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Abstract

The key objective of this research is to study fracture with a meshfree method, local
maximum entropy approximations, and model fracture in thin shell structures with
complex geometry and topology. This topic is of high relevance for real-world appli-
cations, for example in the automotive industry and in aerospace engineering. The
shell structure can be described efficiently by meshless methods which are capable of
describing complex shapes as a collection of points instead of a structured mesh. In
order to find the appropriate numerical method to achieve this goal, the first part
of the work was development of a method based on local maximum entropy (LME)
shape functions together with enrichment functions used in partition of unity methods
to discretize problems in linear elastic fracture mechanics. We obtain improved accu-
racy relative to the standard extended finite element method (XFEM) at a comparable
computational cost. In addition, we keep the advantages of the LME shape functions,
such as smoothness and non-negativity. We show numerically that optimal convergence
(same as in FEM) for energy norm and stress intensity factors can be obtained through
the use of geometric (fixed area) enrichment with no special treatment of the nodes
near the crack such as blending or shifting.

As extension of this method to three dimensional problems and complex thin shell
structures with arbitrary crack growth is cumbersome, we developed a phase field
model for fracture using LME. Phase field models provide a powerful tool to tackle
moving interface problems, and have been extensively used in physics and materials
science. Phase methods are gaining popularity in a wide set of applications in ap-
plied science and engineering, recently a second order phase field approximation for
brittle fracture has gathered significant interest in computational fracture such that
sharp cracks discontinuities are modeled by a diffusive crack. By minimizing the sys-
tem energy with respect to the mechanical displacements and the phase-field, subject
to an irreversibility condition to avoid crack healing, this model can describe crack
nucleation, propagation, branching and merging. One of the main advantages of the
phase field modeling of fractures is the unified treatment of the interfacial tracking and
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mechanics, which potentially leads to simple, robust, scalable computer codes appli-
cable to complex systems. In other words, this approximation reduces considerably
the implementation complexity because the numerical tracking of the fracture is not
needed, at the expense of a high computational cost. We present a fourth-order phase
field model for fracture based on local maximum entropy (LME) approximations. The
higher order continuity of the meshfree LME approximation allows to directly solve
the fourth-order phase field equations without splitting the fourth-order differential
equation into two second order differential equations. Notably, in contrast to previous
discretizations that use at least a quadratic basis, only linear completeness is needed in
the LME approximation. We show that the crack surface can be captured more accu-
rately in the fourth-order model than the second-order model. Furthermore, less nodes
are needed for the fourth-order model to resolve the crack path. Finally, we demon-
strate the performance of the proposed meshfree fourth order phase-field formulation
for 5 representative numerical examples. Computational results will be compared to
analytical solutions within linear elastic fracture mechanics and experimental data for
three-dimensional crack propagation.

In the last part of this research, we present a phase-field model for fracture in
Kirchoff-Love thin shells using the local maximum-entropy (LME) meshfree method.
Since the crack is a natural outcome of the analysis it does not require an explicit
representation and tracking, which is advantage over techniques as the extended finite
element method that requires tracking of the crack paths. The geometric description
of the shell is based on statistical learning techniques that allow dealing with general
point set surfaces avoiding a global parametrization, which can be applied to tackle
surfaces of complex geometry and topology. We show the flexibility and robustness of
the present methodology for two examples: plate in tension and a set of open connected
pipes.
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Chapter 1

Introduction

1.1 Background and motivation

The modeling of fracture is of major importance in engineering applications such as
aircraft fuselages, pressure vessels, automobile components, and castings. The progress
in this field and the ability to prevent material failure have helped control the dangers
caused by increasing technological complexity. According to report given in [4], the cost
of fracture-related damage in the United States estimated at over 100 billion dollars per
year. It seems reasonable that this amount could be reduced by advances in fracture
mechanics research. Clearly, the damage due to fracture in manufactured components
is a significant economic problem. The first step in reducing the costs associated with
this phenomenon is understanding it. The study of fracture mechanics is an endeavor
that uses concepts from engineering, physics, materials science and statistics to answer
some of the following questions:

• Given a particular structure or component, what load conditions and over what
period of time can be supported before fracture-related damage occurs?

• In which parts of the structure or the component are cracks more likely to appear
and in what direction will they propagate?

• What is the number and size of pre-existing fractures, or fracture-related flaws,
at which the structure or component will still be able to operate safely (at least for a
specific amount of time)?

The last question in particular is the most important and perhaps also the most
surprising. Virtually all materials have flaws that are introduced in the manufacturing
process. Over time these flaws become microcracks, which can combine and propagate
to become macrocracks that can endanger the safety of the structure or equipment.
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Being able to differentiate between an airplane component that is fractured but still
able to operate safely and one that is not, can make the difference between a routine
flight and a catastrophe.

1.2 Discrete fracture models

A theoretical model for brittle fracture in solids was introduced by Griffith [5] and Ir-
win [6], which relates crack nucleation and propagation to a critical value of the energy
release rate. During the last few decades the numerical simulation of such process has
gained importance and often plays a key role in design decisions [4, 7, 8]. This has
been mainly motivated by the impossibility to have analytical solutions in most prac-
tical situations and the costs of obtaining meaningful and detailed information from
experiments. Numerical methods, such as the finite element method have been used
to model fracture with some success, but often they are unable to capture some phys-
ical properties of the phenomenon. Modeling of moving discontinuities with classical
finite elements is difficult to automate because of the requirement that the mesh must
conform to the surfaces of discontinuity. It also usually requires local refinement near
the fracture zone, in particular near the crack tips where singularities in the stress field
occur [9–12].

An attractive approach to overcome these difficulties has been presented by the ex-
tended finite element method (XFEM) [13, 14] or the generalized finite element method
(GFEM) [15]. These methods allow the approximation of arbitrary discontinuities or
singularities by incorporating them in the approximation field through enrichments.
This uses the fact that standard shape functions must form a partition of unity, which
is then used to patch together the local approximation spaces [16]. This allows the
modeling of different features of the solution (including discontinuities and boundary
layers) without remeshing, by simply incorporating the information about the character
of the solution in the approximation space. Moreover, the quality of the approxima-
tion is often also improved with a comparatively lower number of degrees of freedom.
For example, crack-tip singularities can be expressed in the approximation space in
terms of the branch functions, which provide an optimal representation [13, 14]. Other
computational physics problems have been modeled by the use of XFEM [17–24], and
open-source codes have been developed [25]. Moreover, the algorithmic implementa-
tion and numerical efficiency aspects of this method have been extensively studied [26].
Due to its relative robustness and efficiency, XFEM is also used in industrial applica-
tions [27, 28] and has been implemented in commercial numerical simulation software
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[29–31].
There is in particular a growing interest in modeling fracture mechanics with enrich-

ment functions combined with meshless methods [32–34], or isogeometric analysis [35].
Advantages of the resulting methods include the possibility to model exactly curved
boundaries through higher order shape functions. The resulting basis functions also
have higher continuity, which is particularly advantageous when the physical model
problem requires higher continuity, such as the Kirchhoff-Love theory. Also in some
enriched meshless methods, no explicit representation of the crack’s topology is needed
as this is handled through cracking particles as in [36] or weight-function enrichments
as in [37, 38]. The cracking particles method introduces crack segments through the
entire domain of influence of cracked nodes. They do not require any representation of
the crack surface and crack branching and crack coalescence is a natural outcome of
the simulation. However, the crack kinematics is not as accurate as in XFEM.

In all of these methods, a discontinuity is incorporated in the displacement field
or geometry either through the mesh or through the approximation space. One key
challenge of such methods is describing the crack geometry and tracking the paths of the
cracks as the fracture progresses. This becomes increasingly challenging for complex
structures and domain geometries. In general these numerical approximations track the
evolution of the fracture during the simulations but they have shown to be inefficient
regarding, for example, crack branching in three dimensional applications. Moreover,
ill-conditioned systems are obtained due to addition of extra degrees of freedom into
the displacement field. Although, some preconditioning methods have been introduced
to alleviate this issue [39, 40], the computational cost of these methods is quite high.

1.3 Continuous fracture models

Besides the discrete models that has been gaining popularity over the last decade, con-
tinuous descriptions of fracture in solids have been recently presented which are based
on an energy approach of fracture, such as continuum damage models [41, 42] and
variational regularized model of Griffith’s fracture [43]. In these approaches, disconti-
nuities are not introduced into the displacement field. Therefore, special treatment of
cracks tip singularities, such as computing the stress intensity factors for predicting the
crack path, are not needed. These methods do not require a representation of the crack
surface which reduces complexity. Phase-field approaches for fracture [43] are such an
alternative to the above mentioned discrete crack methods, as they do not require an
explicit representation of the crack surface or separate crack tracking algorithms. The
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crack surface is obtained as part of the solution and it is represented by an indicator
function that is equal to 0 on the crack surface and 1 away from the fracture zone. In
recent years, phase-field methods are widely used in science and engineering to model
a variety of physics problems [44–47]. The predecessors of phase-field approaches to
fracture can be traced back to 1998 in [48, 49], where the brittle crack propagation
problem was regularized and recast as a minimization problem. In this model, the
proposed energy functional is closely similar to the potential functional presented by
Mumford and Shah [50], which has been used in image segmentation. The existence
of solution to the Mumford-Shah functional minimization was proven by Ambrosio
in [51]. In [52], an approximation by an elliptic functional defined on Sobolev spaces
was developed, based on the theory of Γ-convergence. Later on, Bourdin introduced
image segmentation based on a finite element method in [53].

In the phase-field approach a continuous field governed by a partial differential equa-
tion is used to model the cracks and their evolution. No evaluation of the stress intensity
factors is necessary and this method naturally deals with complex crack geometries.
Its main drawback is higher computational cost of solving a coupled PDE system. In
this method, the crack zone is controlled by a regularization parameter. As this reg-
ularization parameter converges to zero, the phase field model converges to a discrete
crack model.

Of particular importance to the modeling of practical engineering problems are thin
shell formulations. Despite the advances made in simulating fracture for solids [54, 55],
fracture in shell structures such as in an entire wing of an aircraft – remains a challenge
due to the complex relation between the cracks and the shell kinematics and geometry.
Because the physical dimension is reduced (i.e. from 3D to 2D), the computational
resources are drastically reduced. Thin shell models are used in the design of new cars
and aircraft in impact simulations. Non-propagating cracks in plates and shells have
been modeled with partition- of-unity methods [56–58], but these approaches have been
restricted to simple geometries. The majority of the formulations are based on Mindlin-
Reissner theory [59]. There are comparatively fewer methods considering fracture in
thin shells [60]. In [61–63], some meshfree thin shell models for static and dynamic
fracture were presented. Furthermore, many of the approaches are applied to simple
geometries such as plates, or spherical and cylindrical geometries [64–67]. Recently,
nonlinear manifold learning techniques have been used to parametrize 2D sub-domains
of a point-set surface, which are then used as parametric patches and joined together
with a partition of unity. This method is able to model shells with complex geometry
and topology structures [3, 68]. In [69], a shell element based on discrete Kirchhoff
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theory was proposed assuming through-the-thickness cracks. Later, a shell model with
the phantom node method based on edge rotations was proposed [66] for both thin and
thick shells, where the crack tip can be located inside an element. A method based
on subdivision shell elements and modeling the fracture along the element edges with
a cohesive law was proposed in [70]. Most of above methods are based on discrete
crack models that require explicitly tracking the crack path. Towards a more general,
flexible and robust methodology to deal with fracture in Kirchhoff-Love shells, we
propose modeling fracture with a phase-field model and discretizing the coupled thin-
shell/phase-field equations with a meshfree method developed recently for manifolds
of complex geometry and topology [3, 68].

1.4 Local Maximum Entropy (LME) approximants

The main objective of this thesis is to study fracture with local maximum entropy
approximations and model fracture in thin shell structures with complex geometry and
topology. In order to achieve this goal, in the first part of this dissertation, we study
numerical methods to model discrete fracture in solid. We propose a coupling of the
LME shape functions with the extrinsic enrichments used in partition of unity enriched
methods for fracture, such as the extended finite element method (XFEM), see [62, 71,
72]. The LME shape functions are based on the principle of maximum entropy, which
gives them optimal properties with respect to the uncertainty in the approximation.
They are also very smooth (C∞ - continuous), non-negative, which improves stability,
and they possess a weak Kronecker delta property which makes it easy to impose the
boundary conditions. With a fixed area (geometric) enrichment, optimal convergence is
obtained. The LME basis functions are in general not polynomials but rather particle-
based smooth functions, whose support is dictated by a non-dimensional parameter γ.
When γ takes on large values, the LME shape functions asymptotically approach the
FEM shape function (while maintaining (C∞ - continuity). On the other hand, when γ
decreases, the LME shape functions have better approximation properties compared to
standard FEM shape functions, but the size of their support increases. Hence, accurate
numerical integration using standard Gauss quadrature requires a greater number of
function evaluations. We observed that there is an optimal value of γ of around 1.8
that maximizes the accuracy in relation to computational cost. Moreover, this method
is more accurate than standard XFEM and does not require the so-called blending
elements (the elements near the crack tip). When compared to usual meshfree methods
for crack propagation, such as Element Free Galerkin (EFG), the method presented
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here, which satisfies the weak kronecker delta property, can more easily deal with
essential boundary conditions. Moreover, smooth and non-negative basis functions,
such as those in isogeometric analysis or LME approximations are gaining importance
in recent research. We also, studied phase field models for the solid structures. This
approach offers new perspectives for creating theoretical and computational models
that can deal with complex fracture patterns. The discrete crack methods, such as
XLME, seem less efficient in 3D applications with complex crack branching. All of the
discrete crack methods need a considerable amount of additional algorithmic structure
in these cases. Conversely, phase field method can be implemented in a straightforward
manner to model complex crack branching. Furthermore, for the phase field method
the extension of 2D algorithmic to 3D is straightforward. Complex crack patterns
in 3D can be modeled without significant changes in the algorithmic structure for
sufficiently fine mesh resolutions. We also developed a higher-order phase field model
for fracture. The reason is that a second order phase field model is not as accurate
as previously considered methods for modelling fracture. A higher-order phase field
can take advantage of the increased regularity of the LME shape functions to deliver
more accurate results. However, we observed that some particular problems, by using
appropriate γ for the second order phase field model, we get almost the same accuracy
as the fourth order phase field model. The advantage of using the second order phase
field model is related to the computational cost. The second order phase field model
with γ ≥ 4.8 is much faster than the fourth order phase field model with γ ≤ 1.8.
Hence, we conclude that using the second order or the fourth order phase field models
is problem dependent.

