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Abstract

Briefly, the two basic questions that this research is supposed to answer
are:

1. How much fiber is needed and how fibers should be distributed through
a fiber reinforced composite (FRC) structure in order to obtain the
optimal and reliable structural response?

2. How do uncertainties influence the optimization results and reliabil-
ity of the structure?

Giving answer to the above questions a double stage sequential optimiza-
tion algorithm for finding the optimal content of short fiber reinforcements
and their distribution in the composite structure, considering uncertain de-
sign parameters, is presented. In the first stage, the optimal amount of short
fibers in a FRC structure with uniformly distributed fibers is conducted
in the framework of a Reliability Based Design Optimization (RBDO)
problem. Presented model considers material, structural and modeling
uncertainties. In the second stage, the fiber distribution optimization (
with the aim to further increase in structural reliability) is performed by
defining a fiber distribution function through a Non-Uniform Rational B-
Spline (NURBS) surface. The advantages of using the NURBS surface
as a fiber distribution function include: using the same data set for the
optimization and analysis; high convergence rate due to the smoothness
of the NURBS; mesh independency of the optimal layout; no need for
any post processing technique and its non-heuristic nature. The output of
stage 1 (the optimal fiber content for homogeneously distributed fibers) is
considered as the input of stage 2. The output of stage 2 is the Reliabil-
ity Index (β ) of the structure with the optimal fiber content and distribu-
tion. First order reliability method (in order to approximate the limit state
function) as well as different material models including Rule of Mixtures,
Mori-Tanaka, energy-based approach and stochastic multi-scales are im-
plemented in different examples. The proposed combined model is able
to capture the role of available uncertainties in FRC structures through a
computationally efficient algorithm using all sequential, NURBS and sen-
sitivity based techniques. The methodology is successfully implemented
for interfacial shear stress optimization in sandwich beams and also for op-
timization of the internal cooling channels in a ceramic matrix composite.



Finally, after some changes and modifications by combining Isogeometric
Analysis, level set and point wise density mapping techniques, the compu-
tational framework is extended for topology optimization of piezoelectric
/ flexoelectric materials.
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Chapter 1

Introduction

1.1 Motivation
Fiber Reinforced Composite (FRC) materials have been heavily investigated in the last
decades and are widely used in advanced applications such as aerospace, structural,
military and transportation industries due to their elevated mechanical properties values
to weight (or cost) ratio. Thanks to their excellent structural qualities like high strength,
fracture toughness, fatigue resistance, light weight, erosion and corrosion resistance, a
particular interest has been born not only in engineers for the use of FRCs in advanced
industrial applications, but also in researchers to develop and optimize their particular
and useful characteristics.

The general behavior of a FRC depends on the characteristics of the composite con-
stituents such as fiber reinforcements, resin and additives; each of these constituents
has an important role in the composite characteristics and such aspects have driven
some researchers to combine them differently for obtaining enhanced materials. Re-
gardless of the roles of resins and additives which are out of the scope of this re-
search, the mechanical properties of composites depend on many fiber’s variables such
as fiber’s material, volume fraction, size and mesostructure. This latter aspect which
deals with fiber configuration, orientation, layout and dispersion is an almost open
issue in the literature. Generally, increasing the fiber volume fraction in a FRC com-
posite will increase its structural strength and stiffness. However the existence of a
practical upper limit should be considered. Normally, composite structural elements
under mechanical actions have some regions which are on the edge of design con-
straints (e.g. the maximum allowable stress is exceeded) and can be identified as fail-
ure zones. Usually these failure zones dictate the required content of the reinforcing
element in order to get a properly strengthened overall structure, fulfilling everywhere
the design constraints. Considering uniform distribution of fibers through the structure,
initially safe regions that already fulfill the design constraints will inevitably increase
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their fiber content. Thus, an efficient optimization approach which seeks towards opti-
mal fiber content should also pay attention to optimal distribution of fibers in order to
strengthen only those portions of the structure (failure zones) for which it is necessary
to improve their bearing capacity. From the above discussions it appears that the joint
manipulation of these two parameters (i.e. fiber content and its distribution) will be a
necessary approach towards more efficient and reliable structural optimization. Pre-
vious researches aimed at the optimization of composite’s performance with respect
to the above mentioned fiber related variables, have been focused on improving spe-
cific performance of a classical laminated or Functionally Graded (FG) composites by
changing the fiber’s layout (ply orientation) or fiber volume fraction, by using heuristic
optimization methods, especially the so-called Genetic Algorithm (GA). Basically, the
use of evolutionary algorithms, such as GA in [Brighenti, 2005], often leads to some
limitations; in fact it is well-known as GA is problematic in some issues. Among them,
its heuristic nature, high computational cost and sometimes the tendency to converge
towards local optima instead of global optima- if proper so-called mutation strategies
are not considered in the method- can be counted.

The present research aims to develop a computational platform for fiber distribution
optimization within the matrix material in order to obtain enhanced structural behav-
ior. In order to smoothly approximate given set of nodal points, the idea of utilizing
Non-Uniform Rational B-Spline (NURBS) basis functions has been developed. Useful
characteristics of NURBS basis functions - such as compact support and higher order
elements - not only provides mesh independent distribution results but also makes it
possible to use coarse meshes to decrease computational time, while maintaining the
accuracy of the results. Moreover instead of using heuristic optimization methods, the
sensitivity based method which uses gradient of the objective function evaluated with
respect to design variables to find next direction in searching process (tending toward
the optimum point), is implemented. Such an approach shows lots of merit particularly
for complex geometries such as those often used in industrial applications.

Actual characteristics of a composite material involve many uncertainties. These
emanate from a variety of sources such as constituent material properties, manufactur-
ing and process imperfections, loading conditions and geometry. Neglecting the role of
uncertainties in composite materials might result in either unsafe or unnecessary con-
servative design. This issue is addressed in the present approach within the framework
of a Reliability Based Design Optimization (RBDO) problem. Taking into account
of above, this research presents a comprehensive optimization package for compos-
ite materials which uses NURBS basis functions; works based on sensitivity analysis
and capture available uncertainties aiming to obtain optimal content and distribution
of fibers inside the matrix.
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1.2 Literature Review
FRC materials have been heavily investigated in the last decades. Available litera-
tures aimed at the optimization of composite’s performance with respect to the fiber
related variables, have been focused on improving specific performance of a classical
laminated or FG composites by changing the fiber’s layout (ply orientation) or fiber
volume fraction, by using heuristic optimization methods such as GA [Almeida &
Awruch, 2009; Apalak & Yildirim, 2008; Kim & Lim, 2013; Lee & Morillo, 2012;Lee
& Kweon, 2013; Omkar & Mudigere, 2008; Zehnder & Ermanni, 2006]. Salzar, 1995
tried to optimize a pressurized cylindrical pressure vessel by functionally grading the
fiber volume fraction through the thickness of vessel. The work of Nadeau & Ferrari,
1999 addressed microstructural optimization of a FG layer subjected to thermal gra-
dient, assuming that its parameters vary through the thickness of the layer; in their
work the microstructure was characterized by fiber volume fraction, aspect ratio and
orientation distribution. Honda & Narita, 2011 optimized vibration characteristics of
a laminated structure by changing the orientation of fibers and intentionally providing
local anisotropy; in their work fiber orientation angle and GA were implemented as
design variable and optimization methodology respectively. Murugan & Flores, 2012
performed optimization to minimize the in-plane stiffness and maximize the out of
plane bending stiffness of a morphing skin used in aircraft wing made of laminate
composite, by spatially varying the volume fraction of the fibers in the different layers;
in particular the laminate was discretized through its thickness and equivalent material
properties in each element were obtained based on homogenization technique using
multi-scale constitutive model. Smooth particle hydrodynamics was implemented in
Kulasegaram et al., 2011 and Kulasegaram & Karihaloo, 2012 works in order to model
and optimize short steel fibers distribution and orientation in self compacting concrete
flow. Huang & Haftka, 2005 tried to optimize fibers orientation (not their distribution)
near a hole in a single layer of multilayer composite laminates in order to increase the
load caring capacity by GA. Brighenti in [2004c, 2006 and 2007] used GA in his series
of works on fiber distribution and patch repair optimization for cracked plates (to get
the maximum exploitation of a given available patch element area by determining its
best conformation around the cracked zone). The presence of the patch in a point of the
structure is accounted for by properly modifying (i.e. increasing) the elastic modulus,
similarly to what has been done with fiber distribution optimization in FRC material
[Brighenti, 2005]. In particular the optimum distribution of the short fibers in a FRC,
obtained by using GA, has been usually addressed in the literatures by assuming a con-
stant value of the total fiber content, the optimum layout for fiber distribution has been
determined in order to fulfill some given objective functions.

The characteristics of composite materials are influenced by many uncertainties.
There are some methods for considering the role of uncertainties in design perfor-
mance. One of these methods is the so-called RBDO which tries to find optimal per-
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formance considering some probabilistic design constraints. Motivated by capabilities
of RBDO in uncertainty quantification, some researchers have implemented it in the
design of composite structures. Though there are some exceptions, most of these re-
searches are related to composite laminates. However, to the knowledge of the author,
the solid FRC structures are not thoroughly explored. Thanedar & Chamis, 1995 de-
veloped a procedure for the tailoring of layered composite laminates subjected to prob-
abilistic constraints and loads. The work of Jiang et al., 2008 suggested a methodology
to optimize the plies orientations of a composite laminated plate having uncertain mate-
rial properties. Gomes & Awruch, 2011 addressed the problem of composite laminate
optimization by using GA and Artificial Neural Networks (ANN); while Antonio &
Hoffbauer, 2009 presented reliability based robust design optimization methodology.
Noh & Kang., 2013 have implemented RBDO methodology for purpose of optimizing
volume fraction in a FG laminate composite.

Uncertainty propagation in nanocomposite structures remains an unsolved issue.
Rouhi & Rais-Rohani, 2013 measured the failure probability of a nanocomposite cylin-
der under buckling, accounting for uncertain design conditions. However, they used
micromechanical equations at the nano-scale by simply replacing the lattice structure
of a Carbon Nano Tube (CNT) with a solid fiber (which can lead to inappropriate
results Shokrieh & Rafiee, 2010c). Moreover, they disregard several important CNT
parameters such as the CNT length, diameter, agglomeration and dispersion without
any sensitivity evaluation. Furthermore, modeling errors including discretization- and
approximation errors have not been addressed in detail.

1.3 Objectives of the dissertation
The final goal of this research is presentation of an efficient computational algorithm
enabling to find both optimal content and distribution of fiber reinforcements within
the structure encountering with uncertainties in design conditions. This algorithm can
be implemented for complex geometries with different material models and multi-
physics.

1.4 Innovations of the dissertation
The novelties of the present work can be pointed out within five categories: 1) utiliz-
ing NURBS basis functions for fiber distribution optimization in FRC structures using
gradient-based approach which its advantages are already illustrated; 2) investigating
the role of available uncertainties in composites on reliability of the structure. These
uncertainties are classified in three major groups of material, structural and modeling
uncertainties; 3) presenting the sequential optimization approach which is computa-
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tionally efficient and links RBDO and fiber distribution optimization; 4) implementing
the methodology in innovative applications including interfacial shear stress optimiza-
tion in sandwich beam and optimization of internal cooling channels in Ceramic Matrix
Composite (CMC); 5) adopting the computational framework for topology optimiza-
tion of piezoelectric / flexoelectric materials.

1.5 Outline
In the previous sections, the topic, objective, innovations, literature review and method-
ology of the thesis are introduced. The remainder of this dissertation is organized as
follows:

Chapter 2 contains fundamental formulations of Isogeometric Analysis (IGA) and
NURBS basis functions which are used in this dissertation.

Chapter 3 deals with structural reliability concept. The notions of reliability assess-
ment, RBDO and First Order Reliability Method (FORM) which are frequently used
in this dissertation are introduced.

Chapter 4 deals with the optimization of short fibers distribution in continuum struc-
tures made of FRC by adopting an efficient gradient based optimization approach.
NURBS basis functions have been implemented to define continuous and smooth mesh
independent fiber distribution function as well as domain discretization. Some numer-
ical examples related to the structural response under static loading as well as the free
vibration behavior are conducted to demonstrate the capabilities of the model.

Chapter 5 focuses on the uncertainties propagation and their effects on reliability of
polymeric nanocomposite (PNC) continuum structures, in the framework of the com-
bined geometry and material optimization. Presented model considers material, struc-
tural and modeling uncertainties. The material model covers uncertainties at different
length scales (from nano-, micro-, meso- to macro-scale) via a stochastic approach. It
considers the length, waviness, agglomeration, orientation and dispersion (all as ran-
dom variables) of CNTs within the polymer matrix. To increase the computational
efficiency, the expensive-to-evaluate stochastic multi-scale material model has been
surrogated by a kriging metamodel. This metamodel-based probabilistic optimization
has been adopted in order to find the optimum value of the CNT content as well as the
optimum geometry of the component as the objective function while the implicit finite
element based design constraint is approximated by the first order reliability method.
Illustrative examples are provided to demonstrate the effectiveness and applicability of
the approach.
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Chapter 6 presents double stage sequential optimization algorithm for finding the opti-
mal fiber content and its distribution in solid composites, considering uncertain design
parameters. In the first stage, the optimal amount of fiber in a FRC structure with
uniformly distributed fibers is conducted in the framework of a RBDO problem. In
the second stage, the fiber distribution optimization having the aim to more increase
in structural reliability is performed by defining a fiber distribution function through a
NURBS surface. Some case studies are performed to demonstrate the capabilities of
the model.

Chapter 7 contains the first application of the methodology in sandwich beams with
polymeric core to decrease interfacial stresses by presenting the optimal distribution
of reinforcing ingredients in the polymeric matrix. This application aims at the local
stress minimization within any arbitrary zone of the design domain. The core and face
sheets are modeled as multi-patches and compatibility in the displacement field is en-
forced by the penalty method. An adjoint sensitivity method is devised to minimize the
objective function within areas of interest defined over arbitrary regions in the design
domain. The method is verified by several examples.

Chapter 8 contains the second application of the methodology for optimization of the
internal cooling channels in Ceramic Matrix Composite (CMC) under thermal and
mechanical loadings. The algorithm finds the optimal cooling capacity of all channels
(which directly minimizes the amount of coolant needed). In the first step, available
uncertainties in the constituent material properties, the applied mechanical load, the
heat flux and the heat convection coefficient are considered. Using RBDO approach,
the probabilistic constraints ensure the failure due to excessive temperature and deflec-
tion will not happen. The deterministic constraints restrict the capacity of any arbi-
trary cooling channel between two extreme limits. A series system reliability concept
is adopted as a union of mechanical and thermal failure subsets. Having the results
of the first step for CMC with uniformly distributed carbon (C-) fibers, the algorithm
presents the optimal layout for distribution of the C-fibers inside the ceramic matrix
in order to enhance the target reliability of the component. A sequential approach and
B-spline finite elements have overcome the cumbersome computational burden. Nu-
merical examples are presented.

Chapter 9 presents a design methodology based on a combination of IGA, level set
and point wise density mapping techniques for topology optimization of piezoelec-
tric / flexoelectric materials. The fourth order partial differential equations (PDEs) of
flexoelectricity, which require at least C1 continuous approximations, are discretized
using NURBS. The point wise density mapping technique with consistent derivatives
is directly used in the weak form of the governing equations. The boundary of the
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design domain is implicitly represented by a level set function. The accuracy of the
IGA model is confirmed through numerical examples including a cantilever beam un-
der a point load and a truncated pyramid under compression with different electrical
boundary conditions. Numerical examples demonstrate the usefulness of the method.

Chapter 10 summarizes the works and outlines the main contributions. Finally, some
recommendations for future work are suggested.
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Chapter 2

Fundamentals of NURBS

2.1 An introduction to Isogeometric Analysis
The main tool that is used by Computer Aided Design (CAD) for representation of the
complex geometries is the Non-Uniform Rational B-spline (NURBS). Using NURBS,
certain geometries including conic and circular sections, can be represented exactly.
That is while polynomial shape functions are able to just approximate the geometries.
The main idea behind the seminal work of Hughes et al., 2005 was using NURBS
not only for describing the geometry but also to construct finite approximations for
analysis. The phrase ’Isogeometric Analysis’ (IGA) was firstly used by Hughes et al.
to unify CAD and Computer Aided Engineering (CAE). In the following fundamental
formulations of IGA which are used in this dissertation are introduced. Readers are
referred to [Cottrell et al., 2009] to know more about IGA.

2.2 Knot vector
There are two different spaces in IGA named physical space and parameter space. Each
element in the physical space is the image of a corresponding element in the parameter
space, but the mapping itself is global to the whole patch, rather than to the elements
themselves. The parameter space is discretized by knot vectors. A knot vector in
one dimension is a non-decreasing set of coordinates in the parameter space, written
ΞΞΞ=

{
ξ1,ξ2, ...,ξn+p+1

}
, where ξi ∈ R is the ith knot, i is the knot index, i= 1,2, ...,n+

p+1, p is the polynomial order and n is the number of basis functions used to construct
the B-spline curve. Element boundaries in the physical space are simply the images
of knot lines under the B-spline mapping (See Fig. 2.1). Equally spaced knots in the
parameter space provide uniform knot vectors, otherwise they are non-uniform. A
knot vector is said to be open if its first and last knot values appear p+1 times. Open
knot vectors are the standard in the CAD literature. In one dimension, basis functions
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Figure 2.1: Different NURBS domains (a-c) and typical basis functions (d); Approx-
imating nodal values of ϕi, j defined on control points by using NURBS surface ηp
(c)

formed from open knot vectors are interpolatory at the ends of the parameter space
interval,

[
ξ1,ξn+p+1

]
, and at the corners of patches in multiple dimensions, but they

are not, in general, interpolatory at interior knots. This is a distinguishing feature
between knots and nodes in finite element analysis (see[Cottrell et al., 2009]).

2.3 NURBS functions and surfaces

2.3.1 NURBS basis functions and derivatives
NURBS basis is given by

Rp
i (ξ ) =

Ni,p (ξ )wi
W (ξ )

=
Ni,p (ξ )wi

∑n
i′=1 Ni′ ,p (ξ )wi′

(2.1)

where Ni,p(ξ ) are B-spline basis functions recursively defined by using Coxde Boor
formula and starting with piecewise constants (p = 0) [Cottrell et al., 2009]

Ni,0 (ξ ) =
{

1 i f ξ i ≤ ξ < ξ i+1
0 otherwise (2.2)
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2.3 NURBS functions and surfaces

while for p = 1, 2, 3, . . .

Ni,p (ξ ) =
ξ −ξ i

ξ i+p −ξ i
Ni,p−1 (ξ )+

ξ i+p+1 −ξ
ξ i+p+1 −ξ i+1

Ni+1,p−1 (ξ ) (2.3)

wi is also referred to as the ith weight while W (ξ ) is weighting function defined as
follows:

W (ξ ) =
n

∑
i=1

Ni,p (ξ )wi (2.4)

Simply applying the quotient rule to Eq. (2.1) yields:

d
dξ

Rp
i (ξ ) = wi

W (ξ )N ′

i,p (ξ )−W ′
(ξ )Ni,p(ξ )

(W (ξ ))2 (2.5)

where
N

′

i,p (ξ ) =
p

ξ i+p −ξ i
Ni,p−1 (ξ )−

p
ξ i+p+1 −ξ i+1

Ni+1,p−1 (ξ ) (2.6)

and
W

′
(ξ ) =

n

∑
i=1

N
′

i,p (ξ )wi (2.7)

Among NURBS basis functions characteristics, the most important ones are partition
of unity property, compact support of each basis function and non-negative values. It
can be also noted that if the weights are all equal, then Rp

i (ξ ) = Ni,p(ξ ); so, B-spline
is the special case of NURBS. Details related to higher order derivatives formulations
can be found in [Cottrell et al., 2009].

2.3.2 NURBS curves and surfaces
A NURBS curve is defined as:

C (ξ ) =
n

∑
i=1

Rp
i (ξ )Bi (2.8)

where Bi ∈ Rd are control points and i = 1,2, ...,n, number of control points. Similarly,
for definition of a NURBS surface, two knot vectors EEE =

{
ξ1,ξ2, ...,ξn+p+1

}
and HHH ={

η1,η2, ...,ηm+q+1
}

(one for each direction) as well as a control net Bi, j are required.
A NURBS surface is defined as:

S (ξ ,η) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)Bi, j (2.9)
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where Rp,q
i, j (ξ ,η) is defined according to the following Eq. (2.10), while Ni,p(ξ ) and

M j,q(η) are univariate B-spline basis functions of order p and q corresponding to knot
vector EEE and HHH, respectively.

Rp,q
i, j (ξ ,η) =

Ni,p (ξ )M j,q (η)wi, j

∑n
i′=1∑

m
j′=1 Ni′ ,p (ξ )M j′ ,q(η)wi′ , j′

(2.10)
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Chapter 3

Structural reliability

3.1 Reliability assessment
The fundamentals of structural reliability are briefly presented below however, inter-
ested readers can refer to [Ditlevsen & Madsen, 1996] and references therein for more
details. The structural reliability concept can be simply described by the example of a
steel rod with constant cross sectional area under uniaxial tension (see Fig. 3.1). In the
deterministic case, if the applied load (L) is less than rod strength (R), failure will not
occur and the rod will be safe and the conventional safety factor index (S.F = R

L ) is used
to quantify the system level of confidence. In probabilistic case, (L) and (R) are not
fixed values but instead they are random variables containing uncertainties. In this case
X(L) and X(R)are non-negative independent random variables with Probability Den-
sity Functions (PDF) fL(xL) and fR(xR), respectively. In essence, for a vector of ran-
dom variables X = {x1, ...,xn}

T , the PDF can be calculated by fX(x) = d
dx

FX(x), where
FX(x) is the so called Cumulative Distribution Function (CDF) and relates the probabil-
ity of a random event to a prescribed deterministic value x, (i.e. FX(x) = Prob X<x).

In considering the rod example, the boundary between safe (i.e. xR>xL) and failure
(i.e. xR<xL) regions can be defined by g(x) = xR − xL which is called Limit State
Function (LSF). Thus, g(x)≤ 0 denotes a subset of the space, where failure occurs.

The concept of Reliability Index (β ) which has been proposed by Hasofer & Lind,
1974 requires standard normal non-correlated variables; so the transformations from
correlated non-Gaussian variables X to uncorrelated Gaussian variables U (with zero
means and unit standard deviations) is needed. According to this definition of β , the
design point is chosen such as to maximize the PDF within the failure domain. Ge-
ometrically, it corresponds to the point in failure domain having the shortest distance
from the origin of reduced variables to the limit state surface (i.e. g(U) = 0), as shown
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in Fig. 3.1). Mathematically, it is a minimization problem with an equality constraint:




β = min
(
UUU .UUUT) 1

2

s.t :
g(UUU) = 0

(3.1)

which leads to the Lagrangian function:

L = min{
1
2

UUUTUUU +λg(UUU)} (3.2)

The solution of Eq. (3.2) is called the Most Probable Point (MPP) and can be obtained
by a standard optimization solver.

Figure 3.1: Structural reliability concept

The failure probability, Pf , can be measured by the probability integral as:

Pf = Prob [g(x)≤ 0] =
∫

x|g(x)≤0
fX (x)dx (3.3)

The evaluation of the integral in Eq. (3.3) (the fundamental equation of reliability anal-
ysis) in most cases is not an easy task and needs specific solution techniques. One
approach is to analytically approximate this integral, in order to get simpler functions
for Pf . Such techniques can be categorized into two major groups: First and Second
Order Reliability Method (FORM and SORM) which respectively approximate LSF
with the first order and the second order of Taylor expansion at the MPP (Fig. 3.1)).

There are also alternative methods for calculating the probability integral: among
them Monte Carlo Method (MCM) may be the most important one since it is usually

13
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used as the reference method due to its precision to calculate failure probability. Each
of the above cited methods has advantages and disadvantages which should be con-
sidered precisely before implementation. For instance even though MCM is a precise
method, it shows a serious drawback in the case of small values of the failure proba-
bility [Chiachio et al., 2012]. Computational cost is another dominant parameter for
selecting the appropriate solution method. Methods based on the SORM and MCM
approaches are usually numerically more expensive in comparison with FORM. In
practical problems an appropriate balance must be necessarily considered between ac-
curacy and cost of the analysis. In the present work FORM has been implemented since
it is suitable for cases with a small number of random variables. Such an approach is
usually sufficiently accurate to be used for real applications of structural design [Zhao
& Ono, 1999]. In the following, the implementation of the FORM is briefly described,
however more details about available methods for structural reliability analysis can be
found in [Chiachio et al., 2012].

Figure 3.2: Graphical representation of the FORM approximation

3.1.1 First order reliability method (FORM)
The FORM approximation can be traced back to First Order Second Moment (FOSM)
method which is based on first order Taylor series approximation of the LSF, linearized
at the mean values of random variables, while a Second Moment statistics (means and
covariances) is used. In this context the limit state function can be approximated as
below:

g(x) = g(x0)+
n

∑
i=1

∂g
∂xi

|x=x0
(xi − xi0)+

1
2

n

∑
i=1

n

∑
k=1

∂ 2g
∂ xi∂ xk

|x=x0
(xi − xi0)(xk − xk0)+ . . .

