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Abstract

Piezoelectric materials are used in several applications as sensors and actu-
ators where they experience high stress and electric field concentrations as
a result of which they may fail due to fracture. Though there are many ana-
lytical and experimental works on piezoelectric fracture mechanics. There
are very few studies about damage detection, which is an interesting way
to prevent the failure of these ceramics.

An iterative method to treat the inverse problem of detecting cracks and
voids in piezoelectric structures is proposed. Extended finite element method
(XFEM) is employed for solving the inverse problem as it allows the use
of a single regular mesh for large number of iterations with different flaw
geometries.

Firstly, minimization of cost function is performed by Multilevel Coor-
dinate Search (MCS) method. The XFEM-MCS methodology is applied
to two dimensional electromechanical problems where flaws considered
are straight cracks and elliptical voids. Then a numerical method based
on combination of classical shape derivative and level set method for front
propagation used in structural optimization is utilized to minimize the cost
function. The results obtained show that the XFEM-level set methodol-
ogy is effectively able to determine the number of voids in a piezoelectric
structure and its corresponding locations.

The XFEM-level set methodology is improved to solve the inverse prob-
lem of detecting inclusion interfaces in a piezoelectric structure. The ma-
terial interfaces are implicitly represented by level sets which are identified
by applying regularisation using total variation penalty terms. The formu-
lation is presented for three dimensional structures and inclusions made of
different materials are detected by using multiple level sets. The results
obtained prove that the iterative procedure proposed can determine the lo-
cation and approximate shape of material subdomains in the presence of
higher noise levels.

Piezoelectric nanostructures exhibit size dependent properties because of
surface elasticity and surface piezoelectricity. Initially a study to under-
stand the influence of surface elasticity on optimization of nano elastic



beams is performed. The boundary of the nano structure is implicitly rep-
resented by a level set function, which is considered as the design vari-
able in the optimization process. Two objective functions, minimizing
the total potential energy of a nanostructure subjected to a material vol-
ume constraint and minimizing the least square error compared to a target
displacement, are chosen for the numerical examples. The numerical ex-
amples demonstrate the importance of size and aspect ratio in determining
how surface effects impact the optimized topology of nanobeams.

Finally a conventional cantilever energy harvester with a piezoelectric
nano layer is analysed. The presence of surface piezoelectricity in nano
beams and nano plates leads to increase in electromechanical coupling
coefficient. Topology optimization of these piezoelectric structures in an
energy harvesting device to further increase energy conversion using ap-
propriately modified XFEM-level set algorithm is performed .
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Material ratio
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distance of mid-surface of sublayers from neutral surface

Enriched degrees of freedom (Cracktip nodes)

Regularisation parameter

Surface energy density

Boundary of piezoelectric domain
Neumann boundary

Dirichlet boundary

Strain tensor

Surface strain tensor

Permittivity tensor

Surface dielectric permittivity tensor
Permittivity ratio

Curvature

Lagrange multiplier

Bulk elastic strain energy

Surface elastic strain energy
Work of external forces
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Elastic energy

Dielectric energy

Mechanical stress tensor

Surface stress tensor

Surface residual stress tensor
Electric potential vector

Level set function

Experimental target response
Numerical response

Adjoint electric potential vector
Surface residual electric field vector
Piezoelectric domain



Chapter 1

Summary

1.1 Piezoelectricity

Piezoelectricity is the generation of electricity or electric polarity in dielectric crystals
subjected to mechanical stress, or the generation of stress in such crystals subjected
to an applied voltage. The piezoelectric effect was discovered in 1880 by Pierre and
Jacques Curie. They found that certain materials had the ability to convert mechan-
ical stress to electrical charge. The converse effect was predicted one year later and
subsequently confirmed by the Curie brothers. In 30 years the discovery was put into
practice with the development of a piezoelectric based sonar or hydrophone. The cause
of this phenomenon was found to lie in the atomic structure.

1.1.1 Piezoelectric effect

The structure of certain crystalline materials have negative and positive polarization
that neutralize along polar axis. When an external mechanical stress disturbs this
charge balance, electric charge carriers create current in the crystal. This is called
the direct effect. On the other hand, a mechanical stress is created when an external
charge creates an imbalance in neutral charge state, which is termed as the converse
effect. Piezoelectric materials under converse effect can be used as an actuator and
under direct effect can be used as a sensor or energy transducer. The crystal structure
of Zinc Oxide (Zn0O), a common piezoelectric material is shown in figure 1.1. In the
figure the all the ZnO tetrahedra has the same orientation with the Zinc having one
Oxygen directly above it along the ¢ axis and the three other oxygen neighbours below
it. When ZnO is compressed along the ¢ axis, the material deforms by change in angle
of O-Zn-O bond. When the tetrahedron deforms, the positive and negative charge of
the unit are displaced leading to polarization. On the other hand, if a tensile stress is
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Figure 1.1: The crystal structure of Zinc Oxide and the deformation of the ZnO tetra-

hedra under compressive and tensile stresses !.

applied parallel to c axis, the tetrahedra elongates, developing a surface charge of op-
posite polarity as shown in figure 1.1. In case of mono crystals, the polarization is set
by the crystal orientation. In case of poly crystals each domain has it own orientation
and so a collective piezoelectric effect is attained by subjecting such polycrystals to a
process called poling.

In practice, poling usually involves heating the polycrystal above the Curie point, ap-
plication of the electric field, cooling below the Curie point, and finally removal of the
electric field. Upon heating the material above the Curie point, the crystal structure
becomes centrosymmetric, and all electric dipoles vanish. When the material is cooled
in the presence of a sufficiently large electric field, the dipoles tend to align with the
applied field, all together giving rise to a nonzero net polarisation. After cooling and
removal of the electric field, not all dipoles can return to their original direction. The
result is a remanent polarisation throughout the ceramic as well as a permanent defor-
mation. The polycrystalline ceramic now does exhibit an artificial anisotropy, enabling
piezoelectric behaviour. The piezoelectricity is maintained as long as the material is
not depoled, due to for example a temperature above the Curie point, or extreme elec-
tric or mechanical conditions. The poling direction in a polycrystal before and after
poling is shown in figure 1.2.