1.5 Contributions and Organization

The principal goal is to develop computationally efficient fracture model with LME
approximants in order to model fracture in thin shell structure with complex geom-
etry and topology. For this purpose, we have studied the LME shape functions, the
statistical manifold learning technique that allow dealing with general point set sur-
faces avoiding a global parametrization, the extended LME method and the phase
field method to model fracture with complex crack branching. Coupling the phase-
field method, which can model completely arbitrary cracks, with this new geometric
methods for thin shell structures will enable us to deal with fracture of complex thin
shell structures. In fact, this framework is sufficiently realistic that it could be directly
validated by comparison with experimental data.
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During the course of the work, it was realized that many substantially different
problems have to be solved in order to approach the global goal. Therefore, the as-
sociated objectives along with the outline of presentation can be listed as follows: In
the chapter 2, we briefly describe the LME approximants. In the chapter 3, we in-
troduce the coupling between LME and partition of unity enrichment functions, with
particular reference to implementation issues such as numerical integration. Next we
examine the accuracy of the method through several numerical examples, showing op-
timal convergence rates for the energy norm of the error and stress-intensity factors
can be achieved. In the chapter 4 we introduce the general theory and motivation for
the second and fourth order phase filed models. In this chapter, the convergence rate
and the error of modeling of the fourth order model are compared to the second order
model. Also, the continuum formulation of an elastic body with phase field model, is
presented. Finally, we demonstrate the capabilities of the method through some nu-
merical examples. We indicate that it is straightforward to extend 2D examples to 3D.
In the chapter 5 modeling fracture in thin shell structures with complex geometry and
topology is presented. In the section 5.1 some dimensionality reduction methods are
mentioned. The section 5.2 describes the representation of general surfaces represented
by a set of scattered points [3]. In the section 5.3, we review the Kirchhoff–Love theory
of thin shells. In this section, we introduce a phase-field model for fracture in thin
shells. The Galerkin discretization is also presented in this section. In the section 5.4
we demonstrate the capabilities of the method through a numerical example to capture
cracks in thin shell structure with complex geometry and topology. Chapter 6 contains
concluding remarks and some possibilities for future work.





Chapter 2

Local Maximum entropy
approximants

Maximum entropy shape functions are a relatively new class of approximation func-
tions, as they were first introduced in [73] in the context of polygonal interpolation. The
idea of these functions is to maximize the Shannon entropy [74] of the basis functions,
which gives a measure of the uncertainty in the approximation scheme. The principle of
maximum entropy (max-ent) was developed by Jaynes [75, 76], who showed that there
is a natural correspondence between statistical mechanics and information theory. In
particular, max-ent offers the least-biased statistical inference when the shape func-
tions are viewed as probability distributions subject to the approximation constraints
(such as linear reproducing properties). However, without additional constraints, the
basis functions are non-local, which due to increased overlapping makes them unsuit-
able for analysis using Galerkin methods. The large overlapping of the basis functions,
generally leads to more expensive numerical integration schemes due to large num-
ber of evaluation points. It also produces non-sparse stiffness matrix which require
significantly more computational resources to solve.

The local maximum-entropy (LME) approximation schemes were developed in [77]
using a framework similar to meshfree methods. Here the support of the basis functions
is introduced as a thermalization (or penalty) parameter β in the constraint equations.
When β = 0, then the max-ent principle is fully satisfied and the basis functions will
be least biased. For example, if only zero-order consistency is required, the shape
functions are Shepard approximants [78] with Gaussian weight function. When β is
large, then the shape functions have minimal support. In particular, they become the
usual linear finite element functions defined on a Delaunay triangulation of the domain
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associated with the given node set. In [77] it was shown that for some values of β, the
approximation properties of the maximum-entropy basis functions are greatly superior
to those of the finite element linear functions, even when the added computational cost
due to larger support is taken into account.

Subsequent studies, such as [79–81], show that maximum entropy shape functions
are suitable for solving a variety of problems such as thin shell analysis, compressible
and nearly-incompressible elasticity and incompressible media problems. Higher order
approximations can also be obtained using the max-ent framework, as shown in [82].
This class of methods is therefore related to the MLS-based meshless methods (due to
the node-based formulation) and isogeometric analysis (with whom it shares features
such as weak Kronecker delta and non-negativity), inheriting some advantages from
both.

2.1 Local Maximum entropy shape functions

LME meshfree approximants, introduced in [77], are related to other convex approxi-
mation schemes, such as natural neighbor approximants [83], subdivision approximants
[84], or B-spline and NURBS basis functions [? ]. The LME basis functions will be
denoted by pa(x), a = 1, ..., N with x ∈ Rd, d is the dimension of the physical domain.
They are non-negative and are required to satisfy the zeroth-order and first-order con-
sistency conditions:

pa(x) ≥ 0, (2.1)
N∑

a=1
pa(x) = 1, (2.2)

N∑
a=1

pa(x)xa = x. (2.3)

In the last equation, the vector xa identifies the positions of the nodes associated with
each basis function. Consider a set of nodes X = {xa}a=1,...,N , which we will call the
node set. The convex hull of X is the set

convX := {x ∈ Rd|x = Xλ, λ ∈ RN
+ ,1 · λ = 1} (2.4)

Here RN
+ is the non-negative orthant, 1 denotes the vector in RN whose entries are one,

and X is the d×N matrix whose columns are the co-ordinates of the position vectors
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of the nodes in the node set X [77]. Convex approximants, which are in the span of
convex basis functions, can only exist within the convex hull of X(or subsets of it)
and satisfy a weak Kronecker delta property at the boundary of the convex hull of the
nodes. This means that the shape functions corresponding to the interior nodes vanish
on the boundary. With this property, the imposition of essential boundary conditions
in the Galerkin method is straightforward.

The principle of maximum entropy comes from statistical physics and information
theory, which consider the measure of uncertainty or information entropy [74]. Consider
a random variable χ : I → Rd, where I is the index set I = {1, ..., N} and χ(a) = xa

gives to each index the position vector of its corresponding node. Since the shape
functions of a convex approximation scheme are non-negative and form a partition of
unity, we regard {p1(x), ..., pN(x)} as the corresponding probabilities. The statistical
expectation or average of this random variable, as seen from equation (2.3), is x.
According to this interpretation, the approximation of a function u(x) ≈ ∑N

a=1 pa(x)ua

from the nodal values {ua}a=1,...,N is understood as an expected value u(x) of a random
variable µ : I → R where µ(a) = ua. A first question of interest is whether there exist
shape functions consistent with the constraints. From the convex hull meaning the
following theorem holds [85].

Theorem 1. There is a discrete distribution having the probabilities {p1(x), ..., pN(x)}
that satisfies the constraints 2.1, 2.2 and 2.3 if and only if x ∈ convX.

The main idea of max-ent is to maximize the Shannon’s entropy, H(p1, p2, ..., pN),
subject to the consistency constraints as follows:

(ME) For a fixed x maximize (2.5)

H(p1, p2, ..., pN) = −
N∑

a=1
pa log(pa)

subject to pa ≥ 0, a = 1, ..., N
N∑

a=1
pa = 1

N∑
a=1

paxa = x.

The existence and uniqueness of the solution of this program are established by the
following Theorem.

Theorem 2. There exists a max-ent distribution for the program (2.5) if and only if
x ∈ convX, and the solution is unique.
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Solving the (ME) problem produces the set of basis functions, pa := pa(x), a =
1, ..., N . However, these basis functions are non-local, i.e. they have support in all
of convX, and are not suitable for use in a Galerkin approximation because it would
lead to a full, non-banded matrix. In addition, the max-ent approximation is far
from interpolating in the interior, and results in a very poor fit to the given data as
illustrated in [77]. Nevertheless, they have been used in [73] as basis functions for
polygonal elements.

Another optimization problem which takes into account the locality of the shape
functions is Rajan’s form of the Delaunay triangulation [86]. This can be stated as the
following linear program:

(RAJ) For a fixed x minimize (2.6)

U(x, p1, p2, ..., pN) =
N∑

a=1
pa |x − xa|2

subject to pa ≥ 0, a = 1, ..., N
N∑

a=1
pa = 1

N∑
a=1

paxa = x

Theorem 3. The program (RAJ) has unique solution if and only if x ∈ convX and
nodes in X are in general positions.

It is easy to see that U(x, p1, p2, ..., pN) is minimized when the shape functions
p1, ..., pN decay rapidly as the distance from the corresponding nodes xa increases.
There, the shape functions that satisfy (RAJ) problem will have small supports, where
the support can be defined up to a small tolerance ϵ by

supp(pa) = {x : pa(x) > ϵ}

The main idea of LME approximants is to compromise between the (ME) problem and
the (RAJ) problem by introducing parameters βa that control the support of the pa.
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Therefore we write:

For a fixed x minimize (2.7)

fβa(x, p1, p2, ..., pN) =
N∑

a=1
βapa |x − xa|2 +

N∑
a=1

pa log(pa)

subject to pa ≥ 0, a = 1, ..., N
N∑

a=1
pa = 1

N∑
a=1

paxa = x

Since for β ∈ [0,+∞) the function fβa(x, .) is continuous and strictly convex in the
domain of {p1(x), ..., pN(x)} or feasible set, an identical theorem to that in Theorem
(2) states that LME program has a unique solution if and only if x ∈ convX. The
non-negative parameters βa can in general be functions of the position x. This convex
optimization problem is solved efficiently by a duality method as described in [77].
Finally, the shape functions are written in the form:

pa(x) = 1
Z(x, λ∗(x)) exp[−βa |x − xa|2 + λ∗(x) · (x − xa)]

where

Z(x, λ) =
N∑

b=1
exp[−βb |x − xb|2 + λ · (x − xb)]

is a function associated with the node set X and λ∗(x) is defined by

λ∗(x) = arg min
λ∈Rd

log Z(x, λ)

This optimization problem is efficiency solved with Newton Raphson’s method.

The local max-ent shape functions are as smooth as β(x) and pa(x, βa) is a con-
tinuous function of β ∈ [0,+∞) [77]. For example LME shape functions are C∞ if
β is constant. In this dissertation we choose β = γ

h2 , where h is a measure of the
nodal spacing and γ is constant over the domain. In this case the shape functions are
smooth and their degree of locality is controlled by the parameter γ. A plot of the
LME functions for γ = 1.8 and a particular choice of nodes is given in Figure 2.1. In
general, the optimal β is not obvious and this will be discussed later in this work.
As we mentioned before, LME shape functions satisfy a weak Kronecker delta prop-
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Figure 2.1: Local max-ent shape functions in 2D.

erty at the boundary of the convex hull of the nodes. Therefore, the shape functions
that correspond to interior nodes vanish on the boundary. This property makes it easy
to impose the boundary conditions. In the last chapter, we indicate how the smooth-
ness property of these shape functions can be used to model structures with complex
geometry and topology.



Chapter 3

Extended Local Maximum entropy
method

Fracture can be studied from many scales related to the field of the application, for
instance at the atomic level and at the scale of the microstructure of the material. From
the engineering point of view, the material is treated as a continuum and it is desired
to predict and model fracture through the analysis of stress, strain and energy. In this
dissertation, we consider this engineering point of view and follow the continuum and
fracture mechanics formulations in solid.

3.1 Basic Fracture Mechanics Concepts

In 1956, Irwin used the Westergaard approach to develop the concepts that were in-
troduced by Griffith in 1920. According to the Westergaard [87], Irwin [88], Sneddon
[89] and Williams’s work [90], linear elastic theory predicts that the stress distribution
σij tensor round the crack tip, in polar coordinates (r, θ) with origin at the crack tip,
has the form

σij(r, θ) = K√
2πr

fij(θ) + higher order terms (3.1)

where K is the stress intensity factor and fij(θ) is a dimensionless quantity that varies
with the load and geometry. Fracture mechanics theories have been developed to
account for various types of nonlinear material behavior and dynamic effects. All
of these recent methods are extensions of linear elastic fracture mechanics. So, here
we focus on the theory of linear elastic fracture mechanics (LEFM). Regarding stress
analysis point of view, there are three types of loading that a crack can experience
(a) Opening, mode I: The crack surfaces separate symmetrically with respect to the
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planes xy and xz. (b) Sliding, mode II: The crack surfaces slide relative to each other
symmetrically with respect to the plane xy and skew-symmetrically with respect to the
plane xz. (c) Tearing, mode III: The crack surfaces slide relative to each other skew-
symmetrically with respect to both planes xy and xz. The stress intensity factors are
usually given a subscript to denote the mode of loading; i.e., KI , KII and KIII , which
are called the Mode I, Mode II and Mode III stress intensity factors. Stress intensity
factors are local parameters of fracture behavior which qualify the stresses, strains
and displacements around the crack tip. Stress intensity factors are useful instruments
for analysis the discrete descriptions of fracture numerical methods which incorporate
a discontinuity into the displacement field or geometry, such as the extended finite
element method (X-FEM) [14], the cohesive zone methods [91, 92], and the cohesive
segments method [93].

Figure 3.1: Signed distance function.

3.2 Extrinsic enrichments for Partition of Unity Meth-
ods

In this section, we focus on discrete methods of modeling cracks. As we mentioned
in the introduction chapter, in these methods the discontinuity is introduced to the
displacement field by means of remeshing or by enriching the basis by inserting disconti-
nuities using the partition of unity method proposed by Babuška and Melenk [16]. The
enrichment is aimed to increase the accuracy of approximation by including informa-
tion of the analytical solution. The main idea of Partition of Unity (PU) enrichment as
used here is to extend the basis approximation space with some additional enrichment
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functions, such that it is able to reproduce certain features of the problem of interest,
e.g. cracks. The proposed method here is based on a local partition of unity and uses
an extrinsic enrichment to model the discontinuity. So, the LME approximation can
be decomposed into a standard part and an enriched part:

uh(x) =
∑

I∈W

pI(x)uI +
∑

J∈Wb

pJ(x)χ(φJ(x))aJ+

∑
K∈Ws

pK(x)
4∑

k=1
Bk(x)bkK

Here the first term is the standard approximation part and the second and the third
terms are the enriched parts. W is the set of nodes in the entire discretization and Wb

and Ws are the sets of enriched nodes. pI are the shape functions and χ and Bk are the
enrichment functions. Normally, χ is selected as a step or Heaviside function and is
used to enrich the nodes where the supports of the LME shape functions are completely
cut by crack. Bk are branch functions and are used to enrich the shape functions whose
supports include the crack tip. In this work we use a geometric (fixed area) enrichment,
and therefore we obtain optimal convergence rate (O(h2)) without a special treatment
of the so-called "blending" area around the crack tip. Branch functions are defined as
follows (in polar coordinate relative to the crack tip):

B1(r, θ) =
√
r sin θ2

B2(r, θ) =
√
r cos θ2

B3(r, θ) =
√
r sin θ2 cos θ

B4(r, θ) =
√
r cos θ2 cos θ

Where r = ∥x − xtip∥.