(3.4)
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Terminating the series after the linear terms yields:

E[Z] = E [g(XXX)] = g(x0)+
n

∑
i=1

∂g
∂xi
E [xi − xi0] (3.5)

where E stands for expected value (or ensemble average) of a random quantity g(XXX)
and can be defined in terms of the probability density function of x as:

E [g(XXX)] =
∫ +∞

−∞
g(x) fX (x)dx (3.6)

If the mean value vector X is chosen as the starting expansion point x0 for the Taylor
series, then E[Z] = g(x0) and the variance becomes:

σ2
Z = E

[
(Z − Z̄)2

]
= E

[
(g(XXX)−g

(
X̄XX
)
)

2
]
= E



(

n

∑
i=1

∂g
∂X i

(Xi − X̄i)

)2



=
n

∑
i=1

n

∑
k=1

∂g
∂xi

∂g
∂xk

E[(Xi − X̄i)(Xk − X̄k)]

(3.7)

finally the distribution function Fz(z) is approximated by a normal distribution:

Fz (Z) =Φ
(

z− Z̄
σZ

)
(3.8)

then we obtain the approximate result:

Pf = Fz (0) =Φ
(
−

Z̄
σZ

)
(3.9)

the reliability R can finally be expressed as:

R =Φ(β ) (3.10)

where β = z
σz

and the probability of failure consequently becomes expressed as:

Pf = 1−R = 1−Φ(β ) =Φ(−β ) (3.11)

3.1.2 RBDO
In its basic form the problem of RBDO can be expressed as below:

Minimize C (θθθ) s.t.
∣∣∣∣

f1 (θθθ) , . . . , fq−1 (θθθ)≤ 0
fq (XXX ,θθθ) = β t −β (XXX ,θθθ)≤ 0 (3.12)
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3.1 Reliability assessment

where θθθ is the vector of the design variables, C(θθθ) is the cost or objective function,
f1(θθθ), ..., fq1(θθθ) is a vector of q−1 deterministic constraints over the design variables
θθθ , fq(XXX ,θθθ) is the reliability constraint enforcing the respect of LSF and considering
the uncertainty to which some of the model parameters XXX are subjected to. βt is the
target safety index. In this dissertation, to solve Eq. (3.12), the open source software
FERUM 4.1 ([Bourinet, 2010]) has been implemented and linked to FE code which
evaluates the LSF.
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Chapter 4

Optimization of fiber distribution in
fiber reinforced composite

4.1 Introduction
The mechanical properties of composites depend on many fiber’s variables such as
fibers material, volume fraction, size and mesostructure. This latter aspect deals with
fiber configuration, orientation, layout and dispersion. As reviewed in Chapter 1, avail-
able literatures aimed at the optimization of composite’s performance with respect
to the above mentioned fiber related variables, have been focused on improving spe-
cific performance of a classical laminated or Functionally Graded (FG) composites by
changing the fiber’s layout (ply orientation) or fiber volume fraction, by using heuristic
optimization methods, especially the so-called Genetic Algorithm (GA).

Computational cost is a very important aspect in optimization problem, particu-
larly in industrial applications. Basically, the use of evolutionary algorithms, such as
GA, often leads to some limitations; in fact it is well-known as GA is problematic in
some issues. Among them, its heuristic nature, high computational cost and sometimes
the tendency to converge towards local optima instead of global optima - if proper so-
called mutation strategies are not considered in the method - can be counted. In con-
trary with GA, gradient based methods which use gradient of the objective function
evaluated with respect to design variables to find next direction in searching process
(tending toward the optimum point), shows lots of merit particularly for complex ge-
ometries such as those often used in industrial applications.

There are also some limitations in using FE mapping of the fiber content [Brighenti,
2005] due to the element wise poor representation of the fiber layout: the first one is
the possibility of mesh dependency for the results, since the final fibers arrangement
resulting from the optimization is commonly determined based on fiber content of
each finite element. Secondly, it could be easily understood that in order to have good
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4.2 FRC homogenization methodology

layout representation, fine mesh and consequently costly computation should be done;
moreover further post processing technique such as filtering or smoothing becomes
necessary when this method is implemented. Thirdly, it must be also considered that,
before economical and technological evaluations are performed, to fabricate element-
wise variation of fiber content in a discretized continuum structure is still a daunting
step with present available technologies. Fig. 4.1 schematically shows such limitations
involved in FE mapping representation.

Figure 4.1: Schematic illustration of mesh dependency in element-based representation
of fiber volume fraction: a) Coarse mesh b) Fine mesh

Instead of using element-based fiber volume fraction description, as has been al-
ready done in other researches, the idea of utilizing quadratic NURBS basis functions
in order to smoothly and continuously approximate given set of nodal points are devel-
oped. Useful characteristics of NURBS basis functions such as compact support and
higher order elements not only provides mesh independent distribution results but also
makes it possible to use coarse meshes to decrease computational time, while maintain-
ing the accuracy of the results. The presented novel computational approach combines
NURBS based and gradient based optimization methodologies to get an efficient op-
timization algorithm, which has been verified to be enough accurate, computationally
fast and convenient for real industrial applications.

4.2 FRC homogenization methodology
Basically the aim of homogenization techniques is to determine equivalent material
characteristics in a Representative Volume Element (RVE) of composite material. There
are some classical approaches in order to model the material properties of composites;
among which the rule of mixture, Hashin-Shtrikman type bounds [Hashin, 1962 and
Hashin & Shtrikman, 1963], Variational Bounding Techniques [Paul, 1960], Self Con-
sistency Method [Hill, 1965] and Mori-Tanaka Method [Mori & Tanaka, 1973] can be
mentioned. The homogenization approach used in this chapter is a simplified version
of recently developed mechanical model [Brighenti, 2004a], to get the FRC consti-
tutive behavior based on the shear stress distribution along the fiber-matrix interface
during the loading process. The adopted model for fiber homogenization can be con-
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4.2 FRC homogenization methodology

sidered to be mechanically based, since the fiber contribution to the FRC mechanical
properties are determined from the effective stress transfer between matrix and fibers;
moreover the possibility of fiber-matrix debonding can be easily taken into account.
Since the goal of this research is to focus on fiber distribution through the structure
rather than developing micromechanical model, for sake of simplicity this issue is
neglected in the present work. Moreover it can be considered that for not too high
stressed composite elements (as followed in presented numerical examples) leading
to shear fiber-matrix interface stresses well below the allowable limit shear bimaterial
stress, the debonding phenomenon can reasonably assumed not to occur as well as fiber
breaking. This approach is briefly summarized below; however interested reader can
refer to [Brighenti, 2004a], [Brighenti, 2012] and [Brighenti, 2004b] for more details.

The equivalent elastic properties of a fiber reinforced composite material for which
the hypotheses of short, homogeneously and randomly dispersed fibers are made can
be obtained by equating the virtual work rate of constituents for a RVE (it is assumed
that the RVE characteristic length d is much more smaller that the structure character-
istic length D) of the composite material (Fig. 4.2) with the equivalent homogenized
one

w
′
=

composite’s work rate︷ ︸︸ ︷∫

V
κ (xxx) ˙̃εεε :σσσdV +

∫

V
χ (xxx) ˙̃ε f ·σ f dV

=

homogenized material’s work rate︷ ︸︸ ︷∫

V
˙̃εεε :σσσ eqdV

(4.1)

where ˙̃ε f ; σ f are the virtual strain rate and the stress in a fiber, respectively, while the
scalar functions κ(xxx) and χ(xxx) assume the following meaning:

κ (xxx) =
{

1 i f (xxx) ∈ Vm
0 i f (xxx) 6∈ Vm

and χ (xxx) =
{

1 i f (xxx) ∈ V f
0 i f (xxx) 6∈ V f

(4.2)

allowing to identify the location of the material point xxx either in the matrix or in the
reinforcing phase.

The constitutive relationships of the fibers and of the bulk material can be simply
expressed through the following linear relations:

σ f = E f · (iii⊗ iii) : εεε and σσσ eq (xxx) =CCCeq (xxx) : εεε (4.3)

in which E f is the fibers’ Young’s modulus, ε f is the fiber strain, CCCeq is the composite
equivalent elastic tensor while εεε is the actual matrix strain tensor. Eq. (4.3) has been
written by taking into account that the matrix strain measured in the fiber direction
is given by ε f = (iii⊗ iii) : εεε where iii = (sinθ cosφ sinθ sinφ cosθ) is the unit vector
identifying the generic fiber direction, (Fig. 4.2) and analogously for the virtual ε̃ f and
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4.2 FRC homogenization methodology

the virtual strain rate,

ε̃ f = (iii⊗ iii) : ε̃εε and ˙̃ε f = (iii⊗ iii) : ˙̃εεε (4.4)

By substituting the above expressions in the virtual work rate equality (Eq. (4.1)) one
can finally identify the composite equivalent elastic tensor

CCCeq (xxx) =
1
V

∫

V
{κ (xxx)CCCm +χ (xxx)E f [QQQ⊗QQQ]}dV

= µCCCm +η pE f

∫

V
QQQ⊗QQQ dV

(4.5)

where the second-order tensor QQQ = (iii⊗iii) has been introduced and the matrix and fiber
volume fractions µ = 1

V
∫

V κ(xxx)dV = Vm
V and ηp =

1
V
∫

V χ(xxx)dV =
V f
V have been used.

It can be easily deduced as the equivalent material is macroscopically homogeneous at
least at the scale of the RVE with volume V - i.e. the equivalent elastic tensor CCCeq(xxx)
does not depend on the position vector, i.e. CCCeq(xxx) =CCCeq.

The calculation of the equivalent elastic tensor CCCeq through Eq. (4.5), requires to
evaluate the integral in Eq. (4.5) over a sufficiently large volume, representative of the
macroscopic characteristics of the composite. The above integral can be suitably as-
sessed on a hemisphere volume which allows considering all possible fiber orientations
in the composite

Figure 4.2: Fiber reinforced composite material: definition of the RVE (with a char-
acteristic length d, while the composite has a characteristic length D>>d) and of the
fiber orientation angles φ , θ , Ref. [Brighenti, 2012]
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4.3 Definition of the optimization problem

1
Vhem

∫

Vhem
QQQ⊗QQQdV =

∫ R

0

∫ 2π

0

∫ π/2

0
(QQQ⊗QQQ)r dφ r sinθdθ dr

=
R3

3
1

2πR3
3

∫ 2π

0

∫ π/2

0
(QQQ⊗QQQ)dφ sinθ dθ

=
1

2π

∫ 2π

0

∫ π/2

0
(QQQ⊗QQQ)dφ sinθ dθ

(4.6)

In the above expression the case of fibers randomly distributed in the 3D space has been
considered, but the generic case of preferentially oriented fibers can be also treated in
a similar way [Brighenti & Scorza, 2012].

4.3 Definition of the optimization problem
Lots of structural characteristics or responses can be adopted as optimization objec-
tives. As representative examples one can mention weight, stiffness, natural frequen-
cies or a combination of them. Optimization aimed at obtaining structures with mini-
mum strain energy (minimum structural compliance), which alternatively means max-
imum structural stiffness, is the most common approach in this field. Nevertheless,
though combination of elastic compliance with structural volume or weight constraints
is comprehensive for static problems, obtained designs are not essentially optimum
considering dynamic behavior of the structure. One important example is represented
by vibrating structures to be designed in such a manner to avoid resonance for ex-
ternal excitation loads varying with a given frequency. This goal is usually obtained
by maximizing the fundamental eigenfrequency or the gap between two consecutive
eigenfrequencies of the structure [Du & Olhoff, 2007].

In the context of this chapter just the optimization of fiber distribution through
the structure will be addressed. Definition of single objective function either for pure
static loading or free vibration is considered. Extension of this methodology into multi-
objective problems, which deals with systematic and concurrent solution of a collection
of objective functions, will be straight forward in formulation. Typical multi-objective
optimization problem consists of a weighted sum of all objective functions combined
to a form of single function. Final solution of this function is totally dependent on
the allocated weights. On the other hand from the technological point of view, engi-
neers need to know a specific volume fraction for design and manufacturing of a FRC
product. Generally there is no single global solution for multi-objective optimization
problems and selection of a set of points as a final solution among thousands of pos-
sible solutions requires to develop a comprehensive selection criteria which is behind
the scope of this chapter. To review the multi-objective optimization methods in engi-
neering, interested readers can refer to [Marler & Arora, 2004].
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4.3 Definition of the optimization problem

4.3.1 Objective function and optimization formulation for static
problems

Strain energy can be considered as the work done by internal forces through the de-
formation of the body. This energy is considered as the objective function of the opti-
mization problem. For the problem with m-load cases we have

U =
m

∑
i=1

λ iU i λ i > 0 (4.7)

where U and U i are the total strain energy and elastic strain energy for the ith load
case respectively; while λi is the weight associated to the strain energy which has been
considered equal to unity unless otherwise specified.
The terms U i can be defined as

U i = [
nel

∑
e=1

1
2

∫

V
εεεT

e CCCeq εεεedV ]

i

(4.8)

in the above equation εεεe is the strain vector associated with element e and CCCeq is the
homogenized elastic tensor of the composite at each point according to Eq. (4.5), while
nel is the number of elements in the structural component being analyzed.

Nodal fiber volume fraction ϕi, j (the subscripts i and j belong to counterpart con-
trol point, Bi, j) on control points are defined as design variables and fiber distribution
is approximated by using NURBS surface (see Eq. (2.10) and Fig. 2.1(c)) based on for-
mulation provided in Chapter 2. Every point on parametric mesh space of the design
domain will be mapped to geometrical space having two distinguished identifications,
i.e. geometrical coordinates and fiber volume fraction value. Intrinsically, even using
coarse meshes, distribution function described through a NURBS surface is smooth
enough to have clear representation with no need to any further image processing tech-
nique.

Fiber distribution function ηp(x,y)- which indicates the fiber amount at every de-
sign point and will be used for obtaining homogenized mass and stiffness of finite
elements- is defined according to the following relationship

η p(x,y) =
n

∑
i=1

m

∑
j=1

Rp,q
i, j (ξ ,η)ϕ i, j (4.9)

Once the fiber volume fraction at each point is available, by substitution in Eq. (4.5),
we can define the equivalent mechanical characteristics of the domain through the
following equations

CCCeq(x,y) =
(
1−η p

)
CCCm +η pE f

∫

V
QQQ⊗QQQ dV (4.10)

22



4.3 Definition of the optimization problem

ρ(x,y) =
(
1−η p

)
ρm +η pρ f (4.11)

where ρ(xxx) is the equivalent density at every point in the design domain, obtained by
using the rule of mixtures. ρm and ρ f are matrix material and fiber material density,
respectively. The optimization problem can be finally summarized as follows





Minimize : U
s.t.
w f =

∫
V η pρ f dV = w f 0

KuKuKu = fff
ϕ i, j −1 ≤ 0
−ϕ i, j ≤ 0

(4.12)

where w f is the total fiber weight in every optimization iteration and w f 0 is an arbitrary
initial fiber weight which must be set at the beginning of the optimization process. KKK,
uuu and fff in Eq. (4.12) (which represent the general system of equilibrium equations in
linear elastic finite elements method) are the global stiffness matrix of the system, the
displacement and the force vector, respectively.

By introducing a proper Lagrangian objective function, l, and by using the La-
grangian multipliers method we have

l =U −λ
(
w f −w f 0

)
−

ncp

∑
i, j=1

ψ1

(
ϕ i, j −1

)
−

ncp

∑
i, j=1

ψ2

(
−ϕ i, j

)
(4.13)

where λ , ψ1 and ψ2 are volume, upper and lower bounds Lagrange multipliers while
ncp is the number of control points. By setting the first derivative of Eq. (4.13) to zero
we will obtain

∂ l
∂ϕ i, j

=
∂U
∂ϕ i, j

−λ
∂w f
∂ϕ i, j

−ψ1 +ψ2 = 0 (4.14)

Eq. (4.14) can be solved numerically by using different approaches such as the so-
called method of moving asymptotes (MMA) algorithm [Svanberg, 1987]. In this work
optimality criteria (OC) based optimization [Zhou & Rozvany, 1991] has been imple-
mented unless otherwise specified. OC represents a simple tool to be implement and
allows a computationally efficient solution because updating of each design variables
takes place independently. The updating scheme of OC is based on sensitivity analysis
which is performed in Section 4.3.3.
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4.3 Definition of the optimization problem

4.3.2 Objective function and optimization formulation for free vi-
bration problems

Maximization of fundamental eigenvalue, which is herein considered as objective func-
tion for free vibration problems, can be formulated as follows





Maximize : ωmin
s.t :
w f =

∫
V η pρ f dV = w f 0

(KKK −ωωω iMMM)φφφ i = 000 i = 1, . . . ,no. o f DOF
ϕ i, j −1 ≤ 0
−ϕ i, j ≤ 0

(4.15)

where ωi stands for the ith eigenvalue, ωmin is the fundamental frequency of the struc-
ture, MMM is the system mass matrix and φi is the eigenvector associated with the ith
eigenfrequency. The second constraint in Eq. (4.15) represents the standard elastody-
namic formulation for free vibration problems without damping.

4.3.3 Sensitivity analysis
Basically, in order to update design variables toward the optimized solution, OC needs
to determine how different values of the independent variable (i.e. ϕi, j) influence the
objective function under a given set of design constraints. One method to do this is to
consider the partial derivative of the objective function and constraints with respect to
design variables.

In Eq. (4.14) we can calculate ∂U
∂ϕi, j

and ∂w f
∂ϕi, j

through the following expressions

∂U
∂ϕ i, j

=
m

∑
i=1

λ i
∂U i

∂ϕ i, j
(4.16)

where
∂U i

∂ϕ i, j
=

1
2

∫

V
εεεT ∂CCCeq

∂ϕ i, j
εεε dV (4.17)

while
∂CCCeq
∂ϕ i, j

=−
∂η p
∂ϕ i, j

CCCm +
∂η p
∂ϕ i, j

E f

∫

V
QQQ⊗QQQ dV (4.18)

and
∂η p
∂ϕ i, j

= Rp,q
i, j (ξ ,η) (4.19)
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It should be declared that in order to calculate Eq. (4.18), the value ∂CCCm
∂ϕi, j

= 0 has been
considered since the Poisson’s ratios for both fiber and matrix are assumed to be the
same. On the other hand ∂w f

∂ϕi, j
can be also calculated as follows

∂w f
∂ϕ i, j

=
∫

V

∂η p
∂ϕ i, j

ρ f dV (4.20)

For the problem of free vibration, we follow the same procedure in order to perform
sensitivity analysis; so we calculate partial derivatives of each term of the second con-
straint in Eq. (4.15) with respect to ϕi, j

(
∂KKK
∂ϕ i, j

−
∂ϖ i
∂ϕ i, j

MMM−ϖ i
∂MMM
∂ϕ i, j

)
φφφ i = 000 (4.21)

by rewriting Eq. (4.21) and normalizing eigenvector with respect to the kinetic energy
(i.e. φφφT

i MMMφφφ i), we will finally have

∂ϖ i
∂ϕ i, j

= φφφ i
T

(
∂KKK
∂ϕ i, j

−ϖ i
∂MMM
∂ϕ i, j

)
φφφ i (4.22)

where
∂KKK
∂ϕ i, j

=
∫

V
BBBT ∂CCCeq

∂ϕ i, j
BBB dV (4.23)

where BBB is the standard finite element compatibility matrix containing the derivatives
of the shape functions while ∂CCCeq

∂ϕ i, j
can be obtained through Eq. (4.18). Derivative of

consistent mass matrix with respect to design variables can be calculated as follows

∂MMM
∂ϕ i, j

=
∫

V
NNNT ∂ρ

∂ϕ i, j
NNNdV (4.24)

while
∂ρ
∂ϕ i, j

= −
∂η p
∂ϕ i, j

ρm +
∂η p
∂ϕ i, j

ρ f (4.25)

in Eq. (4.24) NNN is the matrix of shape functions while ∂ηp
∂ϕi, j

can be calculated by
Eq. (4.19).

4.3.4 Optimization procedure
In the present optimization procedure, after definition of the optimization problem
according to Section 4.3.1 and 4.3.2, once discretized the structural element domain
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through finite elements, the obtained discrete model is analyzed based on the consid-
ered design parameters (i.e. geometry, loading, boundary conditions, material con-
straints, etc.), starting from the initial value of the design variable (i.e. available fiber
volume fraction). Afterwards the optimizer does sensitivity analysis (as explained in
Section 4.3.3) and then OC updates design variables. This computational procedure is
performed iteratively till no sensible changes (limit can be set as a design parameter)
occur in design variables. Fig. 4.3 summarizes this procedure.

Figure 4.3: Optimization algorithm

4.4 Case studies
In this section the applicability of the model has been investigated by conducting some
numerical examples in order to demonstrate the advantages of the proposed optimiza-
tion model.

In the present algorithm the minimum and the maximum values of fiber content in
each design point can be set by designer before optimization process commencement.
For the case of random distribution of fiber in the matrix, the maximum fiber content
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practically can range between 30% and 60%. The minimum value of the fiber content
has been also considered 0.1% through this chapter unless otherwise specified.

4.4.1 Three-point bending of a wall beam
The first example involves a three point bending problem of a plane stress wall beam.
Schematic view and design parameters are as shown in Fig. 4.4 and Table 4.1, re-
spectively. A constant total fiber volume fraction equal to 10% is considered and
the optimization problem for obtaining the minimum structural compliance is solved.
Fig. 4.5(a) shows result of fiber distribution optimization in half of the wall beam. Re-
gions with white color stand for minimum fiber content (which is set equal to 0.1%),
while black regions depict maximum fiber content and gray regions have the value
between minimum and maximum.

Figure 4.4: Geometry (a) and FE mesh with control points indicated by dots (b) of a
three-point bending wall beam

Table 4.1: Problem definitions, wall beam under three-point bending
Lx Ly Em E f ν ρm ρ f P Vf Vf max ncp
5 1 20 200 0.1 1000 1450 1000 10% 60% and 30% 22×12 = 264

Length : m, E : GPa, P : Applied load (N) , ν : Poisson′s ratio, ρ : density
(

kg
m3

)
m : matrix, f : f iber, V f :

f iber volume f raction, V f max : max. f iber vol. f rac.

Fig. 4.5(b) shows the benchmark result as presented in [Brighenti, 2005]. Using
the same number of elements for both Fig. 4.5(a) and Fig. 4.5(b), although there are
some local differences which can be mainly referred to the heuristic nature of GA
and element based demonstration of results used in [Brighenti, 2005], one can figure
out the general conformity between two categories of results since in both results,
fibers are more concentrated on regions under the loaded point, regions with maximum
displacements and around supports. Readers should also notice that this comparison
is just for general verification of the presented method not for detail adaptation. This
is due to the fact that both categories of results are slightly dependent on variables
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Figure 4.5: Optimized fiber distribution through left half of the beam (a) current
methodology and (b) Ref. [Brighenti, 2005]

setting (initial populations, probability of cross over, probability of mutation for results
of [Brighenti, 2005] and maximum fiber volume fraction, end point of optimization
algorithm, solution tolerance for the present work).

Fig. 4.6(a) shows the obtained results for the case that maximum fiber content in
each design point is allowed to be increase up to 60%, while for the case Fig. 4.6(b)
this value is assumed to be equal to 30%. Results provided by subsequent optimization
iterations are shown from top to bottom; as expected, by decreasing the upper limit of
local fiber content, the obtained fiber layout occupies more area of admissible design
domain while total used fibers is the same for (a) and (b). Having assumed a con-
stant total fiber volume fraction and considering different admissible values for maxi-
mum fiber content in each element, normalized elastic compliance (using 264 control
points) versus the number of iterations are accordingly plotted in Fig. 4.7. High rate
and smooth convergence can be appreciated; these desirable computational charac-
teristics have been obtained thanks to both implemented methodologies (particularly
optimization based on sensitivity analysis instead of heuristic method) and NURBS
finite elements. It is also noteworthy to point out that, by increasing maximum admis-
sible fiber volume in each element, lower compliance will be obtained. This simply
can be explained by considering that, increasing maximum admissible fiber volume
will cause fibers to gather up more and more in the most appropriate design points
having the highest influence on increasing the structural stiffness, not in somewhere
around the best points.

Readers should distinguish between the so called ”fiber gathering up” and ”fiber
agglomeration”. The former, which stands for increase in fiber volume fraction, hap-
pens in structural design domain (i.e. at the macro scale) but the latter, basically is
addressed in RVE scale. Moreover in contrary with agglomeration which reduces the
structural stiffness (in comparison with uniformly distributed fibers), optimum fiber
distribution always yields to an increase in structural stiffness.
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Figure 4.6: Optimum fiber distribution in beam considering a constant total fiber vol-
ume equal to 10%; the maximum local fiber content is assumed equal to (a) 60% and
(b) 30%; iterations results are displayed from top to bottom for each case
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Figure 4.7: Normalized compliance versus number of iterations for different values of
maximum fiber content in each element, using 264 control points

4.4.2 Free vibration of a beam
In the second example free vibration of a FRC beam under different support conditions
has been considered. As indicated in Fig. 4.8 a cantilever beam (Fig. 4.8(a)) and a
clamped beam (Fig. 4.8(b)) have been assumed. Design parameters are according to
Table 4.2 and FE discretization is the same as in the previous example.

Figure 4.8: Schematic view of problem geometry, (a) cantilever beam (b) clamped
beam

Table 4.2: Problem definitions, free vibration of a beam.
Lx Ly Em E f ν ρm ρ f Vf Vf max ncp
8 1 20 200 0.1 1000 1450 10% 60% 22×12 = 264

Length : m, E : GPa, ν : Poisson′s ratio, ρ : density
(

kg
m3

)
, m : matrix, f : f iber, V f : f iber volume f raction, V f max :

max. f iber vol. f rac.