The material possessing piezoelectric effect when deformed along the poling direction
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(@) (b)

Figure 1.2: The orientation of crystal domains (a) Before poling and (b) After poling?.

produces high voltage of same or opposite polarity as that of the poling voltage, de-
pending on load direction. When a voltage difference is applied across the electrodes
placed above and below the piezoelectric material, deformation takes place. An in-
put AC signal leads to vibration of the piezomaterial at the same frequency as the AC
signal.

1.1.2 Basic Piezoelectric Relations

The electro-elastic response of a piezoelectric body of volume Q and regular boundary
surface S, is governed by the mechanical and electrostatic equilibrium equations,

0;jj+fi=0in Q (1.1)

Dij—q=0in Q (1.2)

where f;, ¢ are mechanical body force components and electric body charge respec-
tively. o;; and D; are the symmetric Cauchy stress tensor and electric displacement
vector components. They are related to the linear Lagrange symmetric strain tensor,&;
and electric field vector,E} through the converse and direct linear piezoelectric consti-
tutive equations,
0ij = C"ju€u — exijEx (1.3)
D; = ejq € + K ik Ex (1.4)
CE; jki-exij and k3 denote elastic stiffness at constant electric field, piezoelectric con-
stant and dielectric permittivity at constant strain respectively. This constitutive equa-
tion is in stress-charge form. The strain-charge form of piezoelectric constitutive equa-
tion is,
&;j=S"i 10k — dijEx (1.5)

D; = djj 0y + K° 1 Ey (1.6)
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These two commonly used forms are related to each other as shown below,
-1
C ikt =S%iju (L.7)
-1
et = digg - S j (1.8)

€ o E 1 T
Kk =K ik —digg - S ijig dipa (1.9)

1.2 Extended Finite Element Method

Finite element method (FEM) is the most popular numerical method to determine ap-
proximate solution of partial differential equations. FEM is successfully adopted in
several areas of engineering sciences to understand, simulate and predict the behav-
ior of structures. The fields in which FEM is applied ranges from aeronautical and
aerospace engineering, automobile industry, mechanical engineering, civil engineer-
ing, biomechanics, geomechanics, material sciences and many more. Nevertheless in
many applications which involves presence of discontinuities in the design domain,
FEM involves remeshing to align the element boundaries with the discontinuity. In
FEM, mesh refinement is usually necessary near the crack tips in order to represent the
asymptotic fields associated with the crack tips. As the crack propagates remeshing
is needed which is computationally expensive especially in complex geometries and
3D domains. In some cases when remeshing, results need to be projected from one
mesh to the other which further increases the computational cost. In addition to that,
modeling holes and inclusions present another form of problems where the usual FEM
becomes an expensive choice to get optimal convergence of the solution.

In case of iterative problems in which the geometry of the domain changes in each
iteration, FEM requires the domain to be remeshed such that mesh conforms with
geometry modelled.

Extended finite element method (XFEM) is a numerical technique which is able
to include discontinuities into the finite element shape functions with the help of
additional degrees of freedom. The incorporation of any function, typically non-
polynomials, is realized through the notion of partition of unity. Any special functions,
not just polynomials can be incorporated to approximate any complex local field. An-
alytical solution of the problem or any available knowledge of the solution from the
experimental test results may be used as these special functions. The enriched basis
is formed by the combination of the nodal shape functions associated with the mesh
and the product of nodal shape functions with discontinuous functions. These enriched
basis functions allow modeling of domain shapes that are independent of the mesh. In
addition, the enrichment is introduced only locally, while the solution in the rest of
the domain has simple finite element approximation. The resulting algebraic system
of equations consists of two types of unknowns, i.e classical degrees of freedom and
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Set K
- SetJ

Figure 1.3: The nodes that belong to set J and set K in equation 1.10.

enriched degrees of freedom. The enrichment functions are incorporated using the no-
tion of partition of unity which in turn ensures sparsity is maintained in the algebraic
system of equations. These above mentioned features provide the extended finite ele-
ment method to have significant advantages over standard finite element especially for
modeling arbitrary discontinuities.

1.2.1 Basic XFEM approximation

Consider x, a point in a finite element model. In the extended finite element method,
the following approximation is utilised to calculate the displacement for the point x

located within the domain’,

ne ny 4
u(x) :ZNi(X)ui+ Z ZNJ(X)aIJVF;V%— Z ZNk(X) (Z G,'M(r,G)b};> (1.10)
i=1

iel N=1jeJ M=1keK

The modelling of crack using XFEM requires two types of enrichment functions. F
corresponds to a step or Heaviside enrichment function. G corresponds to an asymp-
totic crack tip enrichment function. The set J corresponds to the nodes of the elements
that are completely cut by the crack while set K corresponds to nodes in the neighbor-
hood of the crack tip as shown in figure 1.3. The elements that are completely cut by
the crack are enriched with the Heaviside/step function. As the element is completely
split displacement jump occurs across the crack, the Heaviside/step function gives the
desired behavior to approximate the true displacement field. The Heaviside function is
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defined as follows,

) 1 forf>0
H(x)_{—lforf<0 (11D

f 1is the function that defines geometry of the crack, which has a positive value on
one side of the crack and a negative value on the other side. The set of nodes J in
equation 1.10 corresponds to the nodes of those elements that are cut by the crack.
One additional degree of freedom to each of these nodes is required to approximate
this strong discontinuity.

The asymptotic crack tip enrichment function is defined as follows,

G(r.60) {\/;sin (g) . rcos (g) . rsin (gsine) . rcos (gsin9>}

(1.12)
where (r,0) are the local polar coordinates at the crack tip. The set of nodes K in
equation 1.10 corresponds to the nodes of those elements in which the crack tips are
present. The set K may also be considered as those nodes which lie in the support or
influence domain of the crack tips. The number of additional degrees of freedom in
these nodes is four. Based on the exact solution of displacement and stress field around
the crack tip, these solutions are found to be contained within the span of these four
enrichment functions. The elements that has some of its nodes enriched while the rest
unenriched are called as blending elements. Partition of unity is not satisfied in these
elements, the unwanted terms in blending elements affect the convergence of XFEM.
In order to overcome this disadvantage, shifting of enrichment functions is performed.
The shifting removes enrichment from the elements which are not either split elements
or crack tip elements. For example, in case of inclusions the absolute signed distance
function is used as the enrichment function.

