidal
coordinates is given by 

x0 = coshµ cos θ,

x1 = sinhµ sin θ cosϕ,

x2 = sinhµ sin θ sinϕ,

with θ ∈ [0, π), ϕ ∈ [0, 2π), µ < µ0 if x ∈ Γ+
pr and µ > µ0 if x ∈ Γ−pr.

Prolate spheroidal monogenic functions are constructed based on the article [48] of P.
Garabedian with the title “Orthogonal harmonic polynomials”. Garabedian proved that
harmonic polynomials of the form

{Un,0(µ, θ), Un,m(µ, θ) cos(mϕ), Un,m(µ, θ) sin(mϕ) : m = 1, . . . , n; n ∈ N0},
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where
Un,l(µ, θ) = P l

n(coshµ)P l
n(cos θ) (l = 0, . . . , n),

are orthogonal in the sense of the scalar product

[f, g] =

∫
Γ+
pr

f g dx0 dx1 dx2.

Here the functions

P l
n(coshµ) = (sinhµ)l

dl

dtl
Pn(t)

∣∣∣
t=coshµ

,

are given under the definition of associated Legendre functions for the case t ∈ C and
t /∈ [−1, 1] (see [75, 115]):

P l
n(t) = (t2 − 1)l/2

dl

dtl
Pn(t).

Consequently, some recurrence relations of P l
n(t) for t ∈ C and t /∈ [−1, 1] are going to

change. In particular, we have

√
t2 − 1

d

dt
P l
n(t) = P l+1

n (t) +
lt√
t2 − 1

P l
n(t),

(t2 − 1)
d

dt
P l
n(t) = n t P l

n(t)− (n+ l)P l
n−1(t),

√
t2 − 1

d

dt
P l
n(t) = − lt√

t2 − 1
P l
n(t) + (n+ l)(n− l + 1)P l−1

n (t),

√
t2 − 1P l

n(t) =
1

2n+ 1

[
P l+1
n+1(t)− P l+1

n−1(t)
]
,

(2n+ 1) t P l
n(t) = (n+ l)P l

n−1(t) + (n− l + 1)P l
n+1(t),

√
t2 − 1P l

n(t) =
(n− l + 1)(n− l + 2)

2n+ 1
P l−1
n+1(t)− (n+ l)(n+ l − 1)

2n+ 1
P l−1
n−1(t),

P l
n(t) = t P l

n+1(t)− (n− l + 2)
√
t2 − 1P l−1

n+1(t),

P l+1
n (t) = − 2lt√

t2 − 1
P l
n(t) + (n+ l)(n− l + 1)P l−1

n (t),

P l
n(t) = t P l

n−1(t) + (n+ l − 1)
√
t2 − 1P l−1

n−1(t).

In prolate spheroidal coordinates the conjugate of Cauchy-Riemann operator ∂ has
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the representation

∂ =
cos θ sinhµ− sin θ coshµ(cosϕe1 + sinϕe2)

sin2 θ + sinh2 µ

∂

∂µ

− sin θ coshµ+ cos θ sinhµ(cosϕe1 + sinϕe2)

sin2 θ + sinh2 µ

∂

∂θ

+
1

sin θ sinhµ
(sinϕe1 − cosϕe2)

∂

∂ϕ
.

Applying the hypercomplex derivative 1
2
∂ to prolate spheroidal harmonic polynomials,

one obtains prolate spheroidal monogenic polynomials

En,0 =
n+ 1

2
An,0(µ, θ) +

1

2(n+ 1)
An,1(µ, θ){cosϕe1 + sinϕe2}

En,m =
n+m+ 1

2
An,m(µ, θ) cos(mϕ)

+
1

4(n−m+ 1)
An,m+1(µ, θ){cos[(m+ 1)ϕ]e1 + sin[(m+ 1)ϕ]e2}

− (n+m+ 1)(n+m)(n−m+ 2)

4
An,m−1(µ, θ)×

{cos[(m− 1)ϕ]e1 − sin[(m− 1)ϕ]e2}

Fn,m =
(n+m+ 1)

2
An,m(µ, θ) sin(mϕ)

+
1

4(n−m+ 1)
An,m+1(µ, θ){sin[(m+ 1)ϕ]e1 − cos[(m+ 1)ϕ]e2}

− (n+m+ 1)(n+m)(n−m+ 2)

4
An,m−1(µ, θ)×

{sin[(m− 1)ϕ]e1 + cos[(m− 1)ϕ]e2}

for m = 1, . . . , n+ 1, where

An,l(µ, θ) =

[(n−l)/2]∑
k=0

(2n+ 1− 4k)(n+ l − 2k + 1)2k

(n− l − 2k + 1)2k+1

Un−2k,l(µ, θ),

with l = 0, . . . , n+ 2 and (a)r = a(a+ 1)(a+ 2) . . . (a+ r− 1) with (a)0 = 1, denotes the
Pochhammer symbol ([115]).
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Proposition 1.4.3 ([98]). Functions An,l(µ, θ) have the representation

An,l(µ, θ) =
1

sin2 θ + sinh2 µ
×

[
coshµP l

n+1(coshµ)P l
n(cos θ)− cos θ P l

n+1(cos θ)P l
n(coshµ)

]
and they satisfy the recurrence formula

An,l(µ, θ) =
2n+ 1

n− l + 1
Un,l(µ, θ) +

(n+ l)(n+ l − 1)

(n− l + 1)(n− l)
An−2,l(µ, θ).

The explicit representation of prolate spheroidal monogenic functions En,0, En,m, Fn,m
(m = 1, . . . , n + 1) shows that they are polynomials of degree n but not homogenous.
However, the following results can be proved.

Theorem 1.4.15 ([98]). The set of prolate monogenic polynomials

{En,0, En,m, Fn,m : m = 1, . . . , n+ 1; n ∈ N0}

forms an orthogonal complete system of M(Γ+
pr;A;R).

Theorem 1.4.16 ([99]). The system of functions {Smn : m = 1, . . . , n; n ∈ N0} defined
by {

S0
n := En,0

Smn := En,m −Fn,m e3 (m = 1, . . . , n)

forms an orthogonal complete system of the space M(Γ+
pr;H;H).

Basically, one can obtain orthogonal monogenic polynomials in a domain by applying
an orthogonalization process to solid spherical monogenic polynomials, for example the
Gram-Schmidt process. However, the orthogonalization process may be time-consuming
and unstable. A constructive approach is helpful not only for function theory in prolate
spheroidal domains but also for fast and stable computation.



Chapter 2

ψ-hyperholomorphic functions

Monogenic functions are considered as the refinement of harmonic functions due to
the factorization of the Laplace operator:

∆Rn = DD = DD,

where D is the generalized Cauchy-Riemann operator or the Dirac operator in Rn. In
other words, a monogenic function is also a harmonic function in all components. In 1985,
Nôno searched for all linear partial differential operators of the form

D =
3∑

k=0

ψk
∂

∂xk
, (ψk ∈ H), (2.1)

such that solutions of the differential equationDf = 0 are always solutions of the Laplace’s
equation ∆R4f = 0, where f is an H-valued function. Nôno proved the following result
(see [109]):

Let D be a differential operator of the form (2.1) with coefficients ψk ∈ H (k =
0, . . . , 3). The following conditions are equivalent:

(i) ∆R4 = DD = DD

(ii) ψi ψj + ψj ψi = 2δij (i, j = 0, . . . , 3).

Due to Shapiro et al. [128], such a set of {ψk, k = 0, . . . , 3} is called a structural set.
It means that the problem proposed by Nôno can be solved if and only if the coefficients
of operator (2.1) form a structural set. Operator (2.1) generalizes the Cauchy-Riemann
operator in complex analysis and its null solutions are called ψ-hyperholomorphic functions
([128]). Since {e0, e1, e2, e3} is also a structural set, the case of monogenic functions can
be embedded in the theory of ψ-hyperholomorphic functions. A systematic research of
ψ-hyperholomorphic functions in [128] shows the analogy between monogenic functions
and ψ-hyperholomorphic functions.

Monogenic functions are considered as a generalization of holomorphic functions in the
complex plane. Mathematicians are interested in the properties of holomorphic functions

41
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which can be transported from the 2D case to higher dimensional cases. The true question
is what is the real nature behind the concept of monogenic/holomorphic functions? It is
difficult to find a general answer for this question because each person looks at a distinct
aspect of monogenic/holomorphic functions. In view of geometric mapping properties,
there were several attempts to characterize monogenic mappings such as the concept
of M-conformal mappings by Malonek [90]. Recall that conformal mappings cannot be
described by monogenic functions. M-conformality has a close connection with the defin-
ition of hypercomplex derivability (see [88, 134], for example) because the linearization of
monogenic functions can be represented by means of the hypercomplex derivative.

Already in 1947, Haefeli [73] looked for a geometric characterization of monogenic
(regular in this paper) mappings. Using differential forms, Haefeli proved that at the
local level a monogenic mapping in Rn can be decomposed into a sequence of n reflections
and dilations according to n given orthogonal directions. Moreover, the sum of certain
ratios between the scale factors is vanishing. A condition for a function to be monogenic
is given by a characteristic cone (c.f. [73, Theorem 3]). The approach of Haefeli is rather
algebraic and it is a bit far from a visible consideration. Recently, Morais [60, 62] studied
a geometric characterization of monogenic functions in connection with a special kind
of ellipsoids. In particular, a monogenic mapping in R3 maps infinitesimal balls onto
ellipsoids with the property that the length of one semiaxis is equal to the sum of the
lengths of other two semiaxes. This result can be regarded as a new interpretation of the
result from the work of Haefeli but in an easier way to imagine. Unfortunately, it was fail
in the effort to link monogenic mappings with the prescribed ellipsoids because one could
not prove the inverse theorem. This problem can be solved if we consider a bigger class
of functions, so-called ψ-hyperholomorphic functions. The study of ψ-hyperholomorphic
functions really makes a great improvement not only on geometry but many old problems
in quaternionic analysis can also be re-considered in a different viewpoint, for example
the reciprocal of a monogenic function or the composition of a monogenic function and a
Möbius transformation.

Following the same ideas as in [128], we will define ψ-hyperholomorphic functions in R3.
It should be noticed that these functions share more properties with holomorphic functions
than general H-valued functions (for example, see [101, 102]). In particular, a geometric
characterization of ψ-hyperholomorphic mappings will be derived. It shows that there is
a one-to-one relation between a set of ψ-hyperholomorphic mappings and a certain kind
of ellipsoids. This result follows the work in [60, 62, 73] and it is a step forward in which
the inverse theorem can be proved. Moreover, this local geometric mapping property
is valid also for the case of non-constant structural sets. An example of non-constant
structural sets is given due to a study on the reciprocal of a monogenic function. In fact,
it will be proved that the reciprocal of a monogenic function is a ψ-hyperholomorphic
function. This result establishes a new look about monogenic functions (null-solutions
of a generalized Cauchy-Riemann operator), since it is well known that the reciprocal
of a monogenic function is no longer monogenic. Next, the composition of a monogenic
function and a Möbius transformation is proved to be ψ-hyperholomorphic with ψ = ψ(x)
based on the mentioned geometric characterization. In higher dimensional spaces, the
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composition of a monogenic function and a Möbius transformation is not monogenic but
a monogenic function can be formulated by multiplying the composed function by the
conformal weight factor. Hence a geometric interpretation of the conformal weight factor
will be given. These results give us a better understanding about generalizations of
holomorphic functions in higher dimensional spaces.

2.1 Definitions and notations

Let ψ := {ψ0, ψ1, ψ2} ⊂ A and ψ := {ψ0, ψ1, ψ2}. The generalized Cauchy–Riemann
operator ψD is defined by

ψD := ψ0 ∂

∂x0

+ ψ1 ∂

∂x1

+ ψ2 ∂

∂x2

.

To fulfil the Laplacian factorization: ∆R3 = ψDψD = ψDψD, the following condition must
hold

ψjψk + ψkψj = 2δjk (2.2)

for j, k = 0, 1, 2.

Definition 2.1.1 (Structural set). A set {ψk ∈ A, k = 0, 1, 2} satisfying condition (2.2)
is called a structural set in A.

Suppose that

ψ0 = ψ0
0 + ψ0

1e1 + ψ0
2e2,

ψ1 = ψ1
0 + ψ1

1e1 + ψ1
2e2,

ψ2 = ψ2
0 + ψ2

1e1 + ψ2
2e2.

We adopt the following representation

(
ψ0 ψ1 ψ2

)
=
(
1 e1 e2

)
ψ0

0 ψ1
0 ψ2

0

ψ0
1 ψ1

1 ψ2
1

ψ0
2 ψ1

2 ψ2
2


︸ ︷︷ ︸

Ψ

, (2.3)

where (ψ0 ψ1 ψ2) and (1 e1 e2) are row vectors of quaternions and Ψ is a real 3× 3
matrix. Multiplication is formally carried out as matrix multiplication. Since ψk (k =
0, 1, 2) fulfil relation (2.2), matrix Ψ must be an orthogonal matrix, i.e ΨΨ′ = Ψ′Ψ = I
(where I is the 3× 3 unit matrix and Ψ′ is the transpose of matrix Ψ). As a result, each
structural set can be identified with an orthogonal matrix.
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Definition 2.1.2 (ψ-hyperholomorphic functions). An H-valued C1-function f is called
ψ-hyperholomorphic function in a domain Ω ⊂ R3 if it satisfies the differential equation

ψDf(x) = ψ0 ∂f

∂x0

(x) + ψ1 ∂f

∂x1

(x) + ψ2 ∂f

∂x2

(x) = 0

for x ∈ Ω.

Remark 2.1.1. Monogenic functions correspond to the case of the standard structural
set {1, e1, e2}.

It should be mentioned that notations for the case of ψ-hyperholomorphic functions
are adapted to the case of monogenic functions (only the notation ψ is added). For
example,

ψM(S+;A;R)

stands for the space of square integrable A-valued ψ-hyperholomorphic functions in the
unit ball S+, endowed with the inner product (1.7)

〈f ,g〉L2(S+;R) =

∫
S+

Sc(f g) dV,

and ψMn(S+;A;R) is its subspace of homogeneous ψ-hyperholomorphic polynomials of
degree n.

To this end, we prove some relations between monogenic functions and ψ- hyperholo-
morphic functions.

Theorem 2.1.1. Let f, g ∈M(S+;A;R) and

f = f0 + f1 e1 + f2 e2,

g = g0 + g1 e1 + g2 e2.

Suppose that {ψi : i = 0, 1, 2} is a structural set in A. Then

ψf := f0 ψ0 − f1 ψ1 − f2 ψ2 (2.4)

is a ψ-hyperholomorphic function and〈
ψf, ψg

〉
L2(S+;R)

= 〈f, g〉L2(S+;R) .

Proof. Since f is a monogenic functions, then its components satisfy system (1.5). The
generalized Cauchy-Riemann operator with respect to a structural set ψ is given by

ψD := ψ0 ∂

∂x0

+ ψ1 ∂

∂x1

+ ψ2 ∂

∂x2

.
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Then we have

ψD [ψf ] =

(
∂f0

∂x0

− ∂f1

∂x1

− ∂f2

∂x2

)
− ψ0ψ1

(
∂f1

∂x0

+
∂f0

∂x1

)

− ψ0ψ2

(
∂f2

∂x0

+
∂f0

∂x2

)
− ψ1ψ2

(
∂f2

∂x1

− ∂f1

∂x2

)
= 0.

Moreover,

Sc(ψf ψg) = Sc({f0 ψ
0 − f1 ψ

1 − f2 ψ
2} {g0 ψ0 − g1 ψ1 − g2 ψ2})

= (f0 g0 + f1 g1 + f2 g2)− (f0 g1 + f1 g0)
ψ0 ψ1 + ψ1 ψ0

2

− (f0 g2 + f2 g0)
ψ0 ψ2 + ψ2 ψ0

2
+ (f1 g2 + f2 g1)

ψ1 ψ2 + ψ2 ψ1

2

= f0 g0 + f1 g1 + f2 g2 = Sc(f g).

Hence, 〈
ψf, ψg

〉
L2(S+;R)

= 〈f, g〉L2(S+;R) .

From now on, we will call ψ-transformation for operator ψ[·] in this theorem. It is
shown that such a ψ-transformation acts on the space of A-valued functions defined in a
domain of R3 and it preserves the orthogonality of functions with respect to inner product
(1.7). Consequently, an orthogonal basis of the space of ψ-hyperholomorphic A-valued
functions can be easily constructed.

Theorem 2.1.2. Let ψ be a structural set in A. Functions

{ψX0
n,

ψXm
n ,

ψY m
n : m = 1, . . . , n+ 1; n ∈ N0}

form an orthogonal complete system in ψM(S+;A;R), where ψXm
n and ψY m

n are obtained
from the solid spherical monogenic functions Xm

n and Y m
n by ψ-transformation (2.4),

respectively.

2.2 A local geometric characterization

In the classical complex analysis, a holomorphic function f with ∂zf 6= 0 will realize a
conformal mapping in the sense of Gauss, i.e. there exists a positive function λ(z) = |∂zf |2
such that

|df |2 = λ(z) |dz|2.
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Consequently, a conformal mapping locally maps a circle to a circle.
In Rn, n > 2 only Möbius transformations are conformal mappings [87] and they

are not monogenic. In fact, monogenic functions are quasi-conformal mappings which
locally map spheres to ellipsoids. A relation between monogenic mappings and a certain
kind of ellipsoids was implicitly/explicitly claimed in the work of Haefeli [73] about a
decomposition of monogenic mappings into reflections and dilations and the vanishing
sum of certain ratios of scale factors, or in the work of Morais and Gürlebeck [60, 61, 62]
about the lengths of semiaxes of ellipsoids. Precisely, Morais and Gürlebeck proved that a
monogenic function with non-vanishing hypercomplex derivative will map locally spheres
to ellipsoids with the property that the length of one semiaxis is equal to the sum of
the lengths of the other semiaxes. One expects that the relation between monogenic
functions and such a type of ellipsoids is one-to-one, i.e. the existance of an inverse
theorem. However this is not the case.

Let us consider the following function

f(x) = x0 +

√
2

4
(x1 − x2)e1 +

√
2

4
(x1 + x2)e2. (2.5)

It maps the unit sphere to a prolate spheroid which has three semiaxes with the lengths{
1, 1

2
, 1

2

}
. Of course, the property 1 = 1

2
+ 1

2
holds but f is not monogenic:

∂f = 1−
√

2

2
+

√
2

2
e3 6= 0.

It means that the aforementioned geometric mapping property can be fulfilled by more
functions other than monogenic functions. This is asserted by the following theorem.

Theorem 2.2.1 ([64]). Let f be an A-valued ψ-hyperholomorphic function in Ω ⊂ R3

with non-vanishing Jacobian determinant. Then f realizes locally a mapping which maps
spheres to ellipsoids with the property that the length of one semiaxis is equal to the sum
of the length of the two other semiaxes.

Proof. Because the local mapping properties of a C1-function is determined by its linear
approximation at a point, it suffices to prove the theorem for a linear function of the form
f = ψ0 f0 + ψ1 f1 + ψ2 f2, where

f0 = a0x0 + a1x1 + a2x2,

f1 = b0x0 + b1x1 + b2x2,

f2 = c0x0 + c1x1 + c2x2.

The proof follows the idea from [97, pp. 116-117]. Since f is ψ-hyperholomorphic, then
ψDf = 0. One gets(

∂f0

∂x0

+
∂f1

∂x1

+
∂f2

∂x2

)
+ ψ0 ψ1

(
∂f1

∂x0

− ∂f0

∂x1

)

+ ψ0 ψ2

(
∂f2

∂x0

− ∂f0

∂x2

)
+ ψ1 ψ2

(
∂f2

∂x1

− ∂f1

∂x2

)
= 0.

(2.6)
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One has that

ψi ψj = (ψj0ψ
i
1 − ψi0ψ

j
1)e1 + (ψj0ψ

i
2 − ψi0ψ

j
2)e2 + (ψj1ψ

i
2 − ψi1ψ

j
2)e3.

Calculating the associated matrix of the system {1, ψ0ψ1, ψ0ψ2, ψ1ψ2}, one obtains

Mψ :=


1 0 0 0

0 ψ1
0ψ

0
1 − ψ0

0ψ
1
1 ψ2

0ψ
0
1 − ψ0

0ψ
2
1 ψ2

0ψ
1
1 − ψ1

0ψ
2
1

0 ψ1
0ψ

0
2 − ψ0

0ψ
1
2 ψ2

0ψ
0
2 − ψ0

0ψ
2
2 ψ2

0ψ
1
2 − ψ1

0ψ
2
2

0 ψ1
1ψ

0
2 − ψ0

1ψ
1
2 ψ2

1ψ
0
2 − ψ0

1ψ
2
2 ψ2

1ψ
1
2 − ψ1

1ψ
2
2

 .

Since Ψ is an orthogonal matrix, its transpose and its inverse matrix are identical, i.e.

Ψ−1 =


ψ0

0 ψ0
1 ψ0

2

ψ1
0 ψ1

1 ψ1
2

ψ2
0 ψ2

1 ψ2
2

 . (2.7)

Remember that det(Ψ) = 1. We have another representation of Ψ−1 in terms of cofactors

Ψ−1 :=


ψ1

1ψ
2
2 − ψ1

2ψ
2
1 ψ1

2ψ
2
0 − ψ1

0ψ
2
2 ψ1

0ψ
2
1 − ψ1

1ψ
2
0

ψ0
2ψ

2
1 − ψ0

1ψ
2
2 ψ0

0ψ
2
2 − ψ0

2ψ
2
0 ψ0

1ψ
2
0 − ψ0

0ψ
2
1

ψ0
1ψ

1
2 − ψ0

2ψ
1
1 ψ0

2ψ
1
0 − ψ0

0ψ
1
2 ψ0

0ψ
1
1 − ψ0

1ψ
1
0

 . (2.8)

Comparing two representations (2.7) and (2.8), it leads to

Mψ :=


1 0 0 0

0 −ψ2
2 ψ1

2 −ψ0
2

0 ψ2
1 −ψ1

1 ψ0
1

0 −ψ2
0 ψ1

0 −ψ0
0

 .

Thus det(Mψ) = −1. It implies that the system {1, ψ0ψ1, ψ0ψ2, ψ1ψ2} is linearly inde-
pendent. Hence coefficients in equation (2.6) must be vanishing and we have

∂f0

∂x0

+
∂f1

∂x1

+
∂f2

∂x2

= 0

∂f1

∂x0

− ∂f0

∂x1

= 0

∂f2

∂x0

− ∂f0

∂x2

= 0

∂f2

∂x1

− ∂f1

∂x2

= 0.
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Solving this system, one obtains relations

a0 + b1 + c2 = 0

b0 = a1

c0 = a2

c1 = b2.

If we write formally the mapping f in matrix representation f(x) = (ψ0 ψ1 ψ2)Ax,
then its associated matrix

A =


a0 a1 a2

a1 b1 b2

a2 b2 c2


is symmetric. Therefore, there exists an orthogonal transformation in R3 such that the
associated matrix of f is a diagonal matrix

λ0 0 0

0 λ1 0

0 0 λ2

 ,

where λ0 + λ1 + λ2 = a0 + b1 + c2 = 0. The image of a ball under the mapping f will be
an ellipsoid which has semiaxes with lengths |λi|, i = 0, 1, 2. The mentioned property of
these lengths can be easily verified.

Remark 2.2.1. This result covers the case {1, e1, e2} as studied in [97] and thus it is
a generalization of the theorem therein. It should be noticed that ψ-hyperholomorphic
mappings are also not conformal mappings.

Lemma 2.2.1. Let f(x) be a linear function in R3 that maps spheres to ellipsoids with
the property that the length of one semiaxis is equal to the sum of the lengths of the two
other semiaxes. Then there exists a structural set ψ = {ψ0, ψ1, ψ2} ⊂ A such that f solves
the differential equation

ψDf = 0.

In other words, f is a ψ-hyperholomorphic function.

Proof. Without loss of generality, we suppose that f can be written in the following form

f(x) = (1 e1 e2)Ax

where (1 e1 e2) is a row vector of quaternions, A is a real 3× 3 matrix associated with
f and x in this case is a real column vector. Therefore, the representation results in a
quaternion.
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Due to [53], the theorem of singular value decomposition (SVD) asserts that there
exists two 3× 3 orthogonal matrices U and V such that

A = U diag(σ0, σ1, σ2)V.

The quantities σi, i = 0, 1, 2 are the singular values of A.
From the geometric point of view, the function f will map spheres to ellipsoids whose

semiaxes are determined by orthogonal matrices U, V and have the lengths proportional
to the absolute values of σ0, σ1 and σ2. Since the length of one semiaxis is equal to the
sum of the length of the two other semiaxes, one can find real numbers σ0, σ1, σ2 (and
corresponding orthogonal matrices U, V ) such that

σ0 = σ1 + σ2.

Then the function f can be represented as follows:

f = (1 e1 e2)U diag(σ0, σ1, σ2)V x

or one can write
f = (1 e1 e2) [U V ] [V ′ diag(λ0, λ1, λ2)V ]x,

where V ′ is the transpose of matrix V .
Denote ψi, i = 0, 1, 2 by

(ψ0 ψ1 ψ2) = (1 e1 e2)U V.

In the case of a monogenic function, the associated matrix A is symmetric. Thus we
have U = V ′ and the set {ψi} in fact contains basis unit vectors 1, e1, e2. In general the
product U V defines an orthogonal matrix. The set {ψi} satisfies the condition (2.2) and
it forms a structural set in A. Finally, one gets the representation

f = (ψ0 ψ1 ψ2) [V ′ diag(σ0, σ1, σ2)V ]x.

Let us consider the operator

ψD := ψ0 ∂

∂x0

+ ψ1 ∂

∂x1

+ ψ2 ∂

∂x2

.

Notice that [V ′ diag(σ0, σ1, σ2)V ] is a symmetric matrix with zero trace. As a result, one
can prove that f ∈ ker ψD by straightforward calculations.

