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Abstract

Nanostructured materials are extensively applied in many fields of ma-
terial science for new industrial applications, particularly in the automo-
tive, aerospace industry due to their exceptional physical and mechani-
cal properties. Experimental testing of nanomaterials is expensive, time-
consuming, challenging and sometimes unfeasible. Therefore, computa-
tional simulations have been employed as alternative method to predict
macroscopic material properties.

The behavior of polymeric nanocomposites (PNCs) are highly complex.
The origins of macroscopic material properties reside in the properties
and interactions taking place on finer scales. It is therefore essential to
use multiscale modeling strategy to properly account for all large length
and time scales associated with these material systems, which across many
orders of magnitude. Numerous multiscale models of PNCs have been es-
tablished, however, most of them connect only two scales. There are a few
multiscale models for PNCs bridging four length scales (nano-, micro-
, meso- and macro-scales). In addition, nanomaterials are stochastic in
nature and the prediction of macroscopic mechanical properties are in-
fluenced by many factors such as fine-scale features. The predicted me-
chanical properties obtained by traditional approaches significantly devi-
ate from the measured values in experiments due to neglecting uncertainty
of material features. This discrepancy is indicated that the effective macro-
scopic properties of materials are highly sensitive to various sources of
uncertainty, such as loading and boundary conditions and material charac-
teristics, etc., while very few stochastic multiscale models for PNCs have
been developed. Therefore, it is essential to construct PNC models within
the framework of stochastic modeling and quantify the stochastic effect of
the input parameters on the macroscopic mechanical properties of those
materials.

This study aims to develop computational models at four length scales
(nano-, micro-, meso- and macro-scales) and hierarchical upscaling ap-
proaches bridging length scales from nano- to macro-scales. A framework
for uncertainty quantification (UQ) applied to predict the mechanical prop-
erties of the PNCs in dependence of material features at different scales is
studied. Sensitivity and uncertainty analysis are of great helps in quantify-
ing the effect of input parameters, considering both main and interaction



effects, on the mechanical properties of the PNCs. To achieve this major
goal, the following tasks are carried out:

At nano-scale, molecular dynamics (MD) were used to investigate de-
formation mechanism of glassy amorphous polyethylene (PE) in depen-
dence of temperature and strain rate. Steered molecular dynamics (SMD)
were also employed to investigate interfacial characteristic of the PNCs.
At mico-scale, we developed an atomistic-based continuum model repre-
sented by a representative volume element (RVE) in which the SWNT’s
properties and the SWNT/polymer interphase are modeled at nano-scale,
the surrounding polymer matrix is modeled by solid elements. Then, a
two-parameter model was employed at meso-scale. A hierarchical mul-
tiscale approach has been developed to obtain the structure-property re-
lations at one length scale and transfer the effect to the higher length
scales. In particular, we homogenized the RVE into an equivalent fiber.
The equivalent fiber was then employed in a micromechanical analysis
(i.e. Mori-Tanaka model) to predict the effective macroscopic properties
of the PNC. Furthermore, an averaging homogenization process was also
used to obtain the effective stiffness of the PCN at meso-scale.

Stochastic modeling and uncertainty quantification consist of the follow-
ing ingredients:

• Simple random sampling, Latin hypercube sampling, Sobol’ quasi-
random sequences, Iman and Conover’s method (inducing correla-
tion in Latin hypercube sampling) are employed to generate inde-
pendent and dependent sample data, respectively.

• Surrogate models, such as polynomial regression, moving least squares
(MLS), hybrid method combining polynomial regression and MLS,
Kriging regression, and penalized spline regression, are employed as
an approximation of a mechanical model. The advantage of the sur-
rogate models is the high computational efficiency and robust as they
can be constructed from a limited amount of available data.

• Global sensitivity analysis (SA) methods, such as variance-based
methods for models with independent and dependent input param-
eters, Fourier-based techniques for performing variance-based meth-
ods and partial derivatives, elementary effects in the context of local
SA, are used to quantify the effects of input parameters and their in-
teractions on the mechanical properties of the PNCs. A bootstrap
technique is used to assess the robustness of the global SA methods
with respect to their performance.



In addition, the probability distribution of mechanical properties are deter-
mined by using the probability plot method. The upper and lower bounds
of the predicted Young’s modulus according to 95 % prediction intervals
were provided.

The above-mentioned methods study on the behaviour of intact materials.
Novel numerical methods such as a node-based smoothed extended finite
element method (NS-XFEM) and an edge-based smoothed phantom node
method (ES-Phantom node) were developed for fracture problems. These
methods can be used to account for crack at macro-scale for future works.

The predicted mechanical properties were validated and verified. They
show good agreement with previous experimental and simulations results.





Contents

1 Introduction 1

2 Literature review 7
2.1 Molecular dynamics simulations . . . . . . . . . . . . . . . . . . . . 7

2.1.1 United atom model and Dreiding potential . . . . . . . . . . . 7
2.1.2 AIREBO potential . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 MD simulations for polymer . . . . . . . . . . . . . . . . . . 9
2.1.4 Steered molecular dynamics . . . . . . . . . . . . . . . . . . 11

2.2 Continuum methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Nano-scale model . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Micro-scale model . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Meso-scale model . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.4 Macro-scale model . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Homogenization technique . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Equivalent fiber . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Rule of mixture (ROM) and inverse rule of mixture (IROM) . 19
2.3.3 Effective elastic material properties . . . . . . . . . . . . . . 20

2.4 Finite element method for fracture mechanics . . . . . . . . . . . . . 20
2.4.1 A short review of finite element method . . . . . . . . . . . . 20
2.4.2 A brief description of XFEM . . . . . . . . . . . . . . . . . . 21
2.4.3 A brief description of phantom-node method . . . . . . . . . 22
2.4.4 Brief on the node-based smoothed FEM (NS-FEM) . . . . . . 24
2.4.5 Brief on edge-based strain smoothing method in finite elements 27

2.5 Design of experiments (DOE) . . . . . . . . . . . . . . . . . . . . . 28
2.5.1 Monte Carlo sampling (MCS) . . . . . . . . . . . . . . . . . 28
2.5.2 Latin hypercube sampling (LHS) . . . . . . . . . . . . . . . . 29
2.5.3 Sobol’ quasi-random sequences . . . . . . . . . . . . . . . . 29
2.5.4 Inducing correlation in Latin hypercube sampling . . . . . . . 30

2.6 Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7.1 The ANOVA-representation . . . . . . . . . . . . . . . . . . 32

x



CONTENTS

2.7.2 The variance-based sensitivity indices . . . . . . . . . . . . . 32
2.8 Sensitivity analysis of model response with uncorrelated input param-

eters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8.1 Best practices for computing Si and STi . . . . . . . . . . . . 33
2.8.2 Computational scheme for ST i . . . . . . . . . . . . . . . . . 35
2.8.3 The method of slices . . . . . . . . . . . . . . . . . . . . . . 36
2.8.4 Fourier amplitude sensitivity test (FAST) . . . . . . . . . . . 36
2.8.5 Extended Fourier amplitude sensitivity test (EFAST) . . . . . 38
2.8.6 Random balance design method . . . . . . . . . . . . . . . . 39
2.8.7 Effective algorithm for sensitivity indices . . . . . . . . . . . 40

2.8.7.1 First-order sensitivity indices . . . . . . . . . . . . 40
2.8.7.2 Higher order effects . . . . . . . . . . . . . . . . . 41

2.9 Sensitivity analysis of model response with correlated input parameters 42
2.9.1 Correlated input parameters . . . . . . . . . . . . . . . . . . 42
2.9.2 Improvements of Fourier amplitude sensitivity test to models

with correlated parameters (IFAST) . . . . . . . . . . . . . . 43
2.9.3 Variance decomposition by regression with correlated input . 44
2.9.4 Sampling from the conditional distribution (reordering) . . . . 46
2.9.5 Extension of the matrix combination approach . . . . . . . . 46
2.9.6 Extension for regression based indices . . . . . . . . . . . . . 48
2.9.7 Extension of Sobol’ approach for models with correlated in-

puts (ESACIs) . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.9.8 Variance-based sensitivity indices for models with correlated

inputs (VBCIs) . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.9.8.1 Dependences among random inputs . . . . . . . . . 50
2.9.8.2 Orthogonalization of the correlated inputs . . . . . 50
2.9.8.3 Interpretation of the sensitivity indices . . . . . . . 51
2.9.8.4 Computational issues . . . . . . . . . . . . . . . . 51

2.10 Sensitivity analysis based on coefficients of determination . . . . . . 51
2.11 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.12 Elementary effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.12.1 The sampling strategy for elementary effects . . . . . . . . . 55
2.12.2 The computation of the sensitivity measures . . . . . . . . . . 55

2.13 Surrogate models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.13.1 Polynomial regression model . . . . . . . . . . . . . . . . . . 56
2.13.2 Moving least squares (MLS) . . . . . . . . . . . . . . . . . . 58
2.13.3 Hybrid algorithm . . . . . . . . . . . . . . . . . . . . . . . . 59
2.13.4 Kriging regression . . . . . . . . . . . . . . . . . . . . . . . 59

2.13.4.1 Maximum likelihood estimation . . . . . . . . . . . 59
2.13.4.2 Kriging prediction . . . . . . . . . . . . . . . . . . 60

2.13.5 Nonparametric regression model . . . . . . . . . . . . . . . . 61

xi



CONTENTS

2.13.5.1 Cross-Validation . . . . . . . . . . . . . . . . . . . 61
2.13.5.2 Penalized spline regression . . . . . . . . . . . . . 62

2.14 Normalization of the input . . . . . . . . . . . . . . . . . . . . . . . 64

3 Stochastic predictions of bulk properties of amorphous polyethylene based
on molecular dynamics simulations 65
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2 Molecular dynamics method . . . . . . . . . . . . . . . . . . . . . . 66
3.3 Molecular dynamics simulation results . . . . . . . . . . . . . . . . . 66
3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4.1 Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Surrogate model . . . . . . . . . . . . . . . . . . . . . . . . 77
3.4.3 Partial derivatives . . . . . . . . . . . . . . . . . . . . . . . . 81
3.4.4 Elementary effects . . . . . . . . . . . . . . . . . . . . . . . 84
3.4.5 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . 85

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4 Stochastic predictions of interfacial characteristic of polymeric nanocom-
posites 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Molecular dynamics model . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.1 Potential functions and parameters . . . . . . . . . . . . . . . 93
4.2.2 Pull-out simulations . . . . . . . . . . . . . . . . . . . . . . 94

4.3 Molecular dynamics simulation results . . . . . . . . . . . . . . . . . 97
4.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Derivative-based approach . . . . . . . . . . . . . . . . . . . 102
4.4.2 Elementary effects . . . . . . . . . . . . . . . . . . . . . . . 107
4.4.3 Sensitivity analysis based on coefficients of determination . . 111
4.4.4 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . 112

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5 Uncertainty quantification for multiscale modeling of polymer nanocom-
posites with correlated parameters 115
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Multiscale model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.2.1 Nano-scale model . . . . . . . . . . . . . . . . . . . . . . . . 117
5.2.2 Micro-scale model . . . . . . . . . . . . . . . . . . . . . . . 118
5.2.3 Meso-scale model . . . . . . . . . . . . . . . . . . . . . . . 120
5.2.4 Macro-scale model . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Stochastic modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

xii



CONTENTS

5.4.1 Scatter plots . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.4.2 Covariance matrix . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.3 Surrogate model . . . . . . . . . . . . . . . . . . . . . . . . 128
5.4.4 FAST and IFAST methods . . . . . . . . . . . . . . . . . . . 129
5.4.5 Variance decomposition by regression with correlated input . 130
5.4.6 Sampling from the conditional distribution (reordering) . . . . 131
5.4.7 Extension of the matrix combination approach . . . . . . . . 132
5.4.8 Extension for regression based indices . . . . . . . . . . . . . 132
5.4.9 Extension of Sobol’ approach for models with correlated in-

puts (ESACIs) . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.4.10 Variance-based sensitivity indices for models with correlated

inputs (VBCIs) . . . . . . . . . . . . . . . . . . . . . . . . . 134
5.4.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6 A unified framework for stochastic predictions of mechanical properties
of polymeric nanocomposites 139
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.2 Model for PCN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.2.1 RVE definition . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . 142
6.2.3 RVE generation algorithm . . . . . . . . . . . . . . . . . . . 143
6.2.4 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.3 Stochastic input parameters . . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Global sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 145
6.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7 A node-based smoothed extended finite element method (NS-XFEM) for
fracture analysis 163
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.2 Nodal-based smoothed extended finite element method (NS-XFEM) . 165

7.2.1 Displacement and Strain Field . . . . . . . . . . . . . . . . . 165
7.2.2 Weak form and discrete equation . . . . . . . . . . . . . . . . 168
7.2.3 Numerical integration . . . . . . . . . . . . . . . . . . . . . 169

7.2.3.1 Numerical integration for the XFEM. . . . . . . . . 169
7.2.3.2 Numerical integration for the NS-XFEM. . . . . . . 170

7.2.4 Stress intensity factor . . . . . . . . . . . . . . . . . . . . . . 171
7.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.3.1 Plate with edge-crack under tension . . . . . . . . . . . . . . 173
7.3.2 Plate with edge-crack under shear . . . . . . . . . . . . . . . 176

xiii



CONTENTS

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8 A phantom-node method with edge-based strain smoothing for linear elas-
tic fracture mechanics 181
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.2 Edge-based strain smoothing phantom node method . . . . . . . . . . 183

8.2.1 Displacement and strain field . . . . . . . . . . . . . . . . . . 183
8.2.2 Weak formulation and discretized equation . . . . . . . . . . 187
8.2.3 Crack growth and stress intensity factor . . . . . . . . . . . . 187

8.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 188
8.3.1 Sheet with an edge-crack under uniaxial tension . . . . . . . . 188
8.3.2 Sheet with edge-crack under shear . . . . . . . . . . . . . . . 193
8.3.3 Crack growth simulation in a double cantilever beam . . . . . 198

8.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

9 Conclusions 205
9.1 Summary of achievements . . . . . . . . . . . . . . . . . . . . . . . 205
9.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

References 208

Curriculum Vitae 230

xiv





List of Figures

1.1 Multiscale modeling diagram for PNCs. . . . . . . . . . . . . . . . . 3

2.1 Undeformed (left) and deformed (right) (100% strain) representative
volume elements built for PE. . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Stress-strain curves for a glassy PE system (10 chains, 1000-units) de-
formed in uniaxial tension at a strain rate of 10−5 1/fs and temperature
of 250 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Pull-out SWCNT from PE matrix using SMD simulations. The green
boxes show the edges. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Energy variation during the pull-out of the SWCNT: (top) Total poten-
tial energy, and (bottom) Pull-out energy (PMF). . . . . . . . . . . . 12

2.5 Modeling of nanotubes by the molecular structural mechanics approach.
Molecular mechanics model (top row) and structural mechanics model
(bottom row) (LC03). . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Representative volume element (RVE) with completely randomly ori-
ented, straight fiberss (left) and a SWNT with a global and local coor-
dinate system (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 RVE of SWNTs reinforced polymer at meso-scale. . . . . . . . . . . 16
2.8 Finite element model of half of the RVE at micro-scale and the devel-

opement of the equivalent fiber. . . . . . . . . . . . . . . . . . . . . . 18
2.9 (a) Normal and tangential coordinates for a crack; (b) Polar coordinate

system associated with a crack tip. . . . . . . . . . . . . . . . . . . . 22
2.10 A two dimensional body containing a crack and boundary conditions. 23
2.11 The decomposition of a cracked element into two superimposed ele-

ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.12 Division of problem domain Ω into non-overlapping smoothing do-

mains Ωs
k for xk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.13 Construction of node-based strain smoothing domains and support do-
main wi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.14 Construction of edge-based strain smoothing domains. . . . . . . . . 27
2.15 (a) Monte Carlo, (b) Latin Hypercube and (c) Sobol’ sampling. . . . . 30

xvi



LIST OF FIGURES

2.16 Scatter plots of sampling points in a two-parameters case obtained
from the transformation given by: (a) Equation (2.78), (b) Equation
(2.87), Nr = 1, (c) Equation (2.87), Nr = 2. . . . . . . . . . . . . . . 39

2.17 Sorting-and-shuffling strategy. . . . . . . . . . . . . . . . . . . . . . 41
2.18 (a) Conventional independent FAST sample; (b) reordered sample val-

ues based on X1’s original sample order; (c) reordered sample values
based on X2’s original sample order; and (d) response values from the
reordered sample (based on X1’s original sample order). . . . . . . . 44

2.19 Flowchart of partial derivatives of the surrogate model output w.r.t Xi

(a) when we fix the others and (b) when we vary the others. . . . . . . 53

3.1 Undeformed (left) and deformed (right) (100% strain) representative
volume elements built for PE . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Plot of the relationship between volume evolution and temperature dur-
ing cooling process. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Stress-strain curves for a glassy PE system (10 chains, 1000 units) and
(100 chains, 100 units), respectively, deformed in uniaxial tension at a
temperature of 250 K and strain rate of 10−5 1/fs. . . . . . . . . . . . 69

3.4 Stress-strain curves for a glassy PE system (10 chains, 1000-units) de-
formed in uniaxial tension at a strain rate of 10−5 1/fs and temperature
of 250 K and 100 K, respectively. . . . . . . . . . . . . . . . . . . . . 69

3.5 Stress-strain curves for a glassy PE system (10 chains, 1000 units)
deformed in uniaxial tension at temperature of 250 K, strain rates of
10−5 1/fs and 5× 10−6 1/fs, respectively. . . . . . . . . . . . . . . . 70

3.6 Stress-strain curves for glassy PE systems (10 chains, 1000 units) at a
strain rate of 10−5 1/fs and temperature of 250 K. . . . . . . . . . . . 70

3.7 Stress-strain curves at (a) 250 K and (b) 280 K for quasi-static and
dynamics techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Schematic diagram of all sensitivity assessment methods presented in
this paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Scatter plots of the yield stress (Y) versus the chain length (X1), tem-
perature (X2) and strain rate (X3), respectively. . . . . . . . . . . . . 73

3.10 Scatter plots of the Young’s modulus versus (Y) the chain length (X1),
temperature (X2) and strain rate (X3), respectively. . . . . . . . . . . 74

3.11 Histogram of the Young’s modulus and assumed probability density
functions (PDFs) for different distribution types. . . . . . . . . . . . . 74

3.12 Normal probability plot for the distribution of the Young’s modulus. . 75
3.13 Weibull probability plot for the distribution of the Young’s modulus. . 75
3.14 Log-normal probability plot for the distribution of the Young’s modulus. 76

xvii



LIST OF FIGURES

3.15 The plot of R2 versus the number of samples when polynomial regres-
sion and MLS are used in both cases: the output model are yield stress
(a) and Young’s modulus (b). . . . . . . . . . . . . . . . . . . . . . . 78

3.16 Scatter points and projection surface yield . . . . . . . . . . . . . . . 79
3.17 Scatter points and projection surface mod . . . . . . . . . . . . . . . 80
3.18 Stress-strain curves of two trajectories (left) trajectory 1 and (right)

trajectory 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.19 Stress-strain curves of two trajectories (left) trajectory 3 and (right)

trajectory 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.20 Stress-strain curves of two trajectories (left) trajectory 5 and (right)

trajectory 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.21 Stress-strain curves of two trajectories (left) trajectory 7 and (right)

trajectory 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.1 Cross section of SWCNT/PE composite . . . . . . . . . . . . . . . . 93
4.2 Snap shots of CNT pull-out from SWCNT/PE composite . . . . . . . 94
4.3 The ISS for SWCNT(5,5), SWCNT(10,10) and SWCNT(15,15) at 100
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Chapter 1

Introduction

Motivation
New class of lightweight materials, such as polymers and polymeric nanocomposites
(PNCs), are extensively used in a wide variety of industrial applications, particularly
in the automotive, aerospace industry because of their exceptional physical and me-
chanical properties (Val08, BWH+09). Traditionally, polymer materials have been
reinforced with carbon nanotubes (CNTs) or clays due to their high strength and high
aspect ratio. Theoretical modeling (AJR+99, OGW+03) and experimental measure-
ments (SGA98, QDAR00, ASGR00, KPL08) have shown that the mechanical proper-
ties of the resulting nanocomposites such as strength, modulus and fracture toughness,
to name a few, have been enhanced even at low CNT or clay concentration. From the
experimental point of view, a throughout structural characterization and tailored fabri-
cation of nanomaterials at atomistic level are expensive, time-consuming, challenging
and sometimes unfeasible. Computational simulations offer an excellent tool for the
design of novel materials, and a priori prediction of their macroscopic mechanical
properties.

The behavior of polymers and PNCs is highly complex. None of the single model-
ing strategy has properly accounted for all large length and time scales associated with
these material systems, which across many orders of magnitude (BWH+09, TBW+14).
Coarse grain methods (UT98, FMP02, FTD02, MP02), such as united atom (UA) mod-
els (PYS95, YSM93, LMV+06, MLLM07), have been employed to take various length
and time scales into account in modeling of polymers. Molecular dynamics (MD) sim-
ulations using UA model are used to predict mechanical properties of polyethylene
(PE) in dependence of temperature and strain rate by (CBR04, HTW+10). However,
full molecular simulations are so computationally expensive that they are limited for
the realistic system sizes. Even if state-of-the-art parallel supercomputers are used, we
are only able to tackle for a system of less than one cubic micron according to a limited
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number of atoms (∼ 109) (WM10). Therefore, a hierarchical multiscale approach is
used to predict the macromechnical behavior of polymers and PNCs. Within the hier-
archical modeling, the structure-property relationship at one length scale is established
and their effect is passed to the higher length scales, the information of material from
atomistic to macroscopic levels, hence, is incorporated through sequential simulations.

Numerous multiscale models of polymers and PNCs have been established, how-
ever, most of them connect only two scales, e.g, the equivalent-continuum model de-
veloped by Odegard et al. (OGW+03) incorporates the results of MD simulations
to obtain microscale properties. A molecular structural mechanics approach was em-
ployed by Li and Chou (LC06) to obtain the atomistic structure-property relations
in a continuum framework while reducing computational expense. Fermeglia et al.
(FP07a) proposed a hierarchical procedure for bridging the gap between atomistic and
macroscopic (FEM) modeling passing through mesoscopic simulations. His work is
one of very few models for PNCs bridging more than two scales.

In addition, nanomaterials are stochastic in nature and the prediction of macro-
scopic mechanical properties is influenced by many factors such as fine-scale features
(MCP+07). The effective macroscopic mechanical properties of different realizations
of material structures are uncertain according to spatial distribution of the constituents,
the material parameters, loading and boundary conditions, etc., while very few stochas-
tic multiscale models for PNCs have been developed. Spanos et al. (SK08) developed
a multiscale Monte Carlo method for determining mechanical properties of PNCs.
However, in such a multiscale model, only phase volume fraction was considered as
a random parameter. Also, no methods for uncertainty quantification (UQ) applied to
predict the influence of input parameters at different scales on macroscopic properties
of PNC have been derived so far. Therefore, it is essential to construct PNC models
within the framework of stochastic modeling and quantify the stochastic effect of the
input parameters at different length scales on the macroscopic mechanical properties
of the PNCs.

Objective
The overall aim of this study is to develop computational models at four length scales
(nano-, micro-, meso- and macro-scales) and hierarchical upscaling approaches bridg-
ing length scales from nano to macro-scales as shown in Figure 1.1. A framework
for UQ applied to predict the mechanical properties of PNCs in dependence of mate-
rial features at different scales is studied. To achieve this major goal, the following
objectives are defined:

1. Obtain probability distributions of the model response given probability distri-
butions of the input parameters;
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2. Obtain upper and lower bounds of the predicted material responses;

3. Quantify the effects of input parameters and their interactions on the mechanical
properties of the PNCs;

4. Assess the robustness of the methods in materials modeling via a bootstrap tech-
nique.

θ

r
ϕ

-C
-H

Nanoscale Microscale Mesoscale

Macroscale
Polymer

PNC

Pull-out
simulations

Figure 1.1: Multiscale modeling diagram for PNCs.

Dissertation structure
In chapter 2, theoretical background of methods that have been employed in our studies
is described. At first,the interatomic force fields for the amorphous polyethylene (PE),
the CNT, and the interface between the PE matrix and the CNT (van der Waals interac-
tions) and the MD simulations applied to model PE and PNCs were briefly presented.
Then, a brief description of the analytical and computational continuum modeling is
provided. Finally, the stochastic part including design of experiments (DOE) followed
by sensitivity analysis (SA) methods and aid tool surrogate models are presented.

In chapter 3, we present stochastic predictions of the bulk properties of amorphous
polyethylene. Glassy amorphous polyethylene (PE) systems are simulated using MD
simulations with the united atom model. The stress–strain response of amorphous PE
systems were studied under uniaxial tension. The stress–strain curve was verified and
it is shown that the results are quantitatively in agreement with the previous simula-
tions and experimental results. The effect of the chain length, the temperature and
the strain rate on the yield stress and the Young’s modulus of glassy polyethylene is
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systematically studied. Based on our results, the Young’s modulus is best character-
ized by the Weibull distribution. Further, a sensitivity analysis (SA) is carried out in
order to quantify the influence of the uncertain input parameters on the predicted yield
stress and Young’s modulus. The SA is based on response surface (RS) models (poly-
nomial regression and moving least squares). We use partial derivatives (local SA)
and variance-based methods (global SA) where we compute first-order and total-effect
sensitivity indices. In addition, we use the elementary effects method on the mechani-
cal model. All stochastic methods predict that the key parameter influencing the yield
stress and Young’s modulus is the temperature, followed by the strain rate.

In chapter 4, MD simulations are employed to predict interfacial characteristic of
polymeric nanocomposites. The interfacial region is the key for load transfer mecha-
nism between fiber and matrix. It is a crucial factor for reinforcing and strengthening
the PNC. Thus, the interfacial properties were studied by single fiber pull-out simula-
tions using steered molecular dynamics (SMD) method. The effect of the single-walled
carbon nanotube (SWCNT) radius, the temperature and the pulling velocity on inter-
facial shear stress (ISS) is studied. We quantify the influence of the uncertain input
parameters on the predicted ISS via sensitivity analysis (SA). First, partial derivatives
in the context of averaged local SA are computed. The SA is based on surrogate
models (polynomial regression, moving least squares (MLS) and hybrid of quadratic
polynomial and MLS regressions). Next, the elementary effects are determined on the
mechanical model to identify the important parameters in the context of averaged local
SA. Finally, the approaches for ranking of variables (SA based on coefficients of deter-
mination) and variance-based methods are carried out based on the surrogate model in
order to quantify the global SA. All stochastic methods predict that the key parameters
influencing the ISS is the SWCNT radius followed by the temperature and the pulling
velocity, respectively.

In chapter 5, we propose a stochastic multiscale method to quantify the correlated
key-input parameters influencing the mechanical properties of polymer nanocompos-
ites (PNCs). The variations of parameters at nano-, micro-, meso- and macro-scales
are connected by a hierarchical multiscale approach. The first-order and total-effect
sensitivity indices are determined first. The input parameters include the single-walled
carbon nanotube (SWNT) length, the SWNT waviness, the agglomeration and volume
fraction of SWNTs. Stochastic methods consistently predict that the key parameters
for the Young’s modulus of the composite are the volume fraction followed by the
averaged longitudinal modulus of equivalent fiber (EF), the SWNT length, and the av-
eraged transverse modulus of the EF, respectively. The averaged longitudinal modulus
of the EF is estimated to be the most important parameter with respect to the Poisson’s
ratio followed by the volume fraction, the SWNT length, and the averaged transverse
modulus of the EF, respectively. On the other hand, the agglomeration parameters have
an insignificant effect on both Young’s modulus and Poisson’s ratio compared to other
parameters. The SA also reveals the correlation between the input parameters and its
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effect on the mechanical properties.
In chapter 6, we propose a stochastic framework based on sensitivity analysis (SA)

methods to quantify the key-input parameters influencing the Young’s modulus of
polymer clay nanocomposites (PCNs). The input parameters include the clay volume
fraction, clay aspect ratio, clay curvature, clay stiffness and epoxy stiffness. Finite
element (FE) analysis is used to predict the stiffness of fully exfoliated PCNs. The
obtained Young’s modulus shows agreement with experimental results. The probabil-
ity distribution of the Young’s modulus is investigated and best characterized by the
Log-normal distribution. Furthermore, the SA methods are performed. All stochastic
methods predict that the key parameters for the Young’s modulus are the epoxy stiff-
ness followed by the clay volume fraction. On the other hand, the clay aspect ratio,
clay curvature and the clay stiffness have an insignificant effect on the Young’s mod-
ulus of PCNs. Besides the results on the sensitivity of the input parameters, this work
includes a comparative study of a series of stochastic methods to predict mechanical
properties of PCNs with respect to their performance.

In chapter 7 and chapter 8, we describe a node-based smoothed extended finite ele-
ment method (NS-XFEM) and a phantom-node method with edge-based strain smooth-
ing. These models are applied at macro-scale to analyze fracture problems of 2D elas-
ticity. The node-based smoothed finite element method (NS-FEM) is incorporated
into the extended finite element method (XFEM) to form a novel numerical method
NS-XFEM. In this way, we avoid integration of the stress singularity at the crack tip.
It is also not necessary to divide elements cut by cracks when we replace interior
integration by boundary integration, simplifying integration of the discontinuous ap-
proximation. The key advantage of the NS-XFEM is that it provides more accurate
solutions compared to the XFEM-T3 element. The phantom-node method with edge-
based strain smoothing method is a numerical procedure based on the combination of
an edge-based smoothed finite element (ES-FEM) with a phantom-node method. The
phantom-node method allows modeling discontinuities at an arbitrary location in the
mesh. The ES-FEM model owns a close-to-exact stiffness that is much softer than
lower-order finite element methods (FEM). Taking advantage of both the ES-FEM and
the phantom-node method, we introduce an edge-based strain smoothing technique for
the phantom-node method. Numerical results show thatthe proposed methods achieve
high accuracy compared with the extended finite element method (XFEM) and other
reference solutions.

5





Chapter 2

Literature review

2.1 Molecular dynamics simulations
Molecular dynamics (MD) is a computer simulation technique that follows the physical
movements of atoms and molecules through time and space. The trajectories of atoms
and molecules are traced by numerically integrating Newton’s equations of motions.

Fi = miai, i = 1, ..., N (2.1)

where N is the number of atoms in the system, mi is the mass of the atom i, ai =
d2ri/d

2t is its acceleration, and Fi denotes the time-dependent force on atom i. The
forces acting on the atom i are determined from the gradient of the potential, Etotal,
with respect to (w.r.t.) the position vector for an atom pair, ri, as Fi = ∂Etotal/∂ri.

Once the forces on each atom due to the interaction of the other atoms in the system
are determined, the velocity-Verlet algorithm (Ver67) and Gear algorithm (AT87) are
used to numerically integrate the corresponding equations of motion and the dynam-
ics runs within microcanonical NVE (constant number of atoms, constant volume and
constant energy), or canonical NVT (constant number of atoms, volume, and temper-
ature) (Nos84, Hoo85) using a thermostat, isobaric-isothermic NPT (constant number
of atoms, pressure, and temperature) with a barostat ensembles is performed.

2.1.1 United atom model and Dreiding potential
A united atom approximation is utilized in which the methyl groups (i.e.,CH2 monomer)
are represented by a single ”atom” or unit. The effect of the hydrogen atoms on the
polymer configuration is accounted for in the present potentials, while the mass is in-
cluded in the united atom.

In the present simulations, interatomic potential between atoms are described by
the DREIDING potential (MOG90) that has 4 components: bond stretching (r), bond-
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2.1 Molecular dynamics simulations

angle bending (θ), dihedral angle torsion (φ), and van der Waals non-bonded interac-
tions. The total potential energy of the system can be expressed as

Etotal = Eb(r) + Eθ(θ) + Eφ(φ) + Enb(r). (2.2)

The respective energies associated with bond stretching, bond-angle bending and
bond torsion are

Eb =
1

2
kb(r − r0)2; (2.3)

Eθ =
1

2
kθ(cos(θ)− cos(θ0))2; (2.4)

Eφ =
1

2

3∑
i=0

kncos
i(φ); (2.5)

where kb and kθ are the respective stiffness constants for the bond length and bond
angle potentials, r0 and θ0 are the equilibrium bond length and bond angle, respectively,
and the variable ki, i = 1, .., 4 are the coefficients for the dihedral multi-harmonic.
The non-bonded or Van der Waals (vdWs) interactions are given by a Lennard-Jones
potential

Enb =

{
4ε
[
(σ
ε
)12 − (σ

ε
)6
]

r ≤ rc
0 r > rc

(2.6)

where r is the distance between the two united atoms for a particular simulation step, σ
is the distance at zero energy, and ε is the energy (Lennard-Jones) well depth. A cutoff
radius rc of 10.5 Å was also applied to the potential. The interactions between united
atoms are described by a force field, whose parameters are summarized in Table 2.1.

2.1.2 AIREBO potential
The adaptive intermolecular reactive empirical bond order (AIREBO) potential in (BSH+02,
Pli95) is adopted to consider the intra-carbon nanotube interactions. The AIREBO po-
tential (E) is an extension of the REBO potential (EREBO) that additionally introduces
intermolecular interactions between non-bonded atoms (ELJ ) and torsional interac-
tions of four consecutive bonded atoms (ETORSION ).

E =
1

2

∑
i

∑
j 6=i

[
EREBO
ij + ELJ

ij +
∑
k 6=i,j

∑
l 6=i,j,k

ETORSION
kijl

]
(2.7)

More details of this potential can be found in (STH00).
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2.1 Molecular dynamics simulations

Table 2.1: United atom model and parameters of the force field, (TWBH11).

θ

r

ϕ
-C
-H

Parameters Values
kb 350 kcal/mol
r0 1.53 Å
kθ 60 kcal/mol/rad2

θ0 1.911 rad
k0 1.736 kcal/mol
k1 -4.490 kcal/mol
k2 0.776 kcal/mol
k3 6.990 kcal/mol
σ 4.01 Å
ε 0.112 kcal/mol

2.1.3 MD simulations for polymer
According to Bouvard et al. (BWH+10), each generated structure (10,000 atoms) is
equilibrated for 100 ps (4t = 1.0 fs) so that the volume and energy of the system
becomes stable, keeping both the temperature T = 500 K and the volume in the
NVT ensemble controlled by the Nose-Hoover’s thermostat (Nos84, Hoo85). Then,
the system is kept at a temperature of T = 500 K and pressure P = 0 atm for 500 ps
(4t = 0.5 fs) in the NPT ensemble. After the process, the system is cooled down
to the given temperature with a cooling rate of 0.8 K/ps by the same NPT process fol-
lowed by further 500 ps NPT ensemble at the desired temperature. These structures
are generated after the equilibration process in a cubic space in order to accurately
calculate the mechanical properties. After the equilibration process, uniaxial tension
tests are performed to obtain the stress-strain response in the NPT ensemble. Figure
2.1 illustrates the undeformed (left) and deformed (right) representative volume ele-
ments. The stress components were computed from the pressure tensor (BC91), which
is defined to be symmetric given by

p =
1

V

N∑
i=1

[
1

mi

pipi + rifi

]
(2.8)

where V is the volume , mi, pi, ri and fi are the respective mass, momentum, position,
and the force on the atom i.

The stress-strain response for glassy amorphous PE system with 10 chains, 1000-
units deformed in uniaxial tension at temperature of 250 K and strain rate of 1× 10−5

1/fs is shown in Figure 2.2.
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2.1 Molecular dynamics simulations

Figure 2.1: Undeformed (left) and deformed (right) (100% strain) representative vol-
ume elements built for PE.

0 0.2 0.4 0.6 0.8 1
0

40

80

120

160

True strain

S
tr

es
s 

(M
P

a)

PE system, 250 K, 10
−5

 1/fs

 

 

Yield

Strain softening
stage           Strain hardening

stage           

Elastic
stage  

10 chains, 1000−units

Figure 2.2: Stress-strain curves for a glassy PE system (10 chains, 1000-units) de-
formed in uniaxial tension at a strain rate of 10−5 1/fs and temperature of 250 K.
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2.1 Molecular dynamics simulations

2.1.4 Steered molecular dynamics
In the first step, LAMMPS (Pli95) was used to perform the equilibration process as
presented above. The equilibration involves four different steps

1. Each generated structure is equilibrated for 100 ps (4t = 1 × 10−4ps) so that
the volume and energy of the system becomes stable.