φ(x) is the signed distance from the point x to the crack segment and aI and bkI are
additional degrees of freedom [94]. The signed distance function is defined as:

φ(x) = min
xΓ∈Γ

∥x − xΓ∥ sign(n · (x − xΓ))

Here Γ is the curve of discontinuity, xΓ is an arbitrary point on Γ and n is normal
vector to Γ (see Figure 2). If we choose χ as a Heaviside function, then
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Figure 3.2: Signed distance function.

H(φ(x)) =

1 if φ(x) > 0

−1 if φ(x) < 0
(3.2)

This enrichment function captures the jump across the crack faces.

In order to model any curved crack, the signed distance function can be approximated
by the same shape functions as the displacement. Assume t is a vector tangent to the
curved crack, which its direction is to the crack curve. We approximate φ by:

φ̃(x) =
∑

I

pI(x)φI , x ∈ Ωφ (3.3)

Where φI are the nodal values of φ, pI are the shape functions and Ωφ, is the domain
of definition for φ, which is defined by:

Ωφ := {x|t · ∇r(x) > 0} (3.4)

So, the approximated crack position is considered as:

Γ := {x|φ̃(x) = 0,x ∈ Ωφ} (3.5)

In this case, φ̃(x) is not defined beyond the crack tips. So, two possibilities are consid-
ered for the angle θ of the Branch functions. If t · ∇r ≤ 0, then the regular polar angle
from −t is computed. If t · ∇r > 0, θ is considered as [95]:

θ = arctan( −φ√
r2 − φ2 ) (3.6)
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3.3 Numerical Examples

3.3.1 Infinite plate with a horizontal crack

Consider an infinite plate containing a straight crack of length 2a under a remote
uniform stress field σ as shown in Figure 5. The analytical solution near crack tip for
stress fields and displacement in terms of local polar coordinates from the crack tip are
[32]

σxx(r, θ) = KI√
r

cos θ2

(
1 − sin θ2 sin 3θ

2

)

σyy(r, θ) = KI√
r

cos θ2

(
1 + sin θ2 sin 3θ

2

)

σxy(r, θ) = KI√
r

sin θ2 cos θ2 cos 3θ
2

ux(r, θ) = 2(1 + υ)√
2π

KI

E

√
r cos θ2

(
2 − 2υ − cos2 θ

2

)
(3.7)

uy(r, θ) = 2(1 + υ)√
2π

KI

E

√
r sin θ2

(
2 − 2υ − cos2 θ

2

)

where KI = σ
√
πa is the stress intensity factor, υ is Poisson’s ratio and E is Young’s

modulus. The analytical solution is valid for a region close enough to the crack tip. We
consider a square ABCD of length 10 mm × 10 mm, a = 100 mm, E = 107 N/mm2,
υ = 0.3, σ = 104 N/mm2 and the modeled crack length is 5 mm. In all problems
of this chapter, plane strain state is assumed. We use Dirichlet boundary conditions
on the bottom, right and top edges and Neumann boundary conditions on the left
edge which includes the crack. As we mentioned in Section 2, LME shape functions
satisfy a weak Kronecker delta property. This property allows us to impose Dirichlet
boundary conditions by computing a node-based interpolant or an L2 projection of the
boundary data. The latter can also be used for edges that contain enriched nodes.
Numerical integration is performed on a background mesh of rectangular elements and
the almost polar integration is used on the elements containing a crack tip. The error
in the energy norm is illustrated in Figure 3.4 for different values of γ and Figure 3.5
shows the percentage error for stress intensity factor (SIFs). It is obvious from these
figures that in this case there is an optimal value for the parameter γ of around 1.8
for which accuracy is maximized. For very low values of γ, convergence is degraded.
This is due to numerical integration. With a higher number of Gauss points and
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Figure 3.3: Infinite plate with a center crack under uniform tension and modeled
geometry ABCD.

γ = 0.8, the optimal rate of convergence for a plane elasticity problem was recovered
in [77]. But in that case, the method is very expensive. The LME results converge
to the standard XFEM results as γ increases. As shown in Figure 3.4, the rate of
convergence for different values of γ, the parameter that controls the support of the
shape functions, is about 1. For a fixed number of nodes, when γ decreases the error
also decreases. For example, for n = 36 × 36 we see from Table 3.1 that the error
becomes smaller as γ decreases to 0.8. However, as γ decreases, because the support
of the LME shape functions becomes larger, we also need to consider a larger radius of

Table 3.1: Error for energy norm and SIF together with the running time and efficiency
ratio (3.8) for a problem discretized with 36 × 36 nodes.

Method XFEM γ = 4.8 γ = 3.8 γ = 2.8 γ = 1.8 γ = 0.8
Rad. of Infl. 1 2 2 3 3 6
Energy error 0.04611 0.04532 0.04161 0.03160 0.01752 0.00640

SIF error 0.08822 0.08474 0.07020 0.03979 0.01016 0.00226
Assembly time 7.0 25.7 26.0 58.0 64.8 226.9
Solution time 0.4 1.4 1.7 2.9 2.9 7.9

Post-proc. time 8.0 21.5 20.7 36.7 36.0 103.6
Total time 15.4 48.5 48.4 97.6 103.7 338.4

Efficiency (energy) 1.000 0.322 0.352 0.230 0.390 0.327
Efficiency (SIF) 1.000 0.329 0.399 0.349 1.288 1.770
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Figure 3.4: Error in the energy norm for the horizontal crack problem in mode I.

influence (the distance of the neighbor search between the nodes), which leads to more
function evaluations and increases the computational cost. In this study, we found
that choosing γ = 1.8, which corresponds to a radius of influence of 3 nodes, provides
a reasonable balance between accuracy and computational cost.

We note from Table 3.1 that LME is significantly slower than XFEM for the same
number of nodes, and that the computational cost increases as γ decreases due to
larger radius of influence. However, especially for γ = 1.8, the method is much more
accurate than XFEM, which makes up for some of the added computational cost. This
is particularly true for the computation of the stress intensity factor, where the error
is almost 9 times smaller (although the method is 7 times slower). For γ = 0.8 and
36 × 36 nodes the method is even more accurate, but unfortunately as was discussed
before, the method becomes prohibitively expensive.

In Table 3.1, we also show the computational efficiency of the method which we
define by:

efficiency = % improvement in accuracy
% increase in total computational time (3.8)

We note that an efficiency index of 1 indicates the method is as efficient as XFEM, an
index greater than 1 indicates the method is more efficient than XFEM, and an index
less than 1 indicates the method is less efficient. Because of the additional overhead
required (Newton iterations, neighbor node search, less-sparse stiffness matrix), XLME
in the current implementation is generally less efficient than XFEM. The ratios showed
in Table 3.1 are representative for any number of nodes and for the other model prob-
lems considered later in this chapter. In general, the results agree with other findings



22 Extended Local Maximum entropy method

10
−0.9

10
−0.7

10
−0.5

10
−0.3

10
−3

10
−2

10
−1

10
0

h

P
e

rc
e

n
ta

g
e

 e
rr

o
r

 

 

γ = 0.8

γ = 1.8

γ = 2.8

γ = 3.8

γ = 4.8

XFEM

Slope 2

Figure 3.5: Percentage error of stress intensity factor for horizontal crack.

in literature, which show that LME is more efficient than MLS but less efficient than
FEM [96].

We compute the stress intensity factors by the interaction integral method, where
the domain form of the interaction integral is given by [14]

I(1,2) =
∫

A

[
σ

(1)
ij

∂u2
i

∂x1
− σ

(2)
ij

∂u1
i

∂x1
−W (1,2)δ1j

]
∂q

∂xj

dA

The domain of integration, A, is set to be the union of all the elements which have a
node within a ball of radius rd around the crack tip (see Figure 8). Since we use a fixed
area enrichment, rd is also a fixed distance. We found that most accurate results are
obtained when rd is half of the modeled crack length. This results in a superconvergent
(O(h2)) rate for KI , as also reported for XFEM in [29] and [97].

Figure 3.6: Elements which have a node within a ball of radius rd around the crack
tip.
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The weight function q is taken to have a value of unity for all nodes within the ball
rd, and zero on the outside of the ball. Hence, the bilinear shape functions are used as
the weight functions. W (1,2) is the interaction strain energy density

W (1,2) = σ
(1)
ij ϵ

(2)
ij = σ

(2)
ij ϵ

(1)
ij

σ
(1)
ij and ϵ

(1)
ij are computed stresses and strains and σ

(2)
ij and ϵ

(2)
ij are auxiliary stresses

and strains derived by Westergaard and Williams, corresponding to mode 1 and mode
2 as described in [14].

3.3.2 Edge crack under shear traction

The second problem investigated in this chapter, is a finite dimensional plate subjected
to uniform shear on the top of the plate τ = 1.0 N/mm2 and the bottom is fixed, as
shown in the Figure 9. We choose Young’s modulus E = 3×107 Pa and Poisson’s ratio
ν = 0.25.

The stress intensity factors KI and KII , are calculated by the extended LME method
and compared to the reference solutions [98]:

Kref
I = 34.0

Kref
II = 4.55

We note that these values were calculated using a boundary collocation method and
are given with an accuracy of 3 significant digits. The SIFs KI and KII calculated by
the extended LME method on a fine mesh converge to the following values (accurate
to 4 significant digits):

K0
I = 34.04

K0
II = 4.537

We note that there is a very good agreement between the reference solution and our
computed solution. To study the convergence of the method we calculated the per-
centage error between the computed SIFs at various levels of refinement and K0

I and
K0

II .
Figures 10 and 11 illustrate the percentage error for KI and KII . As evident from

these figures, the smallest error for this problem is obtained by γ = 1.8 and γ = 2.8.
We note that for these values of γ the error becomes less than 0.01%, which is equal to
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Figure 3.7: Edge-cracked plate under shear stress.

K0
I and K0

II up to the given significant digits. For values of γ that are lower than 1.8,
computing the SIF accurately becomes expensive due to the large support of the shape
functions. Therefore, we will not consider the case γ = 0.8 in the following examples.

3.3.3 Slanted crack in an infinite plate

Consider an infinite plate containing an angled crack as shown in Figure 12a. This
problem is a mixed mode I-II problem. The analytical near-tip field solution for this
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Figure 3.8: Percentage error of KI for edge-cracked plate under shear stress.
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Figure 3.9: Percentage error of KII for edge-cracked plate under shear stress.

problem in polar coordinates is given in [99]

σxx(r, θ) = KI√
2πr

cos θ2

(
1 − sin θ2 sin 3θ

2

)

− KII√
2πr

sin θ2

(
2 + cos θ2 cos 3θ

2

)

σyy(r, θ) = KI√
2πr

cos θ2

(
1 + sin θ2 sin 3θ

2

)

+ KII√
2πr

sin θ2 cos θ2 cos 3θ
2

σxy(r, θ) = KI√
2πr

sin θ2 cos θ2 cos 3θ
2

+ KII√
2πr

cos θ2

(
1 − sin θ2 sin 3θ

2

)
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ux(r, θ) = KI

2µ

√
r

2π cos θ2

(
κ− 1 + 2 sin2 θ

2

)

+ KII

2µ

√
r

2π sin θ2

(
κ+ 1 + 2 cos2 θ

2

)

uy(r, θ) = KI

2µ

√
r

2π sin θ2

(
κ+ 1 − 2 cos2 θ

2

)

− KII

2µ

√
r

2π cos θ2

(
κ− 1 − 2 sin2 θ

2

)

Here µ is the shear modulus, κ = 3 − 4υ for plane strain. The angle θ and the distance
r from the crack tip are indicated in Figure 12b. We redefine the x-coordinate axis

Figure 3.10: a) Slanted crack in an infinite plate where the principal stress is not
perpendicular to the crack. b) An infinite plate rotated with respect to the crack’s
angle.

to coincide with the crack orientation [100], see Figure 12b. The applied stress is
decomposed into normal and shear components. The stress normal to the crack, σyy,
produces pure mode I loading, while σxy applies mode II loading to the crack. The
stress intensity factors for the plate, can be computed by the relationship between σyy

and σxy relative to σ and α through Mohr’s circle [101]

KI = σyy

√
πa = σ cos2 α

√
πa

KII = σxy

√
πa = σ sinα cosα

√
πa
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Table 3.2: Error and the average running time when the number of nodes is 36 × 36,
the number of Gauss points is 16, α = 15◦, 30◦ and radius of influence is 2 for γ = 4.8
and γ = 3.8, 3 for γ = 2.8 and γ = 1.8

γ Relative Relative Relative Relative Average total
error error error error running
of KI , of KII , of KI , of KII , time (seconds)
α = 15◦ α = 15◦ α = 30◦ α = 30◦

XFEM 0.088212 0.014660 0.088209 0.014663 15.7
4.8 0.084748 0.013936 0.084753 0.013924 49.0
3.8 0.070224 0.011169 0.070251 0.011112 46.7
2.8 0.039802 0.005500 0.039819 0.005465 101.4
1.8 0.010153 0.002018 0.010146 0.002010 99.9

In this problem, we again modeled a square region around the crack tip, the gray square
in Figure 12b, and chose different values for crack’s angle. The same tendency as for
the 1st example is observed for this mixed mode problem. Again, γ = 1.8 gives the
most accurate results and this method has a convergence rate of approximately 2.