Example 2.2.1. Consider the mapping (2.5). Its associated matrix can be written as
follows:

A =


1 0 0

0 −
√

2
4

√
2

4

0 −
√

2
4
−
√

2
4

 =


1 0 0

0
√

2
2
−
√

2
2

0
√

2
2

√
2

2

 diag(1,−1

2
,−1

2
).
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Putting 

ψ0 = 1

ψ1 =

√
2

2
(e1 + e2)

ψ2 =

√
2

2
(−e1 + e2),

the function f is represented by

f(x) = x0 ψ
0 − 1

2
x1 ψ1 − 1

2
x2 ψ2.

It is true that ψDf = 0 and actually it confirms the mapping property of f .

Remark 2.2.2. In the lemma, f(x) can be written as

f(x) = (1 e1 e2)U diag(σ0, σ1, σ2)V x,

where U and V are 3× 3 orthogonal matrices. Let

(u0 u1 u2) = (1 e1 e2)U

and {v0, v1, v2} be column vectors of matrix V ′. It is clear that

f(vi) = (1 e1 e2)U diag(σ0, σ1, σ2)V vi

= (u0 u1 u2) diag(σ0, σ1, σ2) Ii

= σi u
i, (2.9)

where Ii (i = 0, 1, 2) is the i-th column vector of the unit matrix I. Relation (2.9) shows
that f maps spheres to ellipsoids whose semiaxes have directions determined by vectors
{u0, u1, u2} being images of vectors {v0, v1, v2} under the mapping f .

The local behavior of a C1-function is determined by its linear approximation at a
point. As a result, one has immediately the underlying theorem.

Theorem 2.2.2 (Inverse theorem, [64]). Let f(x) be a C1-function defined in a domain
Ω ⊂ R3 with values in A and p be a point of Ω. Suppose further that f in a neighbourhood
of p realizes a mapping with the geometric mapping property as stated in lemma 2.2.1.
Then there exists a structural set ψ ⊂ A such that

ψDf(p) = 0.

The inverse theorem implies that the obtained structural set ψ may depend on the
point p, i.e. ψ is a function of x ∈ Ω. Varying structural sets were mentioned once in the
work of Delanghe, Kraußhar and Malonek [37, 80] to characterize conformal mappings.
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From beginning, the definition of the generalized Cauchy-Riemann operator ψD was
given with a constant structural set ψ. For this consideration, the operator ψD fulfils the
decomposition

∆R3 = ψD ψD = ψD ψD.

This means a ψ-hyperholomorphic function is also harmonic in all components. The study
of ψ-hyperholomorphic functions based on the aforementioned geometric characterization
corresponds to the case of arbitrary (constant or non-constant) structural sets. This work
leads to a very big class of functions that have the asymptotic behavior (with respect
to the discussing mapping property) similar to monogenic functions. A drawback of this
extension is about the decomposition of the Laplace operator in R3. In fact we have

ψD ψD = ∆R3 +
2∑
j=0

(
2∑
i=0

ψi(x)
∂ψj(x)

∂xi

)
∂

∂xj
.

The question on what type of linear second order partial differential operators, that ad-
mit the decomposition as the product of two ψ- and φ-Cauchy-Riemann operators with
structural sets ψ and φ, is interesting. However this is not in the scope of this thesis.
Fortunately, the properties of ψ-hyperholomorphic functions with the constant structural
set ψ are plentiful enough to be considered.

2.3 Reciprocal of a monogenic function

In a previous remark, we discuss about ψ-hyperholomorphic functions with a varying
structural set. These functions also satisfy the aforementioned geometric characteriza-
tion for monogenic mappings. The point is if we can obtain such functions by simple
operations? In [80], an example of varying structural sets was given explicitly through
an investigation of the conformal mapping x−1. To show that it is easy to construct a
ψ-hyperholomorphic function with a non-constant structural set, we study in this section
the reciprocal of a monogenic function. In contrast to the case of holomorphic functions,
the reciprocal of a monogenic function is no longer monogenic. However, we will prove
that the reciprocal of a monogenic function is in fact a ψ-hyperholomorphic function with
a non-constant structural set ψ. That means the mentioned geometric mapping property
of a monogenic function is invariant under taking the reciprocal.

Let f = f0 +f1e1 +f2e2 be a monogenic function in a neighbourhood of a point a ∈ R3,
denoted by V (a), and f(x) 6= 0 for x ∈ V (a). The reciprocal of f in V (a) is a function
defined by

R[f ](x) :=
f(x)

|f(x)|2
.
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Differentiating the function R[f ](x) with respect to xj (j = 0, 1, 2), one gets

(f 2
0 + f 2

1 + f 2
2 )2 ∂R[f ]

∂xj
=
∂f0

∂xj
[−f 2

0 + f 2
1 + f 2

2 + 2f0f1e1 + 2f0f2e2]

− ∂f1

∂xj
[2f0f1 + (f 2

0 − f 2
1 + f 2

2 )e1 − 2f1f2e2]

− ∂f2

∂xj
[2f0f2 − 2f1f2e1 + (f 2

0 + f 2
1 − f 2

2 )e2].

By defining the system ψ := {ψ0, ψ1, ψ2} as follows:

ψ0 =
−f 2

0 + f 2
1 + f 2

2 + 2f0f1e1 + 2f0f2e2

f 2
0 + f 2

1 + f 2
2

,

ψ1 =
2f0f1 + (f 2

0 − f 2
1 + f 2

2 )e1 − 2f1f2e2

f 2
0 + f 2

1 + f 2
2

,

ψ2 =
2f0f2 − 2f1f2e1 + (f 2

0 + f 2
1 − f 2

2 )e2

f 2
0 + f 2

1 + f 2
2

,


(2.10)

the set ψ forms a structural set in A. Thus, the derivative of the reciprocal R[f ](x) with
respect to xj can be represented by

∂R[f ]

∂xj
=

1

f 2
0 + f 2

1 + f 2
2

(
ψ0

∂f0

∂xj
− ψ1

∂f1

∂xj
− ψ2

∂f2

∂xj

)
.

Applying the generalized Cauchy-Riemann operator

ψD = ψ0 ∂

∂x0

+ ψ1 ∂

∂x1

+ ψ2 ∂

∂x2

to the reciprocal of the function f , one obtains

ψDR[f ] = ψ0∂R[f ]

∂x0

+ ψ1∂R[f ]

∂x1

+ ψ2∂R[f ]

∂x2

=
1

f 2
0 + f 2

1 + f 2
2

{(
∂f0

∂x0

− ∂f1

∂x1

− ∂f2

∂x2

)
− ψ0ψ1

(
∂f1

∂x0

+
∂f0

∂x1

)

−ψ0ψ2

(
∂f2

∂x0

+
∂f0

∂x2

)
− ψ1ψ2

(
∂f2

∂x1

− ∂f1

∂x2

)}
= 0 (since f is a monogenic function.)

Therefore, the following theorem is proved.
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Theorem 2.3.1. Let f be a monogenic function in a neighbourhood V (a) of a point a ∈ R3

and f(x) 6= 0 for x ∈ V (a). Then its reciprocal R[f ](x) defines a ψ-hyperholomorphic
function in V (a), i.e.

ψDR[f ](x) = 0,

where ψ is the structural set as described by (2.10).

This result is not only applicable for monogenic functions but it can also be extended
to arbitrary ψ-hyperholomorphic functions. We give a general statement without a proof.

Corollary 2.3.1. Let f be a ψ-hyperholomorphic function in a neighbourhood V (a) of
a point a ∈ R3 and f(x) 6= 0 for x ∈ V (a). Then its reciprocal R[f ](x) defines a φ-
hyperholomorphic function in V (a) with φ 6= ψ.

Coming back to the question of the real nature behind the concept of holomorphic/
monogenic functions, we see an equivalence. In both cases of the complex plane and R3,
the reciprocal preserves the local mapping properties of holomorphic/monogenic functions.

2.4 Composition with Möbius transformations

An advantage of complex analysis is that the composition of a holomorphic function
with a conformal mapping is again holomorphic. In association with Riemann’s map-
ping theorem, problems for holomorphic functions in a simply connected domain can be
transformed into problems for holomorphic functions in the unit disk.

As mentioned before, conformal mappings in Rn, n ≥ 3 are restricted to the group of
Möbius transformations. It is well known that the composition of a monogenic function
and a Möbius transformation is not monogenic. Fortunately, in [134] Sudbery introduced
a transformation so that it transfers a monogenic function to a monogenic function. In
particular, the mapping

ν(x) = (ax+ b)(cx+ d)−1, (2.11)

where a, b, c, d ∈ H and {
ac−1d− b 6= 0 if c 6= 0,

ad 6= 0 if c = 0

is called a Möbius transformation in the left representation in H (see [55]).

Theorem 2.4.1 ([134]). Given a function f : H → H and a Möbius transformation as
in (2.11). Let M(ν)f be the function

[M(ν)f ](x) =
cx+ d

|cx+ d|4
f(ν(x)).

If f is monogenic at ν(x), M(ν)f is monogenic at x.
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The Kelvin transform (1.14) is an example which is covered by the theorem with

ν(x) = x−1.

The quantity
cx+ d

|cx+ d|4

is later called conformal weight factor. The transformation M(ν)f and the conformal
weight factor have been generalized to the case of Clifford analysis in Rn with n ≥ 3. At
this point, one should refer to the work of Ryan et al. [81, 82, 118, 122, 123] about Clifford
analysis on spheres and conformal manifolds in Rn. An important property on this line of
research is that the Dirac operator is quasi-invariant under conformal mappings. In other
words, monogenic functions are invariant up to a conformal weight factor under Möbius
transformations. This property establishes a basis to transfer relatively easily monogenic
function techniques developed already in Euclidean spaces or on spheres to conformal
manifolds.

In any case, the composition of a monogenic function with a non-trivial Möbius trans-
formation is no longer monogenic. By extending to the idea of ψ-hyperholomorphic func-
tions, we will receive a different viewpoint on the problem of the composition between
a monogenic function and a Möbius transformation. That is such a composition is
ψ-hyperholomorphic and the relation between the structural set ψ and the conformal
weight factor will be given. It is too soon to talk about real applications of the ψ-
hyperholomorphic function theory with the varying structural set ψ. The present sec-
tion plays the role of an invitation to this theory only and for the first time we have
an impression that many old problems can be solved within a complete theory of ψ-
hyperholomorphic functions.

Let ν be a Möbius transformation inA and f : A → A be a monogenic function. Since
a Möbius transformation preserves spheres and straight lines (c.f. [55]), the composition
f(ν(x)) will map locally spheres to ellipsoids with the property that the length of one
semiaxis is equal to the sum of the lengths of the two other semiaxes. As a result, one
obtains the following theorem.

Theorem 2.4.2 ([64]). Let f be an A-valued monogenic function in Ω ⊂ R3 and ν be
a Möbius transformation in A. Then there exists a structural set ψ ⊂ A for each point
x ∈ Ω so that one has

ψD(f ◦ ν)(x) = 0.

The question arises how the obtained structural set ψ depends on the given Möbius
transformation ν. Note that a Möbius transformation is a composition of translations,
dilations, rotations and inversions in the unit sphere which transfer the standard structural
set {1, e1, e2} to ψ. Translations and dilations play no role in the change of a structural
set. In other words, monogenicity is invariant under translations and dilations. The
influence of rotations and inversions in the unit sphere will be studied in the sequel.
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2.4.1 Inversion in the unit sphere

Let a 6= 0 be a point in R3 and U(a) be a neighbourhood of a which does not contain
the origin. Suppose that V (a−1) be the image of U(a) under the mapping y = x−1. Let
f = f0 + f1 e1 + f2 e2 be a monogenic function with respect to y in V (a−1). We will study
the composition f(x−1) with x ∈ U(a).

Since f is monogenic with respect to y, one has

∂yf =
∂f

∂y0

+ e1
∂f

∂y1

+ e2
∂f

∂y2

= 0.

Differentiating the function f(x−1) with respect to x0, it leads to

∂f(x−1)

∂x0

=
2∑
i=0

∂f

∂yi

∂yi
∂x0

=
∂f

∂y0

−x2
0 + x2

1 + x2
2

|x|4
+

∂f

∂y1

2x0x1

|x|4
+

∂f

∂y2

2x0x2

|x|4
,

where |x|2 = x2
0 + x2

1 + x2
2. Similarly, one gets

∂f(x−1)

∂x1

=
∂f

∂y0

−2x0x1

|x|4
+

∂f

∂y1

−x2
0 + x2

1 − x2
2

|x|4
+

∂f

∂y2

2x1x2

|x|4

and
∂f(x−1)

∂x2

=
∂f

∂y0

−2x0x2

|x|4
+

∂f

∂y1

2x1x2

|x|4
+

∂f

∂y2

−x2
0 − x2

1 + x2
2

|x|4
.

It can be checked that the following matrix is orthogonal

Ψinv =
1

|x|2


−x2

0 + x2
1 + x2

2 −2x0x1 −2x0x2

2x0x1 −x2
0 + x2

1 − x2
2 2x1x2

2x0x2 2x1x2 −x2
0 − x2

1 + x2
2

 . (2.12)

Hence, {ψ0, ψ1, ψ2} defined by

(ψ0 ψ1 ψ2) = (1 e1 e2) Ψinv (2.13)

form a structural set in A. Notice that the entries of matrix Ψinv satisfy

Ψi+1,j+1
inv = |x|2 ∂yi

∂xj
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for i, j = 0, 1, 2. Then, we have

ψDf(x−1) =
2∑
j=0

ψj
∂f(x−1)

∂xj

=
2∑
j=0

ψj

(
2∑
i=0

∂f

∂yi

∂yi
∂xj

)

=
2∑
i=0

(
2∑
j=0

ψj
∂yi
∂xj

)
∂f

∂yi
.

In association with the representations of ψj and ∂yi/∂xj, one obtains

ψDf(x−1) =
1

|x|2
2∑
i=0

(
2∑
j=0

2∑
k=0

Ψk+1,j+1
inv ek Ψi+1,j+1

inv

)
∂f

∂yi

=
1

|x|2
2∑
i=0

2∑
k=0

(
2∑
j=0

Ψk+1,j+1
inv Ψi+1,j+1

inv

)
ek

∂f

∂yi

=
1

|x|2
2∑
i=0

2∑
k=0

δk,i ek
∂f

∂yi

=
1

|x|2

(
∂f

∂y0

+ e1
∂f

∂y1

+ e2
∂f

∂y2

)
= 0.

This result is concluded in the underlying theorem.

Theorem 2.4.3. Let a 6= 0 be a point in R3 and U(a) be a neighbourhood of a so that
0 /∈ U(a). Let V (a−1) be the image of U(a) under y = x−1. Suppose further that f :
V (a−1)→ A is a monogenic function. Then, f satisfies the differential equation

ψDf(x−1) = 0

for x ∈ U(a), where ψD is the generalized Cauchy-Riemann operator with respect to the
structural set {ψi, i = 0, 1, 2} defined by (2.12) and (2.13).

2.4.2 Rotation in A
Due to [55], a point x = (x0, x1, x2) ∈ R3 is identified with a vector (or purely imagin-

ary quaternion) x = x0 e1 + x1 e2 + x2 e3. Then each rotation in R3 can be represented
by an automorphism of the form

ρR3,y(x) := y x y−1 (0 6= y ∈ H).
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Note that ρR3,y maps a vector to a vector, i.e Sc(ρR3,y(x)) = 0. Because of the isomorphism
between A and the set of vectors in H, based on the relation:

e3 x = e3(x0 + x1 e1 + x2 e2) = −x2 e1 + x1 e2 + x0 e3,

a rotation in A can be expressed by an automorphism of the form

ρA,y(x) := −e3 y e3 x y
−1,

where x ∈ A and 0 6= y ∈ H. It is easy to verify that ρA,y(x) ∈ A. We are going to
determine the structural set ψ corresponding to the composition of a monogenic function
and a rotation in A.

Let
y = y0 + y1e1 + y2e2 + y3e3,

|y|2 = y2
0 + y2

1 + y2
2 + y2

3,

x′ := ρA,y(x).

Straightforward calculations lead to

∂f(ρA,y(x))

∂x0

=
2∑
j=0

∂f

∂x′j

∂x′j
∂x0

=
∂f

∂x′0

y2
0 − y2

1 − y2
2 + y2

3

|y|2
+

∂f

∂x′1

−2y0y1 + 2y2y3

|y|2

+
∂f

∂x′2

−2y0y2 − 2y1y3

|y|2
.

Analogously, one has

∂f(ρA,y(x))

∂x1

=
∂f

∂x′0

2y0y1 + 2y2y3

|y|2
+

∂f

∂x′1

y2
0 − y2

1 + y2
2 − y2

3

|y|2

+
∂f

∂x′2

2y0y3 − 2y1y2

|y|2

and
∂f(ρA,y(x))

∂x2

=
∂f

∂x′0

2y0y2 − 2y1y3

|y|2
+

∂f

∂x′1

−2y0y3 − 2y1y2

|y|2

+
∂f

∂x′2

y2
0 + y2

1 − y2
2 − y2

3

|y|2
.

The following matrix

Ψrot =
1

|y|2


y2

0 − y2
1 − y2

2 + y2
3 2y0y1 + 2y2y3 2y0y2 − 2y1y3

−2y0y1 + 2y2y3 y2
0 − y2

1 + y2
2 − y2

3 −2y0y3 − 2y1y2

−2y0y2 − 2y1y3 2y0y3 − 2y1y2 y2
0 + y2

1 − y2
2 − y2

3

 (2.14)
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is an orthogonal matrix. Therefore the set {ψ0, ψ1, ψ2} defined by

(ψ0 ψ1 ψ2) = (1 e1 e2) Ψrot (2.15)

forms a structural set in A. Remark that the entries Ψi+1,j+1
rot satisfy

Ψi+1,j+1
rot =

∂x′i
∂xj

with i, j = 0, 1, 2. Applying the generalized Cauchy-Riemann operator ψD to f(ρA,y), one
obtains

ψDf(ρA,y(x)) =
2∑
j=0

ψj
∂f(ρA,y(x))

∂xj

=
2∑
j=0

ψj

(
2∑
i=0

∂f

∂x′i

∂x′i
∂xj

)

=
2∑
i=0

(
2∑
j=0

ψj
∂x′i
∂xj

)
∂f

∂x′i

=
2∑
i=0

(
2∑
j=0

2∑
k=0

Ψk+1,j+1
rot ek Ψi+1,j+1

rot

)
∂f

∂x′i

=
2∑
i=0

2∑
k=0

(
2∑
j=0

Ψk+1,j+1
rot Ψi+1,j+1

rot

)
ek

∂f

∂x′i

=
2∑
i=0

2∑
k=0

δk,i ek
∂f

∂x′i

=
∂f

∂x′0
+ e1

∂f

∂x′1
+ e2

∂f

∂x′2

= 0 (if f is monogenic at x′).

To sum up, the following theorem is given.

Theorem 2.4.4. Given a function f : A → A and a rotation ρA,y in A. If f is monogenic
at ρA,y(x), then the function

[f ◦ ρA,y](x) = f(ρA,y(x))

is ψ-hyperholomorphic at x, where ψ is the structural set in A determined by (2.14) and
(2.15).
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2.4.3 Möbius transformation, conformal weight factor and struc-
tural set

Let f be an A-valued monogenic function at ν(x), where ν is a Möbius transformation
in A. The general form of ν is

ν(x) = (ax+ b)(cx+ d)−1,

where a, b, c, d ∈ H and {
ac−1d− b 6= 0 if c 6= 0,

ad 6= 0 if c = 0.

Let us consider the case c 6= 0. The mapping ν can be represented as follows:

ν(x) = ac−1 + (b− ac−1d)(x+ c−1d)−1c−1.

We denote
A = ac−1, B = c−1d and C = c.

Suppose that
A,B ∈ A and b− ac−1d = λ e3 c e3,

with λ ∈ R\{0}, the mapping is rewritten as

ν(x) = A+ λ e3C e3 (x+B)−1C−1. (2.16)

Notice that the previous conditions for coefficients a, b, c, d ensure that we obtains a
Möbius transformation in A, i.e ν(x) ∈ A for x ∈ A. In particular, both summands A
and B generate only translations. (x+B)−1 is composed by a translation and an inversion
in the unit sphere. Finally, factors on both sides of (x + B)−1 generate a rotation and a
dilation.

To sum up, the composition of the monogenic function f and Möbius transformation
(2.16) can be decomposed into basic transformations

f ◦ Translation ◦Dilation ◦ Rotation ◦ Inversion ◦ Translation.

Notice that translations and dilations do not play any role in the change of a structural
set. Thus (f ◦ ν)(x) will satisfy the differential equation

ψDf(ν(x)) = 0 (2.17)

where the structural set is defined by

(ψ0 ψ1 ψ2) = (1 e1 e2) Ψrot(C) Ψinv(x+B) (2.18)

with the orthogonal matrices Ψrot(C) and Ψinv(x+B) given in (2.14) and (2.12), respect-
ively. In particular, ψk, k = 0, 1, 2 are of the form

ψk =
2∑
i=0

(
2∑
j=0

Ψi+1,j+1
rot (C) Ψj+1,k+1

inv (x+B)

)
ei.
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Theorem 2.4.5. Given a function f : A → A. Let ν be a Möbius transformation
in A given by (2.16). If f is monogenic at ν(x), then the composition f ◦ ν defines a
ψ-hyperholomorphic function at x, where the structural set ψ is described in (2.18).

Based on results of [112, 118], it is proved that the function

cx+ d

|cx+ d|3
f(ν(x))

is monogenic and

Jν :=
cx+ d

|cx+ d|3

is called conformal weight factor. A question arises if there is a relation between structural
set ψ and conformal weight factor Jν? Starting with ψ, we will show the way to get Jν .

Now we multiply equation (2.17) by (x + B)(−e3C e3) on the left. Suppose that
c = c0 + c1e1 + c2e2 + c3e3, one immediately gets

−e3C e3 = c0 + c1e1 + c2e2 − c3e3.

First of all, we calculate the multiplication

(−e3C e3)ψk.

component-wisely. We have

[
(−e3C e3)ψk

]
0

=
2∑
j=0

(
c0Ψ1,j+1

rot (C)− c1Ψ2,j+1
rot (C)− c2Ψ3,j+1

rot (C)
)

Ψj+1,k+1
inv (x+B)

=|C|2
(
c0 Ψ1,k+1

inv (x+B) + c1 Ψ2,k+1
inv (x+B) + c2 Ψ3,k+1

inv (x+B)
)
,

[
(−e3C e3)ψk

]
1

=
2∑
j=0

(
c0Ψ2,j+1

rot (C) + c1Ψ1,j+1
rot (C) + c3Ψ3,j+1

rot (C)
)

Ψj+1,k+1
inv (x+B)

=|C|2
(
−c1 Ψ1,k+1

inv (x+B) + c0 Ψ2,k+1
inv (x+B)− c3 Ψ3,k+1

inv (x+B)
)
,

[
(−e3C e3)ψk

]
2

=
2∑
j=0

(
c0Ψ3,j+1

rot (C) + c2Ψ1,j+1
rot (C)− c3Ψ2,j+1

rot (C)
)

Ψj+1,k+1
inv (x+B)

=|C|2
(
−c2 Ψ1,k+1

inv (x+B) + c3 Ψ2,k+1
inv (x+B) + c0 Ψ3,k+1

inv (x+B)
)
,
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[
(−e3C e3)ψk

]
3

=
2∑
j=0

(
c1Ψ3,j+1

rot (C)− c2Ψ2,j+1
rot (C)− c3Ψ1,j+1

rot (C)
)

Ψj+1,k+1
inv (x+B)

=|C|2
(
−c3 Ψ1,k+1

inv (x+B)− c2 Ψ2,k+1
inv (x+B) + c1 Ψ3,k+1

inv (x+B)
)
.

It implies that

(−e3C e3)ψk =

(
2∑
j=0

Ψj+1,k+1
inv (x+B) ej

)
|C|2C.

Then

(x+B)(−e3C e3)ψk =

(
2∑
i=0

(xi +Bi) ei

)(
2∑
j=0

Ψj+1,k+1
inv (x+B) ej

)
︸ ︷︷ ︸

Tk

|C|2C.

Components of T k can be given explicitly

[T k]0 = (x0 +B0) Ψ1,k+1
inv (x+B)− (x1 +B1) Ψ2,k+1

inv (x+B)− (x2 +B2) Ψ3,k+1
inv (x+B)

= −(xk +Bk),

[T k]1 = (x0 +B0) Ψ2,k+1
inv (x+B) + (x1 +B1) Ψ1,k+1

inv (x+B)

=


x1 +B1 if k = 0

−(x0 +B0) if k = 1

0 if k = 2,

[T k]2 = (x0 +B0) Ψ3,k+1
inv (x+B) + (x2 +B2) Ψ1,k+1

inv (x+B)

=


x2 +B2 if k = 0

0 if k = 1

−(x0 +B0) if k = 2,

[T k]3 = (x1 +B1) Ψ3,k+1
inv (x+B)− (x2 +B2) Ψ2,k+1

inv (x+B)

=


0 if k = 0

x2 +B2 if k = 1

−(x1 +B1) if k = 2,
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As a result, T k can be represented in a compact form as follows:

T k = −ek (x+B) (k = 0, 1, 2).

Consequently,

0 = (x+B)(−e3C e3) ψDf(ν(x)) =
2∑

k=0

(x+B)(−e3C e3)ψk
∂

∂xk
f(ν(x))

= −
2∑

k=0

ek (x+B) |C|2C ∂

∂xk
f(ν(x)).

Notice that B = c−1d and C = c, one obtains

2∑
k=0

ek
cx+ d

|cx+ d|3
∂

∂xk
f(ν(x)) = 0.

The last equation is nothing else but

∂

[
cx+ d

|cx+ d|3
f(ν(x))

]
= 0,

by using straightforward calculations and the fact that

Jν =
cx+ d

|cx+ d|3

is a monogenic function at x 6= −c−1d (see [81]). The denominator has the power of 3
because we work with R3 instead of R4 as in the paper of Sudbery [134].

The composition of a monogenic function and a Möbius transformation is a ψ- hyper-
holomorphic function, where ψ is obtained from the standard structural set {1, e1, e2}
by an orthogonal transformation Ψ. At this stage, we know that conformal weight factor
plays a role of a transformation against Ψ such that monogenicity is kept invariant.