2. The system is kept at a temperature of T = 500K and pressure P = 1 atm for
500 ps (4t = 5× 10−4ps) in the NPT ensemble

3. The system is cooled down to the desired temperature at a cooling rate of 0.8K/ps.

4. The system is further equilibrated for (4t = 5× 10−4ps) at the desired temper-
ature in the NPT ensemble.

The main idea of steered molecular dynamics (SMD) simulations is to apply an
external force to one or a group of atoms to cause a change in structure in a MD
simulation. The atoms are reorganized in simulation process according to the forced
change in structure. The potentials of mean force (PMF) are calculated as the force is
acted upon the atoms. By applying a moving spring force to the center of mass of the
SWCNT’s atoms, the SWCNT is pulled along its axial (z-axis) direction at a constant
speed while all longitudinal sides of the PE matrix are constrained as shown in Figure
2.3.

Figure 2.3: Pull-out SWCNT from PE matrix using SMD simulations. The green
boxes show the edges.

The restoring force of magnitude is given by (ZZW+13):

F (t) = Kspring (χspring(t)− χpull(t)) (2.9)

where the elastic spring (Kspring = 100eV/Å2) is connected between the tether point
and the center of mass of the SWCNT; χspring and χpull the spring and pulled group
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2.2 Continuum methods

positions, respectively. For constant velocity pulling, the integral over time of the force
projected on the pulling direction is accumulated and then used to compute the PMF
by averaging over multiple independent trajectories along the same pulling path. More
details can be found in (PS04).
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Figure 2.4: Energy variation during the pull-out of the SWCNT: (top) Total potential
energy, and (bottom) Pull-out energy (PMF).

The PMF (pull-out energy) is computed and recorded during the pulling process.
As shown in Figure 2.4, the total potential energy of SWCNT/PE system and pull-out
energy increases linearly with displacement during the pull-out process and levels off
after the SWCNT has been completely pulled out of the matrix. This trend is a good
agreement with previous results in (LL01, GMW+04, LLP+11).

2.2 Continuum methods

2.2.1 Nano-scale model
A single-walled carbon nanotube (SWNT) is modeled as a space-frame structure. The
C−C covalent bonds in the frame-like structure are represented by 3D beam elements.
Nodes representing carbon atoms are used to connect the beam elements to form the
SWNT structure. For covalent systems, the total energy can be obtained as the sum of
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2.2 Continuum methods

energies consisting of bonded and non-bonded interactions (RCC92)

U =
∑

Vr +
∑

Vθ +
∑

Vφ +
∑

Vnb. (2.10)

where Vr, Vθ and Vφ are the energy associated with bond stretching, bond-angle bend-
ing, torsion (dihedral angle and out-of-plane), respectively; Vnb is the energy due to
non-bonded van der Waals interactions, see also Figure 2.5.

Stretching Bending Dihedral
torsion

Out-of-plane
torsion

Tension Bending Torsion

van der Waals

L L L

θ

ϕ
ϕ

r
r

Figure 2.5: Modeling of nanotubes by the molecular structural mechanics approach.
Molecular mechanics model (top row) and structural mechanics model (bottom row)
(LC03).

Under the assumption of small deformation, simple harmonic approximations are
adequate to describe the potential energy (Gel94):

Vr =
1

2
kr(r − r0)2 =

1

2
kr(4r)2, (2.11a)

Vθ =
1

2
kθ(θ − θ0)2 =

1

2
kθ(4θ)2, (2.11b)

Vφ =
1

2
kφ(4φ)2, (2.11c)

where kr, kθ and kφ are the bond stretching force constant, bond angle bending force
constant and torsional resistance, respectively;4r,4θ and4φ denote the bond stretch-
ing increment, the bond angle bending and the angle change of bond twisting, respec-
tively.

Based on structural mechanics, the total strain energy of a uniform beam with
length L, cross-sectional area A and moment of inertia I , subjected to axial load P ,
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2.2 Continuum methods

bending moment M and twisting moment T , respectively, is given by

U =

∫ L

0

1

2

EA

(4L)2
dx+

∫ L

0

1

2

EI

(2α)2
dx+

∫ L

0

1

2

GJ

(4β)2
dx, (2.12)

with4L, α and4β being the corresponding axial stretching deformation, the bending
angle and the twist angle.

Figure 2.5 illustrates the equivalence of molecular mechanics (molecular forces)
and structural mechanics (beam elements) for bonded interactions. It can be shown
(LC03) that the parameters of the beam model (EA, EI and GJ) are related to the
molecular mechanics constants (kr, kθ and kφ) by

EA

L
= kr,

EI

L
= kθ,

GJ

L
= kφ, (2.13)

where kr, kθ and kφ are the bond stretching force constant, bond angle bending force
constant and torsional resistance respectively.

A non-bonded vdW force of the truncated Lennard-Jones (LJ) 6-12 (SR10a, KGR+10)
is used to describe the interphase between the SWNT and the polymer matrix. The
vdW force field is expressed as:

Fvdw = 24
ε

σ

[
2
(σ
r

)13

−
(σ
r

)7
]

(2.14)

2.2.2 Micro-scale model
Several micromechanical models which assume that the constituent phases are con-
tinuous, have been developed to predict the overall properties of a composite. We
employ the micromechanical models to predict the average stiffness of the composite.
The constitutive equation of polymer composite systems reinforced with fibers can be
expressed in terms of the average strain and stress by

〈σ〉 = C〈ε〉. (2.15)

The effective average elastic moduli C is given by (Ben87, SFH+04)

C = (VmCm + VfCfA)(VmI + Vf〈A〉)−1 (2.16)

with I being the fourth-order tensor identity tensor; Cf and Cm denote the fourth-order
elasticity tensor of the fiber and the polymer matrix, respectively; Vf and Vm denote
the volume fractions of the fibers and the matrix. The Eshelby strain-concentration
tensor A relates the average strain εf and εm through the expression

εf = Aεm, (2.17)
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2.2 Continuum methods

and it is determined by

A =
[
I + S(Cm)−1(Cf −Cm)

]−1
. (2.18)

where S is the Eshelby tensor (Esh57). The micromechanics-based Mori Tanaka
method (MT73) was used to predict the effective elastic moduli C of the compos-
ite reinforced by randomly oriented, straight fiber. The orientation distribution of the
fibers in a composite is characterized by a probability density function (PDF) p(α, β)
given by ∫ 2π

0

∫ π/2

0

p(α, β)sinαdαdβ = 1 (2.19)

with two Euler angles α and β as shown in Figure 2.6. If the fibers are completely
randomly oriented, the PDF is p(α, β) = 1/2π.

Fiber

RVE

Figure 2.6: Representative volume element (RVE) with completely randomly oriented,
straight fiberss (left) and a SWNT with a global and local coordinate system (right).

For the composites reinforced with randomly oriented fibers, the effective elastic
moduli C is expressed by Equation (2.16).

2.2.3 Meso-scale model
The Mori-Tanaka method was extended to incorporate the agglomeration in compos-
ites reinforced with randomly oriented fibers illustrated in Figure 2.7. PNCs are con-
sidered as a two-phase media consisting of a hybrid matrix and spherical inclusions.
Two parameters are used by (SFH+04) to describe the agglomeration of EFs:

ξ =
V RV E
inclusion

V RV E
, ζ =

V r
inclusion

V r
, (2.20)

V r = V r
inclusion + V r

m (2.21)
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2.2 Continuum methods

where ξ (agglomeration index) denotes the volume fraction of spherical inclusion with
respect to (w.r.t.) the total volume of the RVE and ζ (dispersion index) denotes the
volume ratio of fibers within the spherical inclusion w.r.t. the total volume of the
fibers ; V RV E

inclusion is the volume of the spherical inclusion in the RVE; V r
inclusion and V r

m

are the volume fibers in the spherical inclusion and in the hybrid matrix, respectively.
According to (SFH+04) assuming the ratio ζ/ξ > 1, the larger the value of ζ , the more
heterogeneous the PNC. If ζ = ξ, no agglomerations exist in the PNC. The average
volume fraction, Vf of the fibers in the PNC is:

Vf =
V r

V RV E
(2.22)

Fiber

Inclusion

VRVE

RVE

Figure 2.7: RVE of SWNTs reinforced polymer at meso-scale.

2.2.4 Macro-scale model
By assuming the transversely isotropic SWNTs are randomly oriented in the spherical
inclusion as illustrated in Figure 2.7, the inclusions behave isotropically. The Mori-
Tanaka method is used to calculate the elastic moduli of the two-phase media. The
Eshelby’s tensor for a spherical inclusion in an isotropic matrix is

S1111 = S2222 = S3333 =
7− 5νout

15(1− νout)
,

S1122 = S2233 = S3311 =
1− 5νout

15(1− νout)
,

S1212 = S2323 = S3131 =
4− 5νout

15(1− νout)

(2.23)
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2.2 Continuum methods

where νout = (3Kout−2Gout)
2(3Kout+Gout

is the Poisson’s ratio of the hybrid matrix. Substituting
S into Equation (2.18) results in the strain concentration tensor A for the EF. The
effective bulk moduli Kin and Kout and the effective shear moduli Gin and Gout of the
effective elastic modulus C in Equation (2.16) are then expressed as:

Kin = Km +
(δr − 3Kmαr)Vfζ

3(ξ − Vfζ + Vfζαr)
,

Kout = Km +
Vf (δr − 3Kmαr)(1− ζ)

3[1− ξ − Vf (1− ζ) + Vf (1− ζ)αr]
,

Gin = Gm +
Vfζ(ηr − 2Gβr)

2(ξ − Vfζ + Vfζβr)
,

Gout = Gm +
Vf (1− ζ)(ηr − 2Gmβr)

2[1− ξ − Vf (1− ζ) + Vf (1− ζ)βr]

(2.24)

where δr, αr, βr, ηr are computed from the Hill’s elastic moduli, kr, lr, pr, mr and nr,
for the fibers and the bulk and shear moduli of the polymer matrix, Km and Gm, as
given in (SFH+04).

αr =
3(Km +Gm) + kr − lr

3(Gm + kr)

βr =
1

5

{
4Gm + 2kr + lr

3(Gm + kr)
+

4Gm

Gm + pr
+

2[Gm(3Km +Gm) +Gm(3Km + 7Gm)]

Gm(3Km +Gm) +mr(3Km + 7Gm)

}
δr =

1

3

[
nr + 2lr +

(2kr + lr)(3Km + 2Gm − lr)
Gm + kr

]
ηr =

1

5

[
2

3
(nr − lr) +

8Gmpr
Gm + pr

+
8mrGm(3Km + 4Gm)

3Km(mr +Gm) +Gm(7mr +Gm)
+

2(kr − lr)(2Gm + lr)

3(Gm + kr)

]
(2.25)

The effective Young’s modulus E and Poisson’s ratio ν of the PNC are obtained
by:

E =
9KG

3K +G
, ν =

3K − 2G

6K + 2G
(2.26)

where K, G are effective bulk and shear modulus of the composite, respectively. They
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2.3 Homogenization technique

Polymer

SWNT

Interphase

(a) (b)

Equivalent fiber

Homogenization

Figure 2.8: Finite element model of half of the RVE at micro-scale and the develope-
ment of the equivalent fiber.

are given by:

K = Kout

1 +
ξ
(
Kin

Kout
− 1
)

1 + α(1− ξ)
(
Kin

Kout
− 1
)
 ,

G = Gout

1 +
ξ
(
Gin

Gout
− 1
)

1 + β(1− ξ)
(
Gin

Gout
− 1
)
 ,

(2.27)

with α = (1+νout)
3(1−νout) , β = 2(4−5νout)

15(1−νout) ; the effective bulk moduliKin andKout; the effective
shear moduli Gin and Gout are given in (SFH+04), respectively.

2.3 Homogenization technique

2.3.1 Equivalent fiber
After obtaining the mechanical properties of the SWNT as presented in subsection
2.2.1, we constructed a representative volume element (RVE) that includes a SWNT
embedded in a polymer matrix modeled by a continuum mechanics approach (LC03).
Isotropic solid elements are used to model the polymer matrix. 3-D nonlinear springs
connecting the C atom on the SWNT and the nodes on the inner surface of the matrix
are used to describe the interphase, see Figure 2.3.1. Subsequently, we homogenized
the RVE into a equivalent fiber (EF) to obtain the micromechanical properties.

We employed the adaptive vdW interaction (AVI) model (SR10b, SR10a, SR10c)
to determine the mechanical properties of the EF. The tensile stress–strain curve is

18



2.3 Homogenization technique

obtained from uniaxial tensile simulations by applying axial displacements to nodes at
the left end and fix the nodes at the other end of the RVE. In this way, we obtained the
longitudinal Young’s modulus and the Poisson’s ratio. To determine the shear modulus
of the EF, we applied a uniform angular displacement at the left end while the nodes
at the other end was fixed. The transverse Young’s modulus is obtained by applying a
uniform internal pressure upon nodes of the SWNT in radial direction.

2.3.2 Rule of mixture (ROM) and inverse rule of mixture (IROM)
Let us consider a model of a composite consisting of the EFs and matrix. The elastic
properties are given by the rule of mixture (ROM) as

E11 = VfE
f
11 + VmE

m

ν12 = Vfν
f
11 + Vmν

m

E22 =
Ef

22E
m

EmVf + Ef
22Vm

G12 =
Gf

12G
m

GmVf +Gf
12Vm

(2.28)

We use the inverse rule of mixture (GHT03) to obtain the elastic properties of the
fiber as follows:

Ef
11 =

E11

Vf
− EmVm

Vf
1

Ef
22

=
1

E22Vf
− Vm
EmVf

1

Gf
12

=
1

G12Vf
− VM
GmVf

νf12 =
ν12

Vf
− νmVm

Vf

(2.29)

where Ef
11, Ef

22, Gf
12, νf12 are the longitudinal modulus, the transverse modulus, the

shear modulus and the Poisson’s ratio of the EF, respectively; E11, E22, G12, ν12 are
the longitudinal modulus, the transverse modulus, the shear modulus and the Poisson’s
ratio of the composite, respectively; Em, Gm, νm are the Young’s modulus, the shear
modulus and the Poisson’s ratio of the matrix, respectively; Vf , Vm are the volume
fraction of the EF and the volume fraction of the matrix, respectively. The EF will be
employed at the meso-scale where the micromechanics equations are applied.
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2.4 Finite element method for fracture mechanics

2.3.3 Effective elastic material properties
Let ϑ be a macroscopic quantity of interest. The ”effective” value of ϑ is determined
by averaging the property over the RVE volume V as

〈ϑ〉 =
1

V

∫
V

ϑ(x)dV, (2.30)

where x is a position vector. Given a stress field σij(xk) and strain field εij(xk), the
volume average (homogenized) of the stress and strain are given by

〈σij〉 =
1

V

∫
V

σij(xk)dV,

〈εij〉 =
1

V

∫
V

εij(xk)dV,

(2.31)

where xk in index notation simply lists components of position. The effective stiffness
for the RVE are defined as

〈σij〉 = Cijkl〈εij〉 (2.32)

Cijkl represents the effective stiffness tensor of an equivalent homogeneous mate-
rial which has the same material properties as the original heterogeneous one (SS 9).

2.4 Finite element method for fracture mechanics

2.4.1 A short review of finite element method
The finite element method (FEM) is a numerical method that approximate the solutions
of differential equations which describe the evolution of the material. The main idea of
FEM is to discretize the continuum domain into a number of elements where adjacent
elements are connected by nodes. By spatially discretizing the domain, partial differ-
ential equations are converted into a set of simultaneous algebraic equations at nodes.
These equations then are solved in the context of Dirichlet (essential) and Neumann
(natural) boundary conditions to find approximate solutions at nodes. Subsequently,
we interpolate a field quantity over the entire structure in piecewise fashion based on
the shape function.

Let us consider a two-dimensional domain discretized into a number of elements.
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2.4 Finite element method for fracture mechanics

Displacement fields (u, v) can be interpolated using the same shape functions such as

u(x) =
4∑

I∈Nfem

NI(x)uI

v(x) =
4∑

I∈Nfem

NI(x)vI

(2.33)

where I is set of all nodes whose support domain associated with a node of the stan-
dard FEM, uI and vI are the nodal degrees of freedom (DOFs), NI are suitable shape
functions. The element strain vector is given by

ε(x) = B(x)d (2.34)

in which d = {u1 v1 u2 v2 ...}T is the nodal DOFs vector. The matrix B is derivatives
of shape functions, determined by

B =

∂N1

∂x
0 ∂N2

∂x
0 ...

0 ∂N1

∂y
0 ∂N2

∂y
...

∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
...

 (2.35)

The element stiffness matrix ke can be determined as

ke =

∫
Ωe

BTCBdΩ (2.36)

where C denotes the constitutive matrix involving material properties, Ωe denotes the
element domain.

2.4.2 A brief description of XFEM
XFEM is based on a local partition of unity. For the case of linear elastic fracture
mechanics (LEFM), two sets of enrichment functions are utilized: (1) a Heaviside
function to account for the jump across the crack faces and (2) asymptotic branch
(near-tip) functions (BB99, RW06):

uh(x) =
∑

I∈Nfem

NI(x) dI︸ ︷︷ ︸
ustandard

+
∑
J∈Nc

NJ(x)H(x) aJ +
∑
K∈Nf

NK(x)
4∑

α=1

Φα(x) bαK︸ ︷︷ ︸
uenr

(2.37)

where NI(x), NJ(x) and NK(x) are finite element shape functions, dI are nodal DOFs
vector associated with node I , aJ and bK are additional nodal DOFs corresponding
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2.4 Finite element method for fracture mechanics

to the Heaviside function H(x) and the near-tip functions, {Φα}16α64, respectively.
Nodes in set N c are such that their support is split by the crack and nodes in set
N f belong to the domains that contain a crack tip. These nodes are enriched with
the Heaviside and asymptotic branch function fields. The H(x) function is given by
(MDB99, RB04).

H(x) =

{
1 (x− x∗) · n > 0
−1 otherwise

(2.38)

where x∗ is a point on the crack surface, see Figure 2.9(a)

(a) (b)

Figure 2.9: (a) Normal and tangential coordinates for a crack; (b) Polar coordinate
system associated with a crack tip.

The near tip enrichment consist of functions which incorporate the radial and
angular behaviours of the two-dimensional asymptotic crack-tip displacement field
(MDB99, RBZ07, BRN+08):

{Φα}16α64 =
√
r

{
sin

(
θ

2

)
, cos

(
θ

2

)
, sin (θ) sin

(
θ

2

)
, sin (θ) cos

(
θ

2

)}
(2.39)

where r and θ are polar coordinates in the local crack-tip coordinate system, see Figure
2.9(b).

2.4.3 A brief description of phantom-node method
Consider a deformable body occupying domain Ω in motion, subjected to body forces
b, external applied traction t on boundary Γt and displacement boundary conditions
u = ū on Γu containing a crack as shown in Figure 2.10 with the corresponding finite
element discretization. In the phantom-node method, a completely cracked element is
replaced by two partially active superimposed elements 1 and 2 whose nodes consist
of real nodes and phantom nodes marked by solid and empty circles, respectively. The
active part of element 1 (Ω1), u1(x), which holds for f(x) < 0 and the other active part
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2.4 Finite element method for fracture mechanics

(Ω2), u2(x) which holds for f(x) > 0. The two parts of the model do not share nodes,
and therefore they displace (deform) independently. Areias and Belytschko (AB05)
demonstrated that the Hansbo and Hansbo (HH04) formulation is equivalent to the
XFEM formulation relying on discontinuous enrichment with the Heaviside function.

Ω 

Γ t

Γ u

Γ c

Figure 2.10: A two dimensional body containing a crack and boundary conditions.

The displacement field within an element Ωe in Figure 2.11 is rewritten as (SAB06):

∀x ∈ Ωe , u(x) =
∑
I∈S1

u1
INI(x)︸ ︷︷ ︸

u1(x)

H (−f(x)) +
∑
I∈S2

u2
INI(x)︸ ︷︷ ︸

u2(x)

H (f(x)) (2.40)

where S1 and S2 are the nodes of superimposed elements 1 and 2, respectively. As il-
lustrated in Figure 2.11, each element contains real nodes and phantom nodes marked
by solid and empty circles, respectively; NI is the finite element shape function as-
sociated with node I, while u1

I and u2
I are nodal displacements of original nodes in

superimposed element 1 and 2, respectively. H is the Heaviside function given in
(BB99, RAB07, RB06, RB07a, BND+07) and defined by

H(x) =

{
1 x > 0
0 x 6 0

(2.41)

Here, we choose the physical domain up to the crack line. Note that the crack
line is a boundary in phantom node method. It is like the elements near the external
boundary. So we avoid singularity in phantom node method. The corresponding strain
terms are written the same.

The strain field is obtained as follows:

∀x ∈ Ωe , ε(x) =
∑
I∈S1

BI(x)u1
I︸ ︷︷ ︸

ε1(x)

H (−f(x)) +
∑
I∈S2

BI(x)u2
I︸ ︷︷ ︸

ε2(x)

H (f(x)) (2.42)
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2.4 Finite element method for fracture mechanics

where BI is the standard strain-displacement matrix. The jump in the displacement
field across the crack is calculated by

[[u(x)]] = u1(x)− u2(x) on Γc (2.43)

Figure 2.11: The decomposition of a cracked element into two superimposed elements.

I is a phantom node in
{

element 1 if f(xI) > 0
element 2 if f(xI) < 0

(2.44)

In this chapter, the crack tip is forced to be located on the element’s boundary.

2.4.4 Brief on the node-based smoothed FEM (NS-FEM)
In NS-FEM, the domain is discretized using elements, as in the FEM. However, instead
of using the compatible strains, we utilize the ”smoothed” strains over the domain Ω
divided into a set of smoothing domains Ns as shown in Figure 2.12 associated with
nodes bounded by Ωs

k, which satisfy the conditions Ω =
⋃Nn

k=1 Ωs
k and Ωs

i ∩ Ωs
j = ∅,

∀ i 6= j, in which Nn is the total number of nodes in the element mesh. In this case,
Ns = Nn. The node-based smoothing domains are employed to smooth the strain field
and calculate the stiffness matrix. For the triangular elements, the smoothing domains
Ωs
k associated with the node k are formed by connecting sequentially the mid-edge-

point to the central points (centroids) of the surrounding triangular elements of the
node k, as illustrated in Figure 2.13.

Introducing the node-based smoothing operation, the compatible strain ε = ∇suhk
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2.4 Finite element method for fracture mechanics

x
Ω 1

s
Ω 2

s

Ω k
s

...

...
...

...

1

x2

xk

Figure 2.12: Division of problem domain Ω into non-overlapping smoothing domains
Ωs
k for xk.

Figure 2.13: Construction of node-based strain smoothing domains and support do-
main wi.

is smoothed over the cell Ωk associated with node k:

ε̄k =

∫
Ωs

k

ε(x)Φk(x) dΩ =

∫
Ωs

k

∇suh(x)Φk(x) dΩ (2.45)
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2.4 Finite element method for fracture mechanics

where Φk(x) is a given smoothing function that satisfies the following property∫
Ωk

s

Φk(x) dΩ = 1 (2.46)

Using a constant smoothing function

Φ =

{
1/Ask x ∈ Ωs

k

0 x /∈ Ωs
k

(2.47)

It can be shown that

ε̄k =
1

Ask

∫
Ωs

k

∇suh(x) dΩ =
1

Ask

∫
Γs
k

Lnuh(x) dΓ (2.48)

where Ask =
∫

Ωs
k

dΩ is the area of the smoothing domain Ωs
k, Γsk is the boundary of the

smoothing domain Ωs
k, and Ln is a matrix comprising of normal components, and is

expressed as:

Ln =

nx 0
0 ny
ny nx

 (2.49)

The discretized strain field ε̄k is computed through the so-called smoothed dis-
cretized gradient operator or smoothed strain displacement operator, B̄.

ε̄k =
∑
I∈ns

k

B̄I (xk) d̄I (2.50)

where d̄I are the unknown displacement coefficients defined at the nodes of the finite
element, nsk is the set of nodes associated to the smoothing domain Ωs

k. The smoothed
element stiffness matrix for element e is computed by the sum of the contributions of
the subcells

K̄IJ =
Ns∑
k=1

K̄s
IJ,k =

Ns∑
k=1

∫
Ωs

k

B̄T
I DB̄JdΩ =

Ns∑
k=1

B̄T
I DB̄JA

s
k (2.51)

where B̄I(xk) is the smoothed strain gradient matrix:

B̄I (xk) =

 b̄Ix (xk) 0
0 b̄Iy (xk)

b̄Iy (xk) b̄Ix (xk)

 (2.52)
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2.4 Finite element method for fracture mechanics

with

b̄Ih (xk) =
1

Ask

∫
Γs
k

nh (x)NI (x) dΓ; h = x, y (2.53)

Equation (2.53) is now evaluated by line integration along the boundary Γsk of the
smoothing domain Ωs

k. Only the shape function itself is needed to compute the strain
displacement matrix leading to simple computations for integration of discontinuous
functions in XFEM.

2.4.5 Brief on edge-based strain smoothing method in finite ele-
ments

In the ES-FEM(LNL09), the domain Ω is partitioned into a set of non-overlapping no-
gap smoothing domains constructed using element edges of the triangular elements.
Ω(k) satisfies the conditions Ω =

⋃Ne

k=1 Ω(k) and Ω(i) ∩ Ω(j) = ∅, ∀ i 6= j, in which Ne

is the total number of edges of elements in the problem domain. In Figure 2.14, the
smoothing domain corresponding to an inner edge k, and the smoothing domain for a
boundary edge m are illustrated.

Figure 2.14: Construction of edge-based strain smoothing domains.

Introducing the edge-based smoothing operation, the compatible strain ε = ∇suhk
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2.5 Design of experiments (DOE)

is smoothed over cell Ω(k) associated with edge k as follows:

ε̄k =

∫
Ω(k)

ε(x)Φk(x) dΩ =

∫
Ω(k)

∇suh(x)Φk(x) dΩ (2.54)

where Φk is a given normalized smoothing function that satisfies∫
Ω(k)

Φk(x) dΩ = 1 (2.55)

Using the following constant smoothing function

Φ =

{
1/A(k) x ∈ Ω(k)

0 x /∈ Ω(k) (2.56)

ε̄k =
1

A(k)

∫
Ω(k)

∇suh(x) dΩ =
1

A(k)

∫
Γ(k)

Lnuh(x) dΓ (2.57)

where A(k) =
∫

Ω(k)

dΩ is the area of the smoothing domain Ω(k), Γ(k) is the boundary

of the smoothing domain Ω(k), and Ln is the outward unit normal matrix which can be
expressed as:

Ln =

nx 0
0 ny
ny nx

 . (2.58)

2.5 Design of experiments (DOE)

2.5.1 Monte Carlo sampling (MCS)
Monte Carlo (MC) is the most commonly used random-number despite the least so-
phisticated of sampling methods which is used to generate random input parameters
from prescribed probability distributions. A realization of the random parameter is
sampled using random or pseudo-random numbers generator from a probability den-
sity function (PDF). Monte Carlo sampling method is entirely random, hence any sam-
pled realization may fall anywhere within the input’s design space. The randomly gen-
erated realizations are more likely lie in domains of the input distribution which have
higher frequencies of occurrence. From the cumulative curve, a value between 0 and 1
is randomly selected as an MC sample. With enough iterations, a random vector of the
parameter is sampled through MC sampling.
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2.5 Design of experiments (DOE)

2.5.2 Latin hypercube sampling (LHS)
Latin Hypercube Sampling (LHS) (MCB79, IC82) is an improved sampling strategy
that enables a reliable approximation of the stochastic properties even for a small num-
ber of samples N . LHS is used to provide the design points which are spread through-
out the design space. The LHS can be summarized as:

• Divide the cumulative curve intoN equal intervals on the cumulative distribution
of each parameter;

• A probability value is then randomly selected from each interval of the parameter
distribution

Probi = (1/N)ru + (i− 1)/N, (2.59)

in the ith interval, where ru is uniformly distributed random number varying
over the range [0, 1], see (WJ98);

• Use the inverse cumulative distribution function (CDF) to map the probability
value Probi into the design space as:

x = F−1(Prob); (2.60)

where F−1 denotes the inverse CDF.

By using LHS, computer effort can be saved due to the dense stratification across
the range of each sampled variable (HD03).

2.5.3 Sobol’ quasi-random sequences
The algorithm for LPτ quasi-random (QR) sequences (STLS92), employed to generate
the samples X1, X2, ..., Xk as uniformly as possible over the unit hypercube Ω, has
been implemented in FORTRAN77. All LPτ sequences suggested by Sobol’ satisfy
the following three main requirements:

1. The uniformity of the distribution are asymptotically optimal when the length of
the sequence is large.

2. Good distribution for fairly small initial sets (the number of sampled points is
small).

3. A very fast computational algorithm.

Figure 2.15 shows the samples generated by Monte Carlo sampling (MCS), Latin
Hypercube sampling (LHS) and Sobol’ quasi-random sequences sampling strategy. It
is shown that the samples obtained by Sobol’ quasi-random sequences and LHS are
better distributed compared to those obtained by MCS.
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Figure 2.15: (a) Monte Carlo, (b) Latin Hypercube and (c) Sobol’ sampling.

2.5.4 Inducing correlation in Latin hypercube sampling
Iman and Conover (IC82) proposed a method that aims to rearrange the input param-
eters so that the Spearman rank correlation matrix is approximately equal to the target
rank correlation matrix, while unchanging certain important properties of the sampling
scheme used to generate them. The method is based on the Cholesky decomposition of
the correlation matrix. Suppose matrix X has rank correlation matrix I, as its parame-
ters (i.e., columns) were generated independently. Let C the desired correlation matrix
of some transformation of X. If PP′ is the Cholesky decomposition of matrix C, then
P is the lower triangular matrix and C = PP′. Multiplication by P′, XP′ results in
random parameters with correlation matrix C. The method is summarized as follows:

• Use Latin hypercube sampling (LHS) to generate matrix R of k parameters at
sample size ns.

• Compute T, the correlation matrix of R.

• The Cholesky decomposition is used to obtain the P lower triangular matrix of
the desired correlation matrix C such that C = PP′. Similarly, Q the lower
triangular matrix of T is also obtained.

T = QQ′; (2.61)

• Compute matrix S from S = PQ−1.

• Compute target correlation matrix R∗ = RS′, which has a correlation matrix
close to C.

• The values of each parameter in R are reordered so that they have the same rank
as the corresponding parameter in target matrix R∗.
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2.6 Scatter plots

2.6 Scatter plots
A preliminary step in SA is to visualise the relationship of the input parameters and the
output using scatter plots. We use the model as described in the following chapters and
a set of data generated by the LHS method. The advantage of this approach is that we
can get a first graphical understanding under acceptable efforts the effect of the input
on the output value. A scatter plot can draw the correlation between Y and Xi, or even
by estimating variance-based measures by nonlinear regression (PSS12).

2.7 Sensitivity analysis
The purpose of quantitative uncertainty analysis is to use currently available informa-
tion in order to quantify the degree of confidence in the existing simulations containing
a set of assumptions and conceived models that are used to predict the mechanical be-
havior of the material.

According to (SRA+08), SA in general is the study of how much model output
values are affected by changes in model input values. In the following, a general
description of SA methods is given, which is usually exploited to rank the model’s
input parameters and their contribution to the model output.

We have conducted SA with the aim of

• realizing the most influential parameters on model reponse, and additional re-
search upon those parameters need to be studied to reduce model response un-
certainty,

• eliminating the parameters which insignificantly influence on the model response,

• taking the interaction among input parameters into account,

• determining the optimum region within the design space which is used for a
subsequent model calibration.

SA performance consist of

• defining input parameters and model response associated with the computational
model,

• determining PDFs which characterize input parameter distributions,

• generating a sample accordingly with the parameter PDFs using an adequate
sampling strategy. Subsequently, we evaluate the model responses at each design
point,

• quantifying the effects of input parameters on the model responses.
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2.7 Sensitivity analysis

2.7.1 The ANOVA-representation
Let Y = f(X) be computational model defined in Rk with X = {X1, X2, ..., Xk}
being a set of random parameters, then f(X) can always be described in terms of
functional decomposition scheme:

f(X) = f0 +
k∑
i=1

fi(Xi) +
k∑
i=1

fij(Xi, Xj)...+ f1...k(X1, ..., Xk) (2.62)

where f0 = E[f(X)]; f0 + fi(Xi) = E[f(X|Xi)]; f0 + fi(Xi) + fij(Xi, xj) =
E[f(X|Xi, Xj)] and so on for higher order terms.

Equation (2.62) is deduced as shown in (MT12)

V =
k∑
i=1

Vi +
k∑
j>i

Vij + ...+ V1...k (2.63)

where V is the total variance of f(X), Vi is the partial variance of f due to Xi and
Vi1...is is the partial variance of f due to the interactions among {xi1 , ..., xis}. Dividing
both sides of Equation (2.63) by V , we obtain

k∑
i=1

Si +
k∑
j>i

Sij + ...+ S1...k = 1 (2.64)

where Si is the first-order effect which measures the part of variance of model response
due to Xi.

2.7.2 The variance-based sensitivity indices
Variance-based sensitivity indices are derived from Equation (2.63) as:

Si =
V [E[f(X)|Xi]]

V [f(X)]
; (2.65)

and the second-order sensitivity index Sij , the total-effect index STi defined as the sum
of all the sensitivity indices consisting of the parameter Xi are respectively given by

Sij =
V [E[f(X)|Xi, Xj]]

V [f(X)]
; (2.66)

STi = Si +
k∑
j 6=i

Sij + ...+ S1...i...n. (2.67)
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The total-effect index can be rewritten as

STi =
E[V [f(X)|X∼i]]

V [f(X)]
. (2.68)

In practice, the computation of Si and STi require a high number of samples. The
costs of applying these measures is of O (N(k + 2)), where N is the number of sam-
ples. Thus, a surrogate model Ŷ is used to estimate the real response that will be
presented in section 2.13.

2.8 Sensitivity analysis of model response with uncor-
related input parameters

2.8.1 Best practices for computing Si and STi

In this section, we briefly present a Monte Carlo estimation of the Sobol’ indices, the
so-called matrix combination method. A further improvement proposed by Saltelli et
al. (SAA+10) and alternative forms for the sensitivity estimators offered by Jansen
(Jan99) are also described briefly.

For the Monte Carlo estimation of the Sobol’ indices, two independent sampling
matrices A and B with corresponding entries aji and bji, both of dimension (N×k) for
the input parameters X are generated. We then define a matrix A

(i)
B (B(i)

A ) with entries
from A (B) except the ith column, which is taken from B (A). Si can be computed
from A, B

(i)
A or B, A

(i)
B (Sob93):

VXi
(EX∼i(Y|Xi)) =

1

N

N∑
j=1

f(A)jf(B
(i)
A )j − f 2

0 (2.69)

where (B)j denotes the j − th row of matrix B, and

f 2
0 =

(
1

N

N∑
j=1

f(A)j

)2

(2.70)

With VX∼i
(EXi

(Y|X∼i)) the, ST i in Equation (2.68) is rewritten as follows:

VX∼i
(EXi

(Y|X∼i)) =
1

N

N∑
j=1

f(A)jf(A
(i)
B )j − f 2

0 . (2.71)
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2.8 Sensitivity analysis of model response with uncorrelated input parameters

Similarly, the estimation of Si from Equation (2.69) can be derived (Sal02, STG+07)

VXi
(EX∼i(Y|Xi)) =

1

N

N∑
j=1

f(A)j

(
f(B

(i)
A )j − f(B)j

)
. (2.72)

An improvement of the variance-based method is suggested by Saltelli et al. (SAA+10)
where the triplet A, B and A

(i)
B were used instead of the triplet B, A and B

(i)
A in Equa-

tion (2.72). The modified method is based on the use of quasi-Monte Carlo samples as
will be discussed in section 2.5.3.