F1 =|) N (1.13)

iel

This enrichment function is shifted as proposed in Moes et al?,

F, =Y Ni|®i|—|)_ N (1.14)
icl icl

The enrichment function, F; has zero value on the elements which are not crossed by
the interface. Therefore shifting of enrichments can overcome the convergence issues
in XFEM due to blending elements.

The usual Gauss quadrature rule may not integrate the field in the elements cut by
crack or void boundary correctly. So it is necessary to partition the cut and crack tip
elements, in order to integrate the field properly on either sides of the discontinuity.
In order to integrate the field properly on both sides of the crack , the elements cut
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Figure 1.4: Absolute signed distance enrichment function?

by the crack are partitioned into sub triangles where usual Gauss quadrature could be
used. The partitioning scheme in XFEM is shown in figure 1.5. Once the element
is partitioned, the integration of the weak form for the cut element is performed by
replacing the loop over an element by loop over sub polygons/sub-triangles.

1.2.2 Level set function

Level set method offers an interesting way of modeling discontinuities. Level set func-
tion coupled with XFEM is applied in modelling crack and void geometries. The main
point in modeling a discontinuity using level set function is that the discontinuity i.e.
the crack or the void boundary is considered as a zero level set function. For the model-
ing of voids or inclusions, we define the level set function as a signed distance function.
The cracks completely cut certain elements, there are also elements that are partly cut
by the crack, these elements comprise the crack tips. So definition of a crack geometry
requires not just one but two level set functions, a normal level set function and a tan-
gential level set function . Both these level set functions are defined as signed distance
functions. The location of a node with respect to the crack can be determined from the
value of these level set functions at the nodal point. As evident from the figure 1.6, the
normal level set function, f defines the shape of the crack while the tangential level set
function, g defines the span or length of the crack.

1.2.3 Inverse Problem

A direct problem is one in which the input and system parameters are known while
output of the model is to be determined. A reconstruction problem is one in which
the system parameters and output are known and input that has led to this output is to
be determined. In an identification problem, the input and output are known and the
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Figure 1.5: Partitioning of elements cut by void boundary
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Figure 1.6: Levelset functions
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system parameters which are in agreement with the relation between input and output
is to be determined. The direct problem is a forward problem, in which the cause is
known and effect is determined. The reconstruction and identification problems are
called inverse problems because they involve finding out unknown causes of known
consequences. The difference between forward and inverse problem in the context of
structural mechanics is as shown in figure 1.7. The following list of inverse problems

Material parameters and R :
; esponse of structure is
— > ,
Geometry of structure Mathematical Model determined
are known

(a)

Material parameters and .
Geometry of structure [ Mathematical Model || Measured Response of
are detected structure is known

(b)

Figure 1.7: (a) Forward problem, (b) Inverse problem.

gives a good impression of the wide variety of applications®

e the inverse problem of geomagnetic induction

e X-ray tomography, ultrasound tomography, laser tomography
e acoustic scattering, scattering in quantum mechanics

e radio-astronomical imaging, image analysis

e locating cracks or mines by electrical prospecting

e seismic exploration, seismic tomography

e the use of electrocardiography and magneto-cardiography

e evolution backwards in time, inverse heat conduction



1.2 Extended Finite Element Method

e the inverse problem of potential theory

e can you hear the shape of a drum/manifold?

e deconvolution, reconstruction of truncated signals

e compartmental analysis, parameter identification

e data assimilation

e determining the volatility in models for financial markets
e Discrete tomography, shape from probing

The French mathematician Jacques Hadamard in 1902 introduced the term well-posed
for a mathematical problem. A well-posed problem has these features,

e A solution always exists
e The solution is unique

e A small change in the initial conditions leads to a small change in the solution
(i.e.) the behavior of solution changes continuously with the initial conditions.

The opposite of a well-posed problem is an ill-posed problem,
e A solution may not exist
e There may be more than one solution
e A small change in the initial conditions leads to a big change in the solution.

Inverse problems are usually ill posed. The inverse problems described and solved in
this thesis are to detect following flaws in a piezoelectric domain,

e Detection of an edge or an interior crack

e Detection of an elliptical void

e Detection of an irregular shaped void

e Detection of multiple voids

e Detection of multiple cracks

e Detection of location of both cracks and voids

e Detection of interface of multiple inclusions, all of them made of same material

10
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e Detection of interface of three inclusions, two of them made of material A and
the rest made of material B.

The ill-posedness of these inverse problems is negotiated by increasing the number
of experimental setups from which the measurement or target data is obtained. The
measured data may not be exact and may contain noise. The presence of noise in
target data leads to poor performance of the detection algorithm. Regularization of
inverse problem is performed in order to overcome the influence of noise and obtain a
better detection quality. The commonly adopted regularization methods are,

e Tikhonov regularization
e Truncated Singular Value Decomposition (TSVD)
e Total Variation (TV) regularization

Total variaton regularization is adopted in this thesis work. The total variation regular-
ization is widely adopted in solving inverse problems using level set based schemes.
Total variation is a regularization technique that does takes in to consideration that the
data set is discontinuous. Most of the regularization methods assume the data sets to
be smooth and continuous, but total variation does not assume the same. The common
form of total variation regularization is as shown in the following equation,

1
T:§||Ax—b]|+[3/ VxdO (1.15)
Q

The second term containing the total variation norm of the solution x regularises the
inverse problem and improves the quality of the solution. The term, f3 in the above
equation is termed as regularisation parameter. A value of this regularisation parameter
beyond a tolerance smoothens the solution while a value lesser than the tolerance leads
to lack of regularisation. The most popular method to determine the suitable value
of regularisation parameter 8 is the L-curve method. The L-curve is a log-log plot
between the squared norm of the regularized solution and the squared norm of the
regularized residual for a range of values of regularization parameter. A standard L
curve for determining the regularisation parameter is shown in figure 1.8 obtained from
Hansen et al*. The regularisation parameter is denoted by A in the figure.