In this problem the adopted objective function aims to get the maximum value of
the fundamental frequency by optimizing fiber distribution through the beam domain.
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First modal shape as well as fiber distribution optimization results for both cantilever
and clamped beams are demonstrated in Fig. 4.9(a-b), respectively. Fig. 4.10 shows the

Figure 4.9: First modal shapes and optimum fiber distribution for a cantilever beam (a)
and a clamped beam (b)

patterns of the objective function (fundamental frequency of the beam normalized with
respect to the case of uniformly reinforced material) versus the optimization iterations.
It can be observed as the increasing in fundamental frequencies are around 11% for
cantilever and 7% for clamped beams.

Figure 4.10: Normalized fundamental frequency versus iterations for beam with dif-
ferent supporting conditions

4.4.3 Square plate with a central circular hole under tension
As the third example, a square plate with central hole under constant distributed edge
load was studied. Due to the double symmetry only one quarter of this plate is mod-
eled. Fig. 4.11(a-b) and Table 4.3 show analysis model, the FE domain discretization
and the design parameters, respectively. The problem of obtaining minimum elas-
tic compliance (objective function) is solved by using quadratic NURBS meshes.
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Table 4.3: Problem definitions, plate with a central circular hole under tension
L R Em E f ν ρm ρ f P Vf max ncp
4 1 20 200 0.1 1000 1450 510 60% 180,612,2244

Length : m, E : GPa, P : Load (N/m) , ν : Poisson′s ratio, ρ : density
(

kg
m3

)
, m : matrix, f : f iber, V f max :

max. f iber vol. f rac.

Figure 4.11: (a) Schematic view of the model under uniform edges load P and (b) mesh
with control points (dots)
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4.5 Concluding remarks

Fig. 4.12 presents optimum fiber distribution through the structure. Results repre-
sented in Fig. 4.12(a-c) correspond to meshes with 180, 612 and 2244 control points,
respectively; as can be observed, smooth solution can be also obtained not necessarily
by implementing fine meshes.

Figure 4.12: Optimum fiber distribution using (a) 180 control points, (b) 612 control
points and (c) 2244 control points

Histories of objective function (normalized elastic compliance) versus the iteration
steps for different mesh sizes are plotted in Fig. 4.13; it can be noted as the deviation
between results less than 2% can be obtained by using coarse meshes with respect to
the finer one, while computational cost is obviously lower by using rough discretiza-
tion. On the other words, the use of coarse NURBS mesh maintains precision of the
results while decreasing the computational time.

4.5 Concluding remarks
The efficient gradient based optimization of fiber distribution in fiber reinforced con-
tinuum elements, has been developed in the present chapter through the use of NURBS
functions. The adopted computational technique has been implemented and used for
both domain discretization and definition of fiber distribution function. The proposed
approach allows to get a high rate and smooth convergence to the optimum condi-
tion sought while results are also mesh independent. The method allows considering
generic objective functions. In particular here the minimization of elastic strain en-
ergy and maximization of fundamental frequency for static and free vibration problems
have been considered respectively; by varying the fibers distribution characteristics in
the body under study. Nodal volume fraction of fiber has been used as the optimization
design variable, whose distribution function has been smoothly approximated by using
a NURBS surface. The mechanical behavior of the composite has been macroscopi-
cally described through a homogenization approach that considers a random orienta-
tion of fibers in the matrix. Some representative numerical examples have finally been
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Figure 4.13: Normalized compliance versus number of iterations for different mesh
sizes

presented; both optimization related to the structural response under static loading and
the free vibration behavior of composite structural elements, have been considered in
order to demonstrate that combining NURBS approximation and sensitivity based op-
timization method yields to high convergence rate and mesh independent optimization
results.
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Chapter 5

Uncertainties propagation in
optimization of CNT/polymer
composite

5.1 Introduction
Carbon Nano Tube (CNT) in polymer matrix which is called CNT/polymer compos-
ites have received attention thanks to their enhanced mechanical, electrical and thermal
properties [Lau et al., 2006]. Different approaches have been used in order to charac-
terize Polymeric Nano Composites (PNCs): atomistic modeling, continuum modeling
(which can be also subdivided into analytical and numerical approaches) and multi-
scale methods [Shokrieh & Rafiee, 2010c]. Molecular dynamics (MD) simulations
restrict the model to one CNT in a polymer matrix with very short length. Pure contin-
uum modeling approaches which usually deal with evaluating the composite response
in the scale of a Representative Volume Element (RVE), do not account for phenomena
taking place on finer scales. Therefore, multi-scale methods were employed coupling
MD methods and continuum methods. An overview of multi-scale methods for PNCs
has been presented in [Shokrieh & Rafiee, 2012].

The characteristics of a Carbon Nano Tube Reinforced Polymer (CNTRP) mate-
rial are influenced by many uncertainties. These uncertainties include material prop-
erties, the geometry, loading and boundary conditions and the model uncertainties.
Hence, probabilistic approaches are needed to determine the reliability of the behavior
of nanocomposite structures.

In this chapter, uncertainties are classified in three major groups: material uncer-
tainties, structural uncertainties and modeling uncertainties (Fig. 5.1). Material un-
certainties include the molecular interactions and the CNT diameter at nano-scale, the
CNT length and CNT-resin interaction at micro-scale, the CNT content, agglomera-
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tion, curvature, orientation at meso-scale and the CNT dispersion at macro-scale. Each
component e.g. the resin can also experience uncertainties in its material properties
(such as Young’s modulus and Poisson’s ratio). Structural uncertainties lie for instance
in the geometry, boundary and loading conditions while typical model uncertainties
concern the mathematical model, the discretization and approximation errors. These
uncertainties will propagate over different length scales affecting the overall reliability
of the structural component.

Uncertainty propagation in nanocomposite structures remains an unsolved issue.
Rouhi & Rais-Rohani, 2013 measured the failure probability of a nanocomposite cylin-
der under buckling, accounting for uncertain design conditions. However, they used
micromechanical equations at the nano-scale by simply replacing the lattice structure
of a CNT with a solid fiber (which can lead to inappropriate results [Shokrieh & Rafiee,
2010c]). Moreover, they disregard several important CNT parameters such as the CNT
length, diameter, agglomeration and dispersion without any sensitivity evaluation. Fur-
thermore, modeling errors including discretization- and approximation errors have not
been addressed in detail. In this chapter firstly the most feasible uncertain design pa-
rameters and variables in the model are considered in order to get a more realistic
insight towards uncertainties and their effects on the final nanocomposite product de-
sign. Secondly, the design optimization of nanocomposite components are extended
from a pure geometry oriented approach to a material oriented approach and a hybrid
approach accounting for the simultaneous optimization of the geometry and material.

For a specific load, the optimal structural results obviously will be obtained for
idealistic straight, aligned and not aggregated CNTs. Perfect manipulation of these
parameters with current technologies seems to be impractical. On the other hand, the
behavior of CNTRP can be changed more efficiently by varying the content of the CNT
rather than changing other parameters. To the author’s best knowledge, this is the first
approach optimizing the CNT content in generic nanocomposite solids considering
nearly all CNT parameters. It will answer the question how much CNTs should be
added to a resin for an optimal and reliable response of the structural component.

5.2 Stochastic multi-scale CNT/polymer material model
The stochastic multi-scale model has been adopted from [Shokrieh & Rafiee, 2010d
; Shokrieh & Rafiee, 2010b and Shokrieh & Rafiee, 2010a]. Fig. 5.2 illustrates the
bottom-up approach including bridging the nano-scale up to the macro-scale (N3M).
The CNT is modeled by a quasi-continuum method using beam elements at the nano-
scale. Therefore, the strain energy of the beam elements is equated to the interatomic
potential energy of Carbon-Carbon (C-C) bonds accounting for the 3-D frame structure
of the molecular lattice. Using beam elements instead of spring or truss elements re-
duces the number of elements in the FE model and consequently reduces the computa-
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Figure 5.1: Uncertainties sources and their propagation over different length scales and
sources
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tional cost (to find reasons reader can refer to [Shokrieh & Rafiee, 2010d]). Neglecting

Figure 5.2: Involved scales in simulation of CNTRP [Shokrieh & Rafiee, 2010d]

electrostatic interactions between the CNTs and the surrounding matrix, the interphase
region is modeled by non-bonded van der Waals (vdW) interactions. The polymer ma-
trix of the PNC is based on a continuum model at the micro-scale as shown in Fig. 5.3.
The interphase behavior is modeled by the adaptive vdW Interaction (AVI) based on
3D truss elements. The material behavior of the micromodel is up-scaled by devel-
oping the concept of equivalent fibers accounting for different CNT length and the
complex interphase behavior [Shokrieh & Rafiee, 2010b].

Figure 5.3: Concurrent multi-scale FE model of RVEs as micro-scale [Shokrieh &
Rafiee, 2010d]

Randomly distributed and orientated embedded equivalent fibers at meso-scale can
experience straight and wavy forms. They can be also concentrated in local aggregates
or dispersed in some other areas. A schematic view of RVE at meso-scale is shown
in Fig. 5.4. Using equivalent fiber technique, micromechanics theories can be used at
proper scale of meso instead of nano. So, implementing improved micromechanics
model by Shi et al., 2004, based on Mori & Tanaka, 1973, the Young’s modulus and
Poisson’s ratio of the block of Fig. 5.4 can be obtained. The effect of the CNT waviness
(the state of non straight shape of CNT) is also captured by considering upper and lower
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bounds of longitudinal and transverse stiffness. More details about waviness modeling
are presented in Section 5.5.1.

Figure 5.4: RVE of composite at meso-scale [Shokrieh & Rafiee, 2010d]

A Voigt model has been used to determine the overall properties of the material
region at the macro-scale. Monte Carlo Simulations (500 realization on an 80× 80
material region mesh), for the N3M multi-scale model account for the stochastic un-
certainties in CNTRP. The N3M algorithm is summarized in Fig. 5.5.

5.3 Metamodeling

5.3.1 Concept and application
In simulation based optimization, implicit forms of objective functions and constraints
dealing with either gradient based or gradient free optimization techniques are com-
putationally expensive, particularly with increasing number of variables and function
evaluations. In order to improve the computational efficiency in such design prob-
lems, the concept of ”metamodel” approximating the physical model has been intro-
duced. The metamodel is constructed based on a sufficient number of sampling points,
typically determined through experiments. Selecting a Design Of Experiment (DOE)
method for data generation, choosing a model to represent the data, fitting the model
and finally model validation are the four basic steps in metamodeling [Park & Dang,
2010]. In this work, the kriging method [Lophaven et al., 2002] has been utilized to
approximate the multi-scale material model.

5.3.2 Kriging method
In the kriging method, the unknown value of a response for an input sample point
should be the weighted average of the known values of the responses at its neighbors.
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Figure 5.5: Flowchart of developed full stochastic N3M multi-scale material model
[Shokrieh & Rafiee, 2010d]
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The basic form of the kriging estimator is

Z∗ (uuu)−m(uuu) =
n(u)

∑
α=1

λα [ZZZ (uuuα)−mmm(uuuα)] (5.1)

where Z(uuu) is the random field with a trend component m(uuu) and a residual component
R(uuu) = Z(uuu)−m(uuu); uuu being the location vector for an estimation point; n(uuu), m(uuu) and
λα(uuu) are the number of data points in the local neighborhood of the estimated point,
the expected (mean) value of Z(uuu) and the assigned kriging weights, respectively. The
superimposed * also indicates estimated value. The goal is to determine the weights,
λα , that minimize the variance of the estimator

σ2
E (uuu) =Var{ZZZ∗ (uuu)−ZZZ (uuu)}= 000 (5.2)

under the unbiased constraint E(Z∗(uuu)−Z(uuu)) = 0, where E(.) is the expected value
or ensemble average. A computer implementation of the kriging [Lophaven et al.,
2002] method has been used to find the unknown weights, λα . Fig. 5.6(a) compares
actual and estimated values of CNTRP stiffness obtained by N3M and metamodel,
respectively. Fig. 5.6(b) shows mean squared error for each predicted point. It can be
observed that N3M model can be substituted by kriging metamodel with high level of
accuracy and very cheap computational cost.

Figure 5.6: Verification of the metamodel (a) mean squared error of each predicted
point (b)

5.4 RBDO and metamodel based RBDO
Uncertainties influencing the material and structural response of nanocomposites call
for optimization models which can capture the effects of random variables and yield
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to reliable designs with higher level of confidence. In contrary to Deterministic De-
sign Optimization (DDO), in RBDO, design parameters are random variables and the
optimization objective function is subjected to probabilistic constraints.

Fig. 5.7 schematically compares RBDO and DDO. In DDO almost 75% of the
designs around the deterministic optimum fail while RBDO finds the optimal design
allowing a specific risk and target reliability level by accounting for the stochastic
nature of the random parameters.

Figure 5.7: Schematic comparisons between RBDO and DDO, f stands for objective
function while g1 and g2 represent design constraints

In this research a kriging based metamodel has been utilized in each RBDO it-
eration. In other words, instead of carrying out the RBDO process with the original
multi-scale material model, the approximation based RBDO is conducted with the
metamodel. If the function expressing the true nature of the computer analysis result
is y = f (x), the metamodel of the computer analysis is ŷ = f̂ (x) , and hence y = ŷ+ ε ,
where ε is the error of the approximation. So, the metamodel based RBDO becomes

Minimize Ĉ (θθθ) s.t.
∣∣∣∣

f̂1 (θθθ) , . . . , f̂q−1 (θθθ)≤ 0
f̂q (XXX ,θθθ) = β t −β (XXX ,θθθ)≤ 0 (5.3)

Eq. (5.3) has been solved by the open source software FERUM v4.1 [Bourinet, 2010]
and linked to the FE code which evaluates the LSF numerically. This software involves
a nested, double loop solution procedure where the outer optimization loop includes
inner loops of the reliability analysis. In each reliability analysis, the reliability index
approach is used as a separate optimization procedure in the standard normal space
to search for the most probable point for each active probabilistic constraint. Fig. 5.8
illustrates the nested algorithm of the RBDO procedure.
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Figure 5.8: Double loop RBDO flowchart

5.5 Case studies
For case studies, firstly the RBDO is employed to find the optimal content of CNT as
well as the optimal geometry of a nanocomposite component; and secondly, the sen-
sitivity of the structural failure probability with respect to uncertain design variables
is quantified. The two subsequent examples will show how the uncertainties influ-
ence the optimization of the structural performance and how the presented algorithm
can capture the uncertainties effects. Note that hereinafter CNT, equivalent fiber and
reinforcing agent are used interchangeably for sake of simplicity. Admittedly, read-
ers should distinguish the difference between them during interpretation of the results.
For example 7.5% fiber equivalent volume fraction as an output of the optimization
algorithm, should be regarded as 5% CNT volume fraction in practice, subtracting the
spatial volume of the CNT-polymer interphase region.

5.5.1 Three-point bending of a beam
The first example is a three point bending beam as already shown in Fig. 4.4(a). The
cross sectional area of the beam is constant along its length. Fig. 4.4(b) also depicts
the FE mesh while Table 5.1 indicates all design parameters of the beam. The design
constraint is the mid deflection of the beam which should be smaller than an admissible
value as mentioned in Table 5.1.
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Table 5.1: Problem definitions for the beam under static loading
Parameter Lx Ly Em νm P(µ/σ) LSF(δm) β ob j. f unc.

Value 5 1 10 0.3 760 / 10 0.0025 3 CNT %
Type D D D D N D D D

Length : m, E : GPa, P : applied load (KN) , ν : Poisson′s ratio, m : matrix, vol f rac : volume f raction, D :
deterministic, N : normal distribution, µ : mean value, σ : standard deviation, β : reliability index, δm : Max. de f lection

Fig. 5.9(a) illustrates the reinforcing agent content as optimization objective func-
tion versus iterations; while the history of the reliability index is also presented. The
same graphs are shown in Fig. 5.9(b), where the iteration is started from a different
point. The final results are independent on the iteration start point yielding on optimum
at 2.37% reinforcement. Results are based on the assumption of random waviness of
the CNT in the resin according to the procedure discussed in Section 5.2.

Figure 5.9: RBDO results of a three-point bending beam with initial guess of rein-
forcement content 9% (a) and 1% (b), optimum value is 2.37% for both (a) and (b)

Apart from finding the optimum content of the reinforcement agent, it is also im-
portant to determine how the uncertainties in the design parameters will affect the
reliability of the nanocomposite structures. For this purpose, the CNT waviness and
the agglomeration (material design parameters), the applied load (structural parameter)
and the FE discretization (modeling parameter), have been selected for more detailed
studies. According to [Rouhi & Rais-Rohani, 2013] and [Shokrieh & Rafiee, 2010d],
the waviness is one of the key parameters governing the nanocomposite stiffness. The
most influential parameter, the CNT content, has been optimized already.
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To analyze the sensitivity of the failure probability with respect to the CNT wavi-
ness, other CNT parameters (i.e. length, dispersion, agglomeration and orientation)
are considered as random parameters while the resin Young’s modulus and its Pois-
son’s ratio are considered as deterministic values because their effects on the overall
characteristics of the composite are negligible [Rouhi & Rais-Rohani, 2013]. Five dif-
ferent levels of waviness have been defined as ”waviness intensity” by limiting the
upper and lower bounds of longitudinal and transverse stiffness of the RVE. In the
first level (W-1: very fine waviness), the effective Young’s modulus of the CNTRP
is a random number between the Young’s modulus of the RVEs with the longitudi-
nal and 18◦ aligned CNTs (with respect to longitudinal direction). So, the effective
Young’s modulus for W-1 has a value between 80% and 100% of the stiffness of the
RVE with longitudinally aligned CNTs. Similarly, this concept can be extended to
have wavier CNTs (i.e. W-2: fine waviness, W-3: moderate waviness, W-4: severe
waviness and W-5: very severe waviness) by setting a limit on the CNT incline angle.
Thus W-2, W-3, W-4 imply that the effective Young’s modulus of CNTRP has a value
between 60%−100%, 40%−100% and 20%−100% of the stiffness of the RVE with
longitudinal CNTs, respectively. W-5 also stands for the generic case which effec-
tive stiffness of the nanocomposite can take a random value between longitudinal and
transverse stiffness of the RVE. Fig. 5.10 schematically demonstrates the definition
of the so called ”waviness intensity” concept. Fig. 5.11(a) depicts the Young’s mod-

Figure 5.10: Definition of waviness intensity, a phenomenological concept

ulus of the CNTRP versus the reinforcing contents for different waviness intensities.
Expectedly, an increase in content of reinforcement or decrease in the CNT waviness
yields to higher composite Young’s modulus. Fig. 5.11(b) shows the reliability index
of the beam versus waviness intensity, for the optimum content of the reinforcement
(i.e. 2.37%) while other parameters do not experience any variation. Evidently, when
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the waviness increases, the structural stiffness will decrease. Hence, the beam deflec-
tion will increase and consequently the structural reliability will decrease. One should
note that for the case of fully wavy CNT (i.e. W-5), the structural reliability is half the
reliability of a very fine wavy CNT (i.e. W-1).

Figure 5.11: Stiffness of CNTRP versus reinforcement content for different waviness
intensities (a), Reliability index of the beam versus waviness (b)

Fig. 5.12 illustrates the effect of the CNT agglomeration on the reliability of the
nanocomposite component. The Young’s modulus of CNTRP versus the reinforcement
contents for both aggregated and non-aggregated CNTs is plotted in Fig. 5.12(a). The
CNT agglomeration, reduces the CNTRP stiffness. This reduction is more pronounced
for higher values of CNT contents; for CNT contents around 2% and less, the agglom-
eration role can be neglected. Fig. 5.12(b) shows the failure probability of the beam
versus the reinforcement content with and without the CNT agglomeration. Agglom-
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eration also increases the failure probability of the structure but as it can be seen from
Fig. 5.12, its effect can be neglected (maximum difference in failure probability con-
sidering and disregarding CNT agglomeration is 0.144) without any structural safety
concern.

The second category of uncertainties (structural uncertainties) is considered in next
step, assuming a fully wavy CNT (i.e. W-5). Fig. 5.13 shows the reliability index and
the failure probability of the beam in dependence on the standard deviation of the
loading distribution. When the standard deviation increases, the failure probability
also increases and β decreases. The rate of the reliability index changes rapidly for
small standard deviations and gradually approaches zero (i.e. the system response is
not sensitive anymore). An increase in the standard deviation of the loading leads to a
more uncertain system that is more susceptible for failure.

Finally the influence of the discretization on the structural reliability is observed.
Fig. 5.14 depicts the failure probability versus the mesh size parameter, h, which has
been defined as the ratio between the beam height and the number of elements in the
vertical direction. It could be observed that coarse meshes considerably underestimate
the structural failure probability while next to h = 0.05, the failure probability reaches
a constant value.

5.5.2 Thick cylinder under radial line load
The second example is a thick cylinder under radial distributed loading. Due to geo-
metrical symmetry, only half of the ring is discretized. Fig. 5.15(a-c) and (d) depicts
the geometry, loading / boundary conditions, FE discretization and deformed config-
uration, respectively. Table 5.2 lists all design parameters. In this example not only
the material but also the geometry is simultaneously optimized. At the first step, the
minimization of the CNT content and the cylinder thickness as optimization objective
function, 1%<vol f rac<10% and 0.1<tc<0.4 as deterministic design constraints and
the maximum transverse deflection with a specified target reliability index (according
to Table 5.2) as stochastic constraint have been taken into account.

Table 5.2: Problem definitions for thick cylinder under line load
Parameter Rc Lc Em νm P(µ/σ) LSF(δm) β ob j. f unc.

Value 1 1.5 10 0.3 1000 / 200 0.007 3 %CNT+tc
Type D D D D N D D D

Length : m, E : GPa, P : applied load (KN/m) , ν : Poisson′s ratio, m : matrix, c : cylinder, D : deterministic, N :
normal distribution, µ : mean value, σ : standard deviation, β : reliability index,δm : Max. tarns. de f lect.

The RBDO results are illustrated in Fig. 5.16(a). The optimal thickness and rein-
forcement content are 0.278 and 1%, respectively. In order to check the correctness of
the present approach the ring thickness is restricted to an optimum 0.278 in the next
simulation. This new constraint is imposed by changing the deterministic constraints
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Figure 5.12: Stiffness of CNTRP versus reinforcement contents with and without CNT
agglomeration (a), Failure probability of the beam versus reinforcement contents with
and without CNT agglomeration (b).
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Figure 5.13: Reliability index and failure probability of the beam versus standard de-
viation of load.

Figure 5.14: Reliability index versus FE mesh, h, parameter which is defined as the
ratio between the beam height and the number of elements in the vertical direction
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Figure 5.15: Geometry (a), loading / boundary conditions (b), FE mesh (c) and de-
formed configuration (d) of a thick cylinder under radial line load
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to 1%<vol f rac<15% and 0.1<tc<0.26. To obtain the same reliability index, the ef-
fect of the thickness reduction should be compensated by another design variable, i.e.
the CNT content. Fig. 5.16(b) shows the results under the new constraints. The opti-
mal thickness now is 0.259 (quite close to constraint’s upper limit) while the optimum
reinforcement content is increased up to 9.35%.

Figure 5.16: RBDO results of a thick cylinder under radial line load for design con-
straints as 1%<vol f rac<10%, 0.1<tc<0.4 (a) 1%<vol f rac<15% and 0.1<tc<0.26
(b) for both cases tc and vol f rac stand for ring thickness and reinforcement content,
respectively

Subsequently, the minimization of both CNT content and cylinder volume have
been followed considering the deterministic constraints 1%<vol f rac<10%, 0.1<tc<0.3,
1.2<Lc<1.7, 0.9<Rc<1.1 and the stochastic design constraint according to Table 5.2.
As Fig. 5.17 shows, vol f rac = 9.34%, Rc = 0.9333, Lc = 1.333 and tc = 0.2032 are
optimal values of the design parameters.
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Figure 5.17: RBDO results of a thick cylinder to find min. reinforcement con-
tent and min. volume of cylinder including deterministic design constraints as
1%<vol f rac<10%, 0.1<tc<0.3, 1.2<Lc<1.7, 0.9<Rc<1.1 and stochastic con-
straint as maximum transverse displacement equal to 0.007 with b = 3
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5.6 Concluding remarks
Deterministic approaches for nanocomposite modeling and optimization might be un-
realistic for certain applications and may yield to either catastrophic failure or unneces-
sary conservatism. Although probabilistic approaches can cover uncertainties effects,
their implementations do not necessarily yield reliable nanocomposite designs. De-
tailed investigations on uncertainties and their propagation should be performed for
realistic and reliable PNC structures. Uncertainty propagation over different length
scales and through various sources have been addressed for nanocomposite compo-
nents. Potential uncertainties have been categorized in material, structural and mod-
eling levels. To fully address uncertainties in material level, a stochastic multi-scale
material model (which includes all important aspects of the CNTRP including CNT
length, orientation, dispersion, agglomeration and waviness, at different length scales
from nano-, up to macro-scale) has been utilized. To improve the computational ef-
ficiency, the evaluation of material properties has been surrogated by a metamodel.
The results for two selected examples show that the failure probability of a polymeric
nanocomposite structure, strongly depends on the CNT parameters, especially the CNT
volume fraction and the waviness. The influence of the CNT agglomeration is nearly
negligible. It was observed that neglecting the CNT agglomeration can simplify the
model and decrease the computational time without remarkable loss in model accu-
racy. Furthermore, the loading condition and discretization affect the reliability of
the system. Coarse meshes underestimate the failure probability of a beam while fine
meshes admittedly increase computational cost. Thus sufficiently refined discretization
should be investigated in order to have realistic assessment of the reliability of PNC
structures. An increase in the standard deviation of the applied load, which physically
means more uncertainties in the system, resulted in the structure with a smaller relia-
bility index. Finding the optimal content of CNT was also presented to optimized the
material instead of the geometry. As a further step forward, concurrent optimization of
material parameters and geometrical parameters (hybrid optimization) was conducted
to present a comprehensive solution for current demands in fully optimized designs of
nanocomposite components.
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Chapter 6

Reliability and NURBS based
sequential optimization approach

6.1 Introduction
Generally, increasing the fiber volume fraction in a Fiber Reinforced Composite (FRC)
material will increase its structural strength and stiffness. However the existence of a
practical upper limit should be considered. Normally, composite structural elements
under mechanical actions have some regions which are on the edge of design con-
straints (e.g. the maximum allowable stress is exceeded) and can be identified as fail-
ure zones. Usually these failure zones dictate the required content of the reinforcing
element in order to get a properly strengthened overall structure, fulfilling everywhere
the design constraints. Considering uniform distribution of fibers through the structure,
initially safe regions that already fulfill the design constraints will inevitably increase
their fiber content. Thus, an efficient optimization approach which seeks towards op-
timal fiber content (see Chapter 5) should also pay attention to optimal distribution
of fibers in order to strengthen only those portions of the structure (failure zones) for
which it is necessary to improve their bearing capacity. From the above discussions
it appears that the joint manipulation of these two parameters (i.e. fiber content and
its distribution) while available uncertainties are also addressed, will be a necessary
approach towards more efficient and reliable structural optimization.