The estimator for ST i in Equation (2.71) has been improved by Sobol’ (Soban):

VX∼i
(EXi

(Y|X∼i)) = V (Y)− 1

N

N∑
j=1

f(A)j

(
f(A)j − f(A

(i)
B )j

)
. (2.73)

Jansen (Jan99) proposed alternative formulas for the estimators of Si and STi where
VXi

(EX∼i(Y|Xi)) is obtained from:

VXi
(EX∼i(Y|Xi)) = V (Y)− 1

2N

N∑
j=1

(
f(B)j − f(A

(i)
B )j

)2

. (2.74)

Using EX∼i
(VXi

(Y|X∼i)) in Equation (2.68), an alternative formula for ST i is
given by

VX∼i
(EXi

(Y|X∼i)) =
1

2N

N∑
j=1

(
f(A)j − f(A

(i)
B )j

)2

. (2.75)

The formulas (2.69) - (2.75) were used to compute Si and ST i as summarized in
Table 2.2 Saltelli suggested that A, A

(i)
B should be sampled by using the quasi-random

numbers to compute ST i estimates.
Total effects of pairs of factors are estimated through a straightforward generaliza-

tion of Jansen’s estimator. The following Equation (2.76) introduces total effects of
couples of parameters. These estimates are not independent from those of the total
effect for single parameters, as all are proceeded in the same simulations.

EX∼ij

(
VXiXj

(Y|X∼ij)
)

=
1

2N

N∑
w=1

(
f(A

(i)
B )w − f(A

(j)
B )w

)2

. (2.76)

Note that EX∼ij

(
VXiXj

(Y|X∼ij)
)

refers to the estimation of the total effects of
couples of parameters – not to be confused with that of the second-order sensitivity
index for the couple of parameters i, and j( 6= i) Sij .
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2.8 Sensitivity analysis of model response with uncorrelated input parameters

Table 2.2: Formulas to compute Si and ST i.
VXi

(EX∼i(Y|Xi)) for Si Reference
(a) 1

N

∑N
j=1 f(A)jf(B

(i)
A )j − f 2

0 (Sob93)

(b) 1
N

∑N
j=1 f(B)j

(
f(A

(i)
B )j − f(A)j

)
(SAA+10)

(c) V (Y)− 1
2N

∑N
j=1

(
f(B)j − f(A

(i)
B )j

)2

(Jan99)

EX∼i
(VXi

(Y|X∼i)) for ST i
(d) V (Y)− 1

N

∑N
j=1 f(A)jf(A

(i)
B )j + f 2

0 (HS96)

(e) 1
N

∑N
j=1 f(A)j

(
f(A)j − f(A

(i)
B )j

)
(Soban)

(f) 1
2N

∑N
j=1

(
f(A)j − f(A

(i)
B )j

)2

(Jan99,
SAA+10)

2.8.2 Computational scheme for STi

As presented in (SAA+10), different methods may be used to construct the design
matrices A and A

(i)
B . Two different designs are adopted in this work: (1) the ’radial

design’ (Sal02) and (2) the ’winding design’ (Jan99). The two designs with the first
block of size q = k + 1 model evaluations are illustrated in Table 2.3.

Table 2.3: Radial (left-hand) and Winding stairs (right-hand) designs.
Radial sampling Step Winding stairs
a11, a12, a13, . . . , a1k a11, a12, a13, . . . , a1k

b11, a12, a13, . . . , a1k X1 b11, a12, a13, . . . , a1k

a11, b12, a13, . . . , a1k X2 b11, b12, a13, . . . , a1k

a11, a12, b13, . . . , a1k X3 b11, b12, b13, . . . , a1k

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a11, a12, a13, . . . , b1k Xk b11, b12, b13, . . . , b1k

The sampling scheme of two different designs and the computational issues for
the above-mentioned estimators in Table 2.2 can be found in (SAA+10, Jan99, Sal02,
CST00).

A quasi-random sequence of size (N × 2k) is sampled and separated into matrices
A (left half) and B (right half) of size (N × k).
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2.8 Sensitivity analysis of model response with uncorrelated input parameters

The triplet A, A
(i)
B and B is preferred to the triplet A, B

(i)
A and B for computation

of Si and ST i because the former contains a higher number of better points.

2.8.3 The method of slices
The main idea of the method of slices (MOS) is to cut each scatterplot into slices
according to the parameter distribution. The expected value of Y within each slice is
then quantified as it varies over the slices. If the number of slices is large (the slice is
very thin) the variation over the slices of the expected value of Y within each slice is
identical to keeping each parameter fixed while averaging over the others. Application
of the MOS involves

• The Xi axis is cut into M slices of equal probability according to the statistical
distribution of the ith parameter,

• compute the expected value and the variance of Y for points included in each
slice,

• evaluate the variation over the slices VXi
[EX∼i(Y|Xi)] of the expected value of

Y within each slice,

• evaluate the variance V (Y) of Y,

• measure the first-order indices Si with i = 1, ..., k by Equation (2.65),

• iterate the described steps above for all parameters.

More details of this method can be found in (ML13).

2.8.4 Fourier amplitude sensitivity test (FAST)
From the probability distribution of Y = f(X1, X2, ..., Xk), the expected value can be
computed from the r − th moment given by

〈Y (r)〉 =

∫
Rk

f r(X1, X2, ..., Xk)P (X1, X2, ..., Xk)dx, (2.77)

where P is the k-dimensional probability density for X, P (X) = P (X1, X2, ..., Xk).
The main idea of the FAST is to transform the k-dimensional integral into a one-

dimensional integral by using a set of parametric equations. We employ the following
transformation function (XG07)

Xi = F−1
i

(
1

2
+

1

π
arcsin(sinωis)

)
, (2.78)
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2.8 Sensitivity analysis of model response with uncorrelated input parameters

where F−1
i is the inverse cumulative distribution function (CDF) for Xi and s ∈

[−π, π] is the parametric variable. Through the derived transformation function,
f(X1(s), X2(s), ..., Xk(s)) is transformed to a periodic function f(s). If ωi, i =
1, ..., 6 are positive integers, then the period is 2π. Thus, f(s) can be expanded in
a Fourier series:

Y = f(X1, X2, ..., Xk) = f(s) =
+∞∑
n=1

{Ancos(ns) +Bnsin(ns)}, (2.79)

where An and Bn are the Fourier coefficients determined by

An =
1

2π

∫ π

−π
f(s)cosnsds,

Bn =
1

2π

∫ π

−π
f(s)sinnsds

(2.80)

For the physical problem n is limited to finite integers, n = 1, ..., (N − 1)/2 where
N is the size of the sample (N is odd) and (N − 1)/2 is determined by the Nyquist
critical frequency, see (STC99).

Let S = {s1, s2, ..., sj, ..., sN} denote the parametric variable with sj = −π +
π/N + (2π/N)(j − 1), j = 1, 2, ..., N . The sample values for each parameter are
obtained using the transformation function given in Equation (2.78)

ℵi = {x1i, x2i, ..., xji, ..., xNi}, (2.81)

Subsequently, the model is evaluated N times on the transformed sample values

f(sj) = f(X1(sj), X2(sj), ..., Xk(sj)). (2.82)

The Fourier coefficients An and Bn in terms of discretized expressions are

An =
1

N

N∑
j=1

f(sj)cosnsj,

Bn =
1

N

N∑
j=1

f(sj)sinnsj

(2.83)

The variance of the model output is approximated by summing the spectrum of the
Fourier series expansion.

V (Y) = 2

(N−1)/2∑
n=1

(
A2
n +B2

n

)
, (2.84)
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Evaluating the spectrum An and Bn for the fundamental integer frequency ωi and
its higher harmonics pωi, the partial variance contributed by Xi can be estimated by

Vi(Y) = 2
M∑
p=1

(
A2
pωi

+B2
pωi

)
, (2.85)

with M being the inference factor. The minimum sample size is selected as

N = 2Mωmax + 1, (2.86)

where ωmax is the largest frequency among the set of ωi frequencies. The selection of
the frequency set for all parameters in order to avoid inference effect is discussed in
detail in (CLS78).

At last, the normalized sensitivity measure SFASTi = Vi/V is the main effect of Xi

on Y.

2.8.5 Extended Fourier amplitude sensitivity test (EFAST)
Saltelli et al. (STC99) proposed an extended FAST method (EFAST) to estimate the
total-effect sensitivity index for parameter Xi, i = 1, 2, ..., k in Equation (2.67).

The total-effect STi is obtained by assigning a certain frequency ωi for the ith
parameter and a different frequency ω∼i for the complementary set of the ith param-
eter including all the remaining parameters. Hence, we can estimate the partial vari-
ance V∼i(Y) by evaluating the spectrum at the frequency ω∼i and its higher harmonics
pω∼i. Similarly, the partial variance Vi(Y) and total variance V (Y) are obtained by
Equations (2.85) and (2.84), respectively. The total-effect STi is then obtained from
Equation (2.67).

The maximum allowable frequency for the complementary set is given bymax{ω∼i} =
(1/M)(ωi/2).

For the EFAST method, a transformation, Gi, has been adopted (CST97):

Xi = F−1
i

(
1

2
+

1

π
arcsin(sin(ωis+ ϕi))

)
(2.87)

where ϕi is a random phase-shift chosen uniformly in [0, 2π). Figure 2.16 illustrates
the difference between the transformations in Equations (2.78) and (2.87).

In the resampling scheme, the sample size given in Equation (2.86) must be rede-
fined as

Ns = (2Mωmax + 1)Nr (2.88)

where Nr denotes the number of used curves and ωmax = max{ωi, ω∼i}.
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Figure 2.16: Scatter plots of sampling points in a two-parameters case obtained from
the transformation given by: (a) Equation (2.78), (b) Equation (2.87), Nr = 1, (c)
Equation (2.87), Nr = 2.

2.8.6 Random balance design method
In the random balance design (RBD) method (TGM06) N design points are selected
over a curve in the input space of the same frequency ω, which is arbitrary integer,
usually equal to 1 for simplicity. An independent variable s is sampled over (−π, π)
using N points. Transform si into Xi by using a set of parametric equations similar to
Equation (2.78):

Xi(sji) = F−1
i

(
1

2
+

1

π
arcsin(sinωisji)

)
, i = 1, 2, ..., k; j = 1, 2, ..., N. (2.89)

where F−1
i is the inverse CDF for Xi, {s1i, s2i, ..., sNi} denotes the ith random per-

mutation of the N points.
We evaluate the model output at each of N design points

Y (sj) = f (X1(sj1), X2(sj2), ..., Xk(sjk)) . (2.90)

Subsequently, we reorder Y (sj) so that Xi(sji) is in increasing order. The Fourier
spectrum of the re-ordered Y (sj), denoted by Y R(sj), is evaluated at low frequencies
{ω, 2ω, ...,Mω} where M is the inference factor (usually 4 or higher)

F (ω) =
1

π

N∑
j=1

Y R(sj)exp(-Im kωsj) (2.91)

evaluated at ω = 1 and its higher harmonics (in our case ω = 2, ω = 3, ...) up to order
M = 6.
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2.8 Sensitivity analysis of model response with uncorrelated input parameters

In the discrete case,

V̂i = V [E(Y|Xi)] =
M∑
l=1

F (ω)|w=l =
M∑
l=1

F (l). (2.92)

The first-order sensitivity index Si is determined via the estimator Vi known as the
nominator of the main effect for the ith parameter.

2.8.7 Effective algorithm for sensitivity indices
2.8.7.1 First-order sensitivity indices

According to Plischke (Pli10) the EASI algorithm can be considered as an inverse of
the RBD method in section 2.8.6, as a random permutation of coordinates of given
design points is taken directly. A sorting-and-shuffling strategy over such points was
used to approximate the transformation in Equation (2.89).

Based on the computational model Y = f(X1, X2, ..., Xk), we assume that x is
the ith column (Xi) of the input matrix X, X = (xji)j=1,...,N, i=1,...,k. The sorting-and-
shuffling strategy is summarized as follows

• Order vector x = (xj) to obtain an ordered vector (x(j)) whose entries are in
increasing order, x(1) ≤ x(2) ≤ ... ≤ x(N),

• reorder the vector (x(j)) such that the entries x[j] with the odd indices are in-
creasing followed by those with the decreasing even indices,

x[j] =

{
x(2j−1), j ≤ N+1

2
,

x(2(N+1−j)), j > N+1
2
,

j = 1, 2, ..., N, (2.93)

for which the entries follow the zig–zag relation

x[j] ≤ x[j+1] if j ≤ N + 1

2
, x[j] ≥ x[j+1] if j >

N + 1

2
. (2.94)

The k-parametric model (scalar output) y = f(x1, x2, ..., xi, ..., xk) is then evalu-
ated at each design point. Subsequently, the model output Y is reordered such that the
design points satisfy the zig-zag relation, so-called triangular-shaped vector, shown in
Equation (2.93). Figure 2.17 illustrates the reordering process for 50 uniformly dis-
tributed sample points.

If we denote the permutation forming the triangular-shaped vector (x[j]) from (xj)
by π((xj)) = (x[j]), the Fourier spectrum is then evaluated at the frequency ω =

40



2.8 Sensitivity analysis of model response with uncorrelated input parameters

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Index

 

 

x
i

x
(i)

x
[i]

Figure 2.17: Sorting-and-shuffling strategy.

1 and its higher harmonics of the permuted output π(y) yields the estimate of the
sensitivity index of parameter Xi. If cm =

∑N
κ=1(π(y))κη

(κ−1)
N , ηN = e−2πj/N , m =

0,±1,±2, ...,±[N/2] are the complex coefficients of the discrete Fourier transform of
π(y), the first order sensitivity index is estimated by

Ŝi =

∑M
m=1 |cm|2 + c2

−m∑
m6=0 |cm|2

= 2

∑M
m=1 |cm|2∑
m6=0 |cm|2

, (2.95)

where the maximum harmonic M is usually 4 or 6.

2.8.7.2 Higher order effects

Let us split the input matrix X into X′ = (xji)j=1,...,N, i∈I and X̄ = (xji)j=1,...,N, i/∈I
where group I of dimensionality l (l ≤ k), includes the random vector (Xi1 , ..., Xil)
with ij ∈ I and an k − l dimensional random vector of the remaining parameters Xj ,
i ∈ I is included in group Î .

The sensitivity index SI of an index group I for the model y = f(xI , xÎ) can
be estimated based on the index-assignment strategy (Pli10) that is summarized as
follows:

• Construct an index table for l-dimensional row of matrix X′ via the plough-track
curve.

• Reshape the matrix X′ w.r.t. the index table constructed above to obtain the
matrix (X′(j))

• Transform the matrix (X′(j)) to the matrix (X′[j]) such that its entries satisfy the
triangle-shaped form (zig-zag relation).
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2.9 Sensitivity analysis of model response with correlated input parameters

• If the permutation of coordinates of (X′[j]) denoted by π(X′) = (X′(j)), evaluate
the Fourier spectrum of the reshaped π(Y) at the fundamental and its higher
frequencies.

The frequencies contributing to the sensitivity index SI are listed as

ΩI = {±m1ω1 ±m2ω2...±mlωl, mi ∈ {1, 2, ...,M}}. (2.96)

The first order of group I , SI , using the complex coefficients cm of a discrete
Fourier transform of the reshaped output vector π(Y) is evaluated by

ŜI =

∑
m∈ΩI

|cm|2∑
m 6=0 |cm|2

. (2.97)

The estimate of the total effects (the accumulated effect of all indexed parame-
ters in group I), based on the the frequency set ΩI which is augmented by frequency
components from the subsets of I , ΩTI = ∪J⊂IΩJ , is given by

STI =
∑
i∈I

Si +
∑

i,j∈I,i<j

Sij +
∑

i,j,k∈I,i<j<k

Sijk + ... (2.98)

The set ΩTI contains all frequencies from 1 up to M(P l − 1)/(P − 1) if the basic
frequency P is equal to 2M + 1. Therefore, the total effects is evaluated by summing
over the first few Fourier coefficients of π(Y).

2.9 Sensitivity analysis of model response with corre-
lated input parameters

2.9.1 Correlated input parameters
In probabilistic models, the most common measure of correlation in statistics is the
Pearson correlation, which shows the linear relationship between two input parameters.
For two random inputs, Xi and Xj , the correlation coefficient, ρij , is calculated by:

ρij =
Cov(Xi, Xj)

σXi
σXj

(2.99)

The covariance Cov(Xi, Xj) between Xi, Xj is derived by:

Cov(Xi, Xj) = E[(Xi − X̄i)(Xj − X̄j)] (2.100)
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2.9 Sensitivity analysis of model response with correlated input parameters

where X̄i, X̄j and σXi
, σXj

are means and standard deviations of Xi and Xj , respec-
tively. The covariance matrix CXX for a set of random input parameters X is given
by:

CXX = E[(X− X̄)(X− X̄)T ], (2.101)

with X̄ being the mean of X and E(·) is the expectation of (·). By assuming the input
parameters are linearly correlated, the correlated part of an input parameter Xi can be
represented in term of a linear combination of the remaining input parameters of X∼i.
The details will be discussed in the following section.

2.9.2 Improvements of Fourier amplitude sensitivity test to models
with correlated parameters (IFAST)

For models with correlated parameters, the variance of the model output due to a pa-
rameter of interest results not only from variations of the parameter itself but also
from the variations of other parameters. Xu and Gertner (XG07) proposed an exten-
sion of FAST to models with correlated parameters. The characteristic frequency of a
parameter is exploited to capture both the uncertainties of the parameter itself and the
dependent variations of other parameters. FAST for models with correlated parameters
can be implemented as follows:

• Generate a sample for a parametric variable s, S = {s1, s2, ..., sj, ..., sN}; sj
was derived in section 2.8.4 and N is the minimum sample size introduced by
Equation (2.86).

• Define a set of different frequencies ωi associated with each parameter. The
sample values of each parameter (ℵi) are obtained by applying the search curve
specified by Equation (2.78) on sample S.

• Employ the Iman and Conover’s method (IC82) to induce the desired correlation
among input parameters by reordering the independent sample values ℵi (i =
1, ..., k).

• The model output is then evaluated at each sample value.

• Subsequently, the model output is reordered w.r.t. the original sample order (i.e.,
the order before reordering the independent sample values) of the parameter of
interest. In this way, the characteristic frequency for the parameter is restored.

• Based on the reordered output we apply Equations (2.84) and (2.85) to evaluate
the partial variances (Vi) and the total variance V , respectively. The sensitivity
indices SIFASTi for each parameter is estimated by Vi/V .
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2.9 Sensitivity analysis of model response with correlated input parameters

Figure 2.18 shows the search curves for linear two-dimensional model Y = 2X1 +
3X2, where X1 and X2 are standard normally distributed with a positive correlation
(ρ12 = 0.7). Fundamental frequency of 5 and 23 are assigned to X1 and X2, respec-
tively.
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Figure 2.18: (a) Conventional independent FAST sample; (b) reordered sample values
based on X1’s original sample order; (c) reordered sample values based on X2’s orig-
inal sample order; and (d) response values from the reordered sample (based on X1’s
original sample order).

2.9.3 Variance decomposition by regression with correlated input
Xu and Gertner (XG08) proposed a method by decomposing the variance Vi into two
components: the partial variance V U

i due to uncorrelated variations and the partial
variance V C

i due to correlated variations of the ith input parameter.

Vi = V U
i + V C

i . (2.102)
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2.9 Sensitivity analysis of model response with correlated input parameters

The partial variance Vi is derived by regressing the model Y only on Xi

Y = θ0 + θiXi + e, (2.103)

where θ0 and θi are regression coefficients of the linear regression model and e repre-
sents the error. The partial variance Vi can be estimated as follows:

V̂i =
1

N − 1

N∑
j=1

(
Ŷ

(i)
j − Ȳ

)2

, (2.104)

where Ŷ (i)
j is the value of the response surface Ŷ of sample j.

To determine the uncorrelated partial variance V U
i , the input parameter is decom-

posed into a correlated part X̂i and an uncorrelated part Ẑi. A regression model w.r.t.
Ẑi is derived by

Y = r0 + riẐi + e, (2.105)

where r0 and ri are regression coefficients and Ẑi is the estimated residual from the
regression of Xi over all other parameters Xjs (js 6= i)

Ẑi = Xi − X̂i =

(
η̂0 +

∑
js 6=i

η̂jsXjs

)
, (2.106)

η̂0 and η̂js being the least-square estimation as discussed in (XG08).
The uncorrelated partial variance can be obtained by

V̂ U
i =

1

N − 1

N∑
j=1

(
Ŷ

(−i)
j − Ȳ

)2

, (2.107)

with Ŷ (−i)
j = r̂0 + r̂iẐij . The factors r̂0 and r̂i are least-square estimates of r0 and ri

in the regression of Equation (2.105).
Based on Equation (2.102), the correlated partial variance is estimated by the fol-

lowing equation:

V̂ C
i = V̂i − V̂ U

i . (2.108)

The sensitivity indices can easily be determined by:

Ŝi =
V̂i

V̂
, ŜUi =

V̂ U
i

V̂
, ŜCi =

V̂ C
i

V̂
(2.109)

with V̂ as total uncertainty of the model output.
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2.9.4 Sampling from the conditional distribution (reordering)
In order to extend the original approach for the correlated input parameters, the param-
eters ofX∼i are resampled while keepingXi fixed for the estimation of VXi

(EX∼i(Y|Xi)).
The sampling of parameters of X∼i should be done w.r.t. the joint probability dis-
tribution of X together with the fixed samples of Xi. Hence, the sampling of X∼i
conditioning over Xi is required.

It can be shown that if Xi is the first variable in the random vector X, only the
samples in the uncorrelated space have to be modified and transformed to the original
space. From this beneficial relation, the matrix approach is performed by (MSR10)
according to the following algorithm:

1. Reorder the random vector X so that a specific random variable Xi is the first
random variable in the reordered X̃,

2. A vector of standard normally distributed random variables Z̃ = [Z̃1, Z̃2, ..., Z̃k]
T

is obtained by the marginal transformation of the original random vector X̃ as

Z̃i = Φ−1
[
FX̃i

(X̃i)
]
, i = 1, ..., k; (2.110)

where Φ−1(·) is the inverse cumulative distribution function (CDF) of a standard
normal random variable and FX̃i

(·) is the CDF of X̃i.

3. Perform the Cholesky decomposition with modified order CZ̃Z̃ = LZ̃Z̃LT
Z̃Z̃

to
transform the sampling matrices A and B to the reordered uncorrelated AŨ and
BŨ in standard normal space Ũ;

4. A modified CŨ1
is assembled and transformed back to C̃1 in the original space;

5. Finally the first-order indices can be computed by Equations (2.69) and (2.71).

More details of this method can be found in (MSR10).

2.9.5 Extension of the matrix combination approach
In order to calculate the correlated first-order and total-effect indices, the samples ofXi

and all correlated parts of all input parameters but Xi, X∼i, have to be modified w.r.t.
Xi. Both matrices A and B are transformed to the correlated standard normal space
by the marginal transformations under the assumption the model is a linear correlation
in the standard normal space as shown by (Mos12)

Aml = Φ−1 [FXl
(Aml)] , Bml = Φ−1 [FXl

(Bml)] (2.111)
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2.9 Sensitivity analysis of model response with correlated input parameters

where FXl
(·) is the CDF of Xl.

By individually mapping all random variables Xl to standard normal space, we
obtain a set of discrete samples Z in which Zl, l = 1, ..., k are standard normally
distributed random variables. Assuming Z are arranged in matrix A and B, a decom-
position is performed in standard normal space to obtain the columns of the correlated
and uncorrelated sampling matrices as:

AC,Zi

(j) = ρ(Zi, Zj)A(i), AU,Zi

(j) = A(j) −AC,Zi

(j) , i, j = 1, ..., k

BC,Zi

(j) = ρ(Zi, Zj)B(i), BU,Zi

(j) = B(j) −BC,Zi

(j) , i, j = 1, ..., k.
(2.112)

Now a modified matrix C̃Ci combining the uncorrelated part of B w.r.t. Zi with the
correlated part of A can be obtained.

C̃Ci = CC,Zi

i = BU,Zi + AC,Zi (2.113)

The matrix C̃Ci is transformed into the original space by means of the inverse CDF

C̃C
i,ml = F−1

Xl

[
Φ(C̃Ci,ml)

]
. (2.114)

Note that C̃
C

i follows the original joint probability distribution of X.
In order to obtain the uncorrelated first-order and total-effect indices, we decom-

pose the matrices A and B w.r.t. X∼i as

AU,Z∼i

(j) = A−AC,Z∼i , AC,Z∼i

(j=i) =
k∑

m=1,m 6=i

βZi,mA(m), AC,Z∼i

(j 6=i) = A(j),

BU,Z∼i

(j) = B −BC,Z∼i , BC,Z∼i

(j=i) =
k∑

m=1,m 6=i

βZi,mB(m), BC,Z∼i

(j 6=i) = B(j),

(2.115)

C̃Ui = CU,Z∼i

i = AU,Z∼i + BC,Z∼i . (2.116)

The resulting C̃Ui contains the uncorrelated part w.r.t. Zi of matrix A and the
correlated part w.r.t. Z∼i of matrix B

C̃Ui is transformed back similarly with the correlated part using the Equation (2.114)
in order to obtain C̃

U

i in original space.
The first-order and total-effect indices of the correlated and uncorrelated parts can

be calculated using Equations (2.69) and (2.71).
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2.9 Sensitivity analysis of model response with correlated input parameters

2.9.6 Extension for regression based indices
As presented in (Mos12), the first-order index of a single parameter including all cor-
related parts of other parameters can be estimated by using the one-dimensional co-
efficient of determination (COD). The first-order indices are estimated in the standard
normal space by using a matrix Z containing the training points of the regression as
follows:

ŜR,Ci = R2
Z,Zi

, i = 1, ..., k. (2.117)

The estimate for the total-effect indices quantifies the partial variance contributed
by uncorrelated variations ZU

i of parameter Zi

ŜR,UTi
= R2

Z,Z −R2
Z,Z∼i

. (2.118)

Employing Equation (2.112), we decompose the sampling matrix Z into the cor-
related and uncorrelated part w.r.t. Zi. Then, the correlated total-effect indices con-
tribution of parameter Zi can be estimated based on the reduced model containing the
uncorrelated part of the samples ZU,Zi

ŜR,UTi = R2
Z,Z −R2

ZU,Zi ,Z∼i
. (2.119)

In order to estimate the uncorrelated first-order indices of the parameter Zi w.r.t.
all other parameters, Equation (2.115) is used to calculate the uncorrelated part of the
ith column of the sample matrix Z

ŜR,Ui = R2
ZU,Z∼i ,Zi

. (2.120)

2.9.7 Extension of Sobol’ approach for models with correlated in-
puts (ESACIs)

Let us consider a k-parametric computational model f(X1, X2, ..., Xk), with an input
vector X = (X1, ..., Xk). If we split the input vector X into a group of interest y =
(Xi1 , ..., Xis), 1 ≤ is < k and a complementary group z = (Xis+1 , ..., Xk), then the
total variance of f(X1, X2, ..., Xk) can be expressed as

V = Vy[Ezf(y, z̄)] + Ey[Vz(f(y, z̄))]. (2.121)

The associated first-order and total-effect indices of the group y are

Sy =
Vy[Ez(f(y, z̄))]

V
(2.122)
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2.9 Sensitivity analysis of model response with correlated input parameters

STy =
Ey[Vz(f(ȳ, z))]

V
(2.123)

where z and z̄ are random vectors generated from a joint PDF p(y, z) and from a
conditional probability distribution p(y, z̄|y), respectively. According to Kucherenko
et al. (KTA12), the first-order index is given by:

Sy =
1

V

[∫
Rs

p(y)dy

[∫
Rk−s

f(y, z̄)p(y, z̄|y)dz̄

]2

− f 2
0

]
. (2.124)

with p(y) being a marginal distribution; f 2
0 is computed by Equation (2.70) and Equa-

tion (2.124) can be written as

Sy =
1

V

[∫
Rs

p(y)dy

[∫
Rk−s

f(y, z̄)p(y, z̄|y)dz̄

∫
Rk−s

f(y, z̄′)p(y, z̄′|y)dz̄′
]
− f 2

0

]
,

(2.125)
with (y, z) and (y′, z′) being two different random vectors generated from the joint
PDF p(y, z). In order to apply Equation (2.125), it is required to generate (1) a random
vector (y, z) from the joint PDF p(y, z) and (2) a random vector (y, z̄′) from the condi-
tional probability distribution p(y, z̄′|y). Equation (2.125) can be deduced as follows:

Sy =
1

V

[∫
Rs

f(y, z)p(y, z)dydz

[∫
Rk−s

f(y, z̄′)p(y, z̄|y)dz̄′
∫
Rk−s

f(y′, z′)p(y′, z′)dy′dz′
]]
.

(2.126)
Equation (2.124) w.r.t. y′ can be expressed as

Sy =
1

V

[∫
Rs

p(y′)dy′
[∫

Rk−s

f(y′, ẑ)p(y, z̄|y)dz̄

∫
Rk−s

f(y, z̄′)p(y, z̄′|y)dz̄′
]
− f 2

0

]
.

(2.127)
By combining

STy = V − Vz[Ey(f(ȳ, z))], (2.128)

with Equation (2.125), we finally obtain the explicit formula for STy

STy =
1

2V

∫
Rk+s

[f(y, z)− f(ȳ′, z)]
2
p(y, z)p(ȳ′, z|z)dydȳ′dz. (2.129)

For practical applications, an MC algorithm has been used to estimate Sy and STy
numerically.
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2.9 Sensitivity analysis of model response with correlated input parameters

2.9.8 Variance-based sensitivity indices for models with correlated
inputs (VBCIs)

In this subsection, we apply a variance-based sensitivity indices for models with cor-
related parameters as suggested by Mara et al. (MT12). The sensitivity indices are
computed based on the new set of independent parameters after decorrelating the input
parameters.

2.9.8.1 Dependences among random inputs

Let us recall the following relationship for three dependent inputs:

p(X1, X2, X3) = p(X1)p(X2|X1)p(X3|X1, X2). (2.130)

where p(X1, X2, X3) is the joint PDF; p(X1), p(X2|X1) and p(X3|X1, X2) denote the
marginal PDF of X1, the marginal PDF of X2 conditioned on X1 and the marginal
PDF of X3 conditioned on {X1, X2}, respectively.

If we set

X2−1 = X2 − E[X2|X1], X3−12 = X3 − E[X3|X1, X2], (2.131)

then, we can write

p(X1, X2, X3) = p(X1)p(X2−1)p(X3−12). (2.132)

Alternatively, {X1, X2−1, X3−12} is a set of independent random inputs.

2.9.8.2 Orthogonalization of the correlated inputs

Let us consider a set of standardized correlated random parameters X. A set of orthog-
onal parameters is derived by

X̄1 = X1, (2.133a)
X̄i = Xi − E[Xi|X1, ..., Xi−1], ∀i = 2, ..., k. (2.133b)

Subsequently, we use the ANOVA decomposition (Sob93) to estimate the sensitiv-
ity indices of the new input parameters such as the first-order index S̄i due to X̄i, the
second-order index S̄ij due to the pairs of parameters X̄i and X̄j , etc.
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2.10 Sensitivity analysis based on coefficients of determination

2.9.8.3 Interpretation of the sensitivity indices

For the ease of notation, we note X̄1 = X1, X̄i = Xi|X1, ..., Xi−1, 1 < i ≤ k.
Since X̄1 = X1, the sensitivity indices of X̄1 are equal to those of X1: S̄1 = S1 and
S̄T1 = ST1 are the full sensitivity indices. When X̄2 = X2|X1, the sensitivity indices
of X̄2 are those of X2 without its mutual correlated contribution with X1: S̄2 = S2−1

and S̄T2 = ST2−1 . For X̄k = Xk|X∼k, the sensitivity indices of X̄k are those of Xk

without its mutual correlated contribution with X∼k: S̄k = SUk and S̄Tk = SUTk are the
uncorrelated contribution of Xk to the variance V [f(X)]. It is worth noting that

Si =
V [E[f(X)|X̄i]]

V [f(X)]
, SUTi = 1− V [E[f(X)|X̄∼i]]

V [f(X)]
(2.134)

2.9.8.4 Computational issues

The computation of the new sensitivity indices is done in 5 steps:

1. Employ Iman and Conover’s method (IC82) to generate a sample set of corre-
lated inputs X;

2. Evaluate the model Y at each sample value;

3. Decorrelate the original dependent sample using Equations (2.133a) and (2.133b)
to obtain a set of independent samples;

4. Compute the new sensitivity indices of interest based on the generated indepen-
dent random parameters;

5. Perform a circular permutation of the parameters and go to step 3 until the k−th
iteration.

2.10 Sensitivity analysis based on coefficients of deter-
mination

The COD R2 for the full model is compared to the value R2
pi, which is evaluated when

we remove the parameter pi from the full regression basis. This removal will result in
a measurable drop

4R2
pi

= R2 −R2
pi

= R2
(
[1 X1 X2 ... pi−1 pi pi+1 ...X

2
1 X

2
2 ...]

)
−R2

pi

(
[1 X1 X2 ... pi−1 pi+1 ... X

2
1 X

2
2 ...]

) (2.135)
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The values of4R2
pi

show which parameter pi is important. The larger the value of
4R2

pi
, the more important the variable is and vice versa. We normalize the value of

4R2
pi

with the purpose of limiting the maximum value by 1. This defines a coefficient
of importance

Ipi =
4Rpi

R2
= 1−

R2
pi

R2
. (2.136)

2.11 Partial derivatives
Assume that the model output Y is a scalar function of a vector X = (X1, X2, ..., Xk)
of k input parameters. Partial derivatives can be seen as a mathematical definition of
the sensitivity of the model output Y versus the input parameters Xi, i.e., the partial
derivatives will be shown for two following cases

1) If we fix the other parameters, the partial derivatives are written by (SRA+08)

SpdXi
=

1

N

N∑
j=1

∂Yj

∂Xi

=
1

N

N∑
j=1

(
lim

4Xi→0

Y(xji + 4Xi)−Y(xji)

4Xi

)
; i = 1, ..., k.

(2.137)

2) If we vary other parameters, the partial derivatives are written as follows

SpdaXi
=

1

Nk

N∑
j1=1

...
N∑

jk=1

∂Yji

∂Xi

=
1

Nk

N∑
j1=1

...

N∑
jk=1

(
lim

4Xi→0

[Y(X1, ..., xjii + 4Xi, ..., Xk)−Y(X1, ..., xjii, ..., Xk)]

4Xi

)
;

i = 1, ..., k, ji = 1, ..., N.

(2.138)

where N is the number of samples.
Computing the partial derivatives at one point xj, j = 1, ..., N is clearly a local

measure of the parameter’s sensitivity. Averaging different partial derivatives gives an
approximation of global sensitivity measures under the assumption of no change in the
sign of the derivatives at the different points.

Saltelli et al. (SRA+08) suggested computing these partial derivatives at a set of
different points in the design space of input parameters so that an average response of
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Figure 2.19: Flowchart of partial derivatives of the surrogate model output w.r.t Xi (a)
when we fix the others and (b) when we vary the others.
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2.12 Elementary effects

Yj can be obtained when moving a factor Xi of a step 4Xi at different points. Using
this concept, the elementary effects method was developed where now the choice of
the parameter increment follows another strategy.

2.12 Elementary effects
Consider a vector X of input parameters with k components X = (X1, X2, ..., Xk),
each Xi varies in the unit across p selected levels as presented in (CB99). For a given
value of X in the p-level grid Ω, the elementary effects for the i-th input parameter are
defined as in (SRA+08)

EEi =
[Y(X1, X2, ..., Xi + 4, ..., Xk)−Y(X1, X2, ..., Xi, ..., Xk)]

4 (2.139)

where p is the number of levels, 4 is a preselected value in {1/(p−1), ..., 1−1/(p−1)}
so that the transformed point X + ei4 is still in Ω for each index i = 1, ..., k and ei
vector of zeros but with a unit as its i-th component.

In its simplest form, the computation of the i-th elementary effect requires the
evaluation of the output Y at two points X and (X + ei4). The total computation
requires n = 2rk model executions, where r is a number of elementary effects that
shall be calculated. A more efficient sampling scheme has been suggested by Morris
(Mor91) that constructs r trajectories of (k+ 1) points in the input space n = r(k+ 1)
model executions. The performance of this method was presented in (SRA+08, CB99).

1. A base value x∗ is randomly chosen in Ω

2. We use x∗ to generate all trajectory points including the points x(g), g = 1, ..., k+
1 (note that x∗ is not part of the trajectory). The first trajectory point, x(g), is
obtained by increasing one or more components of x∗. The trajectory points x(g)

then is generated by x(g+1) = x(g) + ei4 or x(g+1) = x(g) − ei4 in such a
way that x(g+1) and x(g) differ only in the i-th component. A detailed sampling
scheme will be presented in section 2.12.1.