1.3 Optimization problems

The structural optimization is the subject of making an assemblage of materials sustain
loads in the best way. As shown in figure 1.9, the process of determining the shape,

11
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A= 1e-005

4 =0.0001

Solution norm || x, |,
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Figure 1.8: A standard L-Curve®*

size or topology of the domain in question, Q such that the minimum weight or min-
imum compliance or any other objective of this sort is achieved and the constraints
imposed are satisfied. Based on the geometric feature which is to be optimized, struc-
tural optimization problems can be classified as,

e Sizing optimization
e Shape optimization
e Topology optimization

Sizing optimization: Especially in case of trusses, the cross-sectional area of the truss
members can be varied so that the intended objective function is minimized.

Shape optimization: In this case, some parts of the boundary of the structural domain
is optimized to minimize the objective function. Considering a solid body, the behav-
ior of which is described by a set of partial differential equations, shape optimization
consists in choosing the domain for integrating the differential equations in an optimal
manner. The important aspect of this type of optimization is that connectivity of the
structure is not changed during the optimization process. The shape of the boundary is
modified but new surfaces cannot be formed in this optimization.

Topology optimization: The most general form of structural optimization is topology

12
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Minimize |
s.t constraints ..

Figure 1.9: Structural optimization - Geometry of domain Q to be determined such
that objective function, J is minimized and the constraints are satisfied

optimization. For example, in case of a truss, when the cross-sectional areas of truss
members is considered as the design variable, a bar is removed from the truss when the
value of the design variable corresponding to this truss member is set as zero. During
the optimization process, the connectivity of nodes is varied such that the topology of
the truss gets modified. On the other hand if a discrete structure like truss is replaced by
a continuum structure like a beam or plate, then topology changes can be achieved by
letting the density of material to zero in certain subdomains of the structure. The num-
ber of subdomains in which density can be reduced to zero is restricted by a volume
or a weight constraint. Ideally, shape optimization is a subclass of topology optimiza-
tion, but practical implementations are based on very different techniques, so the two
types are usually treated separately. When the state problem is a differential equation,
we can say that shape optimization concerns control of domain of the equation, while
sizing and topology optimization concern control of its parameters.

1.3.1 Mathematical form of a structural optimization problem

The function and variables that are basic components of a structural optimization prob-
lem are,

e Objective function (J): The function which is to be minimized. In most of the
optimization problems the objective function remains as the measure of quality
or efficiency of the design. Generally J is such that a small value is better than a
large one (i.e.) a minimization problem. In literature and in practical applications

13
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the most commonly used objective functions are minimum weight, minimum
compliance or minimum least square error compared to a target value.

e Design variable (€2): The objective function varies in each iteration with change
in the value of design variable. in the optimization problems solved in this thesis,
the geometry of the domain,(Q is taken as the design variable. The geometry of
the domain has to be defined in terms of parameters. Parametrization may be
either explicit or implicit. Explicit parametrization corresponds to parametrizing
the geometry of the design domain in terms of polynomials or splines. Implicit
parametrization corresponds to level set representation of the geometry.

e State variable (U): The vector U corresponds to the response of the structure
which are required to determine the value of objective function in each iteration.
For an electro-mechanical structure, response means mechanical displacement,
stress, strain, electric displacement, field or potential.

1.3.2 Solid isotropic material with penalization (SIMP)

The principle idea is an ersatz material approach where the pseudo density parameter
is applied to each cell of the finite element mesh. By varying the parameters arbitrary
structures can be modeled on a fixed finite element discretization. The SIMP method is
very efficient in solving the resulting optimization problems which typically comprise
several design variables. In solid isotropic material with penalization (SIMP) the in-
termediate designs are penalized by using the following constitutive matrix in Hookes
law,

1
p
D—pE \

0

0
0 (1.16)

1—v

2

SIMP provides large regions with p=0 or p=1. When the value of p is zero, there is
no material in the subdomain while when p=1, then effective Young’s modulus is E.

C1—=V2

S =<

1.3.3 Level set based optimization

Level set methods first devised by Osher and Sethian® have become popular recently
for tracking, modeling and simulating the motion of dynamic interfaces (moving free
boundaries). The interface is closed, nonintersecting and Lipschitz-continuous and
represented implicitly through a Lipschitz-continuous level set function ®(x), and the
interface itself is the zero isosurface or zero level set [brace x € R?| ®(x) =0} (d=2

14
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or 3). The level set function may be utilised to define different regions in a domain as,

Solid: ®(x) <0 VxeQ\JQ
Boundary: ®(x)=0 VxcdQND (1.17)
Void: ®(x)>0 VxeD\Q

In the conventional level set methods, the Hamilton-Jacobi PDE is solved to evolve
the interface using an Eulerian approach. The solving procedure requires appropriate
choice of the upwind schemes, reinitialization algorithms and extension velocity meth-
ods. The figure 1.10 shows the optimal topology obtained for minimum compliance
problem for a short cantilever beam of size 32 x 20 units, subjected to point load at
the bottom of the free end, obtained both using SIMP and level set based optimization.

1.4 Nanoelasticity

The commonly synthesized structures in the order of a nanometer are nanotubes, oxide
nanobelts and semiconductor nanowires. Though these materials have technological
potential in applications such as nanoelectronic and photonic circuits, nano-sensors
and electromechanical nanodevices, these applications require knowledge about the
mechanical behavior of the nano materials. For example, application of piezoelectric
nano wire in a nano generator requires understanding about their elastic, electric and
coupling piezoelectric behaviour. As a first step as the energy conversion of a nano
wire depends on its mechanical strain, the study of the elastic properties of nanostruc-
tures is essential. The study of behaviour of nano elastic structures is challenging both
from an experimental and theoretical point of view. In the experimental side, the diffi-
culties include the lack of reliable methods to quantitatively measure the elasticity and
sometimes the friction at the nanoscale. The problems are related to spatial and force
resolution, instrument calibration as well as not well defined surface shape and chem-
istry because at this scale each atom makes a difference. From the theoretical side,
developing a theory of elasticity at the nanoscale is an intriguing theoretical challenge,
which lies at the cross-over between the atomic level and the continuum.