In conclusion, this chapter presents some latest results on geometric mapping proper-
ties of monogenic functions and this study leads to the consideration of ψ-hyperholomorphic
functions. The true question behind is about the nature of monogenic (holomorphic) func-
tions. More precisely, what are the most important properties of holomorphic functions to
generalize to higher dimensions. Actually, we see from discussions in this chapter that the
differential equations are changing under conformal transformations but the local geomet-
ric properties not. That means the geometric mapping properties may have the decisive
role. This last remark goes together with Shapiro’s observation about hyperderivability
and directional derivative. This was also a geometric concept.



Chapter 3

Oblate spheroidal monogenic
polynomials

A global geometric mapping property related to ψ-hyperholomorphic functions will
be studied in this chapter. In complex analysis, every simply connected domain except
the entire complex plane can be mapped onto the unit disk by a conformal mapping
which is represented by a holomorphic function. It is difficult to generalize that fact to
higher dimensional spaces with the aid of monogenic functions. Note that in Rn (n > 2)
only Möbius transformations are conformal and they are not monogenic. Moreover, many
techniques in the complex function theory cannot be used to prove the existence of a
monogenic mapping that maps a simply connected domain in Rn onto the unit ball. The
true reason may come from the non-commutative structure of quaternionic or Clifford
algebras, so the product of two monogenic functions is not monogenic. To study the
existence problem, mathematicians prefer making a test with constructive approaches in
which one formulates explicitly a mapping and then consider it. One of those possible
approaches is the Bergman kernel method. In [16, 121] a 3D version of the Bergman
kernel method was studied and applied for different domains (rectangular, cylindrical or
ellipsoidal domains). In these cases, mappings were approximated numerically and the
results were close to the expectations, i.e. the mappings are monogenic, from R3 to R3

and map given domains onto balls.
One problem is if the construction by the 3D Bergman kernel method really leads to

a mapping in R3. Due to [16, 121], Fueter polynomials were used to approximate the
mapping for every domain. Thus without the information of geometry, what authors
received was the mapping from R3 to R4 and the last component was cut simply. It is
supported by the idea that the last component tends to zero when the number of used
Fueter polynomials increases. To see if it is really so, we invest in this chapter the 3D
Bergman kernel method for oblate spheroidal domains and we will prove that the function
constructed in this way is a mapping in R3. Moreover the polynomial approximation of
the mapping up to any degree n automatically takes values in A ∼= R3, thus we do not
need to cut anything. This work is based on the knowledge of oblate spheroidal monogenic
polynomials. A motivation for taking the study on ellipsoidal domains is that this type
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of domains is a generalization of spherical domains, i.e. in limiting cases one gets back
spherical domains, and it is simple enough to carry out all calculations.

Construction of a complete polynomial system in the L2-space of monogenic functions
in Rn is essential for the approximation of a monogenic function and has received much
interest from mathematicians. There are several ways to construct such a system. Two of
the most important properties of a polynomial basis system are the orthogonality and the
Appell property. The latter was introduced by Appell [6] in 1880 by generalizing the well
known property that d

dx
xn = nxn−1 to more general polynomial systems. Fueter [47] was

the first mathematician who used variables zi = xi − x0ei (i = 1, . . . , n), called later on
Fueter variables, as an idea to construct bases of homogeneous monogenic polynomials in
monogenic function spaces (see [21, 55, 89]). However, this approach leads explicitly to
neither an orthogonal nor Appell system. Another idea to construct a complete system is
the harmonic function approach based on factorizations of the Laplace operator that has
been done for spherical monogenics in R3 by Cação, Malonek, Gürlebeck, Bock, Morais
([13, 14, 18, 25, 27, 28, 29, 30, 97]), among others. The obtained bases in [13, 14, 18] are
in fact orthogonal Appell systems. Moreover, recurrence formulae and the closed-form for
these polynomials have also been given, making it more applicable in solving boundary
value problems practically. Gelfand-Tsetlin procedure is also used as a way to construct
orthogonal bases for spaces of spherical monogenics in Rn if the existing orthogonal bases
in Rn−1 are already known (see also [19, 24, 38, 39, 84, 85]). Especially, by modifying
the obtained bases a little bit, one gets Appell systems and keeps the orthogonal prop-
erty unchanged [19]. The Gelfand-Tsetlin procedure works well in the case of spherical
domains. Recently, the construction of orthogonal complete systems of monogenics was
extended to the case of prolate spheroidal domains by Morais [98, 99]. This work is mo-
tivated by applications in several fields of science such as astrophysics [120], geophysics
[76, 91] and electrical engineering [4, 96, 141]. These functions are represented in terms
of special functions such as associated Legendre functions or Chebyshev functions. The
lack of information on recurrence formulae, hypercomplex derivative, monogenic primitive
and specially a simple way to calculate the L2-norm of ellipsoidal functions still makes
challenges in application. These informations will be introduced in this chapter.

A related problem is about the existence of a complete system of orthogonal Appell
monogenic polynomials. In spherical cases, the existence of such polynomials has been
shown due to the construction of spherical monogenic functions. It seems to be clear that
for an arbitrary domain a complete system having the orthogonality and Appell property
exists. Unfortunately, this is not the case. Based on oblate spheroidal monogenic poly-
nomials we can show the non-existence of such a system for the case of oblate spheroidal
domains and inner product (1.8). Thus the existence problem is unsolvable in general.
The perfect symmetry of spherical domains could be a reason why a complete system of
orthogonal Appell polynomials exists in the space of monogenic functions in Rn.

The outline of the chapter is as follows. First of all, we will construct oblate spher-
oidal monogenic polynomials based on the ideas in [98, 99]. It will be proved that the
obtained functions are orthogonal and form a complete system in the space of monogenics
in the interior of an oblate spheroid. The hypercomplex derivative and the monogenic
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primitive will be considered. Then we will prove that one cannot construct an orthogonal
Appell system for the case of oblate spheroidal domains. In particular, the hypercomplex
derivative and the monogenic primitive of an oblate spheroidal monogenic polynomial is
represented explicitly by more than one (but only a few) of other oblate spheroidal mono-
genic polynomials. Recursive formulae and the closed-form of the representation of oblate
spheroidal polynomials will be given for the aim of a fast computation. The L2-norm of
oblate spheroidal monogenics will be computed. An application of the construction is to
calculate the Bergman kernel for oblate spheroidal domains explicitly. In connection with
a global geometric mapping property, a 3D Bergman kernel method will be applied to
compose a mapping that may transform oblate spheroid domains to balls. The obtained
mapping is proved to be a mapping in R3. This result makes a progress compared with
the previous studies on the 3D Bergman kernel method. Finally some numerical examples
will be carried out.

3.1 Construction

Figure 3.1: Oblate spheroidal coordinates (µ, θ, ϕ)

The equation of an oblate spheroid Γob with x0-axis as the symmetry axis is of the
form

x2
0

a2
+
x2

1 + x2
2

b2
= 1,

where a = c sinhµ0, b = c coshµ0 and c > 0. For the sake of simplicity, we assume
that c = 1. Notations Γ+

ob and Γ−ob stand for the interior and exterior domains of Γob,
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respectively. Oblate spheroidal coordinates are given by
x0 = sinhµ cos θ,

x1 = coshµ sin θ cosϕ,

x2 = coshµ sin θ sinϕ,

with θ ∈ [0, π), ϕ ∈ [0, 2π), µ < µ0 if x ∈ Γ+
ob and µ > µ0 if x ∈ Γ−ob.

In oblate spheroidal coordinates, the operator ∂ has the representation

∂ =
coshµ cos θ − sinhµ sin θ (cosϕ e1 + sinϕ e2)

sinh2 µ+ cos2 θ

∂

∂µ

− sinhµ sin θ + coshµ cos θ (cosϕ e1 + sinϕ e2)

sinh2 µ+ cos2 θ

∂

∂θ

+
1

coshµ sin θ
(sinϕ e1 − cosϕ e2)

∂

∂ϕ
.

In what follows, we use the notation

Pm
n (i sinhµ) := (coshµ)m

dm

dtm
Pn(t)

∣∣∣∣
t=i sinhµ

where n and m are non-negative integers so that m ≤ n, and i is the imaginary unit.
By virtue of [48], real-valued harmonic functions in oblate spheroidal coordinates are

given by
U †n,m(µ, θ) cos(mϕ), U †n,m(µ, θ) sin(mϕ),

where
U †n,m(µ, θ) = in−m Pm

n (i sinhµ)Pm
n (cos θ).

Denote by
Xn,m(µ, θ, ϕ) := ∂ [U †n+1,m(µ, θ) cos(mϕ)],

Yn,m(µ, θ, ϕ) := ∂ [U †n+1,m(µ, θ) sin(mϕ)].

Remark that the factorization of the Laplace operator in R3,

∆3 = ∂ ∂ = ∂ ∂.

Hence Xn,m and Yn,m are monogenic functions. We have the following representation:

Proposition 3.1.1 ([108]). Xn,m and Yn,m (m = 0, 1, . . . , n; n = 0, 1, . . . ) are monogenic
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functions of the form

Xn,m =(n+m+ 1)Rn,m(µ, θ) cos(mϕ)

− 1

2(n−m+ 1)
Rn,m+1(µ, θ) {cos[(m+ 1)ϕ] e1 + sin[(m+ 1)ϕ] e2}

+
(n+m+ 1)(n+m)(n−m+ 2)

2
Rn,m−1(µ, θ)

× {cos[(m− 1)ϕ] e1 − sin[(m− 1)ϕ] e2}

and

Yn,m =(n+m+ 1)Rn,m(µ, θ) sin(mϕ)

− 1

2(n−m+ 1)
Rn,m+1(µ, θ) {sin[(m+ 1)ϕ] e1 − cos[(m+ 1)ϕ] e2}

+
(n+m+ 1)(n+m)(n−m+ 2)

2
Rn,m−1(µ, θ)

× {sin[(m− 1)ϕ] e1 + cos[(m− 1)ϕ] e2},

where

Rn,m(µ, θ) =
1

sinh2 µ+ cos2 θ

[
in+1−m sinhµPm

n+1(i sinhµ)Pm
n (cos θ)

− cos θ Pm
n+1(cos θ) in−m Pm

n (i sinhµ)
]

with

Rn,−1(µ, θ) :=


− 1

n(n+ 1)2(n+ 2)
Rn,1(µ, θ) : n = 1, 2, . . .

0 : n = 0.

Similar results can be found in [98], where Morais worked with prolate spheroidal
monogenics. However, the action of the hypercomplex derivative, monogenic primitive
operators and recurrence formulae are not discussed therein.

Because of properties of the associated Legendre and sine functions, it is easy to see
that Rn,m(µ, θ) = 0 for m > n and Yn,0 = 0 for all n.

A straightforward calculation proves then the following recurrence formula for the
functions Rn,m(µ, θ):

Rn,m(µ, θ) = − 2n+ 1

n−m+ 1
in−m Pm

n (i sinhµ)Pm
n (cos θ)

− (n+m)(n+m− 1)

(n−m+ 1)(n−m)
Rn−2,m(µ, θ)
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with
Rm,m(µ, θ) = −(2m+ 1)Pm

m (i sinhµ)Pm
m (cos θ)

Rm+1,m(µ, θ) = −2m+ 3

2
iPm

m+1(i sinhµ)Pm
m+1(cos θ).

Solving this recurrence relation we obtain an explicit representation formula by

Rn,m(µ, θ) =

[n−m
2

]∑
k=0

(−1)k+1 (2n+ 1− 4k) (n+m− 2k + 1)2k

(n−m− 2k + 1)2k+1

× in−m−2k Pm
n−2k(i sinhµ)Pm

n−2k(cos θ).

(3.1)

Recall that (a)r = a(a+1)(a+2) . . . (a+r−1) is the Pochhammer symbol with (a)0 := 1.

Theorem 3.1.1 ([108]). The functions defined by

Φm
n := Xn,m − Yn,m e3 (n = 0, 1, . . . ; m = 0, 1, . . . , n)

or, more explicitly,

Φm
n = (n+m+ 1)Rn,m(µ, θ) [cos(mϕ)− sin(mϕ) e3]

− 1

n−m+ 1
Rn,m+1(µ, θ) {cos[(m+ 1)ϕ] e1 + sin[(m+ 1)ϕ] e2}

(3.2)

form an orthogonal monogenic system in the space M(Γ+
ob;H;H).

Proof. The construction of Φm
n is similar to that of prolate spheroidal monogenics in [99]

and some ideas of the proof can be used in the oblate cases. We will present only the
main steps of the proof. To begin with, one has

〈f, g〉L2(Γ+
ob;H) =

∫ µ0

0

∫ π

0

∫ 2π

0

[
f g
]

(µ, θ, ϕ) |J | dϕ dθ dµ

where |J | = coshµ sin θ (sinh2 µ+ cos2 θ). Moreover,

Φ
m1

n1
Φm2
n2

=
{

(n1 +m1 + 1)(n2 +m2 + 1)Rn1,m1 Rn2,m2

+
Rn1,m1+1 Rn2,m2+1

(n1 −m1 + 1)(n2 −m2 + 1)

}
{cos[(m1 −m2)ϕ] + sin[(m1 −m2)ϕ] e3}

−
{
n1 +m1 + 1

n2 −m2 + 1
Rn1,m1 Rn2,m2+1 −

n2 +m2 + 1

n1 −m1 + 1
Rn1,m1+1 Rn2,m2

}
× {cos[(m1 +m2 + 1)ϕ] e1 + sin[(m1 +m2 + 1)ϕ] e2} .

Therefore {Φm1
n1
,Φm2

n2
} are mutually orthogonal if m1 6= m2.
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Now we assume m1 = m2 = m, then〈
Φm
n1
,Φm

n2

〉
L2(Γ+

ob;H)
=2π

∫ µ0

0

∫ π

0

{
(n1 +m+ 1)(n2 +m+ 1)Rn1,mRn2,m

+
Rn1,m+1 Rn2,m+1

(n1 −m+ 1)(n2 −m+ 1)

}
|J | dθ dµ.

Applying (3.1), we get (with the assumption that n1 > n2)

(sinh2 µ+ cos2 θ)Rn1,mRn2,m =
[
in1+1−m sinhµPm

n1+1(i sinhµ)Pm
n1

(cos θ)

− cos θ Pm
n1+1(cos θ) in1−m Pm

n1
(i sinhµ)

]
×

[
n2−m

2
]∑

k=0

(−1)k+1 (2n2 + 1− 4k) (n2 +m− 2k + 1)2k

(n2 −m− 2k + 1)2k+1

× in2−m−2k Pm
n2−2k(i sinhµ)Pm

n2−2k(cos θ).

In association with the fact ∫ π

0

Pm
n1

(cos θ)Pm
n2−2k(cos θ) sin θ dθ = 0∫ π

0

Pm
n1+1(cos θ) cos θ Pm

n2−2k(cos θ) sin θ dθ = 0

one can prove that {Φm
n1
,Φm

n2
} is also mutually orthogonal if n1 6= n2. This leads to the

conclusion of the theorem.

Example 3.1.1. Here are some of oblate spheroidal monogenic polynomials Φm
n in relation

with Appell polynomials Amn ([13]):

Φ0
0 = −1;

Φ0
1 = 3A0

1, Φ1
1 = −9A1

1;

Φ0
2 = −15

2
A0

2 − 3
2
, Φ1

2 = 45A1
2, Φ2

2 = −5 · 45A2
2;

Φ0
3 = 35

2
A0

3 + 15
2
A0

1, Φ1
3 = −52 · 7A1

3 − 5 · 15A1
1.

Remark 3.1.1. The functions Φm
n , defined by (3.2), are all equal to zero if m > n.

Remark 3.1.2. Since Appell polynomials Amn are homogeneous, example 3.1.1 shows that
Φm
n are polynomials but not homogeneous, in general.
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That means {Φm
n : m = 0, . . . , n} does not form a basis of Mn(Γ+

ob;H;H). However,
it is well-known that

dimMj(Γ
+
ob;H;H) = j + 1, (j = 0, 1, . . . )

and therefore,

dim
{⊕n

j=0
Mj(Γ

+
ob;H;H)

}
=

(n+ 1)(n+ 2)

2
.

For each n ∈ N, the set of

{Φl
j : l = 0, . . . , j; j = 0, . . . , n}

is an orthogonal set, thus a linearly independent set, of 1
2
(n + 1)(n + 2) polynomials.

Consequently it forms a basis in
⊕n

j=0Mj(Γ
+
ob;H;H). In addition,

⊕∞
j=0Mj(Γ

+
ob;H;H) is

dense in M(Γ+
ob;H;H). Therefore the following corollary holds.

Corollary 3.1.1 ([108]). The monogenic polynomials Φm
n (m = 0, 1, . . . , n; n ∈ N0)

form an orthogonal basis of M(Γ+
ob;H;H).

As shown in the first chapter, monogenic Appell polynomials can be derived from
construction of spherical monogenic functions. The question arises if the existence of a
complete orthogonal Appell system for an L2(Ω)-space of monogenic functions over Γ+

ob

can be asserted. We claim now that it is impossible to have such a system with respect
to the inner product (1.8).

Theorem 3.1.2 ([108]). There does not exist a complete system of orthogonal Appell poly-
nomials {fmn : m = 0, 1, . . . , n; n ∈ N0} inM(Γ+

ob;H;H) with respect to the hypercomplex
derivative, i.e.

1

2
∂fmn =

{
nfmn−1 : m = 0, 1, . . . , n− 1

0 : m = n,

and 〈
fmn , f

l
k

〉
L2(Γ+

ob;H)
= 0 if m 6= l or n 6= k.

Proof. Such a system {fmn } must have a representation in the orthogonal basis {Φm
n :

m = 0, . . . , n; n ∈ N0}. Then, fmn can be expressed by

fmn =
n∑
i=0

i∑
j=0

Φj
i d

m
i,j,

where dmi,j ∈ H. Let f 0
0 = 1. It can be shown that

f 1
1 = Φ1

1, f 0
1 = −1

3
Φ0

1;

f 2
2 = Φ2

2, f 1
2 = −1

5
Φ1

2, f 0
2 = 2

15
Φ0

2;

f 3
3 = Φ3

3, f 2
3 = −1

7
Φ2

3, f 1
3 = 9

7·52 Φ1
3.
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The function f 0
3 is the form

f 0
3 =

3∑
i=0

i∑
j=0

Φj
i d

0
i,j.

To ensure orthogonality, one gets f 0
3 = Φ0

3 d
0
3,0. The Appell property

1

2
∂f 0

3 = 3f 0
2

leads to the equation

(−7Φ0
2 + 3Φ0

0) d0
3,0 =

2

5
Φ0

2.

This equation is not solvable and it shows the non-existence of an orthogonal Appell
system.

3.2 The L2-norm of oblate spheroidal monogenics

Let us denote by
u := U †n+1,m(µ, θ) cos(mϕ)

v := U †n+1,m(µ, θ) sin(mϕ).

Thus it is clear that
Φm
n = Xn,m − Yn,m e3

= ∂ (u− v e3).

The norm of Φm
n can be calculated as follows:

‖Φm
n ‖2

L2(Γ+
ob)

=

∫
Γ+
ob

Φ
m

n Φm
n dω

=

∫
Γ+
ob

∂(u− ve3) Φm
n dω

=

∫
Γ+
ob

[
∂(uΦm

n ) + e3 ∂(vΦm
n )
]
dω

=

∫
Γob

(u+ e3 v)αΦm
n dγ

=

∫ π

0

∫ 2π

0

(u+ e3 v)αΦm
n coshµ0 sin θ

√
cosh2 µ0 − sin2 θ dϕ dθ,

where α is the normal vector to the boundary Γob at the point (µ0, θ, ϕ):

α =
1√

cosh2 µ0 − sin2 θ
[coshµ0 cos θ + sinhµ0 sin θ (cosϕ e1 + sinϕ e2)].
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Substituting Φm
n from equation (3.2) into the above calculation and in association with

the orthogonality of sine and cosine functions with respect to ϕ ∈ [0, 2π), it leads to

‖Φm
n ‖2

L2(Γ+
ob)

= in−m+1 Pm
n+1(i sinhµ0) coshµ0

∫ π

0

∫ 2π

0

Pm
n+1(cos θ) sin θ

×
{

coshµ0 cos θ (n+m+ 1)Rn,m + sinhµ0 sin θ
Rn,m+1

n−m+ 1

}
dθ dϕ

= 2π in−m+1 Pm
n+1(i sinhµ0) coshµ0

∫ π

0

Pm
n+1(cos θ) sin θ

×
{

coshµ0 cos θ (n+m+ 1)Rn,m + sinhµ0 sin θ
Rn,m+1

n−m+ 1

}
dθ.

Due to explicit presentation (3.1) of Rn,m(θ, ϕ) and the orthogonality of associated Le-
gendre functions, one gets

‖Φm
n ‖2

L2(Γ+
ob)

=2π in−m+1 Pm
n+1(i sinhµ0) coshµ0

∫ π

0

{
(n+m+ 1) coshµ0

× n+m+ 1

2n+ 3
Pm
n (cos θ) (−1)

2n+ 1

n−m+ 1
in−m Pm

n (i sinhµ0)Pm
n (cos θ)

+
sinhµ0

n−m+ 1

1

2n+ 3
Pm+1
n (cos θ) (−1)

2n+ 1

n−m

× in−m−1 Pm+1
n (i sinhµ0)Pm+1

n (cos θ)
}

sin θ dθ

‖Φm
n ‖2

L2(Γ+
ob)

= − 4π in−m+1 Pm
n+1(i sinhµ0) coshµ0

(n+m+ 1)!

(2n+ 3)(n−m+ 1)!

×
{

(n+m+ 1) coshµ0 in−m Pm
n (i sinhµ0)

+ sinhµ0 in−m−1 Pm+1
n (i sinhµ0)

}
.

Finally, one obtains

‖Φm
n ‖2

L2(Γ+
ob)

=
4π (n+m+ 1)!

(2n+ 3) (n−m+ 1)!
coshµ0

× i2(n−m)+1 Pm
n+1(i sinhµ0)Pm+1

n+1 (i sinhµ0),

with m = 0, 1, . . . , n; n ∈ N0. Orthonormal functions are given by

Φ̃m
n :=

Φm
n

‖Φm
n ‖L2(Γ+

ob)

.
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3.3 Hypercomplex derivative and monogenic primit-

ive

As a consequence of not having an orthogonal Appell system, the hypercomplex de-
rivatives of polynomials Φm

n are not multiples of Φm
n−1 in general. Of course, one can

represent the derivative by the 1
2
n(n+ 1) monogenic basis polynomials of degree at most

n− 1. However, the following formulae show that we need only a few of them.

Theorem 3.3.1 ([108]). The hypercomplex derivative of Φm
n has the form:

1

2
∂Φm

n =

[n−m
2

]∑
k=0

(−1)k+1 (2n+ 1− 4k) (n+m− 2k + 1)2k+1

(n−m− 2k + 1)2k+1

Φm
n−1−2k. (3.3)

Proof. Applying 1
2
∂ to Φm

n , one gets

1

2
∂Φm

n =
1

2

[
(n+m+ 1)D1Rn,m −

D2Rn,m+1 + (m+ 1)CRn,m+1

n−m+ 1

]
× [cos(mϕ)− sin(mϕ) e3]

− 1

2

[
D1Rn,m+1

n−m+ 1
+ (n+m+ 1)(D2Rn,m −mCRn,m)

]
× {cos[(m+ 1)ϕ] e1 + sin[(m+ 1)ϕ] e2}

where operators D1, D2 and a constant C are given by

D1 :=
1

sinh2 µ+ cos2 θ

(
coshµ cos θ

∂

∂µ
− sinhµ sin θ

∂

∂θ

)
,

D2 :=
1

sinh2 µ+ cos2 θ

(
sinhµ sin θ

∂

∂µ
+ coshµ cos θ

∂

∂θ

)
,

C :=
1

coshµ sin θ
.

Let us consider the following expressions

umn :=
1

2

[
1

n−m+ 1
D1Rn,m+1 + (n+m+ 1)(D2Rn,m −mCRn,m)

]
,

vmn :=
1

2

[
(n+m+ 1)D1Rn,m −

1

n−m+ 1
(D2Rn,m+1 + (m+ 1)CRn,m+1)

]
.

By direct calculations, umn and vmn can be rewritten as

umn =

[n−m
2

]∑
k=0

(−1)k+1 (2n+ 1− 4k)(n+m− 2k + 1)2k+1

(n−m− 2k + 1)2k+1

1

n−m− 2k
Rn−1−2k,m+1
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and

vmn =

[n−m
2

]∑
k=0

(−1)k+1 (2n+ 1− 4k)(n+m− 2k + 1)2k+1

(n−m− 2k + 1)2k+1

(n+m− 2k)Rn−1−2k,m.

It yields

1

2
∂Φm

n = vmn [cos(mϕ)− sin(mϕ)e3]− umn {cos[(m+ 1)ϕ]e1 + sin[(m+ 1)ϕ]e2}

=

[n−m
2

]∑
k=0

(−1)k+1 (2n+ 1− 4k)(n+m+ 1)2k+1

(n−m+ 1)2k+1

×
{

(n+m− 2k)Rn−1−2k,m [cos(mϕ)− sin(mϕ) e3]

− Rn−1−2k,m+1

n−m− 2k
(cos[(m+ 1)ϕ] e1 + sin[(m+ 1)ϕ] e2)

}

=

[n−m
2

]∑
k=0

(−1)k+1 (2n+ 1− 4k) (n+m− 2k + 1)2k+1

(n−m− 2k + 1)2k+1

Φm
n−1−2k.

Example 3.3.1. Simple calculations show that

1

2
∂Φ1

3 =
1

2
∂(−52 · 7A1

3 − 5 · 15A1
1)

= −52 · 7 · 3A1
2 + 0

= −(3 + 1 + 1)(2 · 3 + 1)

3− 1 + 1
Φ1

2,

1

2
∂Φ0

3 =
1

2
∂

[
35

2
A0

3 +
15

2
A0

1

]
=

35 · 3
2

A0
2 +

15

2

= −(3 + 0 + 1)(2 · 3 + 1)

3− 0 + 1
Φ0

2 − 3.

At first glance, one can see that to calculate the hypercomplex derivative of Φm
n , we

only need
[

1
2
(n−m)

]
+ 1 other polynomials of lower degrees (instead of 1

2
n(n + 1)).