3. Each trajectory allows computing an elementary effect EEi(x(g)) and the com-
putation of the elementary effect for i-th input parameter will be presented in
section 2.12.2.

4. Different base values x∗ can be used to generate r different trajectories. It means
that the sample size of each of elementary effect is r.
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2.13 Surrogate models

2.12.1 The sampling strategy for elementary effects
According to (Mor91) in the first step a (k + 1) × k sampling matrix B is selected as
follows:

B =


0 0 0 ... 0
1 0 0 ... 0
1 1 0 ... 0
... ... ... ... ...
1 1 1 ... 1

 (2.140)

A version of the sampling matrix is then randomly given by

B∗ = (Jk+1,kx
∗ + (4/2))[(2B− Jk+1,k)D

∗ + Jk+1,k]) P∗ (2.141)

where Jk+1,k is a (k + 1) × k of 1’s; x∗ is a randomly selected base value of X; D∗

is a k-dimensional diagonal matrix in which each element laying on the main diagonal
is either +1 or -1 with equal probability; P∗ is a k × k matrix in which columns of
the identity matrix are permuted randomly, all others are 0, and no two columns have
1’s in the same position. B∗ is called random orientation that provides one elementary
effect per input.

2.12.2 The computation of the sensitivity measures
Supposing that, x(g) and x(g+1), with g in the set 1,...,k, the elementary for i-th input
parameter can be estimated along the j-th trajectory via two above sampling points as
presented in (SRA+08)

EEj
i (x

(g)) =
[Y(x(g+1))−Y(x(g))]

4 (2.142)

if the i-th component of x(g) is increased by 4, and

EEj
i (x

(g)) =
[Y(x(g))−Y(x(g+1))]

4 (2.143)

if the i-th component of x(g) is decreased by 4.

2.13 Surrogate models
A surrogate model (MM02) is an approximate mechanical model, used to predict the
response at a new point based on a limited amount of observed data. By employing
the surrogate model, we aim to construct a continuous k-dimensional function f̂ of k
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2.13 Surrogate models

random parameters x. Both global regression (polynomial regression) and local regres-
sion using polynomials (moving least squares, etc.) or kernel functions approaches, to
name a few, can be used to construct the surrogate model.

2.13.1 Polynomial regression model
Based on linear polynomial basis, Ŷ has been chosen to approximate the response of
the mechanical model Y of N observed data points xj = [xj1, ..., xjk], j = 1, ..., N .

Ŷ = β0 +
k∑
i=1

βiXi + e. (2.144)

where k is the number of polynomial base functions, β are the unknown regression
coefficients, e is the error term that is the difference between the approximation Ŷ and
the mechanical model Y. The mean square difference (residual) RSS is defined as

RSS =
N∑
j=1

(
Yj − Ŷj

)2

. (2.145)

The parameter vector β̂ is determined by minimizing the mean square difference
S between the value of surrogate surface Ŷ and the observed response Y as presented
in (Buc09)

∂(RSS)

∂βi
= 0; i = 1, ..., k (2.146)

which, together with Equation (2.145) results in

N∑
j=1

{
Xi

[
Yj −

k∑
i=1

βixji

]}
= 0; i = 1, ..., k. (2.147)

The parameter vector β̂ is obtained by solving the system of linear equations

Qβ = q (2.148)

in which the matrix Q and vector q are

Qil =
N∑
j=1

xjixjl; ql =
N∑
j=1

Yjxjl; i, l = 1, ..., k (2.149)
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2.13 Surrogate models

The coefficient of determination (COD) R2 allows an estimation of the quality of
the approximation,

R2 = 1− RSS

RSStot
, 0 ≤ R2 ≤ 1 (2.150)

where the total variation Stot is defined as

RSStot = V (Y) =
(
Y − Ȳ

)T (
Y − Ȳ

)
(2.151)

Ȳ is being the mean value of all Yj;

Ȳ =
1

N

N∑
j=1

(Yj) . (2.152)

The COD can be rewritten as:

R2 = 1−

∑N
j=1

(
Yj − Ŷj

)
∑N

j=1

(
Yj − Ȳ

) . (2.153)

A COD of R2 = 1 means that the regression model can reproduce the response of
the mechanical model exactly. To construct surrogate model connecting an alternate
input-output relation R2 should be at least larger equal 0.8.

An alternative to R2 is the adjusted COD R2
adj . This measure additionally takes

into account the number of supporting points N as well as the number of regression
coefficients kR. If N is large compared to kR the R2 and R2

adj provide in the limit case
the same results.

R2
adj = 1− RSS/(N − kR)

RSStot/(N − 1)
= 1− N − 1

N − kR
(
1−R2

)
. (2.154)

Besides the regression based on linear polynomials, higher order approaches con-
sidering quadratic terms can be applied

Ŷ = β0 +β1X1 +β2X2 + ...+βkNXkN +β11X
2
1 +β22X

2
2 + ...+βkkX

2
k +e. (2.155)

as well as quadratic and mixed terms

Ŷ =β0 + β1X1 + β2X2 + ...+ βkXk + β11X
2
1 + β22X

2
2 + ...

+ βkkX
2
k + β12X1X2 + ...+ βk−1kXk−1Xk + e

(2.156)

can be used.
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2.13 Surrogate models

2.13.2 Moving least squares (MLS)
The idea of MLS is to account for a set of unorganized point samples by introducing
local weighting functions w(d) (LS86). At a point xm, the interpolated value ŶMLS is
written as follows

ŶMLS(xm) = pT (xm)βW. (2.157)

where p(xm) is base vector evaluated at the point xm

pT (xm) =
[
1 xm1 xm2 ... x2

m1 x2
m2 ... xm1xm2 ...

]
. (2.158)

and βW contains the coefficient of the polynomial.
The coefficients are determined by a weighted least squares method minimizing

the L2-norm error LW

LW = (Y − pT (xm)βW)TW(xm)(Y − pT (xm)βW) (2.159)

w.r.t the unknown coefficients βW yielding

∂LW

∂βW

= 0→ β̂W =
(
XTW(x)X

)−1
XTW(x)Y (2.160)

where βW are the moving coefficients, and W(x) is the diagonal matrix

W(xm) =


w(xm − x1) 0 ... 0

0 w(xm − x2) ... 0
... ... ... ...
0 0 ... w(xm − xN)

 . (2.161)

We use the cubic polynomial weighting function (MB05)

w(d) =

{
1− 3d2 + 2d3 d ≤ 1

0 d > 1
(2.162)

where dj =‖ xm−xj ‖ /D is the normalized distance between the interpolation point
and the supporting point; D is an influence radius which is constant or dependent on
position x; in our examples, D is fixed.

Substituting Equation (2.160) into Equation (2.157) yields the MLS approximation

ŶMLS = pT (xm)
[
XTW(xm)X

]−1
XTW(xm)Y. (2.163)
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2.13.3 Hybrid algorithm
A hybrid (quadratic polynomial regression/MLS regression) model is presented in this
section with the purpose of capturing the localities of global output without overfit-
ting. This approximation model used the MLS in the dimension where the polynomial
regression fails to account for. It can be written as:

Ŷhybrid = Ŷ + ŶMLS(R)

R =
[
Y1 − Ŷ1, ..., Yj − Ŷj, ..., YN − ŶN

] (2.164)

It is worth mentioning that the higher order of polynomial regression model results
in a more accurate approximation of the input output relationship. However, the higher
order the polynomial regression model, the more flexible is the regression model. It
can lead to overfitting the output of the mechanical model, see (Kar11).

2.13.4 Kriging regression
2.13.4.1 Maximum likelihood estimation

Maximum likelihood estimation (MLE) is a general technique of estimating the pa-
rameters of a statistical model. Maximum likelihood estimators provide estimates for
the model parameters when applied to a data set and given a statistical model.

Let Y denote the vector of observed responses under a probability density function
(PDF) PY(Y;θ); θ is a vector of parameters requiring estimation. The likelihood is
expressed in terms of the sample data as

L =
1

(2πσ2)N/2
√
det(Ψ)

exp

[
−(Y − 1µ)TΨ−1(Y − 1µ)

2σ2

]
(2.165)

The logarithmic likelihood (ln-likelihood) function ln(L) is given by

ln(L) = −N
2
ln(2π)− N

2
ln(σ2)− 1

2
ln|Ψ| − (Y − 1µ)TΨ−1(Y − 1µ)

2σ2
(2.166)

Taking derivatives of the ln-likelihood in Equation (2.166) w.r.t. the parameter vec-
tor and setting the resulting gradient vector to zero, we obtain the maximum likelihood
estimates (MLEs) of µ and σ2

µ̂ =
1TΨ−1Y

1TΨ−11
, σ̂2 =

(Y − 1µ̂)TΨ−1(Y − 1µ̂)

N
, (2.167)
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Substituting these MLEs back into Equation (2.166) yields the concentrated ln-
likelihood function:

ln(L) ≈ −N
2
ln(σ2)− 1

2
ln|Ψ|. (2.168)

In order to search the kriging regression model, the regression constant λ > 0 is
added to the diagonal of Ψ. Therefore, µ, σ2 and ln(L) become

µ̂ =
1T (Ψ + λI)−1Y

1T (Ψ + λI)−11
, σ̂2 =

(Y − 1µ̂)T (Ψ + λI)−1(Y − 1µ̂)

N
, (2.169)

ln(L) ≈ −N
2
ln(σ2)− 1

2
ln|Ψ + λI| (2.170)

The value of ln(L) depends on the unknown parameters θi and λ.

2.13.4.2 Kriging prediction

Given a set of sample data, X = {x1, x2, ..., xN}T , with observed responses, Y =
{Y1, Y2, ..., YN}T , we want to find a regression model, which can filter the noise from
stochastic simulations, to predict the value at a new point x. The observed responses
are expressed in terms of the set of random vectors as Y = {Y (x1), Y (x2), ..., Y (xN)}T .

The correlation between elements of the vector Y is described by the anisotropic
exponential correlation functions:

cor(Y (xj), Y (xl)) = σ2exp

(
−

k∑
i=1

θi(xji − xli)2

)
, j, l = 1, ..., N. (2.171)

where σ2 is the variance of the response at sampled design points, and θi is a parameter
measuring the degree of correlation among the data along the ith direction.

The correlation matrix of all the design points is constructed from Equation (2.171)

Ψ =

 cor(Y (x1), Y (x1)) · · · cor(Y (x1), Y (xN))
... . . . ...

cor(Y (xN), Y (x1)) · · · cor(Y (xN), Y (xN))

 . (2.172)

The parameters µ, σ2, θ, and λ are estimated such that the ln-likelihood given by
Equation (2.170) is maximized. A global search method such as a genetic algorithm
(GA) usually is employed to produce the best values for these parameters (FSK 1).
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2.13 Surrogate models

Once the model parameters have been estimated, the value at a new point is eval-
uated by first defining a vector of correlations between the observed data and our new
prediction

ψ =

 cor(Y (x1), Y (x))
...

cor(Y (xN), Y (x))

 =

ψ1
...
ψN

 . (2.173)

and then employing the derived Kriging regression to predict the new values

Ŷ(x) = µ̂+ψT (Ψ−1 + λI)−1(Y − 1µ̂). (2.174)

2.13.5 Nonparametric regression model
2.13.5.1 Cross-Validation

As presented by Ruppert et al. (RWC62), the residual sum of squares is one of the
most common measures for the ”good-ness of fit” of a regression curve to a scatterplot

RSS =
N∑
j=1

(Yj − Ŷj)2 = ‖Y − Ŷ‖2
. (2.175)

Let f̂(x;α) denote the nonparametric regression estimator at a point xwith smooth-
ing parameter α. Then, we can rewrite the RSS in Equation (2.175) as

RSS(α) =
N∑
j=1

{Yj − f̂−j(xj;α)}2. (2.176)

The CV criterion is derived as

CV (α) =
N∑
j=1

{Yj − f̂−j(xj;α)}2, (2.177)

where f̂−j denotes the nonparametric regression estimator applied to the data with
(xj, Yj) omitted. Cross-validation (CV ) is used to find the optimum smoothing pa-
rameter of kernel regression; α̂CV being a CV choice of α that minimizes CV (α) for
α ≥ 0.

For computational efficiency, we have employed the generalized cross-validation
(GCV ) (HdH85).

GCV (α) =
RSS(α)

{1− dffit(α)/N}2
. (2.178)

The smoothing parameter α̂GCV is obtained by minimizing Equation (2.178).
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2.13 Surrogate models

2.13.5.2 Penalized spline regression

Let us consider a general spline model withK knots. We use the truncated power basis
of degree ℘, [1, x, ..., x℘, (x−κ1)℘+, ..., (x−κK)℘+] with knots at κ1, ..., κK . The spline
model is defined as

f(x) = β0 + β1x+ ...+ β℘x
℘ +

K∑
n=1

β℘n(x− κn)℘+, for ℘ = 1, 2, ... (2.179)

Fitting is performed by minimizing ‖Y −XCβ‖2 + αβTDβ w.r.t. β yielding to
the fitted values of the penalized spline regression

Ŷ = XC(XC
TXC + αD)−1XC

TY (2.180)

where the XC-matrix is

XC =


1 x1 . . . x℘1 (x1 − κ1)℘+ . . . (x1 − κK)℘+
...

... . . . ...
... . . . ...

1 xN . . . x℘N (xN − κ1)℘+ . . . (xN − κK)℘+

 , (2.181)

and D = diag(0℘+1,1K).
A fast computation of the penalized spline regression involves the following steps:

1. Obtain the Cholesky decomposition of XC
TXC:

XC
TXC = RTR, (2.182)

where R is square and invertible.

2. Form the symmetric matrix R−TDR−1 and obtain its singular value decompo-
sition:

R−TDR−1 = Udiag(s)UT . (2.183)

3. Compute the matrix and vector,

A ≡ XCR−1U b ≡ ATY. (2.184)
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2.13 Surrogate models

4. The fitted values are

f̂α = A

(
b

1 + αs

)
(2.185)

with corresponding degrees of freedom (DOFs)

dffit(α) = 1T
(

1

1 + αs

)
. (2.186)

Once the matrix A and vectors b and s have been computed, f(α) and dffit(α)
can be computed for different values of α. Automatic smoothing parameter selection
is then performed to search for the smoothing parameter α that minimizes GCV (α) in
Equation (2.178) with obtained dffit(α) and

RSS(α) = ‖Y − f̂α‖2. (2.187)

In order to give an indication of the uncertainty of the fitted spline that measures
how much the relationship between the conditional expected value E(Y|Xi) and the
ith parameter Xi change, the confidence intervals (CIs) are examined. In addition, the
prediction intervals (PIs) for Y are also shown.

We assume that Ŷ is distributed as a t-distribution with dfres DOFs where dfres(α)
is computed by

dfres(α) = N − 21T
(

1

1 + αs

)
+

∥∥∥∥ 1

1 + αs

∥∥∥∥ . (2.188)

The CIs for the penalized spline were given by Ruppert et al. (RWC62)

σ(f̂−f) = σε

√
diag

{
Adiag

(
1

1 + αs

)
AT

}
, (2.189)

where σε is estimated by

σ̂2
ε =

RSS(α)

dfres(α)
, (2.190)

Therefore, an approximate 100(1− γ)% confidence interval for f(x) is

f̂(x)± t
(

1− γ

2
; dfres

)
σ(f̂−f). (2.191)

The PIs for the penalized spline are

f̂(x)± t
(

1− γ

2
; dfres

)
σε

√
1 + diag

{
Adiag

(
1

1 + αs

)
AT

}
, (2.192)
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where 1 is an ((℘+ 1 +K)× 1) column vector of ones, t(1 − γ
2
; dfres) denotes the

100
(
1− γ

2

)
− th percentile of the t distribution with dfres DOFs.

2.14 Normalization of the input
Since the input parameters in our simulation are at different scales, they need to be
normalized before building the surrogate models. The sth realization of the ith input
factor Xi is normalized as follows:

xnormji =
xji −min(Xi)

max(Xi)−min(Xi)
(2.193)

where min(Xi) and max(Xi) are the minimum and maximum of the samples of the
ith input.
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Chapter 3

Stochastic predictions of bulk
properties of amorphous polyethylene
based on molecular dynamics
simulations

3.1 Introduction
Glassy amorphous polyethylene (PE) has been widely studied by many researchers due
to its important physical, chemical and mechanical properties. Great effort has been
made for many decades to predict the mechanical properties such as Young’s modu-
lus, yield strength, etc. Recent developments of molecular dynamics simulation have
opened the door for understanding and predicting the mechanical and physical prop-
erties of various polymeric materials. Boyce et al. (CBR02) noticed that the Young’s
modulus and yield stress depends on the rate of deformation. Recently, Zhao et al.
(ZNZ10) have found that the chain length, temperature and strain rate have a signifi-
cant effect on the mechanical properties of amorphous PE under uniaxial deformation.
The thermo-mechanical properties of PE were studied by coarse-grained MD simu-
lations. Boyce et al. (BA00) stated when more than 100 atoms (units) are used in
a chain, the chain will take on a randomly kinked shape and the polymer chains are
arranged in a random orientation. Hossain et al. (HTW+10) showed the higher the
chain length, the more entanglement the structure and hence the structure has a higher
stiffness and yield stress. They also reported that the influence of the chain length on
the stress-strain curve is more significant than the number of chains. Hoy and Robbins
(RM91) observed strain softening for specific chain lengths. The influence of certain
parameters on the mechanical behavior of glassy amorphous polymers has been ob-
tained qualitatively (HTW+10, RM91, CBR04). However, quantitative results in the
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3.2 Molecular dynamics method

context of stochastic analysis are missing.
This chapter aims to quantify the influence of the chain length, temperature and

strain rate on the yield stress and Young’s modulus. Therefore, we compute first-order,
total-effect sensitivity indices in the context of global sensitivity analysis (SA). More-
over, we perform a local SA where we calculate partial derivatives and elementary
effects. The probability distribution of the Young’s modulus is characterized by us-
ing a probability plot method and the residual sum of squares (RSS) is employed to
determine the best fitted distribution of the sample output data.

This chapter is outlined as follows. In section 3.2, we briefly describe the MD
model for PE. The results of the MD model will be shown in section 3.3. In section 3.4,
the coefficients of determination and the sensitivity indices will be presented before we
discuss the numerical results. Finally, we end the manuscript with concluding remarks.

3.2 Molecular dynamics method
The united atom model using the dreiding potential was used to describe the molecular
structure of PE. The functional form and parameters of the force field are summarized
in Table 2.1.

The initial chain structures were created by implementing a Monte Carlo random
walk growth algorithm with rigid bond length (Bin95). The simulation cell had a face
centered cubic (FCC) lattice each site representing a possible monomer location. Simi-
lar methods have successfully been generated in (HTW+10, She06). Subsequently, the
equilibration and deformation processes described in subsection 2.1.3 were performed
to study stress-strain response in dependence of different chain lengths, temperatures
and strain rates. Figure 3.1 illustrates the undeformed (left) and deformed (right) rep-
resentative volume elements. Simulations were performed by a parallel molecular dy-
namics code LAMMPS (Pli95).

To verify the glass transition temperature of various thermodynamics quantities,
two consecutive equilibration steps were implemented (HTW+10). Firstly, the model
(20,000 atoms) was equilibrated at 500 K. Then, the system was cooled down to 100
K at a rate of 0.8 K/ps over 500 ps by a series of NPT runs. The glass transition tem-
perature was identified as the location of the discontinuity in the slope of the specific
volume versus temperature curve are shown in Figure 3.2.

3.3 Molecular dynamics simulation results
In this section, the influence of the chain length, temperature and strain rate on the
mechanical properties of PE is obtained by UA-MD simulations.

Gaussian, Schulz-Flory, log normal and the Poisson distribution are often used
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3.3 Molecular dynamics simulation results

Figure 3.1: Undeformed (left) and deformed (right) (100% strain) representative vol-
ume elements built for PE
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Figure 3.2: Plot of the relationship between volume evolution and temperature during
cooling process.
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(Bow01) to approximate the chain length distribution. A small number of monomers
(Ne) does not increase the strength because short chains slip too easily (Qia). The
strength increases with the chain length (Ne), but so does viscosity (hard to mold) if
Ne is larger than 2000 units. The experimental studies of Ungar et al. (USK+85) and
Lee and Wegner (LW85) on the linear long-chain showed that polymer chains kink
only for chain lengths larger than 100 CH2 units, the so-called entanglement length
(SK95). In our simulations, 100 to 2000 units are chosen as lower and upper bounds
of a truncated Gaussian distribution

For glassy PE, the temperature should be lower than the glass transition tempera-
ture Tg (Tg = 300 K, see Figure 3.2). However, the temperature has to be high enough
to observe strain-rate effects for the thermal equilibrium (CBR04). Brown and Clarke
(BC91) pointed out that the Young’s modulus decreases significantly when the temper-
ature increases above 100 K. Therefore, we modify the temperature from 100 K to 300
K assuming uniform distribution.

The Young’s modulus and the yield stress decrease with decreasing strain rate.
As only a few pico -or nano seconds can be modeled in MD simulations, strain rates
below 109 1/s cannot be captured though they are unrealistic in practical applications.
Constant true strain rates ranging from 5 × 109 to 5 × 1010 1/s are used in our MD
simulations (CBR04). We assume a uniform distribution.

The stress-strain response for glassy amorphous PE system with 10 chains, 1000-
units deformed in uniaxial tension at temperature of 250 K and strain rate of 1 ×
10−5 1/fs is shown in Figure 2.2. Stress-strain curves with different chain lengths,
temperatures and strain rates are illustrated from Figure 3.3 to Figure 3.5.

Three initial chain structures were randomly generated with initial densities ρ0 =
0.5 g/cm3, 0.4 g/cm3, 0.2 g/cm3, respectively. After the equilibration sequence, the
densities for the amorphous equilibrated now are almost the same (ρ1 = 0.885 g/cm3,
ρ2 = 0.890 g/cm3, ρ3 = 0.883 g/cm3, respectively). Figure 3.6 shows for a strain
rate of 10−5 1/fs and temperature of 250 K the stress-strain curve is independent of the
initial structures.

Figure 3.7 illustrates stress-strain curves for quasi-static and dynamic MD-simulations
with different strain rates exemplary for two temperatures. The strain-rate dependence
is obvious. So far, there is no contribution that quantitatively determines the influence
of temperature and strain-rate on the bulk properties of PE.

The random input variables are listed in Table 3.1.

Table 3.1: Model uncertainties
Input parameters Type of distribution Mean value Standard deviation Source
Chain length (units) Gaussian (truncated) 800 300 (Qia)
Temperature (K) Uniform 200 200/

√
12 assumed

Strain rate (1/fs) Uniform 2.75× 10−5 4.5× 10−5/
√

12 assumed
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Figure 3.3: Stress-strain curves for a glassy PE system (10 chains, 1000 units) and
(100 chains, 100 units), respectively, deformed in uniaxial tension at a temperature of
250 K and strain rate of 10−5 1/fs.
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Figure 3.4: Stress-strain curves for a glassy PE system (10 chains, 1000-units) de-
formed in uniaxial tension at a strain rate of 10−5 1/fs and temperature of 250 K and
100 K, respectively.
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Figure 3.5: Stress-strain curves for a glassy PE system (10 chains, 1000 units) de-
formed in uniaxial tension at temperature of 250 K, strain rates of 10−5 1/fs and
5× 10−6 1/fs, respectively.
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Figure 3.6: Stress-strain curves for glassy PE systems (10 chains, 1000 units) at a strain
rate of 10−5 1/fs and temperature of 250 K.
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Figure 3.7: Stress-strain curves at (a) 250 K and (b) 280 K for quasi-static and dynam-
ics techniques
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3.4 Numerical results
The schematic diagram of all sensitivity assessment methods are provided in Figure
3.8.
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Figure 3.8: Schematic diagram of all sensitivity assessment methods presented in this
paper.

In the sequel the model output (Y) is either the computed yield stress or the
Young’s modulus. The three model input parameters are chain length (X1), tempera-
ture (X2) and strain rate (X3).

3.4.1 Scatter plots
Scatter plots in Figures 3.9 and 3.10 show the influence of the chain length, temperature
and strain rate on the yield stress and Young’s modulus, respectively. The highest
influence seems to be the temperature. To quantify the effect of the input parameters,
the sensitivity indices were studied using the surrogate model.
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Figure 3.9: Scatter plots of the yield stress (Y) versus the chain length (X1), temper-
ature (X2) and strain rate (X3), respectively.
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Figure 3.10: Scatter plots of the Young’s modulus versus (Y) the chain length (X1),
temperature (X2) and strain rate (X3), respectively.
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Figure 3.12: Normal probability plot for the distribution of the Young’s modulus.
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Figure 3.13: Weibull probability plot for the distribution of the Young’s modulus.
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Figure 3.14: Log-normal probability plot for the distribution of the Young’s modulus.

The Young’s modulus uncertainty of the investigated mechanical model can be de-
scribed by a probability distribution function. Judging from the shape of the histogram
shown in Figure 3.11, either normal or Weibull, Log-normal distributions are proper
candidates that can be used to account for the mechanical output uncertainty.

The purpose of probability plot is to graphically assess if the Young’s modulus’
data can be characterized by a given distribution. If the probability plot produces the
least deviations from a linear line, the exploited theoretical distribution is chosen as a
goodness-of-fit of the data (GK90). The Normal, Weibull and Log-normal probability
plots are illustrated in Figures 3.12, 3.13 and 3.14, respectively.

The difference between mean (4.30× 10−4) and mode value (4.02× 10−4) reveals
that the output is skewed, see Figure 3.11 and Table 3.2. Hence, the Normal distribu-
tion is not a good candidate to characterize the mechanical output. It is more reasonable
to describe the skewed data by a Weibull distribution or a Log-normal distribution. In
order to quantitatively assess the best fits to the data, the sum of the squares of the es-
timated residuals (RSS) are computed in Equation (2.145) in which cross blue points
of the probability plots are considered as Yj and the regression values (linear red lines)
play the same role as Ŷj . Obviously, the Weibull probability plot provides the best fit to
characterize the Young’s modulus’ histogram due to the smallest RSS given in Table
3.3. Note that the RSS values are estimated within 95% confidence intervals.
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Table 3.2: Statistical results for the ISS
Output Mode value

(MPa)
Mean value

(MPa)
Std. dev.

Young’s modulus 778.05 1248.72 149.00

Table 3.3: Uncertainties of mechanical output using various distributions
Type of assumed PDF Parameter 1 Parameter 2 Error
Normal PDF Mean value

(MPa)
Std. dev. RSS

1248.72 149.38 0.2312
Weibull PDF Scale parameter

(A)
Shape parameter

(B)
RSS

1312.30 10.42 0.1040
Log-normal PDF Mean value

(MPa)
Std. dev. RSS

7.12 0.13 0.3409

3.4.2 Surrogate model
Figure 3.15 shows that statistical convergence can be achieved with only 20 samples
for the polynomial regression model and 80 samples for the MLS-model. There are
barely any differences between the linear and the higher order regression models.

Subsequently, we compute the regression coefficient sets of samples, COD R2 and
adjusted COD R2

adj for 200 samples.
The surrogate model is used to approximate the output of the mechanical model.

The regression coefficient βk, Equation (2.148) is listed in Table 3.4 (for the yield
stress) and Table 3.5 (for the Young’s modulus). Table 3.4 and Table 3.5 also show the
COD R2 and adjusted coefficient R2

adj w.r.t. linear, quadratic without mixed terms and
the full quadratic polynomial regression. The higher the order of the polynomial basis
function, the larger these values. The MLS approximation with appropriate chosen
radius (radius of 500) leads to the best surrogate model (highest value for R2 and
R2
adj). A three-dimensional scatter plot and the associated surrogate model is shown in

dependence of the temperature and strain rate in Figure 3.16 (for the yield stress) and
Figure 3.17 (for the Young’s modulus). The highest gradients (in either temperature
or strain-rate direction) occur in the temperature direction, indicating the temperature
is the key parameter for the yield-stress and the Young’s modulus. Figure 3.17 shows
that for a fixed temperature of 100 K, there is barely a change in the Young’s modulus.
The strain-rate effect on the Young’s modulus is increased with increasing temperature.
The strain-rate effect influences the yield stress even for low temperatures around 100
K, see the gradient for fixed temperature in strain-rate direction in Figure 3.16. With
increasing temperature, this gradient slightly increases.
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Figure 3.15: The plot of R2 versus the number of samples when polynomial regression
and MLS are used in both cases: the output model are yield stress (a) and Young’s
modulus (b).
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Figure 3.16: Scatter points got from MD simulations (black points) and projection
surface of RS model which express the yield stress versus the temperature and strain
rate. In this figure, the full quadratic regression (a) and MLS (b) are used.
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Figure 3.17: Scatter points got from MD simulations (black points) and projection
surface of surrogate model which express the Young’s modulus versus the temperature
and strain rate. In this figure, the full quadratic regression (a) and MLS (b) are used.
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Table 3.4: Regression coefficient, COD R2 and adjusted COD R2
adj in case the output

is yield stress
Response surface methods Regression coefficient
Linear regression β0 = 226.19

β1 = 4.4e-3
R2 = 0.90 β2 = -0.33
R2
adj = 0.90 β3 = 1.01e+6

Quadratic without mixed terms β0 = 176.75
β1 = 0.01
β2 = 0.18
β3 = 1.02e+6
β11 = -3.36e-6

R2 = 0.93 β22 = -1.2e-3
R2
adj = 0.93 β33 = 0

Full quadratic β0 = 185.33
β1 = 0.0061
β2 = 0.15
β3 = 7.7e+5
β11 = -3.23e-6
β22 = -1.3e-3
β33 = 0
β12 = 1.78e-5

R2 = 0.93 β13 = 2.25
R2
adj = 0.93 β23 = 1277.82

Moving least squares
R2 = 0.95
R2
adj = 0.95

The coefficients of determination listed in Table 3.4 and Table 3.5 demonstrate that
the surrogate model obviously reflects almost exactly the response of the mechanical
model because the COD are 0.93 for the yield stress and 0.91 for the Young’s modulus.
In other words, 93 % of the yield stress and 91 % of the Young’s modulus variation
are represented by the regression model. The obtained R2, R2

adj when using the linear,
quadratic without mixed terms, full quadratic regression and MLS are similar. In this
paper, we have used the full regression model as the computational cost increases only
insignificantly compared to the linear model.

3.4.3 Partial derivatives
Long MD simulations are generating cumulative errors in the numerical integration
that can be minimized with proper selection of algorithms and parameters, but not
eliminated entirely. Therefore, the approximation of partial derivatives with finite dif-
ferent schemes is critical in particular when 4Xi approaches to 0. This is the rea-
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Table 3.5: Regression coefficient, COD R2 and adjusted COD R2
adj in case the output

is Young’s modulus
Response surface methods Regression coefficient
Linear regression β0 = 1615.78

β1 = 0.03
R2 = 0.87 β2 = -2.35
R2
adj = 0.87 β3 = 2.79e+6

Quadratic without mixed terms β0 = 1336.02
β1 = 0.08
β2 = 0.48
β3 = 2.83e+6
β11 = -2.73e-5

R2 = 0.89 β22 = -7.0e-3
R2
adj = 0.89 β33 = 0

Full quadratic β0 = 1512.74
β1 = 3.8e-3
β2 = -0.13
β3 = -2.92e+6
β11 = -2.50e-5
β22 = -8.1e-3
β33 = 0
β12 = 3.11e-4

R2 = 0.91 β13 = 272.47
R2
adj = 0.91 β23 = 28091.99

Moving least squares
R2 = 0.94
R2
adj = 0.94

son why we apply the partial derivative approach solely on the generated response
surfaces, which, by construction, are sufficiently smooth for approximating deriva-
tives numerically. The full quadratic surrogate model is used. Each Xi will be dis-
cretized into 10 values in the interval [0,1], and the input space represents a scal-
ing of a 3D unit cube and discretization of 10-level grid Ω. Then applying the in-
verse cumulative function we obtain a 10-level grid for three input parameters (chain
length (X1), temperature (X2) and strain rate (X3)) in the real interval. We evaluate
Y = (Yield stress, Elatic modulus) twice, first at the selected values and second after
increasing Xi by the quantity 4 = 0.01%. The partial derivatives are computed from
Equations (2.137) and (2.138) for two cases: (1) keeping the other parameters fixed;
(2) considering variation of other parameters, respectively. Flowcharts of these pro-
cesses are provided in Figure 2.19. To quantify the relative importance of the influence
of each input parameter, the partial derivatives need to be normalized w.r.t. an input
parameter, e.g., X2 in this example named SX2

Xi
, i = 1, 3 as follows
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S
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N∑
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∂Y(l)

∂X3

)
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These normalized partial derivatives (NPD) ŜX2
Xi
, i = 1, 3 are reduced by the COD

R2

Ŝ
X2,(pd)
X1

= R2S
X2,(pd)
X1

(3.4a)

Ŝ
X2,(pda)
X1

= R2S
X2,(pda)
X1

(3.4b)

Ŝ
X2,(pd)
X2

= R2S
X2,(pd)
X2

(3.5a)

Ŝ
X2,(pda)
X2

= R2S
X2,(pda)
X2

(3.5b)

Ŝ
X2,(pd)
X3

= R2S
X2,(pd)
X3

(3.6a)

Ŝ
X2,(pda)
X3

= R2S
X2,(pda)
X3

(3.6b)

Table 3.6 shows the average of the reduced normalized partial derivatives (ARNPD)
for the yield stress and the Young’s modulus, respectively. The partial derivatives
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Ŝ
X2,(pd)
Xi

are almost identical to the partial derivatives ŜX2,(pda)
Xi

, i = 1...3 meaning that
the input parameters are all independent. The chain length has almost no influence on
the Young’s modulus and the yield stress. The key input parameter is the temperature
followed by the strain rate. While the strain rate has an effect on the yield stress – the
ARNPD of the strain rate is around 40% of the ARNPD of the temperature, the strain
rate does barely affect the Young’s modulus. The ratio ŜX2,(pda),(mod)

X3
/Ŝ

X2,(pda),(mod)
X2

is
only 0.17; Table 3.7.

Table 3.6: Average of reduced NPD for the yield stress
ARNPD calcultated by Eqs. (3.4a),
(3.5a) and (3.6a)

ARNPD calcultated by Eqs. (3.4b),
(3.5b) and (3.6b)

Ŝ
X2,(pd),(yield)

X1
= 0.01 Ŝ

X2,(pda),(yield)

X1
= 0.01

Ŝ
X2,(pd),(yield)

X2
= 0.31 Ŝ

X2,(pda),(yield)

X2
= 0.31

Ŝ
X2,(pd),(yield)

X3
= 0.13 Ŝ

X2,(pda),(yield)

X3
= 0.13

Table 3.7: Average of reduced NPD for the Young’s modulus
ARNPD calcultated by Eqs. (3.4a),
(3.5a) and (3.6a)

ARNPD calcultated by Eqs. (3.4b),
(3.5b) and (3.6b)

Ŝ
X2,(pd),(mod)

X1
= 0.07 Ŝ

X2,(pda),(mod)

X1
= 0.07

Ŝ
X2,(pd),(mod)

X2
= 2.09 Ŝ

X2,(pda),(mod)

X2
= 2.14

Ŝ
X2,(pd),(mod)

X3
= 0.37 Ŝ

X2,(pda),(mod)

X3
= 0.37

3.4.4 Elementary effects
To measure elementary effects of the mechanical model with 3 input parameters, we
have randomly built r = 8 trajectories for p = 10 and assumed 4 = 3/9. Suppose
that the randomly generated x∗, D∗ and P∗ are

x∗ =



2/9 5/9 1/9
3/9 6/9 2/9
1/9 4/9 4/9
4/9 3/9 3/9
6/9 2/9 3/9
5/9 0 2/9
1/7 2/7 1/5
0 1/7 2/5


; D∗ =

1 0 0
0 −1 0
0 0 1

 ; P∗ =

1 0 0
0 1 0
0 0 1

 . (3.7)

84



3.4 Numerical results

Using the Equation (2.141) to generate 8 trajectories of quantiles for 3 variables
and applying the inverse cumulative function, we obtain corresponding values for three
input parameters: chain length (X1), temperature (X2) and strain rate (X3).
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Figure 3.18: Stress-strain curves of two trajectories (left) trajectory 1 and (right) tra-
jectory 2

Figure 3.18 to Figure 3.21 illustrate the stress-strain curves corresponding to 4
points on each trajectory from 1st to 8th, respectively. Note that the legend cl(580) -
t(278) - r(1e-5) e.g., in the Figure 3.18 expresses X1 = 580-units, X2 = 278 K, and
X3 = 1× 10−5 1/fs.