The physical origin of the surface effects is that atoms at the surfaces of a material
have fewer bonding neighbors than atoms that lie within the material bulk '°. This so-
called undercoordination of the surface atoms causes them to exhibit different elastic
properties than atoms in the bulk, which can lead to either stiffening or softening of
the nanostructure These unique mechanical properties have motivated researchers to
develop computational approaches that capture these surface effects based on either
linear or nonlinear continuum theories. It is critical to consider surface effects when
discussing the mechanical behavior and properties of nanomaterials, particularly when
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Figure 1.10: (a) Initialization (b) Optimum topology for a short cantilever beam sub-
jected to a point load at free end by Level set method (c) by SIMP3.
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Figure 1.11: A typical cantilever energy harvester with piezoelectric layer, substrate
and proof mass

any characteristic dimension of the nanostructure is smaller than about 100 nm !,
The computational approaches are based on the well-known Gurtin-Murdoch linear
surface elasticity theory !2, which considers the surface to be an entity of zero thick-
ness that has its own elastic properties that are distinct from the bulk. Other approaches
have considered a bulk plus surface ansatz of various forms incorporating finite defor-
mation kinematics.

1.5 Nanopiezoelectricity

Energy harvesting which means capturing minute amounts of energy from one or more
of the surrounding energy sources where a remote application is deployed, and where
such energy source is inexhaustible, is an increasingly attractive alternative to con-
ventional batteries. The recent advances in micro-electromechanical systems has led
to considerable increase in portable electronics and wireless sensors. Powering such
devices with batteries of finite life span is a problematic task. If the ambient energy
can be captured as useful energy then ideally the device can be powered for infinite
span. Several energy harvesting approaches are proposed using solar, electromagnetic,
thermoelectric and piezoelectric materials at micro and nano scales. Marin et al 1> con-
cluded that the output power of piezoelectric mechanism is proportional to VvO/* at mm?3
dimensions, where v is effective volume ratio. The main advantages of piezoelectric
materials in energy harvesting compared to other transduction mechanisms are their
large power densities and ease of application. Ambient vibrations provide energy to
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the system through base excitation. This excitation is converted to cyclic oscillation,
which is then converted to cyclic electrical energy through piezoelectric effect. Elec-
tromechanical coupling coefficient, k defines the efficiency of energy conversion. A
proof mass is attached at the free end of cantilever to modify the resonant frequency to
match with ambient frequency as shown in figure 1.11. In d3; operating mode stress
along direction 1 leads to an induced electric field in direction 3, that is the poling and
mechanical load direction are perpendicular to each other. In d33 mode, the stress and
electric field are in the same direction, while d5 mode indicates shear stress harvesters.
Commonly adopted resonance based piezoelectric generators are of d3; mode. The di3
mode based vibration generators are less effective than d3; mode because of the per-
centage of piezoelectric material that does not contribute to energy conversion?.
However, most piezoelectric energy harvesters have been used in bulk material sys-
tems. The exciting possibility of using nanoscale piezoelectric energy harvesters emerged
in 2006 with the discovery of piezoelectricity from ZnO nanowires by Wang et al'4.
Many researchers have since extended the original seminal work, including the devel-
opment of self-powered nano generators that can provide gate voltage to effectively
control charge transport'?, lateral and vertical integration of ZnO nanowires into ar-
rays that are capable of producing sufficient power to operate real devices as presented
in Xu et al'>. In this thesis work the energy conversion ability of nano piezoelectric
beams and plates is studied. Possibility of performing topology optimization of such
nano structures to further increase their energy conversion is explored.

1.6 Objectives and outline of the thesis

1.6.1 Chapter 2

The piezoelectric materials that are used in several applications as sensors and actua-
tors experience high stress and electric field concentrations as a result of which they
may fail due to fracture. Besides these materials are inhomogeneous, inherently brittle
and have low fracture toughness. So assessment of defects like cracks and voids is
needed to ensure the reliability of piezoelectric components. Though there are many
analytical and experimental works on piezoelectric fracture mechanics. There are very
few studies about damage detection, which is an interesting way to prevent the fail-
ure of these ceramics. In literature inverse problem of flaw detection in piezoelectric
structures is modified into an iterative optimization problem and solved using proba-
bilistic methods like genetic algorithm !¢, Besides in these works geometry of defect
is explicitly parametrized which restricts the number of flaws that can be detected. In
such algorithms finite element method (FEM) is adopted for analysis of the structures.
Finite element requires remeshing the domain in each iteration as the crack or void
configuration varies with iterations. In order to overcome these disadvantages a new
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methodology is proposed and tested in chapter 2.

Chapter 2 presents a coupled XFEM-MCS methodology to detect flaws in piezoelec-
tric structures. The extended finite element method (XFEM) offers the advantage of
maintaining a fixed background mesh irrespective of the flaw configuration. The mul-
tilevel coordinate search (MCS) is a deterministic method unlike genetic algorithm.
The number of function evaluation is comparatively much lesser in case of MCS. In
this chapter the XFEM-MCS methodology is introduced and several numerical exam-
ples are solved. The method is able to detect the location of an edge crack, an interior
crack, an elliptical void and an equivalent ellipse representing an irregular void in a
piezoelectric structure.

1.6.2 Chapter 3

Though the XFEM-MCS methodology is capable of detecting cracks and voids in a
domain, this method requires information about the number of flaws in the domain.
Apriori information also about the nature of flaws in the domain is required. The
algorithm relies on explicit parametrization of the defects. So there is a need for a
method that can detect the location of voids even without knowing before hand, the
number of voids in the domain. The method should be capable of determining the
number, location and approximate shape of the voids.