Moreover, the Appell property holds for a part of our function system (providing of some
“normalization”of Φm

n ), presented in the following corollary.
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Corollary 3.3.1 ([108]). For n−m = 0, 1, 2, the derivatives of Φm
n follow the rule

1

2
∂Φm

n = −(2n+ 1)(n+m+ 1)

n−m+ 1
Φm
n−1.

The formula for primitives is even much better, where only two other polynomials are
required to generate the primitive of Φm

n .

Theorem 3.3.2 ([108]). The primitives of Φm
n are given by

PΦm
n+1 = − n−m+ 3

(2n+ 5)(n+m+ 3)

{
Φm
n+2 +

(n+m+ 2)2

(n−m+ 2)2

Φm
n

}
.

Proof. Based on formula (3.3), we get

1

2
∂

(
Φm
n+2 +

(n+m+ 2)2

(n−m+ 2)2

Φm
n

)
= −(2n+ 5)(n+m+ 3)

n−m+ 3
Φm
n+1.

This leads to the theorem.

Corollary 3.3.1 shows that
1

2
∂Φn

n = 0

with n ∈ N0, i.e. Φn
n are monogenic constant. In [13] it is proved that ∂CA

n
n = nAn−1

n−1,
where

∂C :=
1

2

(
∂

∂x1

+
∂

∂x2

e3

)
.

We will show in the next theorem a similar result for Φn
n.

Theorem 3.3.3 ([108]). Let {Φm
n } be the system as defined by (3.2), then

∂CΦn
n = n(2n+ 1)2Φn−1

n−1.

Proof. We have
Φn
n = (2n+ 1)Rn,n(µ, θ) [cos(nϕ)− sin(nϕ) e3].

In oblate spheroidal coordinates, the operator ∂C is of the form:

∂C =
1

2(sinh2 µ+ cos2 θ)
(cosϕ+ sinϕ e3)

[
sinhµ sin θ

∂

∂µ
+ coshµ cos θ

∂

∂θ

]

− 1

2 coshµ sin θ
(sinϕ− cosϕ e3)

∂

∂ϕ
.

Thus

∂CΦn
n =

2n+ 1

2
(D2Rn,n + nCRn,n) {cos[(n− 1)ϕ]− sin[(n− 1)ϕ]e3},
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where notations D2 and C were used in Theorem 3.3.1. A straightforward calculation
leads to

1

2
(D2Rn,n + nCRn,n) = n(2n+ 1)(2n− 1)Rn−1,n−1.

Finally, one obtains

∂CΦn
n = n(2n+ 1)2(2n− 1)Rn−1

n−1 {cos[(n− 1)ϕ]− sin[(n− 1)ϕ] e3}

= n(2n+ 1)2Φn−1
n−1.

The term (2n+1)2 appearing in the formula comes from the construction of the system
{Φm

n }. By renormalizing such a system, we can obtain the mentioned property similarly
to that for Ann, but finally we still do not have an orthogonal Appell system as discussed
in the previous section. In the sequel, the relation between monogenic constants Ann and
Φn
n will be explicitly described.

3.4 Recurrence formulae and explicit representation

In applications, formula (3.2) is not preferred to calculate polynomials Φm
n because

it contains associated Legendre functions. For computational purposes, we need some
recurrence formulae or the explicit representation of Φm

n in Cartesian coordinates.

Theorem 3.4.1 ([108]). For each n and m = 0, . . . , n, Φm
n satisfies the recurrence formula

xΦm
n = − n−m+ 2

2(2n+ 3)(n+m+ 2)

{
(2n+ 3)Φm

n+1 − (2m+ 1)Φ̂m
n+1

}
+

n+m+ 1

2(2n+ 3)(n−m+ 1)

{
(2n+ 3)Φm

n−1 + (2m+ 1)Φ̂m
n−1

}
,

(3.4)

where the notation f̂ means the H-involution of f .

Proof. We have

x = x0 + x1e1 + x2e2 = sinhµ cos θ + coshµ sin θ (cosϕ e1 + sinϕ e2).

Then

xΦm
n =

[
coshµ sin θ

n−m+ 1
Rn,m+1 + (n+m+ 1) sinhµ cos θRn,m

]
× [cos(mϕ)− sin(mϕ) e3]

−
[

sinhµ cos θ

n−m+ 1
Rn,m+1 − (n+m+ 1) coshµ sin θRn,m

]
× {cos[(m+ 1)ϕ] e1 + sin[(m+ 1)ϕ] e2}.
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Denote by

Qm
n :=

coshµ sin θ

n−m+ 1
Rn,m+1 + (n+m+ 1) sinhµ cos θRn,m,

Om
n :=

sinhµ cos θ

n−m+ 1
Rn,m+1 − (n+m+ 1) coshµ sin θRn,m.

One can prove

Qm
n = −(n−m+ 2)(n−m+ 1)

2n+ 3
Rn+1,m

+
(n+m+ 2)(n+m+ 1)(n+m)

(2n+ 3)(n−m+ 1)
Rn−1,m,

Om
n = − 1

2n+ 3
Rn+1,m+1 +

n+m+ 1

(2n+ 3)(n−m)
Rn−1,m+1.

In association with the fact that

Rn+1,m[cos(mϕ)− sin(mϕ)e3] =
1

2(n+m+ 2)
(Φm

n+1 + Φ̂m
n+1),

−Rn+1,m+1{cos[(m+ 1)ϕ]e1 + sin[(m+ 1)ϕ]e2} =
n−m+ 2

2
(Φm

n+1 − Φ̂m
n+1),

one obtains the theorem.

Formula (3.4) is similar to the orthogonal Appell system {Alk} with the recurrence
formula

xAlk =
1

2(k + 1)

[
(2k + 3)Alk+1 − (2l + 1)Âlk+1

]
that was proved in [13]. The appearance of the two extra-terms expresses the asymmetry
of the spheroidal domain Ω.

Solving equation (3.4) for Φm
n+1 we obtain the following corollary.

Corollary 3.4.1 ([108]). The following two-step recurrence formula holds

Φm
n+1 = − 2n+ 3

2(n−m+ 2)(n−m+ 1)

[
(2n+ 3)xΦm

n + (2m+ 1)x Φ̂m
n

]
+

n+m+ 1

4(n−m+ 2)(n−m+ 1)2

{
[(2n+ 3)2 + (2m+ 1)2] Φm

n−1

+ 2(2n+ 3)(2m+ 1) Φ̂m
n−1

}
.

(3.5)

Combining (3.4) and (3.5), one gets a four point formula that does not make use of
the associated anti-holomorphic system.
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Corollary 3.4.2 ([108]). The four-step recurrence formula for Φm
n is given by

Φm
n+1 = − 2n+ 3

2(n−m+ 2)(n−m+ 1)
[(2n+ 3)x+ (2n+ 1)x] Φm

n

− (2n+ 3)(2n+ 1)(n+m+ 1)

(n−m+ 2)(n−m+ 1)2
x xΦm

n−1

+
(2n+ 1)(n+m+ 1)

2(n−m+ 2)(n−m+ 1)2

[
2n+ 3 +

(2m+ 1)2

2n− 1

]
Φm
n−1

+
(2n+ 3)(n+m+ 1)(n+m)

2(n−m+ 2)(n−m+ 1)2(n−m)
[(2n+ 1)x+ (2n− 1)x] Φm

n−2

− (2n+ 3)(n+m+ 1)(n+m)2(n+m− 1)

(2n− 1)(n−m+ 2)(n−m+ 1)2(n−m)
Φm
n−3.

One can see that the lack of symmetry of the spheroidal domains (compared with
the ball) leads to the complicated recurrence formulae. Such recurrence formulae need
initial values so that one can calculate explicitly every function Φm

n . In the sequel, we
will represent these initial polynomials. In order to do so, let us introduce the following
notations

Bn,k(x) :=
k∑

h=0

(
k

h

)
(2n+ 2)2(k−h)

2k−h(n+ 1)k−h

(2n+ 1)2h

2h(n+ 1)h
xh xk−h

and

ank,j :=
(2n+ 2)2k−2j

2k−j (n+ 1)k−j
(2n+ k + 2− 2j)2j,

with 0 ≤ j ≤ [k
2
].

First of all, let us consider

Φn
n = (2n+ 1)Rn,n [cos(nϕ)− sin(nϕ) e3].

Due to (3.1) one gets

Φn
n = −(2n+ 1)2 P n

n (i sinhµ)P n
n (cos θ) [cos(nϕ)− sin(nϕ) e3]

= −(2n+ 1)2[(2n− 1)!!]2 coshn µ sinn θ

× {cos[(n− 1)ϕ]− sin[(n− 1)ϕ] e3} (cosϕ− sinϕ e3)

= −(2n+ 1)2(2n− 1)2 P n−1
n−1 (i sinhµ)P n−1

n−1 (cos θ)

× {cos[(n− 1)ϕ]− sin[(n− 1)ϕ] e3} (x1 − x2 e3)

= (2n+ 1)2 Φn−1
n−1 (x1 − x2 e3).
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By induction, we obtain the representation

Φn
n = −[(2n+ 1)!!]2 (x1 − x2 e3)n = −[(2n+ 1)!!]2Ann.

Applying the previous recurrence formula and the fact that Φm
n = 0 for m > n, the

other initial polynomials are calculated as follows:

Φn
n+1 = − 2n+ 3

2 · 2 · 1
[(2n+ 3)x+ (2n+ 1)x] Φn

n

= −2n+ 3

2 · 2!
Bn,1 Φn

n

= −
an1,0

21 · 2!1!0!
Bn,1 Φn

n,

Φn
n+2 = − 2n+ 5

2 · 3 · 2 · 1
[(2n+ 5)x+ (2n+ 3)x] Φn

n+1

− (2n+ 5)(2n+ 3)(2n+ 2)

3 · 22
x xΦn

n

+
(2n+ 3)(2n+ 2)

2 · 3 · 22

(
2n+ 5 +

(2n+ 1)2

2n+ 1

)
Φn
n

=

{
(2n+ 5)(2n+ 3)

22 · 3!2!
Bn,2 +

(2n+ 3)(2n+ 3)(2n+ 2)

2 · 3!
Bn,0

}
Φn
n

=

{
an2,0

22 · 3!2!0!
Bn,2 +

an2,1
21 · 3!0!1!

Bn,0

}
Φn
n,

Φn
n+3 = − 2n+ 7

2 · 4 · 3
[(2n+ 7)x+ (2n+ 5)x] Φn

n+2

− (2n+ 7)(2n+ 5)(2n+ 3)

4 · 32
x xΦn

n+1

+
(2n+ 5)(2n+ 3)

2 · 4 · 32

(
2n+ 7 +

(2n+ 1)2

2n+ 3

)
Φn
n+1

+
(2n+ 7)(2n+ 3)(2n+ 2)

2 · 4 · 32 · 2
[(2n+ 5)x+ (2n+ 3)x] Φn

n

= −
{

(2n+ 7)(2n+ 5)(2n+ 3)

23 · 4!3!
Bn,3

+
(2n+ 5)(2n+ 3)(2n+ 4)(2n+ 3)

22 · 4!
Bn,1

}
Φn
n

= −
{

an3,0
23 · 4!3!0!

Bn,3 +
an3,1

22 · 4!1!1!
Bn,1

}
Φn
n,
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Φn
n+4 = − 2n+ 9

2 · 5 · 4
[(2n+ 9)x+ (2n+ 7)x] Φn

n+3

− (2n+ 9)(2n+ 7)(2n+ 4)

5 · 42
x xΦn

n+2

+
(2n+ 7)(2n+ 4)

2 · 5 · 42

(
2n+ 9 +

(2n+ 1)2

2n+ 5

)
Φn
n+2

+
(2n+ 9)(2n+ 4)(2n+ 3)

2 · 5 · 42 · 3
[(2n+ 7)x+ (2n+ 5)x] Φn

n+1

− (2n+ 9)(2n+ 4)(2n+ 3)2(2n+ 2)

(2n+ 5) · 5 · 42 · 3
Φn
n

=

{
(2n+ 9)(2n+ 7)(2n+ 5)(2n+ 3)

24 · 5!4!
Bn,4

+
(2n+ 7)(2n+ 5)(2n+ 3)(2n+ 5)(2n+ 4)

23 · 5!2!
Bn,2

+
(2n+ 5)(2n+ 3)(2n+ 5)(2n+ 4)(2n+ 3)(2n+ 2)

23 · 5!
Bn,0

}
Φn
n

=

{
an4,0

24 · 5!4!0!
Bn,4 +

an4,1
23 · 5!2!1!

Bn,2 +
an4,2

22 · 5!0!2!
Bn,0

}
Φn
n.

Now, we are going to look for the explicit representation of the system. Based on the
representation of initial functions, we can prove by induction the following theorem.

Theorem 3.4.2 ([108]). The polynomials Φn
n+k (n = 0, 1, . . . ; k = 1, 2, . . . ) are of the

form:

Φn
n+k = (−1)k

[k/2]∑
j=0

ank,j
2k−j · (k + 1)!(k − 2j)!j!

Bn,k−2j

 Φn
n.

In connection with spherical monogenic polynomials, we notice that the Appell system
from [13] admits the representation

All+k =
(l + k)!(2l + 1)!

2kk!(2l + k + 1)!l!
Bl,k A

l
l.

Therefore the relation between {Φm
n } and {Amn } can be described as follows:

Φn
n+k = (−1)k+1

[k/2]∑
j=0

(2n+ k − 2j + 1)!(2n+ 1)!!

2n+j · (k + 1)!j!(n+ k − 2j)!
ank,j A

n
n+k−2j.

Basically, a complete orthogonal system like the polynomials Φm
n could be formally

constructed from the Appell system {Alk}, by direct application of the Gram-Schmidt
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process. However, in practice and for more general domains this idea is not applicable.
As we have seen by using as starting point spheroidal harmonics and the basic idea
of recurrence formulae it is possible to calculate the function of the orthogonal basis
explicitly. This is an important point in applications for fast and stable computation.

Finally, we return to the idea of constructing an orthogonal Appell system. It is clear
that the system {Alk} is a complete Appell system for all domains where in general the
monogenic polynomials are dense in ker ∂

⋂
L2(Ω,H). We know already that a complete

orthogonal Appell system for the case of an oblate spheroid is not possible. For our special
case, we can prove at least a partial orthogonality.

Corollary 3.4.3 ([108]). Al1k1 and Al2k2 are orthogonal with respect to the inner product
(1.8) if l1 6= l2 or |k1 − k2| is odd.

It is expected that this partial orthogonality improves the numerical properties of
the system. It should be mentioned that these oblate spheroidal monogenics have been
implemented by using the Maple package “Quat”. This experimental software is available
on request from the author.

3.5 Simulation with a 3D Bergman kernel method

In complex analysis, Riemann’s mapping theorem ([1]) states that every simply con-
nected domain, neither the z plane nor the extended z plane can be conformally mapped
onto the disk |w| < 1. It makes the complex function theory become a powerful tool in the
theory of partial differential equations because one can limit the research of some prob-
lems on the unit disk. There are several methods to approximate a conformal mapping
f which maps a simply connected domain Ω onto a circular domain. Due to the classical
Bergman kernel method, the conformal mapping f is approximated by the sequence {fn}
defined in the following:

fn(z) =

√
π

Kn(z0; z0)

∫ z

z0

Kn(ζ; z0)dζ,

where Kn(·; z0) is an approximation of the Bergman kernel K(·; z0) with z0 ∈ Ω (see, for
example, [10, 11]).

A 3D version of the Bergman kernel method was studied for solving the three dimen-
sional mapping problem by Bock, Falcão, Gürlebeck and Malonek [16] with rectangular
domains and then in the Diploma thesis by Rüsges [121] with rectangular, cylindrical and
ellipsoidal domains. In these works the mapping f is constructed similarly to the complex
case

f(x) := C

∫ x

0

K(t; 0) dt,

where the constant C generates a dilation only and the integral is taken along the straight
line from 0 to x. In the following are four steps to calculate the approximation fn of f by
the 3D Bergman kernel method:
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(S1) Choose a complete system of functions {ηj}∞1 for the space M(Ω;H;H).

(S2) Orthonormalize n functions ηj to get an orthonormal set {η∗j}n1 .

(S3) Approximate the kernel function K(·; 0) by the finite sum

Kn(x; 0) =
n∑
j=1

η∗j (x) η∗j (0).

(S3) Compute

fn(x) = Cn

∫ x

0

Kn(t; 0) dt.

It was observed by numerical experiments with the approximation fn that fn maps given
domains to balls in R3. The larger the number of the used basis functions is, the better
the result is achieved. Moreover, for rectangular domains the restriction of f on each side
of the boundary is conformal (see [16]).

As mentioned from the beginning of this chapter, it is expected that the constructed
mapping is monogenic, from R3 to itself and it maps given domains onto balls, but the-
oretical results are still missing. We also cannot answer all questions in this thesis but a
further investigation is possible. We would like to talk about the problem of establishing
a mapping in R3. Since K(t, 0) is an H-valued function where t ∈ R3, f is in principle a
function with values in H ∼= R4. Usually in the previous researches the e3-component of
fn is cut with the argument that it tends to zero if n → ∞, or in other words [f ]3 = 0
without a proof. In this section, we will show that for the case of oblate spheroidal do-
mains the mapping f is from R3 to R3. In addition, the approximation fn will be given
by some numerical examples.

In the Hilbert spaceM(Γ+
ob;H;H) the Bergman kernel, denoted by K(x; ζ) with x, ζ ∈

Γ+
ob, is characterized by the reproducing property

〈K(·; ζ), f〉L2(Γ+
ob;H) = f(ζ),

for all f ∈M(Γ+
ob;H;H). The existence of K(x; ζ) was shown in [36, 52]. Since {Φ̃m

n } with
m = 0, . . . , n; n ∈ N0 is a complete orthonormal system in M(Γ+

ob;H;H), the Bergman



CHAPTER 3. OBLATE SPHEROIDAL MONOGENIC POLYNOMIALS 83

kernel admits the representation

K(x; ζ) =
∞∑
n=0

n∑
m=0

Φ̃m
n (x)

〈
Φ̃m
n , K(·; ζ)

〉
L2(Γ+

ob;H)

=
∞∑
n=0

n∑
m=0

Φ̃m
n (x) Φ̃m

n (ζ)

=
∞∑
n=0

n∑
m=0

(2n+ 3) (n−m+ 1)!

4π (n+m+ 1)! coshµ0 i2(n−m)+1 Pm
n+1(i sinhµ0)Pm+1

n+1 (i sinhµ0)

×
[(n−m)/2]∑
i,j=0

amn−m,i a
m
n−m,j

22(n−m)−i−j [(n−m+ 1)!]2 (n−m− 2i)! (n−m− 2j)! i! j!

×Bm,n−m−2i(x)Bm,n−m−2j(ζ) Φm
m(x) Φ

m

m(ζ).

Consider the case ζ = 0. Note that

Φm
m(x) = −[(2m+ 1)!!]2 (x1 − x2 e3)m

and

Bm,k(x) :=
k∑

h=0

(
k

h

)
(2m+ 2)2(k−h)

2k−h(m+ 1)k−h

(2m+ 1)2h

2h(m+ 1)h
xh xk−h

Thus Φm
m(0) = 0 if m 6= 0 and Bm,k(0) = 0 if k 6= 0. It leads to

K(x; 0) =
∞∑
k=0

4k + 3

4π coshµ0 iP2k+1(i sinhµ0)P 1
2k+1(i sinhµ0)

×
k∑
i=0

a0
2k,i a

0
2k,k

23k−i [(2k + 1)!]2 (2k − 2i)! i! k!
B0,2k−2i(x).

We also have

a0
2k,k =

(2)2k

2k(1)k
(2)2k =

[(2k + 1)!]2

2k k!
.

Therefore, one obtains

K(x; 0) =
∞∑
k=0

4k + 3

4π coshµ0 iP2k+1(i sinhµ0)P 1
2k+1(i sinhµ0)

×
k∑
i=0

a0
2k,i

24k−i (k!)2 (2k − 2i)! i!
B0,2k−2i(x)

= −
∞∑
k=0

(2k + 1)!

(2k k!)2

4k + 3

4π coshµ0 iP2k+1(i sinhµ0)P 1
2k+1(i sinhµ0)

Φ0
2k(x).
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In oblate spheroidal coordinates, the kernel function can be written as

K(µ, θ, ϕ; 0) = −
∞∑
k=0

(2k + 1)!

(2k k!)2

4k + 3

4π coshµ0 iP2k+1(i sinhµ0)P 1
2k+1(i sinhµ0)

×
[
(2k + 1)R2k,0(µ, θ)− 1

2k + 1
R2k,1(µ, θ) (cosϕ e1 + sinϕ e2)

]
.

The mapping f calculated by the 3D Bergman kernel method in oblate spheroidal co-
ordinates is of the form:

f(µ, θ, ϕ) =

∫ x

0

K(t; 0) dt

=

∫ µ

0

K(µt, θ, ϕ; 0) [coshµt cos θ + sinhµt sin θ (cosϕ e1 + sinϕ e2)] dµt

Substituting the form of K(µt, θ, ϕ; 0) to the representation of f , one gets

f = −
∞∑
k=0

(2k + 1)!

(2k k!)2

4k + 3

4π coshµ0 iP2k+1(i sinhµ0)P 1
2k+1(i sinhµ0)

×
{∫ µ

0

[
(2k + 1) coshµt cos θR2k,0 +

sinhµt sin θ

2k + 1
R2k,1

]
dµt +

(cosϕe1 + sinϕe2)

∫ µ

0

[
(2k + 1) sinhµt sin θR2k,0 −

coshµt cos θ

2k + 1
R2k,1

]
dµt

}
.

At first glance, one sees that f(x) defines a mapping in R3, because the e3-component is
vanishing. Moreover, it can be proved that the Euclidean norm, |f(x)|, does not depend on
ϕ. Hence the image of an oblate spheroidal domain under this mapping will be symmetric
with respect to the x0-axis.

Figures 3.2–3.6 present some numerical examples for the calculation of the mapping f .
In these examples, the Bergman kernel K(x; 0) and then the mapping f are approximated
by oblate spheroidal monogenic polynomials up to degree 50. We see that when the
constant µ0 is increasing, the corresponding oblate spheroid and its image under the
mapping f get closer to spheres. This observation is described more precisely on the
underlying table, in which we measure the relative difference between the maximum and
minimum values of |f | in the oblate spheroidal domain with constant µ0.

µ0 1/3 2/3 4/5 1 2
|f |max−|f |min

|f |max
× 100 29.35 20.08 16.10 11.10 1.48

We can investigate this result a bit more. As mentioned before, the oblate spheroidal
shape is a generalizion of the spherical shape. In the limiting case the oblate spheroid
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(a) Pre-image (b) Image

Figure 3.2: Oblate spheroid with constant µ0 = 1/3.

(a) Pre-image (b) Image

Figure 3.3: Oblate spheroid with constant µ0 = 2/3.

becomes a sphere when the constant µ0 tends to infinity. If µ0 is large, then the absolute
value of the first term in the series expression of f is really big compared with others.
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(a) Pre-image (b) Image

Figure 3.4: Oblate spheroid with constant µ0 = 4/5.

(a) Pre-image (b) Image

Figure 3.5: Oblate spheroid with constant µ0 = 1.

Thus the behavior of f is determined by that leading term, i.e.

f ∼− 3

4π coshµ0 iP1(i sinhµ0)P 1
1 (i sinhµ0)

{∫ µ

0

coshµt cos θR0,0 dµt

+(cosϕe1 + sinϕe2)

∫ µ

0

sinhµt sin θR0,0 dµt

}

∼− 3[sinhµ cos θ + coshµ sin θ (cosϕe1 + sinϕe2)]

4π cosh2 µ0 sinhµ0

=− 3x

4π cosh2 µ0 sinhµ0

.
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(a) Pre-image (b) Image

Figure 3.6: Oblate spheroid with constant µ0 = 2.

This explains our observation when the constant µ0 is increasing.
We end up this chapter with some remarks. For the case of oblate spheroidal do-

mains, we have shown that it is possible to construct a mapping from R3 to R3 by the
3-dimensional Bergman kernel method and oblate spheroidal monogenics. A similar res-
ult for other domains has not been proved in the previous researches yet. There are still
many problems for further study, for instance if the mapping f is monogenic and maps
a given domain onto a ball. Due to the 3D Bergman kernel method, we calculate f by a
straightline integral. Note that the Bergman kernel is monogenic and its integral from the
point a to the point b is path-dependent. The straightline integral is only the first idea
to construct the mapping. So we do not know if f is monogenic. Another idea is to use
a monogenic primitive instead of a line integral. Then we obtain a monogenic mapping.
The properties of such a mapping will be studied in the near future.



Chapter 4

Additive decomposition of harmonics

In this chapter, we will study additive decompositions in the space of A-valued har-
monic L2-functions. It is well known in complex analysis that a harmonic function can be
decomposed into the sum of a holomorphic and an anti-holomorphic function. A similar
result can be established for H-valued harmonic functions. However, in [5, Álvarez-Peña
et al.] it is observed that A-valued harmonic functions cannot be represented by the sum
of a monogenic and an anti-monogenic A-valued function. Thus Álvarez-Peña introduced
a decomposition with the aid of contragenic functions which are defined to be ortho-
gonal to monogenic and anti-monogenic functions. The question is what does this mean
contragenic? It is clear that contragenic functions are harmonic in all components. To un-
derstand better, we ask if contragenic functions solve first order linear partial differential
equations. In connection with the research of Stern [132, 133], Nôno [109, 110] and Shapiro
et al. [137, 138], that question means if contragenic functions are ψ-hyperholomorphic?
Unfortunately, the answer is negative. This leads to the problem of finding another addit-
ive decomposition of A-valued harmonic functions in terms of solutions of first order linear
partial differential equations. The existence of such a decomposition will be proved with
the help of three isomophic spaces of monogenic, anti-monogenic and ψ-hyperholomorphic
functions.

The outline of the chapter is as follows. To begin with, we revisit the construction
of spherical contragenic functions in [5] that is a basis for further discussions. It will be
proved that contragenic functions cannot be solutions of any first order system of linear
partial differential equations. To derive an additive decomposition of A-valued harmonic
functions as the sum of null solutions of three first order linear partial differential oper-
ators, we consider three spaces of monogenic, anti-monogenic and ψ-hyperholomorphic
A-valued functions. We will prove that the sum of such three spaces coincides with the
space of A-valued harmonics. With a certain structural set ψ, an explicit representation
of contragenic functions in terms of monogenic, anti-monogenic and ψ-hyperholomorphic
functions will be given. The method in use is based on constructions of spherical mono-
genic and contragenic polynomials. Therefore, the obtained results are valid for simply
connected, bounded domains.