6.2 Double sequential stages optimization procedure
The sequential optimization algorithm is schematically illustrated in Fig. 6.1. In this
approach there are two successive optimization stages. Stage 1 includes a stochastic
fiber content optimization algorithm and stage 2 includes a fiber distribution optimizer.
In the first stage, based on the nature of the problem, the designer can decide which
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parameters would be deterministic and which ones probabilistic. He can also set the
initial values of the parameters, variables and solution settings. Traditional RBDO is
implemented by use of a nested or double loop approach. In this method, each step
of the iteration for design optimization involves another loop of iteration for reliability
analysis (i.e. FORM). In this stage, minimization of fiber content is considered as op-
timization objective function and after convergence, the output is used as the input for
the second stage. In the second stage, NURBS finite elements which are implemented
and used for domain discretization, define continuous and smooth mesh independent
fiber distribution function by using the nodal volume fractions of fibers as the opti-
mization design variables. The second stage is initialized by using the fiber volume
fraction value, coming as stage 1. Afterwards Optimality Criteria (OC) updates de-
sign variables. This computational procedure is executed iteratively, until no sensible
changes occur in design variables (See Chapter 4).

In the presented model, two separate reliability indices (β1 and β2) are introduced:
β1 is the first stage reliability index (which is used for obtaining optimal fiber volume
fraction through the RBDO in stage 1) and the second reliability index, β2, is the target
reliability index of the final optimized structure. β2 represents the reliability index of
the structure after fiber distribution optimization. β1 is the model input (set by designer
at the first run of the algorithm) while β2 is the output of the model. Clearly, β1 <β2
because it is supposed that fiber distribution optimization increases the performance
(such as the stiffness) of the model and provides a more reliable structure.

It is however possible to implement concurrent approach for coupling stage 1 and
stage 2. In the concurrent approach (Fig. 6.2) the fulfillment of the fiber distribution
optimization before evaluation of LSF is necessary in every realization of stage 1.
Thus, this alternative method is computationally expensive. To see more clearly the
issue, we can assume that the computational parameter of total elapsed time (Ttotal) is
proportional to the number of LSF call (n1), each call run time (tLSF ) and the subtotal
time required for fiber distribution optimization (t2). Taking into account the above, for
the sequential model the total time is proportional to the sum of the above mentioned
times, i.e:

Ttotalse ∝ (n1 × tLSF + t2) (6.1)

while for concurrent model we have:

Ttotalco ∝ [n1 × (tLSF + t2)] (6.2)

as n1>1, thus , Ttotalse is smaller than Ttotalco. We can write:

(Ttotalco −Ttotalse) = ∆T ∝ [(n1 −1)t2] (6.3)

We can use a quantitative example in order to clarify the above issue. A simple case
where t2 and n1 are equal to 20 minutes and 10 calls respectively, the present model
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6.2 Double sequential stages optimization procedure

Figure 6.1: Double sequential stages optimization algorithm
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is 180 minutes faster than the concurrent model. The computational advantage of this
model is more evident when readers observe that t2 and n1 are considerably higher in
real cases.

Figure 6.2: Concurrent optimization algorithm

6.3 Case studies
The aims of this section are firstly to verify the correctness and secondly to demon-
strate the performance of the proposed model. Moreover the discussions related to
the two presented examples will show how uncertainties influence the optimization of
structural performance and how the presented algorithm can capture the effects of the
uncertainties.
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6.3.1 Cantilever beam under static loading, verification of the model
The first example involves a RBDO benchmark problem of a cantilever beam presented
in [Togan & Daloglu, 2006] and shown in Fig. 6.3. The beam length (L) is assumed to
be equal to 100 inches with constant cross section area along its length. The objective
function corresponds to the minimization of the beam weight or equivalently, the cross
section area (w.t). The limit state deals with the displacement at the free end of the
beam, where the displacement attains its maximum value. Fx and Fy are independent
random loads in x and y directions. R is random yield strength and E is Young’s
modulus. To verify the stochastic framework of the model, initially the analytical
limit state function corresponding to the maximum displacement at the free end of the
beam is considered. Other design parameters are assumed exactly equal to those in the
benchmark problem ([Togan & Daloglu, 2006]) and are summarized in Table 6.1.

Figure 6.3: Schematic of the cantilever beam

Table 6.1: Benchmark problem definitions for cantilever beam under static loading
Parameter L R Fx Fy E w t β1

Value 100 µ = 40000 µ = 40000 µ = 40000 µ = 29e6 µ = 4 µ = 4 3
σ = 2000 σ = 2000 σ = 2000 σ = 1.45e6 σ = 0.001 σ = 0.001

Type D N N N N N N D
L : Length, R : yield strength, Fx,Fy : load, E : Young′s Modules, w, t : width, thickness D : deterministic, N :
normal distribution, µ : mean value, σ : standard deviation, β : Reliability index

Table 6.2: RBDO results using analytical limit state
Method w t F = w.t

[Togan & Daloglu, 2006] 2.700 3.410 9.206
Present Model 2.702 3.408 9.206

w, t : width, thickness, F : ob jective f unction

Table 6.2 compares the obtained results and the benchmark ones and shows that
there is an agreement between them. In the next step the off-plane load (Fx) is set
equal to zero in order to solve the problem in 2-D space while keeping the beam depth
equal to unity. Results which are obtained by using two different limit state functions
(i.e. analytical formula and those calculated by finite elements) are compared with
each others in Table 6.3. Once again a good conformity was obtained.
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Table 6.3: RBDO results using FEM limit state
Method for evaluation of LSF w t F = w.t

Analytical 1 4.0095 4.0095
FEM(NURBS) 1 4.0094 4.0094

w, t : width, thickness, F : ob jective f unction

6.3.2 Beam under three-point bending
In the present example the first objective function is to find the optimal fiber volume
while the limit state is the deflection at mid of the beam must be smaller than an
admissible value. The schematic view of the problem is already shown in Fig. 4.4
while Table 6.4 includes the design parameters.

Table 6.4: Problem definitions of the beam under static loading
Parameter Lx Ly Lm E f ν P LSF β1 Ob j.Func.

Value 5 1 µ = 20 µ = 200 0.1 µ = 1000 Max. Deflect. 3 Fiber Volume
σ = 5 σ = 50 σ = 250 4e−3 fraction

Type D D N N D N D D D
Length : (M), E : (MPa), P : applied load(N), ν : Poisson′s ratio, m : matrix, f : f iber, D : deterministic, N :
normal distribution, µ : mean value, σ : standard deviation, β1 : reliability index

Fig. 6.4 presents optimal values of fiber volume fraction for the beam with homo-
geneously distributed fibers versus the different maximum allowable deflection at mid
of the beam and for different reliability indices. A mesh with 91 control points has
been used to reduce computational cost. As expected, either demanding smaller beam
deflection or greater reliability index for the beam, yield to increase in fiber volume
fraction of the FRC beam. The figure also depicts that for large reliability indices
(here 4 and 5) and when there is a small allowable beam deflection (here 5 mm), the
obtained fiber contents are approximately the same.

Results of RBDO by using 1225 control points, which represents 4120 mesh sizes,
are plotted in Fig. 6.5. For this (or higher) number of control points, the numerical
solutions of the LSF have been verified to converge to the exact solution.

Fig. 6.6 compares the obtained values related to the assumed objective function for
different numbers of control points (mesh sizes). As can be observed, the deviation be-
tween the obtained optimal fiber volume fractions by using 1225 or 325 control points
is equal to 0.03 (i.e. 3%) but the computational time is reduced to be approximately
less than one tenth. This fact underlines NURBS smooth and quick convergence char-
acteristics which yield to noticeable saving in the time of the computation. In RBDO
problem, LSF which depends on FE model results, should be evaluated many times.
So, any reduction in its calculation time will significantly reduce the total elapsed time.
Admittedly, this time saving is justified only in the case that accuracy of the results is
also maintained. This takes place in the presented model while using coarse NURBS
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Figure 6.4: Fiber volume fraction versus change in maximum admissible deflection for
different β

Figure 6.5: RBDO results of a three-point bending beam using 1225 control points
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mesh for the evaluation of LSF, slightly changes in the accuracy of the results and leads
to a significant decrease in RBDO computational time.

Figure 6.6: RBDO results versus number of control points (mesh size)

Once the optimal fiber content (by assuming β1 = 3) is obtained (Fig. 6.7(a)), the
second module optimizes the fiber distribution through the structure (Fig. 6.7(b)), with
the aim to minimize the structural compliance. 703 control points are used for ob-
taining shown results. The obtained target reliability index at the end of stage 2 is
β2 = 7.66. This increase in reliability index is due to the effect of fiber distribution
optimization on increasing the structural stiffness which consequently decreases the
deflection of the structure. It is also noteworthy to mention that in this case the stan-
dard deviations of random variables are according to Table 6.4. If they are decreased
to 70% and 40% of the current values without any change in other design parameters,
since required fiber volume fractions decrease, the target reliability indices are also
decreased to β2 = 6.65 and β2 = 4.81, respectively. Thus, we can conclude that fiber
distribution optimization is more influential on increasing the reliability of the structure
with higher level of uncertainties.

Figure 6.7: Three point bending wall beam problem using 703 control points with
(a) homogenized fiber distribution and β1 = 3, (b) optimized fiber distribution and
β2 = 7.66
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6.3.3 Square plate with a central circular hole under tension
The classical problem of a square plate with a central hole under constant distributed
edge load is assumed as the second example. Considering the double symmetry of the
problem, just one quarter of the plate is modeled. Fig. 4.11(a) and (b) show the analysis
model and the FE domain discretization. Table 6.5 shows the design parameters. The
problem of obtaining optimal fiber volume fraction and distribution in order to have a
reliable structure with limited deflection, is solved by using quadratic NURBS meshes.

Firstly, all the design parameters are considered as deterministic values, except the
applied load which is considered as a random variable with different standard devia-
tions. Obtained optimal fiber contents (by using 612 control points) are plotted versus
the values of standard deviation of the applied load in Fig. 6.8.

Table 6.5: Problem definitions, Square plate with central hole
Parameter L R Em E f ν P LSF β1 Ob j.Func.

Value 4 1 µ = 20 µ = 200 0.1 µ = 510 Max. Deflect. 3 Fiber Volume
σ = 2 σ = 20 σ = 20,30,40,50 6e−8

Type D D N N D N D D D
Length : (M), E : (GPa), P : applied load(N/m), ν : Poisson′s ratio, m : matrix, f : f iber, D : deterministic, N :
normal distribution, µ : mean value, σ : standard deviation, β1 : reliability index

Figure 6.8: Optimal fiber volume fraction versus standard deviation of applied load
considering β1 = 3 for 1- Random field (load), 2-Random fields (load +E f )and 3-
Random fields (load +E f +Ec)

As can be seen, an increase in the standard deviation of the applied load (which
means an increase in the uncertainty of the system) needs more fiber content. The sys-
tem uncertainty will increase more when we consider the Young’s modulus of fiber as
another random field (i.e. 2-Random fields) and even more when the Young’s modulus
of the matrix material is also considered as a random variable (i.e. 3-Random fields).
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In the case where only the applied load is assumed as a random variable (with mean
value equal to 510 N/m and standard deviation equal to 50), the optimal fiber volume
fraction is equal to 0.183. When E f is also considered as a random variable, the opti-
mal fiber volume is equal to 0.21. When Em is not deterministic any more, the optimal
fiber volume becomes 0.294. As can be seen, by increasing the number of random
variables while keeping constant the reliability index (i.e. β1 = 3), the required fiber
volume fraction increases. Alternatively, for a constant fiber volume fraction if the
number of uncertain variables of the problem increases, the reliability of the system
decreases.

Using 612 control points, optimal fiber distribution leading to the minimum struc-
tural compliance is plotted in Fig. 6.9. Considering β1 = 3, the target reliability index
for this pattern of fiber distribution gives the value of β2 = 4.1. Changes in β1 will re-
sult in different values of β2, for example for β1 = 2.5 and β1 = 3.5 the target reliability
indices correspond to β2 = 3.78 and β2 = 4.36, respectively.

Figure 6.9: Optimal distribution of fibers with volume fraction 0.294 of plate with
central hole subjected to constant loading, target reliability index β2 = 4.1 (result for
612 control points)

6.4 Concluding remarks
An efficient sequential algorithm for finding the optimal fiber volume fraction and
its distribution in structures made of FRC materials is presented. To overcome the
cumbersome computational burden in stochastic optimization problems, finding the
optimal fiber volume fraction and fiber distribution are performed sequentially, not
concurrently. This technique along with using NURBS finite elements, allows us to
get a noticeable reduction in the computational cost, without a noticeable loss in ac-
curacy of the results. Assuming a random orientation of fibers in the matrix, in the

63

Chapter5/Chapter5Figs/EPS/Fig15.eps


6.4 Concluding remarks

first optimization module (i.e. finding the optimal fiber volume fraction) uncertainties
in the parameters (such as constituent’s materials and loading) are fully addressed and
LSF is evaluated by using First Order Reliability Method (FORM). In the second mod-
ule (i.e. fiber distribution optimization) a NURBS surface which smoothly defines the
fiber distribution pattern, is adopted. The presented numerical examples show as an
increase in model uncertainties gives rise to unreliability of the system. More specif-
ically, either the rise in the number of uncertain fields in the problem or the increase
in the standard deviation of random variables needs more fiber content. It can be also
concluded that when there is a higher level of uncertainties in design parameters, the
fiber distribution optimization is more influential on increasing the reliability of the
structure.
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Chapter 7

Application 1: Interfacial shear stress
optimization in sandwich beams

7.1 Introduction
Sandwich beams are a special class of composite materials fabricated by attaching
two thin but stiff face sheets to a lightweight thick core which experiences mostly
shear stresses. As a result of their high bending stiffness and high strength to weight
ratios, sandwich beams have numerous applications in the automotive, aerospace, ma-
rine and construction industries [Manalo et al., 2009]. A comprehensive review and
assessment of various theories for modeling sandwich composites are presented in [Hu
et al., 2008]. Core shearing and debonding between core and face sheets are two com-
mon failure modes of these structures. Core shearing occurs when a sandwich beam
is subjected to an excessive transverse shear force. Moreover, experimental evidence
shows that debonding failure is influenced by the existence of a crack at the imperfect
interface [Triantafillou & Gibson, 1989]. The excessive interfacial stresses between
the core and the face sheet can be considered as a main cause for this failure.

To decrease the stress concentration at the interface, Functionally Graded Materials
(FGMs) with continuously varying composition have been developed [Jha et al., 2013].
However, Fiber Reinforced Composite (FRP) materials are also widely used in the core
of sandwich beams. Available research on interfacial stresses optimization mainly
concerns beams strengthened with FRP bonded plate. For instance, Krour et al., 2013
and Lousdad et al., 2010 tried to minimize interfacial stresses of a concrete beam
strengthened with FRP plate, by finding optimal fiber orientation in the FRP plate and
its end shape, respectively.

Motivated by the capabilities of the fiber distribution optimization algorithm for
FRC structures which has been described in Chapter 4, the methodology is extended
to present an optimization package for sandwich beams minimizing any stress state
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within any arbitrary area of interest defined over the design domain. The advantages
of this methodology include: The same data set is used for optimization and analysis,
high convergence rate due to the smoothness of the NURBS, mesh independency of the
optimal layout, no need for any post processing technique and its non-heuristic nature.
In this chapter an adjoint sensitivity technique is also devised for flexible choice of
regions where the stress reduction is demanded. The technique is used for efficient
updating of the design variables during optimization iterations.

7.2 Introduction to FGM and homogenization technique
Mechanical characteristics at any point in FGMs depend on the volume fraction of its
ingredients. The sum of the volume fraction of reinforcement Vc and the matrix Vm
is equal to unity (Vc +Vm = 1). In a beam with a FG core, the volume fraction of
reinforcement is assumed to follow the power law distribution

Vc =

(
1
2
+

y
tc

)n
with n ≥ 0 (7.1)

where n is a non-negative exponent, y is the distance from the midline of the core in the
thickness direction and tc is the FG core thickness. Fig. 7.1 depicts Vc versus the non
dimensional thickness y

tc , for different values of n. It is clear the mechanical properties
of the FG core significantly depend on n.

For the sake of simplicity, the rule of mixtures as a classical homogenization ap-
proach is used in this chapter. The homogenization technique based on Mori & Tanaka,
1973 is also used for model verification purposes. A summary of the governing equa-
tions can be stated as follows:

Figure 7.1: Volume fraction versus the non-dimensional thickness for various n of the
FG core, figure from [Bui et al., 2013]
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7.2.1 Rule of mixtures (ROM) method
Pe f f = PmVm +PcVc (7.2)

By substituting Eq. (7.1) into Eq. (7.2) the effective Young’s modulus Ee f f , Poisson’s
ratio νe f f and mass density ρe f f of the FG core are determined by

Ee f f = EmVm +EcVc = (Ec −Em)(
1
2
+

y
tc
)n +Em (7.3)

νe f f = νmVm +νcVc = (νc −νm)(
1
2
+

y
tc
)n +νm (7.4)

ρe f f = ρmVm +ρcVc = (ρc −ρm)(
1
2
+

y
tc
)n +ρm (7.5)

7.2.2 Mori-Tanaka method
In contrast to the ROM, the Mori & Tanaka, 1973 scheme considers the forces between
the matrix and particulate phases and accounts for the interaction of the elastic fields
among neighboring inclusions. The effective bulk modulus Ke f f and the effective shear
modulus Ge f f of a mixture of two constituents are determined by [Bui et al., 2013]

Ke f f −Kc

Km −Kc
=

Vm

1+(1−Vm)K̃
with K̃ =

(
Km −Kc

Kc +
4
3Gc

)
(7.6)

Ge f f −Gc

Gm −Gc
=

Vm

1+(1−Vm)G̃
with G̃ =


 Gm −Gc

Gc +
Gc(9Kc+8Gc)

6(Kc+2Gc)


 (7.7)

where (Kc,Gc) and (Km, Gm) are the bulk and the shear modulus of the reinforcement
and matrix constituents respectively, obtained by

Kl =
El

3(1−2ν l)
; Gl =

El
2(1+ν l)

with l = m,c (7.8)

Finally, the effective Young’s modulus (Ee f f ) and Poisson’s ratio (νe f f ) are given by:

Ee f f =
9Ke f f Ge f f

3Ke f f +Ge f f
and νe f f =

3Ke f f−2Ge f f
2(3Ke f f +Ge f f )

(7.9)
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7.3 Material discontinuity
In a sandwich beam, material properties for the core and the face sheets are different,
so the displacement solution at the interface of the core and the face sheets is only C0

continuous and the strain field (displacement gradient) is discontinuous across the ma-
terial interface. It means there is discontinuity in gradient field. In classical C0 FEM,
weak discontinuities can be automatically captured, if the material interface is located
on an element boundary (conforming mesh). However, for problems with curved inter-
faces, using conforming meshes may be cumbersome, especially when such interfaces
evolve. Several advanced methods like the Extended Finite Element Method (XFEM)
[Duddu et al., 2008 and Zhao et al., 2013], XIGA [Ghorashi et al., 2012 and Jia et al.,
2014], Meshless [Zhuang et al., 2012 ; Rabczuk & Belytschko, 2004 ; Rabczuk et al.,
2007 and Rabczuk & Belytschko, 2007] and the Numerical Manifold Method (NMM)
[Cai et al., 2013] have been developed for capturing material discontinuity using non
conforming mesh. Recently Nguyen et al., 2014 proposed very simple approaches to
handle such discontinuities in IGA for composite delamination using knot insertion for
cohesive interfaces.

In IGA, continuity across an interior element boundary directly depends on the
polynomial order and the multiplicity of the corresponding knot. Thus, knot insertion
can be used to tailor the continuity of the fields along element interface (see Fig. 7.2).
Taking the knot vector in 1D as NNN =

{
ξ1,ξ2, ...,ξn+p+1

}
, where ξi is the ith knot, n is

the number of basis functions and p is the polynomial order, the basis functions across
knot ξi are p−mi times continuously differentiable or Cp−mi continuous; where mi is
the multiplicity of knot ξi.

Fig. 7.2(a) and (b) present the physical and parametric spaces; Fig. 7.2(c) and (d)
compare supports of the shape functions for interior (entirely inside the core or the
face sheets) and interfacial elements. According to Fig. 7.2(c), control points corre-
sponding to interior element No. 1 are {1,2,3,4,5,6,7,8,9} and for interior element
No. 2 are {4,5,6,7,8,9,10,11,12}. Two rows of control points (i.e. row {4,5,6 and
row {7,8,9}) are in common between these two elements. These shared control points
produce overlapping shape functions as illustrated in Fig. 7.2(c). In other words, the
shape functions extend beyond the elements (C1 continuity). In contrary to the interior
elements, interfacial elements have at least one edge on the material interface. Two
of these elements (elements Nos. 3 and 4) are shown in Fig. 7.2(d). These two ele-
ments have only one row of control points (i.e. row {27,28,29}) in common due to
repeated knot at the interface. This knot insertion imposes C0 continuity in the dis-
placement field at the position of the material interface. As shown in Fig. 7.2(d), the
shape functions of elements Nos. 3 and 4 do not overlap with each others.

In the present optimization methodology, control points which define the geometry
of the model, contain the nodal volume fractions of the reinforcement as optimization
design variables. Note that this is an advantage due to the smoothness provided by the

68



7.3 Material discontinuity

Figure 7.2: Schematic illustration of C1 and C0 continuity of quadratic NURBS ele-
ments, (a) physical mesh (b) parametric mesh (c) typical elements on single material
without interface with C1 continuity (d) typical elements on material interface with C0

continuity
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NURBS functions and the simplicity of dealing with only one approximation space
for the geometry, reinforcement distribution and analysis. Though single knot inser-
tion suffices to capture weak discontinuities in the analysis of sandwich beam models
using IGA, it does not properly represent the situation arising at the neighborhood of
material interface in the reinforcement distribution surface. Assume that material in-
terface is being C0 continuous. Thus, according to Fig. 7.2(d) there is a single row
of control points (denoted by {27,28,29}) located at the interface in physical space.
No control point can contain more than one value of nodal volume fraction of rein-
forcement as design variable in one optimization iteration. For element No. 3 corre-
sponding control points are {21,22,23,24,25,26,27,28,29}and their counterpart de-
sign variables are {ϕ21,ϕ22,ϕ23,ϕ24,ϕ25,ϕ26,ϕ27,ϕ28,ϕ29}. Analogously for element
No. 4, {27,28,29,30,31,32,33,34,35} and {ϕ27,ϕ28,ϕ29,ϕ30,ϕ31,ϕ32,ϕ33,ϕ34,ϕ35}
are the vector of corresponding control points and the vector of design variables, re-
spectively. Here {ϕ27,ϕ28,ϕ29} are common design variables between element Nos.
3 and 4. Since element No. 3 is located in face sheet and it is supposed that the face
sheet material composition is fixed and does not change during the optimization, we
set all design variables related to the face sheets to unity. So, {ϕ27,ϕ28,ϕ29} as a part
of the face sheet should be a unit vector. However, they also belong to element No. 4
in the core of the beam with different nodal values. To overcome this discrepancy, C−1

continuity at the interface is imposed via the insertion of one additional knot (in total
3 knots at the parametric interface). In this case a new row of control points will coin-
cide with the existing ones. Half of them contain the face sheet characteristics and the
other half contains the core characteristics. Continuity in the displacement field along
the interface is enforced by the penalty method. Fig. 7.3 schematically illustrates the
implemented technique. Red dots represent interfacial control points which are dupli-
cated and coincident at the interfaces. Green ones show typical interior control points.