The elementary effects relative to each input parameter is estimated by Equation
(2.142) or Equation (2.143).

Tables 3.8 and 3.9 show the elementary effects of the input parameters on the
Young’s modulus and the yield stress, respectively. The key input parameter is the
temperature followed by the strain rate as predicted in the previous subsection. Also
the elementary effects method predicts no influence of the chain length. Comparing
the ratios EE

(yield)

3 /EE
(yield)

2 and EE
(mod)

3 /EE
(mod)

2 , we obtain almost identical re-
sults as in the previous section 3.4.3. Note that the elementary effects are computed
based on the mechanical model for only 8(trajectories) × 4 = 32 samples.

3.4.5 Global sensitivity analysis
Based on the determined surrogate models, we generated the desired number of sam-
ples (10,000) by using the LHS method. The first-order sensitivity indices Ŝi, total-
effect sensitivity indices ŜTi , i = 1, ..., 3 of the input parameters (X1 = chain length;
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Figure 3.19: Stress-strain curves of two trajectories (left) trajectory 3 and (right) tra-
jectory 4
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Figure 3.20: Stress-strain curves of two trajectories (left) trajectory 5 and (right) tra-
jectory 6
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Figure 3.21: Stress-strain curves of two trajectories (left) trajectory 7 and (right) tra-
jectory 8

Table 3.8: Elementary effects for the yield stress
Trajectory \ Elementary effects EE

(yield)
1,(r) EE

(yield)
2,(r) EE

(yield)
3,(r)

Trajectory 1 12.12 96.39 41.52
Trajectory 2 8.46 99.87 27.00
Trajectory 3 6.48 92.91 38.37
Trajectory 4 5.91 81.63 32.64
Trajectory 5 8.56 55.67 28.34
Trajectory 6 4.07 48.82 24.04
Trajectory 7 4.29 46.26 15.46
Trajectory 8 6.36 56.28 27.05

Average elementary effects EE
(yield)

1 = 7.03 EE
(yield)

2 = 72.23 EE
(yield)

3 = 29.68
Note: EE

(yield)
1,(r)

, EE
(yield)
2,(r)

, EE
(yield)
3,(r)

indicate the elementary effects of the yield stress relative to the chain length, temperature, strain rate computed along trajectory r,

respectively.

X2 = temperature; X3 = strain rate) are computed based on the polynomial regression
and the MLS approximation and are presented in Tables 3.10 (for the yield stress) and
3.11 (for the Young’s modulus). The computational cost (CPU time on 1 processor of
the DELL PC Intelr CoreTM i5 CPU 750 @ 2.67 GHz × 4) that is required for each
method is also presented.

The sensitivity indices Ŝi and ŜTi , Equations (2.65) and (2.68), are reduced by the
COD as

Ŝi = R2Si (3.8)
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Table 3.9: Elementary effects for the Young’s modulus
Trajectory \ Elementary effects EE

(mod)
1,(r) EE

(mod)
2,(r) EE

(mod)
3,(r)

Trajectory 1 80.40 820.20 166.50
Trajectory 2 21.30 769.20 125.70
Trajectory 3 78.00 728.70 124.20
Trajectory 4 47.10 569.40 107.70
Trajectory 5 32.70 424.80 85.20
Trajectory 6 32.70 325.50 93.60
Trajectory 7 11.10 364.20 53.70
Trajectory 8 38.40 392.10 74.40

Average elementary effects EE
(mod)

1 = 42.71 EE
(mod)

2 = 549.26 EE
(mod)

3 = 106.65
Note: EE

(mod)
1,(r)

, EE
(mod)
2,(r)

, EE
(mod)
3,(r)

indicate the elementary effects of the Young’s modulus relative to the chain length, temperature and strain rate computed along trajectory r,

respectively.

ŜTi = R2STi (3.9)

Ŝi and ŜTi are the first-order and total-effect sensitivity indices on the surrogate
model. They infer that only R2% of response can be explained with the surrogate
model.

Table 3.10: First-order and total-effect sensitivity indices computed on the surrogate
model of the input parameters contributing to the yield stress

Linear regression
model

Quadratic without
mixed terms

Full quadratic MLS

First-order First-order First-order First-order
indices Ŝ(yield)

i indices Ŝ(yield)
i indices Ŝ(yield)

i indices Ŝ(yield)
i

Ŝ
(yield)
1 = 0.00 Ŝ

(yield)
1 = 0.00 Ŝ

(yield)
1 = 0.00 Ŝ

(yield)
1 = 0.00

Ŝ
(yield)
2 = 0.61 Ŝ

(yield)
2 = 0.64 Ŝ

(yield)
2 = 0.63 Ŝ

(yield)
2 = 0.64

Ŝ
(yield)
3 = 0.28 Ŝ

(yield)
3 = 0.29 Ŝ

(yield)
3 = 0.29 Ŝ

(yield)
3 = 0.31∑3

i=1 Ŝ
(yield)
i = 0.89

∑3
i=1 Ŝ

(yield)
i = 0.93

∑3
i=1 Ŝ

(yield)
i = 0.92

∑3
i=1 Ŝ

(yield)
i = 0.95

Total-effect Total-effect Total-effect Total-effect
indices Ŝ(yield)

Ti
indices Ŝ(yield)

Ti
indices Ŝ(yield)

Ti
indices ŜTi

Ŝ
(yield)
T1 = 0.00 Ŝ

(yield)
T1 = 0.01 Ŝ

(yield)
T1 = 0.01 Ŝ

(yield)
T1 = 0.01

Ŝ
(yield)
T2 = 0.62 Ŝ

(yield)
T2 = 0.64 Ŝ

(yield)
T2 = 0.64 Ŝ

(yield)
T2 = 0.64

Ŝ
(yield)
T3 = 0.29 Ŝ

(yield)
T3 = 0.29 Ŝ

(yield)
T3 = 0.30 Ŝ

(yield)
T3 = 0.31∑3

i=1 Ŝ
(yield)
Ti

= 0.91
∑3

i=1 Ŝ
(yield)
Ti

= 0.94
∑3

i=1 Ŝ
(yield)
Ti

= 0.95
∑3

i=1 Ŝ
(yield)
Ti

= 0.96
CC = 216 (hours) CC = 216 (hours) CC = 216 (hours) CC = 863 (hours)
Note: Ŝyield

1 and Ŝ
yield
T1

are the reduced first-order and total-effect indices of the yield stress due to the chain length, respectively.

Ŝ
yield
2 and Ŝ

yield
T2

are the reduced first-order and total-effect indices of the yield stress due to the temperature, respectively.

Ŝ
yield
3 and Ŝ

yield
T3

are the reduced first-order and total-effect indices of the yield stress due to the strain rate, respectively.

The results of the variance-based methods are summarized in Tables 3.10 and 3.11.
We notice:
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Table 3.11: First-order and total-effect sensitivity indices computed on the surrogate
model of the input parameters contributing to the Young’s modulus

Linear regression
model

Quadratic without
mixed terms

Full quadratic MLS

First-order First-order First-order First-order
indices Ŝ(mod)

i indices Ŝ(mod)
i indices Ŝ(mod)

i indices Ŝ(mod)
i

Ŝ
(mod)
1 = 0.00 Ŝ

(mod)
1 = 0.00 Ŝ

(mod)
1 = 0.00 Ŝ

(mod)
1 = 0.00

Ŝ
(mod)
2 = 0.81 Ŝ

(mod)
2 = 0.82 Ŝ

(mod)
2 = 0.82 Ŝ

(mod)
2 = 0.84

Ŝ
(mod)
3 = 0.06 Ŝ

(mod)
3 = 0.04 Ŝ

(mod)
3 = 0.06 Ŝ

(mod)
3 = 0.08∑3

i=1 Ŝ
(mod)
i = 0.87

∑3
i=1 Ŝ

(mod)
i = 0.86

∑3
i=1 Ŝ

(mod)
i = 0.89

∑3
i=1 Ŝ

(mod)
i = 0.92

Total-effect Total-effect Total-effect Total-effect
indices Ŝ(mod)

Ti
indices Ŝ(mod)

Ti
indices Ŝ(mod)

Ti
indices Ŝ(mod)

Ti

Ŝ
(mod)
T1 = 0.01 Ŝ

(mod)
T1 = 0.01 Ŝ

(mod)
T1 = 0.00 Ŝ

(mod)
T1 = 0.00

Ŝ
(mod)
T2 = 0.81 Ŝ

(mod)
T2 = 0.84 Ŝ

(mod)
T2 = 0.85 Ŝ

(mod)
T2 = 0.83

Ŝ
(mod)
T3 = 0.06 Ŝ

(mod)
T3 = 0.06 Ŝ

(mod)
T3 = 0.07 Ŝ

(mod)
T3 = 0.10∑3

i=1 Ŝ
(mod)
Ti

= 0.88
∑3

i=1 Ŝ
(mod)
Ti

= 0.91
∑3

i=1 Ŝ
(mod)
Ti

= 0.92
∑3

i=1 Ŝ
(mod)
Ti

= 0.93
CC = 216 (hours) CC = 216 (hours) CC = 216 (hours) CC = 863 (hours)
Note: Ŝmod

1 and Ŝmod
T1 are the reduced first-order and total-effect indices of the Young’s modulus due to the chain length, respectively.

Ŝmod
2 and Ŝmod

T2 are the reduced first-order and total-effect indices of the Young’s modulus due to the temperature, respectively.

Ŝmod
3 and Ŝmod

T3 are the reduced first-order and total-effect indices of the Young’s modulus due to the strain rate, respectively.

1. The first-order indices Ŝi and total-effect indices ŜTi are nearly identical indicat-
ing the independence of the input-parameters. These results agree with results
based on the partial derivatives approach.

2. All surrogate models are suitable to study SA. The highest COD is obtained by
the MLS-approach (0.95 for yield stress and 0.94 for Young’s modulus) followed
by the quadratic (with and without mixed terms) regression model (0.93 for the
yield stress and 0.91 for Young’s modulus) and the linear regression model (0.9
for the yield stress and 0.87 for the Young’s modulus); Table (3.4 + 3.5). In
other words, the MLS response surface model approximates best the mechanical
results.

3. The temperature is the most influential parameter, the strain rate has smaller
influence and the chain length has a negligible effect on the yield stress and
Young’s modulus, see Tables 3.10 and 3.11. The ratio Ŝ(yield)

T3 /Ŝ
(yield)
T2 is with a

value of 0.45 slightly higher compared to the value of the other methods (0.41)
indicating a higher influence of the strain rate on the yield stress. On the other
hand, the ratio Ŝ(mod)

T3 /Ŝ
(mod)
T2 = 0.09 for the Young’s modulus is only half the

values predicted by the elementary-effect method and the partial derivatives. The
insignificant influence of the strain rate on the Young’s modulus from experimen-
tal and theoretical studies is well known (CBR02, ABJ95). Therefore, it seems
that the variance-based methods give the best results.
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3.5 Conclusions
The mechanical properties of PE have been obtained by using UA-MD simulations.
The Young’s modulus is best characterized by the Weibull distribution. Based on the
mechanical and surrogate model, we studied the influence of the chain length, temper-
ature and strain rate on the yield stress and Young’s modulus in the context of both
local and global SA.

All sensitivity assessment methods predict the same tendencies, i.e.:

1. The most influential parameter on the yield stress and the Young’s modulus is
the temperature, followed by the strain rate.

2. The chain length used in our MD simulations has almost no influence on the
yield stress and the Young’s modulus.

3. While the strain rate affects the yield stress, it barely influences the Young’s
modulus. The latter effect is best predicted by the variance-based methods while
the partial derivatives and the elementary-effects method slightly overpredict this
influence.

Comments on the method:

1. It is difficult to predict the effectiveness of the methods beforehand. For the
examples studied, it seems that the elementary-effects method requires less sam-
ples than the other methods. However, it fails to assess the mutual interaction
of the input parameters. The variance-based method is a global SA method that
can be used for such purpose. Therefore, the variance-based method is recom-
mended due to its global SA property.

2. The most samples for statistical convergence are required by the MLS-approach
and the number of samples dominate the overall efficiency.

3. The most robust methods are the regression models as they require the least
number of input parameters.

4. The MLS-approach gives the highest COD and therefore seems to be the best
surrogate model w.r.t. the predicted output. However, the adjustment of the
dilation parameter D remains an open issue.

5. The computational most costly surrogate model is the MLS-approach. However,
it is still negligible compared to the simulation time of the mechanical model.
If the mechanical model’s response is linear or quadratic, the linear or quadratic
regression should be used. For complex mechanical models which the linear and
quadratic regression fail to approximate (R2 < 0.8), the MLS-approach should
be used.
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Chapter 4

Stochastic predictions of interfacial
characteristic of polymeric
nanocomposites

4.1 Introduction
The Carbon nanotubes (CNTs) are considered as an ideal reinforcement for poly-
mer composites due to their exceptional mechanical and electrical properties (Dai02,
SDR02, LGH06) and low density (SGA98, ASGR00, SW99). By adding CNTs into
polymer, the properties of the resulting nanocomposite material such as strength, mod-
ulus, etc. are enhanced. However, the enhanced properties of these composites are
strongly affected by the mechanics that govern the interface between CNT and poly-
mer matrix (DH11). The mechanical properties of composite materials greatly de-
pend on the load transfer mechanism through the interface between the polymer ma-
trix and CNTs and the strength of the interface. Therefore, the interface plays a sig-
nificant role in the load transfer and the consequent improvements in modulus and
strength. For conventional fiber-reinforced polymer composites, the single fiber pull-
out test (Pig95) is typically used to evaluate the interfacial shear strength. Great ex-
perimental efforts have been carried out in order to investigate interfacial properties.
For instance, the direct CNT pull-out experiments were made in transmission elec-
tron microscopy (TEM) (QDAR00, Den11) or by atomic force microscopy (AFM)
(BCKW03, BCKW04), Raman spectroscopy (SGA98), scanning probe microscope
(SPM) (CRL+02a, CRL+02b). Experiments in (SGA98, ASGR00, QDAR00) demon-
strated that since making atomic bonding between CNTs and polymer matrix is dif-
ficult, CNTs often interact mainly with the polymer matrix through van der Waals
(vdW) forces. In the absence of atomic bonding (cross-links) between the CNT and
the polymer matrix, the vdW forces especially govern the load transfer capability of
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the CNT/polymer interface. Due to difficulty of nanomanipulation in experiments,
as mentioned by (RRP+13), numerical simulation is employed as a powerful alterna-
tive approach to study the CNT/polymer interface. Many molecular simulations have
been carried out in order to investigate the CNT/polymer interfacial characteristics. In
(LL01, FH03, GMW+04, CO07, ZXX+09), the research presented molecular mechan-
ics (MM) and molecular dynamics (MD) simulations, in which the authors examined
the interfacial shear stress (ISS) during the entire pull-out process of CNT from poly-
mer matrix.

Wei et. al. (WSC02) used MD simulations to study the thermal expansion and dif-
fusion characteristics of the single-walled carbon nanotube (SWCNT)/ polyethylene
(PE) composite. He found that insertion of SWCNT into a polymer matrix increases
the glass transition temperature Tg. For SWCNT/PE composites with long chained
polymer molecules, the glass transition temperature Tg is around 400 K. He also stud-
ied the temperature dependent adhesion behavior of CNT/PE composites using MD
simulations for tensile deformation of CNT/PE composites and reported that the in-
terfacial shear stress between SWCNT and PE matrix decreases with the increase of
temperature (Wei06). Frankland et.al. (FH03) developed an interfacial friction model
depending on the pull-out force, an effective viscosity and strain rate. Based on this
model, a linear force-sliding velocity relation is used to estimate the average interfa-
cial interaction. Zhang et.al. (ZWX+11) studied the rate-dependent interfacial behav-
ior between SWCNT and PE in the absence of cross-links by using MD simulations.
They indicated that the ISS increases with an increase in the sliding velocity of CNT.
They also investigated the effects of the SWCNT radius on the ISS and reported that
the ISS decreases when the SWCNT radius increases. Li et. al. also showed that
SWCNT radius have effect on the ISS, but the SWCNT length is independent of the
ISS (LLP+11). They have studied the interfacial properties between SWCNT and poly-
mer matrix. However, the pull-out simulations based on MM simulations were carried
out without considering the deformation of the polymer matrix during the pull-out
process by fixing the matrix.

While the influence of certain parameters on the ISS of CNT/polymer composite
has been obtained qualitatively in most of literatures, quantitative results in the context
of stochastic analysis has not yet been investigated.

In this chapter, a SA is performed in order to quantify the influence of the SWCNT
radius, temperature and pulling velocity on the ISS. Therefore, we compute first-order,
total-effect sensitivity indices and SA based on coefficients of determination (COD)
in the context of a global SA. Moreover, we approximate global SA by performing
a series of local SA where we calculate partial derivatives, elementary effects and
average the results. It should be noted that SA is implemented on the average ISS as
presented in (LL01, GMW+04, CO07). The variation in the distributions of ISS along
the SWCNT length is not within the scope of this study.

The chapter is outlined as follows. In the next section, we briefly describe the
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MD model for SWCNT/polymer composites. The results of the MD model will be
shown in section 4.3. In section 4.4, the numerical regression models, the COD and the
sensitivity indices will be presented before we discuss the numerical results. Finally,
we close the manuscript with concluding remarks.

4.2 Molecular dynamics model

4.2.1 Potential functions and parameters
The adaptive intermolecular reactive empirical bond order (AIREBO) potential in (BSH+02,
Pli95) is adopted to consider the intra-carbon nanotube interactions.

In this work, PE is chosen as a model matrix. A united-atom model is used in which
each CH2 group is lumped into a single site to represent the molecular structure of PE.
The functional form and the parameters of the intra-polymer potential are outlined in
Table 2.1.

A non-bonded vdW force of the truncated Lennard-Jones (LJ) 6-12 with ε =
0.1102 kcal/mol and σ = 3.65 Å is used to describe the interaction between the
SWCNT and the PE matrix, see (WSC02).

For the bulk PE, samples consist of 20 polymer chains with 500-units (united
atoms) in each chain. The SWCNT/polymer composite samples with periodic bound-
ary condition in x, y directions are composed of a non-covalent SWCNT and an amor-
phous PE matrix (10,000 units of CH2) that was created by implementing a Monte
Carlo random walk growth algorithm (She06). LAMMPS (Pli95) was used to perform
the equilibration process as shown in subsection 2.1.4. The simulation box after the
equilibration process is a cubic space as shown in Figure 4.1. Subsequently, SMD sim-
ulations described in subsection 2.1.4 were employed to simulate the pull-out of the
SWCNT from the PE matrix.

Figure 4.1: Cross section of SWCNT/PE composite
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4.2.2 Pull-out simulations
Figure 4.2 illustrates snap-shots of the pull-out process. The PMF (pull-out energy)
is computed and recorded during the pulling process. The total potential energy of
SWCNT/PE system and pull-out energy are shown in Figure 2.4. The ISS can be
calculated from the pull-out energy by (LL01, GMW+04):

(a) x = 0 (b) x = 2nm

(c) x = 4nm (d) x = 6.4nm

Figure 4.2: Snap shots of CNT pull-out from SWCNT/PE composite

Epullout =

∫ L

0

2πr(L− x)τidx = πrτiL
2 (4.1)

τi =
Epullout
πrL2

(4.2)

where r and L are the radius and embedded length of the SWCNT, respectively; x is
the displacement of the SWCNT and τi is the ISS. Note that this formula gives average
ISS.

The pull-out energy of SWCNT from the polymer matrix with different radii, tem-
peratures and pulling velocities are illustrated in Figure 4.3, Figure 4.4 and Figure 4.5,
respectively. Figure 4.6 shows that the ISS is independent of the simulation box size
and fix-edge effect.

When the chain length ranges from 100-units to 1000-units, the density of polymer
matrix is 0.87 − 0.91g/cm3 (VBLK+14, HTW+10). Figure 4.7 shows that the chain
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Figure 4.3: The ISS for SWCNT(5,5), SWCNT(10,10) and SWCNT(15,15) at 100 K
and a pulling velocity of 0.1 Å/ps.
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Figure 4.4: The ISS at a pulling velocity of 0.1 Å/ps for the temperature of 100K,
200K and 300K.
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Figure 4.5: The ISS at 100 K for the pulling velocity of 0.1, 0.5 and 0.75 (Å/ps).
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Figure 4.6: The ISS at 100 K for the simulation boxes with 104, 1.5× 104 and 2× 104

monomeric units.
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Figure 4.7: The ISS at 200 K for the chain length of 100 − units, 500 − units and
1000− units.
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Figure 4.8: Stress–strain response at (a) different temperatures (b) different strain rates
of pure PE system.

length is independent of the ISS. In our simulations, the chain length of 500-units is
used.

Figure 4.8 illustrates the stress–strain response for glassy amorphous PE system
for different temperatures and different strain rates. For the sake of comparision, we
have simulated the PE system with 10 chains/1000-units. The results are in good agree
with those in (VBLK+14, HTW+10).

4.3 Molecular dynamics simulation results
Normal distribution is typically assumed to approximate the CNT’s radius distribution
(TJP+10). A mean diameter of 1.42 nm, and approximately 78% of the nanotubes
ranging from 1.0 to 1.8 nm in diameter. As shown in Figure 4.9, an increase in the
SWCNT radius results in a decrease in the PE region of the interaction with a car-
bon atom on the SWCNT (ZWX+11). Therefore, the ISS decreases with increasing
SWCNT radius. The interaction between a large SWCNT radius with PE matrix can
be considered the interaction of graphite sheet with PE so that the SWCNT (16,16) (ra-
dius = 10.848 Å) is chosen as upper bound and the SWCNT (4,4) (radius = 2.712 Å)
as lower bound of truncated normal distribution in our MD simulations. For the sake
of estimating SA, the armchair and zigzag SWCNT are chosen to ensure the SWCNT
length to be nearly the same for all of samples.

The density of both the bulk PE and the composite is a function of temperature, see
Wei et. al. (WSC02). A decrease in these densities with an increase in the temperature
indicate the thermal expansions of the materials. The ISS decreases with increasing
temperature, as expected. The composite behaves as a glass solid at low temperatures
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Figure 4.9: The schematic of PE region of interaction with an a carbon atom on the
SWCNT (ZWX+11).

Tg < 400K for long-chained PE, and its mechanical response is much weakened at
high temperatures. Therefore, the temperature should be sufficient below the glass
transition temperature and approximate the glass transition Tg. Therefore, the temper-
ature from 100 K to 400 K assuming uniform distribution is used in our study.

Izrailevs et. al. (ISI+98) indicated that the motion of the SWCNT proceeds in
the strong friction with surrounding matrix. The average applied force measures the
local slope of the binding potential plus a frictional contribution that depends linearly
on the pulling velocity. Therefore, the pull-out energy and the ISS depend on the
pulling velocity as the average applied force depends on the pulling velocity. More
details can be found in (ISI+98). An interfacial friction model developed by Frankland
et.al. (FH03) shows that the average SWCNT velocity is linearly related to the average
applied force. Hence, the pulling velocity influences on the ISS. The constant pull-out
velocities ranging from 0.1 ps/Å to 1.0 ps/Å are examined in our MD simulations to
reduce the computational cost in pull-out simulations as well as avoid the influence of
molecular thermal vibration as mentioned in (FH03, ZWX+11). We assume a uniform
distribution. The random input variables are listed in Table 4.1.

4.4 Numerical results
The schematic diagram of all sensitivity assessment methods are provided in Figure
4.10.

Scatter plots in Figure 4.11 show the influence of the SWCNT radius, temperature
and pulling velocity on the ISS, respectively. The highest influence seems to be the
SWCNT radius. To quantify the affect of the input parameters, the sensitivity indices
were studied using the surrogate model.

Figure 4.12 shows that statistical convergence is achieved with 200 samples for all
surrogate models the polynomial regression, MLS and hybrid models with appropriate
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Figure 4.10: Schematic diagram of all sensitivity assessment methods presented in this
paper.
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Figure 4.11: Scatter plots of the ISS (Y) versus the SWCNT radius (X1), temperature
(X2) and pulling velocity (X3), respectively.
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Table 4.1: Model uncertainties
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Figure 4.12: The plot ofR2 versus the number of samples when polynomial regression,
MLS and hybrid models are used

In the following, the surrogate models are built to approximate the output of the
mechanical model (200 samples). The COD R2 and adjusted COD R2

adj in accordance
with the linear, quadratic (with and without mixed terms), MLS and hybrid regression
models are calculated and it is demonstrated that the predicted response using the sur-
rogate models are good approximations of the response of the mechanical model, see
Table 4.2.

As listed in Table 4.2, the COD is 0.90 for hybrid method, 0.88 for MLS with ap-
propriate chosen radius (normalized radius of 0.6) and 0.86 (0.85) for quadratic (full
and without mixed terms) regression, indicating that the surrogate model reflects al-
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most exactly the response of the mechanical model. In other words, 90 %, 88 %, 86
(85)% of the ISS variation are represented by the hybrid the MLS and quadratic (with
and without mixed terms) regression models, respectively. The obtained R2, R2

adj by
using linear regression is 0.82 which is slightly lower than by the other methods. We
have used the full quadratic regression model in this paper for further comparison.

Three-dimensional scatter plots and the associated surrogate models are shown in
dependence of the SWCNT radius and temperature, pulling velocity in Figures 4.13
(full quadratic), 4.14 (MLS) and 4.15 (hybrid). The steepest gradient in the SWCNT
radius direction indicates the SWCNT radius is a key parameter for the ISS.

Table 4.2: Regression coefficient, COD R2 and adjusted COD R2
adj

Response surface methods Regression coefficient
Linear regression β0 = 5.27e-4

β1 = -1.21e-5
R2 = 0.81 β2 = -1.80e-7
R2
adj = 0.81 β3 = 4.76e-5

Quadratic without mixed terms β0 = 5.66e-4
β1 = -3.34e-5
β2 = -3.19e-8
β3 = 8.59e-5
β11 = 1.64e-6

R2 = 0.85 β22 = -3.14e-10
R2
adj = 0.85 β33 = -3.24e-5

Full quadratic β0 = 5.76e-4
β1 = -3.39e-5
β2 = -1.07e-7
β3 = 8.93e-5
β11 = 1.48e-6
β22 = -3.81e-10
β33 = -3.47e-5
β12 = 1.35e-8

R2 = 0.86 β13 = -1.25e-6
R2
adj = 0.86 β23 = 2.90e-8

Moving least squares
R2 = 0.88
R2
adj = 0.88

Hybrid model of polynomial regression and MLS
R2 = 0.90
R2
adj = 0.90

4.4.1 Derivative-based approach
The full quadratic surrogate model is used for this method. The interval [0,1] is split
into 9 equal sized sub-intervals and placing Xi at each points. By applying the inverse
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Figure 4.13: Scatter points got from MD simulations (black points) and projection
surface of surrogate model which express the ISS versus the SWCNT radius and tem-
perature (a) and the ISS versus the SWCNT radius and pulling velocity (b). In this
figure, the full quadratic regression is used.
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Figure 4.14: Scatter points got from MD simulations (black points) and projection
surface of surrogate model which express the ISS versus the SWCNT radius and tem-
perature (a) and the ISS versus the SWCNT radius and pulling velocity (b). In this
figure, the MLS is used.
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Figure 4.15: Scatter points got from MD simulations (black points) and projection
surface of surrogate model which express the ISS versus the SWCNT radius and tem-
perature (a) and the ISS versus the SWCNT radius and pulling velocity (b). In this
figure, the hybrid model is used
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cumulative function we obtain a 10-level grid for three input parameters (SWCNT ra-
dius (X1), temperature (X2) and pulling velocity (X3)) in the interval. We evaluate Y
twice: first at Xi and second at Xi + 4Xi with 4Xi = 10−4. The partial deriva-
tives are computed by Equations (2.137) and (2.138) for two cases: (1) keeping the
other parameters fixed; (2) considering the variation of other parameters, respectively.
Flowcharts of these processes are provided in Figure 2.19. Then, the partial derivatives
are normalized w.r.t an input factor, e.g., X1 in this example named SX1

Xi
, i = 1, 2, 3 as

follows

S
X1,(pd)
X1

=

(
1

N

N∑
s=1

∂Ys

∂X1

)
(4.3a)

S
X1,(pda)
X1

=

(
1

N3

N∑
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N∑
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N∑
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∂X1

)
(4.3b)
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(4.4a)

S
X1,(pda)
X2

=

(
1

N3

N∑
j=1

N∑
s=1

N∑
l=1

∂Yj

∂X2

)
X2

X1

(4.4b)
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These normalized partial derivatives (NPD) ŜX1
Xi
, i = 1, 2, 3 are reduced by the

COD R2

Ŝ
X1,(pd)
X1

= R2S
X1,(pd)
X1

(4.6a)

Ŝ
X1,(pda)
X1

= R2S
X1,(pda)
X1

(4.6b)

Ŝ
X1,(pd)
X2

= R2S
X1,(pd)
X2

(4.7a)

Ŝ
X1,(pda)
X2

= R2S
X1,(pda)
X2

(4.7b)
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Ŝ
X1,(pd)
X3

= R2S
X1,(pd)
X3

(4.8a)

Ŝ
X1,(pda)
X3

= R2S
X1,(pda)
X3

(4.8b)

Table 4.3 shows the average of the reduced normalized partial derivatives (ARNPD)
of the ISS versus the input parameters. Since the partial derivatives ŜX1,(pd)

Xi
are the

same as the partial derivatives ŜX1,(pda)
Xi

, i = 1, 2, 3, there is no interaction between

the input parameters. The key input factor is the SWCNT radius (N̂S
X1,(pd)

X1
= 0.50)

followed by the temperature (N̂S
X1,(pd)

X2
= 0.35). The pulling velocity has smaller

influence on the ISS (N̂S
X1,(pd)

X3
= 0.15).

Table 4.3: Normalized average of reduced NPD for the ISS
Normalized value of ARNPD calculated by
Eqs. (4.6a), (4.7a), (4.8a)

N̂S
X1,(pd)

Xi
=

Ŝ
X1,(pd)

Xi∑3
i=1 Ŝ

X1,(pd)
Xi

Normalized value of ARNPD calculated by
Eqs. (4.6b), (4.7b), (4.8b)

N̂S
X1,(pda)

Xi
=

Ŝ
X1,(pda)

Xi∑3
i=1 Ŝ

X1,(pda)
Xi

N̂S
X1,(pd)

X1
= 0.50 N̂S

X1,(pda)

X1
= 0.51

N̂S
X1,(pd)

X2
= 0.35 N̂S

X1,(pda)

X2
= 0.34

N̂S
X1,(pd)

X3
= 0.15 N̂S

X1,(pda)

X3
= 0.15

4.4.2 Elementary effects
The elementary effects are calculated based on the mechanical model for 9 trajectories
and 4 samples in each trajectory. So it is totally 36 samples tested. For the sake of
comparison, the pull-out energy is reduced by πrL2 as shown from Figure 4.16 to
4.18. Each of these figures corresponds to 4 points of a trajectory. Note that the legend
rad(3.52) - temp(235) - vel(0.28) e.g., in the Figure 4.16 expresses the SWCNT radius
(X1) = 3.52 Å, temperature (X2) = 235 K and pulling velocity (X3) = 0.28 Å/ps.

Table 4.4 shows the elementary effects relative to parameter i, i = 1, 2, 3 computed
along trajectory r, r = 1, .., 9, the averageEEi and the normalized value of the average
NEEi. The SWCNT radius is observed as the key factor (NEE1 = 0.476) on the ISS
followed by the temperature (NEE2 = 0.329). The influence of the pulling velocity
on the ISS is small (NEE3 = 0.195).
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Figure 4.16: Reduced pull-out energy of three trajectories (a) trajectory 1, (b) trajectory
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Figure 4.17: Reduced pull-out energy of three trajectories (a) trajectory 4, (b) trajectory
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Table 4.4: Elementary effects for the ISS
Trajectory \
Elementary effects

EE1,(r) × 10−3 EE2,(r) × 10−3 EE3,(r) × 10−3

Trajectory 1 0.08 0.05 0.03
Trajectory 2 0.11 0.07 0.05
Trajectory 3 0.12 0.08 0.04
Trajectory 4 0.11 0.09 0.03
Trajectory 5 0.13 0.09 0.07
Trajectory 6 0.16 0.11 0.08
Trajectory 7 0.13 0.08 0.04
Trajectory 8 0.13 0.10 0.06
Trajectory 9 0.05 0.04 0.03

Average elementary
effects

EE1 = 0.110 EE2 = 0.076 EE3 = 0.045

Normalized
NEEi = EEi∑3

i=1 EEi

NEE1 = 0.476 NEE2 = 0.329 NEE3 = 0.195

Note: EE1,(r), EE2,(r), EE3,(r) indicate the elementary effects of the ISS relative to the
SWCNT radius (X1), temperature (X2) and pulling velocity (X3) computed along trajectory r,
respectively.

4.4.3 Sensitivity analysis based on coefficients of determination
In order to evaluate the importance of variables, we use the SA based coefficients
of determination approach by leaving out terms containing X1, X2 and X3 from the
full quadratic regression basis and compute the corresponding CODs, drop values
4R2

i , i = 1, 2, 3 of reduced models, Equations (2.135) and (2.136). For example,
carrying out a regression on the reduced full quadratic model containing X2, X3, the
reduced quadratic model is given by

Ŷ = β0 + β2X2 + β3X3 + β22X
2
2 + β33X

2
3 + β23X2X3, (4.9)

The above model results in a COD (R2
1) and an adjusted COD (R2

adj1). The reduced
MLS and hybrid regression models are constructed in the same fashion. The corre-
sponding CODs, adjusted CODs, drop values 4R2

i and normalized values Ii of 4R2
i

are listed in Table 4.5.
As shown in Table 4.5, the big drop in the value of R2 and R2

adj when removing
terms X1, X2

1 , X1X2, X1X3 from the regression shows the relative importance of the
SWCNT radius (X1) compared to the others. The insignificant decrease inR2 andR2

adj

when removing terms associated either the variable X2 or the variable X3 indicates
that the temperature has less influence on the ISS compared to the SWCNT radius.
The influence of the pulling velocity on the ISS is smallest.
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Table 4.5: The COD, adjusted COD, drop value of COD, and the coefficient of impor-
tance of the reduced quadratic polynomial, the reduced MLS and the reduced hybrid
models

The reduced model
containing X2, X3

The reduced model
containing X1, X3

The reduced model
containing X1, X2

The reduced quadratic polynomial model
R2

1 = 0.39 R2
2 = 0.70 R2

3 = 0.74
R2
adj1 = 0.39 R2

adj2 = 0.70 R2
adj3 = 0.74

4R2
1 = 0.47 4R2

2 = 0.16 4R2
3 = 0.12

I1 = 0.54 I2 = 0.18 I3 = 0.13
The reduced MLS model
R2

1 = 0.41 R2
2 = 0.70 R2

3 = 0.76
R2
adj1 = 0.39 R2

adj2 = 0.69 R2
adj3 = 0.75

4R2
1 = 0.46 4R2

2 = 0.16 4R2
3 = 0.10

I1 = 0.53 I2 = 0.19 I3 = 0.12
The reduced hybrid model
R2

1 = 0.41 COD R2
2 = 0.70 R2

3 = 0.76
R2
adj1 = 0.39 R2

adj2 = 0.69 R2
adj3 = 0.75

4R2
1 = 0.46 4R2

2 = 0.16 4R2
3 = 0.10

I1 = 0.53 I2 = 0.19 I3 = 0.12

Note: R2
1, R2

adj1, 4R2
1 and I1 are the COD, the adjusted COD, the drop value of COD and the

coefficient of importance when the SWCNT radius (X1) is removed from the regression model,
respectively.
R2

2, R2
adj2,4R2

2 and I2 are the COD, the adjusted COD, the drop value of COD and the coeffi-
cient of importance when the temperature (X2) is removed from the regression model, respec-
tively.
R2

3, R2
adj3, 4R2

3 and I3 are the COD, the adjusted COD, the drop value of COD and the co-
efficient of importance when the pulling velocity (X3) is removed from the regression model,
respectively.