As shown in Table 3.2 when γ decreases to the optimal value, in this case γ = 1.8,
the error decreases, however the computational cost increases due to a larger radius
of influence of the shape functions. Nevertheless, we note that the error is much
smaller (almost an order of magnitude) between γ = 4.8, which is virtually the same
as standard XFEM, and γ = 1.8. We note that there is only a very small difference
between the α = 15◦ and α = 30◦. This can be explained by the fact that the
discretization is identical, the only difference being the size of the forces applied to
the boundaries, as can been seen from Figure 12. The log-log plots indicating the
convergence rates of KI and KII with α = 30◦ are shown in Figures 13 and 14. We
also computed the errors for KI and KII for angles α = 45◦, 60◦, 75◦ with similar
results.
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Figure 3.11: Percentage error of KI for slanted crack in an infinite plate with α = 30◦.
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Figure 3.12: Percentage error of KII for slanted crack in an infinite plate with α = 30◦.

We conclude that the locality of the LME basis functions and their smoothness de-
pends on a nondimensional parameter γ. The large values of γ leads to shape functions
with steeper derivatives, while the small value results in smoother bubble-shaped basis
functions with larger supports. We have incorporated the discontinuites and crack-tip
singularity in the approximation space through XFEM-like enrichments, and we have
tested the efficiency of the method through some 2D examples to determine suitable
values γ.



Chapter 4

Phase-field model for Local
Maximum entropy approximants

One of the most important questions in fracture mechanics is, “in what directions
will a crack grow in structure?”. The XLME method and generally all the discrete
methods to model crack, require cumbersome computation to get the direction of crack
propagation, such as computing stress intensity factor for each elements.

In recent years, much attention has been devoted to variational problems involving
both bulk and surface energies. Such problems are usually of the form

min{Ev(u,K) + Es(u,K) + "Lower order terms"}, (4.1)

where Ev and Es denote the volume and surface energies, and (u,K) are unknowns
with K varying in a class of surfaces contained in a fixed open set Ω ⊂ Rn and
u : Ω \ K → Rm belonging to a class of sufficiently smooth functions. These kind of
problems called free discontinuity problems (as opposed to free boundary problems).
The free discontinuity problems have widely applications to the study of multi-phase
systems, fracture mechanics, computer science, etc. In the case of fracture mechanics,
Ω ⊂ R3 is the reference configuration of an elastic body, K is the crack surface and u

represents the elastic deformation in the unfractured part of the body.
The extension of this method for fracture in solids was introduced in [48, 49], where

the brittle crack propagation problem was regularized and recast as a minimization
problem. In this model the proposed energy functional is similar to the potential func-
tional presented by Mumford and Shah [50], which is used in image segmentation.
The existence of solutions of the Mumford-Shah image segmentation functional was
proven by Ambrosio in [51]. In [52], Ambrosio et al. approximated the Mumford and
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Shah image segmentation functional by an elliptic functional defined on Sobolev space,
based on the theory of Γ-convergence. Later on, Bourdin introduced image segmen-
tation with a finite element method in [53]. We refer to Ambrosio and Tortorelli [52]
and the reviews of Dal Maso [102] and Braides [103, 104] for details on Γ-convergent
approximations of free discontinuity problems. Here we focus on energy base analysis
of fracture. We study phase field model, which is based on global energy balance.

4.1 Governing Equations and Weak Form

4.1.1 Second and fourth-order phase field model

Consider a bar of length 2L placed in the domain Ω = Γ×L, where Γ is a cross-section
and L = [−∞,∞]. According to Fig. 4.1(a), a crack is placed at x = 0. The phase
field variable v(x) ∈ [0, 1] with

v(x) =
 0 x = 0,

1 otherwise,
(4.2)

is introduced to describe the crack topology. v = 0 indicates the crack (total damage)
while v = 1 refers to intact state. This phase field is discontinuous at x = 0 and
satisfies the following conditions

v(0) = 0,
v(±∞)= 1.

(4.3)

A function that fulfils the criterion (4.2) and (4.3) is

v(x) = 1 − e
− |x|

2l0 , (4.4)

when the diffusivity l0 → 0. Furthermore, as it was shown in [105], this function is the
solution of a homogeneous second order differential equation

v(x) − 4l20v′′ − 1 = 0 in Ω, (4.5)

subject to the essential boundary conditions given in Eq. (4.3). This second order
differential equation leads to a second order phase field approximation method, which
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Figure 4.1: (a) Sharp crack at x = 0, (b) Exponential solution of the second order
phase field model and (c) Exponential solution of the fourth order phase field model
with the length scale parameter l = 2l0 .

computes the length of the crack by

Γl0 = 1
4l0

∫
Ω
(1 − v)2 + 4l20(v′)2dV. (4.6)

With dV = Γdx. In order to approximate this function, a C0 basis such as the one
provided by the standard finite element method (FEM) is needed. In meshfree methods
such as LME approximants [77], the basis functions are smooth. Hence, the kink (at
x = 0) in the phase field might not be captured sufficiently with these methods. Let
us assume another function [106]

v(x) = 1 − e
− |x|

l0

(
1 + |x|

l0

)
. (4.7)

This function satisfies the conditions (4.3) and introduces smoother approximation as is
demonstrated in Fig. 4.1(c). We find that Eq. (4.7) is the solution of the homogeneous
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fourth order differential equation

v − 1 − 2l20v′′ + l40v
(4) = 0 in Ω, (4.8)

under the assumption that v(0) = 0, v′(0) = 0 and vα(x) → 0 as x → ±∞ for all
α ≥ 0 [106]. The weak form functional of this ordinary differential equations (ODE) is

I(v) = 1
2

∫
Ω
(1 − v)2 + 2l20(v′)2 + l40(v′′)2dV. (4.9)

The value of this functional for Eq. (4.7) is 2l0Γ, which gives

Γl0 = 1
4l0

∫
Ω
(1 − v)2 + 2l20(v′)2 + l40(v′′)2dV. (4.10)

As was expressed by Miehe and coworkers in [105], the functional Γl0 can be considered
as the crack surface itself. Eq. (4.10) is the fourth order phase field model in 1D.

Finite elements based on Lagrange polynomials are not well suited for the fourth-
order phase-field model which requires C1 continuity in the phase field. A common
approach is to split the fourth-order differential equation into 2 second-order differential
equations as proposed e.g. in [107]. Due to the higher order continuity of the LME
approximations, they are ideally suited to directly solve the fourth-order phase field
equations. Such an approach has been proven to be successful in IGA [107]. However,
in contrast to IGA which requires a quadratic basis, the LME approximation uses only
a linear basis.

The extension of the phase field model to higher dimensional problems is straightfor-
ward. Assume Ω ⊆ Rd, be a domain with d ∈ [1, 2, 3] and ∂Ω ⊆ Rd−1 is the boundary
of this domain. The crack length can be computed by

Γl0(v) =
∫

Ω
γ(v,∇v,∆v)dV, (4.11)

with
γ(v,∇v) = 1

4l0

[
(1 − v)2 + l20 |∇v|2

]
, (4.12)

for the second order model and

γ(v,∇v,∆v) = 1
4l0

[
(1 − v)2 + 2l20 |∇v|2 + l40 |∆v|2

]
, (4.13)

for the fourth order model.
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4.1.2 Phase field model for an elastic body

In [5], Griffith demonstrated that crack propagation for elastic solids, is caused by
the transfer of energy from the external work to surface energy. He applied the first
law of thermodynamics to formulate cracks in elastic solid bodies. The first law of
thermodynamics states the change of total energy is equal to the sum of the change of
work done by the external forces and the change of heat content per unit time. Since,
the loads are applied in a quasi static behavior in this work, the change of heat and the
kinetic energy are zero. The change of the total energy for this case, can be written as

∂

∂a
(E + Γ) = ∂P

∂a
(4.14)

Here E is the total internal strain energy, Γ the surface energy, a indicates the crack
length and P the external work. Therefore, following Griffith model for brittle material
we define

G = ∂Γ
∂a

= ∂P

∂a
− ∂E

∂a
, (4.15)

where G is the energy release rate or the crack driving force. The material parameter
Gc is the critical energy release rate or the surface energy density. The crack propagates
when G gets Gc, where the crack surface is approximated by

Γ ≈ GcΓl0 ,

Γl0 is crack surface functional defined in Eq.4.11.

For a linear elastic isotropic solid, the strain energy is expressed as

E =
∫

Ω
F (ε(u), v)dV, (4.16)

We assume traction free conditions on the crack faces. In order to satisfy this condition,
the elastic energy density of an undamaged solid, F0, is multiplied by the jump set
function g(v) yielding

F (ε(u), v) = g(v)F0(ε(u)), (4.17)

where F0(ε(u)) = 1
2ε(u) : C : ε(u). Here C is the elasticity tensor and ε(u) = Du

with
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D =



∂
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The function g(v) is assumed to satisfy the following conditions,

g(0) = 0, g(1) = 1, g′(0) = 0, (4.18)

∀v1, v2 ∈ [0, 1], if v1 ≤ v2 ⇒ g(v1) ≤ g(v2). (4.19)

The first and second condition in Eq.4.18, are the limits for the fully damage and
undamaged case. The third condition states that when v → 0, the energy converges to
a finite value. A simple function that meets these requirements, is

g(v) = v2 + k (4.20)

The parameter k ≪ 1 is introduced to avoid the singularity of disappearing internal
energy density when the phase-field parameter is zero. Consider the external potential
energy functional

P (u) =
∫

Ω
b(x) · udV +

∫
Γt

tN(x) · udΓt, (4.21)

where b(x) is body force and tN(x) are the tractions. The total potential energy
functional is introduced as

Π(u, v) = E(u, v) +GcΓl0 − P (u). (4.22)

Since the variations δu and δv are independent, the first variation of the functional,
Π(u, v), leads to two decoupled equations

Π[u, v, δu] = δuE(u, v) − δuP (u) = 0, (4.23)

Π[u, v, δu] =
∫

Ω
[v2 + k]δuF0(ε(u))dV −

[∫
Ω

b(x) · δudV +
∫

Γt

tN(x) · δudΓt

]
= 0.
(4.24)
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Π[u, v, δv] = δvE(u, v) +GcδvΓl0 = 0 (4.25)

For the second order phase field model, we obtain

Π2nd [u, v, δv] =
∫

Ω

{
2vδvF0(ε(u)) + Gc

2l0
[−δv + vδv + 4l20∇v · ∇(δv)]

}
dV, (4.26)

and for the fourth order phase field model

Π4th [u, v, δv] =
∫

Ω

{
2vδvF0(ε(u)) − Gc

2l0
δv + Gc

2l0
[vδv + 2l20∇v · ∇(δv) + l40∆v · ∆(δv)]

}
dV.

(4.27)
The decoupled equations can be solved by a staggered scheme which is more robust
which has been demonstrated e.g. by [108].

4.2 Discretization with LME approximates

We consider now the discrete equilibrium equations of (4.23) and (4.25), and approxi-
mate u and v as follow

u =
∑

a

paua, (4.28)

v =
∑

a

pava, (4.29)

where pa are LME shape functions and ua and va are nodal displacement and phase field
parameter. Virtual displacements and virtual phase-field parameters are represented
likewise. Replacing the variation of the strain energy density into the Eq. (4.24), we
obtain

Π[u, v, δu] =
∫

Ω
[v2+k]{D(δu) : C : Du}dV−

[∫
Ω

b(x) · δudV +
∫

Γt

tN(x) · δudΓt

]
= 0.

(4.30)
Approximating u and δu with (4.28) and a simple calculation yields the Galerkin
stiffness matrix. The interaction between nodes a and b for displacement field is given
by

Kab
u =

∫
Ω
[v2 + k]BaCBbTdV, (4.31)

where
Ba = Dpa.
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The force contribution of the a-th node is

fa
u =

∫
Ω

bpadV +
∫

Γt

tNpadΓt. (4.32)

Finally, the phase-field stiffness matrix for the second and fourth order are

Kab
v =

∫
Ω

{
[2F0(ε(u)) + Gc

2l0
]papb + 2Gcl0∇pa∇pb

}
dV (4.33)

Kab
v =

∫
Ω

{
[2F0(ε(u)) + Gc

2l0
]papb + Gc

l0
[l20∇pa∇pb + l40

2 ∆pa∆pb]
}
dV (4.34)

and the right hand side for phase-field is

fa
v =

∫
Ω

Gc

2l0
padV. (4.35)

In this model, cracks can propagate, branch and merge but can not reverse, whereas
this feature is reached by imposing vi ≤ vi−1, such that vi−1 and vi are the phase-field
parameters at step i− 1 and i [109].

4.3 Numerical Examples

4.3.1 Phase Field Problems

One-dimensional problem

First, we determine how well the proposed second and fourth order models approximate
the “crack topology”. For simplicity, we start with the 1D model explained in section
4.1. We compute the error in the L2 norm and H1 semi-norm for the second order
model by considering Eq. (4.4) as exact solutions and L = 1. As it is obvious from
Fig. 4.2, the best results are obtained for γ = 5.8. The rate of convergence in the L2

norm in this case is about 1.7, while the rate of convergence for γ < 2.8 is about 1.0.
The convergence rate in the H1 semi-norm is optimal, i.e. equal 1, with γ = 5.8 but
sub-optimal (order 0.4) for γ ≤ 2.8. This is due to the smooth shape functions to
approximate non-smooth function. For γ = 5.8, the LME shape functions are much
sharper.
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Figure 4.2: The error in the L2 norm and Semi-norm H1 of the solution of the second
order ODE as a function of nodal spacing, h, with l0 = 0.025 and different values of γ.

For the fourth order phase field model, we compute the error in the L2 norm, H1 semi-
norm and H2 semi-norm. For the LME shape functions, the best results are obtained
for γ = 0.6. As can be seen from Fig. 4.3a, for values of γ ≥ 1.0 no convergence in
the L2 norm is obtained. Note that, in contrast to the at least quadratic NURBS–
formulation [110], we employ only linear basis. In FEM, Hughes [111] have shown for
the fourth order PDEs, at least a quadratic basis is required. However, as shown in
our previous work [112], a linear LME basis was sufficient to obtain excellent results
for Kirchhoff–Love thin shells (also fourth order PDE).
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Figure 4.3: The error in the L2 norm and Semi-norm H1 of the solution of the fourth
order ODE as a function of nodal spacing, with l0 = 0.025 and different values of γ.
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Figure 4.4: The error in semi-norm H2 of the solution of the fourth order ODE as a
function of nodal spacing, with l0 = 0.025 and different values of γ.