Figure 7.3: Exploded view of the sandwich beam modeled as multi-patches and glued
with penalty method results in C−1 continuity. Interfacial control points are denoted by
red dots and are coincident at interfaces. Green dots are typical interior control points
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7.4 Overview of optimization methodology
As mentioned before, NURBS basis functions are used in this work not only for the
analysis but also to model the reinforcement distribution. In the present methodology
the nodal reinforcement volume fraction (ϕi, j) on control points are defined as design
variables and the reinforcement distribution (ηp) is approximated as NURBS surface.
Every point in the parametric space is mapped to the physical space having two at-
tributes, geometrical coordinates and reinforcement volume fraction value. Due to the
intrinsic characteristics of NURBS (higher order continuity and compact support, see
[Cottrell et al., 2009]), even coarse meshes yield smooth enough surfaces to clearly
represent the optimization results without needing any further image processing tech-
niques.

The distribution function ηp(x,y), which indicates the amount of reinforcement at
every design point (x,y), is defined by Eq. (4.9) and used for obtaining the homoge-
nized stiffness. Once the reinforcement volume fraction at each point is available, the
equivalent mechanical characteristics of the domain are obtained through the rule of
mixtures

CCCeq (x,y) =
(
1−η p

)
CCCm +η pCCCc (7.10)

where CCCeq; CCCm and CCCc are the homogenized, the matrix and the reinforcement elastic
tensors, respectively. Subsequently, CCCeq will be denoted by CCC. Since the core experi-
ences mostly shear stresses, without loss of generality, the average value of the shear
stresses within the area of interest is considered as the objective function. Other stress
components (i.e. bending and peeling) can be also taken into account in the same man-
ner. For the plane stress assumption, the stress in a vector form (σσσ =

{
σxx,σyy,σxy

}
)

is given by
σσσ = TuTuTu =CQuCQuCQu (7.11)

and also
σσσ xy = tttxyuuu =CCCxyQuQuQu (7.12)

where TTT is the stress matrix of the element, (.)xy is the related row of (.) corresponding
to the xy direction and QQQ is the matrix containing the derivatives of the shape functions.
Thus, the objective function (J(uuu(ϕϕϕ),ϕϕϕ)) can be written in the following form

J(uuu(ϕϕϕ),ϕϕϕ) =
1

|Ω1|

∫

Ω1
σxy dΩ1 (7.13)

whereΩ1 is the area of interest over which the objective function is supposed to be min-
imized. The optimization problem can be summarized according to Eq. (4.12) while
the Lagrangian objective function and derivatives are defined according to Eq. (4.13)
and Eq. (4.14), respectively. Once again the optimality criteria (OC) based optimiza-
tion [Zhou & Rozvany, 1991] is implemented to numerically solve Eq. (4.14). The
design variables are updated by a sensitivity analysis as presented in following section.
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7.4.1 Adjoint sensitivity analysis
In gradient-based methods, to solve Eq. (4.14), one should differentiate the objective
and constraint functions with respect to the design variables. The procedure to obtain
these derivatives is called sensitivity analysis. Generally, there are two main groups
of methods for sensitivity analysis: numerical methods (e.g. finite difference) which
are approximate; and analytical methods (including direct and adjoint methods) which
are exact. According to [Bendsoe & Sigmund, 2003] the most efficient method for
calculating derivatives involved in Eq. (4.14) is the adjoint method since there is a large
number of design variables but few functions (here two, including objective function
and design constraint). Recalling Eq. (4.14), the chain-rule is used to calculate the
sensitivity of J(uuu(ϕϕϕ),ϕϕϕ) with respect to ϕϕϕ

dJ
dϕϕϕ

=
∂J
∂uuu

∂uuu
∂ϕϕϕ

+
∂J
∂ϕϕϕ

(7.14)

From force equilibrium (F=KuKuKu− fff = 000) we have

dF
dϕϕϕ

=

(
∂F
∂uuu

)T ∂uuu
∂ϕϕϕ

+
∂F
∂ϕϕϕ

= 0 (7.15)

∂uuu
∂ϕϕϕ

=−

(
∂F
∂uuu

)−T ∂F
∂ϕϕϕ

(7.16)

where (.)T denotes transpose of (.). Substitution of Eq. (7.16) in Eq. (7.14) yields to

dJ
dϕϕϕ

=−
∂J
∂uuu

[(
∂F
∂uuu

)−T ∂F
∂ϕϕϕ

]
+
∂J
∂ϕϕϕ

(7.17)

Introducing

λλλ =−
∂J
∂uuu

(
∂F
∂uuu

)−T
(7.18)

and knowing that ∂F
∂uuu =KKK, we can write

KλKλKλ =−
∂J
∂uuu

(7.19)

Eventually Eq. (7.14) can be written in the form

dJ
dϕϕϕ

= (λλλ )T ∂F
∂ϕϕϕ

+
∂J
∂ϕϕϕ

(7.20)
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The second terms of Eq. (7.20) are obtained as follows

∂J
∂ϕϕϕ

=
1

|Ω1|

∫

Ω1

∂CCCxy
∂ϕϕϕ

QQQuuu dΩ1 (7.21)

with
∂CCCxy
∂ϕϕϕ

=−
∂η p
∂ϕϕϕ

CCCmxy +
∂η p
∂ϕϕϕ

CCCcxy (7.22)

CCCmxy and CCCcxy in right hand side of Eq. (7.22) are related rows of CCCm and CCCc corre-
sponding to the shear (xy) component. Considering Eq. (4.9), one can write

∂η p
∂ϕ i, j

= Rp,q
i, j (ξ ,η) (7.23)

to complete Eq. (7.20), ∂J
∂uuu and ∂F

∂ϕϕϕ are needed

∂J
∂uuu

=
1

|Ω1|

∫

Ω1
CCCxyQQQ dΩ1 (7.24)

and
∂F
∂ϕϕϕ

=
∫

Ω

∂KKK
∂ϕϕϕ

uuu dΩ (7.25)

where
∂KKK
∂ϕϕϕ

=
∫

Ω
QQQT ∂CCCeq

∂ϕϕϕ
QQQ dΩ (7.26)

Finally, the term dV f
dϕϕϕ can be written as

dV f
dϕϕϕ

=
∂V f
∂ϕϕϕ

=
∫

Ω

∂η p
∂ϕϕϕ

dΩ (7.27)

where ∂ηp
∂ϕϕϕ can be obtained from Eq. (7.23).

7.5 Case studies
In this section, the NURBS-based finite element model is verified by performing both
static and dynamic benchmark problems. Afterwards the performance of the optimiza-
tion algorithm is studied.
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7.5.1 Verification of the IGA model
7.5.1.1 Static analysis of a sandwich beam with a homogeneous elastic core

To demonstrate the accuracy and convergence of the IGA model, in particular with re-
spect to the imposed discontinuity at the interface, firstly a sandwich beam is analyzed
as sketched in Fig. 7.4 under 100 N/m uniform distributed load at the top of the beam.
The beam is 4.8 long and 1.2 m wide and clamped at the left edge. The design param-
eters are listed in Table 7.1. The model is discretized by a 21×12 quadratic NURBS
mesh.

Figure 7.4: Model of the cantilever sandwich beam

Table 7.1: Design data of the sandwich beam with a homogeneous elastic core
Property Elastic core Face sheets

Young’s Modulus E (GPa) 0.617 1.67
Poisson’s ratio (ν) 0.3 0.3
Thickness (CM) 0.8 0.2

Fig. 7.5 and Fig. 7.6 show the solution for the displacements and the stresses at
the middle section x = L

2 (cut A−A in Fig. 7.4). As can be observed from the graphs,
displacements are continuous as required by the compatibility condition. The jump in
σxx is properly reproduced at the interfaces as well as the slope discontinuity in shear
stresses, σxy . The results agree well with the benchmark problem in [Zong et al.,
2005].

Replacing the distributed load a parabolic traction at right edge of the beam, the
displacement and energy norms are evaluated by

eenergy =

[
1
2

∫

Ω
(εεεnum −εεεexact) ·DDD · (εεεnum −εεεexact)dΩ

] 1
2

(7.28)
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Figure 7.5: Displacements in the x (a) and y direction (b) of a sandwich cantilever
beam along cut A−A (x = L

2 ) shown in Fig. 7.4

Figure 7.6: Normal stress (a) and shear stress (b) in a sandwich cantilever beam along
cut A−A (x = L

2 ) shown in Fig. 7.4
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edisplacement =

{∫
Ω [(uuunum −uuuexact) · (uuunum −uuuexact)]dΩ∫

Ω [uuuexact ·uuuexact ]dΩ

} 1
2

(7.29)

where εεε and uuu are the strain and displacement vectors while the subscripts num and
exact denote numerical and exact, respectively. The exact displacements as derived
in [Liu et al., 2012] are imposed on the entire boundary of the beam using the least
squares method (see [Nguyen et al., 2015]). The convergence results are shown in
Fig. 7.7. The mesh parameter h is defined as the ratio between the beam height and
the number of elements in the vertical direction. Using quadratic mesh, the optimal
convergence rates (three for displacement norm and two for energy norm) are obtained.

Figure 7.7: Energy and displacement norms for the sandwich cantilever beam under
parabolic loading at the right edge

7.5.1.2 Free vibration of a sandwich beam with a FG core

This example includes a sandwich beam with the FG core made of Aluminum and Zir-
conia (AlZrO2). The length of the beam is L = 200 mm, its height is D = 20 mm and
the core thickness is tc = 14 mm. Other relevant data is listed in Table 7.2. Geometry,
loading and support conditions are as in Fig. 7.4.

Table 7.2: Material properties of the sandwich beam with the FG core
Property Aluminum Zirconia Facesheets

Young’s Modulus E (GPa) 70 151 210
Poisson’s ratio (ν) 0.3 0.3 0.3

Mass density (kg/m3) 2700 5700 7860
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Table 7.3 shows the first six natural frequencies of the sandwich beam with the FG
core. Results obtained by other methods [Bui et al., 2013] are also presented. Using
IGA with coarse meshes yields to accuracy around 0.1% comparing with reference
results (fine mesh FEM using ANSYS) as presented in Table 7.3.

Table 7.3: The first six natural frequencies for a sandwich beam with FG core
Mode Mori-Tanaka ROM Tech.

t-RPIM IGA t-RPIM IGA FEM∗ t-RPIM IGA t-RPIM IGA FEM∗

21 ×11 101 ×11 - 21 ×11 101 ×11 -
1 461.7 458.01 459.2 457.8 458.2 461.5 459.28 459.4 459.02 459.5
2 2729.4 2695.65 2709.2 2694.1 2697.1 2727.8 2707.1 2708.7 2705.5 2708.6
3 6443.7 6368.67 6432.9 6367.4 6374.1 6443.0 6436.0 6440.7 6434.7 6440.8
4 7105.9 6944.8 6954.7 6940.0 6950.2 7065.4 6985.8 6995.8 6981.1 6991.3
5 12651.9 12341.3 12462.2 12330 12353 12634.2 12434.5 12446.4 12423 12446.0
6 18999.3 18465.8 18594.6 18441 18483 18990.8 18630.4 18659.5 18606 18647.0
∗with ANSY S

Though, the aim of this example is not to demonstrate the advantages of IGA in
sandwich beam modeling, Fig. 7.8 shows smooth convergence of the NURBS results.
This coarse model accuracy is beneficial for iterative design procedure and optimiza-
tion especially when FE model is computationally expensive.

7.5.2 Optimization case studies
After the verification of the IGA model, the optimization of the reinforcement distribu-
tion is proceeded. Again the cantilever sandwich beam with uniformly distributed load
is considered as shown in Fig. 7.4. All design parameters are summarized in Table 7.4.

Fig. 7.9 illustrates the chosen subdomains which are considered for the definition of
the objective function. Areas are considered at mid span, mid height and in the vicinity
of the interfaces. As mentioned before, since core shearing and debonding failure
states are mostly due to shear stresses, this example concentrates on the minimization
of the shear stresses. However, other components of the stresses can be also taken into
account.

Table 7.4: Problem definition, cantilever sandwich beam with uniformly top load
Lx Ly Em Ec E f ν P t f tc Vc Vcmax

1.25 0.25 3.5 72.4 210 0.3 10 0.025 0.2 10% 60%
Lx,Ly, t f , tc : beam length, thickness, f ace thk. and core thk.(m); V c : total rein f orc. vol., Em,Ec,E f :
Young′s modulus o f matrix, rein f orcement and f ace sheet(GPa), P : Applied load (KN/m) ; ν : Poisson′s ratio, Vcmax :
the maximum nodal rein f orcement

Fig. 7.10(a) depicts the optimal layout of the reinforcement distribution in the core
minimizing the shear stresses inside the area of interest #1. Fig. 7.10(b) shows the
evolution of the objective function during the iterative process. The shear stress inside
the nominated sub-domain, converges smoothly towards a minimum value.
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Figure 7.8: The first six natural frequencies of the sandwich beam with FG core versus
number of control points of the model

Figure 7.9: Definition of area of interest
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Figure 7.10: Optimal distribution of reinforcing ingredients considering area of interest
#1 (a), objective function versus iterations (b)

Fig. 7.11 compares the shear stress across the thickness of the beam at mid of area
#1 considering homogeneous and optimal distributions of reinforcements. The graph
clearly shows that the shear stress profile improves inside the area of interest (around
50% reduction); however, for the face sheets which are outside area of interest #1(dash
lines), the shear stress increases.

Figure 7.11: Shear stress profile for area #1 considering homogeneous and optimal
distribution of reinforcements, dash lines stand for face sheets which are outside of
area #1

To demonstrate the correctness of the model, area of interest #1 is extended to
include face sheets. The extended area is called area of interest #2 (see Fig. 7.9).
The optimal distribution of the reinforcement and the history of objective function are
plotted in Fig. 7.12(a) and (b), respectively. Fig. 7.13 compares the shear stress profiles
before and after optimization. As expected, the shear stresses improve within area #2.

In the next case, area of interest #3 is defined on the core of the beam and includes
central elements of the core as illustrated in Fig. 7.9. The same types of results are
presented in Fig. 7.14(a) and (b).
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Figure 7.12: Optimal distribution of reinforcing ingredients considering area of interest
#2 (a), objective function versus iterations (b)

Figure 7.13: Shear stress profile for area #2 considering homogeneous and optimal
distribution of reinforcements

Figure 7.14: Optimal distribution of reinforcing ingredients considered area of interest
#3 (a), objective function versus iterations (b)
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Fig. 7.15 shows the shear stress profile before and after optimization along a section
at mid width (Fig. 7.15(a)) and mid span (Fig. 7.15(b)). In both figures, dash lines refer
to zones which are outside the interested area #3. Again, the graphs clearly illustrate
that the shear stresses considerably decrease in the area of interest.

Figure 7.15: Shear stress profile for area #3 along a section at mid width (a) and mid
length (b) of the beam considering homogeneous and optimal distribution of reinforce-
ments. In both figures, dash lines refer to zones which are outside the interested area
#3

As a final case, area of interest #4 is considered which includes interfacial elements
in core of the beam (see Fig. 7.9). The optimal distribution of reinforcing ingredients
and the history of the objective function are illustrated in Fig. 7.16(a) and (b), respec-
tively.

Fig. 7.17 compares the shear stress at the interfacial elements of the core along the
length of the beam. Fig. 7.17(a) is for the bottom interface and Fig. 7.17(b) is for the
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Figure 7.16: Optimal distribution of reinforcing ingredients considering area of interest
#4 (a), objective function versus iterations (b)

top interface. In both graphs dashed lines show the shear stress for pure polymer (with-
out any reinforcements). Adding 10% uniformly distributed reinforcing ingredients to
the polymer matrix negligibly improves the shear stresses along the interfaces, while
the same amount of reinforcements with optimal distribution, considerably reduces the
interfacial shear stresses. This improvement has descending trend from the fixed left
end (with the maximum shear load) to the free right end (with zero shear load).

The results in Fig. 7.17 are based on averaging shear stress inside each element.
The similar results are presented in Fig. 7.18 by plotting nodal values of shear stress
along longitudinal sections cutting through the area of interest #4. Fig. 7.18(a) and (b)
correspond to the top and the bottom interfaces, respectively. These graphs prove that
the beam with uniform FRP does not show considerable improvement in interfacial
shear stress in comparison with pure polymer; while dominant improvement needs to
optimal distribution of reinforcements.

7.5.3 Concluding remarks
Excessive shear stress in sandwich beams can yield to core shearing and core/face
debonding. This chapter presents a computational algorithm for decreasing interfacial
shear stress in sandwich beams with polymeric core. The output of the algorithm is
the optimal distribution of reinforcing ingredients inside the polymer matrix. The algo-
rithm can be also used for optimizing other stress components (i.e. peeling and bending
stresses) in any arbitrary zone of the design domain. The present methodology takes
advantages of NURBS basis functions for both analysis (IGA) and reinforcement dis-
tribution optimization (NURBS surface). Using IGA for model analysis, yields to high
rate and smooth convergence to exact results. C1 continuity is imposed at the interface
to ”truly” isolate the reinforcement distribution in the core from the face sheets using
multi-patch and penalty techniques. The adjoint sensitivity technique provides flexi-
bility in defining the area of interest over which the objective function is minimized

82

Chapter6/Chapter6Figs/EPS/Fig16.eps


7.5 Case studies

Figure 7.17: Average of shear stress in each interfacial element along the beam length
considering area of interest #4 for pure polymer, homogeneous FRP and FRP with
optimal distribution of reinforcements for (a) bottom interface and (b) top interface
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Figure 7.18: Nodal values of shear stress along a longitudinal sections at top interface
(a) and bottom interface (b) in area of interest #4 comparing characteristics obtained by
pure polymer, homogeneous FRP and FRP with optimal distribution of reinforcements

84

Chapter6/Chapter6Figs/EPS/Fig18.eps


7.5 Case studies

and also for efficient updating of the design variables through optimization iterations.
Comparing the results of the case study illustrates that adding reinforcements homo-
geneously into polymers will slightly improve the interfacial shear stress but that con-
siderable improvements are observed when the distribution of the reinforcement in the
core is optimized.
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Chapter 8

Application 2: Probabilistic
multiconstraints optimization of
cooling channels in ceramic matrix
composites

8.1 Introduction
The main disadvantage of monolithic ceramics is their low fracture toughness. Thus,
carbon fibers are added to increase their damage tolerance while maintaining other
advantages (for instance lower density and higher maximum operating temperature
compared to metals or high erosion and corrosion resistance).

As a common reinforcing ingredient, Carbon fibers (C-fibers) degrade in an oxi-
dizing atmosphere beyond 450 degrees Celsius [Krenkel, 2005]. Although multilayer
protection coatings hinder degradation to a degree, the coating process may itself result
in formation of interphasial cracks. Preventing high temperature zones in the compo-
nent might be a better solution. Such a solution however calls for a multidisciplinary
approach accounting for material selection, coating and internal cooling design.

This chapter presents a computational framework for an efficient and reliable in-
ternal cooling network for a typical component made of Ceramic Matrix Compos-
ite (CMC). Although some attempts to optimize internal cooling system of a mono-
tonic metallic turbine blade exist, the currently known approaches are limited to using
heuristic optimization methods, particularly Genetic Algorithm (GA) which is compu-
tationally expensive. For example, Dennis et al., 2003 used parallel genetic algorithm
to optimize locations and discrete radii of a large number of small circular cross-section
coolant passages. Nagaiah & Geiger, 2014 used NSGA-II as a multiobjective evolu-
tionary algorithm optimizing the rib design inside a 2D cooling channel of a gas tur-
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bine blade. In both works an external commercial finite element package is used for
the thermal analysis.

Regardless of the optimization technique, another major drawback of current meth-
ods is their deterministic nature. Actual characteristics of a composite material (includ-
ing CMC) involve many uncertainties. These emanate from a variety of sources such
as constituent material properties, manufacturing and process imperfections, loading
conditions and geometry (a classification is presented in chapter 5. Neglecting the role
of uncertainties in composite materials might result in either unsafe or unnecessary
conservative design. This chapter focuses not only on optimal but also on reliable de-
sign of a typical internal cooling network within a CMC using a non-heuristic method
and accounting for uncertainties.

The double stage sequential optimization approach (see Chapter 6) is implemented.
In the first stage, it is assumed that C-fibers are uniformly distributed in the ceramic
matrix. Then by using RBDO, the outputs of the first stage which are optimal capacities
of the cooling channels, are exported into the next stage. In the second stage, the
optimizer takes these inputs and uses the adjoint sensitivity technique adopted for the
coupled elastic and thermal fields and eventually provides an optimal distribution of
the C-fibers within the design domain in order to enhance the target reliability of the
component.

8.2 Thermoelastic formulation
The steady-state governing equation and boundary conditions for a temperature field
in a 2D isotropic solid with domain Ω and boundary Γ are [Wu et al., 2009]

(
ki jθ , j

)
,i +Q = 0 in Ω (8.1)

θ = θΓ on Γ1 Essential boundary (8.2)

−niki jθ , j = qΓ on Γ2 Heat f lux boundary (8.3)

−niki jθ , j = h(θ −θ∞) on Γ3 Convection boundary (8.4)

−niki jθ , j = 0 on Γ4 Adiabatic boundary (8.5)

where ki j, Q, and θ denote the thermal conductivity, internal uniform heat source and
temperature field, respectively; ni is component of the unit outward normal to the
boundary, h is the heat convection coefficient, qΓ is the prescribed heat flux and θ∞

87



8.2 Thermoelastic formulation

is the temperature of the surrounding medium in convection process. The governing
equation and boundary conditions for a linear elastic solid are given by

σ i j, j +bi = 0 in Ω (8.6)

ui = uΓ on Γu Essential boundary (8.7)

σ i jni = tΓ on Γt Heat f lux boundary (8.8)

where σ and b denote the stress and body force. uΓ and tΓ are the given displacement
and traction on the essential and natural boundaries, respectively.

The heat and elastic problems are linked by the following stress, strain and thermal
expansion relation

σ i j = δ i jλLεkk +2µLε i j −δ i j(3λL +2µL)α∆θ (8.9)

where λL and µL are Lamé constants, α is the thermal expansion coefficient and ∆θ
is the temperature change with respect to the reference temperature which is assumed
zero here.

A weighted residual weak form of the boundary value problem (Eq. (8.1)- (8.5))
can be written as a generalized functional I

I (θ) =
∫

Ω
w
[
(ki j θ , j),i +Q

]
dΩ= 0 (8.10)

where w denotes the sufficiently differentiable test function. Differentiation by parts
and using Green’s theorem, the functional I(θ) can be written as

I (θ) =
∫

Ω

1
2

[
kx1

(
∂θ
∂x1

)2
+ kx2

(
∂θ
∂x2

)2
]

dΩ−
∫

Ω
θQdΩ+

∫

Γ2
θqΓdΓ+

∫

Γ3
hθ
(

1
2
θ −θ∞

)
dΓ= 0

(8.11)

considering δ as the variational operator, the Bubnov-Galerkin weak form for the heat
transfer problem can be obtained as follows

∫

Ω
δ (∇θθθ)TKKKc∇θθθdΩ−

∫

Ω
δθθθT QdΩ+

∫

Γ2
δθθθT qΓdΓ+

∫

Γ3
δθθθT hθθθdΓ−

∫

Γ3
δθθθT hθ∞dΓ= 0

(8.12)

The strains arising from boundary loadings and body forces induce only small tem-
perature changes which can be ignored in the analysis. Thus, the semi-coupled theory
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of thermoelasticity is employed here. The heat governing equations are firstly solved
to obtain the temperature field. Then, the body forces induced by the temperature field
are used along with the other applied forces to calculate the final response of the elastic
body. Using the Bubnov-Galerkin weak form
∫

Ω
δ (εεε (uuu)−εεεθ (uuu))TCCC (εεε (uuu)−εεεθ (uuu))dΩ−

∫

Γt
δuuuT tΓdΓ−

∫

Ω
δuuuTbbbdΩ= 0 (8.13)

B-spline basis functions are selected as the test function w. They are also employed
to approximate the displacement and temperature fields

u(x,y) =
n

∑
i=1

m

∑
j=1

N p,q
i, j (ξ ,η)ui, j =NNN uuu (8.14)

θ(x,y) =
n

∑
i=1

m

∑
j=1

N p,q
i, j (ξ ,η) θ i, j =NNNθθθ (8.15)

where uuu and θθθ denotes the vector of nodal displacements and temperatures, respec-
tively. The strain-displacement and the heat flux-temperature gradient relationships
can be written as:

εεε =BBBeuuu and ggg =BBBheatθθθ (8.16)

BBBe and BBBheat are the matrices containing the derivatives of the shape functions, NNN,
corresponding to the elastic and thermal problems, respectively.