The previous argument can be applied to prove the additive decomposition ofA-valued

88
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harmonic functions in exterior domains. Because of the asymptotic behavior of monogenic
functions at infinity such a decomposition is valid for harmonic functions u if

u(x) = O(|x|−2) as x→∞,

where O(·) is the Landau symbol.

4.1 Inner contragenic functions

We denote by H(S+;A;R) the R-linear Hilbert space of square integrable A-valued
harmonic functions defined in the unit ball S+, endowed with the inner product (1.7). The
subspace Hn(S+;A;R) consists of harmonic homogeneous polynomials of degree n ∈ N0.
Then we have

dimHn(S+;A;R) = 3(2n+ 1) = 6n+ 3.

Consider the sum
M(S+;A;R) +M(S+;A;R),

where
M(S+;A;R) := {f : f ∈M(S+;A;R)}.

In factM(S+;A;R) contains anti-monogenic functions in S+. A function f ∈M(S+;A;R)+
M(S+;A;R) is called an ambigenic function (see [5]).

Theorem 4.1.1 ([5]). For each n ∈ N0, the following 4n+ 4 functions

Xm,1
n := X

m

n :m = 0, . . . , n+ 1,

Ym,1n := Y
m

n :m = 1, . . . , n+ 1,

Xm,2
n := Xm

n − amnX
m

n :m = 0, . . . , n,

Ym,2n := Y m
n − amn Y

m

n :m = 1, . . . , n,

(4.1)

where

amn =
n− 2m2 + 1

(n+ 1)(2n+ 1)
,

form an orthogonal basis for the space Mn(S+;A;R) +Mn(S+;A;R).

It immediately leads to the result

dim
(
Mn(S+;A;R) +Mn(S+;A;R)

)
= 4n+ 4.

Recall that A-valued ambigenic functions are harmonic. The difference between the di-
mension (6n+3) of the space of harmonic polynomials and the dimension (4n+4) of the
space of ambigenic polynomials shows that there are harmonic functions which can not be
the sum of a monogenic and an anti-monogenic function. It yields the following definition
of contragenic functions.
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Definition 4.1.1 ([5]). A harmonic function h ∈ H(S+;A;R) is called contragenic if it
is orthogonal to all square integrable A-valued ambigenic functions in S+, i.e.

h ∈ N (S+;A;R) :=
(
M(S+;A;R) +M(S+;A;R)

)⊥
,

where the orthogonal complement is taken in H(S+;A;R).

As a result, the subspace of contragenic homogeneous polynomials of degree n in S+

has the dimension
dimNn(S+;A;R) = 2n− 1.

An orthogonal basis of the space Nn(S+;A;R) is constructed based on solid spherical
harmonic functions in the following theorem.

Theorem 4.1.2 ([5]). Let n ≥ 1. The following 2n− 1 functions
Z0
n = V̂ 1

n e1 − Û1
n e2

Zm,+
n = (4cm−(n+1) V̂

m−1
n + V̂ m+1

n ) e1 + (4cm−(n+1) Û
m−1
n − Ûm+1

n ) e2

Zm,−
n = (4cm−(n+1) Û

m−1
n + Ûm+1

n ) e1 + (−4cm−(n+1) V̂
m−1
n + V̂ m+1

n ) e2,

where

cmn =
(n+m)(n+m+ 1)

4

and 1 ≤ m ≤ n− 1, form an orthogonal basis of Nn(S+;A;R).

Example 4.1.1. The following are some contragenic polynomials of degree 1 and 2:

Z0
1 = −x2 e1 + x1 e2

Z0
2 = 3x0(−x2 e1 + x1 e2)

Z1,+
2 = 6x1x2 e1 + (2x2

0 − 4x2
1 + 2x2

2) e2

Z1,−
2 = (2x2

0 + 2x2
1 − 4x2

2) e1 + 6x1x2 e2

One can say that every A-valued harmonic function can be orthogonally decomposed
into the sum of an ambigenic and a contragenic function. This decomposition is unique.
Details can be found in [5].

Contragenic functions are defined to be orthogonal to the space of ambigenic functions.
Of course, contragenic functions are harmonic in all components. Note that monogenic
and anti-monogenic functions are also harmonic in all components and they are null solu-
tions of first order partial differential operators, namely the generalized Cauchy-Riemann
operator and its conjugate, respectively. The question arises if contragenic functions are
null solutions of a first order linear partial differential operator? Already in [132, 133]
Stern proved that if a first order partial differential operator ensures that all null solu-
tions of this operator are harmonic in all components, its coefficients must satisfy the
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multiplication rules of a Clifford algebra. Thus we look for a structural set ψ such that
contragenic functions belong to the kernel of a generalized Cauchy-Riemann operator ψD.
In the sequel we present the related results given in our paper [64].

Suppose that ψ = {ψ0, ψ1, ψ2} is a structural set in A and

ψD = ψ0 ∂

∂x0

+ ψ1 ∂

∂x1

+ ψ2 ∂

∂x2

.

If contragenic functions are null solutions of ψD, so are Z0
1 , Z

0
2 . One has

ψDZ0
1 = ψD (−x2e1 + x1e2) = 0

and
ψDZ0

2 = ψD [3x0(−x2e1 + x1e2)] = 0.

It implies that ψ0 = 0 and this result contradicts the definition of a structural set ψ. That
means there does not exist a generalized Cauchy-Riemann operator ψD so that the kernel
of ψD contains contragenic functions. As a result, contragenic functions do not satisfy
any first order linear partial differential equation.

4.2 A representation of contragenic functions

Next, we will study whether the representation of A-valued harmonic functions by a
triple of monogenic, anti-monogenic and contragenic functions in the unit ball still holds
when we replace contragenic by ψ-hyperholomorphic functions. That is the problem of a
decomposition by means of three null solutions of first order partial differential operators.
In what follows the existence of such a replacement can be shown by a concrete example.

Recall that ψ-transformation (2.4) maps an A-valued monogenic function to a ψ-
hyperholomorphic function. Therefore, we have the following lemma.

Lemma 4.2.1 ([66]). Let ψ = {1, e2, −e1} be a structural set in A. The following
functions

ψX0
n =

n+ 1

2
Û0
n +

1

2
Û1
n e2 −

1

2
V̂ 1
n e1,

ψXm
n =

n+m+ 1

2
Ûm
n −

(
cmn Û

m−1
n − 1

4
Ûm+1
n

)
e2 −

(
cmn V̂

m−1
n +

1

4
V̂ m+1n

)
e1,

ψY m
n =

n+m+ 1

2
V̂ m
n −

(
cmn V̂

m−1
n − 1

4
V̂ m+1
n

)
e2 +

(
cmn Û

m−1
n +

1

4
Ûm+1
n

)
e1,

where 1 ≤ m ≤ n+ 1 and

cmn =
(n+m)(n+m+ 1)

4
,

form an orthogonal basis of the space ψMn(S+,A,R).
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Remark 4.2.1. It is easy to see that in the case ψ = {1, e2, −e1} we have

ψXn+1
n = Y n+1

n

ψY n+1
n = −Xn+1

n

ψXn
n = Sc(Xn

n ) + Vec(Y n
n ) = 1

2

(
Xn
n +Xn

n

)
+ 1

2

(
Y n
n − Y n

n

)
ψY n

n = Sc(Y n
n )− Vec(Xn

n ) = 1
2

(
Y n
n + Y n

n

)
− 1

2

(
Xn
n −Xn

n

)
.

Remark that the collection of the ambigenic and the ψ-hyperholomorphic basis ho-
mogeneous polynomials of degree n has at most 6n+ 3 linearly independent polynomials.
By removing 4 aforementioned ψ-hyperholomorphic polynomials one obtains exactly a
linearly independent set of 6n+ 3 polynomials.

Theorem 4.2.1 ([66]). Let ψ = {1, e2, −e1}. Contragenic basis polynomials can be
represented as follows:

Z0
n = −2 ψX0

n +X0
n +X0

n,

Zm,+
n = αmn

{
ψXm

n − 1
2

(
Xm
n +Xm

n

)
− βmn

(
Y m
n − Y m

n

)}
,

Zm,−
n = −αmn

{
ψY m

n − 1
2

(
Y m
n + Y m

n

)
+ βmn

(
Xm
n −Xm

n

)}
,

where n ≥ 1; 1 ≤ m ≤ n− 1 and

αmn = − 4(n2 +m2 + n)

(n+m)(n+m+ 1)
,

βmn =
m(2n+ 1)

2(n2 +m2 + n)
.

Proof. Indeed the relation
Z0
n = −2 ψX0

n +X0
n +X0

n

is easy to verify. We look for a representation of Zm,+
n (1 ≤ m ≤ n− 1) of the form

Zm,+
n = αmn

{
ψXm

n −
1

2

(
Xm
n +Xm

n

)
− βmn

(
Y m
n − Y m

n

)}
.

By straightforward calculations one obtains a system of linear equations
αmn

(
−1

4
− 1

2
βmn

)
= 1

αmn (−cmn + 2cmn β
m
n ) = 4cm−(n+1).

Solving this system leads to
αmn = −

4cmn + 4cm−(n+1)

2cmn
= − 4(n2 +m2 + n)

(n+m)(n+m+ 1)

βmn =
4cmn − 4cm−(n+1)

2(4cmn + 4cm−(n+1))
=

m(2n+ 1)

2(n2 +m2 + n)
.
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Verifying the representation for Zm,−
n it completes the proof.

Since contragenic polynomials are dense in the space of contragenic L2-functions in
S+, every contragenic function in S+ can be written as the sum of a monogenic, an
anti-monogenic and a ψ-hyperholomorphic A-valued function. This result can be proved
based the Fourier series expansion of a contragenic function with respect to the complete
orthogonal system of contragenic basis polynomials and the boundedness of coefficients
αmn , β

m
n for arbitrary degree n ≥ 1 and order 1 ≤ m ≤ n− 1:

|αmn | =
4(n2 +m2 + n)

(n+m)(n+m+ 1)
< 4, |βmn | =

m(2n+ 1)

2(n2 +m2 + n)
<

1

2
.

One immediately gets the underlying corollary.

Corollary 4.2.1 ([64, 66]). Let ψ = {1, e2, −e1}. Every A-valued harmonic function u
in the unit ball S+ can be decomposed into the form

u = f + g + h

where f , g, h are monogenic, anti-monogenic and ψ-hyperholomorphic A-valued functions
in S+, respectively.

Remark that this result can be extended to the case of bounded and simply connected
domains in R3.

Different from the decomposition with the aid of contragenic functions, this decom-
position is not orthogonal. However, every component in the decomposition shares the
same structure as monogenic functions. The advantage is that now in each subspace of
the decomposition all tools from quaternionic analysis such as integral representations
and kernel functions are available.

Now, we look deeper at the decomposition ofA-valued harmonic functions with respect
to the structural set ψ = {1, e2, −e1}. As mentioned above, the intersection of two
arbitrary spaces amongst spaces of monogenic, anti-monogenic and ψ-hyperholomorphic
functions coincides with the intersection between these three spaces. In addition, such
an intersection contains only monogenic constants Xn+1

n , Y n+1
n (n ∈ N0). This property

determines a certain class of structural sets ψ so that the decomposition of harmonic
functions by means of monogenic, anti-monogenic and ψ-hyperholomorphic functions is
still valid. These structural sets are described in the underlying theorem.

Theorem 4.2.2. Let ψ = {ψ0, ψ1, ψ2} be a structural set in A. Then A is a proper
subset of

G :=M(S+;A;R) ∩M(S+;A;R) ∩ ψM(S+;A;R)

iff ψ0 = 1 and {ψ1, ψ2} are obtained by rotating {e1, e2} about e0 by an angle φ ∈ [0, 2π).
Moreover, the set G contains monogenic constants and the following decomposition holds

u = f + g + h,

provided that φ 6= 0, π, where u, f , g, h are harmonic, monogenic, anti-monogenic and
ψ-hyperholomorphic A-valued functions in S+, respectively.
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Proof. Firstly, one has to prove what contains inside the set G. We know that the intersec-
tion of spaces of monogenic and anti-monogenic functions contains monogenic constants
Xn+1
n , Y n+1

n (n ∈ N0). A is a proper subset of the set G if and only if there exists a
non-trivial monogenic constant in G. In particular, there have a, b ∈ R, a2 + b2 > 0 such
that

aXn+1
n + bY n+1

n ∈ ker ψD,

where n ∈ N and ψD is a generalized Cauchy-Riemann operator

ψD = ψ0 ∂

∂x0

+ ψ1 ∂

∂x1

+ ψ2 ∂

∂x2

.

Recall that monogenic constants do not depend on x0 and
∂Ûn

n

∂x1

=
∂V̂ n

n

∂x2

,

∂V̂ n
n

∂x1

= −∂Û
n
n

∂x2

.

Applying ψD to aXn+1
n + bY n+1

n , one gets finally

(ψ1 e1 − ψ2 e2)
∂

∂x1

(−aÛn
n − bV̂ n

n ) + (ψ1 e2 + ψ2 e1)
∂

∂x1

(aV̂ n
n − bÛn

n ) = 0.

The left-hand side is anA-valued polynomial of degree n−1 with respect to x1. Identifying
the coefficient of the leading term xn−1

1 with zero, it leads to systems of linear equations
with unknowns a and b {

ψ1
0 a+ ψ2

0 b = 0

ψ2
0 a− ψ1

0 b = 0,
(4.2)

and {
(ψ1

1 − ψ2
2)a+ (ψ1

2 + ψ2
1)b = 0

(ψ1
2 + ψ2

1)a− (ψ1
1 − ψ2

2)b = 0.
(4.3)

Since system (4.2) has non-trivial solutions, then we have∣∣∣∣∣ψ
1
0 ψ2

0

ψ2
0 −ψ1

0

∣∣∣∣∣ = −(ψ1
0)2 − (ψ2

0)2 = 0.

It means ψ1
0 = ψ2

0 = 0. Note that ψ is a structural set or equivalently, the associated
matrix Ψ is orthogonal, it yields ψ0 = 1. Similarly, from system (4.3) one gets∣∣∣∣∣ψ

1
1 − ψ2

2 ψ1
2 + ψ2

1

ψ1
2 + ψ2

1 −(ψ1
1 − ψ2

2)

∣∣∣∣∣ = −(ψ1
1 − ψ2

2)2 − (ψ1
2 + ψ2

1)2 = 0.
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Thus ψ1
1 = ψ2

2 and ψ1
2 = −ψ2

1. In association with (ψ1
1)2 + (ψ1

2)2 = (ψ2
1)2 + (ψ2

2)2 = 1, one
can denote {

ψ1
1 = ψ2

2 = cosφ

ψ1
2 = −ψ2

1 = sinφ

with φ ∈ [0, 2π). As a result {ψ1, ψ2} is obtained by rotating {e1, e2} by an angle φ
about e0. Precisely, the associated matrix of the structural set ψ is of the form

Ψ =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ

 .

For arbitrary n ∈ N, we have

ψXn+1
n = −cn+1

n Ûn
n (cosφ e1 + sinφ e2) + cn+1

n V̂ n
n (− sinφ e1 + cosφ e2)

= cosφXn+1
n + sinφY n+1

n ,

ψY n+1
n = −cn+1

n V̂ n
n (cosφ e1 + sinφ e2)− cn+1

n Ûn
n (− sinφ e1 + cosφ e2)

= cosφY n+1
n − sinφXn+1

n .

It means Xn+1
n , Y n+1

n ∈ ker ψD. Hence the set G contains monogenic constants.
The second point in the theorem is about the decomposition of harmonics using ψ-

hyperholomorphic functions. It is easy to see that φ 6= 0, π, otherwise ψ-hyperholomorphic
functions become monogenic or anti-monogenic functions. To show the existence of the
decomposition, we use the same technique for the case of the structural set {e0, e2, −e1}.
That is we look for the explicit representation of contragenic basis polynomials in terms
of monogenic, anti-monogenic and ψ-hyperholomorphic basis polynomials. To begin with,
we can write

ψXn
n =

2n+ 1

2
Ûn
n − cnn Ûn−1

n (cosφ e1 + sinφ e2) + cnn V̂
n−1
n (− sinφ e1 + cosφ e2)

= Sc(Xn
n ) + cosφVec(Xn

n ) + sinφVec(Y n
n )

=
1

2
(Xn

n +Xn
n ) +

cosφ

2
(Xn

n −Xn
n ) +

sinφ

2
(Y n

n − Y n
n ),

and

ψY n
n =

2n+ 1

2
V̂ n
n − cnn V̂ n−1

n (cosφ e1 + sinφ e2)− cnn Ûn−1
n (− sinφ e1 + cosφ e2)

= Sc(Y n
n ) + cosφVec(Y n

n )− sinφVec(Xn
n )

=
1

2
(Y n

n + Y n
n ) +

cosφ

2
(Y n

n − Y n
n )− sinφ

2
(Xn

n −Xn
n ).
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Similar to the case of the structural set {1, e2, −e1}, the relation between ψ- hyperholo-
morphic functions and contragenic functions can be shown explicitly. One has

ψX0
n =

n+ 1

2
Û0
n +

1

2
Û1
n(cosφ e1 + sinφ e2) +

1

2
V̂ 1
n (− sinφ e1 + cosφ e2)

= Sc(X0
n) + cosφVec(X0

n)− sinφ

2
Z0
n.

Thus

Z0
n =

1

sinφ

[
−2 ψX0

n +X0
n +X0

n + cosφ (X0
n −X0

n)
]
.

In addition, for 1 ≤ m ≤ n− 1

ψXm
n =

n+m+ 1

2
Ûm
n −

[
cmn Û

m−1
n − 1

4
Ûm+1
n

]
(cosφ e1 + sinφ e2)

+

[
cmn V̂

m−1
n +

1

4
V̂ m+1
n

]
(− sinφ e1 + cosφ e2)

= Sc(Xm
n ) + cosφVec(Xm

n ) + sinφ

(
Zm,+
n

αmn
+ 2βmn Vec(Y m

n )

)
,

and
ψY m

n =
n+m+ 1

2
V̂ m
n −

[
cmn V̂

m−1
n − 1

4
V̂ m+1
n

]
(cosφ e1 + sinφ e2)

−
[
cmn Û

m−1
n +

1

4
Ûm+1
n

]
(− sinφ e1 + cosφ e2)

= Sc(Y m
n ) + cosφVec(Y m

n )− sinφ

(
Zm,−
n

αmn
+ 2βmn Vec(Xm

n )

)
.

Finally, we can represent contragenic basis polynomials in terms of monogenic, anti-
monogenic and ψ-hyperholomorphic basis polynomials as follows:

Zm,+
n = αmn

[
1

sinφ

(
ψXm

n −
1

2
(Xm

n +Xm
n )− cosφ

2
(Xm

n −Xm
n )

)
− βmn (Y m

n − Y m
n )

]
and

Zm,−
n = αmn

[
1

sinφ

(
1

2
(Y m

n + Y m
n ) +

cosφ

2
(Y m

n − Y m
n )− ψY m

n

)
− βmn (Xm

n −Xm
n )

]
.

In association with the fact that contragenic polynomials are dense in the L2-space of
contragenic functions in S+, it leads to the statement in the theorem.

Remark that {e0, e2, −e1} is only a special case of the structural sets described in the
previous theorem where {e2, −e1} is obtained by rotating {e1, e2} about the axis e0 by
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an angle π/2. In the present section we focus on the explicit representation of contragenic
functions by means of ψ-hyperholomorphic functions. This technique works well for a
certain class of structural sets as described above. For a general structural set ψ, we will
use another approach to attain the decomposition of A-valued harmonic functions. The
study for the general structural set presented in the next section can be found in our
paper [68].

4.3 Decomposition by ψ-hyperholomorphic functions

Now we are going to deal with a more general question. That is whether one can
prove the decomposition of A-valued harmonic functions in R3 for the case of an arbitrary
structural set ψ. Of course, ψ must be different from the standard structural set {1, e1, e2}
and its conjugate. Otherwise, the answer is always “No”.

At first, we restrict the study to the case of homogeneous polynomials of degree n ≥ 1.
The technique of finding the explicit representation of contragenic basis polynomials in
terms of monogenic, anti-monogenic and ψ-hyperholomorphic basis polynomials is not
easy to apply for the case of an arbitrary structural set ψ. To overcome that difficulty, we
orthogonally project ψMn(S+;A;R) ontoNn(S+;A;R) and then show that the projection
is surjective.

Suppose that ψ = {ψ0, ψ1, ψ2} is a structural set given in (2.3). Hence ψMn(S+;A;R)
has an orthogonal basis of the form

ψX0
n =

n+ 1

2
Û0
nψ

0 − 1

2
Û1
nψ

1 − 1

2
V̂ 1
nψ

2,

ψXm
n =

n+m+ 1

2
Ûm
n ψ

0 −
(

1

4
Ûm+1
n − cmn Ûm−1

n

)
ψ1

−
(

1
4
V̂ m+1
n + cmn V̂

m−1
n

)
ψ2,

ψY m
n =

n+m+ 1

2
V̂ m
n ψ

0 −
(

1

4
V̂ m+1
n − cmn V̂ m−1

n

)
ψ1

+
(

1
4
Ûm+1
n + cmn Û

m−1
n

)
ψ2,

where 1 ≤ m ≤ n+1. Their projections ontoNn(S+;A;R) are represented by their Fourier
coefficients with respect to the contragenic basis functions Z0

n, Z
l,+
n , Z l,−

n (l = 1, . . . , n−1).
Let us consider the following inner product

〈
ψXm

n , Z
l,+
n

〉
L2(S+;R)

=

〈
ψ2

1

(
1

4
V̂ m+1
n + cmn V̂

m−1
n

)
, 4cl−(n+1)V̂

l−1
n + V̂ l+1

n

〉
L2(S+;R)

+

〈
−n+m+ 1

2
ψ0

2Û
m
n + ψ1

2

(
1

4
Ûm+1
n − cmn Ûm−1

n

)
, 4cl−(n+1)Û

l−1
n − Û l+1

n

〉
L2(S+;R)

,

where m = 1, . . . , n+ 1 and l = 1, . . . , n− 1. Consequently, we have (see [68])
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(1a) If |m− l| > 2, then 〈
ψXm

n , Z
l,+
n

〉
L2(S+;R)

= 0.

(1b) If l = m− 2, then〈
ψXm

n , Z
m−2,+
n

〉
L2(S+;R)

= cmn ‖V̂ m−1
n ‖2

L2(S+) (ψ2
1 + ψ1

2).

(1c) If l = m− 1, then〈
ψXm

n , Z
m−1,+
n

〉
L2(S+;R)

=
n+m+ 1

2
‖Ûm

n ‖2
L2(S+) ψ

0
2.

(1d) If l = m = 1, then〈
ψX1

n, Z
1,+
n

〉
L2(S+;R)

=
1

4
‖Û2

n‖2
L2(S+)(ψ

2
1 − ψ1

2)− c1
n 4c1

−(n+1)‖Û0
n‖2

L2(S+)ψ
1
2

=
1

4
‖Û2

n‖2
L2(S+) (ψ2

1 − 3ψ1
2).

(1e) If l = m 6= 1, then〈
ψXm

n , Z
m,+
n

〉
L2(S+;R)

=
1

2
‖Ûm+1

n ‖2
L2(S+) (ψ2

1 − ψ1
2).

(1f) If l = m+ 1, then〈
ψXm

n , Z
m+1,+
n

〉
L2(S+;R)

= −2(n+m+ 1)cm+1
−(n+1)‖Û

m
n ‖2

L2(S+) ψ
0
2.

(1g) If l = m+ 2, then〈
ψXm

n , Z
m+2,+
n

〉
L2(S+;R)

= cm+2
−(n+1)‖V̂

m+1
n ‖2

L2(S+) (ψ2
1 + ψ1

2).

Analogously, one can calculate precisely〈
ψXm

n , Z
l,−
n

〉
L2(S+;R)

=

〈
ψ2

2

(
1

4
V̂ m+1
n + cmn V̂

m−1
n

)
,−4cl−(n+1)V̂

l−1
n + V̂ l+1

n

〉
L2(S+;R)

+

〈
−n+m+ 1

2
ψ0

1Û
m
n + ψ1

1

(
1

4
Ûm+1
n − cmn Ûm−1

n

)
, 4cl−(n+1)Û

l−1
n + Û l+1

n

〉
L2(S+;R)

,

and 〈
ψY m

n , Z
l,+
n

〉
L2(S+;R)

=

〈
−ψ2

2

(
1

4
Ûm+1
n + cmn Û

m−1
n

)
, 4cl−(n+1)Û

l−1
n − Û l+1

n

〉
L2(S+;R)

+

〈
−n+m+ 1

2
ψ0

1V̂
m
n + ψ1

1

(
1

4
V̂ m+1
n − cmn V̂ m−1

n

)
, 4cl−(n+1)V̂

l−1
n + V̂ l+1

n

〉
L2(S+;R)

,

where m = 1, . . . , n+ 1 and l = 1, . . . , n− 1.
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(2a) If |m− l| > 2, then〈
ψXm

n , Z
l,−
n

〉
L2(S+;R)

=
〈
ψY m

n , Z
l,+
n

〉
L2(S+;R)

= 0.

(2b) If l = m− 2, then〈
ψXm

n , Z
m−2,−
n

〉
L2(S+;R)

=
〈
ψY m

n , Z
m−2,+
n

〉
L2(S+;R)

= cmn ‖V̂ m−1
n ‖2

L2(S+) (ψ2
2 − ψ1

1).

(2c) If l = m− 1, then〈
ψXm

n , Z
m−1,−
n

〉
L2(S+;R)

=
〈
ψY m

n , Z
m−1,+
n

〉
L2(S+;R)

= −n+m+ 1

2
‖Ûm

n ‖2
L2(S+) ψ

0
1.