Two dimensional domain

Subsequently, we will study the accuracy of the second and fourth order phase field
model to approximate the crack length according to Fig. 4.5. There are two sources of
errors in the phase field model:

1. Error of the approximation of the crack geometry, which is related to length scale
parameter.

2. Model error which is related to the phase field model.

We first focus on the first error. The length scale parameter l0 is considered as a
positive parameter to regulate the size of the fracture zone. When l0 goes to zero, Γl0

converges to the discrete fracture surface. A certain minimum mesh size is needed to
find the “appropriate” length scale. Here we consider a two dimensional domain Ω
with a sharp crack surface Γ = 0.5 as is shown in the Fig. 4.5.
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Figure 4.5: Two dimensional 1 × 1 square, with a sharp crack surface Γ = 0.5.

We approximate the crack surface of Fig. 4.5 by the second and fourth order model
for different length scales and different values of γ with constant nodal spacing size
h = 0.0013. As it is obvious from Fig. 4.6, more accurate results are obtained with
smaller length scale parameter for the fourth order approximation. For the second
order phase field model, higher values of γ give better results. For instance, γ = 4.8
and 2h ≤ l0 resolves the regularized crack surface such that Γl0 ≈ Γ, while for γ = 1.8,
4h ≤ l0 is needed. Hence, in the second order model, as γ increases the results get
better and a finer length scale parameter is needed. In the fourth order phase field
approximation model, as γ decreases the results get better. In this case, for all values
of γ, choosing h ≤ l0 gives reasonable results. Fig. 4.8 indicates the error in the L2

norm of the fourth and second order phase field models for best values of γ. The fourth
order model represents the crack geometry more accurately.
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Figure 4.6: Exact crack length over approximated crack length versus length scale
parameter over nodal spacing, by (a) the second order phase field model with γ =
0.8, 1.8, 4.8, and (b) the fourth order phase field model with γ = 0.6, 0.8, 1.0, for h =
0.0013.
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Figure 4.7: Exact crack length over approximated crack length versus length scale
parameter over nodal spacing the fourth order phase field model with γ = 0.6, 1.8, for
h = 0.0013.
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Figure 4.8: L2 norm error versus length scale parameter over nodal spacing, by (a)
the second order phase field model with γ = 4.8, and (b) the fourth order phase field
model with γ = 0.8.

Next, we study the model error. The rate of convergence of these two models are
compared for the same length scale parameter l0. The best rate of convergence is
obtained for the fourth order model with lower γ and lower l0. Fig. 4.9 shows the rate
of convergence of these two models with l0 = 2h. The second order model with γ = 0.8
converges much slower than the fourth order model. This is due to the large radius of
influence and smoothness of the LME shape functions. Fig. 4.9 also shows the rate of
convergence for the second order model with γ = 4.8 and l0 = 2h. In this case, the
rate of convergence of the second order model is still much lower than the fourth order
model with γ = 0.8 and l0 = 2h.
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Figure 4.9: Absolute error of the crack length for the second and fourth order models.
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4.3.2 Mechanical Problems

Infinite plate with a horizontal crack

In order to study the accuracy of the phase field model, we discuss a benchmark problem
that has an exact solution. Consider an infinite plate with a horizontal crack of length
2a under a remote uniform stress field σ as shown in Fig. 3.3. The analytical solution
near crack tip for stress fields and displacement in terms of local polar coordinates
from the crack tip are as given in (3.7). The analytical solution is valid for region
close enough to the crack tip. So, we consider a square ABCD of length 1mm× 1mm,
a = 100mm, E = 107N/mm2, υ = 0.3, σ = 104N/mm2 and the modeled crack length
is 0.5mm. Plane strain state is assumed. Dirichlet boundary conditions are imposed on
the edges and the crack does not propagate. As we mentioned, LME shape functions
satisfy a weak Kronecker delta property. This property allows us to impose Dirichlet
boundary conditions by computing a node-based interpolant or an L2 projection of the
boundary data. We first solve a liner system for the v-field, subsequently we solve the
elastic linear system for u. For stationary cracks, the phase field value is not updated.
Fig. 4.10a indicates the error in the L2 displacement norm for different length scale
parameter for the finite element method, the second and fourth order methods with
γ = 4.8 and γ = 1.0, respectively. Choosing 2h ≤ l0 < 4h and l0 ≥ 8h for the fourth
and second order model, respectively, gives the best approximation of the solution (for
h = 0.005). As mentioned before, this figure also illustrates almost the same results for
FEM and the second order method with γ = 4.8. In this case, the value of the length
scale parameter, for the second order model and FEM, is large. In other words, a fine
discretization is needed to resolve the crack, if small length scale parameter is required.
Fig. 4.10b shows the L2 norm error versus h for different discretization. The best rate
of convergence, is obtained for the fourth order phase field model with γ = 1.0 and
l0 ≥ 2h. The convergence rate of 0.63 is poor. However, the phase field model cannot
capture the jump in the displacement field and the analytic crack opening as discrete
crack approaches such as XFEM. In this view, the convergence rate of the fourth order
model is surprisingly good.
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Figure 4.10: (a) L2 norm Error for h = 0.005, and different values of l0, (b) L2 norm
Error versus different discretization.

Cantilever beam

Consider the two-dimensional cantilever beam problem under plane strain condition [105,
106]. The geometric setup is indicated in Fig. 4.11. In order to avoid rigid body mo-
tion, we fix the point x = 1, y = 0.5 and the left ends are displaced as shown in
Fig. 4.11. The material properties used for the analysis are E = 109 N/mm2, Poisson’s
ratio ν = 0.3, critical energy release rate Gc = 1000 N/mm and k = 10−6. Constant
displacement increments ∆u = 0.6 × 10−6 mm, are used for each step of computation.
For computational efficiency, the discretization is refined only in the area where the
crack is expected to propagate. We also study the effects of the length scale param-
eter. Fig. 4.12 shows that mesh-independent results are achieved when refining the
discretization. For h = 0.0015, the influence of the length scale parameter on the
global response of these two models, is analyzed in Fig. 4.13. For the fourth order
model, l0 ≥ 4h, is needed in order to obtain a nearly identical peak load and post-peak
curve. While for the second order model l0 ≥ 12h is needed. In other words, the
second order model is more sensitive with respect to the length scale. The crack path
at different stages is illustrated in Fig. 4.14. As it was expected , the crack propagates
straight [105].
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Figure 4.11: The geometry and boundary conditions of a square beam of side length
L = 1 mm.

0 0.5 1 1.5
x 10−3

0

0.5

1

1.5

2

2.5

3x 105

Displacement

R
ea

ct
io

n 
Fo

rc
e

 

 

2nd, l=2h, h = 0.0015

2nd, l=2h, h = 0.0008

(a)

0 0.5 1 1.5 2
x 10−3

0

0.5

1

1.5

2

2.5

3x 105

Displacement

R
ea

ct
io

n 
Fo

rc
e

 

 

4th, l=2h, h = 0.0015
4th, l=2h, h = 0.0008

(b)

Figure 4.12: Load-deflection curves of (a) the second order model with γ = 4.8 , (b)
the fourth order model with γ = 1.0, l0 = 2h, h = 0.0015, 0.0008 and 15274, 60931
nodes respectively.
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Figure 4.13: (a) Load-deflection curves of the second order method for different values
of l0, fixed value h = 0.0015 and γ = 4.8. (b) Load-deflection curves of the fourth order
model for different values of l0, fixed value h = 0.0015 and γ = 1.0.
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Figure 4.14: Close up around the crack path at the three stages of evolution.
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Three-dimensional tension test

A similar problem is now solved in three dimensions as is illustrated in Fig. 4.15. The
geometry and the boundary conditions are given in Fig. 4.15 as well. In order to avoid
rigid body motion, the line x = 0, y = 2.5 and the point x = 0, y = 2.5, z = 0.5 are
fixed. Numerical integration is applied on an unstructured background mesh of linear
tetrahedral elements. The results are depicted in Fig 4.16 for an effective nodal spacing
h = 0.06mm. The discretization is refined in an area where the crack is expected to
propagate in order to approximate the sharp limit case l0 → 0. Material parameters
have been selected as E = 109 and ν = 0.3, Gc = 100. The constant displacement
increments ∆u = 1.5 × 10−5mm, are applied for each step of computation. The crack
propagation path is illustrated in Figs. 4.16 and 4.17 . As it was expected, the crack
propagates in the symmetry path [105]. Figs. 4.18 and 4.19 show the load-deflection
curves for different discretization. Fig. 4.20 illustrate the load-deflection curves for
different values of Gc.

Figure 4.15: Geometry, loading and boundary condition for the three-dimensional
mode-I tension test.
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Figure 4.16: The crack path at the four stages of evolution.

Figure 4.17: Phase filed results on the cross section plane y = 2.5 to indicate crack
path inside the body.
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Figure 4.18: Load-deflection curves of the second order method with γ = 4.8, l0 = 0.414
and different refinement with 1661, 14453, 28177 number of nodes respectively.
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Figure 4.19: Load-deflection curves of the fourth order method with γ = 1.8, l0 = 0.414
and different refinement with 14453, 28177 number of nodes respectively.
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Figure 4.20: Reaction force-displacement curves for the fourth order model with h =
0.1, l0 = 0.414, γ = 1.8 and different values of Gc.

Single edge notched beam with initial crack

In this example we study a slanted crack propagation problem. The initial crack, all
relevant mechanical properties, boundary conditions and the dimensions are shown in
Fig. 4.21. We consider the regularization parameter, approximatively two times the
effective nodal spacing. The results are shown in Figs. 4.22, 4.23 and 4.24, for 148790
number of nodes and an effective nodal spacing h = 1mm. The discretization is refined
around the expected crack path. The constant displacement increments ∆u = 10−3mm,
are applied for each step of computation. The crack propagation path is illustrated in
Figs. 4.22, 4.23. In Fig. 4.23, the crack path for the second and fourth order model
is compared with the experimental result in [1]. The load displacement curves are
shown in Fig. 4.24 for both phase field models, XFEM [2] containing 46380 elements
and experimental results in [1].
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Figure 4.21: Geometry, loading and boundary condition for the three-dimensional Sin-
gle edge notched beam.

(a) (b)

Figure 4.22: The crack path at two different views.
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Figure 4.23: Crack path for the fourth and the second order phase field methods with
γ = 1.8 and γ = 4.8 respectively, compared with the experiments in [1].
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Figure 4.24: Reaction force displacement curve for point A, compared with [1, 2].

Non-planar crack growth

In this example, we consider a beam under bending which involves non-planar crack
growth. The beam dimensions and the boundary condition are shown in Fig. 4.25. The
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Figure 4.25: Side and top views of the beam with an initial crack for the non-planar
crack growth.

beam is notched at an angle α = 45◦ versus the x-axis, see Fig. 4.25. This example was
also studied with the extended finite element method in [113] and meshfree method
in [71]. They show that the crack surface, while propagating downwards, becomes
finally orthogonal to the xz-plane.

We study the phase field method with numerical integration of an unstructured
background mesh of 65456 tetrahedrons with the effective nodal spacing h = 0.0018mm
and l0 = 4h. Here also discretization is refined in an area where the crack is expected to
propagate. Fig. 4.26 illustrates the evolution of the crack front from a top view for the
fourth order phase field method with γ = 1.8. The crack grows downwards and becomes
orthogonal to the xz-plane. Fig. 4.27 shows the evolution of the crack front from a
side view. The results are in good agreement with the results obtained in [71, 113].
The acceptable results have been obtained in [71], for 570000 and 4400000 particles
(540000 and 4300000 stress points, respectively) and 65000 and 210000 particles for
adaptive scheme. Similar results are obtained for the second order phase field model
with γ = 4.8.
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Figure 4.26: Evolution of the crack front in the beam seen from the top, the maximum
and the minimum of phase field, i.e. v = 1 and v = 0 are shown.

(a)

(b)

Figure 4.27: The crack path at the different stages of evolution from a side view, the
maximum and the minimum of phase field, i.e. v = 1 and v = 0 are shown.





Chapter 5

Phase-field modeling of fracture
mechanics in thin shells

Generally, a shell body is a three dimensional structure which is thinner in one direction
compared to the other two directions. Shell structures are commonly found in nature,
see Fig. 5.1 for some examples. Although thin and light, they span over large areas,
and hold applied loads very effectively. With shell structures, nature has maximized
the ability to cover over large areas with a minimum amount of material. Man-made
structures inspired by nature, used this property to design thin structures which cover
a wide area and hold large externally applied loads. For example, in civil engineering,
thin shell structures are used for large roofs or elegant bridges and for the bodies of cars.
In aeronautical engineering, airplane bodies and ship hulls are also shell structures. The
thickness, curvature and of course the applied loads on shell structures play crucial roles
in their behavior.

The fundamental shell theories have been studied in several contexts, such as [114,
115]. However, as we mentioned in the introduction section, in most cases obtaining
a meaningful result from the analytical studies is impossible. During the last decades,
numerical methods such as finite element methods, were developed for the analysis
the mathematics model of shell. There are many challenges in the analysis of shell
structures, due to the variety of behaviors and the difficulties of having to consider
complex shells of arbitrary curvatures, material conditions, boundary supports, loading,
and in particular of small thickness. Various shell finite element methods have been
proposed by simply superimposing plate bending and plane stress membrane behaviors,
but they have a limited level of accuracy. Later on, meshfree methods have been
introduced to numerically model the shell structures. The smoothness of the shape
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functions in meshfree method helped overcome the C0 property of the finite element
method.

Dealing computationally with the Kirchhoff-Love theory is challenging because sec-
ond derivatives of the displacement field appear in the weak form, and therefore a
Galerkin method requires C1−continuous basis functions. This can be overcome by
discretizing the director field or introducing rotational degrees of freedom [116–118],
or by considering more elaborate variational formulations such as in discontinuous
Galerkin methods [119, 120]. Instead, here we focus on methods relying on smooth ba-
sis functions. Finite element methods with high order continuity have been proposed,
either based on subdivision surfaces [70, 121] or on isogeometric analysis [122–124].
The higher order continuity of the meshfree basis functions has also been exploited for
this purpose [61, 62], but since meshfree basis functions are defined in physical space,
these methods were applied to simple geometries with a single parametric patch. Re-
cently, nonlinear manifold learning techniques have been exploited to parametrize 2D
sub-domains of a point-set surface, which are then used as parametric patches and
glued together with a partition of unity [3, 79]. Here, we combine this methodology
with local maximum-entropy (LME) meshfree approximants [77, 125, 126] because of
their smoothness, robustness, and relative ease of quadrature compared with other
meshfree approximants. In this dissertation, we study a method introduced by Millan
and Arroyo to represent complex shell structures from a set of scattered points. Then,
we combine this methodology with phase field method in order to model realistic crack
in thin shell structures with complex geometry and topology.