Chapter 3 presents a coupled XFEM-level set methodology. Level set method
(LSM) commonly used for shape and topology optimization is adopted to solve the
inverse problem of flaw detection. An algorithm coupling XFEM and level sets is pre-
sented in this chapter. The efficiency of the method is tested in the numerical examples.
It is shown in this chapter, that this method works inspite of lack of information about
the number of voids in the piezoelectric domain

1.6.3 Chapter 4

The XFEM-LSM algorithm proposed in the previous chapter is capable of detecting
the location of voids in the piezoelectric domain. If there are inclusions located in
the domain, the method has to be appropriately modified. The methodology is tested
for two dimensional structures and there is a need to test whether the method can
work also in three dimensions. If there are inclusions made of different materials,
the previously proposed algorithm has to be improved to handle detection of multiple
material subdomains.

Chapter 4 presents an improved XFEM-LSM methodology to detect the location of
inclusions in both two and three dimensional structures. The method is regularized in
order to improve the quality of detection in case of higher level of noise in target data.
The problem of multiple material subdomains is solved by introducing multiple level
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sets. Numerical examples shown in this chapter prove that this method can detect the
interface of inclusions made of two different materials.

1.6.4 Chapter S

The elastic behaviour of beams is size dependent. The thickness of beams that ap-
proach the nano scale show increased stiffness when compared to macro beams. The
optimization of elastic structures can be performed using XFEM-LSM algorithm. The
optimization of nano elastic structures is an open problem.

Chapter 5 presents improvements in XFEM-LSM algorithm to deal with optimization
of nano elastic structures. The main issue is to determine whether the surface elasticity
in nano beams will have any influence on the optimized topology for a structural opti-
mization problem. Several objective functions are checked to know which one of them
influences the optimal topology. The numerical examples show the optimal topology
obtained for two different objective functions with and without including surface ef-
fects under different boundary conditions.

1.6.5 Chapter 6

The main reason for studying the optimization of nano elastic structures in the previ-
ous chapter, is with an intention to extend them to understand the behaviour of nano
piezoelectricity. The piezoelectric materials are utilised in energy harvesting. The
dimension of these energy harvesting devices is approaching nano scale. Nano piezo-
electric wires are adopted as components in nano electromechanical systems (NEMS).
Chapter 6 presents improvements in XFEM-LSM algorithm to optimize the topology
of nano piezoelectric structures, so that their energy conversion is maximized. Though
nano wires are studied as components in NEMS, in this chapter we propose a modi-
fication in a conventional cantilever energy harvester with the piezoelectric layer ap-
proaching nano scale. The numerical examples show the topology optimization of
these piezoelectric layers performed to increase their nominal electromechanical cou-
pling coefficient.
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1.7 State of Art

In this section, the various research works that are related to this thesis are presented.
These works have offered motivation and information to perform the research works
detailed in this thesis.

o Optimal measurement setup for damage detection in piezoelectric plate’® (2008),
G. Rus, R. Palma and J.L. Prez-Aparicio
In this work, a numerical method to determine the location and extent of defects
in piezoelectric plates is developed. The method involves combining genetic
algorithms and gradient-based methods to minimize a cost functional, and us-
ing an optimized finite element code and meshing algorithm. It is concluded
that the presented technique would allow to successfully and accurately locate
and size a defect from measurements with realistic levels of noise (more than
1%). Two search procedures are compared, based on genetic algorithms and the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. The first one showed a
more robust convergence as long as its higher computational cost is affordable,
whereas the second may provide more precise results for moderate noise levels
in measurements.

e XFEM-based crack detection scheme using a genetic algorithm'” (2007), D.
Rabinovich, D. Givoli and S. Vigdergauz
The inverse problem of crack detection is solved using a genetic algorithm. The
GA optimization process requires the solution of a very large amount of forward
problems. The latter are solved via the extended finite element method. This
enables one to employ the same regular mesh for all the forward problems. A
single straight crack is detected. By applying restrictions on the GA population
generation routine the search space is constrained such that all candidate cracks
were globally straight. This is the first work in which XFEM is adopted for
solving the inverse problem of flaw detection.

e Detection and quantification of flaws in structures by the extended finite element
method and genetic algorithms'® (2010), H. Waisman, E. Chatzi and A. W. Smyth
In this paper the XFEM-GA detection algorithm proposed by Rabinovich et al 7,
is employed on elastostatic problems with different types of flaws. XFEM-GA
methodology is applied to elastostatic domains where flaws are considered as
straight cracks, circular holes and non-regular-shaped holes. Measurements are
obtained from strain sensors that are attached to the surface of the structure at
specific locations and provide the target solution to the GA. In the case of holes
with non-regular shapes, the algorithm converges to the best circular hole that
minimizes the error of the actual hole.

21



1.7 State of Art

e Experimental application and enhancement of the XFEM-GA algorithm for the
detection of flaws in structures’? (2011), E. N. Chatzi, B. Hiriyur , H. Waisman
and A. W. Smyth
In this study several advances to the XFEM-GA algorithm such as (i) a novel
genetic algorithm that accelerates the convergence of the scheme and alleviates
entrapment in local optima, (ii) a generic XFEM formulation of an elliptical hole
which is utilized to detect any type of flaw (cracks or holes) of any shape, and
(i11) experimental verification of the approach for an arbitrary crack in a 2D plate,
are included. The Weighted Average Mutation GA (WAM-GA) is implemented
herein which makes use of a weighted average approach for the mutation of the
design parameters towards areas of increased fitness.

e A finite element method for crack growth without remeshing?’ (1999), N. Mées,
J. Dolbow and T. Belytschko
This is the paper in which extended finite element method is introduced. A stan-
dard displacement based approximation is enriched near a crack by incorporating
both discontinuous fields and the near tip asymptotic fields through a partition
of unity method. A methodology that constructs the enriched approximation
from the interaction of the crack geometry with the mesh is developed. The
stress intensity factors are determined using a coarse mesh by using asymptotic
enrichment functions. The method treats the crack as a completely separate geo-
metric entity and the only interaction with the mesh occurs in the selection of the
enriched nodes and the quadrature of the weak form. The quadrature schemes
that use a subdivision of the elements cut by the crack is adopted. The only
requirement is that the quadrature scheme integrate on both sides of the discon-
tinuity for the nodes enriched. The drawback of the present method is the need
for a variable number of degrees of freedom per node. The partition of unity also
has the desirable feature that the FEM equations retain the sparsity properties of
the original mesh.

e Modeling holes and inclusions by level Sets in the extended finite element method?’