4.4.4 Global sensitivity analysis
Based on the determined surrogate models, we generated 50000 Latin hypercube sam-
ples. The regression based sensitivity indices by using those samples as approximation
points are given in Table 4.6. The sensitivity indices Si and STi , i = 1, 2, 3, Equa-
tions (2.65) and (2.68), are calculated in accordance with the polynomial regression,
the MLS and the hybrid approximation. These values are reduced by the COD infer-
ring that only R2% of response can be explained with surrogate model. The reduced
sensitivity indices Ŝi and ŜT i are given by

Ŝi = R2Si (4.10a)

ŜT i = R2ST i (4.10b)

The results of the variance-based methods are summarized in Table 4.6 and illus-
trated in Figure 4.19. They show:
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Table 4.6: First-order and total effects sensitivity indices computed on the surrogate
model of the input parameters contributing to the ISS

Linear
regression

model

Quadratic
without mixed

terms

Full quadratic MLS Hybrid

First-order
indices Ŝi

First-order
indices Ŝi

First-order
indices Ŝi

First-order
indices Ŝi

First-order
indices Ŝi

Ŝ1 = 0.44 Ŝ1 = 0.41 Ŝ1 = 0.41 Ŝ1 = 0.41 Ŝ1 = 0.40
Ŝ2 = 0.23 Ŝ2 = 0.26 Ŝ2 = 0.27 Ŝ2 = 0.30 Ŝ2 = 0.30
Ŝ3 = 0.14 Ŝ3 = 0.17 Ŝ3 = 0.17 Ŝ3 = 0.15 Ŝ3 = 0.16∑3
i=1 Ŝi = 0.81

∑3
i=1 Ŝi = 0.84

∑3
i=1 Ŝi = 0.85

∑3
i=1 Ŝi = 0.86

∑3
i=1 Ŝi = 0.86

Total-effect
indices ŜT i

Total-effect
indices ŜT i

Total-effect
indices ŜT i

Total-effect
indices ŜT i

Total-effect
indices ŜT i

ŜT1 = 0.44 ŜT1 = 0.41 ŜT1 = 0.42 ŜT1 = 0.41 ŜT1 = 0.44
ŜT2 = 0.23 ŜT2 = 0.27 ŜT2 = 0.27 ŜT2 = 0.29 ŜT2 = 0.31
ŜT3 = 0.15 ŜT3 = 0.17 ŜT3 = 0.17 ŜT3 = 0.17 ŜT3 = 0.17∑3
i=1 ŜT i = 0.82

∑3
i=1 ŜT i = 0.85

∑3
i=1 ŜT i = 0.87

∑3
i=1 ŜT i = 0.88

∑3
i=1 ŜT i = 0.92

Note: Ŝ1 and ŜT1 are the reduced first-order and total-effect indices of the ISS (Y) due to the SWCNT radius (X1), respectively,
Ŝ2 and ŜT2 are the reduced first-order and total-effect indices of the ISS (Y) due to the temperature (X2), respectively,
Ŝ3 and ŜT3 are the reduced first-order and total-effect indices of the ISS (Y) due to the pulling velocity (X3), respectively.

1. The reduced first-order indices Ŝi and reduced total-effect indices ŜT i are nearly
identical indicating the independence of the input-parameters. These results
agree very well with results of the derivative-based approach.

2. All surrogate models are suitable to study SA. The highest COD is obtained by
the hybrid model (0.90) followed by the MLS-approach (0.88), the quadratic
(with and without mixed terms) regression model (0.86 and 0.85) and the linear
regression model (0.82); Table 4.2.

3. The SWCNT radius is the most influential parameter followed by the tempera-
ture and pulling velocity, respectively. The ratio ŜT2/ŜT1 is with a value of 0.64
slightly lower compared to the value of the derivative-based approach and ele-
mentary effects (0.69). While the ratio ŜT3/ŜT1 = 0.4 is identical to the ratio of
the elementary effects, it is higher than the value of the derivative-based method
(0.30), see Tables (4.6 + 4.4 + 4.3).

4.5 Conclusions
The mechanical properties of SWCNT/PE composites have been obtained by using
MD simulations. The mechanical output (ISS) is best characterized by the Log-normal
distribution. Based on the mechanical and surrogate models, the influence of the
SWCNT radius, temperature and pulling velocity on the ISS in the context of both
averaged local and global SA is quantitatively studied.
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Figure 4.19: Sensitivity indices (a) First-order (b) Total effect

For the examples studied, the elementary-effects method requires less samples than
the other methods. However, it fails to estimate the mutual interaction of the input
parameters. The variance-based method is a global SA method that can be used for
such purpose.

The regression methods are robust methods because they do not require a large
number of samples number of input parameters.

The hybrid and MLS surrogate models are good approximations of the mechanical
model. However, the adjustment of the influence radius D used in hybrid and MLS
surrogate models remains an open issue.

All methods predict the same tendencies, i.e.:

1. The most influential parameter on the ISS is the SWCNT radius, followed by the
temperature.

2. The pulling velocity has relatively small influence on the ISS.
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Chapter 5

Uncertainty quantification for
multiscale modeling of polymer
nanocomposites with correlated
parameters

5.1 Introduction
Carbon nanotubes (CNTs) are ideal reinforcement materials for polymeric compos-
ites due to their superior mechanical and electrical properties as well as their light
weight (SW99, Dai02, LGH06). Substantial progress obtained from experiment stud-
ies were recently summarized by Thostenson et al. (TLC05). However, there remains a
great challenge in the structural characterization and fabrication of polymer nanocom-
posites (PNCs) at nano-scales (ZYL08). Analytical and numerical simulations have
been employed to assist the design of PNCs, and a priori prediction of their mechan-
ical properties. Numerous micromechanical models have been developed to predict
the mechanical properties of PNCs. As have been shown by Odegard and co-workers
(OGW+03), the direct use of continuum micromechanical models might be inadequate
to predict the mechanical properties of PNCs since the micromechanical models do not
consider the lattice structure of the CNT but simplify it as a solid fiber. Furthermore, a
continuum micromechanical model often assumes perfect bonding between the fibers
and the matrix. Hence, it cannot capture the effect from the interphase between the
CNT and the polymer matrix that is dominated by van der Waals (vdW) interactions
(Gib07). In order to address these issues, Shokrieh and Rafiee (SR10b, SR10a) devel-
oped a transversely isotropic equivalent fiber (EF).

Due to the high aspect ratio and low bending stiffness of the CNTs, they nor-
mally exist in non-straight shape (LGSea04, GWFS). As shown by micrograph im-
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ages (FBB03), the embedded CNTs exhibit significant curvature. Several studies
(FBB03, BFB03, AG06) have been carried out to investigate the influence of CNT
curvature on the effective modulus of PNCs. Often a nanotube was substituted by
a solid continuum fiber. Thus, the effect of the fiber waviness on their mechanical
properties was studied instead of that of the CNT waviness. The results showed that
the effective modulus of PNCs can be significantly degraded with an increasing fiber
waviness. Most of previous researchers limited their studies to a sinusoidal waviness
pattern that may inproperly estimate the effects of the fiber waviness on the mechan-
ical properties. This issue will be addressed in the numerical results and discussion
section 5.4. Since the CNTs are concentrated in local regions due to van der Waals
(vdW) interactions between CNTs and also due to the non-uniform dispersion of the
CNTs during processing, local bundles of CNTs within the polymer matrix are formed.
The PNCs were modeled as random heterogeneous media and homogenization mod-
els have been applied at the lower scale to determine their local material properties.
Shi et al. (SFH+04) developed a two-parameter approach in combination with the
Mori-Tanaka model to determine the influence of the agglomeration of CNTs on the
mechanical properties of PNCs.

Several approaches have been developed to predict the mechanical properties of
PNCs. However, the predicted mechanical properties were found significantly deviat-
ing from the measured values in experiments. The discrepancy was later discussed
and explained by multiscale Monte-Carlo finite element simulations (SK08). The
authors indicated that some induced uncertainties neglected by the deterministic ap-
proaches. However, in their stochastic multiscale model, only the volume fraction was
considered as a random parameter whereas other parameters such as the CNT length,
the orientation, the agglomeration, the waviness, and dispersion of CNTs were con-
sidered deterministic. A stochastic multiscale approach was also used by (SR10c)
to predict mechanical properties of PNCs. This study allowed realizing the scale
difference between micro and nano that was not modeled for PNCs on micro-level
(FHO+03, VM07, HE07).

This chapter presents a comprehensive stochastic multiscale method to quantita-
tively determine the influence of many input parameters on the mechanical properties
of PNCs. Sensitivity analysis (SA) methods are developed from the classical Sobol’s
estimator (Sob93) to quantify the influences of the correlated (dependent) input param-
eters on the Young’s modulus and Poisson’s ratio of PNCs. Six important parameters
at the corresponding scales are selected: the single-walled carbon nanotube (SWNT)
length (LSWNT ), the averaged longitudinal modulus (ELEF ) and transverse modulus
of EF (ETEF ) being representative of the waviness parameters, the agglomeration pa-
rameters (ξ, ζ) and the volume fraction (Vf ). To reduce computational cost, surrogate
models are constructed to approximate the mechanical model and the SA was per-
formed on the surrogate models.

The content of this chapter is outlined as follows. In the next section, we briefly
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describe the multiscale model. Section 5.3 presents the complete statistical distribution
for each input parameter. The coefficients of surrogate model and sensitivity indices
will be shown in section 5.4 before the discussion on the numerical results. Finally, we
close the manuscript with concluding remarks.

5.2 Multiscale model
In this section, we briefly describe the bottom-up hierarchical multiscale method for
PNCs connecting all scales of the nano-, micro-, meso- and macro-scale, see Figure
5.1. The stochastic multiscale approach is employed to consider effective parame-
ters of different scales as uncertainties. In the nano-scale, material properties and the
structure of the SWNT are considered. In the micro-scale, the SWNT embeded in the
polymer matrix in the presence of the interphase is modeled and replaced by an EF.
The SWNT waviness, the agglomeration and the SWNT orientation then are taken into
account in the meso-scale. In the macro-scale, we consider the volume fraction as an
uncertain variable.

Macro
Meso

Micro Nano

Figure 5.1: Multiscale modeling scheme

5.2.1 Nano-scale model
At nano-scale, a single-walled carbon nanotube (SWNT) is modeled as a space-frame
structure. The C − C covalent bonds in the frame-like structure are represented by
3D beam elements assuming a circular cross section with diameter d. Nodes rep-
resenting carbon atoms are used to connect the beam elements to form the SWNT
structure. The C − C bond length L is selected as 0.1421 nm (SARA02, BZR+05).
As suggested by (SR10c, LC03), the force constant values kr = 6.52 × 10−7N/nm,
kθ = 8.76 × 10−10N.nm/rad2, kφ = 2.78 × 10−10N.nm/rad2 are adopted. Once
the force constants kr, kθ, and kφ are known, the sectional stiffness parameters EA;
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SWNTInterphase
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Figure 5.2: Finite element model of half of the RVE at micro-scale.

EI , and GJ can be obtained by Equation 2.13. A non-bonded vdW force formu-
lated by Equation 2.14 with ε = 0.4492 kJ/mol, σ = 0.3825 nm and r = 0.85 nm
(SR10a, KGR+10) is used to describe the interphase between the SWNT and the poly-
mer matrix. The interphase thickness (0.17 nm) is chosen the same as half of thickness
of SWNT (0.34 nm).

5.2.2 Micro-scale model
The micro-scale model considers a SWNT embedded in a polymer matrix modeled by
a continuum mechanics approach (LC03). 20-node hexahedral elements with Young’s
modulus of 10 GPa and Poisson’s ratio of 0.3 are used to model the surrounding
polymer matrix (SR10a). 3−D nonlinear springs connecting the C atom on the SWNT
and the nodes on the inner surface of the matrix are used to describe the interphase,
see Figure 5.2(a).

We employed the adaptive vdW interaction (AVI) model (SR10b, SR10a, SR10c)
to determine the mechanical properties of the EF as presented in subsection 2.3.1.
The stress–strain curve is obtained from uniaxial tensile simulations by applying axial
displacements to nodes at the left end and fix the nodes at the other end of the unit-cell,
see Figure 5.2(b). The stress–strain curves in Figure 5.3 show agreement with those of
(SR10a) in the linear state (strain < 3.0%). Since the simulations are too expensive,
for SWNT with LSWNT > 800 nm we used the results in (SR10a) and applied the
least square method to construct the polynomial regression model. The regression
model in Figure 5.4 represents the relationship between SWNT length (LSWNT ) and
the corresponding longitudinal modulus of the straight EF. Note that the SWNT length
does not affect the transverse modulus of the EF.
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Figure 5.3: The tensile stress–strain curves versus the SWNT length.
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As mentioned previously, the direct application of traditional micromechanical
models to PNCs may lead to improper mechanical properties as the models are based
on continuum mechanics formulation, while the SWNT and the interphase cannot be
considered continuous at nano-scale. In order to overcome this deficiency, The inverse
rule of mixture (IROM) described in subsection 2.3.2 was employed to convert the
SWNT and its interphase to the equivalent fiber (EF), a solid cylinder with diameter of
2.374 nm. The properties of the EF are obtained by

Estraight
LEF =

ELC
VEF

− EMVM
VEF

1

Estraight
TEF

=
1

ETCVEF
− VM
EMVEF

1

Gstraight
EF

=
1

GCVEF
− VM
GMVEF

νstraightEF =
νC
VEF

− νMVM
VEF

(5.1)

where Estraight
LEF , Estraight

TEF , Gstraight
EF , νstraightEF are the longitudinal modulus, the trans-

verse modulus, the shear modulus and the Poisson’s ratio of a straight EF, respec-
tively; ELC , ETC , GC , νC are the longitudinal modulus, the transverse modulus, the
shear modulus and the Poisson’s ratio of the composite, respectively; EM , GM , νM
are the Young’s modulus, the shear modulus and the Poisson’s ratio of the matrix, re-
spectively; VEF , VM are the volume fraction of the EF and the volume fraction of the
matrix, respectively. The EF will be employed at the meso-scale where the microme-
chanics equations are applied. The effective properties of the developed EF are listed
in Table 5.1.

Table 5.1: Effective properties of the EF (SR10b)
Mechanical property Value
Longitudinal Young’s modulus From the regression

model in Figure 5.4
Transverse Young’s modulus 11.27 (GPa)
Longitudinal shear modulus 5.13 (GPa)
Poisson’s ratio 0.284 (GPa)

5.2.3 Meso-scale model
In order to account for the effect of the SWNT waviness, Shokrieh and Rafiee (SR10c)
suggested using the longitudinal (Estraight

LEF ) and transverse modulus (Estraight
TEF ) of the
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straight horizontal and vertical EF as upper and lower bound values. The stiffness of
an RVE consisting of a non-straight EF is placed between these values. In other word,
the effective stiffness (Ewavy

LEF and Ewavy
TEF ) of the embedded non-straight EF within the

polymer matrix are selected between the bounding values reflecting any arbitrary non-
straight shape, see Figure 5.5.

Estraight
TEF ≤ Ewavy

LEF ≤ Estraight
LEF (5.2a)

Estraight
TEF ≤ Ewavy

TEF ≤ Estraight
LEF (5.2b)

< <
E     , ELEF

wavy wavy

TEF

straight
ELEF

straight
ETEF

Figure 5.5: The effective stiffness of the wavy EFs in longitudinal and transverse di-
rections is generated between two bounding values.

It is assumed that short SWNTs (LSWNT ≤ 100nm) are straight. The values of
Estraight
TEF = 11.27 GPa and Estraight

LEF depending on the SWNT length are taken from
the regression model as shown in Figure 5.4. The two-parameter model presented in
subsection 2.2.3 is used to account for the agglomeration in the PNCs at meso-scale.

5.2.4 Macro-scale model
In order to simulate the spatial dispersion of SWNTs within the PNCs and quantify
its effects on the mechanical properties, the volume fraction of SWNTs in PNC is
considered as a random parameter. Particularly, the volume fraction in each RVE is
randomly generated according to the overall volume fraction of the material region
(MR).

Since the employed model relies on the Mori-Tanaka method that can only handle
uniform inclusion properties and microstructures due to their deterministic nature, the
effective mechanical property of MR cannot be computed directly; (Tsa10). To over-
come this limitation, the MR is split into several independent blocks, the so-called unit
elements as depicted in Figure 5.6.
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Figure 5.6: Finite element analysis of partitioned material region (MR)

5.3 Stochastic modeling
In this section we consider the randomness of all parameters in the model on the differ-
ent scales. According to Wang et al. (WLWZ06), the distribution of the SWNT length
is characterized by a Weibull distribution with scale parameter A = 550 nm and shape
parameter B = 2.1. The SWNT length of 1400 nm is taken as an upper bound.

As mentioned in section 5.2.3, the longitudinal and transverse modulus of wavy
EF are randomly generated by Equation (5.2). Then the averaged ELEF and ETEF are
computed. The distribution of both averaged values are characterized by a truncated
normal distribution with the mean and standard deviation listed in the Table 5.2.

The two parameters ξ and ζ are generated in such a way that the dispersion index ζ
is larger than the agglomeration index ξ. Therefore, the spatial distribution of SWNTs
is heterogeneous. We randomly generate the two parameters ξ and ζ from 0 to 1
assuming normal distribution. The mean and standard deviation values are listed in the
Table 5.2.

The truncated normal distribution is assumed to describe the dispersion of SWNTs
within polymer matrix. The mean value of the distribution is set equal to the SWNT
volume fraction of 5%. The standard deviation is selected so that the volume fraction
cannot be negative. Thus, the standard deviation of 2% is adopted from (SR10c).

In the scope of this study, Monte-Carlo (MC) simulations are done to randomly
generate samples from the corresponding distribution. The scatter plot matrix for input
parameters is shown in Figure 5.7.
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Table 5.2: Model uncertainties
Level Inputs mean

standard
deviation Type of distribution Sources

Nano/Micro
LSWNT

(X1)
488.34 249.18
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5.4 Numerical results
The schematic diagram of all sensitivity assessment methods are provided in Figure
5.8.

The model outputs (Y) are the macro-scale Young’s modulus and Poisson’s ratio,
respectively. The six input parameters are the SWNT lengthLSWNT (X1), the averaged
longitudinal modulus ELEF (X2) and the averaged transverse modulus ETEF (X3) of
the EF in the presence of waviness, the parameter ξ (X4) denotes the volume fraction
of spherical inclusion w.r.t. the total volume of the RVE, the parameter ζ (X5) denotes
the volume ratio of SWNTs inside the spherical inclusion w.r.t. the total volume of the
SWNTs, and the volume fraction Vf (X6) of SWNTs in the PNC.

The mean value of the Young’s modulus and Poisson’s ratio of 10000 samples are
computed based on the Voigt method (Tsa10). The Young’s modulus (12.88 GPa) and
the Poisson ratio (0.292) are in agreement with those in (SR10c).

5.4.1 Scatter plots
Scatter plots in Figures 5.9 and 5.10 show the influence of the LSWNT , ELEF , ETEF ,
ξ, ζ , and Vf on the Young’s modulus and Poisson’s ratio, respectively. It is observed
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5.4 Numerical results

Figure 5.7: Scatter plot matrix for input parameters.

that the volume fraction Vf and the averaged longitudinal modulus of EF ELEF have
the most significant effect on the Young’s modulus and the Poisson’s ratio. On the
other hand, the agglomeration parameters ξ and ζ seem to have an insignificant effect
on the mechanical outputs.

In Figures 5.9 and 5.10 the volume fraction Vf values are distributed from 0 to 0.1.
This may result in an insignificant influence of each agglomeration parameter on either
the Young’s modulus or the Poisson’s ratio, see Shi et al. (SFH+04).

Based on the scatter plots, the subset averages were examined. First, theXi param-
eter and the corresponding output Y is sorted in ascending order. Then, the Xi axis is
cut into slices (subset) containing equal samples and the expected value of Y in each
subset, which is equivalent to EX∼i(Y|Xi), named conditional expectation of Y given
Xi, is calculated. EX∼i(Y|Xi) varies across the subsets and its variance can be used
to estimate the first-order sensitivity indices. However, it cannot be applied to measure
the total-effect sensitivity indices (MSR10, Mos12).

To quantify the effect of the input parameters, the sensitivity indices were computed
using the surrogate model.
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Figure 5.8: Schematic diagram of sensitivity assessment methods.
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Figure 5.9: Scatter plots of input parameters with the Young’s modulus including sub-
set averages.
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Figure 5.10: Scatter plots of input parameters with the Poisson’s ratio including subset
averages.
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5.4.2 Covariance matrix
The covariance matrix CXX which displays the covariance relation between Xi and
Xj , i, j = 1, ..., 6 is calculated as section 2.9.1:

CXX =


σ2
X1

0.90σX1σX2 0.90σX1σX3 0 0 0
0.90σX2σX1 σ2

X2
0.85σX2σX3 0 0 0

0.90σX3σX1 0.85σX3σX2 σ2
X3

0 0 0
0 0 0 σ2

X4
0.82σX4σX5 0

0 0 0 0.82σX5σX4 σ2
X5

0
0 0 0 0 0 σ2

X6


(5.3)

with σX1 , .., σX6 being the standard deviations in Table 5.2.

5.4.3 Surrogate model
The linear and quadratic without mixed terms regression models were used to approx-
imate the Young’s modulus or Poisson’s ratio from the mechanical model. Here we
generated 104 training points by using MC sampling to construct the regression model
and to compute the sensitivity indices. The estimated regression coefficients β and
the COD’s of the linear and the quadratic without mixed terms regression models are
summarized in the Tables 5.3 and 5.4, respectively. The responses of the mechanical
model (the Young’s modulus and the Poisson’s ratio) are 98 % exactly approximated
by the surrogate models.

Table 5.3: Linear regression model result summary
β0 β1 β2 β3 β4 β5 β6 R2 = R2

adj

E 7.49 0.00 0.02 0.00 0.52 -0.48 41.62 0.98
ν 0.31 0.00 0.00 0.00 0.00 0.00 -0.09 0.98

Table 5.4: Quadratic polynomial without mixed terms regression model result sum-
mary

E

β0 β1 β2 β3 β4 β5 β6

7.25 0.00 0.02 0.00 0.99 -0.60 38.55
β11 β22 β33 β44 β55 β66 R2 = R2

adj

0.00 0.00 0.00 -0.57 0.10 20.57 0.98

ν

β0 β1 β2 β3 β4 β5 β6

0.31 0.00 0.00 0.00 0.00 0.00 -0.13
β11 β22 β33 β44 β55 β66 R2 = R2

adj

0.00 0.00 0.00 0.00 0.00 0.25 0.98
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The first-order Si and total-effect STi , i = 1, ..., 6 sensitivity indices of both corre-
lated and uncorrelated inputs are computed based on the surrogate model. The Ŝi and
ŜTi are reduced by the COD to infer that only R2 of the mechanical response can be
explained with the surrogate model.

Ŝi = R2Si (5.4a)

ŜTi = R2STi (5.4b)

5.4.4 FAST and IFAST methods
The sensitivity analysis has been performed for both uncorrelated and correlated in-
put parameters. The classical FAST method is used to estimate the main effect of
the uncorrelated parameters on the Young’s modulus and Poisson’s ratio. In order
to investigate the sensitivities for highly correlated parameters, the IFAST method
is employed. For both methods we have selected M = 6 and the vector {ωi} =
{1, 21, 31, 37, 45, 49}.

The first noticeable result is that the effects of LSWNT and ETEF on the mechani-
cal properties are approximately equal to zero when considering the input parameters
as independent variables; Tables 5.5 and 5.6. If the correlation among the param-
eters is induced, the influences of LSWNT and ETEF on the mechanical properties
are significant and the first-order indices for ELEF are decreased, see results in Ta-
bles 5.7 and 5.8 and Figures 5.11 and 5.12. We know that the longer the SWNT,
the more efficient the load transfer between the SWNT and the polymer matrix and
hence the PNCs are strengthened and consequently stiffer. The results obtained from
the IFAST method are more reasonable compared to those obtained from the FAST
method. Therefore, if we considered the inputs as independent parameters or limited
the non-straight SWNT to sinusoidal wavy form (the SWNT waviness is determinis-
tic) as suggested by (FBB03, BFB03), the LSWNT , ELEF and ETEF would be barely
correlated to each other. By doing so, the effect of each parameter on the mechanical
properties may not be estimated accurately.

Table 5.5: Sensitivity indices computed on the linear regression model with uncorre-
alted parameters of the Young’s modulus contributed by the input parameter Xi.

FAST for the model with uncorrelated parameters
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜFASTi 0.01 0.50 0.02 0.01 0.01 0.42 0.97
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Table 5.6: Sensitivity indices computed on the linear regression model with uncorre-
alted parameters of the Poisson’s ratio contributed by the uncorrelated input parameter
Xi.

FAST for the model with uncorrelated parameters
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜFASTi 0.00 0.63 0.06 0.01 0.00 0.28 0.98

Table 5.7: Sensitivity indices computed on the linear regression model of the Young’s
modulus contributed by the input parameter Xi.

Improvements of FAST
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜIFASTi 0.34 0.43 0.26 0.00 0.01 0.54 1.58

Table 5.8: Sensitivity indices computed on the linear regression model of the Poisson’s
ratio contributed by the input parameter Xi.

Improvements of FAST
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜIFASTi 0.40 0.53 0.29 0.00 0.01 0.42 1.65

5.4.5 Variance decomposition by regression with correlated input
According to Xu and Gertner (XG08), the variance decomposition approach relies on
the assumption that the output linearly relates to the input parameters and the linear
regression-based method is a valid approximation. Therefore, the linear regression
model was employed to construct the surrogate model for this method whereas the
quadratic without mixed terms is employed to construct the surrogate model for the
others.

The reduced sensitivity indices for the Young’s modulus and Poisson’s ratio w.r.t.
the total (ŜV Di ), correlated (ŜV D,Ci ) and uncorrelated part (ŜV D,Ui ), i = 1, ..., 6 of the
input parameters using the variance decomposition approach, are shown in Tables 5.9
and 5.10, respectively.

Large values of ŜV D1 , ŜV D2 and ŜV D3 with small values of ŜV D,U1 , ŜV D,U2 and ŜV D,U3

indicate that the effects of LSWNT , ELEF and ETEF on both Young’s modulus and
Poisson’s ratio come from their mutual correlation rather than from themselves.
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Table 5.9: Sensitivity indices computed on the linear regression model of the Young’s
modulus contributed by the input parameter Xi, the correlated part and uncorrelated
part of the input parameter Xi.

Variance decomposition by regression with correlated input
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜV Di 0.32 0.43 0.26 0.00 0.00 0.54 1.55
ŜV D,Ci 0.32 0.31 0.26 0.00 0.00 0.00 0.89
ŜV D,Ui 0.00 0.12 0.00 0.00 0.00 0.54 0.56

Table 5.10: Sensitivity indices computed on the linear regression model of the Pois-
son’s ratio contributed by the input parameter Xi, the correlated part and uncorrelated
part of the input parameter Xi.

Variance decomposition by regression with correlated input
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜV Di 0.37 0.53 0.28 0.00 0.00 0.42 1.60
ŜV D,Ci 0.37 0.34 0.27 0.00 0.00 0.00 0.98
ŜV D,Ui 0.00 0.19 0.01 0.00 0.00 0.42 0.62

5.4.6 Sampling from the conditional distribution (reordering)
Tables 5.11 and 5.12 respectively show the reduced main-effect indices for the Young’s
modulus and Poisson’s ratio w.r.t. the correlated (ŜSi ) i = 1, ..., 6 parts of the input
parameters.

Table 5.11: Main-effect indices computed on the quadratic without mixed terms re-
gression model of the Young’s modulus with correlated input parameters.

Sampling from the conditional distribution
Length ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜSi 0.31 0.42 0.26 0.00 0.00 0.54 1.53

Table 5.12: Main-effect indices computed on the quadratic without mixed terms re-
gression model of the Poisson’s ratio with correlated input parameters.

Sampling from the conditional distribution
Length ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜSi 0.35 0.53 0.28 0.00 0.00 0.42 1.58
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5.4.7 Extension of the matrix combination approach
The reduced first-order and total-effect sensitivity indices ŜM,C

i and ŜM,U
Ti

), i = 1, ..., 6
of the input parameters, respectively, are given in Tables 5.13 and Figure 5.11 (for the
Young’s modulus) and 5.14 and Figure 5.12 (for the Poisson’s ratio).

Table 5.13: First-order and total-effect sensitivity indices computed on the quadratic
without mixed terms regression model of the Young’s modulus with correlated input
parameters.

Extension of the matrix combination approach
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜM,C
i 0.34 0.45 0.28 0.01 0.01 0.55 1.64
ŜM,U
Ti

0.01 0.10 0.00 0.00 0.00 0.55 0.66

Table 5.14: First-order and total-effect sensitivity indices computed on the quadratic
without mixed terms regression model of the Poisson’s ratio with correlated input pa-
rameters.

Extension of the matrix combination approach
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜM,C
i 0.41 0.50 0.26 0.01 0.01 0.41 1.60

ŜT
M,U

i 0.08 0.07 0.04 0.00 0.00 0.42 0.61

5.4.8 Extension for regression based indices
The results for the regression based indices method are summarized in Table 5.15 and
illustrated in Figure 5.11 (for the Young’s modulus) and Table 5.16 and Figure 5.12
(for the Poisson’s ratio).

Table 5.15: First-order and total-effect sensitivity indices computed on the quadratic
without mixed terms regression model of the Young’s modulus with correlated input
parameters.

Extension for regression based indices
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜR,Ci 0.34 0.43 0.27 0.00 0.00 0.54 1.58
ŜR,UTi

0.03 0.10 0.04 0.00 0.00 0.54 0.71
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Table 5.16: First-order and total-effect sensitivity indices computed on the quadratic
without mixed terms regression model of the Poisson’s ratio with correlated input pa-
rameters.

Extension for regression based indices
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜR,Ci 0.40 0.53 0.30 0.00 0.00 0.42 1.58
ŜR,UTi

0.00 0.15 0.02 0.00 0.00 0.42 0.59

5.4.9 Extension of Sobol’ approach for models with correlated in-
puts (ESACIs)

The sensitivity indices of the ESACIs are computed using Equations (2.125), (2.126),
(2.127) for the first-order indices and (2.129) for the total-effect indices. The results
are reported in Tables 5.17 and 5.18 and shown in Figures 5.11 and 5.12.

Table 5.17: First-order and total-effect sensitivity indices computed on the quadratic
without mixed terms regression model of the Young’s modulus with correlated input
parameters.

Extension of Sobol’ approach for models with correlated parameters
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜK,ai 0.33 0.43 0.26 0.00 0.00 0.54 1.56
ŜK,bi 0.33 0.43 0.26 0.00 0.00 0.54 1.56
ŜK,ci 0.33 0.43 0.26 0.00 0.00 0.54 1.56
ŜKTi 0.00 0.10 0.00 0.00 0.00 0.54 0.64

Table 5.18: First-order and total-effect sensitivity indices computed on the quadratic
without mixed terms regression model of the Poisson’s ratio with correlated input pa-
rameters.

Extension of Sobol’ approach for models with correlated parameters
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜK,ai 0.38 0.53 0.26 0.00 0.00 0.40 1.57
ŜK,bi 0.38 0.53 0.26 0.00 0.00 0.41 1.58
ŜK,ci 0.38 0.53 0.26 0.00 0.00 0.40 1.57
ŜKTi 0.00 0.17 0.02 0.00 0.00 0.40 0.59
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5.4.10 Variance-based sensitivity indices for models with corre-
lated inputs (VBCIs)

The sensitivity indices, computed by the VBCIs method are shown in Tables 5.19 and
5.20 and plotted in Figures 5.11 and 5.12.

Table 5.19: First-order and total-effect sensitivity indices computed on the quadratic
without mixed terms regression model of the Young’s modulus with correlated input
parameters.

Variance-based sensitivity indices for models with correlated inputs
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜMR
i 0.33 0.42 0.25 0.00 0.00 0.53 1.53
ŜMR,U
Ti

0.00 0.10 0.00 0.00 0.00 0.53 0.63

Table 5.20: First-order and total-effect sensitivity indices computed on the quadratic
without mixed terms regression model of the Poisson’s ratio with correlated input pa-
rameters.

Variance-based sensitivity indices for models with correlated inputs
LSWNT ELEF ETEF ξ ζ Vf

∑
(X1) (X2) (X3) (X4) (X5) (X6)

ŜMR
i 0.38 0.52 0.28 0.00 0.00 0.41 1.59
ŜMR,U
Ti

0.01 0.15 0.01 0.00 0.00 0.41 0.58

5.4.11 Discussion
It is inferred from Figures 5.11 and 5.12 for both Young’s modulus and Poisson’s ra-
tio that ŜT6 ≈ Ŝ6 as the parameter X6 (Vf ) is not involved in correlation with other
variables. ŜT1 < Ŝ1, ŜT2 < Ŝ2 and ŜT3 < Ŝ3 due to the dominant effect of mutual
correlation among the parameters X1 (LSWNT ), X2 (ELEF ) and X3 (ETEF ). Since the
input parameters (LSWNT , ELEF and ETEF ) are strongly correlated with each other,
the first order indices are higher than total-effect indices for LSWNT , ELEF and ETEF
and the total-effect indices tend to zero. In the uncorrelated case, the sum of sensitivity
indices of an additive model is 1. This is not the case for the model containing corre-
lated inputs since the correlation between the inputs indirectly introduces the coupling
terms into the model such that the sum can be large than 1 as the presented model.
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Ŝ
M,C
i

ŜT
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Figure 5.11: First-order and total-effect sensitivity indices for the Young’s modulus of
different methods.
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Ŝ
K,a
i

ŜT
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ŜMR
i

ŜT
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Figure 5.12: First-order and total-effect sensitivity indices for the Poisson’s ratio of
different methods.
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5.5 Conclusions
A hierarchical multiscale model bridging four (nano, micro, meso and macro) scales
was employed to study the effect of uncertain model inputs on the macroscopic Young’s
modulus and Poisson’s ratio. The uncertain input parameters include the SWNT length,
the averaged longitudinal and transverse modulus of EF with arbitrary waviness, the
agglomeration and the volume fraction of randomly oriented SWNTs in PNCs at dif-
ferent scales. Different SA methods were employed to estimate the effect of these
uncertain correlated (dependent) inputs on the Young’s modulus and Poisson’s ratio
for the multiscale model in the context of a global SA. Estimates for correlated param-
eters are performed for both first-order and total sensitivity indices.

The stochastic prediction can be summarized as follows:

1. With regard to the Young’s modulus, the most important parameter is the vol-
ume fraction followed by the averaged longitudinal modulus of EF (ELEF ) in
the presence of the waviness, the SWNT length (LSWNT ) and the averaged trans-
verse modulus of EF (ETEF ), respectively.

2. The averaged longitudinal modulus of EF is the most significant parameter for
the Poisson’s ratio followed by the volume fraction, SWNT length and averaged
transverse modulus of EF, respectively.

3. The agglomeration parameters (ξ and ζ) do not have a significant effect on the
Young’s modulus and Poisson’s ratio. This is mainly due to the assumed range
of the volume fraction Vf . In other words, the model is not a function of the
agglomeration parameters for a small portion of SWNTs. However, with the
increasing volume fraction, the agglomeration might significantly affect the re-
sults.

4. Results show an interesting effect of correlation on the sensitivity indices, effects
of the input parameters LSWNT , ELEF and ETEF on the mechanical properties
apparently depend on the level of correlation. For the examples studied, the
waviness pattern of the SWNT were randomly generated such that the correla-
tions between LSWNT , ELEF and ETEF are considered. Remarkably, the SA
enables the accurate quantification of the effect of the correlated parameters on
the mechanical properties.
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Chapter 6

A unified framework for stochastic
predictions of mechanical properties
of polymeric nanocomposites

6.1 Introduction
Polymer (epoxy) clay nanocomposites (PCNs) have been studied extensively as a new
generation of polymeric materials and received wide interests in the research commu-
nity of material sciences and engineering due to their exceptional thermal and me-
chanical properties. The clay particle structure is either exfoliated or intercalated. For
enhanced functional properties of nanocomposites at the same clay concentration the
former is preferred (HWC07). An exfoliated PCN was developed by the Toyota group
by synthesizing a nylon 6/clay nanocomposite (UKK+93b, UKK+93a). They reported
that the mechanical properties (tensile modulus and strength) of nylon 6/clay nanocom-
posites were significantly improved even at low clay concentrations. It is believed that
the enhanced properties of PCNs strongly depend on the clay aspect ratio and the
mechanical properties of the nano clay. After pioneering success in the nylon 6/clay
system, the nanocomposite technology has been extended to other polymeric systems,
including elastomers (WP98, BG00) and epoxies (TLP02, RMV+03). It was shown
that enhancement of the thermal/mechanical properties in the polymeric nanocompos-
ites is sensitive to the particular polymer chosen.