(2d) If l = m = 1, then〈
ψX1

n, Z
1,−
n

〉
L2(S+;R)

=
〈
ψY 1

n , Z
1,+
n

〉
L2(S+;R)

=
1

4
‖Û2

n‖2
L2(S+)(ψ

2
2 + ψ1

1)− c1
n 4c1

−(n+1)‖Û0
n‖2

L2(S+)ψ
1
1

=
1

4
‖Û2

n‖2
L2(S+) (ψ2

2 − ψ1
1).

(2e) If l = m 6= 1, then〈
ψXm

n , Z
m,−
n

〉
L2(S+;R)

=
〈
ψY m

n , Z
m,+
n

〉
L2(S+;R)

=

(
1

4
‖Ûm+1

n ‖2
L2(S+) − cmn 4cm−(n+1)‖Ûm−1

n ‖2
L2(S+)

)
(ψ2

2 + ψ1
1)

= 0.

(2f) If l = m+ 1, then〈
ψXm

n , Z
m+1,−
n

〉
L2(S+;R)

=
〈
ψY m

n , Z
m+1,+
n

〉
L2(S+;R)

= −2(n+m+ 1)cm+1
−(n+1)‖Û

m
n ‖2

L2(S+) ψ
0
1.

(2g) If l = m+ 2, then〈
ψXm

n , Z
m+2,−
n

〉
L2(S+;R)

=
〈
ψY m

n , Z
m+2,+
n

〉
L2(S+;R)

= cm+2
−(n+1)‖V̂

m+1
n ‖2

L2(S+) (ψ1
1 − ψ2

2).
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Calculations of
〈
ψY m

n , Z
l,−
n

〉
lead to the same results as

〈
ψXm

n , Z
l,+
n

〉
but with the

opposite sign. Notice that the calculations corresponding to ψXm
n and Z l,+

n (m, l ≥ 1) are
valid also for the case of ψX0

n and Z0
n.

Let An be the (2n + 3) × (2n − 1) matrix of all Fourier coefficients. Based on the
description of the matrix An, we are going to show that

rank(An) = 2n− 1.

Precisely, we prove that one can select 2n − 1 independent rows from An. Consider the
following cases.

The case ψ2
1 6= −ψ1

2 and ψ1
1 6= ψ2

2

Skip first two rows in An, it is easy to see that the next n rows form an independent
set, namely Sn (this subindex n stands for the cardinal number of Sn). Then skip the
(n+ 3)-th and (n+ 4)-th rows, we will prove that {Sn + next (n− 1) rows ofAn} is still
a linearly independent set.

At first, we begin with the (n + 5)-th row, Rn+5. This row can not be expressed as
a linear combination of row vectors in Sn. Otherwise, we could find n real coefficients
ai, i = 3, . . . , n+ 2 such that

Rn+5 = a3R3 + a4R4 + · · ·+ an+2Rn+2, (4.4)

where Ri is the i-th row. One obtains a system of 2n−1 linear equations with n unknowns.
The equation for the first component is

0 = a3R3[1] + a4 · 0 + · · ·+ an+2 · 0.

It yields a3 = 0. Then, the second and (n+ 1)-th equations lead to the following system{
Rn+5[2] = a4R4[2],

Rn+5[n+ 1] = a4R4[n+ 1].
(4.5)

Taking into account expressions for the components Rn+5[2], R4[2], Rn+5[n+1] and R4[n+
1] we get ∣∣∣∣∣ Rn+5[2] R4[2]

Rn+5[n+ 1] R4[n+ 1]

∣∣∣∣∣ =

∣∣∣∣∣a (ψ2
1 + ψ1

2) b (ψ2
2 − ψ1

1)

c (ψ2
2 − ψ1

1) −d (ψ2
1 + ψ1

2)

∣∣∣∣∣
= −ad

(
ψ2

1 + ψ1
2

)2 − bc
(
ψ2

2 − ψ1
1

)2 6= 0,

where a, b, c, d are positive, thus there does not exist a4 satisfying system (4.5) because

Rn+5[2]

R4[2]
6= Rn+5[n+ 1]

R4[n+ 1]
.
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(a) The (k + 1)-th step
(b) Associated matrix.

Figure 4.1: The last step of the induction process

Consequently, there are no coefficients ai satisfying the linear expression (4.4). Hence,
Sn+1 := Sn ∪ {Rn+5} is a linearly independent set.

Suppose that after k steps (1 ≤ k ≤ n − 2), Sn+k is a linearly independent set. We
will prove that it still holds for k + 1 when we add then the (n + 5 + k)-th row to Sn+k

(see Fig. 4.1a). Let us consider the linear expression

Rn+5+k = a′3R3 + · · ·+ a′n+2 Rn+2 + a′n+5Rn+5 + · · ·+ a′n+4+k Rn+4+k. (4.6)

It is a system of 2n− 1 equations with n+ k unknowns a′i. The system of equations for
components 1, . . . , k + 1 and n+ 1, . . . , n+ k has the following form

0 = a′3R3[1],

0 = a′3R3[2] + a′4R4[2] + a′n+5Rn+5[2],

0 = a′3R3[n+ 1] + a′4R4[n+ 1] + a′n+5 Rn+5[n+ 1],

...

0 = a′3R3[k + 1] + · · ·+ a′k+3Rk+3[k + 1]+

+a′n+5Rn+5[k + 1] + · · ·+ a′n+4+k Rn+4+k[k + 1],

0 = a′3R3[n+ k] + · · ·+ a′k+3Rk+3[n+ k]+

+a′n+5Rn+5[n+ k] + · · ·+ a′n+4+k Rn+4+k[n+ k].
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Figure 4.1b shows the structure of the associated matrix of this linear system. It is a
lower triangular matrix, and elements on the main diagonal are block matrices. The first
block contains only one element, i.e R3[1] = α (ψ2

1 + ψ1
2), α > 0, and the rest of the main

diagonal are 2× 2 matrices with determinants of the form∣∣∣∣∣a
′ (ψ2

1 + ψ1
2) b′ (ψ2

2 − ψ1
1)

c′ (ψ2
2 − ψ1

1) −d′ (ψ2
1 + ψ1

2)

∣∣∣∣∣ = −a′d′
(
ψ2

1 + ψ1
2

)2 − b′c′
(
ψ2

2 − ψ1
1

)2 6= 0,

where a′, b′, c′, d′ are positive, i.e. the associated matrix has non-zero determinant. It
leads to a′3 = · · · = a′k+3 = a′n+5 = · · · = a′n+4+k = 0, and equation (4.6) is reduced to

Rn+5+k = a′k+4 Rk+4 + · · ·+ a′n+2Rn+2.

Equations corresponding to components (k + 2) and (n+ k + 1) have the form{
Rn+5+k[k + 2] = a′k+4 Rk+4[k + 2],

Rn+5+k[n+ k + 1] = a′k+4 Rk+4[n+ k + 1].
(4.7)

Again, by taking into account expressions for the coefficients of (4.7) we get∣∣∣∣∣ Rn+5+k[k + 2] Rk+4[k + 2]

Rn+5+k[n+ k + 1] Rk+4[n+ k + 1]

∣∣∣∣∣ =

∣∣∣∣∣a
′′ (ψ2

1 + ψ1
2) b′′ (ψ2

2 − ψ1
1)

c′′ (ψ2
2 − ψ1

1) −d′′ (ψ2
1 + ψ1

2)

∣∣∣∣∣
= −a′′d′′

(
ψ2

1 + ψ1
2

)2 − b′′c′′
(
ψ2

2 − ψ1
1

)2 6= 0,

where a′′, b′′, c′′, d′′ are positive. Hence, system (4.7) has no solution a′k+4 because

Rn+5+k[k + 2]

Rk+4[k + 2]
6= Rn+5+k[n+ k + 1]

Rk+4[n+ k + 1]
.

It contradicts to the existence of relation 4.6. Therefore, Sn+k+1 := Sn+k ∪ {Rn+5+k} is
still a linearly independent set. By induction principle, the assertion is valid up to the
(2n+ 3)-th row. Finally, the obtained set S2n−1 consists of (2n− 1) independent rows. In
other words, rank(An) = 2n− 1.

The case ψ2
1 6= −ψ1

2, ψ
1
1 = ψ2

2 and ψ0
1 6= 0

Figure 4.2a shows the form of the matrix of Fourier coefficients. Basically, its structure
is similar to the general form. Hence, we can apply the same strategy for the previous
case on the same rows to show that rank(An) = 2n− 1.

The case ψ2
1 6= −ψ1

2, ψ
1
1 = ψ2

2 and ψ0
1 = 0

The matrix of Fourier coefficients has the form as in Figure 4.2b. It is easy to see that
rank(An) = 2n− 1.
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(a) with ψ2
1 6= −ψ1

2, ψ
1
1 = ψ2

2 and ψ0
1 6= 0. (b) with ψ2

1 6= −ψ1
2, ψ

1
1 = ψ2

2 and ψ0
1 = 0.

Figure 4.2: Structure of matrices of Fourier coefficients for n = 10

The case ψ2
1 = −ψ1

2, ψ
1
1 6= ψ2

2 and ψ0
2 6= 0

We have the Fourier matrix An as in Figure 4.3a. We apply the previous procedure in
the inverse direction. It means that we start with S as the independent set consisting of
the last n rows of An, from the (n+ 4)-th row to the (2n+ 3)-th row. Their first non-zero
element is multiple of (ψ2

2 − ψ1
1) 6= 0.

Later on, we add (n − 1) rows from the fourth row to the (n + 2)-th row to S one
after the other, and prove that S is still linearly independent in the same way as done in
previous cases. Finally, it yields rank(An) = 2n− 1.

The case ψ2
1 = −ψ1

2 6= 0, ψ1
1 6= ψ2

2 and ψ0
2 = 0

The matrix of Fourier coefficients is described in Figure 4.3b. The method using in
Section 4.3 can be applied here to show that rank(An) = 2n− 1.

The case ψ2
1 = ψ1

2 = ψ0
2 = 0 and ψ1

1 6= ψ2
2

Since ψ is a structural set different from the standard one and its conjugate, then it
follows that 

ψ2
2 = ±1,

ψ2
0 = 0,

ψ0
1, ψ

1
0 6= 0.

The matrix of Fourier coefficients has the form as in Figure 4.4a. It is clear that
rank(An) = 2n− 1.
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(a) with ψ2
1 = −ψ1

2, ψ
1
1 6= ψ2

2. (b) with ψ2
1 = −ψ1

2 6= 0, ψ1
1 6= ψ2

2 and ψ0
2 = 0.

Figure 4.3: Structure of matrices of Fourier coefficients for n = 10

(a) with ψ2
1 = ψ1

2 = ψ0
2 = 0 and ψ1

1 6= ψ2
2. (b) with ψ2

1 = −ψ1
2 and ψ1

1 = ψ2
2.

Figure 4.4: Structure of matrices of Fourier coefficients for n = 10
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The case ψ2
1 = −ψ1

2 and ψ1
1 = ψ2

2

Using conditions for ψ, one gets

ψ1
2 6= 0,

ψ1
0 = ψ2

0 = 0,

ψ0
0 = ±1,

ψ0
1 = ψ0

2 = 0.

The matrix of Fourier coefficients has the form as in Figure 4.4b. It also has rank(An) =
2n − 1. In fact, the described structural set ψ has been studied in the previous section,
where ψ can be obtained by applying a rotation to the standard structural set.

To sum up, rank(An) = 2n − 1 in any case, i.e. the orthogonal projection of the
space ψMn(S+;A;R) onto the space Nn(S+;A;R) is surjective. Thus, for each contra-
genic homogeneous polynomial p of degree n there is a ψ-hyperholomorphic homogeneous
polynomial p1 with the same degree so that its orthogonal projection onto Nn(S+;A;R)
is p. Since p1 − p is orthogonal to p, p1 − p must be an ambigenic polynomial. Finally,
a contragenic polynomial can be written as the sum of a monogenic, an anti-monogenic
and a ψ-hyperholomorphic polynomial.

This result can be extended to the spaces

ψM(S+;A;R) =
∞⊕
n=0

ψMn(S+;A;R) and N (S+;A;R) =
∞⊕
n=0

Nn(S+;A;R).

The first idea is to use the Fourier series expansion of a contragenic function in terms
of contragenic basis polynomials. Each contragenic polynomial can be an orthogonal
projection of a ψ-hyperholomorphic polynomial. The Fourier series with the obtained ψ-
hyperholomorphic polynomials, if it converges, will define a ψ-hyperholomorphic function.
There may have many ψ-hyperholomorphic polynomials with the same orthogonal pro-
jection onto the space of contragenic functions. The wrong choice of ψ-hyperholomorphic
polynomials will lead to the divergence of the latter Fourier series. Without addtional
information, one can say nothing about the convergence of the Fourier series with ψ-
hyperholomorphic polynomials. In the sequel, we will use another approach to prove that
the projection is surjective using the result asserted on the subspaces of polynomials.

Theorem 4.3.1. Let ψ be an arbitrary structural set different from the standard structural
set {1, e1, e2} and its conjugate {1, ē1, ē2}. The orthogonal projection of ψM(S+;A;R)
onto N (S+;A;R) is surjective.

Proof. The proof consists of two steps.

(i) First of all, we are going to show that for each non-zero contragenic function f there
exists a ψ-hyperholomorphic function g satisfying 〈g − f, f〉L2(S+;R) = 0. Indeed, if



CHAPTER 4. ADDITIVE DECOMPOSITION OF HARMONICS 106

f⊥ is the non-zero orthogonal projection of f onto ψM(S+;A;R), then a function
g is of the form

g =
‖f‖2

L2(S+)

‖f⊥‖2
L2(S+)

f⊥.

Obviously, g ∈ ψM(S+;A;R) and

〈g − f, f〉L2(S+;R) =

〈
‖f‖2

L2(S+)

‖f⊥‖2
L2(S+)

f⊥, f

〉
L2(S+;R)

− ‖f‖2
L2(S+)

=
‖f‖2

L2(S+)

‖f⊥‖2
L2(S+)

(〈
f⊥, f

〉
L2(S+;R)

−
〈
f⊥, f⊥

〉
L2(S+;R)

)

=
‖f‖2

L2(S+)

‖f⊥‖2
L2(S+)

〈
f⊥, f − f⊥

〉
L2(S+;R)

= 0 (by the definition of f⊥.)

It suffices to point out that f must have the non-zero orthogonal projection f⊥, oth-
erwise f is zero function. Suppose that f really has the zero orthogonal projection,
i.e.

f ⊥ ψM(S+;A;R).

In particular, f is orthogonal to all ψ-hyperholomorphic basis polynomials. Also, f
is orthogonal to all monogenic and anti-monogenic basis polynomials by definition.
As discussed above for any structural set ψ different from the standard orthonormal
basis and its conjugate, every contragenic basis polynomial can be represented by
a linear combination of monogenic, anti-monogenic and ψ-hyperholomorphic basis
polynomials. Therefore f is orthogonal to all contragenic basis polynomials. Based
on the completeness of contragenic basis polynomials in the space N (S+;A;R) it
leads to f = 0.

(ii) Next, we are going to prove the theorem by contradiction. Let us denote by N ′
the image of the space ψM(S+;A;R) in N (S+;A;R) under the orthogonal pro-
jection. Then N ′ is a subspace of N (S+;A;R). The theorem says that in fact
N ′ ≡ N (S+;A;R).

Assume that the orthogonal projection is not surjective. That means N ′ is a proper
subspace of N (S+;A;R). Particularly, one always can find a non-zero function
f ∈ N (S+;A;R) and f ⊥ N ′.
Due to (i), there is a ψ-hyperholomorphic function g so that 〈g − f , f〉L2(S+;R) = 0.
Since g is also harmonic, it can be written as a sum of an ambigenic function and
a contragenic function (it belongs to N ′). It yields that f ⊥ g. Finally we obtain

0 = 〈g − f , f〉L2(S+;R) = −‖f‖2
L2(S+),
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i.e. f = 0. It contradicts the initial assumption. That means the orthogonal
projection is surjective.

The theorem shows that we can represent every contragenic function by a linear com-
bination of monogenic, anti-monogenic and ψ-hyperholomorphic functions, provided that
ψ is not the standard structural set {1, e1, e2} or its conjugate. Of course, this result cov-
ers the case of the class of structural sets discussed in theorem 4.2.2. In general, finding the
explicit representation of contragenic basis polynomials in terms of ψ-hyperholomorphic
basis polynomials is possible but more complicated. Concerning the additive decomposi-
tion of A-valued harmonic functions, we derive the following theorem.

Theorem 4.3.2 ([68]). Let ψ be an arbitrary structural set different from the standard
structural set {1, e1, e2} and its conjugate {1, ē1, ē2}. Then every A-valued harmonic
function u defined in the unit ball S+ can be represented by

u = f + g + h,

where f ,g and h are monogenic, anti-monogenic, and ψ-hyperholomorphic A-valued func-
tions in S+, respectively.

Proof. Indeed, let u be an A-valued harmonic function. Due to [5], one has the following
decomposition

u = fm + fa + fc, (4.8)

where fm, fa, fc are monogenic, anti-monogenic and contragenic functions, respectively.
Notice that the orthogonal projection of the ψ-hyperholomorphic function space onto the
contragenic function space is surjective. There exists a ψ-hyperholomorphic function h
so that

h = fc + f⊥c , (4.9)

where 〈
fc, f

⊥
c

〉
L2(S+;R)

= 0.

Hence f⊥c is an ambigenic function. Particularly, there are a monogenic function f1 and
an anti-monogenic function f2 so that

f⊥c = f1 + f2. (4.10)

Equations (4.8), (4.9) and (4.10) lead to

u = (fm − f1)︸ ︷︷ ︸
f

+ (fa − f2)︸ ︷︷ ︸
g

+h.
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4.4 Decomposition in exterior domains

Up to now, all decompositions discussed above are proved for the unit ball S+, also
with the decomposition by means of contragenic functions [5]. These results can be ex-
tended to bounded, simply connected domains. The question is what if we have to deal
with a problem specified in the exterior of a bounded domain, for example the entire
space R3 with a hole? It is obvious that techniques based on polynomials cannot be used
anymore. Instead, one can apply the same argument for homogeneous functions with
degree of homogeneity −k (k ≥ 2). The present section aims at generalizations of the
foregoing theorems to the exterior domain S−. In particular, we will prove the decom-
position of A-valued harmonic functions in S− in terms of monogenic, anti-monogenic
and ψ-hyperholomorphic A-valued functions. Notice that we study the problem of addit-
ive decompositions for harmonic L2-functions in S−. Thus harmonic functions with the
asymptotic behavior O(|x|−1) at infinity are not taken into account and the research will
be restricted to the case of the harmonic function u with

u(x) = O(|x|−2) as x→∞.

In the following, we repeat the above construction. Consequently, the similar details
will be omitted so that one can follow the main results.

Theorem 4.4.1. For each n ∈ N0, the following 4n+ 2 functions

Xm,1
−(n+2) := X

m

−(n+2) :m = 0, . . . , n,

Ym,1−(n+2) := Y
m

−(n+2) :m = 1, . . . , n,

Xm,2
−(n+2) := Xm

−(n+2) − am−(n+2)X
m

−(n+2) :m = 0, . . . , n,

Ym,2−(n+2) := Y m
−(n+2) − am−(n+2)Y

m

−(n+2) :m = 1, . . . , n,

(4.11)

where

amn =
n− 2m2 + 1

(n+ 1)(2n+ 1)
,

form an orthogonal basis for the space M−(n+2)(S−;A;R) +M−(n+2)(S−;A;R).

Proof. We need only to prove the orthogonality of these functions and that is straightfor-
ward.

Note that

dim
(
M−(n+2)(S−;A;R) +M−(n+2)(S−;A;R)

)
= 4n+ 2.

The reason is that there is no monogenic constant in the exterior domain S−. The fact
is monogenic constants are independent of variable x0 but this is not the case due to the
construction of outer spherical monogenic functions.
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If we denote by H−(n+2)(S−;A;R) for n ∈ N0 the space of homogeneous harmonic
functions in S− with degree of homogeneity −(n+ 2), then

dimH−(n+2)(S−;A;R) = 6n+ 3.

The space of homogeneous harmonic functions with degree of homogeneity −1 has the
dimension 1 but this case is not considered here. It shows that there is an A-valued
harmonic function which cannot be written as the sum of a monogenic and anti-monogenic
functions. Denote by

N−(n+2)(S−;A;R) :=
(
M−(n+2)(S−;A;R) +M−(n+2)(S−;A;R)

)⊥
,

where the orthogonal complement is taken in H−(n+2)(S−;A;R). A function in the space
N−(n+2)(S−;A;R) is called a homogeneous outer contragenic function with degree of
homogeneity −(n + 2). As a result, dim N−(n+2)(S−;A;R) = 2n + 1. We adopt the
notations 

Û0
−(n+1) :=

1

rn+1
U0
n,

Ûm
−(n+1) :=

1

rn+1
Um
n ,

V̂ m
−(n+1) :=

1

rn+1
V m
n

for outer spherical harmonic functions with m = 1, . . . , n and n ∈ N0. An orthogonal
basis of N−(n+2)(S−;A;R) can be given.

Theorem 4.4.2. Let n ≥ 1. The following 2n+ 1 functions
Z0
−(n+2) = V̂ 1

−(n+2) e1 − Û1
−(n+2) e2

Zm,+
−(n+2) = (4cmn+1 V̂

m−1
−(n+2) + V̂ m+1

−(n+2)) e1 + (4cmn+1 Û
m−1
n − Ûm+1

n ) e2

Zm,−
−(n+2) = (4cmn+1 Û

m−1
−(n+2) + Ûm+1

−(n+2)) e1 + (−4cmn+1 V̂
m−1
−(n+2) + V̂ m+1

−(n+2)) e2,

where

cmn =
(n+m)(n+m+ 1)

4

and 1 ≤ m ≤ n, form an orthogonal basis of N−(n+2)(S−;A;R).

Proof. One can see that these functions are harmonic. It suffices to prove that Z0
−(n+2),

Zm,+
−(n+2) and Zm,−

−(n+2) are orthogonal to monogenic and anti-monogenic basis functions.

That can be verified similarly to [5].

Consider the structural set ψ := {1, e2, −e1}, one can represent outer contragenic
basis functions by monogenic, anti-monogenic and ψ-hyperholomorphic basis functions as
follows:
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Theorem 4.4.3. Let ψ = {1, e2, −e1}. Outer contragenic basis functions can be repres-
ented by

Z0
−(n+2) = −2 ψX0

−(n+2) +X0
−(n+2) +X

0

−n+2,

Zm,+
−(n+2) = αm−(n+2)

{
ψXm
−(n+2) −

1
2

(
Xm
−(n+2) +X

m

−(n+2)

)
−βm−(n+2)

(
Y m
−(n+2) − Y

m

−(n+2)

)}
,

Zm,−
−(n+2) = −αm−(n+2)

{
ψY m
−(n+2) −

1
2

(
Y m
−(n+2) + Y

m

−(n+2)

)
+βm−(n+2)

(
Xm
−(n+2) −X

m

−(n+2)

)}
,

where m = 1, . . . , n, n ∈ N and

αmn = − 4(n2 +m2 + n)

(n+m)(n+m+ 1)
,

βmn =
m(2n+ 1)

2(n2 +m2 + n)
.

The proof is straightforward. We have immediately the corollary.

Corollary 4.4.1. Let ψ = {1, e2, −e1}. Every harmonic function u ∈ H(S−;A;R) can
be written as

u = f + g + h

where f , g, h are monogenic, anti-monogenic and ψ-hyperholomorphic A-valued L2- func-
tions in S−, respectively.

Remark that this decomposition is not valid for the case of the harmonic function

1

|x|
(0 6= x ∈ R3),

since 1
|x| /∈ H(S−;A;R). However the true reason is not about the space of L2-functions,

but about the asymptotic behavior of monogenic functions at infinity. It is well known
that a monogenic function f in S− must have the asymptotic behavior

f(x) = O(|x|−2) as x→∞,

and so is u. The same observation can be found if we solve the exterior Dirichlet problem
for the Laplace equation by the double layer potential.

We end this section by saying that the decomposition of A-valued harmonic functions
can be extended to the case of the exterior domain of a closed surface in R3 and for an
arbitrary structural set ψ different from the standard one and its conjugate.



Chapter 5

Application to 3D elasticity
problems

In the linear elasticity theory the physical state of each continuum model is described
by three fundamental equations: the equilibrium equations, the constitutive equations,
and the strain-displacement relations. To be adapted to other notations, we denote the
displacement vector by u = (u0, u1, u2)T . Notice that engineers use (1, 2, 3) or (x, y, z) as
sub-indices. Solving these three equations with respect to the unknown displacements we
obtain the homogeneous Lamé-Navier equation in the Cartesian coordinates as follows:

µ∆u0 + (λ+ µ)
∂e

∂x0

= 0,

µ∆u1 + (λ+ µ)
∂e

∂x1

= 0,

µ∆u2 + (λ+ µ)
∂e

∂x2

= 0,


(5.1)

where u0, u1, u2 are the displacements in x0, x1, x2 directions, e = ∂u0
∂x0

+ ∂u1
∂x1

+ ∂u2
∂x2

, and λ,
µ are the Lamé constants. These material parameters are related to Poisson’s ratio ν and
Young’s modulus E by

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

System (5.1) of equations of linear elasticity describes the physical state of an elastic body
in three dimensions without volume forces.

In the planar case, elasticity problems can be solved effectively by using the complex
function theory. In view of the well-known Kolosov-Muskhelishvili formulae (c.f [105])
the displacement field and the stress field can be represented by a holomorphic and an
anti-holomorphic function. Recently function theoretic methods were applied to indus-
trial problems such as a contact-stress problem in rolling mills (see [140]). Generalized
Kolosov-Muskhelishvili formulae in R3 were investigated by Piltner ([113, 114]), Bock
et al. ([12, 15, 17, 139]). These works use functions with values in C or H, that is

111
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not completely appropriate to problems in R3. In this chapter, we will introduce an
alternative Kolosov-Muskhelishvili formula for the displacement field using monogenic,
anti-monogenic and ψ-hyperholomorphic A-valued functions and study this formula in
the problem of constructing basis solutions for equation (5.1).