Figure 5.1: Some thin shell structures are found in nature.
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(a) (b)

Figure 5.2: Tag Kasra: is a Sassanid-era Persian monument located near the modern
town of Salman Pak, Iraq. It is the only visible remaining structure of the ancient city
of Ctesiphon. The archway is the largest single-span vault of unreinforced brickwork
in the world. Picture from 1864 (a), picture from 2003 (b).

Figure 5.3: Building made of shell structures, Valencia aquarium.

5.1 Dimensionality Reduction

As computer technology becomes more sophisticated, research in different areas such
as engineering, astronomy, biology, and economics, must deal with increasingly large
sets of data. To overcome this problem, dimensionality reduction methods, also known
as manifold learning, have been developed. The goal of these methods to reduce the
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dimensionality of a data set in which there are a large number of interrelated vari-
ables, while retaining as much as possible the variation present in the data set. In
other words, for a given data set X = {x1, x2, ..., xN} ⊂ RD, find a lower dimen-
sional representation, Ξ = {ζ1, ζ2, .., ζN} ⊂ Rd, such that d ≤ D and captures the
content in the original data, according to some criterion. Generally, dimensionality
reduction methods are classified in linear and nonlinear categories. The most com-
mon linear technique to perform dimensionality reduction was introduced in 1901 by
Pearson [127]. It is also known by different names, such as Principal Components
or Hotelling Transform [128], Karhunen-Loève Transform [129, 130], Empirical Or-
thogonal Functions [131] and Proper Orthogonal Decomposition [132]. Here we will
refer to this method as Principal Component Analysis (PCA). A modern reference to
this subject is [133]. Multidimensional Scaling (MDS) is another linear dimension-
ality reduction technique. PCA and MDS have successfully shown their capabilities
to capture the Euclidean structure underlying data in many applications, but fail to
produce compact and useful representations in others, likely because of the presence
of strong nonlinear correlations. Nonlinear dimensionality reduction methods (NLDR)
such as, isometric mapping (Isomap), locally linear embedding (LLE) and some subse-
quent modifications of LLE, such as Hessian LLE [134], or the Modified LLE method
(MLLE)[135], have been developed over the last decades to address complex nonlinear
problems. Fig. 5.4 indicates the dimensionality reduction results of an unstructured set
of points sampling a swiss roll in 3D, by different method [3, 79]. The interested reader
is referred to [3, 79] for full details. In this dissertation we use nonlinear dimensionality
reduction method in the simulations to get more accurate results.

5.2 Manifold description from scattered points

To illustrate the method considered here for numerically representing surfaces defined
by a set of scattered points, we refer to Fig. 5.5. As noted in [136], a fundamen-
tal difficulty in defining basis functions and performing calculations on a surface, as
compared to open sub-sets in Euclidean space, is the absence in general of a single
parametric domain. A simple example is the sphere, which does not admit a single
singularity-free parametrization. Mesh-based methods, consisting of a collection of lo-
cal parametrizations from the parent element to the physical elements, do not have
any difficulty in this respect at the expense of reduced smoothness across the element
boundaries or the need for special techniques to recover inter-element smoothness. In
meshfree methods, such a natural parametric domain is not available, and the descrip-
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Figure 5.4: Swiss roll benchmark in dimensionality reduction. (A) Sampling in 3D by
an unstructured set of points. Two-dimensional embeddings obtained with PCA (B),
MLLE (C), and Isomap (D). Color is used to identify the location of the points. PCA
fails because the sampled manifold is not unfolded and the points collapse in a line [3].

tion of surfaces with a topology different to that of an open set in R2, such as a sphere
(A) or a set of connected pipes ( B), is a challenge. Even for surfaces homeomorphic
to open two-dimensional sets, such as that depicted in (C), the geometric complexity
can make it very difficult to produce well-behaved global parametrizations. For these
reasons, the method we follow here proceeds in four steps: (1) We first partition the
set of scattered points into subsets. (2) For each subset, the geometric structure of the
surface is detected by dimensionality reduction methods and its points are embedded
in 2D. (3) The 2D embedding then serves as a local parametric patch, and a local
parametrization of the surface using smooth meshfree LME approximants is defined.
(4) Finally, the different patches are glued together by means of a partition of unity.

Consider a smooth surface M embedded in R3 and represented by a set of (control)
points P = {P 1,P 2, . . . ,P N} ⊂ R3. The goal is to numerically represent M from P

and make computations on it. We consider another set Q = {Q1,Q2, . . . ,QM} ⊂ R3

with fewer point, typically a subset of P but not necessarily. We call the points of this
set geometric markers. For simplicity, we will denote the points in P and its associated
objects with a lower case subindex, e.g. P a, for a = 1, 2, . . . , N , and the geometric
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A B C

Figure 5.5: Three point-set surfaces that require partitioning for different reasons: (A)
and (B) for their non-trivial topology, and (C) for its complex geometry.

markers in Q and its associated objects with an upper case subindex, e.g. QA, for
A = 1, 2, . . . ,M .

We partition these geometric markers into L groups, we use the METIS library to
partition the data [137]. These L groups of geometric markers can be represented with
index sets Iκ, κ = 1, . . . , L with ∪L

κ=1Iκ = {1, 2, . . . ,M} and Iκ ∩ Iι = ∅ such that
κ ̸= ι. As it will become clear below, there is a one-to-one correspondence between
these groups of geometric markers and the local parameterizations of the surface, which
here we refer as patches.

We consider a Shepard partition of unity associated with the geometric markers.
Given a set of non-negative reals {βA}A=1,2,...,M , we define the Shepard partition of
unity with Gaussian weight associated to the set Q as

wA(x) = exp(−βA |x − QA|2)∑M
B=1 exp(−βB |x − QB|2)

. (5.1)

To obtain a coarser partition of unity representative of a partition, we aggregate the
partition of unity functions as

ψκ(x) =
∑

A∈Iκ

wA(x). (5.2)

These functions form a partition of unity in RD, and consequently also in M. We
consider the index sets of all control points influencing each patch, Jκ, with ∪L

κ=1Jκ =
{1, 2, . . . , N}, but now Jκ ∩ Jι ̸= ∅ due to the overlap between patch partition of unity
functions. Roughly speaking, these sets are {a | P a ∈ supψκ}, slightly enlarged so
that the patch parameterization is smooth on the boundary of the support of ψκ.
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For each patch through a nonlinear dimensionality reduction technique, the MLLE
method combined with the affine isometric correction, applied to the set of control
points Pκ = {P a}a∈Jκ ⊂ R3, we obtain a two-dimensional embedding of these points,
represented by the set Ξκ = {ξa}a∈Jκ ⊂ R2. The two-dimensional region defined
by these points is a convenient parametric space for the corresponding patch. It is
important to note that the embedded points are in general unstructured, and that,
although here d = 2, the methodology is applicable to higher dimensional embedded
manifolds unlike mesh based techniques.

The patch parametrizations often need to be smooth, here because of the require-
ments of the Kirchhoff-Love theory. We consider here LME basis functions. Then,
let pa(ξ) denote the LME approximants associated to the point-set Ξκ on a domain
Aκ ⊂ R2, a subset of the convex hull of the reduced node set conv Ξκ. We locally
parameterize the manifold in this patch as

ϕκ : Aκ −→ R3

ξ 7−→
∑

a∈Jκ

pa(ξ) P a.
(5.3)

Consider a function f over a surface M, f : M → R. The integral of this function
over the surface can be split into integrals over the patches invoking the partition of
unity ∫

M
f(x) dM ≃

L∑
κ=1

∫
Aκ

ψκ(ϕκ(ξ)) f(ϕκ(ξ)) Jκ(ξ) dξ, (5.4)

where Jκ =
√

det [(Dϕκ)TDϕκ] is the Jacobian determinant of the parameterization.
In this way, similarly to finite element methods, we have split the integral into local
contributions, which can be evaluated using local parameterizations. Each patch inte-
gral can be approximated by numerical quadrature on the local parametric space, for
instance we resort to Gauss quadrature on a support triangulation defined over Ξκ.

5.3 Thin shell model

In this section, we review the mechanics of thin shells [84, 138], based on a geometrically
exact formulation presented in [117, 139]. We restrict our attention to the Kirchhoff–
Love kinematical assumption of shells, which states that the material line orthogonal
to the middle surface in the undeformed configuration remains straight, unstretched
and always orthogonal to the middle surface during the deformations. Furthermore,
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we follow the usual convention for Latin and Greek indices, referring to Cartesian and
curvilinear coordinates, respectively (i.e. i = 1, 2, 3; α = 1, 2). A comma denotes
partial derivatives, subscripts refer to covariant components, and superscripts denote
contravariant components.

5.3.1 Kinematics of the shell

We consider a shell with a middle surface Ω, defined by ϕ which is a mapping from the
parametric space of R2, denoted by A , into Ω. Assume t is a field of unit vectors (a
field of directors). Thus, the thin shell body S ⊂ in three dimension can be described
by the pair (ϕ, t), see Fig. 5.6. Additionally, the subscript 0 denotes quantities in the
reference configuration, for instance ϕ0 parametrizes the reference middle surface. We
assume the thickness t of the shell to be uniform for simplicity, and also we assume
that the change in shell thickness after deformation is negligible. Then, the thin shell
body S is given by

S =
{

Φ ∈ R3| Φ = ϕ(ξ1, ξ2) + ξ t(ξ1, ξ2), − t

2 ≤ ξ ≤ t

2 , (ξ1, ξ2) ∈ A
}
, (5.5)

where A ⊂ R2 is the parametric space for the middle surface. Hence, the configuration
Φ is a mapping from a parametric domain A × [−t/2, t/2] into R3. The coordinates
{ξ1, ξ2, ξ3} (where ξ = ξ3) describe this parametric domain, which corresponding global
Cartesian basis of these coordinates is {Ek}. The area element of the middle surface
can be computed as dΩ = j̄ dξ1dξ2, where j̄ =

∣∣∣ϕ,1 × ϕ,2

∣∣∣.

ϕ

A

ξ2

ξ1

ξ}ϕ0

t0 t

Ω ΩΩ Ω0

ϕ ◦ϕ−1
0

Figure 5.6: Reference and the deformed configurations of the middle shell surface.

The convective basis vectors gi can be defined by the tangent map as

∇Φ = ∂Φ
∂ξi

⊗ Ei = gi ⊗ Ei,
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with gα = ∂Φ
∂ξα = ϕ,α + ξ t,α and g3 = ∂Φ

∂ξ
= t. The covariant components of the metric

tensor in convected coordinates are given by gij = gi · gj. The difference between the
metric tensors of the undeformed and deformed configurations of the shell is measured
by the Green–Lagrange strain tensor, i.e.

Eij = 1
2 (gij − g0ij) = 1

2(Φ,i · Φ,j − Φ0,i · Φ0,j).

According to the Kirchhoff–Love theory of thin shells, we constrain the deformed di-
rector t to coincide with the unit normal of the deformed middle surface of the shell,
i.e.

t =
ϕ,1 × ϕ,2

j̄
, ϕ,α · t = 0, |t| = 1, t · t,α = 0. (5.6)

We assume that the deformation field for the shell is restricted to account only for
small displacement. For more details, refer to [3, 79] . With the Kirchhoff–Love
and the small deformation hypothesis, the only remaining non-zero components of the
Green–Lagrange strain tensor are

Eαβ = εαβ + ξ ραβ, (5.7)

where εαβ = 1
2(ϕ,α · ϕ,β − ϕ0,α · ϕ,β) is the membrane strain tensor and ραβ = ϕ,α ·

t,β − ϕ0,α · t0,β is a tensor that measures the bending or change in curvature of the
shell. Thus, the Kirchhoff–Love kinematic assumption leads to a formulation of the
shell exclusively in terms of the middle surface. We refer to the Appendix C for a
detailed computation of the Green–Lagrange strain tensor.

5.3.2 Thin shell potential energy

The potential energy of an elastic thin shell body under Kirchhoff–Love assumptions
can be expressed by the functional

Π[u] =
∫

Ω0
W(u) dΩ0 + Πext[u], (5.8)

where Ω0 is the reference middle surface of the thin shell body, W is an internal energy
density per unit area, and Πext is the potential energy of the external loads.

For an isotropic Kirchhoff–St. Venant elastic material the internal energy density is
given by:

W = 1
2C

αβγδ

(
t εαβεγδ + t3

12ραβργδ

)
,
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with
Cαβγδ = E

(1 − ν2)

[
νaαβ

0 aγδ
0 + 1

2(1 − ν)
(
aαγ

0 aβδ
0 + aαδ

0 a
βγ
0

)]
,

where we have introduced the first fundamental form aαβ = ϕ,α · ϕ,β expressed in
convected components, with aαγ

0 (a0)γβ = δα
β . E is the Young’s modulus, and ν is the

Poisson’s ratio [3, 79].
The external potential energy expressed in the reference middle surface is stated as:

Πext[u] = −
∫

Ω0
q · u dΩ0 −

∫
∂Ω0

h · u dη0,

where q is the external body load per unit area, h the forces per unit length applied
on the boundary of the middle surface, and dη0 is the line element of the boundary of
the middle surface.

5.3.3 Phase-field model for thin shell structures

Let us consider a thin shell model that assumes the phase-field to be constant across
the thickness. The total potential energy functional for a thin shell body with crack
(elastic and surface energies) is given by

Π[u, υ] =
∫

Ω0
(υ2 + ϵ)W(u) dΩ0 +

∫
Ω0
Gc t

[
(1 − υ)2

4ℓ + ℓ|∇υ|2
]
dΩ0 + Πext[u], (5.9)

where υ is phase-field describing uniform cracks through the thickness, Gc is the critical
energy release rate, or surface energy, in Griffith’s theory, and ℓ is a positive regular-
ization constant to regulate the size of the fracture zone. As ℓ tends to zero, the
phase-field approximation of the fracture energy converges to the fracture energy.

For an accurate discretized surface energy, the nodal spacing of the discretization
h should be smaller than the regularization parameter ℓ , i.e. h/ℓ ≪ 1. Moreover,
the crack area, which is controlled by ℓ, should be smaller than the domain area, in
order to approximate the sharp-interface model. Numerical experiments illustrate that
setting 2h ∼ ℓ still gives reasonable results. However, the computed surface energy will
be slightly overestimated.