Analytical and numerical predictions of the overall composite stiffness have been
extensively studied (VBLZ+14). A comprehensive review of micromechanical models
fiber-reinforced polymers, such as Halpin–Tsai (Hal69) and Mori and Tanaka (MT73),
was outlined by Tucker and Liang (TL99). Analytical studies (FP03, WP04) suggest
that the high clay stiffness, high aspect ratio and volume fraction are the key parame-
ters governing the stiffness of clay nanocomposite. Sheng et al. (SBP+04) proposed a
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multiscale finite element method (FEM), accounting for the hierarchical morphology
of the PCNs, to predict the macroscopic properties of PCNs by using the so-called ’ef-
fective particles’ in which the model parameters such as the particle volume fraction,
particle aspect ratio and orientation and particle/matrix property ratios were taken into
consideration. Scocchi et al. (SPD+07) developed a bottom-up approach to study the
relative macroscopic properties of PCNs. Fermeglia et al. (FP07b) proposed a hier-
archical procedure for bridging the atomistic and macroscopic results through meso-
scopic simulations.

As the mechanical properties of a certain polymer clay nanocomposite system are
affected by multiple uncertain parameters such as the clay volume fraction, clay aspect
ratio, clay curvature, clay stiffness and epoxy stiffness, a comprehensive study of the
effects of such above-mentioned parameters on the mechanical behavior of PCNs is
required. So far, the stochastic effects of these parameters on the mechanical properties
have not been quantified.

In this chapter, we conduct a comprehensive global sensitivity analysis (SA) based
on a stochastic modeling of PCNs. The finite element (FE) analysis is used to pre-
dict the stiffness of the fully exfoliated PCNs within the framework of the stochastic
modeling. Based on a micromechanical approach, a homogenized Young’s modulus
is computed at the meso-scale. Subsequently, different SA methods are employed to
quantify the influence of the input parameters on the PCN Young’s modulus. A boot-
strap technique has been performed in order to assess the robustness of different SA
methods.

The chapter is outlined as follows. In the next section, we briefly describe the FE
model and homogenization techniques. Section 6.3 presents the complete statistical
distribution for each input parameter. Different SA methods are described in section
6.4. The coefficients of surrogate model, sensitivity indices and bootstrap confidence
intervals for the sensitivity indices will be detailed in section 6.5 before the chapter
ends with a discussion on the numerical results and the concluding remarks.

6.2 Model for PCN
We focus on PCNs that are built using the slurry compounding process. The epoxy
resin is diglycidyl ether of bisphenol A (D.E.R.TM 332) and the curing agent is di-
ethyltoluenediamine (Ethacur 100-LC, Albemarle). The pristine clay is sodium mont-
morillonite (MMT) (WCW+05, WWW+05, WWC+06, SZRET12).

Models of various periodic representative volume elements (RVEs) of the epoxy
matrix filled with exfoliated clay platelets (particles) that are randomly oriented and
dispersed are constructed. Figure 6.1 shows a detailed view of the FE mesh inside the
RVE of the PCN. The micromechanical FE model was implemented in ABAQUS as
detailed in (STZR+13).
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In this work, we assume a simplified case of perfectly bonded particles in an
isotropic matrix.

Clay Polymer matrix

Figure 6.1: A detailed view of the mesh.

6.2.1 RVE definition
The RVE approach uses the solution of the homogenization for an original heteroge-
neous medium to obtain an equivalent homogeneous one that is able to substitute the
heterogeneous (polymer/platelet) material. Hence, the RVE size should be defined so
that the RVE contains enough information to reasonably simulate an infinite medium.

Since the RVE is randomly generated, the ensemble of many realizations (RVEs)
needs to be generated to create a good statistical representation of the PCN. In other
words, we replace a large RVE that reasonably simulates an infinite medium by a
statistical ensemble of RVEs for sake of computational efficiency. The number of
realizations is determined such that the entire ensemble contains the same amount of
information as a large one. The ensemble average is given by Spencer and Sweeney
(SS 9)

〈R〉 =
1

M

M∑
k=1

R(k) (6.1)

where R(k) is a response measured in the k − th RVE (k = 1, 2, ...,M); M is the
number of RVE realizations in the ensemble. In order to estimate convergence of the
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6.2 Model for PCN

statistical ensemble, the saturation criterion was used∣∣∣∣〈R(k+1)〉 − 〈R(k)〉
〈R(k)〉

∣∣∣∣ < Tol = 1%. (6.2)

where R(k) denotes an expected value of k realisations, and R(k+1) is averaged over
k + 1 realizations. Equation (6.2) allows to recognize whether the result reaches a
reasonable accuracy.

6.2.2 Boundary conditions
Usually, three types of BCs can be applied to the RVE, namely linear displacement,
uniform traction and mixed type BCs (which includes periodic BCs). For linear elastic-
ity, there is an ordering relationship among the results which are obtained from those
three kinds of BCs (HH94). This ordering relationship finally motivates the use of
periodic BCs in case of periodic structures (Ant95, HK92).

In practical applications, periodic BCs are also used in case of non-periodic mi-
crostructures. It has been shown in numerous numerical studies that periodic BCs
yield a fast convergence rate of the effective properties with respect to (w.r.t.) the size
of the RVE (Hil67, Has83, CKG12). The periodic BCs are imposed on the RVE as
shown in Figure 6.2 by applying a displacement on a rigid reference node that is kine-
matically coupled with the RVE edges in the axial direction so that the displacements
of all boundary nodes are identical to those of the equivalent node on the opposite
edge.

1

4 3

2 1

4 3

2

Figure 6.2: Boundary conditions imposed on the RVE: (left) an undeformed RVE and
(right) a deformed RVE.
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6.2.3 RVE generation algorithm
The characteristics of the clay particles (their aspect ratio (length), curvature (radius)
and stiffness) are randomly generated according to predefined sets of statistical dis-
tributions, (SS 9), e.g. all clay particles have the same aspect ratio, curvature radius,
stiffness, and the clay particles are randomly dispersed in the epoxy matrix. The result-
ing clay particle configurations are ideal for estimating the influence of each particle-
characteristic on the mechanical response. A scheme of the RVE generation algorithm
is shown in Figure 6.3.

Firstly, the control parameters including the number of RVEs for each value of clay
concentrations (volume fraction), the size of the RVE, the clay length, curvature and
orientation distribution are set. According to the randomly generated volume fraction,
the aspect ratio and the size of the RVE, we compute the number of clay particles (n)
in the RVE. The particles are sequentially placed in the RVE based on the random
sequential addition algorithm (RSA).

The clay corner position, the aspect ratio, the clay radius and the clay stiffness are
randomly selected according to their probability density functions (PDFs). The clay
particle is generated by randomly placing its corner to a trial position and assigning a
random angle between the particle and the x axis. The uniform distribution is used to
randomly place the clay particles inside the RVE.

Once a clay particle is generated, a condition for non-overlap and non-intersection
with existing particles is checked. If the condition is violated a new particle is regen-
erated and the condition is checked again. Since the RVE is geometrically periodic,
the clay particles crossing an edge of the RVE must reappear at the opposite edge.
Therefore, we mesh the RVE and produce the set of equations for periodic BCs. Af-
ter solving the boundary value problem (BVP), the homogenization over the RVE is
performed and the results are saved for the stochastic analysis.

6.2.4 Output
The output of the proposed stochastic method is the effective Young’s modulus that
is computed based on the homogenization technique as presented in subsection 2.3.3.
Since the clay particles are randomly distributed, the bulk material at the macro-scale
can be considered as isotropic. Therefore, only two independent elastic constants (the
bulk modulus K and shear modulus µ) exist. The elastic constants can be determined
by applying the BC to the RVE as addressed in subsection 6.2.2. Predefining δ as
horizontal strain, we have ε11 = δ and σ22 = 0. After loading, the ε22 and σ11 can be
computed by homogenization. This method was used to compute the effective Young’s
modulus E of the intact nanocomposite.
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Figure 6.3: Flowchart of the proposed stochastic modeling.
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6.3 Stochastic input parameters
Zunjarrao et al. (ZSS06) stated that the volume fraction of clay particles commonly
ranges from 0.5% to 6%. In order to reduce the computational cost, we modify the
clay volume fraction from 0.5% to 5% assuming a truncated Gaussian distribution.
The mean and standard deviation are shown in Table 6.1.

Experimental observations (WCW+05, WWW+05) show that the aspect ratio of
1 nm thick sodium montmorillonite platelets ranges from 200 to 400 nm. The clay
length distribution can be characterized by the truncated Gaussian distribution with the
respective mean and variance value of 300 nm and 45 nm.

In order to reveal the MMT clay radius distribution, image processing techniques
were used on the TEM image of PCNs (WCW+05, SZRET12). The quantified clay
radii were extracted based on high resolution TEM images. A Log-normal distribution
with the mean value of 5.72 nm and standard deviation of 0.91 nm is used, see Table
6.1.

According to Vanorio et al. (VPN03), it is difficult to measure the Young’s modulus
of mineral clays due to their small grain sizes. Chen and Evans (CE06) surveyed
estimates of the Young’s modulus of clay platelets and concluded that the Young’s
modulus of clay platelets is within the range of 178 GPa − 265 GPa. We assume a
Gaussian distribution with the mean value of 221.5 GPa and the variance of 20 GPa
for the Young’s modulus of clays.

The Gaussian distribution is used to describe the Young’s modulus of the epoxy
(SZRET12). The mean value and the standard deviation are 1.96 GPa and 0.08 GPa,
respectively.

The scatter plot matrix for the independent input parameters is also shown in Figure
6.4.

6.4 Global sensitivity analysis
Global sensitivity analysis aims to relate output uncertainties to uncertainties in the
input parameters. In this chapter, different global SA methods based on different sur-
rogate models are employed to estimate how much the model response is affected by
changes in the model parameters, taken one by one and in interaction with one another.
The schematic diagram of all sensitivity assessment methods applied in this study are
illustrated in Figure 6.5.

6.5 Numerical results
Uncertainty of the predicted response (E) of the mechanical model can be described
by a probability distribution. Judging from the drawn histogram (sample size = 280)
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Table 6.1: Statistical properties of model parameters

Inputs mean
standard
deviation Type of distribution Sources

Vf (X1) 2.75% 0.75%
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in Figure 6.6, either Normal or Weibull, Log-normal distributions can be candidates to
characterize for the mechanical response uncertainty.

The probability plots are used to graphically assess whether the predicted Young’s
modulus can be characterized by a given distribution. If the probability plot produces
the least deviations from a straight line, the exploited theoretical distribution is chosen
as a goodness-of-fit of the data (GK90). The respective Normal, Weibull and Log-
normal probability plots are drawn in Figures 6.7, 6.8 and 6.9.

The difference between mean (2.43) and mode value (1.45) indicates that the output
is skewed, see Figure 6.6 and Table 6.2. Hence, the normal distribution is not a good
candidate to characterize the mechanical output. It is more reasonable to describe the
skewed data by a Weibull or Log-normal distributions. In order to quantitatively assess
the best fitted distribution of the sample data, the residual sum of squares (RSS) are
computed in which cross blue points of the probability plots are considered as Yj and
the regression values (straight red lines) serve as Ŷj in Equation (2.145). Obviously,
the Log-normal is the best fitted distribution to the Young’s modulus’ histogram due to
the smallest RSS given in Table 6.3. Note that the RSS values are estimated within
95% CIs.

The mean value of the Young’s modulus is shown in Table 6.2. Scatter plots in
Figure 6.10 show that the obtained Young’s modulus of the PCNs agrees well with the
experimental results (WCW+05) and the numerical results (STZR+13), respectively.
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Figure 6.4: Scatter plot matrix for input parameters.

Table 6.2: Statistical results for the Young’s modulus
Output Mode value (MPa) Mean value (MPa) Standard

deviation
Young’s modulus 1.45 2.43 0.35

Table 6.3: Uncertainties of mechanical output using various distributions
Type of assumed PDF Parameter 1 Parameter 2 Error

Normal PDF
Mean value (MPa) Standard deviation RSS

2.43 0.35 0.0686

Weibull PDF
Scale parameter (A) Shape parameter (B) RSS

2.58 7.53 0.1810

Log-normal PDF
Mean value (MPa) Standard deviation RSS

0.88 0.15 0.0662

The highest influence seems to be the epoxy stiffness (Eepoxy). To quantify the affect
of the input parameters, the sensitivity indices will be studied using different surrogate
models.

We have used the penalized cubic spline (℘ = 3) regression model for a single
continuous predictor parameter in order to plot E(Y|Xi). The first-order sensitivity
indices have been estimated by Equation (2.65). The results are shown in Table 6.6
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Figure 6.5: Schematic diagram of sensitivity assessment methods.
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Figure 6.8: Weibull probability plot for the distribution of the Young’s modulus E.
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Figure 6.9: Log-normal probability plot for the distribution of the Young’s modulus E.
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and plotted in Figure 6.12.
Figure 6.10 also shows the 95% CIs and PIs. We can be 95% confident that the

conditional expected value E(Y|Xi) given that Xi lies in the light grey region. The
region between the values cut off by the magenta dashed lines, corresponds to 95% PIs
in which any new predictions lie. The PIs are wider than the CIs as they are inference
on Y, rather than E(Y|Xi).

Since scatter points are randomly distributed according to the PDF, the CIs are nar-
rower in the highly contributed training data region and wider in the scattered training
data region. Furthermore, the CIs w.r.t. the epoxy stiffness Eepoxy are narrower than
the others at 95%. The CIs infer that (1) the highest influence seems to be the epoxy
stiffness (Eepoxy); and (2) the corresponding sensitivity index is more precise (and
reliable) than the sensitivity indices due to other parameters.

Table 6.4: QDR model result summary

E

β0 β1 β2 β3 β4 β5

-1.25 40.64 0.00 0.00 0.01 1.27
β11 β22 β33 β44 β55 R2 = R2

adj

-299.20 0.00 0.00 0.00 -0.03 0.97

Table 6.5: KR model result summary

E
λ θ1 θ2 θ3 θ4 θ5 R2 = R2

adj

0.01 0.01 0.00 0.10 0.00 0.02 0.98

Table 6.6: First-order sensitivity indices computed on the penalized cubic spline re-
gression model of the Young’s modulus E

First-order indices based penalized cubic spline regression
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

SKi 0.11 0.00 0.04 0.00 0.84 0.99

The surrogate models, based on the quadratic regression without mixed terms
(QDR) and the kriging regression (KR), are constructed to approximate the mechanical
response. Figure 6.11 shows that stochastic convergence is achieved with 280 samples
for both QDR and KR models. The corresponding COD R2 and adjusted COD R2

adj

are computed and shown in Tables 6.4 and 6.5. The CODR2 of 0.97 for QDR and 0.98
for KR indicate that the predicted response using the surrogate models are good ap-
proximations of the mechanical response. Subsequently, we used only the QDR model
to estimate the sensitivity indices by different SA methods.
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A sample containing 10,000 realizations of the k-dimensional model (k = 5) has
been generated using the Latin hypercube sampling (LHS). The LPτ QR sequences
are generated (improved formulas in Table 2.2) by the Sobol’s FORTRAN77 code
LPTAU51 (STLS92). The reduced first-order indices (Ŝi) and total-effect (ŜT i) indices
with i = 1, ..., 5 for the Young’s modulus of the PCNs are estimated by

Ŝi = R2Si,

ŜT i = R2ST i.
(6.3)

Employing the matrix combination method (Sal02), the reduced first-order (Ŝqdri )
and total-effect indices (ŜqdrT i ) based on the QDR and Ŝkri and ŜkrT i based on the KR are
computed. The results are summarized in Tables 6.7 and 6.8 and illustrated in Figure
6.12. The results based on both regression models are nearly identical.

Table 6.7: First-order and total-effect sensitivity indices computed by the combination
method based on the QDR model of the Young’s modulus E

Matrix combination method based on the QDR model
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

Ŝqdri 0.10 0.00 0.02 0.00 0.85 0.97
ŜqdrT i 0.10 0.00 0.02 0.00 0.85 0.97
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Table 6.8: First-order and total-effect sensitivity indices computed by the combination
method based on the KR model of the Young’s modulus E

Matrix combination method based on the KR model
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

Ŝkri 0.11 0.00 0.02 0.00 0.85 0.98
ŜkrT i 0.11 0.00 0.02 0.00 0.85 0.98

From Table 2.2, the respective Sobol’ indices (ŜSob,rdi and ŜSob,rdT i ) associated with
formulas (a) and (d), and Saltelli/Sobol’ indices (ŜSal,rdi and ŜSal,rdT i ) associated with
formulas (b) and (f) for single parameters are computed. Both methods are associated
with the radial sampling scheme. In addition, ŜJan,wsi and ŜJan,wsT i are estimated from
Jansen’s formulas (c) and (f) associated with the winding stairs sampling scheme.
Those results are summarized in Table 6.9 and plotted in Figure 6.12. Furthermore, the
total effects of pairs of parameters ŜSal,rdij with i = 1, ..., 5, j = i + 1 is estimated by
Equation (2.76) associated with the radial sampling scheme. The results are depicted
in Table 6.10 and Figure 6.14.

Table 6.9: First-order and total-effect sensitivity indices computed by the improved
formulas in section 2.8.1 based on the QDR model of the Young’s modulus E

Sobol’ indices (formulas (a), (d)) (radial sampling)
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

ŜSob,rdi 0.11 0.00 0.01 0.00 0.84 0.97
ŜSob,rdT i 0.12 0.00 0.01 0.00 0.85 0.98

Saltelli/Sobol’ method (formulas (b), (f)) (radial sampling)
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

ŜSal,rdi 0.10 0.00 0.02 0.00 0.85 0.97
ŜSal,rdT i 0.10 0.00 0.02 0.00 0.85 0.97

Jansen’s method (formulas (c), (f)) (winding stairs sampling)
ŜJan,wsi 0.11 0.00 0.01 0.00 0.85 0.97
ŜJan,wsT i 0.11 0.00 0.01 0.00 0.85 0.97

The first-order indices, computed by the MOS are shown in Table 6.11 and Figure
6.12. We have chosen the number of slices equal to 1/10 of the generated samples.
The number of samples is fixed in each slice and the number of slices is increased with
increasing number of samples.
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Table 6.10: Total effects of pairs of parameters computed by the Saltelli/Sobol’ method
based on the QDR model of the Young’s modulus E

Saltelli/Sobol’ method (radial sampling)
Lclay rclay Eclay Eepoxy

(j = 2) (j = 3) (j = 4) (j = 5)

ŜSal,rd1j Vf (X1) 0.10 0.12 0.10 0.95
ŜSal,rd2j Lclay(X2) 0.02 0.00 0.85
ŜSal,rd3j rclay(X3) 0.02 0.87
ŜSal,rd4j Eclay(X4) 0.85

Table 6.11: First-order sensitivity indices computed by the MOS method based on the
QDR model of the Young’s modulus E

Method of slices (MOS)
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

ŜMOS
i 0.10 0.00 0.01 0.00 0.86 0.97

For the FAST method we have selected M = 4 and {ωi} = {11, 21, 27, 35, 39}
as suggested by (STC99). The first-order indices are given in Table 6.12 and Figure
6.13. For the EFAST method; M is 4, Nr = 1 and the vector {ωi} = 24. As shown
in section 2.8.5 we then obtain ω∼i = {1, 2, 3, 1} and max{ω∼i} = (1/M)(ωi/2) = 3.
The computed first-order and total-effect indices are listed in Table 6.13 and Figure
6.13.

Table 6.12: First-order sensitivity indices computed by the FAST method based on the
QDR model of the Young’s modulus E

Fourier amplitude sensitivity test (FAST)
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

ŜFASTi 0.10 0.00 0.00 0.00 0.86 0.96

We have set ωi = 1,M = 6 for the RBD method. Table 6.14 and Figure 6.13 show
the first-order indices.

The first-order indices of the EASI method with M = 6 are reported in Table 6.15
and Figure 6.13. Furthermore, let us consider the index group set I = {1, 2, 3, 4, 5}
including all k = 5 parameters. The estimated total effect ŜEASITI = 0.97 computed
Equation (2.98) is identical to

∑5
i=1 ST i obtained by all other methods.

The FAST, EFAST, RBD, and EASI methods are the affine of Fourier based tech-
nique which are used to evaluate the global sensitivity indices. The computational
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Ŝ
Jan,ws
i

Ŝ
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Figure 6.12: First-order and total-effect sensitivity indices w.r.t. the penalized spline
regression, the matrix combination method, Saltelli/Sobol’, Jansen’s method and
MOS.
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Figure 6.13: First-order and total-effect sensitivity indices w.r.t. FAST, EFAST, RBD
and EASI.
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Table 6.13: First-order and total-effect sensitivity indices computed by the EFAST
method based on the QDR model of the Young’s modulus E

Extended Fourier amplitude sensitivity test (EFAST)
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

ŜEFASTi 0.11 0.00 0.01 0.00 0.84 0.96
ŜEFASTTi 0.11 0.00 0.02 0.00 0.84 0.97

Table 6.14: First-order sensitivity indices computed by the RBD method based on the
QDR model of the Young’s modulus E

Random balance designs (RBD)
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

ŜRBDi 0.10 0.00 0.01 0.00 0.85 0.96

Table 6.15: First-order sensitivity indices computed by the EASI method based on the
QDR model of the Young’s modulus E

Effective algorithm for sensitivity indices (EASI)
Vf Lclay rclay Eclay Eepoxy

∑
(X1) (X2) (X3) (X4) (X5)

ŜEASIi 0.10 0.00 0.01 0.00 0.84 0.95

expense (the value in the parentheses) of these methods is efficient and can be per-
formed independently for each parameter. For example, the number of minimum sim-
ulations is Ns = 313 for the FAST method. With respect to EFAST method, as the
total-effect indices are desired, a new set of model evaluations for estimating each
ST i, i = 1, ..., 5 is needed such that the total number of required simulations is in-
creased k times; Ns = 193× 5.

In order to assess the robustness of Sobol’ approaches and the improved formulas
in section 2.8.1, we have performed bootstrapping the blocks to obtain CIs for the
total-effect indices (SAA+10, ASS97). Note that q = k + 1 model evaluations are
needed for bootstrapping one block. The total-effect estimators (formulas (d) and (f)
in Table 2.2) of 95% CIs for the most important parameter (Vf (X5)) are evaluated.
With regards to the bootstrap CIs of the total-effect indices, Saltelli/Sobol’ and Jansen’s
methods (formmulas (b), (c) and (f)) associated with the radial and winding stairs
sampling, respectively, are preferred to the Sobol’ approach using formula (d) (with
radial sampling) and the matrix combination method as the CIs of the former methods
(0.04) are narrower than the latter’s (0.34 and 0.38) at the same and even a larger
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Figure 6.14: Total sensitivity indices estimated via Saltelli/Sobol’ for all pairs of pa-
rameters Xi&Xj with j 6= i.

number of model evaluations, see Figure 6.5 and Table 6.16.
95% CIs for the first-order indices contributed by the volume fraction Vf (X5) of

the FAST, EFAST, RBD, EASI and MOS were also measured. Figures 6.16 and 6.17
and Table 6.16 show that the FAST and EFAST methods require less model evaluations
than the others but obtain the higher confidence.

6.6 Conclusions
A stochastic numerical approach, considering uncertain input parameters - the vol-
ume fraction, the aspect ratio of clay, the clay radius, the clay stiffness, and the epoxy
stiffness, was employed to evaluate the Young’s modulus of the mechanical model.
Subsequently, the framework of SA using different methods were performed to quanti-
tatively estimate the influence of the input parameters on the Young’s modulus. Global
SA can provide robust predictions of the Young’s modulus of PCNs. The results of all
SA methods are nearly identical.

All sensitivity assessment methods predict the same tendencies, they are:

1. The Young’s modulus of exfoliated PCNs is governed by the stiffness of the
epoxy matrix.

2. The clay volume fraction has insignificant influence on the Young’s modulus.

3. The clay length (aspect ratio), clay radius and clay stiffness have no influence on
the Young’s modulus of the PCNs.
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Figure 6.15: The total-effect indices and 95% CIs estimated for the parameter Vf (X5)
via Monte Carlo method. The indices were evaluated using the matrix combination
method and formulas (a), (b), (c), (d), and (f) in Table 2.2 with 1000 bootstrapping
replicas.
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Figure 6.16: The sensitivity indices and 95% CIs estimated for the parameter Vf (X5)
via Monte Carlo method. The indices were evaluated using FAST and EFAST methods
with 1000 bootstrapping replicas.
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Table 6.16: Comparison of SA methods in terms of bootstrap CIs versus the number
of model evaluations.

Method Number of
evaluations of
QDR model

CIs’ band

Methods used to compute (Si)
FAST 999 1e-3
EFAST 999 1e-3
RBD 1000 0.03
EASI 1000 0.02
MOS 1000 0.03

Methods used to compute (ST i)
EFAST 999 1e-3
Sobol’ (matrix combination) 10000× 7 0.38
Sobol’ (radial sampling) 10000× 6 0.34
Saltelli/Sobol’(radial
sampling)

10000× 6 0.04

Jansen (winding stairs) 10000× 6 0.04

Comments on the methods:

1. The penalized spline regression is used as a smooth function to plot E(Y|Xi)
and compute the first-order indices SKi . The computation requires a small num-
ber of model evaluations such that the first-order indices can be straightforwardly
estimated based on the mechanical model.

2. Although the KR model gives a little higher COD (R2 = 0.98) than the QDR
model’s (R2 = 0.97), the computation of sensitivity indices is computationally
more expensive (420.21 s) than QDR model (0.16 s). However, it is still negli-
gible compared to the simulation time of the mechanical model.

3. With respect to the matrix combination method and the improved formulas pre-
sented in section 2.8.1, a large number of model evaluations were required to
compute the sensitivity indices as a price paid to capture the total-effect indices.
However, the modification of the variance-based methods can be used for the
models with dependent input parameters, see (KTA12, MT12).

4. The most robust methods are the FAST and EFAST. If both main effect and total
effect of models with independent input parameters are desired, the EFAST is
especially suited for this aim.
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Figure 6.17: The first-order indices and 95% CIs estimated for the parameter Vf (X5)
via Monte Carlo method. The indices were evaluated using MOS, RBD and EASI
methods with 1000 bootstrapping replicas.

5. If the main effect is the quantity of interest, the FAST approach, which allows
all first-order indices to be computed from the single curve, requires a small
number of model evaluations such that the first-order indices can also be directly
estimated on the mechanical model. This feature is an attractive robustness com-
pared to the EFAST and other methods.
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Chapter 7

A node-based smoothed extended
finite element method (NS-XFEM) for
fracture analysis

7.1 Introduction
The classical finite element method (FEM) is quite burdensome for modeling crack
growths because it is required to remesh and align the new mesh to the crack’s topol-
ogy. Several finite element techniques such as GFEM (MB97, SBC00) and XFEM
(BB99, MDB99) have been proposed to overcome those difficulties. More recently,
the meshfree method has been successful in modeling static and dynamic fracture in
2-dimensions and 3-dimensions performed in (RB04, RA06, RE06, RB07b, RBZ07,
RS08).

For the problems with complex geometries, triangular or tetrahedral elements, are
usually preferred. However, FEM and XFEM based on such meshes suffer from some
difficulties:

• The XFEM based on triangular elements is too stiff.

• The XFEM requires sub-triangulation for integration increasing complexity.

• The XFEM requires the derivatives of the shape function and requires many Gauss
points for integrating the crack tip singularity.

We propose a new method to overcome those difficulties. The method is based on
the node-based smoothed finite element method (NS-FEM). Smoothing was first used
by (CWYY00) to stabilize nodal integration in meshfree method. By combining this
strain smoothing technique with the finite element methods, Liu et al. have formulated
a family of smoothed FEM models named SFEM (LNDL07, NRNB08), cell-based
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SFEM (CS-FEM) (LDN07, DLN7a, NBN08, BN10, CNA+10), node-based SFEM
(NS-FEM) (LNNL09, NVRNX10, NRN+10), edge-based SFEM (ES-FEM) (LNL09),
face-based SFEM (FS-FEM) (NLLZ09), alpha-FEM (NRNB09, NRNXB10). In all of
these methods, smoothing strain operations are performed over smoothing domains to
compute the system stiffness matrix.

In NS-FEM, the system stiffness matrix is calculated by using strain smoothing
technique over the cells associated with nodes. As a result, line integration is used
along the edges of the smoothing cells instead of volume integration. Moreover, no
mapping is needed in the NS-FEM and only the shape functions themselves need to be
computed, not their derivatives. It was also shown that the results are less sensitive for
distorted elements.

In this paper, we propose a novel numerical method that exploits this special prop-
erty of the line integration in the NS-XFEM. The system stiffness matrix is computed
directly from the special basis shape functions along the boundaries of the smoothing
domains. The combination of the NS-FEM and the XFEM can alleviate some of the
following difficulties:

1. Simplify integration of discontinuous functions by transforming domain integra-
tion on Gauss points into boundary integration by using the divergence theorem.
Consequently, there is no need to integrate the 1/

√
r term.

2. The functions to be integrated remain non-polynomial, and optimized one-dimensional
integration techniques for these functions are promising routes to increase the
accuracy of XFEM.

3. Insensibility to mesh distortion.

4. No subtriangulation is needed for integration reducing complexity.

5. Inherit robustness and accuracy of the triangular NS-FEM.

The paper is outlined as follows. In the next section, we briefly present the method-
ology for coupling NS-FEM and XFEM. Section 3 confirms the accuracy, efficiency
and convergence properties of the present method by benchmark problems taken from
linear elastic fracture mechanics. Finally, we end the manuscript with concluding re-
marks and future work.
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7.2 Nodal-based smoothed extended finite element method
(NS-XFEM)

7.2.1 Displacement and Strain Field
XFEM is based on a local partition of unity. For the case of linear elastic fracture me-
chanics (LEFM), two sets of enrichment functions are utilized: a Heaviside function to
account for the jump across the crack faces and asymptotic branch (near-tip) functions
(BB99, RW06):

uh(x) =
∑

I∈Nns−fem

NI(x) dI︸ ︷︷ ︸
ustandard

+
∑

J∈Nns−c

NJ(x)H(x) aJ +
∑

K∈Nns−f

NK(x)
4∑

α=1

Φα(x) bαK︸ ︷︷ ︸
uenr

(7.1)
where NI(x), NJ(x) and NK(x) are finite element shape functions whose support do-
main is shown in Figure 2.13, while dI are nodal degrees of freedom associated with
node I , aJ and bK are additional nodal degrees of freedom corresponding to the Heav-
iside function H(x) and the near-tip functions, {Φα}16α64, respectively.

Nodes in set Nns−c are such that their support is split by the crack and nodes in
set Nns−f belong to the smoothing domains that contain a crack tip. These nodes
are enriched with the Heaviside and asymptotic branch function fields depicted with
squares and circles, respectively, in Figure 7.1. A set of nodes Nns−fem whose support
domain associated with a node of NS-FEM is illustrated in Figure 2.13.

Now we show how to create the support domain in NS-XFEM. Therefore, we de-
termine the node-based smoothing domains in which at least one x exists such that
NI(x) > 0, where NI(x) is the shape function associated with node I . The smooth-
ing domain corresponding to the inner node k, Ωs

k, is combined from six sub-domains
(sub-parts) of elements containing this node. Therefore, the domain Ωs

k, can be con-
sidered to be the smoothing domain of seven nodes from six neighbouring elements:
(1) one connectivity node of six neighbouring elements; (2) six remaining points of
neighbouring elements. These seven nodes are called the associated nodes of smooth-
ing domain Ωs

k. The same procedure is applied for the smoothing domain associated
with nodes located on the boundary of the domain. The shape of node-based smooth-
ing domains is illustrated in Figure 2.13 in which FGHMN, ABCDE are associated
nodes of smoothing domain Ωs

k and Ωs
m, respectively. The support domain of node I

is shown by the hatched region in Figure 2.13.
In NS-XFEM, Heaviside enriched degrees of freedom are added to nodes in Nns−c

whose support domain is split by the crack and tip enriched degrees of freedom are
added to nodes in setNns−f whose support domain contains the crack tip. These nodes
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Enrich node with Φ function
CrackCrack tipNormal node

Enrich node with H function
Tip smoothing Split smoothing Standard smoothing
Tip blending element Split blending element

.... ..... ..... ..... ..... .. . .... ..... ..... ..... ..... .. .

Figure 7.1: Illustration of node-based smoothing domain (sd) and node categories in
NS-XFEM in terms of the support domain of nodal shape function.

are depicted by squares and circles, respectively, as shown in Figure 7.1. According to
the chosen nodes, squared nodes are enriched by the step function whereas the circled
nodes are enriched by the branch tip functions. In order to keep the convergence rate as
high as possible, a so called geometric enrichment should be used that is independent
from the discretization (LPRS05a).

In order to keep the enrichment domain narrow, we use a shifting

uh(x) =
∑

I∈Nns−fem

NI(x)dI +
∑

J∈Nns−c

NJ(x)(H(x)−H(xJ))aJ

+
∑

K∈Nns−f

NK(x)
4∑

α=1

(Φα(x)− Φα(xK))bαK
(7.2)

The shifting also circumvents problems due to blending for the Heaviside enrich-
ment but not for the tip enrichment. Applying the node-based smoothing operation,
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the smoothed strain associated with node k can be written as:

ε̄k =
∑
I∈Ns

k

B̄u
I (xk)d̄I +

∑
J∈Nns−c

B̄a
J(xk)(H(x)−H(xJ))aJ

+
∑

k∈Nns−f

B̄b
K(xk)

4∑
α=1

(Φα(x)− Φα(xK))bαK
(7.3)

where N s
k is the set of nodes associated with the smoothing domain Ωs

k, B̄u
I(xk) is the

smoothed strain gradient matrix for the standard NS-FEM part, and B̄a
I(xk), B̄b

I(xk)
correspond to the enriched parts of the smoothed strain gradient matrix associated
with the Heaviside and branch functions, respectively. These matrixes operations can
be written as follows:

B̄r
I (xk) =

 b̄rIx(xk) 0
0 b̄rIy(xk)

b̄rIy(xk) b̄rIx(xk)

 r = u, a, b (7.4)

B̄u
I =

∫
Γs
k

1
As

k

 nxNI 0
0 nyNI

nyNI nxNI

dΓ

B̄a
I =

∫
Γs
k

1
As

k

 nx [NI (H(x)−H(xI))] 0
0 ny [NI (H(x)−H(xI))]

ny [NI (H(x)−H(xI))] nx [NI (H(x)−H(xI))]

dΓ

B̄b
I =

∫
Γs
k

1
As

k

 nx [NI(xm,n) (Φα(x)− Φα(xI))] 0
0 ny[NI(xm,n) (Φα(x)− Φα(xI))],y

ny[NI(xm,n) (Φα(x)− Φα(xI))],y nx[NI(xm,n) (Φα(x)− Φα(xI))],x

dΓ

(α = 1, 2, 3 and 4)
(7.5)
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Using Gauss-Legendre integration along Γsk, we obtain:

B̄u
I = 1

As
k



Nseg∑
m=1

(
Ngau∑
n=1

nx(xm,n)NI(xm,n)wm,n

)
0

0
Nseg∑
m=1

(
Ngau∑
n=1

ny(xm,n)NI(xm,n)wm,n

)
Nseg∑
m=1

(
Ngau∑
n=1

ny(xm,n)NI(xm,n)wm,n

)
Nseg∑
m=1

(
Ngau∑
n=1

nx(xm,n)NI(xm,n)wm,n

)



B̄a
I = 1

As
k



Nseg∑
m=1

(
Ngau∑
n=1

nx(xm,n)NI(xm,n)×
× (H(xm,n)−H(xI))wm,n

)
0

0
Nseg∑
m=1

(
Ngau∑
n=1

ny(xm,n)NI(xm,n)×
× (H(xm,n)−H(xI))wm,n

)
Nseg∑
m=1

(
Ngau∑
n=1

ny(xm,n)NI(xm,n)×
× (H(xm,n)−H(xI))wm,n

)
Nseg∑
m=1

(
Ngau∑
n=1

nx(xm,n)NI(xm,n)×
× (H(xm,n)−H(xI))wm,n

)



B̄b
I = 1

As
k



Nseg∑
m=1

(
Ngau∑
n=1

nx(xm,n)NI(xm,n)×
× (Φα(bfxm,n)− Φα(xI))wm,n

)
0

0
Nseg∑
m=1

(
Ngau∑
n=1

ny(xm,n)NI(xm,n)×
× (Φα(x)− Φα(xI))wm,n

)
Nseg∑
m=1

(
Ngau∑
n=1

ny(xm,n)NI(xm,n)×
× (Φα(xm,n)− Φα(xI))wm,n

)
Nseg∑
m=1

(
Ngau∑
n=1

nx(xm,n)NI(xm,n)×
× (Φα(xm,n)− Φα(xI))wm,n

)


(α = 1, 2, 3 and 4)

(7.6)
whereNseg is the number of segments of the boundary Γsk,Ngau is the number of Gauss
points used in each segment, wm,n is the corresponding Gauss weights, nx, ny are the
outward unit normal components to each segment on the smoothing domain boundary
and xm,n is the n-th Gaussian point on the m-th segment of the boundary Γsk.