The chapter will be organized as follows. Firstly, the Papkovic-Neuber solution will be
revisited in which the 3D displacement field is represented by 4 harmonic functions. The
completeness of this representation was proved by Mindlin [92] and Gurtin [72, 71] for
bounded and unbounded domains, respectively. However, the Papkovic-Neuber formula
is not unique. We will mention the works of Bauch and Bock et al. as solutions of the
uniqueness problem. While Bauch studied the solution of elasticity problems as a Fourier
series, Bock focused on the construction of generalized Kolosov-Muskhelishvili formulae
by means of two monogenic H-valued functions. The latter work use the power of hyper-
complex function theories to solve 3D elasticity problems and basis solutions of elasticity
problems can be obtained by solving an additional system of linear equations. To avoid
this work and directly compute basis solutions, we formulate a new representation for
3-dimensional displacements using only A-valued functions.

Several systems of basis solutions are constructed based on the alternative Kolosov-
Muskhelishvili formula without solving any additional condition. The convergence prop-
erty and stability of these systems in approximation will be studied and compared with
other basis systems obtained by different methods. Finally, it should be remarked that
existing Kolosov-Muskhelishvili formulae were constructed for bounded, simply connec-
ted domains. The alternative Kolosov-Muskhelishvili formula for displacements will be
extended to the exterior of a bounded domain.

5.1 The Papkovic-Neuber solution

In 1930s Papkovic [111] and Neuber [106] independently introduced three ansatz func-
tions to solve three dimensional problems of linear elasticity. Precisely, one can find
solutions of (5.1) in the following form:

2µuj = − ∂F
∂xj

+ 2αΦj, j = 0, 1, 2,

where Φj, j = 0, 1, 2 are harmonic functions and F is a biharmonic function, called the
stress function. Funtion F depends on Φj, j = 0, 1, 2 and in the case α = λ+2µ

λ+µ
, one has

the relation

∆F = 2

(
∂Φ0

∂x0

+
∂Φ1

∂x1

+
∂Φ2

∂x2

)
.

This equation has the general solution (see [106])

F = Ψ0 + x0Φ0 + x1Φ1 + x2Φ2,

where Ψ0 is a harmonic function. It shows that every solution of (5.1) can be represented
by four harmonic functions. The completeness proof for the Papkovic-Neuber formula was
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given by Mindlin [92] which is valid for bounded domains. Gurtin [72, 71] later extended
the proof to infinite regions with suitable decay behavior of solutions at infinity.

The Papkovic-Neuber solution was observed to be redundant in the sense that for a
given displacement field more than one set of harmonic functions Ψ0, Φ0, Φ1, Φ2 can be
found. It is shown that in fact one can remove completely a harmonic component. Ac-
cording to Eubanks and Sternberg [44] the choice of the removable harmonic component
depends on the shape of the given domain as mentioned in the introduction. In each
situation a different stratergy can be applied with the Papkovic-Neuber formula to estab-
lish a system of basis solutions for elasticity problems. Hence a general algorithm for the
construction of basis solutions is desired. In the sequel, we will study the works of Bauch
and Bock et al. to deal with this problem.

5.2 Bauch’s basis solutions

The work of Bauch is based on the relation between solutions of equation (5.1) and solid
spherical harmonic functions. To have a self-contained thesis, we will present theorems in
[8] with a full proof.

Using the quaternionic setting, the Lamé-Navier equation (5.1) can be rewritten in
the following form

µ∆u + (λ+ µ)∂ [Sc(∂u)] = 0,

where u = u0 + u1 e1 + u2 e2.

Theorem 5.2.1 ([8]). Let u = u0 + u1 e1 + u2 e2 be a twice continuously differentable
solution of equation (5.1) in S+ ⊂ R3. Then the function

w := u + β x Sc(∂ u)

(
β =

λ+ µ

2µ

)
is a harmonic function, i.e ∆ w = 0.

Proof. Let us denote by

∆∗ u := µ∆ u + (λ+ µ) ∂ [Sc(∂ u)] ,

U := Sc(∂ u),

V := Sc(∂w).

If u is a solution of equation (5.1), one has

0 = Sc(∂ [∆∗ u]) = Sc
(
∂
[
µ∆ u + (λ+ µ) ∂ [Sc(∂ u)]

])
= Sc (µ∆[∂ u] + (λ+ µ) ∆ [Sc(∂ u)])

= ∆ [µ Sc(∂ u) + (λ+ µ) Sc(∂ u)]

= (λ+ 2µ) ∆ [Sc(∂ u)]

= (λ+ 2µ) ∆U.
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It means
∆U = 0.

In association with
∆[xU ] = x∆U + 2∂ U = 2∂ U,

it leads to
∆ w = ∆ u + β∆[xU ] = ∆ u + 2β∂ [Sc(∂ u)] = ∆∗ u = 0.

Theorem 5.2.2 ([8]). Let w be an A-valued harmonic function in S+ ⊂ R3. Then there
exists a twice continuously differentable solution u of (5.1) so that

w = u + β x Sc(∂ u).

Proof. Indeed, given a harmonic function w, we look for a function u satisfying

w = u + β xU.

Applying the operator Sc(∂[·]) to this equation, one gets

V = U + β Sc (∂[xU ])

= (1 + 3β)U + β Sc (x∂)U. (5.2)

In spherical coordinates (r, θ, ϕ), one has

∂ = ω
∂

∂r
+

1

r

∂

∂ ω
,

where
x = r ω.

Thus,

Sc(x ∂) = r
∂

∂r
.

Consequently, equation (5.2) becomes

V = (1 + 3β)U + β r
∂U

∂r
. (5.3)

Equation (5.3) is an ordinary differential equation of unknown U(r). It has a solution

U =
1

β rγ+1

∫ r

0

ργ V (ρ) dρ

(
γ =

1 + 2β

β

)
.

Finally, u is defined by
u = w − β xU.

It is easy to verify that ∆∗ u = 0.
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These theorems show that there is a bijective mapping between the space of A-valued
harmonic functions in S+ and the space of solutions of equation (5.1). Hence, the space
of homogeneous polynomial solutions of degree n is 6n+ 3 dimensional.

An interesting case is when w has the form w = Hm
n ej, where n ∈ N0; m =

0, . . . , 2n; j = 0, 1, 2 and

Hm
n =

{
Ûm
n :m = 0, . . . , n

V̂ m−n
n :m = n+ 1, . . . , 2n

are solid spherical harmonic functions. Consequently, the functions

Gmn,j(x) := Hm
n ej −

λ+ µ

(n+ 2)λ+ (n+ 4)µ

∂Hm
n

∂xj
x (5.4)

form a basis of the space of solutions of equation (5.1). Suppose {Gm,∗n,j } is an orthonormal
system constructed from system (5.4), then every solution u of equation (5.1) in S+ is
represented by

u =
∞∑
n=0

2n∑
m=0

2∑
j=0

amn,j G
m,∗
n,j ,

where

amn,j =

〈
u,Gm,∗n,j

〉
L2(S+;R)

‖Gm,∗n,j ‖2
L2(S+)

.

5.3 Generalized Kolosov-Muskhelishvili formulae

5.3.1 H-valued function approach

Generalized Kolosov-Muskhelishvili formulae in [15, 139] are based on the Papkovic-
Neuber solution and a decomposition of harmonic functions.

Theorem 5.3.1 ([15, 139]). Let Ω be on open subset of R3 normal with respect to the
x1-direction and let f = f0 + f1e1 + f2e2 be a harmonic function in Ω. There exists a
monogenic function Φ orthogonal to the set of monogenic constants and an anti-monogenic
function Θ (more precisely Ξ ∈ ker ∂ ⊥ (ker ∂ ∩ ker ∂) and Θ ∈ ker ∂) such that:

f = Ξ + Θ.

Denote by u∗ := u+χe3 the extended displacement field with an additional harmonic
component χe3. Consequently, u∗ can be represented by

2µu∗ = 4(1− ν)Ξ− 1

2
∂(xΞ + Ξx)− Ψ̂, (5.5)
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where Ξ, Ψ are (H-valued) monogenic functions and Ψ̂ = −e3 Ψ e3. Approximating Ξ and
Ψ by Appell polynomials Amn in (1.13)

Ξ(x) =
n−1∑
m=0

Amn (x)αn,m, Ψ̂(x) =
n∑

m=0

Âmn (x) βn,m

with αn,m, βn,m ∈ H, one obtains a set of 8n+ 4 polynomials u∗ for each degree n. Since
u∗ := u + χe3, one can deduce from that 8n+ 4 polynomials u. Consequently, 2n+ 1 of
these polynomials are linearly dependent which can be removed by paying attention to
2n+ 1 additional equations (see [15]):

2βn,m+1
1 − βn,m2 = 4(1− ν)[αn,m2 + 2αn,m+1

1 ],

2βn,m+1
4 − βn,m3 = 4(1− ν)[αn,m3 + 2αn,m+1

4 ],

βn,04 = 4(1− ν)αn,04 ,

with m = 0, . . . , n− 1.
Using the decomposition of A-valued harmonic functions in terms of monogenic, anti-

monogenic and ψ-hyperholomorphic A-valued functions, we will construct an alternative
Kolosov-Muskhelishvili formula for displacements. A consequence is that basis solutions
can be directly derived without solving any additional equations.

5.3.2 A-valued function approach

In the quaternionic setting the Papkovic-Neuber solution has the representation

2µu = −∂F + 2αΦ,

where Φ is an A-valued harmonic function. With

α =
λ+ 2µ

λ+ µ

F is a bi-harmonic function of the form

F =
1

2
(xΦ + Φx) + Ψ0 = x0 Φ0 + x1 Φ1 + x2 Φ2 + Ψ0,

with a real-valued harmonic function Ψ0. Hence the displacement field is represented by

2µu = −∂
[

1

2
(xΦ + Φx) + Ψ0

]
+ 2αΦ. (5.6)

Since Φ is an A-valued harmonic function, one can find a monogenic f , an anti-monogenic
g and a ψ-hyperholomorphic function h so that

Φ = f + g + h.
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Note that ψ is not the standard structural set or its conjugate. Substitute to formula
(5.6)

2µu = −∂
[

1

2

(
x (f + g + h) + (f + g + h)x

)
+ Ψ0

]
+ 2α (f + g + h)

= −1

2
∂
[
x (f + h) + (f + h)x

]
+ 2α(f + h)− 1

2
∂ [xg + g x]− ∂Ψ0 + 2α g.

The last three terms are anti-monogenic functions. Indeed, g = g0 + g1e1 + g2e2 is anti-
monogenic by definition. ∂Ψ0 is anti-monogenic because Ψ0 is harmonic:

∂ (∂Ψ0) = ∆Ψ0 = 0.

Consider the remaining term

∂

[
1

2
∂(xg + g x)

]
= ∆(x0g0 + x1g1 + x2g2)

= x0∆g0 + x1∆g1 + x2∆g2 + 2

(
∂g0

∂x0

+
∂g1

∂x1

+
∂g2

∂x2

)
= 0.

It shows that 1
2
∂(xg + g x) is also anti-monogenic. Therefore, if we collect all anti-

monogenic summands we can introduce the new anti-monogenic function as follows:

p := −1

2
∂ [xg + g x]− ∂Ψ0 + 2α g.

We obtain the alternative Kolosov-Muskhelishvili representation formula for the displace-
ment field that is given in the following theorem.

Theorem 5.3.2 (Alternative Kolosov-Muskhelishvili formula, [20]). Every square integ-
rable solution u of (5.1) in S+ admits the representation

2µu(f ,p,h) = −1

2
∂
[
x (f + h) + (f + h)x

]
+ 2α(f + h) + p, (5.7)

where f , p and h are A-valued monogenic, anti-monogenic and ψ-hyperholomorphic square
integrable functions in S+, respectively.

To calculate the solution u due to formula (5.7) we approximate f by monogenic basis

polynomials Xm
n , Y

l
n, p by X

m

n , Y
l

n and h by ψXm
n ,

ψY l
n with n ∈ N0; m = 0, . . . , n+1; l =

1, . . . , n+ 1. For each n ∈ N one obtains a set of

3(2n+ 3) = 6n+ 9

polynomials u. Moreover every homogeneous polynomial solution u of degree n can be
represented by these functions. Hence, we need to eliminate 6 dependent polynomials
from that set to form a basis of 6n+ 3 polynomials.

Let us consider the case of the structural set ψ = {1, e2,−e1}. One can show ex-
plicitly which polynomials have to be removed. Remark (4.2.1) gives a hint to remove
redundancies. We have the following theorem.
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Theorem 5.3.3 (ψ-basis solutions, [20]). For ψ = {1, e2,−e1}, the polynomials

u(X0
n, 0, 0), u(Xm

n , 0, 0), u(Y m
n , 0, 0) : m = 1, . . . , n,

u(0, X
0

n, 0), u(0, X
k

n, 0), u(0, Y
k

n, 0) : k = 1, . . . , n+ 1,

u(0, 0, ψX0
n), u(0, 0, ψX l

n), u(0, 0, ψY l
n) : l = 1, . . . , n− 1

form a basis in the space of homogeneous polynomial solutions of system (5.1) with degree
n ∈ N0.

Proof. We can represent u by a finite sum as follows:

u(f ,p,h) = u(f , 0, 0) + u(0,p, 0) + u(0, 0,h)

= a0
n u(X0

n, 0, 0) +
n+1∑
m=1

(
am,Xn u(Xm

n , 0, 0) + am,Yn u(Y m
n , 0, 0)

)

+ b0
nu(0, X

0

n, 0) +
n+1∑
l=1

(
bl,Xn u(0, X

k

n, 0) + bl,Yn u(0, Y
k

n, 0)
)

+ c0
nu(0, 0, ψX0

n) +
n+1∑
k=1

(
ck,Xn u(0, 0, ψX l

n) + ck,Yn u(0, 0, ψY l
n)
)
,

where all coefficients ain, b
i
n, c

i
n are real. Since the dimension of the space of homogeneous

polynomials u(f ,p,h) of degree n is 6n + 3, it suffices to find six linearly dependent
summands in the above representation. Let us consider the monogenic constant Xn+1

n .
Then the displacement field given by

u(Xn+1
n , 0, 0) = − 1

4µ
∂
[
xXn+1

n +X
n+1

n x
]

is an anti-monogenic function. This is valid with the same reason used in the construc-
tion of p in formula (5.7). Also, this argument can be applied to prove that u(Y n+1

n , 0, 0),
u(0, 0, ψXn+1

n ) and u(0, 0, ψY n+1
n ) are anti-monogenic functions (due to remark (4.2.1)).

Therefore, u(Xn+1
n , 0, 0), u(Y n+1

n , 0, 0) and u(0, 0, ψXn+1
n ), u(0, 0, ψY n+1

n ) can be repres-
ented by linear combinations of functions in the set{

u(0, X
0

n, 0),u(0, X
k

n, 0),u(0, Y
k

n, 0) : k = 1, . . . , n+ 1
}

(5.8)

and have to be removed. The remaining task is to remove two more functions. For this
reason we consider the following function

u(0, 0, ψXn
n ) = u

(
0, 0,

1

2

(
Xn
n +X

n

n

)
+

1

2

(
Y n
n − Y

n

n

))
=

1

2

[
u(0, 0, Xn

n + Y n
n ) + u(0, 0, X

n

n − Y
n

n)
]

=
1

2
u(Xn

n , 0, 0) +
1

2
u(Y n

n , 0, 0)− 1

8µ
∂
[
x (X

n

n − Y
n

n) + (Xn
n − Y n

n )x
]
.
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The last summand in the right-hand side is again anti-monogenic and it can be written as
a linear combination of functions in (5.8). A similar reasoning can be applied to the case
of ψY n

n . Removing two functions u(0, 0, ψXn
n ) and u(0, 0, ψY n

n ), one obtains the system in
the theorem.

This is an example of constructing (directly) basis solutions of the Lamé-Navier equa-
tion. Remark that in formula (5.7) ψ can be chosen arbitrarily but not the standard
structural set or its conjugate. Thus the alternative Kolosov-Muskhelishvili representa-
tion can give us the flexibility in constituting a suitable system of basis solutions for each
concrete problem in elasticity.

5.3.3 Formula in the exterior of a bounded domain

The completeness of the Papkovic-Neuber solution in the exterior of a bounded domain
was proved by Gurtin in [71, 72]. In particular, it was shown that if the displacement field
u vanishes uniformly at infinity, it must vanish to the order O(|x|−1). Moreover, there
exist a paravector-valued harmonic function Φ and a real-valued harmonic function Ψ0 so
that

2µu = −∂
[

1

2
(xΦ + Φx) + Ψ0

]
+ 2αΦ.

Since we are looking for a representation of an L2-function u in S−, then it requires the
behavior of u at infinity

u(x) = O(|x|−2) as x→∞,

As a result, we have

Φ(x) = O(|x|−2), Ψ0(x) = O(|x|−1) as x→∞.

Due to corollary 4.4.1, given ψ = {1, e2, −e1}, Φ can be decomposed as follows:

Φ = f + g + h

where f , g, h are monogenic, anti-monogenic and ψ-hyperholomorphic A-valued functions
in S−, respectively. Repeating the construction in the previous section, one can derive a
generalized Kolosov-Muskhelishvili formula for displacements in exterior domains.

Theorem 5.3.4. Let ψ = {1, e2, −e1} and u be a square integrable solution of equation
(5.1) in the exterior domain S−. Then u admits the representation

2µu(f ,p,h) = −1

2
∂
[
x (f + h) + (f + h)x

]
+ 2α(f + h) + p, (5.9)

where f , p and h are A-valued monogenic, anti-monogenic and ψ- hyperholomorphic
square integrable functions in S−, respectively.
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Next, we will study the problem of constructing basis solutions of equation (5.1) in
S− from formula (5.9). Let us consider the case of homogeneous functions with degree
of homogeneity −(n + 2), n ∈ N0. Representing f by 2n + 1 monogenic basis functions
X0
−(n+2), X

m
−(n+2), Y

m
−(n+2) (m = 1, . . . , n), p by 2n + 1 anti-monogenic basis functions

X
0

−(n+2), X
k

−(n+2), Y
k

−(n+2) (k = 1, . . . , n) and h by 2n + 1 ψ-hyperholomorphic basis

functions ψX0
−(n+2),

ψX l
−(n+2),

ψY l
−(n+2) (l = 1, . . . , n), one obtains 6n + 3 solutions of

equation (5.1) in S−. Note that every homogeneous solution with degree of homogeneity
−(n + 2) can be represented by these 6n + 3 solutions. In the case of the unit ball S+,
6n + 3 is the dimension of the space of solutions of the Lamé-Navier equation which are
homogeneous polynomials of degree n. The question arises if 6n+ 3 is also the dimension
in the case of homogeneous solutions with degree of homogeneity −(n+ 2)? The answer
can be found in connection with the space of harmonic functions as described once in [8].

Notice that the case of exterior domains was not studied in [8] but the ideas therein
are useful to make a link between solutions of equation (5.1) and harmonic functions. Let
u = u0 + u1 e1 + u2 e2 be a solution of equation (5.1) in S− and u = O(|x|−2) as x→∞.
Then function w defined by

w = u + β x Sc(∂ u) (5.10)

is a harmonic function in S− (theorem 5.2.1) and w = O(|x|−2) as x→∞.
Inversely, let w is a harmonic function in S− satisfying the mentioned asymptotic

behavior at infinity. We will find a solution u of equation (5.1) so that relation (5.10)
holds. Indeed, by denoting

U = Sc(∂ u),

V = Sc(∂w),

and applying the operator Sc(∂ [·]) to (5.10), one obtains finally the partial differential
equation

V = (1 + 3β)U + β r
∂U

∂r
.

This equation has a solution

U =
1

β rγ+1

∫ ∞
r

ργ V (ρ) dρ

(
γ =

1 + 2β

β

)
,

provided that
V (ρ) = O(|ρ|−k) as ρ→∞,

with 3 < γ + 1 < k ∈ N. It means that this construction is valid for the case of the
harmonic function w vanishing at infinity to the order O(|x|−(k−1)). Fortunately, an L2-
function in S− can be decomposed into a finite sum of summands. One summand vanishes
at infinity to the order O(|x|−(k−1)) and the other summands are homogeneous functions
with degree of homogeneity from −(k − 2) to −2.

Consider the case of a harmonic homogeneous function w with degree of homogeneity
−(n+ 2), n ∈ N0. We will find a homogeneous solution u of equation (5.1) with the same
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degree of homogeneity so that relation (5.10) holds. Using the same notations as above
and the fact that r ∂U

∂r
= −(n+ 3)U , the function U is calculated by

U =
1

1− nβ
V =

2µ

(2− n)µ− nλ
Sc(∂w).

Therefore, u is of the form

u = w − λ+ µ

(2− n)µ− nλ
x Sc(∂w).

To sum up, one states the following theorem.

Theorem 5.3.5. Let w ∈ L2(S−) ∩ ker ∆. Then one can find a solution u ∈ L2(S−) ∩
ker ∆∗ so that

w = u + β x Sc(∂ u).

Relation (5.10) defines a bijective mapping between the space of solutions of equation
(5.1) and the space of harmonics in S−. As a result, the subspace of homogeneous solutions
with degree of homogeneity −(n+ 2) is 6n+ 3 dimensional. To this section end, we give
the corollary.

Corollary 5.3.1. Let ψ = {1, e2,−e1}, the functions

u(X0
−(n+2), 0, 0), u(Xm

−(n+2), 0, 0), u(Y m
−(n+2), 0, 0),

u(0, X
0

−(n+2), 0), u(0, X
m

−(n+2), 0), u(0, Y
m

−(n+2), 0),

u(0, 0, ψX0
−(n+2)), u(0, 0, ψXm

−(n+2)), u(0, 0, ψY m
−(n+2))

with m = 1, . . . , n form a basis in the space of homogeneous solutions of system (5.1) with
degree of homogeneity −(n+ 2), n ∈ N0.

Proof. Based on representation (5.9), each component f , h, g is approximated by 2n+ 1
homogeneous functions with degree of homogeneity −(n + 2). We obtain a set of 6n + 3
solutions of equation (5.1). Since the subspace of homogeneous solutions with degree of
homogeneity −(n + 2) has the dimension 6n + 3, the obtained functions form a basis of
this subspace.

5.4 Numerical examples

5.4.1 Systems in comparision

Papkovic-Neuber solution

As mentioned before, for the case of the unit ball we can remove any harmonic functions
in the Papkovic-Neuber solution. For instant, we remove Φ0. Hence the displacement field
is represented by

2µu = −∂(Ψ0 + x1 Φ1 + x2 Φ2) + 2α(Φ1 e1 + Φ2 e2).
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Approximating Ψ0, Φ1, Φ2 by Hm
n , one obtains 6n+ 3 basis solutions of the Lamé-Navier

equation: 

umn,1 = − 1

2µ
∂Hm

n ,

umn,2 =
1

2µ

(
−∂[x1Hm

n ] + 2αHm
n e1

)
,

umn,3 =
1

2µ

(
−∂[x2Hm

n ] + 2αHm
n e2

)
.

Bauch’s basis solutions

For each n ∈ N0, the set of functions

Gmn,j(x) := Hm
n ej −

λ+ µ

(n+ 2)λ+ (n+ 4)µ

∂Hm
n

∂xj
x

with m = 0, . . . , 2n will be taken into account.

Generalized Kolosov-Muskhelishvili formula: H-valued function
approach

In [17], Bock et al. introduced a generalized Kolosov-Muskhelishvili formula for dis-
placements using H-valued monogenic functions. In particular, the Papkovic-Neuber solu-
tion is of the form

2µu = −∂F + 2αΦ

where Φ = Φ0 + Φ1 e1 + Φ2 e2 is harmonic and F is biharmonic satisfying

F = x0 Φ0 + x1 Φ1 + x2 Φ2 + Ψ0,

with a real-valued harmonic function Ψ0. The Goursat’s theorem in [17] showed that for
a star-shaped domain F admits the representation

F =
1

2

[
xΞ + Ξx+ Θ + Θ

]
= x0 Ξ0 + x1 Ξ1 + x2 Ξ2 + Θ0,

with two H-valued monogenic functions Ξ and Θ. Identifying two representations for the
biharmonic function F , one gets the formula

2µu = −1

2
∂
[
xΞ + Ξx+ Θ + Θ

]
+ α(Ξ− e3 Ξ e3). (5.11)

Formula (5.11) is useful in constructing basis solutions. Precisely, the function Ξ is
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approximated by orthonormal system (1.10) of 4n+ 4 functions

φ1,0
n := X̃0

n,0,

φ2,m
n := pn,m(X̃m

n,0 + Ỹ m
n,3),

φ3,m
n := pn,m(X̃m

n,3 − Ỹ m
n,0),

φ4,0
n := X̃0

n,3,

φ5,l
n := pn,−l(X̃

l
n,3 + Ỹ l

n,0),

φ6,l
n := pn,−l(X̃

l
n,0 − Ỹ l

n,3),

with m = 1, . . . , n+ 1; l = 1, . . . , n and

pn,m =

√
n+ 1

2(n+m+ 1)
.

For simplicity, we will use the notation φkn, k = 1, . . . , 4n+ 4. The funtion Θ is approxim-

ated by {ψln+1, l = 1, . . . , 2n+ 5} := {X̃0
n+1, X̃

m
n+1, Ỹ

m
n+1 : m = 1, . . . , n+ 2}. Notice that

the approximation leads to redundant solutions which were pointed out in the following
lemma.

Lemma 5.4.1 ([12]). For each degree n ∈ N0, the following functions in the system
{u(φkn, 0), u(0, ψln+1)} are related to each other by

u(φ2,n+1
n , 0) = − (n+ 1− 2α)

√
n+ 2

(2n+ 5)(n+ 1)
u(0, X̃n+1

n+1 ),

u(φ3,n+1
n , 0) = (n+ 1− 2α)

√
n+ 2

(2n+ 5)(n+ 1)
u(0, Ỹ n+1

n+1 ),

u(φ5,n
n , 0) =

n+ 1− 2α

3

√
(2n+ 3)(n+ 2)

2(2n+ 5)(n+ 1)
u(0, Ỹ n

n+1)−
√

2n+ 1

3
u(φ3,n

n , 0),

u(φ6,n
n , 0) =

n+ 1− 2α

3

√
(2n+ 3)(n+ 2)

2(2n+ 5)(n+ 1)
u(0, X̃n

n+1) +

√
2n+ 1

3
u(φ2,n

n , 0),

u(0, X̃n+2
n+1 ) = u(0, Ỹ n+2

n+1 ) = 0.