(2000), N. Sukumar, D. L. Chopp, N. Moés and T. Belytschko

In the XFEM, the finite element approximation is enriched by additional func-
tions through the notion of partition of unity. In this work the level set method
is used for representing the location of holes and material interfaces, and in ad-
dition, the level set function is used to develop the local enrichment for mate-
rial interfaces. Numerical examples in 2-dimensional linear elastostatics were
presented to test the accuracy of the new technique. For the plate with a hole
problem, a convergence study was performed for two different radii of the hole.
Optimal rate of convergence in energy norm is obtained using the new technique.
The modeling of voids in the XFEM is carried out using an enrichment function
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V(x) for nodes that intersect the boundary of the void. If the node lies outside
the void V(x) = 1 and V (x) = 0, if the node is in the interior of the void. In case
of inclusions the absolute value of level set function (signed distance function)
is adopted as the enrichment to those nodes whose support are intersected by the
inclusion boundary.

e Study of some optimal XFEM type methods?? (2007), E. Chahine, P. Laborde, J.
Pommier, Y. Renard and M. Salaiin
An improvement to extended finite element method presented in this work is
using an enlarged fixed enrichment subdomain around the crack tip and a bond-
ing condition for the corresponding degrees of freedom. An efficient numerical
integration rule is introduced for the nonsmooth enrichment functions. A new
XFEM type method is proposed where the crack tip enrichment functions are
localized by using a smooth cut-off function. A mathematical result of opti-
mal error estimate is stated and confirmed by numerical tests for linear finite
elements. A piecewise linear cut-off function is considered for the singular en-
richment. The method introduces some bonding condition between the enrich-
ment degrees of freedom in XFEM with a fixed enrichment area. The numerical
rate of convergence is improved for high order finite elements (of degree two or
three) with respect to the classical XFEM. However, optimality is not achieved
because of the lack of accuracy coming from the elements in the transition layer
(the finite elements between the enrichment area and the rest of the body). An
efficient numerical integration rule for the nonsmooth enrichment functions is
presented.

e Application of the X-FEM to the fracture of piezoelectric materials® (2009), E.
Bechet, M. Scherzer and M. Kuna
In this paper an application of the extended finite element method to the analysis
of fracture in piezoelectric materials is presented. This paper focuses at first on
the definition of new enrichment functions suitable for cracks in piezoelectric
structures. The generalized domain integrals are used for the determination of
crack tip parameters. However, a comparison made with the classical four-fold
enrichment used for isotropic elasticity shows that, with an accuracy higher than
usually expected for engineering problems, the four-fold enrichment is almost as
efficient, concerning accuracy both in energy and in the SIFs. The advantage is
that it is simpler to implement and involves less computational overhead, because
it adds only four degrees of freedom (dofs) per regular dof, instead of six. It is
concluded in the paper that for piezoelectric problems, it is advisable to use the
regular enrichment functions stemming from the isotropic elasticity.

e FExtended finite element method for dynamic fracture of piezo-electric materi-
als®* (2011), H. Nguyen-Vinh, I. Bakar, M.A. Msekh, J. -H. Song, J. Muthu, G.
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Zi, P. Le, S. Bordas, R. Simpson, S. Natararajan, T. Lahmer, T. Rabczuk

An extended finite element formulation for dynamic fracture of piezo-electric
materials is presented. The method is developed in the context of linear elastic
fracture mechanics. It is applied to mode I and mixed mode-fracture for quasi-
steady cracks. An implicit time integration scheme is exploited. The method
is applied to two examples with mechanical and electrical boundary conditions,
that concern with quasi-steady cracks. Since no analytical results are available
for dynamic fracture problems of piezoelectric materials, the XFEM results were
compared to results obtained by the boundary element method, BEM and they
show excellent agreement.

e Global optimization by multilevel coordinate search® (1999), W. Huyer, A. Neu-
maier
Based on the method, DIRECT by Jones et al., a global optimization algorithm
based on multilevel coordinate search is presented. It is guaranteed to converge
if the function is continuous in the neighborhood of a global minimizer. By
starting a local search from certain good points, an improved convergence is
obtained. The algorithm presented in this paper has significant theoretical con-
vergence properties if the function is continuous in the neighborhood of a global
minimizer. In the current implementation , the test results show that MCS is
strongly competitive with existing algorithms in the case of problems with rea-
sonable finite bound constraints. The global minimizer is found in these cases,
the number of function evaluations is usually much smaller than for competing
algorithms.

e Structural optimization using sensitivity analysis and a level-set method?® (2003),
G. Allaire, F. Jouve and A. M. Toader
In this work a method for shape and topology optimization in two and three di-
mensions is presented. The numerical method based on a combination of the
classical shape derivative and of the level set method for front propagation. Sev-
eral objective functions with weight and perimeter constraints are considered.
The shape derivative is computed by an adjoint method. The method proposed
allows for drastic topology changes during the optimization process. The cost is
moderate in terms of CPU time since this is an Eulerian shape capturing method.
The method can handle very general objective functions and mechanical models,
including nonlinear elasticity and design-dependent loads. If a suitable initial-
ization is provided this method is as efficient as the homogenization method. In
two dimensions the method does not create new holes since there is no nucle-
ation mechanism in this algorithm. Therefore, care should be taken in the choice
of the initialization that should contain a large number of holes if one seeks a
non-trivial topology.
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e Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-