7.2.2 Weak form and discrete equation
Find uh ∈ V, ∀δuh ∈ V0 such that∫

Ω

δ(ε̄(uh))TD(ε̄(uh)) dΩ−
∫
Ω

(δuh)Tb dΩ−
∫
Γ

(δuh)TtΓ dΓ = 0 (7.7)
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with V = {u | u ∈ H1(Ω\Γc), u = ū on Γu, u discontinuous on Γc}
and V0 = {δu | δu ∈ H1(Ω\Γc), δu = 0 on Γu, δu discontinuous on Γc}

Substituting the trial and test function into Equation (7.7), we finally obtain the
well-known equation:

K̄d̄ = f (7.8)

where f is the nodal force vector that is identical to that in the standard XFEM. The
smoothed enriched stiffness matrix K̄ for all sub-cells is computed by:

K̄IJ =
Ns∑
k=1

K̄s
IJ,k =

Ns∑
k=1



∫
Ωs

k

(B̄u
I )

T
DB̄

u
JdΩ

∫
Ωs

k

(B̄u
I )

T
DB̄

a
JdΩ

∫
Ωs

k

(B̄u
I )

T
DB̄

b
JdΩ∫

Ωs
k

(B̄a
I)

T
DB̄

u
JdΩ

∫
Ωs

k

(B̄a
I)

T
DB̄

a
JdΩ

∫
Ωs

k

(B̄a
I)

T
DB̄

b
JdΩ∫

Ωs
k

(B̄b
I)

T
DB̄

u
JdΩ

∫
Ωs

k

(B̄b
I)

T
DB̄

a
JdΩ

∫
Ωs

k

(B̄b
I)

T
DB̄

b
JdΩ


(7.9)

In NS-XFEM, the stiffness matrix in Equation (7.9) can therefore be rewritten as:

K̄IJ =
Ns∑
k=1

K̄s
IJ,k =

Ns∑
k=1

 (B̄u
I )

T
DB̄

u
JA

s
k (B̄u

I )
T
DB̄

a
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(7.10)

7.2.3 Numerical integration
7.2.3.1 Numerical integration for the XFEM.

There are four types of elements used for numerical integration as mentioned in (BRN+08):

• Tip elements contain the crack tip. All nodes belonging to a tip element are enriched
with the branch functions, Equation (2.39).

• Split elements are elements completely cut by the crack. Their nodes are enriched
with the step function, Equation (2.38).

• Tip-blending elements are elements neighboring tip elements. Some of their nodes
are enriched with branch functions, while others are not enriched at all.

• Split-blending elements are elements neighboring split elements. Some of their
nodes are enriched with the Heaviside function, while others are not enriched.

• Standard elements are elements that are in neither of the above categories. None of
their nodes are enriched.
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7.2 Nodal-based smoothed extended finite element method (NS-XFEM)

Since the approximation differs from element to element, different integration pa-
rameters are used. For XFEM built on T3 elements, we chose the following Gauss
quadrature rules as (BRN+08)

1. Tip elements: 7 Gauss points for each sub-element.

2. Split elements: 1 Gauss points for each sub-element.

3. Tip-blending elements: 7 Gauss points.

4. Split-blending elements: 1 Gauss point.

5. Standard elements: 1 Gauss point.

7.2.3.2 Numerical integration for the NS-XFEM.

There are five types of smoothing domains (sd) as shown in Figure 7.1:

• Tip smoothing domains contain a crack tip. All nodes are enriched with branch
functions.

• Split smoothing domains are completely cut by a crack surface, and their nodes are
enriched with the Heaviside function.

• In Tip-blending smoothing domains, one or more nodes are enriched with branch
functions, and others are not enriched at all.

• Split-blending smoothing domains contain step enriched nodes and not enriched
nodes

• Standard smoothing domains are smoothing domains that are in none of the above
categories. None of their nodes are enriched.

(i) Split smoothing domains: To perform Gauss integration for split smoothing do-
mains, it is inevitable to divide them into several triangles and then use the famil-
iar quadrature rules. However, the complex interior integration can be replaced
by boundary integration which can be implemented on polygonal boundaries of
sub-domains (BRN+08). One Gauss point on each boundary segment for split
smoothing domains is sufficient. The scheme of partitioning the split smoothing
domain is shown in Figure 7.2.

(ii) Split-blending smoothing domains: Partitioning of smoothing domains is not nec-
essary. One Gauss point on each boundary segment is sufficient.
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7.3 Numerical results

(iii) Tip smoothing domains: Special care has to be taken. Simply splitting the smooth-
ing domains into sub-domains is not sufficient to guarantee accurate results
(LPRS05a). A higher integration density should be used close to crack tip.
We propose the following procedure: (1) Splitting the smoothing domain into
triangles as shown in Figure 7.3; (2) Dividing triangle into nsc sub-cells (also
triangles) following the rules giving in Figure 7.4. Figure 7.3 shows the sub-
cells after dividing sub-sd1 and sub-sd3 with nsc = 3, e.g., sub-sd1 is split into
sc1, sc2 and sc3; and sub-sd3 is split into sc4, sc5 and sc6; (3) The numerical
integration is then performed on boundaries of triangular cells.

When we perform boundary integration along the crack face over sub-cells whose
boundary segments coincide with the crack surface, so-called c-sub-cells are
used as illustrated in Figure 7.3. For example two c-sub-cells that share a bound-
ary segment along the crack surface 79 are used (sc3 and sc6). Although the
values of discontinuous function, H(x), or branch functions, Φα(x) for both c-
sub-cells are the same, the displacement between two sides of crack has a jump
and it is obviously not compatible with the above calculations. A remedy for this
problem is proposed in which we calculate the values of the enrichment H(x)
and branch functions, Φα(x) at the center instead of Gauss points on the side of
this sub-cell.

Numerical experiments (CRL+10) suggest that eight smoothing cells in a smooth-
ing domain (nsc = 8), and five Gauss points on a segment of smoothing cells
(nsc = 5) are sufficient. This rule is also used in this paper.

(iv) Tip-blending smoothing domains: no partition is required, and we also use eight
smoothing cells in a smoothing domain with five Gauss points on each boundary
segment.

(v) Standard smoothing domains are computed as in NS-FEM.

7.2.4 Stress intensity factor
Fracture parameters such as mode I and mode II stress intensity factors (SIFs) are de-
termined using the domain form (LSN85, MS87) of the interaction integral (YWC80).
All the finite elements within a radius of rd = rkhe from the crack-tip are selected.
Here, he is the crack-tip element size and rk is a scalar.

171



7.3 Numerical results

Figure 7.2: Partitioning split smoothing domain into triangular sub-domains (trian-
gles).

Figure 7.3: Partitioning tip smoothing domain into triangular sub-domains (triangles).
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7.3 Numerical results

Figure 7.4: Division of a sub-smoothing domain into sub-smoothing cells (a) nsc = 1;
(b) nsc = 2; (c) nsc = 3; (d) nsc = 4; (e) nsc = 6; (f) nsc = 8.
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H
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 2
.0

σ = 1.0

a = 0.5

Figure 7.5: Plate with edge crack under tension.

7.3 Numerical results

7.3.1 Plate with edge-crack under tension
Consider a plate under uniaxial tension as shown in Figure 7.5. Plate’s dimension is
mm. The material parameters are Young’s modulus E = 3 × 107Pa and Poisson’s
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ratio ν = 0.3; plane strain conditions are assumed. The reference mode I SIF is given
by:

Kexact
I = F

(a
b

)
σ
√
aπ = 1.6118Pa

√
mm (7.11)

where a = 0.3 is the crack length, b is the plate width and F (a
b
) is given by

F
(a
b

)
= 1.12− 0.231

(a
b

)
+ 10.55

(a
b

)2

− 21.72
(a
b

)3

+ 30.39
(a
b

)4

(7.12)

The strain energy and the error in the energy norm are defined as:

E(Ω) =
1

2

∫
Ω

εTDεdΩ (7.13)

ee =

∣∣∣∣∣E
num
(Ω) − E

ref
(Ω)

Eref
(Ω)

∣∣∣∣∣
1/2

(7.14)

ek =

∣∣∣∣∣Knum
sif −K

ref
sif

Kref
sif

∣∣∣∣∣
1/2

× 100%, sif = I, II (7.15)

where the superscript ”ref” denotes the exact or reference solution, and ”num” denotes
the numerical solution.

We subsequently consider the following NS-XFEM formulations:

• NS-XFEM(4t) with Heaviside enrichment and tip enrichment Φ, Eq. (2.39).

• NS-XFEM(1t) with Heaviside enrichment and branch enrichment Φ =
√
r sin θ

2
(the

last three terms in Equation (2.39) are omitted (RZ07)).

• NS-XFEM(0t) with only Heaviside enrichment but without branch tip enrichment.

The results of the NS-XFEM are compared with those of the ES-XFEM (LCN+10)
and the XFEM-T3 (the ”standard” XFEM formulation) with full tip enrichment. Both,
ES-XFEM and XFEM-T3, employ the Heaviside enrichment and the full tip enrich-
ment of Equation (2.39). Figure 7.6 shows that the strain energy of NS-XFEM(4t) and
NS-XFEM(1t) models is closer to the reference value compared to the ES-XFEM. The
NS-XFEM(0t) results in an upper-bound solution. We note that the tip enriched NS-
XFEM formulations does not result in an upper bound solution. The convergence rates
in terms of the strain energy norm and SIF KI for different numerical methods are
depicted in Figure 8.7 and Figure 8.9. The NS-XFEM (4t) achieves super-convergent
results and is more accurate than both ES-XFEM and XFEM-T3. The NS-XFEM (1t)
almost produces the same results as the ES-XFEM.
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Figure 7.6: Strain energy for the plate with edge crack under tension.
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Figure 7.8: The convergence in the stress intensity factor KI vs. h (mesh size) for the
plate with edge crack under tension.

7.3.2 Plate with edge-crack under shear
In this example, we consider the edge crack geometry subjected to a shear load as
shown in Figure 7.9. The material parameters are Young’s modulus E = 3×107Pa and
Poisson’s ratio ν = 0.25. The exact stress intensity factors for this load case are given
(YWC80) by

KI = 34.0Pa
√
mm;KII = 4.55Pa

√
mm (7.16)

The results from Figure 7.10 to Figure 7.13 show that the NS-XFEM (1t) and NS-
XFEM (4t) results are more accurate than those of ES-XFEM and XFEM-T3. NS-
XFEM(4t) maintains superconvergent solutions and the NS-XFEM(0t) produces an
upper bound solution in the strain energy.

7.4 Conclusions
We presented a novel numerical method called NS-XFEM that combines NS-FEM and
XFEM for analysis of two-dimensional linear elastic fracture problems. Some bench-
marks examples were performed and we computed the convergence rate in terms of
strain energy and stress intensity factor. The results of NS-XFEM were then compared
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Figure 7.9: Plate with edge crack under shear.
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Figure 7.10: Strain energy for plate with edge crack under shear.

to those of ES-XFEM and the standard XFEM-T3. It was shown that the NS-XFEM
can produce superconvergent solutions. The present method also simplifies the integra-
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Figure 7.11: The convergence in the energy norm vs. h (mesh size) for plate with edge
crack under shear.

tion of discontinuous approximation by transforming interior integration into boundary
integration. More importantly, no derivatives of shape functions are needed to compute
the stiffness matrix. As a result, the integration of singular functions is avoided when
the Westergaard solution is inserted into the approximation.
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Chapter 8

A phantom-node method with
edge-based strain smoothing for linear
elastic fracture mechanics

8.1 Introduction
The extended finite element method (XFEM) (BB99) has become a standard tool to
model arbitrary crack growth. However, the implementation of XFEM in an existing
finite element code requires severe modifications. An alternative method to model arbi-
trary crack growth was proposed by (HH04), subsequently implemented by (MK05) in
a static setting and by (SAB06) in a dynamic setting. It was shown by (SAB06, AB05)
that the method proposed by (HH04) is identical to a step-enriched XFEM; (SAB06)
refer to this method as phantom node method. The main difference to the original
XFEM is that the discontinuity jump is not obtained by introducing additional un-
knowns but by so called overlapping paired elements. In other words, a new ’over-
lapped’ element is introduced to handle the crack kinematics when an underlying ele-
ment is cracked. It is accomplished by integrating these overlapped elements up to the
crack. Though it was shown by (SAB06) that the crack kinematics obtained with the
phantom node method is identical to the step enriched XFEM, it has some advantages
over step-enriched XFEM:

1. As no additional degrees of freedom are introduced, the implementation of the
phantom node method in an existing finite element code is simpler. For example,
arbitrary crack growths for non-linear materials and cohesive zone models even
for multiple cracks in two and three dimensions have already been implemented
in ABAQUS (SCL+10) while an additional plug-in (Duf11) is required to model
crack growth using XFEM.
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8.1 Introduction

2. No mixed terms (Kua and Kau) occur improving conditioning.

3. Standard mass lumping schemes can be used due to the absence of an enrich-
ment. There are several contributions to develop diagonalized mass matrices in
standard XFEM (MRM+06, MRM+08) but they are based on certain assump-
tions.

4. The development of complex FE-formulations is much easier due to the lack
of an enrichment. For example: When techniques such as EAS (Enhanced As-
sumed Strain) or ANS (Assumed Natural Strain) are used, special attention is
required in a standard XFEM-formulation, particularly for problems with con-
straints. Those difficulties do not occur in the phantom node method (CZL+12).

The key drawback of the phantom node method compared to standard XFEM is its
lower flexibility. It was developed for problems involving crack growth ’only’. How-
ever, avoiding a crack tip enrichment significantly facilitates the enrichment strategy
and the crack tracking algorithm:

• A crack tip enrichment introduces more additional unknowns. It is well known
that a topological enrichment is needed for accuracy reasons (LPRS05b) lead-
ing to a substantial increase of additional unknowns (compared to ’pure’ step-
enriched formulations) and increasing difficulties due to increasing the condition
number.

• The non-polynomial (and singular) crack-tip enrichment complicates integration
(BMMB05, VGB09, GWB08, BRN+08) and requires special attention (blend-
ing).

• The enrichment strategy and the crack growth algorithms are complicated, in
particular in 3D.

Modeling crack growth with the phantom node method on the other hand is quite
simple. Commonly, plane crack segments are introduced through the entire element
though crack tip elements were developed (RZGW08) that allow cracks to close inside
an element.

Recently, Liu et al. constructed a new class of finite element methods based on
strain smoothing. Among those methods, the so-called ES-FEM (Edge-based Smoothed
Finite Element Method) has been proven to be the most efficient and accurate one. In
numerous application (LDN07, LNDL07, NRNB08), it was shown that particularly
low-order SFEM-formulations are superior in terms of efficiency and accuracy over
’standard’ low-order finite element formulations. In particular, it was shown for many
applications (BN10, BRN+08) that results obtained by triangular ES-FEM elements
are of the same accuracy as standard Q4-elements.
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8.2 Edge-based strain smoothing phantom node method

Therefore, we propose to couple the ES-FEM with the phantom node method. We
name the new element edge-based phantom node method (ES-Phantom node). In this
manuscript, we focus on two-dimensional problems in linear elastic fracture mechanics
(LEFM). However, our long term goal is to model fracture in non-linear materials
in 3D. Numerical results show high reliability of the present method for analysis of
fracture problems.

This chapter is organized as follows. The combination between the phantom-node
method and the ES-FEM is elaborated in Section 2. Section 3 presents the integration
technique. Benchmark numerical problems taken from linear elastic fracture mechan-
ics are studied in Section 4. Finally, we give some concluding remarks.

8.2 Edge-based strain smoothing phantom node method

8.2.1 Displacement and strain field
The approximation of the displacement field is written similarly to Equation (2.40)

uh (x) =
∑

I∈Ses−pht
1

u1
INI (x)︸ ︷︷ ︸

u1(x)

H (f(x)) +
∑

I∈Ses−pht
2

u2
INI (x)︸ ︷︷ ︸

u2(x)

H (−f(x)) (8.1)

where Ses−pht1 and Ses−pht2 are nodes associated with smoothing domains 1 and 2, re-
spectively, consisting of real nodes and phantom nodes illustrated in Figures 8.1 and
8.2. The associated nodes of the inner smoothing domain Ω(k) (DEFG) and boundary
smoothing domain Ω(m) (ABC) are shown in Figure 2.14.

The connectivities of these superimposed smoothing domains which are cracked
completely and the corresponding active parts are shown in Figure 8.1
nodes of smoothing domain 1 (Ω(k)

1 ) =
[
1, 2, 3̃, 4̃

]
nodes of smoothing domain 2 (Ω(k)

2 ) =
[
1̃, 2̃, 3, 4

]
The connectivity of a superimposed smoothing domain containing the crack tip and

the corresponding active parts is shown in Figure 8.2 so that crack tip is guaranteed to
locate on the element’s edge.
nodes of smoothing domain 1 (Ω(k)

1 ) = [1, 2, 4]

nodes of smoothing domain 2 (Ω(k)
2 ) =

[
1̃, 2, 4,

]
Numerical integration is implemented on chosen Gauss points as illustrated in Fig-

ures 8.3 and 8.4 corresponding with split smoothing domain in Figure 8.1 and tip
smoothing domain in Figure 8.2, respectively.
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Figure 8.1: The decomposition of a completely cracked smoothing domain into two
superimposed smoothing domains.

Figure 8.2: The decomposition of a cracked smoothing domain containing crack tip
into two superimposed smoothing domains.
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Figure 8.3: The decomposition of a completely cracked smoothing domain into two
superimposed smoothing domains.

Figure 8.4: The decomposition of a cracked smoothing domain containing crack tip
into two superimposed smoothing domains.
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Using the strain smoothing operation, the smoothed strain associated with edge k
created from the displacement approximation in Equation (8.1) can be rewritten as:

ε̄k =
∑

I∈Ses−pht
1

B̄I(xk)u1
I︸ ︷︷ ︸

ε̄1(x)

H (−f(x)) +
∑

I∈Ses−pht
2

B̄I(xk)u2
I︸ ︷︷ ︸

ε̄2(x)

H (f(x)) (8.2)

where B̄I(xk) is the smoothed strain gradient matrix for the standard ES-FEM part.
Those matrices write as follows

B̄I (xk) =

 b̄Ix(xk) 0
0 b̄Iy(xk)

b̄Iy(xk) b̄Ix(xk)

 (8.3)

In Equation (8.3), b̄Ih(xk), h ∈ x, y is computed by:

b̄Ih(xk) =
1

Ask

∫
Γs
k

nh(x)Ni(x)H ((−1)ef(x)) dΓ (8.4)

Using Gauss-Legendre integration along the segments of boundary Γsk, we have:

b̄Ih =
1

Ask

Nseg∑
m=1

[
Ngauss∑
n=1

wm,nNi(xm,n)H ((−1)ef(xm,n))nh(xm,n)

]
(8.5)

where Nseg is the number of segments of the boundary Γsk, Ngauss is the number of
Gauss points used along each segment, wm,n are the corresponding Gauss weights,
xm,n is the n-th Gaussian point on the m-th segment of the boundary Γsk, whose outward
unit normal is denoted nh, and the subscript ”e” is either 1 or 2 as shown in Figure 8.1
and the superscript ”e” indicates a domain restriction to element e.

The stiffness matrix K̄ associated with a smoothing domain is assembled by a sim-
ilar process as in the FEM:

K̄IJ =
Ns∑
k=1

K̄s
IJ,k =

Ns∑
k=1

∫
Ωs

k

(B̄u
I )

T
DB̄

u
JdΩ (8.6)

All entries in matrix B̄I in Equation (8.3) with triangular meshes are constants over
each smoothing domain; the stiffness matrix in Equation (8.6) is therefore calculated
by:

K̄IJ =
Ns∑
k=1

K̄s
IJ,k =

Ns∑
k=1

(B̄u
I )

T
DB̄

u
JA

s
k (8.7)
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8.2.2 Weak formulation and discretized equation
We return to the two dimensional body in Figure 2.10. Since the smoothed strain
over smoothing domains is variationally consistent as proven in (Liu09) and used by
(CRL+10, VBNXC+11), the assumed displacement uh and the smoothed strains ε̄
satisfies the ”smoothed” Galerkin weak form: Find uh ∈ V, ∀δuh ∈ V0 such that∫

Ω

δ(ε̄(uh))TD(ε̄(uh)) dΩ−
∫
Ω

(δuh)Tb dΩ−
∫
Γ

(δuh)TtΓ dΓ = 0 (8.8)

with V = {u | u ∈ H1(Ω\Γc), u = ū on Γu, u discontinuous on Γc}
and V0 = {δu | δu ∈ H1(Ω\Γc), δu = 0 on Γu, δu discontinuous on Γc}

Substituting the trial and test functions into Equation (8.8), we finally obtain the
familiar equation:

K̄d̄ = f (8.9)

where f is the nodal force vector that is identical to that in the standard Phantom-node.
The edge-based smoothed stiffness matrix K̄ for all sub-cells follows Equation (8.7).

The smoothed stress σ̄h is obtained in the same way from the ε̄h in FEM, which is
constant over a smoothing cell. In particular, for linear elastic problems, σ̄h = Dε̄h is
calculated on the level of the smoothing cell.

8.2.3 Crack growth and stress intensity factor
Fracture parameters such as mode I and mode II stress intensity factors (SIFs) are de-
termined using the domain form (LSN85, MS87) of the interaction integral (YWC80).
All the finite elements within a radius of rd = rkhe from the crack-tip are used. Herein,
he is the crack-tip element size and rk is a scalar.

In this chapter, crack growth is governed by the maximum hoop stress criterion
(ES63, MB10), which assumes that the crack will propagate from its tip in the direc-
tion θc, where the circumferential (hoop) stress σθθ is maximum. The angle of crack
propagation satisfies the following equation:

KI sin(θc) +KII (3 cos(θc)− 1) = 0 (8.10)

Solving this equation, we have

θc = 2 arctan

 −2
(
KII

KI

)
1 +

√
1 + 8

(
KII

KI

)2

 (8.11)

Once KI and KII are known, Equation (8.11) may be used to compute the direction of
propagation.
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8.3 Numerical examples
In all numerical examples, we are not using near-tip enrichment, i.e only discontinuous
enrichment is used. This means that the best convergence rate attainable is 1/2 in the
H1 norm and 1 in the L2 norm (O(h1/2) and O(h), respectively, where h is the mesh
size).

8.3.1 Sheet with an edge-crack under uniaxial tension

b = 1.0

H
 =

 2
.0

σ = 1.0

a = 0.5

Figure 8.5: Sheet with edge crack under tension.

Consider a sheet under uniaxial tension as shown in Figure 8.5. The dimensions
of sheet are in unit of [mm]. The material parameters are Young’s modulus E =
3 × 107Pa, Poisson’s ratio ν = 0.3. The plane strain condition is assumed. The
reference mode I SIF is given by:

Kexact
I = F

(a
b

)
σ
√
aπ = 1.6118Pa

√
mm (8.12)

where a = 0.5 is the crack length, b is the sheet width and F (a
b
) is given by

F
(a
b

)
= 1.12− 0.231

(a
b

)
+ 10.55

(a
b

)2

− 21.72
(a
b

)3

+ 30.39
(a
b

)4

(8.13)
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The strain energy and the error in the energy norm are defined as:

E(Ω) =
1

2

∫
Ω

εTDεdΩ (8.14)

ee =

∣∣∣∣∣E
num
(Ω) − Eref

(Ω)

Eref
(Ω)

∣∣∣∣∣
1/2

(8.15)

ek =

∣∣∣∣Knum
sif −K ref

sif

K ref
sif

∣∣∣∣1/2 × 100%, sif = I, II (8.16)

where the superscript ”ref” denotes the exact or reference solution, and ”num” denotes
the numerical solution.
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Figure 8.6: Strain energy for the sheet with edge crack under tension.

The results of the ES-Phantom node are compared with those of the standard
Phantom-node using triangular meshes and the XFEM-T3(0t) (the ”standard” XFEM
formulation without tip enrichment that only employs the Heaviside enrichment of
Equation (2.41)). Figure 8.6 shows that the strain energy of the ES-Phantom node
method is more accurate than both the original Phantom-node and the XFEM-T3(0t).
The convergence rates in terms of the strain energy and the stress intensity factorKI are
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Figure 8.7: The convergence in the energy norm vs. h (mesh size) for the sheet with
an edge crack under tension.

−1.7 −1.6 −1.5 −1.4 −1.3 −1.2 −1.1 −1
−2.2

−2.15

−2.1

−2.05

−2

−1.95

−1.9

−1.85

−1.8

Log
10

(h)

L
o

g
1
0
(e

e
)

 

 

XFEM R=0.55

Figure 8.8: The convergence in the energy norm of XFEM vs. h (mesh size) for the
sheet with an edge crack under tension.
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Figure 8.9: The convergence in the stress intensity factor KI vs. h (mesh size) for the
sheet with edge crack under tension.
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Figure 8.10: The convergence in the stress intensity factor KI of XFEM vs. h (mesh
size) for the sheet with edge crack under tension.
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depicted in Figures 8.7 and 8.9, respectively. Furthermore, Phantom-node using trian-
gular meshes (Phantom-T3) is superior to XFEM-T3(0t) although they are equivalent
to each other. We also have included two more figures comparing the phantom-node
method to the tip-enriched XFEM in Figures 8.8 and 8.10 as a reference, although it
would not be fair to compare a method that includes the asymptotic crack tip enrich-
ment to a method that models the crack in a much simpler way.

Note that the proposed method leads to a similar convergence rate to the standard
XFEM and standard phantom-node, which is close to optimal (1/2) given the lack of
tip enrichment. Also note that the error level of the proposed method is a fifth of an
order of magnitude lower than the method compared with.

The computational efficiency in terms of the error in the energy norm and the rela-
tive error ofKI versus computation time (s) is compared for the ES-Phantom, the stan-
dard Phantom and the XFEM-T3 (0t). The results are plotted in Figure 8.11 and Figure
8.12, respectively. It is clear that the present method always produces higher compu-
tational efficiency, i.e., accuracy to computational time ratio, compared to the other
methods. The accuracy of the present method is approximate (1) ES−Phantom10−1.88

Phantom10−1.93 =

1.12 times as much as that of the standard Phantom, ES−Phantom10−1.88

XFEM−T3(0t)10−2.01 = 1.34 times

of the XFEM-T3(0t) in term of error in energy norm; (2) ES−Phantom10−0.48

Phantom10−0.58 = 1.26

times as much as that of the standard Phantom and ES−Phantom10−0.48

XFEM−T3(0t)10−0.58 = 1.62 times
of the XFEM-T3(0t) in term of relative error for KI .

8.3.2 Sheet with edge-crack under shear
In this example, we consider the edge crack geometry subjected to a shear load as
shown in Figure 8.13. The material parameters are Young’s modulus E = 3 × 107Pa
and Poisson’s ratio ν = 0.25. The exact stress intensity factors for this load case are
given by (YWC80)

KI = 34.0Pa
√
mm;KII = 4.55Pa

√
mm (8.17)

The results from Figure 8.14 to Figure 8.19 show that ES-Phantom node results are
more accurate than both those of the standard Phantom-node and the XFEM-T3(0t).
ES-Phantom node maintains slight superconvergent solutions in the strain energy. Fur-
thermore, Phantom-node using triangular meshes (Phantom-T3) is superior to XFEM-
T3(0t) although they are equivalent to each other with respect to the convergence in
energy norm and the stress intensity factor KI . Figure 8.16, Figure 8.18 and Figure
8.20 again are shown as a reference for readers.
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Figure 8.13: Sheet with edge crack under shear.
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Figure 8.14: Strain energy for a sheet with an edge crack under shear.
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Figure 8.15: The convergence in the energy norm vs. h (mesh size) for a sheet with an
edge crack under shear.
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Figure 8.16: The convergence in the energy norm of XFEM vs. h (mesh size) for a
sheet with an edge crack under shear.
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Figure 8.17: The convergence in the stress intensity factor KI vs. h (mesh size) for a
sheet with an edge crack under shear.
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Figure 8.18: The convergence in the stress intensity factor KI of XFEM vs. h (mesh
size) for a sheet with an edge crack under shear.
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Figure 8.19: The convergence in the stress intensity factor KII vs. h (mesh size) for
sheet with edge crack under shear.
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Figure 8.20: The convergence in the stress intensity factor KII of XFEM vs. h (mesh
size) for sheet with edge crack under shear.
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Figure 8.21: Double cantilever beam with an edge crack.

8.3.3 Crack growth simulation in a double cantilever beam
In this section, the ES-Phantom node with structured and unstructured meshes is used
for crack growth simulation. The dimensions of the double cantilever beam Figure
8.21 are 6mm × 2mm and an initial pre-crack with length a = 2mm is considered.
Plane stress conditions are assumed with Young’s modulus, E = 100MPa as well as
the Poisson ratio, ν = 3, and the load P is taken to be unity. By symmetry, a crack on
the mid-plane of the cantilever beam is dominated by pure mode I and the crack would
propagate in a straight line. We also have included simulations with a ’distorted’ mesh
and show that the crack path does not change.

The crack growth increment, ∆ a , is taken so that the tip is always located at
an element’s edge and the crack growth is simulated for 10 steps. The domain is
discretized with a structured and unstructured mesh of 2730 nodes. The crack path is
simulated using both the proposed ES-Phantom node method and XFEM-T3(0t), and
Figure 8.22 and Figure 8.23 show the deformed shape of the double cantilever beam
with the magnification factor of 25 × 104 used to enable a clear description and the
evolution of the crack path. The result shows that the crack path for an initial angle
θc = 0 agrees with the published results (BB99).

Distribution of the stress components σxx and σyy for and unstructured mesh are
shown in Figure 8.24 and Figure 8.25, respectively.
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Figure 8.22: (a) Deformed shape of the double cantilever beam (structured mesh) and
(b) Crack path simulated by ES-Phantom node method (structured mesh) after ten-step
growing in which the filled circles are the new crack tip after each step.
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Figure 8.23: (a) Deformed shape of the double cantilever beam (unstructured mesh)
and (b) Crack path simulated by ES-Phantom node method (unstructured mesh) after
ten-step growing in which the filled circles are the new crack tip after each step.
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(a)

(b)

Figure 8.24: Stress (a) σxx and (b) σyy contours in the sheet (structured mesh) after the
crack propagates.
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(a)

(b)

Figure 8.25: Stress (a) σxx and (b) σyy contours in the sheet (unstructured mesh) after
the crack propagates.
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8.4 Conclusions
A numerical Phantom-node method for analysis of two-linear elastic fracture prob-
lems was developed in framework of the ES-FEM to create the novel ES-Phantom
node method. In this method, a cracked element is replaced by two superimposed ele-
ments and a set of additional phantom nodes. The two first examples were performed
to investigate convergence rate in terms of strain energy and stress intensity factors.
The results have shown that the ES-Phantom node is able to produce superconvergent
solutions. Meanwhile, the last example has demonstrated the capability of the method
to deal with the growing crack.
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Chapter 9

Conclusions

9.1 Summary of achievements
This study proposes computational models at four length scales (nano-, micro-, meso-,
macro-scales) and hierarchical upscaling approaches to predict the mechanical proper-
ties of PE and PNCs in dependent of fine scale features. This work is the first frame-
work for uncertainty quantification (UQ) applied to quantify the key parameters asso-
ciated with corresponding scale influencing on the macroscopic mechanical properties
of PNCs was also presented. The results were verified and validated and they show
agreement with previous simulations and experimental results.

All global SA methods predict the same effect of the input on the output.
The probability distribution of mechanical properties are characterized by using the

probability plot method. Particularly, the Young’s modulus of the PE is best character-
ized by the Weibull distribution while the Young’s modulus of the PCNs is best fitted
by the Log-normal distribution. Furthermore, the upper and lower bounds according
to 95 % PIs were determined.

The surrogate models are robust as they can be constructed from a limited amount
of available data. For the sake of simplicity, polynomial regression is sufficient to be
used as the obtained coefficient of determination≥ 0.8. However, with respect to com-
plex mechanical models which the linear and quadratic regression fail to approximate
(R2 < 0.8), the MLS, Hybrid, Kriging and penalized spline regression models could
be used.

At nano-scale, the most influential parameter on the yield stress and the Young’s
modulus of the polyethelene (PE) is the temperature, followed by the strain rate. While
the strain rate affects the yield stress, it barely influences the Young’s modulus. The
latter effect is best predicted by the variance-based methods while the partial deriva-
tives and the elementary-effects method slightly overpredict this influence. The key
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parameter influencing on the interfacial shear stress (ISS) of the PNCs is the SWCNT
radius, followed by the temperature.

The key parameter influencing on the Young’s modulus of the PNCs is the single-
walled nanotube (SWNT) volume fraction at macro-scale followed by the SWNT cur-
vature at meso-scale and the SWNT length at micro-scale, respectively. Meanwhile,
SWNT curvature is the most significant parameter for the Poisson’s ratio of the PNCs
followed by the volume fraction and the SWNT length, respectively. The effect of
the correlated input parameters (i.e. the SWNT length, the SWNT curvature) on the
mechanical properties has been quantified. The effects of SWNT length, SWNT curva-
ture on either Young’s modulus or Poisson’s ratio come from their mutual correlation
rather than from themselves. The agglomeration parameters at meso-scale do not have
a significant effect on the Young’s modulus and Poisson’s ratio.

The Young’s modulus of exfoliated PCNs at meso-scale is governed by the stiffness
of the polymer matrix. For examples studied, it seems that the most robust methods
are the FAST and EFAST. The FAST approach, which allows all first-order indices to
be computed from the single curve, requires a small number of model evaluations such
that the first-order indices can also be directly estimated on the mechanical model.

With respect to the matrix combination method and the its improved formulas, a
large number of model evaluations were required to compute the sensitivity indices as
a price paid to capture the total-effect indices.

For both NS-XFEM and ES-Phantom node methods, no derivatives of shape func-
tions are needed to compute the stiffness matrix by transforming interior integra-
tion into boundary integration. Consequently, the integration of singular functions
is avoided. Furthermore, both methods can produce superconvergent solutions.

9.2 Future works
In the future, we aim to develop the work to the PNCs considering cohesive zone model
at micro-scale in which both bulk properties of the polymer matrix and the interfacial
properties (cohesive parameters) of the fibers and the polymer matrix can be extracted
from our MD simulations. Then, a unified framework for the model selection will be
developed. Graph theory could be employed to quantitatively assess the model quality
and also the quality of those coupled partial models on different scales. Figure 9.1
illustrates partial models at different scales and a combination of partial models with
different model qualities (e.g. M̂1, M̂2, M̃1, M̃2, ...) and sensitivity indices (ST i). At
nano-scale, M̂1 is the united atom model while M̂1 could be full atomistic model at
nano-scale. At micro-scale, M̃1 is the current model (the CNTs are perfectly bonded to
the polymer matrix) and M̃2 considers the polymer/CNT interface described by cohe-
sive zone model, etc. The influence of model choice on the uncertainty of the predicted
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mechanical properties and the quality of a combination of coupled partial models could
be quantitatively estimated. The quantified result allows us to select the optimal model
with the best compromise between model input and the model uncertainty.
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Figure 9.1: Model selection based on graph theory and sensitivity analysis.
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