By substituting the B-spline approximation function into Eq. (8.12), the discretized
system of equations can be expressed in the following matrix form

KKKcθθθ = fff heat (8.17)

The local conduction matrix, KKKc, and the heat force vector, fff heat , are determined
according to

KKKc =
∫

Ω
BBBT

heat HHH BBBheatdΩ+
∫

Γ3
hNNNTNNNdΓ3 (8.18)

fff heat = fff Q + fff h + fff q (8.19)

where
fff Q =

∫

Ω
NNNT QdΩ (8.20)

fff h =
∫

Γ3
NNNT hθ∞dΓ3 (8.21)

fff q =−
∫

Γ2
NNNT qΓdΓ2 (8.22)
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Superscript T is used in this chapter to denote transpose of a matrix; HHH is the heat
conduction matrix. The first and the second integrals in Eq. (8.18) correspond to the
heat conduction (in volume Ω) and the convection (on surface Γ3 ). The heat force
vector contains fff Q, fff h and fff q induced by the uniform heat source Q, the heat convec-
tion and heat flux qΓ, respectively. Substituting the test function and its derivatives into
Eq. (8.13) leads finally the discretized linear system of equations for the thermoelas-
ticity problem in the following matrix form

KuKuKu = fff total (8.23)

The global stiffness matrix of the elastic problem, KKK, is obtained by

KKK =
∫

Ω
BBBe

TCCC BBBe dΩ (8.24)

while
fff total = fff m + fff θ (8.25)

where fff m is the force vector corresponding to mechanical loading

fff m =
∫

Γt
NNNT tΓdΓ+

∫

Ω
NNNT bdΩ (8.26)

The body forces induced by the temperature field, fff θ , are also calculated using the
following equation

fff θ =
∫

Ω
BBBe

TCCCεεεθdΩ (8.27)

where CCC is the elasticity matrix and εεεθ is the thermal strain matrix which for the case
of plane stress with an isotropic material is obtained by

εεεθ =





α∆θ
α∆θ

0



 (8.28)

It is also noteworthy to declare that, in this work the cross section area of a typical
cooling channel is assumed much smaller than the area of the design domain. Such a
cooling source which exists within a small area only, may be idealized as a point heat
sink. This point sink is modeled by simply including a node at the location of the point
source in the discretized model [Logan, 2007]. In the two dimensional element, for a
typical cooling source, Qi, located at x = x0 and y = y0 one can write

fff Qi =NNNT
0 Qi (8.29)

where NNN0 is the vector of shape functions evaluated at x = x0 and y = y0.
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8.3 Reliability based design

8.3.1 Deterministic design versus reliability based design
Traditional factor of safety would provide a safety margin to cover uncertainties in
loads, material parameters and in the model. This factor is in principle deterministic
but its magnitude is usually obtained based on experience which may include stochastic
data. There are two major concerns related to this concept of safety: 1) conservatism
and 2) inability to reflect differing degrees of control on design variables [Nikolaidis
et al., 2005]. Both of these issues might lead to costly suboptimal designs.

New market demands along with shortcomings of traditional deterministic design
approaches led to the development of nondeterministic approaches. One approach uses
probability theory for capturing the uncertainties and measuring the reliability of the
system. In probabilistic analysis, design variables and parameters are assumed to be
random variables with selected joint probability density functions (pdf).

8.3.2 Probabilistic multiconstraints
In this chapter the probabilistic thermal and elastic design limit states are considered
as a series constraints. It means that violation of at least one constraint yields to the
entire system failure. As is shown in Fig. 8.1, the failure region is the union of two
failure subsets corresponding to each limit state. In mathematical form the failure
domain D with two limit state functions gi(x) where i = 1,2 can be expressed as D =
{x|
⋃

i gi(x)≤ 0.

Figure 8.1: Schematic illustration of the failure domain with two probabilistic design
constraints

The system failure probability can be obtained by Pf = 1−Φm(B,R) whereΦm(B,R)
is the m-variant standard normal CDF with B= {β1, ...,βm} and R= ρKL ; ρKL =αkαT

1
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where αk is the unit normal to the hyperplane obtained by FORM approximation
[Nikolaidis et al., 2005]. The open source software FERUM 4.1 [Bourinet, 2010]
has been extended to perform the reliability analysis for multiconstraints problems.

8.3.3 RBDO
RBDO deals with obtaining optimal design with low failure probability. A double-loop
(nested) algorithm is employed where the outer loop finds the optimal values for the
design variables and the inner loop performs the reliability analysis. Here, the RBDO
is performed as the first stage of the optimization process. The first objective function
is minimizing the total required cooling capacity of the heat sinks. The probabilistic
constraints are defined on maximum deflection and maximum temperature of the com-
ponent as the series constraints. Thus, the first stage of the optimization problem can
be summarized as follows




Minimize : C (QQQ) = ∑n
i=0 Qi where n = number o f cooling channels

sub jected to :

Probabilistic Constraints :





Pf ,1 = Prob(θ allow −θmax < 0)≤ P̄f

Pf ,2 = Prob(δ all −δmax < 0)≤ P̄f

Deterministic Constraints : QL
j ≤ Q j ≤ QU

j where j ∈ {1,2, . . . ,n}

(8.30)

where θallow and δall are the maximum allowable temperature and deflection, respec-
tively. These two parameters as well as the prescribed failure probabilities (i.e. P f )
should be decided by the designer at the beginning of the optimization process. Q j
denotes the cooling capacity of the jth channel; θmax and δmax are the corresponding
maximum values obtained from the solution of the thermoelastic governing equations
described in Section 8.2.

8.4 Adopting the double sequential stages optimization
methodology

The optimization algorithm for this application includes two independent but sequen-
tially linked stages. In the first stage, it is assumed that the C-fibers are uniformly
distributed in the matrix. According to Eq. (8.30), the total required cooling capacity
of the channels is optimized through the RBDO approach. Mechanical (maximum de-
flection) as well as thermal (maximum temperature) probabilistic design constraints are
enforced. The deterministic design constraints also limit the capacities of the cooling
channels. Random variables include constituent material properties (Young’s modulus

92



8.4 Adopting the double sequential stages optimization methodology

and heat conduction coefficient for the both C-fibers and ceramic matrix), applied load,
applied heat flux and film convection coefficient. The output of this stage is used as
the input for the second stage.

ϕi, j are the only design variables in the second optimization stage which are defined
on the mesh control points. When the reinforcement volume fraction at each point is
available (Eq. (4.9)), the equivalent properties are defined as follows

Meq (x,y) =
(
1−η p

)
Mm +η pMc with M = E , k, α (8.31)

where, E, k and α denote the Young’s modulus, thermal conductivity and thermal
expansion coefficient, respectively. Subscripts eq, m and c represent homogenized,
matrix and C-fibers respectively. For the sake of notation simplicity, Meq is denoted
by M in the following. The multiobjective optimization problem is defined as the
weighted sum of different normalized objective functions. The target (total) objective
function, J (uuu(ϕϕϕ) ,θθθ (ϕϕϕ) ,ϕϕϕ), consists of the structural compliance and the so called
”thermal compliance” yielding

J (uuu(ϕϕϕ) ,θθθ (ϕϕϕ) ,ϕϕϕ) =
W1
S1

(
1
2

∫

Ω
(BBBeuuu)TCCC (BBBeuuu)dΩ

)
+

W2
S2

(
1
2

∫

Ω
(BBBheatθθθ)

THHH(BBBheatθθθ) dΩ
) (8.32)

where ϕϕϕ denotes the vector containing all ϕ(i, j) and Ω is the entire design domain; Wi
and Si denote the ith weight and scaling factor, respectively. The optimization problem
in the second stage can then be summarized as follows





Minimize : J (uuu(ϕϕϕ) ,θθθ (ϕϕϕ) ,ϕϕϕ)
Sub jected to :

V f =
∫
Ωη p dΩ=V f 0

F1 (θθθ(ϕϕϕ),ϕϕϕ) =KKKcθθθ − fff heat = 000
F2 (uuu(ϕϕϕ),θθθ(ϕϕϕ),ϕϕϕ) =KuKuKu− fff m − fff θ = 000
ϕ i, j −1 ≤ 0
−ϕ i, j ≤ 0

(8.33)

where V f is the total C-fibers volume in each optimization iteration, V f 0 is an arbitrary
initial C-fibers volume which must be set at the beginning of the optimization process.

8.4.1 Adjoint sensitivity analysis
By using the chain-rule one can calculate the sensitivity of the objective function,
J (uuu(ϕϕϕ) ,θθθ (ϕϕϕ) ,ϕϕϕ), with respect to ϕϕϕ

dJ
dϕϕϕ

=
∂J
∂uuu

∂uuu
∂ϕϕϕ

+
∂J
∂θθθ

∂θθθ
∂ϕϕϕ

+
∂J
∂ϕϕϕ

(8.34)
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The last term of Eq. (8.34) is the explicit quantity and easy to calculate

∂J
∂ϕϕϕ

=
W1
S1

(
1
2

∫

Ω
(BBBeuuu)T ∂CCC

∂ϕϕϕ
(BBBeuuu) dΩ

)
+

W2
S2

(
1
2

∫

Ω
(BBBheatθθθ)

T ∂HHH
∂ϕϕϕ

(BBBheatθθθ) dΩ
) (8.35)

while

∂CCC
∂ϕϕϕ

=−
∂η p
∂ϕϕϕ

(
Em

1−ν2

)


1 ν 0
ν 1 0
0 0

(1−ν
2
)


 +

∂η p
∂ϕϕϕ

(
Ec

1−ν2

)


1 ν 0
ν 1 0
0 0

(1−ν
2
)




(8.36)
and

∂HHH
∂ϕϕϕ

=−
∂η p
∂ϕϕϕ

[
km 0
0 km

]
+

∂η p
∂ϕϕϕ

[
kc 0
0 kc

]
(8.37)

Moreover
∂η p
∂ϕ i, j

= N p,q
i, j (ξ ,η) (8.38)

The first and the second terms of Eq. (8.34) include implicit quantities (i.e. ∂uuu
∂ϕϕϕ and

∂θθθ
∂ϕϕϕ ) which are accomplished by using the heat conduction and linear elasticity force
equilibrium equations (see F1 and F2 in Eq. (8.33)) as adjoint equations.

By differentiating, we have
(
∂F1
∂θθθ

)T ∂θθθ
∂ϕϕϕ

+
∂F1
∂ϕϕϕ

= 000 (8.39)

∂θθθ
∂ϕϕϕ

=−

(
∂F1
∂θθθ

)−T ∂F1
∂ϕϕϕ

(8.40)

Substitution Eq. (8.40) into the second term of Eq. (8.34) yields

∂J
∂θθθ

∂θθθ
∂ϕϕϕ

=−
∂J
∂θθθ

[(
∂F1
∂θθθ

)−T ∂F1
∂ϕϕϕ

]
(8.41)

Assuming

γγγ =−
∂J
∂θθθ

(
∂F1
∂θθθ

)−T
(8.42)

and knowing that ∂F1
∂θθθ =KKKc, we can write

KKKcγγγ =−
∂J
∂θθθ

(8.43)
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KKKcγγγ =−
W2
S2

∫

Ω
BBBheat

THHH BBBheat θθθ dΩ (8.44)

Eventually, Eq. (8.41) can be written in the form

∂J
∂θθθ

∂θθθ
∂ϕϕϕ

= (γγγ)T ∂F1
∂ϕϕϕ

(8.45)

∂J
∂θθθ

∂θθθ
∂ϕϕϕ

=
∫

Ω
(BBBheat γγγ )

T ∂HHH
∂ϕϕϕ

(BBBheat θθθ) dΩ (8.46)

Analogously, to calculate the first term of Eq. (8.34) one can differentiate F2 as
(
∂F2
∂uuu

)T ∂uuu
∂ϕϕϕ

+

(
∂F2
∂θθθ

)T ∂θθθ
∂ϕϕϕ

+
∂F2
∂ϕϕϕ

= 000 (8.47)

∂uuu
∂ϕϕϕ

=

(
−∂F2
∂uuu

)−T
[(

∂F2
∂θθθ

)T ∂θθθ
∂ϕϕϕ

+
∂F2
∂ϕϕϕ

]
(8.48)

Substitution Eq. (8.40) into Eq. (8.48) gives

∂uuu
∂ϕϕϕ

=

(
−∂F2
∂uuu

)−T
[(

∂F2
∂θθθ

)T
(
−

(
∂F1
∂θθθ

)−T ∂F1
∂ϕϕϕ

)
+
∂F2
∂ϕϕϕ

]
(8.49)

The first term of Eq. (8.34) then becomes

∂J
∂uuu

∂uuu
∂ϕϕϕ

=
∂J
∂uuu

[(
−∂F2
∂uuu

)−T
[(

∂F2
∂θθθ

)T
(
−

(
∂F1
∂θθθ

)−T ∂F1
∂ϕϕϕ

)
+
∂F2
∂ϕϕϕ

]]
(8.50)

Manipulating Eq. (8.50) yields

∂J
∂uuu

∂uuu
∂ϕϕϕ

=
∂J
∂uuu

(
−∂F2
∂uuu

)−T
[(

∂F2
∂θθθ

)T
(
−

(
∂F1
∂θθθ

)−T ∂F1
∂ϕϕϕ

)]
+

∂J
∂uuu

(
−∂F2
∂uuu

)−T ∂F2
∂ϕϕϕ

(8.51)

Knowing that ∂F2
∂uuu =KKK and assuming

λλλ =
∂J
∂uuu

(
−∂F2
∂uuu

)−T
(8.52)

And hence
KKKλλλ =−

∂J
∂uuu

(8.53)
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KKKλλλ =−
W1
S1

∫

Ω
BBBe

TCCC BBBe uuu dΩ (8.54)

Moreover

λλλ x

(
∂F2x
∂θθθ

)T
((

∂F1
∂θθθ

)−T
)

= λλλ ∗
x (8.55)

AssumingΛΛΛ=
(
BBBe

TCCCααα
)

where ααα =



αeq
αeq
0




KKKcλλλ
∗
x =

∫

Ω
N p,q

i, j ΛΛΛxλλλ x dΩ (8.56)

Similarly, in the transverse direction (y) we have

KKKcλλλ
∗
y =

∫

Ω
N p,q

i, j ΛΛΛyλλλ y dΩ (8.57)

where ΛΛΛi, λλλ i and F2i are related components of ΛΛΛ, λλλ and F2 vectors corresponding to
the i direction. By substituting λλλ ∗

x and λλλ ∗
y in Eq. (8.51) we obtain

∂J
∂uuu

∂uuu
∂ϕϕϕ

= λλλ ∗
x

(
−
∂F1
∂ϕϕϕ

)
+λλλ ∗

y

(
−
∂F1
∂ϕϕϕ

)
+λλλ

∂F2
∂ϕϕϕ

(8.58)

In addition

λλλ
∂F2
∂ϕϕϕ

=−

(
(BBBeλλλ )

T ∂CCC
∂ϕϕϕ

εεεT

)
−

(
(BBBeλλλ )

T CCC
∂ααα
∂ϕϕϕ

∆θ
)
+

(
(BBBeλλλ )

T ∂CCC
∂ϕϕϕ

BBBeuuu
)

(8.59)

So, Eq. (8.58) becomes
∂J
∂uuu

∂uuu
∂ϕϕϕ

=
∫

Ω
−

(
(BBBeλλλ )

T ∂CCC
∂ϕϕϕ

εεεT

)
−

(
(BBBeλλλ )

T CCC
∂ααα
∂ϕϕϕ

∆θ
)
+

(
(BBBeλλλ )

T ∂CCC
∂ϕϕϕ

BBBeuuu
)

+

((
BBBheatλλλ

∗
x
)T ∂HHH

∂ϕϕϕ
BBBheatθθθ

)
+

((
BBBheatλλλ

∗
y
)T ∂HHH

∂ϕϕϕ
BBBheatθθθ

)
dΩ

(8.60)
Eventually, Eq. (8.34) becomes
dJ
dϕϕϕ

=
∫

Ω
−

(
(BBBeλλλ )

T ∂CCC
∂ϕϕϕ

εεεT

)
−

(
(BBBeλλλ )

T CCC
∂ααα
∂ϕϕϕ

∆θ
)
+

(
(BBBeλλλ )

T ∂CCC
∂ϕϕϕ

BBBeuuu
)

+

((
BBBheatλλλ

∗
x
)T ∂HHH

∂ϕϕϕ
BBBheatθθθ

)
+

((
BBBheatλλλ

∗
y
)T ∂HHH

∂ϕϕϕ
BBBheatθθθ

)
dΩ

+
∫

Ω
(BBBheat γγγ )

T ∂HHH
∂ϕϕϕ

(BBBheat θθθ) dΩ+
W1
S1

(
1
2

∫

Ω
(BBBe uuu)T ∂CCC

∂ϕϕϕ
(BBBe uuu) dΩ

)

+
W2
S2

(
1
2

∫

Ω
(BBBheat θ)θ)θ)

T ∂HHH
∂ϕϕϕ

(BBBheat θθθ) dΩ
)

(8.61)
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The term dV f
dϕϕϕ can be also written as

dV f
dϕϕϕ

=
∂V f
∂ϕϕϕ

=
∫

Ω

∂η p
∂ϕϕϕ

dΩ (8.62)

8.5 Case studies
Consider a L-shaped CMC component shown in Fig. 8.2. An outward uniform pres-
sure load and an inward uniform heat flux are applied on the left edge while a con-
vection boundary condition is applied on the lower half of the right edge. Mechanical
and thermal loadings and boundary conditions are also illustrated in Fig. 8.2(a) and
Fig. 8.2(b), respectively. Cooling channels are modeled as point sources on the mid
axis of the component and positioned as shown in Fig. 8.2(b). The model is discretized
by a 32× 16 quadratic B-spline mesh as shown in Fig. 8.2(c). Red dots represent
control points.

Figure 8.2: Mechanical loading and boundary conditions (a), Thermal loading and
boundary conditions (b), FE discretization with red dots as control points (c)

8.5.1 The first stage of the optimization
Finding the optimal total capacity of the cooling channels is investigated in the first
stage of the optimization process. Deterministic constraints are set on the first and the
last channels (i.e. channels 1 and 5) so that their cooling capacities take a value less
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Table 8.1: Design parameters of the L-shaped component under thermomechanical
loadings

Parameter/Description(unit) Value (ν/σ)
L / Dimension in Meter (m) 1
Em / Young’s modulus of the matrix (GPa) 88/8
Ec / Young’s modulus of the C-fibers (GPa) 200/20
ν / Poisson’s ratio 0.2
am / Thermal expansion coeff. of the matrix

(
10−6
◦C

)
4.5

ac / Thermal expansion coeff. of the C-fibers
(

10−6
◦C

)
3.1

km / Heat conduction coeff. of the matrix
( W

m◦C
)

45 / 3
kc / Heat conduction coeff. of the C-fibers

( W
m◦C
)

7 / 0.7
q / heat flux

(
W
m2

)
800 / 20

h / Convection coeff.
(

W
m2.◦C

)
3 / 0.3

P / Applied load (KN) 1000 / 10
Vf 0 / The total C-fibers volume fraction 40%
θallow / Max. allowable temperature (◦C) 450
δallow / Max. allowable deflection (mm) 1.5
β / Target reliability index 3
θ∞ / the temperature of the fluid in convection process (◦C) 50

Remarks : µ : mean value, σ : standard deviation, Distribution : Log Normal

than 100 Watts. The probabilistic constraints are also set on the maximum deflection
and temperature of the design domain according to Table 8.1.

The results of the optimization are plotted in Fig. 8.3. The history of the design
variables i.e. the capacities of the cooling channels are plotted versus the iterations
in Fig. 8.3(a) and Fig. 8.3(b). The final reliability index converges to the target value
as illustrated in Fig. 8.3(c) and the objective function finally takes the minimum value
according to Fig. 8.3(d).

To show the correctness of the results and also demonstrate the fact that the fi-
nal optimization output is independent from the initial guess, the maximum allowable
capacities on Channels 1 and 5 are reduced from 100 W to 90 W and also the capac-
ity of the Channel 3 is restricted to a value less than 90 W . Different starting points
are also considered as the initial guesses for iterations commencement. As expected,
the reduction in capacities is compensated by the increase in the cooling capacities of
the other channels (i.e. Channels 2 and 4) so that the total required cooling capacity
(i.e. the minimum of the objective function) takes the same value as in the previous
case. The new results are illustrated in Fig. 8.4. The temperature plot is shown in
Fig. 8.5(a), while the displacements in the X and Y directions are plotted in Fig. 8.5(b)
and Fig. 8.5(c), respectively.

98



8.5 Case studies

Figure 8.3: Optimization results for target reliability index equal to 3 and with follow-
ing constraints on channels #1 and #5: Q1 ≤ 100 and Q5 ≤ 100; Obtained optimum
design variables: Q1 = 80.71, Q2 = 105.50, Q3 = 106.27, Q4 = 107.02, Q5 = 83.82;
Optimized cost = 483.32 W
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Figure 8.4: Optimization results for target reliability index equal to 3 and with fol-
lowing new constraints on Channels #1, #3 and #5: Q1 ≤ 90, Q3 ≤ 90 and Q5 ≤ 90;
Obtained optimum design variables: Q1 = 15.81, Q2 = 214.91, Q3 = 16.42, Q4 =
218.62, Q5 = 17.02; Optimized cost = 482.80 W

Figure 8.5: Temperature (a), displacement in X-direction (b) and displacement in Y-
Direction (c) for CMC component with uniformly distributed C-fibers considering:
Q1 = 15.81, Q2 = 214.91, Q3 = 16.42, Q4 = 218.62, Q5 = 17.02

100

Chapter7/Chapter7Figs/EPS/Fig6.eps
Chapter7/Chapter7Figs/EPS/Fig7.eps
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8.5.2 The second stage of the optimization
As discussed in Section 8.2, both mechanical and thermal loadings cause structural de-
formation. The total nodal displacements (uuu) consists in uuum which is the displacement
caused by mechanical loading and uuuθ which is caused by thermal loading. Both me-
chanical and thermal loading contribute to the formation of the total force vector. Next,
two load cases are considered: in Load case-1, the higher temperature load causes uuuθ
to be around two orders of magnitude higher than uuum and in Load case-2 the high
mechanical loading causes uuum to be one order of magnitude higher than uuuθ .

8.5.2.1 Load case-1 (high thermal loading)

The lastly obtained optimal capacity of each channel (i.e. Q1 = 15.81, Q2 = 214.91,
Q3 = 16.42, Q4 = 218.62, Q5 = 17.02) are used as inputs of the second stage of the
optimization process. According to Eq. (8.30), the final optimization results depend
on the choice of the weight factors corresponding to the structural and the thermal
compliances. Fundamentally, in the weighted sum optimization problem, it is the de-
signer’s responsibility to choose appropriate weights of each objective function based
on their relative importance. In the present problem it is more straightforward than
other multiobjective optimization problems. Since the violation of either mechani-
cal or thermal constraints leads to design failure, the final reliability index, βtarget , is
dominated by βm or βt where the former is the reliability index associated with the
probabilistic deformation constraint and the latter is associated with the temperature
constraint. As the objective functions are contradictory, one can just consider extreme
values of weights (i.e. zero or unity) depending on which factor dominates (i.e. is
minimum). For instance in this load case having the CMC component with uniformly
distributed C-fibers, βtarget is equal to 3.0089 (which is the minimum of βm = 3.0089
and βt = 4.6684). Here, βtarget is dominated by βm. In order to increase βtarget , βm
should be increased while minding about reversal of βt .

Table 8.2 summarizes βtarget , βm and βt for uniformly (item 0) and optimally
(items 1 to 5) distributed C-fibers with different combinations of weight factors W1 and
W2; subscripts 1 and 2 correspond to the mechanical and the thermal weight factors,
respectively. One can see from Table 8.2 that item 1 and item 5 (which use the extreme
values of the weight factors) provide respectively, the maximum reduction in structural
and thermal compliances. However, neither these items nor other combinations of
weight factors are able to improve βm and consequently βtarget .

To explain this, item 1 is investigated in more detail. The thermal term in the
objective function is disregarded as W2 is set to zero. The total objective function which
contains only the structural compliance is minimized while the thermal compliance
increases. Fig. 8.6(a) illustrates the history of the structural and thermal compliance
terms over the iterations. The total objective function does not converge, smoothly,
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Table 8.2: Summary of optimization results in Load case-1 for uniformly and optimally
distributed C-fibers with different combinations of weight factors

Total Structural Thermal
Item W1/W2 objective compliance βm compliance βt βtarget

Uniform 0 - 1 1 3.0089 1 4.6684 3.0089
1 1/0 0.959 0.959 2.4976 1.083 4.6835 2.4976

Optimally 2 0.75/0.25 0.961 0.972 2.3783 0.929 4.6753 2.3783
distributed 3 0.5/0.5 0.950 0.979 2.3518 0.920 4.6700 2.3518

C-fibers 4 0.25/0.75 0.935 0.982 2.3748 0.920 4.6689 2.3748
5 0/1 0.920 0.9840 2.4 0.920 4.6686 2.4

towards the minimum value.
This undesired phenomenon that a decrease in the structural compliance yields to

a larger maximum structural deformation (which consequently causes lower βm) is
caused by the coupling between the thermal and the mechanical fields and the con-
tradictory effects of C-fibers on these fields. In a typical elastic problem, when the
stiffness increases as the force vector remains unchanged, the maximum structural de-
formation will decrease. In the coupled thermoelastic problem, the forces induced
by the temperature field and consequently the total force vector does not remain un-
changed. According to Eq. (8.12), the force induced by the temperature field will
change when the Young’s modulus, thermal expansion coefficient or nodal tempera-
tures deviate. Since all of these items are functions of the volume fraction of C-fibers,
the final magnitude of the force vector depends on the distribution of the C-fibers.
Thus, any increase or decrease in the maximum deflection of a CMC component de-
pends on the changes of structural stiffness and force induced by the temperature field
and should be evaluated case by case based on the constituent material properties and
the loading conditions.