The natural boundary conditions are used for υ. The crack is assumed to be traction-
free. In order to satisfy this condition the internal energy density W is multiplied by
the jump set function (υ2 + ϵ). The parameter ϵ ≪ 1 is introduced to avoid the
singularity of disappearing internal energy density when the phase-field parameter is
zero. To avoid crack healing, we impose υi 6 υi−1 constraint on phase field solution of
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each step. Here υi−1 and υi are the phase-field parameters at step i− 1 and i [109].

The first variation of the functional Π[u, υ] is given by

δΠ = δΠint + δΠext = 0.

Since the variations δu and δυ are independent, the above expression leads to two
decoupled equations

δΠ[u, υ, δu] =
∫

A
(υ2+ϵ)Cαβγδ

(
t εγδ(u) εαβ(δu) + t3

12 ργδ(u) ραβ(δu)
)
j̄0 dξ

1dξ2+δΠext[δu] = 0,

(5.10)

δΠ[u, υ, δυ] =
∫

A
2υδυW(u) j̄0 dξ

1dξ2+2
∫

A
tGc

(
−(1 − υ)δυ

4ℓ + ℓ∇υ∇(δυ)
)
j̄0 dξ

1dξ2 = 0,

(5.11)
with the external virtual work

δΠext[δu] = −
∫

A
q · δu j̄0 dξ

1dξ2 −
∫

∂A
h · δu

∥∥∥ϕ0,t

∥∥∥ dηξ. (5.12)

With the strategy presented in Section 5.2, we can split the expressions stated by
the principle of virtual work into partition contributions, that is

δΠ[u, υ, δu] =
L∑

κ=1

∫
Aκ

[
(υ2 + ϵ)Cαβγδ

(
t εγδ(u) εαβ(δu) + t3

12 ργδ(u) ραβ(δu)
)
j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2

−
L∑

κ=1

∫
Aκ

[
q · δu j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2 −
L∑

κ=1

∫
∂Aκ

[
h · δu

∥∥∥ϕ0,t

∥∥∥]
κ

(ψκ ◦ ϕ0) dηξ = 0,

(5.13)

and

δΠ[u, υ, δυ] =
L∑

κ=1

∫
Aκ

[(
2W(u) + tGc

2ℓ

)
υ δυ j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2

+
L∑

κ=1

∫
Aκ

2
[
tGc ℓ

(
∂υ

∂ξα
gαβ ∂(δυ)

∂ξβ

)
j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2

−
L∑

κ=1

∫
Aκ

[
tGc

2ℓ δυ j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2 = 0,

(5.14)

such that gαγgγβ = δα
β . Here, [·]κ means that the expression within the brackets is

evaluated with the κ-th partition approximation of the undeformed middle surface.
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5.3.4 Galerkin discretization

We consider now the discrete equilibrium equations for a shell whose middle surface
in the reference configuration is numerically represented with the procedure described
before, in terms of a set of nodes P0 = {P 01, . . . ,P 0N}, and a set of L patches. We
follow a total Lagrangian approach, with the same parameter space and basis functions
for the reference and deformed configurations. Let ϕ0κ be the reference configuration
mapping for the middle surface of a specific part κ, defined over the parametric space
Aκ

ϕ0κ(ξ) =
∑

a∈Jκ

pa(ξ) P 0a, (5.15)

We represent the deformed configuration in a given partition κ as

uκ(ξ) =
∑

a∈Jκ

pa(ξ) ua, (5.16)

and the approximation of the phase-field parameter, υ, as

υκ(ξ) =
∑

a∈Jκ

qa(ξ) υa, (5.17)

where pa(ξ) and qa(ξ) are LME basis functions. Virtual displacements and virtual
phase-field parameters are represented likewise. A simple calculation yields the Galerkin
stiffness matrix. The interaction between nodes a and b is given by

Kab
u =

L∑
κ=1

∫
Aκ

[
(υ2 + ϵ)

(
tM aT CM b + t3

12BaT CBb

)
j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2,

where M a and Ba are the membrane and bending strain-displacement matrices for
the a-th node. For a specific patch such as A, we have

Ma
ij = M a

i · ej and Ba
ij = Ba

i · ej,
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where
M a

α = pa,α ϕ0,α,

M a
3 = pa,2 ϕ0,1 + pa,1 ϕ0,2,

Ba
α = −pa,αα t0

+j̄0
−1[(ϕ0,αα × ϕ0,2)pa,1 + (ϕ0,1 × ϕ0,αα)pa,2]

+j̄0
−1(t0 · ϕ0,αα)

[
(ϕ0,2 × t0)pa,1 + (t0 × ϕ0,1)pa,2

]
,

Ba
3 = −2 pa,12 t0

+2 j̄0
−1[(ϕ0,12 × ϕ0,2)pa,1 + (ϕ0,1 × ϕ0,12)pa,2]

+2 j̄0
−1(t0 · ϕ0,12)

[
(ϕ0,2 × t0)pa,1 + (t0 × ϕ0,1)pa,2

]
,

Note that M a,Ba ∈ R3×3 and the repeated indices in the expressions for M a
α and Ba

α

do not imply summation, see [79] for a detailed description. The force contribution of
the a-th node is

fa
u =

L∑
κ=1

∫
Aκ

[
q pa j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2 +
L∑

κ=1

∫
∂Aκ

[
h pa

∥∥∥ϕ0,t

∥∥∥]
κ

(ψκ ◦ ϕ0) dηξ.

Finally, the phase-field stiffness matrix is

Kab
υ =

L∑
κ=1

∫
Aκ

[(
2W(u) + tGc

2ℓ

)
qa qb j̄0 + 2 ℓ tGc qa,α qb,β g

αβ j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2,

(5.18)
and the right hand side for phase-field is

fa
υ =

L∑
κ=1

∫
Aκ

tGc

2ℓ
[
qa j̄0

]
κ

(ψκ ◦ ϕ0) dξ1dξ2. (5.19)

The Dirichlet displacement and rotation boundary conditions are imposed with La-
grange multipliers, the interested reader is referred to [32, 79, 140, 141].

5.4 Numerical results

5.4.1 Single edge notch tensile

To get a better understanding of the proposed methodology, we consider a well studied
benchmark example of 2D solid under plane stress state [142, 143]. The plane is a
square of edge length L = 1 mm, under pure tension with initial crack (see sketch in
Fig. 5.7). The crack is replaced at the middle of the plane edge with length L/2 and
width of 2h. The elastic constants are chosen as E = 109 N/mm2 and ν = 0.3, the
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critical energy release rate as Gc = 1 N/mm and ϵ = 10−6. The constant displacement
increments ∆u = 0.5 × 10−6 mm, are used for each step of computation.

The results are indicated in Figs. 5.8, 5.9, 5.10 and 5.11 for a uniform discretization
with nodal spacing h = 0.005. The crack path is illustrated in Fig. 5.8. As it was
expected , the crack propagates in a symmetry path [105]. For fixed regularization
parameter ℓ = 0.05 mm, the influence of the different values of γ for the LME ap-
proximants, is analyzed. Fig. 5.9 depicts the load-deflection curves for FEM and LME
with different values of γ. The same results are observed for LME with γ ≥ 1.8 and
FEM, while γ ≤ 0.8 gives less accurate result, due to the wider and smoother LME
shape functions. Therefore, the LME results converge to the standard FEM results
as γ increases [77]. The subsequent study analyzes the influence of the critical en-
ergy release rate Gc. The energy release rate, G, is the rate of change in potential
energy with crack area. The crack extension occurs when G reaches a critical value
Gc. Hence, as Gc decreases the material are more brittle and reaction force is lower.
Figs. 5.10, 5.11 illustrate the load-deflection curves for different values of Gc, γ = 1.8,
ℓ = 0.05 and ℓ = 0.025. It is obvious from these figures as Gc increases the area
under the load-deflection curve appends. Fig. 5.12 indicates load-deflection curves for
different discretization with nodal spacing h = 0.0204, 0.0101, 0.005. In this figure for
fine mesh, h ≤ 0.0101, the results are mesh-independent, which conform the results
obtained by [105].

Figure 5.7: Square plate of side length L = 1 mm with initial crack of length L/2
under pure tension.
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Figure 5.8: (Left) initial phase-field parameter values with initial crack width of 2h,
(right) phase-field solution of the plate for the final state after full breaking.
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Figure 5.9: Load-deflection curves for FEM and LME with γ = 0.8, 1.8 and 4.8.
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Figure 5.10: Load-deflection curves for h = 0.005, Gc = 1.0, 1.5, 2.0 N/mm, ℓ =
0.05 mm and γ = 1.8.
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Figure 5.11: Load-deflection curves for h = 0.005, Gc = 1.0, 1.5, 2.0 N/mm, ℓ =
0.025 mm and γ = 1.8.
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Figure 5.12: Load-deflection curves for h = 0.0204, 0.0101, 0.005, Gc = 1.0 N/mm,
ℓ = 0.05 mm and γ = 1.8.

5.4.2 Connected pipes pulling

In this example we show the flexibility and robustness of the present methodology to
deal with a thin shell of complex topology and complex crack path. Figure 5.13 shows
the surface, consisting of a set of six connected open pipes. The boundary curve at the
bottom is clamped, whereas the top boundary curve is incrementally displaced in the
upward (0, 0, 1) direction. Material parameters have been selected as E = 107 N/mm2

and ν = 0.3, Gc = 1 N/mm, while the thickness is t = 0.005 mm. The discretization
of the geometry (geometric markers) and the control points consists of two arrange-
ments of 25668 and 100380 unstructured set of points respectively. The original coarse
point-set has been obtained from the MATLAB central file exchange and subsequently
subdivide it through Loop’s subdivision algorithm by using Paraview [144]. The phase
field is represented as a colormap on the reference configuration, see Figs. 5.14A,C.
Figures 5.14B,D shows the physical deformation obtained, which has been amplified
by a factor of 20 to give a better idea of the resulting displacements. Due to the
nonlinearity of the model, we observe a symmetry-breaking solution.
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Figure 5.13: Sketch for the brittle thin shell problem. (A) Material and geometrical
parameters describing a set of six connected open pipes. (B) The prescribed boundary
conditions and the applied incremental displacement.
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A

C

B

D

Figure 5.14: Selected snapshots of the deformation process of a brittle thin shell with
complex topology. The boundary curve of the bottom pipe is clamped and the top
boundary curve is incrementally displaced in the upward (0, 0, 1) direction. The process
has been performed without an initial crack. (A,C) Phase field as colormap in the
reference configuration for two selected imposed displacements of the top boundary
curve, just before the fracture (d = 0.0055) and for the final imposed displacement,
d = 0.01. (B,D) Deformed configurations for two selected instants, the deformation
field has been magnified by 20.





Chapter 6

Conclusions and future work

6.1 Contributions

We summarize here the most significant contributions of this work:

1. In the first part of this dissertation, we have developed a local maximum entropy
approximation scheme for fracture using enrichment functions. The LME shape
functions are non-negative which improves stability, and they possess a weak Kro-
necker delta property which makes it easy to impose the boundary conditions.
With a fixed area (geometric) enrichment, optimal convergence is obtained. The
LME basis functions are in general not polynomials but rather particle-based
smooth functions, whose support is dictated by a non-dimensional parameter γ.
When γ decreases, the LME shape functions have better approximation proper-
ties compared to standard FEM shape functions, but the size of their support
increases. Hence, accurate numerical integration using standard Gauss quadra-
ture requires a greater number of function evaluations. We conclude that there
is an optimal value of γ of around 1.8 that maximizes the accuracy in relation to
computational cost.

2. For computation of stress intensity factors, XLME method is competitive in
terms of costs compared to XFEM. Very likely, it is possible to improve the
computational efficiency further.

3. In the second part, we introduced phase field method to use in conjunction with
smooth approximants as LME. We observed that phase field method reduces the
algorithmic complexity of the implementation, especially in three dimensional
problems. In contrast to discrete methods which require to numerically track
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the discontinuities in the displacement field, the phase field methods provide a
continuous representation of a crack surface. We also observed that extending
2D problems to 3D is straightforward for the phase field method.

4. We have developed the fourth order phase field method, the aim is to increase
the rate of convergence, and improve the accuracy and efficiency.

5. We compared the second and the fourth order phase field models for LME
method. The fourth order phase field model gives more accurate results with
lower γ and sharper crack simulation. This model lets us use smoother shape
functions with finer length scale parameter. As explained in this dissertation,
the smoothness of LME shape functions depends on parameter γ. When the pa-
rameter γ decreases, the LME shape functions differ from standard FEM shape
functions and the locality decreases. Hence, these shape functions approximate
smooth functions. We have also shown that both the second and fourth order
phase field models are capable of capturing complex crack behavior in three di-
mensions.

6. We observed that the length scale parameter of the phase field model, is problem
dependent. However choosing 4h ≤ l0 gives almost reliable results.

7. We conclude that there is an optimal value of γ ≤ 1.8 for the fourth order phase
field model and γ ≥ 4.8 for the the second order phase field model in use with
the meshfree LME approximation, that maximizes the accuracy.

8. The advantage of phase field models over the XLME that we don’t need to track
the crack path and compute stress intensity factors to predict the crack path. So,
the computer’s code is much easier than XLME. However, XLME method gives
more accurate results.

9. The higher order continuity of the meshfree LME approximation allows to directly
solve the fourth-order phase field equations without splitting the fourth-order
differential equation into two second order differential equations.

10. In contrast to the at least quadratic NURBS–formulation [110], we employ only
linear basis. In FEM, Hughes [111] have shown for the fourth order PDEs, at
least a quadratic basis is required. However, a linear LME basis was sufficient to
obtain excellent results for Kirchhoff–Love thin shells (also fourth order PDE).
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11. We have extended the methodology proposed in [3] to model fracture in Kirchhoff-
Love thin shell bodies described by surface of complex geometry and topology.
We propose here treating fracture with a phase- field model and discretizing the
coupled thin-shell/phase-field equations. We developed this method for brittle
material and analyzed this model for a structure with complex geometry and
topology. Simulations have shown that the onset of crack propagation in the
phase-field model can be linked to the energy release rate reaching the critical
value Gc.