The redundant solutions must be removed before used.
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Generalized Kolosov-Muskhelishvili formula: A-valued function
approach

In this case, we study two systems of basis solutions. One system of functions, namely
ψ-basis solutions, corresponding to the structural set ψ = {1, e2,−e1} is given in the-
orem 5.3.3. In addition, we modify the input functions to obtain other basis solutions.
Particularly to construct a new basis system we substitute in formula (5.7)

2µu(f ,p,h) = −1

2
∂
[
x (f + h) + (f + h)x

]
+ 2α(f + h) + p,

• p by a linear combination of the functionsX
m,1
n := X

m

n :m = 0, . . . , n+ 1

Ym,1n := Y
m

n :m = 1, . . . , n+ 1
(5.12)

• f by a linear combination of the functionsX
m,2
n := Xm

n − amnX
m

n :m = 0, . . . , n

Ym,2n := Y m
n − amn Y

m

n :m = 1, . . . , n
(5.13)

where

amn =
n− 2m2 + 1

(n+ 1)(2n+ 1)
,

• h by a linear combination of the functionsX
m,3
n := ψXm

n − Sc(Xm
n )− 2bmn Vec(Y m

n ) :m = 0, . . . , n− 1

Ym,3n := ψY m
n − Sc(Y m

n ) + 2bmn Vec(Xm
n ) :m = 1, . . . , n− 1

(5.14)

where

bmn =
m(2n+ 1)

2(n2 +m2 + n)
.

In the original formula, components f , p, h are monogenic, anti-monogenic and ψ- hy-
perholomorphic, respectively. In this case, except that p is replaced by anti-monogenic
polynomials, f and h are replaced by linear combinations of monogenic, anti-monogenic
and ψ-hyperholomorphic polynomials. We will prove later on that this substitution still
establishes basis solutions of equation (5.1). In fact, system (5.12), (5.13) and (5.14)
are obtained via an orthogonalization process applying to the set of monogenic, anti-
monogenic and ψ-hyperholomorphic basis polynomials. We conclude by a theorem.
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Theorem 5.4.1 (Modified-basis solutions, [67]). Let ψ = {1, e2, −e1}. The polynomials

u(X 0,2
n , 0, 0), u(Xm,2

n , 0, 0), u(Ym,2n , 0, 0) : m = 1, . . . , n,

u(0,X 0,1
n , 0), u(0,X k,1

n , 0), u(0,Yk,1n , 0) : k = 1, . . . , n+ 1,

u(0, 0,X 0,3
n ), u(0, 0,X l,3

n ), u(0, 0,Y l,3n ) : l = 1, . . . , n− 1

form a basis in the space of homogeneous polynomial solutions of equation (5.1) with
degree n ∈ N0.

Proof. We have that u is a linear function with respect to f , p and h. Since systems
(5.12)-(5.14) are obtained by orthogonalizing the set of monogenic, anti-monogenic and ψ-
hyperholomorphic basis polynomials. Therefore for each degree n ∈ N0, 6n+3 polynomials
calculated from formula (5.7) with systems (5.12)-(5.14) are solutions of the Lamé-Navier
equation.

It suffices to prove that these solutions are linearly independent. Indeed, consider the
equation

α0,2
n u(X 0,2

n , 0, 0) +
n∑

m=1

(
αm,2n u(Xm,2

n , 0, 0) + βm,2n u(Ym,2n , 0, 0)
)

+ α0,1
n u(0,X 0,1

n , 0) +
n+1∑
k=1

(
αk,1n u(0,X k,1

n , 0) + βk,1n u(0,Yk,1n , 0)
)

+ α0,3
n u(0, 0,X 0,3

n ) +
n−1∑
l=1

(
αk,3n u(0, 0,X l,3

n ) + βk,3n u(0, 0,Y l,3n )
)

= 0,

for real unknowns αi,jn , β
i,j
n . Substituting (5.12)-(5.14) to this equation, one gets

α0,2
n u(X0

n, 0, 0) +
n∑

m=1

(
αm,2n u(Xm

n , 0, 0) + βm,2n u(Y m
n , 0, 0)

)
− α0,2

n u(a0
nX

0

n, 0, 0)−
n∑

m=1

(
αm,2n u(amn X

m

n , 0, 0) + βm,2n u(amn Y
m

n , 0, 0)
)

+ α0,1
n u(0, X

0

n, 0) +
n+1∑
k=1

(
αk,1n u(0, X

k

n, 0) + βk,1n u(0, Y
k

n, 0)
)

+ α0,3
n u(0, 0, ψX0

n) +
n−1∑
l=1

(
αl,3n u(0, 0, ψX l

n) + βl,3n u(0, 0, ψY l
n)
)
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− α0,3
n u

(
1

2
X0
n + b0

n Y
0
n , 0, 0

)
−

n−1∑
l=1

(
αl,3n u

(
1

2
X l
n + bln Y

l
n, 0, 0

)

+βl,3n u

(
1

2
Y l
n − blnX l

n, 0, 0

))

− α0,3
n u

(
0, 0,

1

2
X

0

n − b0
n Y

0

n

)
−

n−1∑
l=1

(
αl,3n u

(
0, 0,

1

2
X
l

n − bln Y
l

n

)

+βl,3n u

(
0, 0,

1

2
Y
l

n + blnX
l

n

))
= 0

The first and the fifth lines are linear combinations of functions in the subset of ψ-basis
solutions: {

u(X0
n, 0, 0), u(Xm

n , 0, 0), u(Y m
n , 0, 0) : m = 1, . . . , n

}
.

The second, third and sixth lines are linear combinations of basis functions{
u(0, X

0

n, 0), u(0, X
k

n, 0), u(0, Y
k

n, 0) : k = 1, . . . , n+ 1
}
.

The forth line is a linear combination of basis functions{
u(0, 0, ψX0

n), u(0, 0, ψX l
n), u(0, 0, ψY l

n) : l = 1, . . . , n− 1
}
.

Thus, one has
α0,3
n = αl,3n = βl,3n = 0 (l = 1, . . . , n− 1).

Then,
α0,2
n = αm,2n = βm,2n = 0 (m = 1, . . . , n).

Finally, it leads to
α0,1
n = αk,1n = βk,1n = 0 (k = 1, . . . , n+ 1).

It means that modified-basis solutions form a basis in the space of homogeneous polyno-
mials of degree n which are solutions of equation (5.1).

5.4.2 Convergence property

To study the convergence property of ψ-basis solutions (theorem 5.3.3) in approxim-
ation, we consider the Kelvin problem which was introduced by Lord Kelvin in a short
paper in 1848 ([135]). Notice that most of the elasticity problems in geomechanics were
solved in the 19th century usually not for real application, but simply to answer basic
questions about elasticity and behavior of elastic bodies. The Kelvin problem consists in
finding the equilibrium state of a linear elastic, isotropic body occupying the whole space
and being subject to a point load.
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Figure 5.1: The Kelvin problem

As shown in Figure 5.1 a point load f = f0 + f1e1 + f2e2 acts at a = a0 + a1e1 + a2e2.
It is well known that Kelvin’s solution for the displacement field is of the form

uK(x− a) =
(4α− 1) f

16πµα|x− a|
+

(x− a) f (x− a)

16πµα|x− a|3
.

Let the point a be out of S+. We will consider the problem of L2-approximation of
uK inside the unit ball S+ by ψ-basis solutions. Denote by un the best approximation to
uK in the space of polynomial solutions of the Lamé-Navier equation up to degree n. In
fact, we must have

‖un − uK‖L2(S+)
n→∞−−−→ 0.

To evaluate the convergence property of ψ-basis solutions in approximation, we calculate
the relative error numerically with increasing degree n:

en :=
‖un − uK‖L2(S+)

‖un‖L2(S+)

.

The calculations have been done by Maple c©16 installed in a computer with 8GB RAM,
3.4GHz × 8 CPUs. Because of the limited capacity of the computer system, we end up
with the degree 8 corresponding to 243 polynomials.

The result is described in the following table:

n 0 1 2 3 4 5 6 7 8
N 3 12 27 48 75 108 147 192 243

en × 100 42.61 25.1 15.6 9.98 6.5 4.28 2.84 1.82 1.34

Here S+ = S+(0, 1 m), a = 1.5 m, f = 5.773 (1 + e1 + e2) kN and Lamé constants
λ = 25

9
MPa, µ = 12.5

3
MPa.
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Figure 5.2: Relative Error versus Degree of Polynomials

Figure 5.2 shows that the relative error tends to zero when degree n is increasing.
Moreover, the asymptotic behavior of the relative error is even better than quadratic
convergence, about en ≈ O(n−5/2) as n→∞. In [25, 30] Cação et al. studied the rate of
convergence in L2-approximation of a monogenic function by solid spherical monogenics.
In view of the representation of the displacement field u by monogenic, anti-monogenic
and ψ-hyperholomorphic functions, it may be possible to describe the rate of convergence
in L2-approximation of displacements but this problem will be not investigated in this
thesis.

5.4.3 Numerical stability

In the previous section, the numerical example showed that the approximation of the
solution of the Kelvin problem by ψ-basis system is convergent. The question arises if
the calculation is numerically stable compared to the approximation using basis systems
obtained by the Papkovic-Neuber solution or the construction of Bauch. In the sequel, the
stability of these methods will be evaluated numerically by calculating condition numbers
of associated Gram matrices.

Let A be a matrix. Its condition number is denoted by

κ(A) := ‖A−1‖2 · ‖A‖2 =
σmax(A)

σmin(A)
,

where σmax(A), σmin(A) are maximal and minimal singular values of A, respectively.
The table in Figure 5.3 clearly shows condition numbers of Gram matrices correspond-

ing to the degree n and the number of basis functions N . It is also expressed on the line



CHAPTER 5. APPLICATION TO 3D ELASTICITY PROBLEMS 129

n 0 1 2 3 4 5 6 7 8 9
N 3 12 27 48 75 108 147 192 243 300

Papkovic-Neuber 1.00 3.73 279.21 292.48 1673.59 1698.02 1952.79 2206.51 2451.58 2672.52
Bauch’s basis 1.00 12.25 12.25 20.96 28.67 37.71 48.17 60.88 75.14 91.18
Bock’s basis 1.00 2.00 10.70 25.07 49.43 90.65 159.05 277.74 457.36 731.37
ψ-basis 1.00 2.88 24.66 65.65 122.02 230.49 430.56 813.87 1476.06 2530.52

Modified-basis 1.00 1.00 8.50 15.11 24.73 37.33 52.17 70.00 90.14 112.88

Figure 5.3: Condition number of Gram matrix

graph of the condition number versus the number of basis functions. In particular, the
worst condition number is the case of Papkovic-Neuber’s basis functions (κ = 2672.52 for
n = 9). The best result is attained in the case of Bauch’s basis functions (κ = 91.18).
In the middle locate the results obtained by using generalized Kolosov-Muskhelishvili for-
mulae in both cases of H-valued function approach (κ = 731.37) or A-valued function
approach (κ = 2530.52 for ψ-basis system or κ = 112.88 for modified-basis system).

An interesting point is the case of the modified-basis system in which the condition
number of the Gram matrix is very close to the best result (κ = 112.88 versus κ = 91.18).
For the lower degree n, it is even better. Notice that before constructing modified-basis
system, we applied an orthogonalization process to monogenic, anti-monogenic and ψ-
hyperholomorphic basis functions. As a consequence, the result has been improved. An
orthogonalization was also mentioned and partially done by Bock in [12].

A possible reason that the orthogonalization makes a better result is following. There
are two type of components in generalized Kolosov- Muskhelishvili formula (5.7). The first
type of components consists of a monogenic, an anti-monogenic and a ψ-hyperholomorphic



CHAPTER 5. APPLICATION TO 3D ELASTICITY PROBLEMS 130

function. The second type is the term with the generalized Cauchy-Riemann operator. An
orthogonalization process in fact modifies basis solutions so that components of the first
type are orthogonal to each other. Remark that Bauch’s basis solutions have also such a
property that the set of components Hm

n ej of Gmn,j(x) with m = 0, . . . , 2n; j = 0, 1, 2 is an
orthogonal set with respect to the innerproduct (1.7).

5.5 Representation via Bauch’s basis solutions

The modified-basis solutions share a similar structure with Bauch’s basis solutions
that leads to analogous numerical results as shown above. In addition, the construction
of generalized Kolosov-Muskhelishvili formulae are based on the Papkovic-Neuber solution
while the method of Bauch is a very different approach. Our interest is to find a relation
between these methods. In particular, a representation of the modified-basis solutions via
Bauch’s basis solutions will be investigated. Since the modified-basis and Bauch’s basis
solutions form two different bases, one system can be represented by the other. What we
concentrate on is a closed-representation or in other words, if modified-basis solutions can
be derived from Bauch’s basis solutions in a constructive way.

The construction of Bauch’s basis solutions Gmn,j leads to the relation

Gmn,j + β x Sc(∂ Gmn,j) = Hm
n ej,

with m = 0, . . . , 2n and j = 0, 1, 2. Remark that the system of solid spherical harmonic
functions

{Hm
n ej : m = 0, . . . , 2n; j = 0, 1, 2} (5.15)

forms an orthogonal basis of the space of A-valued harmonic homogeneous polynomials
of degree n. Let u be a solution in the set of modified-basis solutions. Due to the work
of Bauch, the mapping

f(u) = u + β x Sc(∂ u)

is a bijective linear mapping and it defines a harmonic function w = f(u). Suppose that
u is an A-valued homogeneous polynomial of degree n, so is w. Thus w can be written
as a finite sum of polynomials in (5.15):

w =
2∑
j=0

2n∑
m=0

hmn,jHm
n ej,

where the coefficients hmn,j are given by

hmn,j =
〈w,Hm

n ej〉L2(S+;R)

‖Hm
n ‖2

L2(S+)

.

Applying the inverse mapping f−1 to w, one obtains the representation

u = f−1(f(u)) =
2∑
j=0

2n∑
m=0

hmn,j Gmn,j.
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For example, we have

2µu(0,X 0,1
n , 0) =

n+ 1

2
G0
n,0 −

1

2
G1
n,1 −

1

2
Gn+1
n,2 ,

2µu(0,X 1,1
n , 0) =

n+ 2

2
G1
n,0 +

[
c1
n G0

n,1 −
1

4
G2
n,1

]
− 1

4
Gn+2
n,2 ,

2µu(0,Xm,1
n , 0) =

n+m+ 1

2
Gmn,0 +

[
cmn Gm−1

n,1 −
1

4
Gm+1
n,1

]

−
[
cmn Gn+m−1

n,2 +
1

4
Gn+m+1
n,2

]
,

2µu(0,X n,1
n , 0) =

2n+ 1

2
Gnn,0 + cnn Gn−1

n,1 − cnn G2n−1
n,2 ,

2µu(0,X n+1,1
n , 0) = cn+1

n Gnn,1 − cn+1
n G2n

n,2,

2µu(0,Y1,1
n , 0) =

n+ 2

2
Gn+1
n,0 −

1

4
Gn+2
n,1 +

[
c1
n G0

n,2 +
1

4
G2
n,2

]
,

2µu(0,Ym,1n , 0) =
n+m+ 1

2
Gn+m
n,0 +

[
cmn Gn+m−1

n,1 − 1

4
Gn+m+1
n,1

]

+

[
cmn Gm−1

n,2 +
1

4
Gm+1
n,2

]
,

2µu(0,Yn,1n , 0) =
2n+ 1

2
G2n
n,0 + cnn G2n−1

n,1 + cnn Gn−1
n,2 ,

2µu(0,Yn+1,1
n , 0) = cn+1

n G2n
n,1 + cn+1

n Gnn,2,
for m = 2, . . . , n− 1.

In Figure 5.4 we present a calculation for the case of polynomials of degree n = 7. The
black squares express non-zero coefficients. It can be proved that a modified-basis solution
is represented by at most 5 Bauch’s basis functions. Inversely, a Bauch’s basis solution
is represented by at most 6 modified-basis solutions as shown in the figure. Notice that
calculating coefficients hmn,j is quite long but rather straightforward.

The above technique suggests a Fourier-type series expansion for the displacement
field u with respect to Bauch’s basis solutions Gmn,j. In principle, to represent a function
as a Fourier series one should get informed about a complete orthonormal system. Un-
fortunately, all existing systems of basis solutions of the Lamé-Navier equation are not
orthogonal. To obtain a Fourier series of u, one must firstly apply an orthogonalization
such as Gram-Schmidt process to a given complete system, then calculate Fourier coeffi-
cients. Such a process may be time-consuming and unstable. Based on the approach to
represent modified-basis solutions by Bauch’s basis solutions, one can introduce a Fourier-
type series for displacements. That is if u ∈ L2(S+)∩∆∗ then it can be represented by a
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Figure 5.4: Coefficients hmn,j

Fourier-type series, if the series converges, as follows:

u =
∞∑
n=0

2∑
j=0

2n∑
m=0

amn,j Gmn,j,

where

amn,j =
〈w,Hm

n ej〉L2(S+;R)

‖Hm
n ‖2

L2(S+)

with w = u + β x Sc(∂ u) and Hm
n are solid spherical harmonics.

We end this chapter by an observation based on Kolosov-Muskhelishvili formulae that
all anti-monogenic functions are solutions of the Lamé-Navier equation (5.1). With this
type of solutions, the sum of the normal stresses is vanishing. This leads to the question
on the possibility of using ψ-hyperholomorphic functions in modeling of elasticity.



Conclusions and Outlook

Quaternionic analysis is considered as a generalization of complex analysis and a re-
finement of harmonic analysis, in which monogenic functions play a central role. Mono-
genic functions are solutions of generalized Cauchy-Riemann operators or Dirac operators
which are conventionally defined based on the set of orthonormal vectors {e0, e1, e2, e3}
in R4. A generalization of this approach is the use of a structural set {ψ0, ψ1, ψ2, ψ3} ⊂ H
which satisfies the multiplication rules of quaternionic analysis: ψi ψj+ψj ψi = 2 δij (i, j =
0, . . . , 3). As a result, the theories of ψ-hyperholomorphic functions were developed. Many
researches showed that these theories are not simple modifications of the monogenic func-
tion theories. They enrich the knowledge of monogenic function theories and also provide
applications in mathematics, physics and engineering.

The first part in the thesis (Chapter 2, Section 2) was to answer the question: which
properties of holomorphic functions are the most important properties to generalize to
higher dimensions. The approach based on generalized Cauchy-Riemann or Dirac op-
erators led to the theories of monogenic functions. Similar results were also found in
connection with the definition of hyperderivability. From the geometric point of view,
there are still some problems. It is well known that in Rn (n > 2) only Möbius transform-
ations are conformal mappings and they cannot be represented by monogenic functions.
Later on, Malonek introduced the concept of M-conformality (M- stands for monogenic)
to characterize monogenic mappings. The trials by Haefeli and Morais to find visible
geometric characterizations of M-conformal mappings showed the relation with a special
kind of ellipsoids. An M-conformal mapping will map infinitesimal balls to ellipsoids with
the property that the length of one semiaxis is equal to the sum of the lengths of two
other semiaxes. However the inverse theorem does not hold. We proved that the inverse
problem can be solved within the space of ψ-hyperholomorphic functions with a structural
set ψ. In other words, if one generalizes the concept of holomorphic functions to higher
dimensions using the local geometric property, one obtains ψ-hyperholomorphic functions.
In addition, the structural set ψ can vary with position, i.e. ψ = ψ(x), x ∈ R3 and an
example of varying structural sets was given in the case of the reciprocal of a monogenic
function (Chapter 2, Section 3).

This was the first time that an approach based on the local geometric property was
used to study the composition of a monogenic function and a Möbius transformation
(Chapter 2, Section 4). In fact such a composition is not monogenic. A monogenic func-
tion can be composed by multiplying a factor on the left-hand side of the composition
and the factor is called conformal weight factor. Due to the aforementioned local geo-
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metric characterization, we proved that the composition of a monogenic function and a
Möbius transformation is a ψ-hyperholomorphic function. Notice that monogenic func-
tions are also ψ-hyperholomorphic, where the structural set ψ consists of the standard
orthonormal vectors. One can say that the local geometric property of monogenic func-
tions is invariant under conformal mappings. This observation is analogous to the case of
holomorphic functions in the complex plane. To verify the result, the structural set was
established explicitly from the Möbius transformation and the conformal weight factor was
re-constructed from this structural set. This explanes the role of the conformal weight
factor as a resistance against the change of the standard orthonormal basis.

A global mapping problem concerned the Riemann’s mapping theorem in complex
analysis was asked if one can map a simply connected domain onto the unit ball in R3.
Techniques used in complex analysis are not applicable because of many reasons, for
example, a product of two monogenic functions is no longer monogenic. Several attempts
have been done so far by Bock, Falcão, Gürlebeck, Kraußhar, Malonek, among others to
solve the problem based on a 3D Bergman kernel method. This method is constructive
and it is expected that the obtained mapping satisfies properties: monogenic, from R3 to
R3 and maps a given domain to a ball. Some properties were already tested by numerical
experiments. Basically, using quaternion-valued functions the constructed mapping was a
function from R3 to R4. In approximation the last component of the mapping tended to
zero but no theoretical investigation was done. The aim of the study in the case of oblate
spheroidal domains was to find a theoretical answer (Chapter 3, Section 5). It was proved
that the constructed mapping by the 3D Bergman kernel method in the case of oblate
spheroidal domains is a mapping in R3. Moreover some numerical results were given.
Like in the general case the mapping problem is not completely solved, i.e. not all desired
properties have been proved. However the result with oblate spheroidal monogenics is a
step forward because a part of the mapping problem has been worked out.

The global mapping problem was studied based on the construction of oblate spher-
oidal monogenics (Chapter 3, Section 1). Apart from this application, such a construction
is also important to deal with problems in several scientific areas such as in astronomy and
astrophysics, in geodesy and geophysics or in electrical engineering. The recurrence for-
mulae, the closed-form in Cartesian coordinates and the L2-norm of these functions were
given explicitly (Chapter 3, Section 2-4). These results are helpful for fast and stable
computation. For a complete system in a Hilbert space, two most important properties
are the orthogonality and the Appell property. These properties were already shown in
the case of spherical domains and this observation was expected to be true for an arbitrary
domain. We proved that the existence of both properties is not possible in the case of
oblate spheroidal domains (Chapter 3, Section 1), i.e. in general.

In connection with the harmonic function theory, additive decompositions of paravector-
valued harmonic functions in R3 were studied. It is well known that a harmonic function
can be written as the sum of a holomorphic (monogenic) function and an anti-holomorphic
(-monogenic) function for C- (or H-) valued functions. However this additive decomposi-
tion does not hold for A-valued functions because the set A does not form an algebra. A
possible decomposition was introduced by Alvarez and Porter using contragenic functions
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which are not null solutions of a linear first order partial differential operator (Chapter
4, Section 1). To decompose the space of A-valued harmonic functions by three sub-
spaces of null solutions of generalized Cauchy-Riemann operators, we proved that ψ-
hyperholomorphic functions can be used instead of contragenic functions, provided that
the structural set ψ is different from the standard one {e0, e1, e2} and its conjugate
(Chapter 4, Section 2-3). The additive decomposition was also extended to the exterior
of a bounded domain (Chapter 4, Section 4).

Finally, a method based on ψ-hyperholomorphic functions was applied to solve 3-
dimensional elasticity problems. In the 2-dimensional case, the displacement and the
stress field are represented by Kolosov-Muskhelishvili formulae with the aid of two holo-
morphic functions. Recently, a generalized Kolosov-Muskhelishvili formula for 3D dis-
placements was introduced by Bock using H-valued monogenic functions. This formula
helps to overcome the uniqueness problem proposed by the Papkovic-Neuber solution.
In particular, to construct a basis for the space of solutions of the Lamé-Navier equa-
tion one has to solve a system of additional linear equations. Using the approach of ψ-
hyperholomorphicA-valued functions we established an alternative Kolosov-Muskhelishvili
formula for the displacement field (Chapter 5, Section 3). Consequently, a basis for the
space of solutions of the Lamé-Navier equation was obtained directly without solving
any additional conditions. Verifying the convergence property of this basis and the
stability property of different methods in approximation showed that methods of ψ-
hyperholomorphic functions offer a reasonable technique in dealing with elasticity prob-
lems (Chapter 5, Section 4).

The study of ψ-hyperholomorphic functions results in different viewpoints for old
problems in quaternionic analysis and gives solutions for unsolved problems arising from
classical monogenic function theories. There are still many problems concerned with this
research. For example, one question is about a non-constant structural set ψ. It can be
pointed out that the corresponding ψ-Cauchy-Riemann operator ψD does not factorize
the Laplace operator ∆. A problem on finding a type ∆′ of linear second order partial
differential operators so that it is decomposed as ∆′ = ψD ψD, can be proposed. Another
question is about a global mapping property if one can map a simply connected domain
onto a ball in R3 by ψ-hyperholomorphic mappings. With a non-constant ψ, the set of
ψ-hyperholomorphic functions is much larger than the set of monogenic functions and
the chance for proving such a mapping will be better. Modeling of elasticity by means
of ψ-hyperholomorphic functions is also an interesting study. By finding the interpret-
ations for mechanical quantities or the type of boundary value problems can be solved
completely by ψ-hyperholomorphic functions, one could demonstrate the significance of
hypecomplex methods for the treatment of 3D elasticity problems. The research line on
ψ-hyperholomorphic functions is potential and it can provide more important results in
theory and practice in the near future.
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1192.

[20] Bock S., Gürlebeck K., Legatiuk D., Nguyen H.M., ψ-Hyperholomorphic Functions
and a Kolosov-Muskhelishvili Formula, Mathematical Methods in the Applied Sci-
ences, (2015), DOI: 10.1002/mma.3431.

[21] Brackx F., Delanghe R., Sommen F., Clifford Analysis, Pitman Publishing, Boston-
London-Melbourne, 1982.

[22] Brackx F., Delanghe R., Sommen F., On conjugate harmonic functions in Euclidean
space, Math. Meth. Appl. Sci., 25 (2002), 1553–1562.

[23] Brackx F., De Schepper H., Conjugate Harmonic Functions in Euclidean Space: a
Spherical Approach, Computational Methods and Function Theory, 6 (2006), 165–
182.
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