To gain better insight into this issue, the same problem is solved assuming the me-
chanical and thermal fields are decoupled. This is accomplished by setting the thermal
expansion coefficients of both the C-fibers and the matrix to zero. Fig. 8.6(b) shows
the results for the decoupled problem. In this case the objective function smoothly
converges towards the minimum value and the optimization process is stable.

In item 5 (W1 = 0 and W2 = 1) the structural term in the objective function is
disregarded. Thus the total objective function consists only by the thermal compliance
contribution. The optimal distribution of the C-fibers and the history of the objective
functions over the iterations are presented in Fig. 8.7. As the mechanical field doesn’t
affect the thermal field, the optimization process is stable and the objective function
smoothly converge towards its minimum value, though the problem is coupled.
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Figure 8.6: History of the objective functions and optimal distribution of the C-fibers
inside the matrix considering W1 = 1 and W2 = 0 for coupled (a) and decoupled (b)
cases. Q1 = 15.81, Q2 = 214.91, Q3 = 16.42, Q4 = 218.62 and Q5 = 17.02 while
the other design parameters are according to Table 8.1

Figure 8.7: History of the objective functions and optimal distribution of the C-fibers
inside the matrix considering W1 = 0 and W2 = 1 for coupled problem
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8.5.2.2 Load case-2 (high mechanical loading)

Now, the applied mechanical load is increased so that it dominates the thermal one.
Table 8.3 includes the new design parameters. Other design parameters remain un-
changed according to Table 8.1. The results of the optimization for this load case are

Table 8.3: New design parameters of the L-shaped component under thermomechani-
cal loading

Parameter / Description (unit) Value (µ/σ)
P / Applied load (KN) 1000000 / 10000
σallow / Max. allowable deflection (mm) 50

other design parameters according to Table 8.1

summarized in Table 8.4. Item 0 refers to uniformly distributed C-fibers. In item 1
the thermal term is disregarded and the total objective function just includes the struc-
tural term while item 2 acts reversely. Fig. 8.8(a) shows the optimal distribution of

Table 8.4: Summary of optimization results in Load case-2 for uniformly and optimally
distributed C-fibers with different combinations of weight factors

Structural Thermal
Item Wm/Wt compliance βm compliance βt βtarget

Uniform 0 - 1 2.8916 1 4.6684 2.8913
Optimal 1 1 / 0 0.8963 4.4259 1.0814 4.5803 4.34

2 0 / 1 1.060 2.3323 0.920 4.6686 2.3322

C-fibers and the history of the objective functions for item 1, respectively. Decreas-
ing the structural compliance yields an increase in the structural stiffness. Since the
C-fibers distribution is changed, fff also changes. Contrary to the previous case, as the
thermal force is smaller than the mechanical force, its deviation does not influence the
total force vector severely, resulting in a decrease in the maximum structural deflection
and consequently a considerable increase in βm and eventually βtarget .

The optimal distribution of C-fibers and the history of objective functions for dif-
ferent weights are illustrated in Fig. 8.8(b). The structural compliance is disregarded
in the total objective function and increases while the objective function (i.e. ther-
mal compliance) is minimized. Although the thermal compliance is decreased, the
reduction in maximum temperature and consequently in βt is trifle and not sensible.
However, as βm decreases (due to the increase in structural compliance), βtarget also
decreases.
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Figure 8.8: History of the objective functions and optimal distribution of the C-fibers
inside the matrix considering W1 = 1 and W2 = 0 (a) and W1 = 0 and W2 = 1 (b). Both
(a) and (b) are coupled problems
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8.6 Concluding remarks
Ceramic matrix composites which are manufactured by adding reinforcements such
as carbon fibers to a ceramic matrix show improved toughness properties in compar-
ison with pure ceramics. Usually, components made of CMCs are cooled by internal
cooling channels because typical C-fibers are vulnerable to high temperature oxidiz-
ing atmospheres. Firstly, the presented computational platform efficiently optimizes
the capacity of cooling channels using RBDO approach. A series system reliability
concept is adopted as a union of mechanical and thermal failure subsets. Secondly,
the optimizer is supposed to increase the reliability of the component by optimally
distributing the C-fibers inside the matrix within the design domain. Numerical re-
sults for the performed case studies demonstrate that optimal distribution of C-fibers
can decrease structural and thermal compliances. In the decoupled elastic and ther-
mal problems, the former yields an increase in βm(the reliability index associated with
the probabilistic deformation constraint) and the latter in an increase in βt(the relia-
bility index associated with the probabilistic thermal constraint). But, in the coupled
thermoelastic problem, any prediction about final reliability indices depends on fiber
and matrix constitutive material properties and contribution of mechanical and ther-
mal loadings on the global force vector. When the mechanical loading dominates the
thermal loading, fiber distribution can show promising advantage to have more reliable
design by increasing βm and consequently βtarget(the final reliability index). However,
its role for increasing the reliability index corresponding to thermal constraint is neg-
ligible.
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Chapter 9

Application 3: A level-set based IGA
formulation for topology optimization
of flexoelectric materials

9.1 Introduction
The piezoelectric effect, which only exists in materials with non-centrosymmetric crys-
tal structures, refers to a linear dependence between the electric polarization, PPP and the
mechanical strain, εεε given by

Pi = pi jkε jk (9.1)

where ppp is the third order piezoelectric tensor [Sharma et al., 2007 ; Nanthakumar
et al., 2016 ; Nanthakumar et al., 2014 and Nanthakumar et al., 2013]. In contrast to
piezoelectricity, flexoelectricity is possible in all dielectrics, including those with cen-
trosymmetric crystal structures, and is thus a more general electromechanical coupling
mechanism. When flexoelectric effects are accounted for, the polarization is written as

Pi = pi jkε jk +µi jkl
∂ε jk
∂xl

(9.2)

where the electric polarization exhibits a linear response to the gradient of mechanical
strain [Yudin & Tagantsev, 2013]. In Eq. (9.2) µi jkl are the flexoelectric coefficients;
the first term on the right hand side is zero for non-piezoelectric materials.

Flexoelectricity in solids was introduced by Mashkevich & Tolpygo, 1957 but re-
ceived little attention, likely because the flexoelectric effect is relatively insignificant
for bulk crystalline materials. However recent developments in nanotechnology have
shed a new light on flexoelectricity as a size dependent phenomenon due to the large
strain gradients that are obtainable at small length scales, or alternatively in soft mate-
rials like biological membranes [Ahmadpour & Sharma, 2015]. For additional recent
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reviews on flexoelectricity interested readers are referred to [Nguyen et al., 2013] and
[Zubko et al., 2013].

While the theoretical basis for flexoelectricity in dielectrics has been developed
in detail [Sharma et al., 2007 ; Majdoub et al., 2009 and Sharma et al., 2010], there
have been a correspondingly small number of numerical studies. Recently, Abdollahi
et al., 2014 presented a computational framework to evaluate the flexoelectric effect
in dielectric solids using a meshfree method in 2D [Abdollahi et al., 2014] and 3D
[Abdollahi et al., 2015]. They showed that available simplified analytical solutions
only provide order of magnitude estimates in comparison with a more general model
which considers the multidimensional coupling effects.

Topology optimization is a powerful approach that optimizes the material distribu-
tion within the design domain. The first computational model for topology optimiza-
tion was presented by Bendse & Kikuchi, 1988. Topology optimization has since been
successfully applied to a variety of applications such as structural design [Sigmund,
2001a], compliant mechanism [Sigmund, 1997] and microelectromechanical system
[Sigmund, 2001b and Nanthakumar et al., 2015]. To the author’s best of knowledge,
employing topology optimization for dielectric solids in order to enhance their flexo-
electric behavior has not been done to-date.

Various techniques have been developed for topology optimization. Among them,
the Solid Isotropic Material with Penalization (SIMP) technique [Rozvany et al., 1992]
is very common due to its simplicity. Although this technique has been widely applied
to different problems, researchers have encountered difficulties with its numerical sta-
bility in some multiphysics and multiconstraint problems [Wang et al., 2003]. Fur-
thermore, in multiphysics problems the different sets of penalization parameters will
directly and noticeably impact the final results in terms of the stability of the solution
and the distinct void-solid representation.

To overcome the above mentioned difficulties, the Level Set Method (LSM) [Osher
& Sethian, 1988] for topology optimization is employed here in order to exploit its
intrinsic flexibility in handling topological changes. In the LSM, the boundaries of
the domain are implicitly represented with a scalar level set function which changes
in time, providing unique benefits such as smooth boundaries and distinct interfaces,
integrated shape and topology optimization. IGA is also used instead of standard FEM
because the fourth order PDEs of flexoelectricity demand at least C1 continuous basis
functions in a Galerkin method [Abdollahi et al., 2014]. IGA also enables using the
same data set for the analysis and the optimization as well as an exact representation
of the geometry (see Chapter 2 ).
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9.2 Flexoelectricity: theory and formulation
For a linear dielectric solid possessing only the piezoelectric effect, the electric en-
thalpy density, H̄ , is a function of εεε and EEE, i.e. H̄ (εi j,Ei). When flexoelectric effects
are accounted for, the enthalpy density H also becomes a function of the strain gradi-
ent and electric field gradient. Thus

H (εi j,Ei,ε jk,l,Ei, j) =
1
2

Ci jklεi jεkl − eiklEiεkl +(di jklEi, jεkl + fi jklEiε jk,l)−
1
2
κi jEiE j

(9.3)
where Ei = −θ,i is the electric field; θθθ is the electric potential; εεε is the mechanical
strain; eee is the third-order tensor of piezoelectricity; κκκ is the second-order dielectric
tensor; CCC is the fourth-order elasticity tensor; fff is the fourth-order direct flexoelectric
tensor and ddd is the fourth-order converse flexoelectric tensor [Abdollahi et al., 2014].
Let’s consider the terms in the brackets on the RHS of Eq. (9.3) containing the direct
and reverse flexoelectric effects. Integrating these terms over the volume and using
integration by parts and the Gauss divergence theorem on the first term yields

∫

Ω
(di jklEi, jεkl + fi jklEiε jk,l)dΩ=

∫

Ω
di jklEi, jεkldΩ+

∫

Ω
fi jklEiε jk,ldΩ

=
∫

∂Ω
di jklEiεklds−

∫

Ω
di jklEiεkl, jdΩ+

∫

Ω
fi jklEiε jk,ldΩ

=
∫

Ω
( fi jklEiε jk,l −di jklEiεkl, j)dΩ+

∫

∂Ω
di jklEiεklds

=−
∫

Ω
(dil jk − fi jkl)Eiε jk,ldΩ+

∫

∂Ω
di jklEiεklds

=−
∫

Ω
µi jklEiε jk,ldΩ+

∫

∂Ω
di jklEiεklds

(9.4)

which is expressed in terms of only one material tensor, µµµ where µi jkl = dil jk − fi jkl .
Therefore, one can rewrite Eq. (9.3) as

H (εi j,Ei,ε jk,l) =
1
2

Ci jklεi jεkl − eiklEiεkl −µi jklEiε jk,l −
1
2
κi jEiE j (9.5)

For a pure piezoelectric material we have

σi j =
∂H̄

∂εi j
and Di =−

∂H̄

∂Ei
(9.6)

while in the presence of flexoelectricity, the electromechanical stresses including the
usual (σ̂i j/D̂i), higher-order (σ̃i jk/D̃i j) and physical (σi j/Di) ones are defined through
the following relations:

σ̂i j =
∂H

∂εi j
and D̂i =−

∂H

∂Ei
(9.7)
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σ̃i jk =
∂H

∂εi j,k
and D̃i j =−

∂H

∂Ei, j
(9.8)

σi j = σ̂i j − σ̃i jk,k and Di = D̂i − D̃i j, j (9.9)

thus
σi j = σ̂i j − σ̃i jk,k =Ci jklεkl − eki jEk +µli jkEl,k (9.10)

Di = D̂i − D̃i j, j = eiklεkl +κi jE j +µi jklε jk,l (9.11)

Since D̃i j has no contribution in Eq. (9.5) thus, the essential and natural electrical
boundary conditions are the same as electrostatics. So,

θ = θ on Γθ (9.12)

Dini =−ω on ΓD (9.13)

Γθ ∪ΓD = ∂Ω and Γθ ∩ΓD = /0 (9.14)

where θ and ω are the prescribed electric potential and surface change density; ni is
the unit normal to the boundary ∂Ω of the domain Ω.

For the mechanical boundary conditions we have

ui = ui on Γu (9.15)

tk = n j(σ̂ jk − σ̃i jk,l)−D j(niσ̃i jk)− (Dpnp)nin jσ̃i jk = tk on Γt (9.16)

Γu ∪Γt = ∂Ω and Γu ∩Γt = /0 (9.17)

where ui and tk are the prescribed mechanical displacements and tractions; D j is the
surface gradient operator. In addition to these, the strain gradients result in other types
of boundary conditions as follows

ui, jn j = vi on Γv (9.18)

nin jσ̃i jk = rk on Γr (9.19)

Γv ∪Γr = ∂Ω and Γv ∩Γr = /0 (9.20)
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where υ i and rk are the prescribed normal derivative of displacement and the higher
order traction, respectively. Eq. (9.7) and Eq. (9.8) can be rewritten as

∂H = σ̂i j∂εi j (9.21)

∂H = σ̃i jk∂εi j,k (9.22)

∂H =−D̂i∂Ei (9.23)

and then by integrating over Ω we obtain

H =
1
2

∫

Ω
(σ̂i jεi j + σ̃i jkεi j,k − D̂iEi)dΩ (9.24)

where H is the total electrical enthalpy.
The work done by the external surface mechanical and electrical forces can be

written as
Wext =

∫

Γt
t iuidS−

∫

ΓD
ωθdS (9.25)

The kinetic energy for the system is also defined as

KE =
1
2

∫

Ω
ρ u̇iu̇idΩ (9.26)

where ρ denotes the density and the superimposed dot indicate time derivative. Using
Hamilton principle without the damping term we have

δ
∫ t2

t1
(KE −H +Wext)dt = 0 (9.27)

and

δ
∫ t2

t1

(
1
2

∫

Ω
ρ u̇iu̇idΩ−

1
2

∫

Ω
(σ̂i jεi j + σ̃i jkεi j,k − D̂iEi)dΩ

+
∫

Γt
t iuidS−

∫

ΓD
ωθdS

)
dt = 0

(9.28)

moving the variation operation into the integral operations we obtain

∫ t2

t1

(
1
2

∫

Ω
δ (ρ u̇iu̇i)dΩ−

1
2

∫

Ω
δ (σ̂i jεi j + σ̃i jkεi j,k − D̂iEi)dΩ

+
∫

Γt
t iδuidS−

∫

ΓD
ωδθdS

)
dt = 0

(9.29)
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by changing the order of operations and using the chain rule of variation we have
∫ t2

t1

[
1
2

∫

Ω
δ (ρ u̇iu̇i)dΩ

]
dt =−

∫ t2

t1

[∫

Ω
ρ(δuiüi)dΩ

]
dt (9.30)

∫ t2

t1

[
1
2

∫

Ω
δ (σ̂i jεi j + σ̃i jkεi j,k − D̂iEi)dΩ

]
dt =

∫ t2

t1

[∫

Ω
(σ̂i jδεi j + σ̃i jkδεi j,k − D̂iδEi)dΩ

]
dt

(9.31)

Eq. (9.29) now becomes

∫ t2

t1

(
−
∫

Ω
ρ(δuiüi)dΩ−

∫

Ω
(σ̂i jδεi j + σ̃i jkδεi j,k − D̂iδEi)dΩ

+
∫

Γt
t iδuidS−

∫

ΓD
ωδθdS

)
dt = 0

(9.32)

To satisfy Eq. (9.32) for all possible choices of uuu, the integrand of the time integration
has to vanish, which leads to
∫

Ω
ρ(δuiüi)dΩ+

∫

Ω
(σ̂i jδεi j + σ̃i jkδεi j,k − D̂iδEi)dΩ−

∫

Γt
t iδuidS+

∫

ΓD
ωδθdS = 0

(9.33)
The inertia term is neglected for a static problem yielding

∫

Ω
(σ̂i jδεi j + σ̃i jkδεi j,k − D̂iδEi)dΩ−

∫

Γt
t iδuidS+

∫

ΓD
ωδθdS = 0 (9.34)

Substituting Eqs. (9.7)- (9.11) into Eq. (9.34)) yields
∫

Ω

(
Ci jklδεi jεkl − eki jEkδεi j −µli jkElδεi j,k −κi jδEiE j − eiklδEiεkl −µi jklδEiε jk,l

)
dΩ

−
∫

Γt
t iδuidS+

∫

ΓD
ωδθdS = 0

(9.35)

9.3 Discretization
In this section the NURBS basis functions are employed to approximate displacement
uuu and electric potential θθθ fields as well as their derivatives according to

uh(x,y) =
n

∑
i=1

m

∑
j=1

N p,q
i, j (ξ ,η)u

e
i j = (NNNu)

Tuuue (9.36)
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θh(x,y) =
n

∑
i=1

m

∑
j=1

N p,q
i, j (ξ ,η)θ

e
i j = (NNNθ )

Tθθθ e (9.37)

∂ juh = ∂ jNNNuuuue = (BBBu)
Tuuue = εεε (9.38)

∂ jθh = ∂ jNNNθθθθ e = (BBBθ )Tθθθ e =−EEE (9.39)

∂ j∂kuh = ∂ j∂kNNNuuuue = (HHHu)
Tuuue (9.40)

where the superscript e denotes nodal parameters at the control points; BBBu, BBBθ and
HHHu are the matrices containing the gradient and Hessian of the corresponding basis
functions (i.e. NNNu and NNNθ ) which are defined as

BBBu =




∂N1
∂x 0 ∂N1

∂y
∂N2
∂x 0 ∂N2

∂y
...

...
...

∂Nn
∂x 0 ∂Nn

∂y
0 ∂N1

∂y
∂N1
∂x

0 ∂N2
∂y

∂N2
∂x

...
...

...
0 ∂Nn

∂y
∂Nn
∂x




(9.41)

BBBθ =




∂N1
∂x

∂N1
∂y

...
...

∂Nn
∂x

∂Nn
∂y


 (9.42)

HHHu =




∂ 2N1
∂x2 0 ∂ 2N1

∂y∂x
∂ 2N1
∂x∂y 0 ∂ 2N1

∂y2

∂ 2N2
∂x2 0 ∂ 2N2

∂y∂x
∂ 2N2
∂x∂y 0 ∂ 2N2

∂y2

...
...

...
...

...
...

∂ 2Nn
∂x2 0 ∂ 2Nn

∂y∂x
∂ 2Nn
∂x∂y 0 ∂ 2Nn

∂y2

0 ∂ 2N1
∂y∂x

∂ 2N1
∂x2 0 ∂ 2N1

∂y2
∂ 2N1
∂x∂y

0 ∂ 2N2
∂y∂x

∂ 2N2
∂x2 0 ∂ 2N2

∂y2
∂ 2N2
∂x∂y

...
...

...
...

...
...

0 ∂ 2Nn
∂y∂x

∂ 2Nn
∂x2 0 ∂ 2Nn

∂y2
∂ 2Nn
∂x∂y




(9.43)
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By substituting Eq. (9.36) to Eq. (9.40) into Eq. (9.35) we obtain after some algebra
the following discrete system of equations

[
AAAUU AAAUθ
AAAθU AAAθθ

] [
UUU
θθθ

]
=

[
fffU
fff θ

]
(9.44)

where
AAAUU =∑

e

∫

Ωe
(BBBu)CCC(BBBu)

T dΩe (9.45)

AAAUθ =∑
e

∫

Ωe

[
(BBBu)eee(BBBθ )T +(HHHu)µµµT (BBBθ )T ]dΩe (9.46)

AAAθU =∑
e

∫

Ωe

[
(BBBθ )eeeT (BBBu)

T +(BBBθ )µµµ(HHHu)
T ]dΩe (9.47)

AAAθθ =−∑
e

∫

Ωe
(BBBθ )κκκ(BBBθ )T dΩe (9.48)

fffU =∑
e

∫

Γte

NNNT
u tttΓdΓte (9.49)

fff θ =−∑
e

∫

ΓDe

NNNT
θωdΓDe (9.50)

In Eqs. (9.45) - (9.50), the subscript, e, inΩe, Γte and ΓDe denotes the eth finite element
where Ω= ∪eΩe. Moreover, CCC,κκκ,eee and µµµ can be written in matrix form as

CCC =

(
E

(1+ν)(1−2ν)

)


1−ν ν 0
ν 1−ν 0
0 0

(1
2 −ν

)


 (9.51)

κκκ =

[
κ11 0
0 κ33

]
(9.52)

eeeT =

[
0 0 e15

e31 e33 0

]
(9.53)

µµµ =

[
µ11 µ12 0 0 0 µ44
0 0 µ44 µ12 µ11 0

]
(9.54)

Interested readers can also refer to [Sharma et al., 2007] and [Majdoub et al., 2009]
for more details about the theory of flexoelectricity.
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9.4 Level Set Method (LSM) and optimization problem

9.4.1 LSM
In this section the LSM fundamentals are briefly described. Let’s assume Ω⊂ D ⊂R

d

(d = 2 or 3), where D is the whole structural domain including all admissible shapes,
Ω. A level set function Φ(xxx) is defined as





Solid : Φ(xxx)> 0 ∀xxx ∈Ω\∂Ω
Boundary : Φ(xxx) = 0 ∀xxx ∈ ∂Ω∩D
Void : Φ(xxx)< 0 ∀xxx ∈ D\Ω

(9.55)

The design boundary Γ(xxx) is then implicitly represented by the iso-surface (in this text
zero surface) of Φ(xxx) such that

Γ(xxx) =
{

xxx ∈ R
d|Φ(xxx) = 0

}
(9.56)

and by letting the level set function dynamically change in time, the dynamic model is
expressed as

Γ(t) =
{

xxx(t) ∈ R
d|Φ(xxx(t), t) = 0

}
(9.57)

and by differentiating both sides of Eq. (9.57) with respect to time and applying the
chain rule we have

∂Φ(xxx(t), t)
∂ t

+∇Φ(xxx(t), t) ·
dx
dt

= 0 (9.58)

where VVV = dx
dt is the velocity vector of the design boundary and its normal component

is Vn =VVV ·nnn where nnn = ∇Φ
|∇Φ| is the unit outward normal to the boundary. Eq. (9.58) is

the so-called Hamilton-Jacobi equation and can be written in the form of

∂Φ
∂ t

+Vn|∇Φ|= 0 (9.59)

which defines an initial value problem for the time dependent function Φ. In opti-
mization process Vn is the movement of a point on a surface driven by the objective of
the optimization. The optimal structural boundary is then expressed as a solution of
Eq. (9.59) obtained by a so called ”up-wind scheme” [Wang et al., 2003].

In this section, the LS function at the point (x,y) is denoted by Φ(x,y) and defined
as

Φ(x,y) =
n

∑
i=1

m

∑
j=1

N p,q
i, j (ξ ,η)ϕi, j (9.60)

where N p,q
i, j and ϕi, j are B-spline basis functions and corresponding nodal values of LS,

respectively. ϕi, j are the only design variables which are defined on the control points
mesh being set as the signed distance to the given boundary of the initial design.
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The density-based approach is used for mapping the geometry to the mechanical
model. Using this approach, the material domain (density field 0 < ρmin ≤ ρ(xxx) ≤ 1)
flows through a fixed discretization of the design domain in each optimization iteration.
In other words, these densities are used to directly scale the stiffness of the material,
known as the ”Ersatz material” approach. ρ = 1 represents the solid material while
ρmin = 1e−4 is the lower bound to avoid singularity of the stiffness matrix.

Using point-wise mapping to control an element-wise constant density distribution
we have

ρe = (1−ρmin)H̃(Φ(Xe))+ρmin (9.61)

where Xe is the center of a finite element e. H̃(Φ) is a smooth approximation of the
Heaviside function defined by [ Wang et al., 2003]

H̃(Φ) =





0 f or Φ<−h

−1
4
(Φ

h
)3

+ 3
4
(Φ

h
)
+ 1

2 f or −h ≤Φ≤ h

1 f or h <Φ

(9.62)

Having ρ , the volume integrals of some functional f over a material domain can then
be defined as ∫

Ω
f dV =

∫

D
f H̃(Φ)dV ≈

∫

D
fρ(Φ)dV (9.63)

Meanwhile ρ is embedded in the electromechanical problem as

M(x,y) = ρ(Φ)M0 with MMM0 =CCC,eee,κκκ,µµµ (9.64)

where CCC,eee,κκκ and µµµ denote elastic, piezoelectricity, permittivity and flexoelectricity
tensors, respectively. Subscript 0 represents properties of the solid material.