6.2 Open lines for research

We next mention some open ideas for research derived from the work performed:

1. In XLME method, we plan to investigate the development of an efficient inte-
gration scheme, goal-oriented adaptivity for the parameter γ and the enrichment
radius, as well as methods to improve the condition number of the stiffness ma-
trix.

2. The proposed XLME approximation also shows a lot of potential for other prob-
lems which will be examined in the future, such as crack growth and fracture in
thin shell bodies.

3. A Γ-convergence proof for the fourth order model has not yet been established,
see Appendix B.

4. Since the LME shape functions are "approximants" not "interpolants", the irre-
versibility conditions for the phase filed model need to be improve.

5. To model fracture in Kirchhoff- Love thin shell bodies, we have used the second
order phase field model with γ ≥ 4.8 to approximate the crack surface. It is
noteworthy in this work that we have used different values of the LME aspect
parameter γ, for both phase-field and thin shell model. Since, the numerical
solutions calculated for linear and nonlinear thin shell problems involving high
order derivatives have shown to be very accurate when the locality parameter is
selected within the range 0.6 ≤ γ ≤ 1 (Millan et al., 2011, 2012) [3, 79]. We
observe that using similar parameter γ, for the second order phase-field and thin
shell model (equal 0.6 ≤ γ ≤ 1) leads to less accurate results for phase-field.
Additionally, different parameters γ make impossible to obtain right results for
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mode II, due to connection between shape functions on both sides of crack. The
future work is to use equal values of the smoothness LME parameter γ for both
problems by introducing the fourth order phase-field model to use in Kirchhoff-
Love thin shell structures.

6. A comparison such as the computation cost, the complexity of the algorithms
and the accuracy should be done between XLME approximants and phase field
method to model fracture in Kirchhoff- Love thin shell bodies with complex
geometry and topology.

7. In this work, we assumed that the phase field parameter is uniform through the
thickness for the coupled thin-shell/phase-field equations. The future work is to
consider nonuniform phase field parameter through the thickness.

8. In the phase field model, the energy is released due to fracture in both tension
and compression. This limits the application of the presented model to special
problems. In the future, we will separate the positive and the negative part of
the stored energy based on the spectral decomposition of the strain tensor [105].
We also plan to apply this feature to thin shell structures with fracture.



Appendix A

Derivatives of the LME shape
functions

Here, we calculate the derivatives of the local maximum entropy approximants. We
denote spatial gradients of scalar functions by ∇ , whereas for vector-valued functions
we denote the matrix of partial derivatives by Dy(x). The symbol ∂ denotes partial
differentiation. We suppose the parameter β is constant, as have been used in this
work. Consider the following functions

fa(x,λ) = −βa|x − xa|2 + λ · (x − xa) (A.1)

Z(x,λ) = ΣN
i=1exp[fi(x,λ)] (A.2)

pa(x,λ) = exp[fa(x,λ)]
Z(x,λ) (A.3)

r(x,λ) = ∂λ log Z(x,λ) (A.4)

r(x,λ) = ΣN
i=1exp[fi(x,λ)](x − xi)

ΣN
i=1exp[fi(x,λ)] = ΣN

i=1pi(x,λ)(x − xi) (A.5)

J(x,λ) = ∂λ∂λ log Z(x,λ) (A.6)

Calculating the derivative of (A.4) respect to λ and arrange the terms gives

J(x,λ) = ΣN
i=1pi(x,λ)(x − xi) ⊗ (x − xi) − r(x,λ) ⊗ r(x,λ) (A.7)
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For simplicity we consider a fix vector-valued function of λ. We show this function
by λ∗ and the associated functions for this valued function by (.)∗, for example p∗

a, f
∗
a .

In fact λ∗ is the unique maximizer of − log Z(x,λ). Our aim is to compute ∇p∗
a.

Applying ∇ on equation (A.3) and considering equations (A.2) and (A.3) and simple
calculations give

∇p∗
a = p∗

a∇f ∗
a − p∗

aΣN
i=1p

∗
i ∇f ∗

i (A.8)

By the chain rule, we have

∇f ∗
a = −2βa(x − xa) + λ∗ + (x − xa)Dλ∗ (A.9)

The only term that is not available explicitly is Dλ∗. Since r∗ = 0, we have

0 = Dr∗ = (∂r

∂x
)∗ +Dλ∗(∂r

∂λ
)∗ (A.10)

from (A.6)
(∂r

∂λ
)∗ = J∗

and from (A.4) and (A.3) we have

(∂r

∂x
)∗ = −Jβ + I

Jβ = 2ΣN
i=1p

∗
i (x,λ)(x − xi) ⊗ (x − xi)

Dλ∗ = (Jβ − I)(J∗)−1

We finally get the first spatial derivative of the shape functions as

∇p∗
a = p∗

a[rβ − Ma(x − xa)] (A.11)

rβ = 2Σiβip
∗
i (x − xi), Ma = (2βaI −Dλ∗)

The second spatial derivative of the shape functions or Hessian, is denoted by (Hpa)∗

and computed as follow. By applying ∇ on equation (A.8), we have

(Hpa)∗ = ∇p∗
a ⊗ (∇f ∗

a − Σip
∗
i ∇f ∗

i ) + p∗
a((D∇fa)∗

−Σip
∗
i (D∇fi)∗) − p∗

aΣi∇p∗
i ⊗ ∇f ∗

i (A.12)
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(Hpa)∗ = p∗
a[rβ − Ma(x − xa)] ⊗ [rβ − Ma(x − xa)]

+2p∗
a(Σiβip

∗
i − βi)I + p∗

aD
2λ∗(x − xa)

−p∗
arβ ⊗ rβ + p∗

aΣip
∗
i Mi(x − xi) ⊗ Mi(x − xi) (A.13)

Using the fact that D2r = 0, we obtain

D2λ∗(x − xa) = rβ ⊗ ja + ja ⊗ rβ + (rβ · ja)I
−Σip

∗
i ∆aiMi(x − xi) ⊗ Mi(x − xi) (A.14)

∆ai = (x − xi) · (J∗)−1(x − xa), ja = (J∗)−1(x − xa)

After replacing and arranging the terms we have

(Hpa)∗ = p∗
a[rβ − Ma(x − xa)] ⊗ [rβ − Ma(x − xa)]

+2p∗
a(Σiβip

∗
i − βi)I

+p∗
a[rβ ⊗ rβ + rβ ⊗ ja + ja ⊗ rβ + (rβ · ja)I]

−p∗
aΣip

∗
i (1 + ∆ai)Mi(x − xi) ⊗ Mi(x − xi) (A.15)





Appendix B

The Γ-convergence approximation
conjecture of De Giorgi model

Definition 1. (Γ-convergence).Let X be a topological space, we say that a sequence
functional fj0 : X → R+, j0 > 0, Γ-converges in X to f : X → R+ if for all x ∈ Xwe
have

(i) (lim inf inequality) for every sequence (xj0) ∈ X converging to x ∈ X as j0 → 0

f ≤ lim inf
j0→0

fj0(xj0); (B.1)

(ii) (lim sup inequality) there exists a sequence (xj0) ∈ X converging to x ∈ X such
that

f ≥ lim sup
j0→0

fj0(xj0); (B.2)

The function f is called the Γ-limit of (fj0 ), and we write f = Γ − limj0→0 fj0 .

Theorem 4. If fj0 Γ-converges to f and xj0 minimizes fj0 over X, then every cluster
point of (xj0) minimizes f over X.

Γ-convergence of the second order phase filed model for the brittle fracture in linear
elasticity, has been proved in [52, 145, 146]. This implies that the minimizing solution to
Γl0 will converge to a minimizing solution of Γ as l0 goes to zero. In fact, the minimizing
solution of Γ as l0 converge to zero is the total potential energy for Griffith’s theory.

It was proved in [147, 148], the high order correction of the Mumford–Shah image
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model – the Mumford–Shah–Euler image functional

Fl = α

c1

∫
Ω
[l | ∇v |2 +w(v)

l
]dV + β

c2

∫
Ω
[2∆v − w(v)′

l2
]2dV, (B.3)

Γ−converge to

Γ(Ω) =
∫

Ω
(α + βκ2)dV, (B.4)

as l → 0. Here α and β are positive weights, c1, c2 are positive constants, w(v) is the
double-well potential function and κ is the contour curvature.



Appendix C

The Green–Lagrange strain tensor
for Kirchhoff–Love assumptions

Consider
Eij = 1

2 (gij − g0ij) = 1
2(Φ,i · Φ,j − Φ0,i · Φ0,j). (C.1)

By substituting Φ = ϕ(ξ1, ξ2) + ξ t(ξ1, ξ2) into above equation we have

Eαβ = εαβ + ξ ραβ + (ξ)2 ϑαβ (C.2)

Where
εαβ = 1

2(ϕ,α · ϕ,β − ϕ0,α · ϕ0,β) (C.3)

ραβ = ϕ,α · t,β − ϕ0,α · t0,β (C.4)

ϑαβ = 1
2(t,α · t,β − t0,α · t0,β) (C.5)

for α, β = 1, 2.
Eα3 = 1

2{ϕ,α · t + t,α · t − ϕ0,α · t0 − t0,α · t0}

E33 = 1
2{t · t − t0 · t0}

considering the condition (5.6), we get

Eα3 = 1
2{ϕ,α · t + t,α · t}

E33 = 1
2{t · t − 1}
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So, εα3 = 1
2ϕ,α · t and ε33 = 1

2(t · t − 1) and ρα3 = 1
2t,α · t.

•εαβ is the membrane strain tensor, which measures the in-plane deformation of the
surface. The components εα3 measure the shearing of the director t0 and the component
ε33 measures the stretching of the director t0.

•The tensor ραβ measure the bending or change in curvature of the shell. ρα3

measures the shearing originated from the director elongation.
•The in-plane tensor ϑαβ is exclusively related to changes of the middle surface

directors.
Considering the Kirchhoff–Love theory of thin shells, we have

t =
ϕ,1 × ϕ,2

j̄
, ϕ,α · t = 0, |t| = 1, t · t,α = 0.

Hence, we have
εα3 = ε33 = ρα3 = 0

So, the only nonzero components of strain tensor are on the mid–surface of shell.

C.1 Equilibrium configuration of thin shells

The potential energy of an elastic shell body with internal energy density W can be
expressed by the functional

Π[u] =
∫

S0
W (u) dV0 + Πext[u],

where Πext is the potential energy of the external loads. We consider an isotropic
Kirchhoff–St. Venant elastic material, with an internal energy density expressed as
[149]

W = 1
2C

ijklEijEkl,

where Cijkl are the contravariant components of the elasticity tensor. For thin shell
bodies, the Green-Lagrange tensor components are commonly retained up to first order
in t, see Equation (5.7), and the effect of curvature on the configuration Jacobian away
from the middle surface is neglected, that is j0/j̄0 = 1 (see [117, 139]). Assuming that
the elasticity tensor does not vary trough the thickness, the internal energy density can
be integrated through-the-thickness as follows:

Π[u] =
∫

Ω0

∫ t/2

−t/2
W (u)j0

j̄0
dξdΩ0 + Πext[u],
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resulting in an internal energy density per unit area

W = 1
2

∫ t/2

−t/2
CαβγδEαβEγδ

j0

j̄0
dξ (C.6)

with
Cαβγδ = E

(1 − ν2)

[
νaαβ

0 aγδ
0 + 1

2(1 − ν)
(
aαγ

0 aβδ
0 + aαδ

0 a
βγ
0

)]
,

where aαγ
0 (a0)γβ = δα

β , E is the Young’s modulus, and ν the Poisson’s ratio.

By substituting Equation (C.2) into the Equation (C.6) and consistent with the thin
shell assumption, and neglecting higher order terms of t, we have

W ≃ 1
2C

αβγδ

(
tεαβεγδ + t3

12ραβργδ

)
.

Thus, the internal potential energy can be written as an integral over the reference
middle surface

Πint[u] =
∫

Ω0
W(u) dΩ0.

C.2 Small displacements

We assume that the deformation field for the shell is restricted to small deformation
theory or small displacement theory. Then, if the displacement vector of the middle
surface of the shell is defined as ϕ = u + ϕ0, the linear membrane components of the
middle surface of the shell can be written up to first order in u in the form

εαβ = 1
2(ϕ0,α · u,β + ϕ0,β · u,α + u,α · u,β),

By considering that u,α · u,β = 0, then we have

εαβ = 1
2(ϕ0,α · u,β + ϕ0,β · u,α).

From Section 5.3, with the Kirchhoff–Love assumptions and defining the displacement
vector ϕ = u + ϕ0, the linear bending strain tensor components in Equation (C.4) can
be written as

ραβ = ϕ0,αβ · t0 − (ϕ0,αβ + u,αβ) · t, (C.7)
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where
t =

ϕ,1 × ϕ,2

j̄
=

(u,1 + ϕ0,1) × (u,2 + ϕ0,2)
j̄

,

t = j̄−1 (ϕ0,1 × ϕ0,2 + u,1 × ϕ0,2 + ϕ0,1 × u,2 + u,1 × u,2).

Considering up to first order in u, j̄−1 in the reference configuration is written in the
form

j̄−1 ≈ j̄0
−1 − j̄0

−2
t0 · (u,1 × ϕ0,2 + ϕ0,1 × u,2),

which allows us to calculate the normal director increment ∆t = t − t0 as

∆t ≈ j̄0
−1 (u,1 × ϕ0,2 + ϕ0,1 × u,2) − j̄0

−1 [
t0 · (u,1 × ϕ0,2 + ϕ0,1 × u,2)

]
t0.

Considering equations: v = u,1 × ϕ0,2 + ϕ0,1 × u,2 and a × (b × c) = b(a · c) − c(a · b)
the normal director increment takes a form

∆t = j̄0
−1 [v(t0 · t0) − (t0 · v)t0] = j̄0

−1 [t0 × (v × t0)] .

Replacing t by t0 + ∆t in Equation (C.7), rearranging terms, applying the identities
a · (b × c) = c · (a × b) = b · (c × a) and a × b = −b × a, and omitting higher-order
terms in u, the bending strains can be expressed as

ραβ = −t0 · u,αβ + j̄0
−1 [(ϕ0,αβ × ϕ0,2) · u,1 + (ϕ0,1 × ϕ0,αβ) · u,2

]
+j̄0

−1(t0 · ϕ0,αβ)
[
(ϕ0,2 × t0) · u,1 + (t0 × ϕ0,1) · u,2

]
.

(C.8)
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