The derivative of the density function with respect to the level set nodal values is
obtained by

∂ρe
∂ϕi, j

= (1−ρmin)δ̃ (Φ(Xe))
∂Φ(Xe)

∂ϕi, j
(9.65)

where δ̃ (Φ) = ∂ H̃
∂Φ is the approximate Dirac delta function defined by

δ̃ (Φ) =





3(1−ρmin)
4h

(
1−
(Φ

h
)2
)

f or−h ≤Φ≤ h

0 otherwise
(9.66)

and ∂Φ(Xe)
∂ϕi, j

is calculated by
∂Φ(Xe)

∂ϕi, j
= Rp,q

i, j (ξ ,η) (9.67)
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9.4.2 Optimization problem
The electromechanical coupling coefficient, cem, is defined as

cem =
welec
wmech

(9.68)

where welec and wmech are the electrical and mechanical (or strain) energies, respec-
tively. By extending welec and wmech in Eq. (9.68) and defining the objective function,
J(uuu(ϕϕϕ),θθθ(ϕϕϕ),ϕϕϕ), as the inverse of cem we have

J(uuu(ϕϕϕ),θθθ(ϕϕϕ),ϕϕϕ) =
1

cem
=

wmech
welec

=
1
2
∫
Ωεεε

TCCCεεεdΩ
1
2
∫
ΩEEETκκκEEEdΩ

(9.69)

where εεε and EEE are obtained according to Eqs. (9.38)- (9.39) and ϕϕϕ denotes the vector
containing all ϕi, j. Eventually, the optimization problem can be summarized as follows





Minimize : J(uuu(ϕϕϕ),θθθ(ϕϕϕ),ϕϕϕ)
S.t :
V f =

∫
Dρ(Φ)dV =V f 0

[
AAAUU AAAUθ
AAAθU AAAθθ

][
UUU
θ

]
=

[
fffU
fff θ

]
(9.70)

where V f is the total volume in each optimization iteration; V f 0 is an arbitrary volume
which must be set at the beginning of the optimization process. By introducing a proper
Lagrangian objective function, l, and Lagrange multiplier, Ψ, we obtain

l = J−Ψ(V f −V f 0) (9.71)

To find the minimum of l, the first derivatives of Eq. (9.71) with respect to ϕϕϕ is set as
zero. So,

dl
dϕϕϕ

=
dJ
dϕϕϕ

−Ψ
dV f
dϕϕϕ

= 0 (9.72)

To update the design variables, sensitivity analysis is required which is presented in
Section 9.4.3.

9.4.3 Sensitivity analysis
To solve Eq. (9.72), one should differentiate the objective and constraint functions
with respect to the design variables. Considering the coupled system of equations in
residual form, we have

R(uuu,θθθ) = 0 (9.73)
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H(uuu,θθθ) = 0 (9.74)

where R and H are residuals that must be simultaneously satisfied, and uuu and θθθ are
solution (i.e. displacement and electric potential) fields. By assembling Eq. (9.73) and
Eq. (9.74) into a single global residual RRR we have

RRRRRRRRR(UUU) =

[
R(uuu,θθθ)
H(uuu,θθθ)

]
=RRRRRRRRR(UUU(ϕϕϕ),ϕϕϕ) = 0 (9.75)

where
UUU=

[
uuu
θθθ

]
(9.76)

Thus, the objective function takes the form J(UUU(ϕϕϕ),ϕϕϕ). Recalling Eq. (9.72), the chain-
rule is used to calculate the sensitivity of J(UUU(ϕϕϕ),ϕϕϕ) with respect to ϕϕϕ . Employing
partial derivatives (∂ (.)∂ (.)) we have

dJ
dϕϕϕ

=
∂J
∂UUU

∂UUU
∂ϕϕϕ

+
∂J
∂UUU

(9.77)

The last term of Eq. (9.77) is the explicit quantity and easy to calculate

∂J
∂ϕϕϕ

=
1

welec

(
1
2

∫

Ω
BBBuuuuT ∂CCC

∂ϕϕϕ
BBBT

u uuudΩ
)
−

wmech
w2

elec

(
1
2

∫

Ω
BBBθθθθT ∂κκκ

∂ϕϕϕ
BBBT
θθθθdΩ

)
(9.78)

while welec and wmech are calculated according to Eq. (9.69); For plane strain problem

∂CCC
∂ϕϕϕ

=
∂ρe
∂ϕϕϕ

(
Y

(1+ν)(1−2ν)

)


1−ν ν 0
ν 1−ν 0
0 0

(1
2 −ν

)


 (9.79)

and
∂κκκ
∂ϕϕϕ

=
∂ρe
∂ϕϕϕ

[
κ11 0
0 κ33

]
(9.80)

To calculate ∂UUU
∂ϕϕϕ as an implicit quantity, Eq. (9.73) is differentiated as

(
∂RRR
∂UUU

)T ∂UUU
∂ϕϕϕ

+
∂RRR
∂ϕϕϕ

= 000 (9.81)

∂UUU
∂ϕϕϕ

=−

(
∂RRR
∂UUU

)−T ∂RRR
∂ϕϕϕ

(9.82)
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substitution Eq. (9.82) into the first term of Eq. (9.77) right hand side yields

∂J
∂UUU

∂UUU
∂ϕϕϕ

=−
∂J
∂UUU

[(
∂RRR
∂UUU

)−T ∂RRR
∂ϕϕϕ

]
(9.83)

assuming

λλλ =−
∂J
∂UUU

(
∂RRR
∂UUU

)−T
(9.84)

and knowing that ∂RRR
∂UUU =KKKtotal , we can write

KKKtotalλλλ =−
∂J
∂UUU

(9.85)

KKKtotalλλλ =−
1

welec

∫

Ω
BBBuCCCBBBT

u uuudΩ+
wmech
w2

elec

∫

Ω
BBBθκκκBBBT

θθθθdΩ (9.86)

eventually, Eq. (9.83) can be written in the form
∂J
∂UUU

∂UUU
∂ϕ

= (λλλ )T ∂RRR
∂ϕϕϕ

(9.87)

∂J
∂UUU

∂UUU
∂ϕϕϕ

=

[
AAA′

UU AAA′

Uθ
AAA′

θU AAA′

θθ

]
[λλλ ] (9.88)

AAA
′

UU =
∫

Ω
uuuT
(

BBBu
∂CCC
∂ϕϕϕ

BBBT
u

)
dΩ (9.89)

AAA
′

Uθ =
∫

Ω
uuuT
(

BBBu
∂eee
∂ϕϕϕ

BBBT
θ +HHHu

∂µµµ
∂ϕϕϕ

BBBT
θ

)
dΩ (9.90)

AAA
′

θU =
∫

Ω
θθθT
(

BBBθ
∂eee
∂ϕϕϕ

BBBT
u +BBBθ

∂µµµ
∂ϕϕϕ

HHHT
u

)
dΩ (9.91)

AAA
′

θθ =−
∫

Ω
θθθT
(

BBBθ
∂κκκ
∂ϕϕϕ

BBBT
θ

)
dΩ (9.92)

where
∂eeeT

∂ϕϕϕ
=
∂ρe
∂ϕϕϕ

[
0 0 e15

e31 e33 0

]
(9.93)

and
∂µµµ
∂ϕϕϕ

=
∂ρe
∂ϕϕϕ

[
µ11 µ12 0 0 0 µ44
0 0 µ44 µ12 µ11 0

]
(9.94)

and finally, for the last term of Eq. (9.72) we have
dV f
dϕϕϕ

=
∂V f
∂ϕϕϕ

=
∫

Ω

∂ρe
∂ϕϕϕ

dΩ (9.95)

which is already obtained according to Eq. (9.65).
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9.5 Numerical examples
In this section, firstly the analysis model is verified by comparing the results with some
benchmark examples. The verified IGA model is then employed in the optimization
algorithm to demonstrate its validity and usefulness. Isotropic linear elasticity under
plane strain conditions is assumed in all examples. Commonly studied flexoelectric
configurations (cantilever beam and truncated pyramid) with different electrical bound-
ary conditions are solved. Electrodes are assumed as very thin deposited layers on the
structures to impose equipotential boundary conditions, and have no contribution to
the structural stiffness.

9.5.1 Verification of the IGA model
9.5.1.1 Cantilever beam (Mechanical loading)

Fig. 9.1(a) and Fig. 9.1(b) schematically represent the cantilever beam with mechani-
cal and electrical boundary conditions. The model is discretized by 50× 10 B-spline
elements of order 3. The red dots represent the control points as shown in Fig. 9.1(c).
Material properties of BaTiO3 and loading data as listed in Table 9.1 are considered
based on [Abdollahi et al., 2014].

Figure 9.1: Electromechanical boundary conditions for open circuit (a) and closed
circuit (b), FE discretization with red dots representing the control points (c)

Table 9.1: The cantilever beam problem: material properties, geometry and load data
L/h υ Y e31 µ12 κ11 κ33 χ33 F
20 0.37 100 GPa -4.4 C/m2 1 µC/m 11 nC/V m 12.48 nC/V m 1408 100 µN
L
h : beam aspect ratio, υ : Poisson′ ratio, Y : Young′s modulus, e31 : piezoelectric constant, µ12 :
f lexoelectric constant, κ11 and κ33 : dielectric constants, χ33 : electric susceptibility, F : point load

Following the terminologies of the benchmark examples [Abdollahi et al., 2014],
the electromechanical coupling factor is defined by

k2
e f f =

welec
wmech

(9.96)
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Assuming that the only non-zero components of the stress is σ11 and of the electric field
is E2, for one-dimensional coupling, Eq. (9.96) is analytically estimated in [Majdoub
et al., 2009] as

ke f f =
χ

1+χ

√
k
Y

(
e2 +12

(µ
h

)2
)

(9.97)

where the normalized effective piezoelectric constant is

e
′
=

ke f f
kpiezo

(9.98)

where kpiezo is obtained by neglecting flexoelectricity (µ = 0) in Eq. (9.96).
To numerically simulate a 1-D coupling, the model is simplified by setting Pois-

son’s ratio as well as all piezoelectric and flexoelectric constants to zero except e31 and
µ12 which take the corresponding values of Table 9.1. Fig. 9.2 compares the results
of the present and the analytical methods for both piezoelectric and non-piezoelectric
materials. Here h′ is the normalized beam thickness and for the open circuit condi-
tion is obtained by h′

= −eh/µ . The non-piezoelectric materials are also obtained by
setting e31 = 0. Fig. 9.2 illustrates that when the thickness of the beam decreases, the
electromechanical response of the beam increases. This enhancement in electrome-
chanical response at small length scales has also been observed for non-piezoelectric
materials. Furthermore, as expected the flexoelectric effect vanishes for larger beam
thicknesses. Overall, one can observe excellent agreement between the results of the
current method and the analytical solutions.

Figure 9.2: Normalized effective piezoelectric constant e′ versus normalized beam
thickness h′ . Graphs are for open circuit conditions and contain both piezoelectric and
non-piezoelectric materials. The results for analytic solutions are reproduced accord-
ing to Eq. (9.97).
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9.5.1.2 Cantilever beam (Electrical loading)

For the next example a cantilever beam acting as an electromechanical actuator is stud-
ied. The beam is 50 µm long, 2.5 µm high, is made of non-piezoelectric material and
has the closed circuit configuration as illustrated in Fig. 9.1. A voltage V equal to
−20 MV is applied to the bottom edge while the top edge is grounded. The mechan-
ical point load, F , is also set to zero. For above settings, the only phenomenon that
deforms the beam is flexoelectricity, which acts as a result of polarization gradients.
To demonstrate this, the distribution of the electric field across the beam thickness at
the mid length of the beam is graphed in Fig. 9.3. It is observed that the results are
slightly dependent on the order of the basis functions. In particular, larger gradients
near the surfaces are obtained with increasing basis functions order. The present re-
sults, which are converged on a sufficiently fine discretization, are in good agreement
with the benchmark example [Abdollahi et al., 2014] from both values and field dis-
tribution points of view. All graphs clearly represent the high gradients at the top and
bottom surfaces of the beam, which generate mechanical stresses and eventually de-
form the beam. The electric field is represented more smoothly away from the surfaces
using higher orders basis functions.

Figure 9.3: Distribution of electric field across the beam thickness for different orders
of basis functions. p and q are order of basis functions in direction of length and width
of the beam, respectively
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9.5.1.3 Truncated pyramid

For the next example the flexoelectric effect in a truncated pyramid under compres-
sion is investigated. This geometry has been widely studied in flexoelectricity [Zhu
et al., 2006] because of the intrinsic generation of strain gradients due to the different
widths of the top and bottom surfaces. A uniformly distributed force of magnitude F
is applied on the top edge while the bottom edge is mechanically fixed. The problem
configuration and its FE discretization are shown in Fig. 9.4. The material parameters
are according to Table 9.1 while the other design parameters are listed in Table 9.2.

Table 9.2: The truncated pyramid problem: geometry and load data
a1 a2 h F

750µm 2250µm 750µm 6 N
µm

Figure 9.4: Truncated pyramid under compression, problem setup (a) FE discretization
(b)

Fig. 9.5 shows the distribution of the electric potential (left) and the resulted strain in
Y direction, ε22, (right). Once again there is an acceptable agreement, in both patterns
and values, between the results of the present method and [Abdollahi et al., 2014].

9.5.2 Topology optimization of the flexoelectric beam
Since there is no benchmark topology optimization example available for flexoelectric-
ity, the methodology is verified for an elastic cantilever beam subjected to a mechanical
load [Shojaee et al., 2012]. This is done by setting all the electrical parameters to zero.
A cantilever beam of length 60 µm with an aspect ratio (defined by the beam length
over its height) of 7 is considered. It is made of non-piezoelectric material (e31 = 0)
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9.5 Numerical examples

Figure 9.5: Distribution of the electric potential (left) and strain in Y direction, ε22
(right)

with open circuit boundary conditions. The loading and other material constants are ac-
cording to Table 9.1. Fig. 9.6(a-c) show the initial ( 9.6(a)) and the optimized ( 9.6(b))
topologies constrained by 70% of the solid beam volume as the design limit. To un-

Figure 9.6: Initial (a) and the optimized (b) topologies considering 70% of the solid
beam volume as design constraint. Normalized objective function versus iterations
is plotted in (c). The beam is made of non-piezoelectric material with open circuit
boundary conditions. The length of the beam is 60 µm with aspect ratio of 7.

derstand the optimum topology seen in Fig. 9.6(b), it is noteworthy to mention that for
flexoelectric materials, electric polarization displays a linear relationship to the gradi-
ent of mechanical strain (see Eq. (9.2)) while for piezoelectric materials, the electric
polarization and the mechanical strain are interrelated (see Eq. (9.1)). Thus, for flex-
oelectric structures, recognizing the zones with high strain gradients in the structure
is the key to interpret the optimal topology. In Fig. 9.6(b) it is observed that more
material is available in the left half (including fixed edge) of the structure (where the
strain and strain gradients are higher) rather than the right half (including free edge).
Within the left half, the material is also more available in top and bottom edges rather
than the central part of the beam, for the same reason. The shape of the fixed edge
is also in line with more electrical energy generation, as more detailed investigations

124

Chapter8/Chapter8Figs/EPS/Fig6.eps
Chapter8/Chapter8Figs/EPS/Fig7.eps
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have shown that material reduction along the fixed edge will increase the generated
electrical energy. Thus overall, the optimized geometry is in line with maximizing the
electromechanical coupling coefficient which is equivalent to minimizing the objective
function. The history of the objective function, which converges towards the minimum
value, is presented in Fig. 9.6(c).

Let’s define csld
em and copt

em as parameters that define the electromechanical cou-
pling coefficients of the solid and optimized structures, respectively. In this case
csld

em = 4.75e−5 and copt
em = 315e−5 and their ratio, cN

em = copt
em

csld
em

= 66.32, is the normalized
electromechanical coupling coefficient. That would be a reasonable argument that such
an increase in energy conversion is partially due to 30% decrease in structural volume;
It should be noted that the electromechanical coupling coefficient for the initial struc-
ture (Fig. 9.6(a)), cini

em, which have nearly the same volume as the optimized structure
(i.e. 70% of the solid beam volume), is equal to 22.5e−5. By comparison of these num-
bers (copt

em
cini

em
= 14) we can determine how significant the role of topology optimization in

increasing cem is. The similar analysis for different beam aspect ratios are performed
and the results are plotted in Fig. 9.7. It is observable that, the higher aspect ratio, the
higher cN

em is obtained. It means topology optimization shows profound advantages in
higher aspect ratios.

Figure 9.7: cN
em versus beam aspect ratio. cN

em is the ratio of the electromechanical
coupling coefficients of the optimized structure to the solid structure. For all cases, the
length of the beam is 60 µm and the optimized topology has 70% of the solid beam
volume.

The flexoelectric truncated pyramid under a 10 µN point load applied at the mid-
point of the top edge is considered as the next example. Other design parameters and
dimensions are listed in Table 9.1 and Table 9.2 considering 70% of the solid truncated
pyramid volume as design constraint. Boundary conditions are according to Fig. 9.4.
The optimized topology is shown in (Fig. 9.8(a)). The region with high strain gradi-
ents is located underneath the point load where the crown shape topology increases the
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strain gradients and consequently, the generated electrical energy. It is also observable
that the length of the top edge has shortened, which also causes larger strain gradi-
ents. The graph related to the history of the normalized objective function (Fig. 9.8(b))
and the graph for structural volume (Fig. 9.8(c)) converge relatively smoothly. The
small jumps in graph of Fig. 9.8(b) at iterations 10, 20, 30 and 40 are related to re-
initialization in optimization process. For this example copt

em
cini

em
= 2.47 which shows again

the impact of topology optimization on enhancing electromechanical behavior of di-
electric solids possessing flexoelectric effect.

Figure 9.8: The optimized topology (a) considering 70% of the solid truncated pyramid
volume as design constraint. The normalized objective function versus iterations is
plotted in (b) and the volume history is shown in (c). The pyramid is made of non-
piezoelectric material under a 10µN point load at mid of the top edge. The other design
parameters listed in Table 9.1 and Table 9.2. The boundary conditions are shown in
Fig. 9.4.
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9.6 Concluding remarks
A computational framework for topology optimization of flexoelectric micro and nanos-
tructures is presented to enhance their energy conversion efficiency. The methodology
is based on a combination of isogeometric analysis (IGA), level set and point wise
density mapping techniques. The smoothness of the IGA basis functions is used to
discretize the fourth order partial differential equations of flexoelectricity, while the
level set provide clear boundaries and gives stable convergence. The point wise den-
sity mapping is directly used in the weak form of the governing equations and its
derivative can be consistently derived. The nodal level set values on control points
and the inverse of the electromechanical coupling coefficient are defined as design
variables and objective function, respectively. The numerical results demonstrate that
B-spline elements can successfully model the flexoelectric effect in dielectrics. For a
cantilever beam with constant length, it is shown that when the thickness of the beam
decreases, the electromechanical response increases. The topology optimization is also
able to noticeably increase the electromechanical coupling coefficient, with substantial
enhancements observed for higher aspect ratios.

127



Chapter 10

Conclusions

10.1 Summary of achievements
The methodology and achievements of this research work are highlighted within fol-
lowing four items:

1. Fiber distribution optimization:
An efficient gradient based computational technique for fiber distribution opti-
mization in fiber reinforced continuum elements, has been developed through
the use of Non-Uniform Rational B-spline (NURBS) functions. Nodal volume
fraction of fiber has been used as the optimization design variable, whose dis-
tribution function has been smoothly approximated by using a NURBS surface.
The methodology allows considering different material models and generic ob-
jective functions. The main advantage of the proposed approach is that domain
discretization and definition of fiber distribution function have common data sets.
It also allows to get a high rate and smooth convergence to the optimum condition
sought.

2. Uncertainties propagation:
Deterministic approaches for nanocomposite modeling and optimization might
be unrealistic for certain applications and may yield to either catastrophic failure
or unnecessary conservatism. Detailed investigations on uncertainties and their
propagation have been performed for obtaining realistic and reliable Polymeric
Nano Composite (PNC) structures. Potential uncertainties have been categorized
in material, structural and modeling levels. To fully address uncertainties in ma-
terial level, a stochastic multi-scale material model (which includes all important
aspects of the Carbon Nano Tube Reinforced Polymer (CNTRP) including CNT
length, orientation, dispersion, agglomeration and waviness, at different length
scales from nano-, up to macro-scale) has been utilized. To improve the compu-
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tational efficiency, the evaluation of material properties has been surrogated by a
metamodel. The results for two selected examples show that the failure probabil-
ity of a polymeric nanocomposite structure, strongly depends on the CNT param-
eters, especially the CNT volume fraction and the waviness. The influence of the
CNT agglomeration is nearly negligible. It was observed that neglecting the CNT
agglomeration can simplify the model and decrease the computational time with-
out remarkable loss in model accuracy. Furthermore, the loading condition and
discretization affect the reliability of the system. Coarse meshes underestimate
the failure probability of a beam while fine meshes admittedly increase computa-
tional cost. Thus sufficiently refined discretization should be investigated in order
to have realistic assessment of the reliability of PNC structures. An increase in
the standard deviation of the applied load, which physically means more uncer-
tainties in the system, resulted in the structure with a smaller reliability index.
Finding the optimal content of CNT was also presented to optimized the material
instead of the geometry. As a further step forward, concurrent optimization of
material parameters and geometrical parameters (hybrid optimization) was con-
ducted to present a comprehensive solution for current demands in fully opti-
mized designs of nanocomposite components.

3. Sequential optimization approach:
The two previous items are integrated resulted in an efficient sequential algo-
rithm for finding the optimal fiber volume fraction and its distribution in struc-
tures made of Fiber Reinforced Composite (FRC) materials. To overcome the
cumbersome computational burden in stochastic optimization problems, finding
the optimal fiber volume fraction and fiber distribution are performed sequen-
tially, not concurrently. This technique along with using NURBS finite elements,
allows us to get a noticeable reduction in the computational cost, without a no-
ticeable loss in accuracy of the results. Assuming a (simplified energy-based
material model) random orientation of fibers in the matrix, in the first optimiza-
tion module (i.e. finding the optimal fiber volume fraction) uncertainties in the
parameters (such as constituents materials and loading) are fully addressed and
Limit State Function (LSF) is evaluated by using First Order Reliability Method
(FORM). In the second module (i.e. fiber distribution optimization) a NURBS
surface which smoothly defines the fiber distribution pattern, is adopted. The
presented numerical examples show as an increase in model uncertainties gives
rise to unreliability of the system. More specifically, either the rise in the num-
ber of uncertain fields in the problem or the increase in the standard deviation of
random variables needs more fiber content. It can be also concluded that when
there is a higher level of uncertainties in design parameters, the fiber distribution
optimization is more influential on increasing the reliability of the structure.

4. Innovative applications:
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The methodology is applied in three novel applications with following achieve-
ments / observations:

• Interfacial shear stress optimization in sandwich beams:
A computational algorithm for decreasing interfacial shear stress in sand-
wich beams with polymeric core is presented. The algorithm can be also
used for optimizing other stress components (i.e. peeling and bending stresses)
in any arbitrary zone of the design domain. C−1 continuity is imposed at the
interface to ”truly” isolate the reinforcement distribution in the core from the
face sheets using multi-patch and penalty techniques. Comparing the results
of the case study illustrates that adding reinforcements homogeneously into
polymers will slightly improve the interfacial shear stress but that consider-
able improvements are observed when the distribution of the reinforcement
in the core is optimized.

• Probabilistic multiconstraints optimization of cooling channels in Ceramic
Matrix Composites (CMC):
The presented computational platform efficiently optimizes the capacity of
cooling channels in a components made of CMC using Reliability Based De-
sign Optimization (RBDO) approach. A ”series system” reliability concept
is adopted as a union of mechanical and thermal failure subsets. Afterwards,
the optimizer is supposed to increase the reliability of the component by op-
timally distributing the C-fibers inside the matrix within the design domain.
Numerical results for the performed case studies demonstrate that optimal
distribution of C-fibers can decrease structural and thermal compliances. In
the decoupled elastic and thermal problems, the former yields an increase in
βm (the reliability index associated with the probabilistic deformation con-
straint) and the latter in an increase in βt (the reliability index associated
with the probabilistic thermal constraint). But, in the coupled thermoelastic
problem, any prediction about final reliability indices depends on fiber and
matrix constitutive material properties and contribution of mechanical and
thermal loadings on the global force vector. When the mechanical loading
dominates the thermal loading, fiber distribution can show promising advan-
tage to have more reliable design by increasing βm and consequently βtarget
(the final reliability index). However, its role for increasing the reliability
index corresponding to thermal constraint is negligible.

• Topology optimization of flexoelectric materials:
A computational framework for topology optimization of flexoelectric mi-
cro and nanostructures is presented to enhance their energy conversion effi-
ciency. The methodology is based on a combination of isogeometric analysis
(IGA), level set and point wise density mapping techniques. The smoothness
of the IGA basis functions is used to discretize the fourth order partial differ-
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ential equations of flexoelectricity, while the level set provide clear bound-
aries and gives stable convergence. The point wise density mapping is di-
rectly used in the weak form of the governing equations and its derivative can
be consistently derived. The nodal level set values on control points and the
inverse of the electromechanical coupling coefficient are defined as design
variables and objective function, respectively. The numerical results demon-
strate that B-spline elements can successfully model the flexoelectric effect
in dielectrics. For a cantilever beam with constant length, it is shown that
when the thickness of the beam decreases, the electromechanical response
increases. The topology optimization is also able to noticeably increase the
electromechanical coupling coefficient, with substantial enhancements ob-
served for higher aspect ratios.

10.2 Outlook
The presented work established the framework for probabilistic optimization of fiber
reinforced composites with some promising applications. It is also extended and used
as a topology optimization tool for flexoelectric micro-nano devices. A few possible
extensions to the current work can be suggested as follows:

• Extend the methodology to 3-D to be able to address more general problems
• Investigate different failure criteria as limit state functions
• Contributing the developed methodology towards the design of micro and nano-

scale energy harvesters / sensors with optimized electromechanical performance
• Addressing the available uncertainties in optimization of micro-nano electrome-

chanical devices
• Contributing towards the design of multi-material micro and nano-scale energy

harvesters / sensors
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