Jacobi f0rmulati0ns9 (1988), S. Osher and J. A. Sethian

In this work, new numerical algorithms for following fronts propagating with
curvature-dependent speed are proposed. The speed may be an arbitrary func-
tion of curvature, and the front can also be passively advected by an underly-
ing flow. These algorithms approximate the equations of motion, which resem-
ble Hamilton-Jacobi equations. The algorithms handle topological merging and
breaking naturally, work in any number of space dimensions, and do not require
that the moving surface be written as a function. The efficiency of the algorithms
proposed is tested by adopting in several surface motion problems.

o XFEM schemes for level set based structural 0ptimizati0n27 (2012), L. Li, P. Wei
and M.Y. Wang
In this work, the extended finite element method is combined with the level set
method to solve structural shape and topology optimization problems. Numeri-
cal comparisons with the conventional finite element method in a fixed grid show
that the XFEM leads to more accurate results without increasing the mesh den-
sity and the degrees of freedom. As the mesh in XFEM is independent of the
physical boundary of the design, there is no need for remeshing during the opti-
mization process. Numerical experiments illustrate that the higher order XFEM
elements with coarse finite element mesh have a very similar accuracy compared
to the corresponding lower order XFEM element using high-density mesh, but
the computational cost is reduced by more than 20%. The numerical examples
of mean compliance minimization are studied to validate the proposed XFEM
schemes. The results of two and three dimensional numerical examples illustrate
that the proposed XFEM schemes are effective tools for structural optimization
using the level set method.

o Electrical impedance tomography using level set representation and total varia-
tional regularizati0n28 (2005), E. T. Chung, T. F. Chan and X. C. Tai
In this paper, a numerical scheme for the identification of piecewise constant
conductivity coefficient for a problem arising from electrical impedance tomog-
raphy is proposed. The key feature of the scheme is the use of level set method
for the representation of interface between domains with different values of co-
efficients. Reconstruction of regular and irregular shapes is performed. Regular-
ization using total variation norm is included in order to overcome the influence
of noise in the target data. Sensitivity of noise level and regularisation parameter
on the interface detection is studied.

e A binary level set model for elliptic inverse problems with discontinuous coeffi-
cients?® (2007), L. K. Nielsen, X. C. Tai, S. I. Aanonsen and M. Espedal
A binary level set approach for solving elliptic inverse problems is presented in
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this paper. The multi-level set representation is regularised by a total variational
norm. Detection of interface of more than two material subdomains each made
of different material is presented. The interfaces are not moved during the itera-
tive process, but the level set functions are changed to -1 or 1 at every grid point.
This gives some advantages when matching special geometries, sharp corners
can be recovered very accurately. The reinitialisation of the level set functions
used in the continuous formulation is not needed for the binary level set method.
The numerical results show that rather complicated geometries can be recovered
under moderate amount of noise.

o Are surfaces elastically softer or stiffer?3° (2004), L. G. Zhou and H. Huanga
A combination of molecular statics and ab initio calculations is performed to
conclude that a surface of a nano plate may be softer or stiffer than the corre-
sponding bulk. The overall softening or stiffening depends on the competition
between electron redistribution and the lower coordination on surfaces. Both
the softening and stiffening effects can have major impacts on the mechanics of
nanoplates. Taking Cu as an example, we demonstrate that the Young’s modu-
lus along <110> direction on {100} surface is larger than its bulk counterpart;
meanwhile, it is smaller along <100> direction on {100} surface.

e Mechanics of crystalline nanowires!! (2009), H. S. Park, W. Cai, H. D. Espinosa
and H. Huang
In this work, the unique mechanical properties of nanowires, which emerge from
surface atoms having different electron densities and fewer bonding neighbors
than atoms lying within the nanowire bulk are studied. In this respect, atom-
istic simulations are done to reveal novel surface-driven mechanical behavior
and properties, including both increases and decreases in elastic stiffness, phase
transformations, shape memory and pseudoelastic effects. The properties of Sil-
ver, Gold and ZnO nano wires are studied in detail.

e Atomistic calculations of interface elastic properties in noncoherent metallic bi-
layers6 (2008), C. Mi, S. Jun, D. A. Kouris and S. Y. Kim
The magnitudes of surface and interface elastic constants depend on crystalline
orientations. These material constants are generally smaller in close packed sur-
faces and interfaces, i.e., bcc (110) and fce (111), than those in less closepacked
systems, e.g., (001). Surface energy, surface stress and surface modulus of the
free surface calculated for fcc and bcc metals using Johnson embedded atom
method potential. Similarly interface energy, interface stress, and interface mod-
ulus calculated for parallel-oriented fcc-fce bicrystals using the Johnson EAM
potential.
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o An XFEM/level set approach to modelling surface/interface effects and to com-
puting the size-dependent effective properties of nanocomposites3! (2008), J.
Yvonnet, H. L. Quang and Q. C. He
The present work aims to elaborate an efficient numerical approach to dealing
with the interface effects described by the coherent interface model and to de-
termining the size-dependent effective elastic moduli of nanocomposites. To
achieve this two fold objective, a computational technique combining the level
set method and the extended finite element method is developed and imple-
mented. The numerical results obtained by the developed computational tech-
nique in the two-dimensional context are compared and discussed with respect to
the relevant exact analytical solutions used as benchmarks. The code is validated
by comparing the analytical solution for cylindrical inclusion under plane strain
and with the coherent interface model. Size dependent properties of a structure
with nano voids, a spherical nano inclusion and a random nanostructure are also
studied in this work.

o An extended finite element/level set method to study surface effects on the me-
chanical behavior and properties of nanomaterials®> (2010), M. Farsad, F. J.
Vernerey and H. S. Park
The coupled XFEM-level set approach is adopted to solve nanomechanical bound-
ary value problems in which discontinuities in both strain and displacement due
to surfaces and interfaces can be easily handled, while simultaneously account-
ing for critical nanoscale surface effects, including surface energy, stress, elas-
ticity and interface decohesion. The proposed approach is validated by studying
the surface-stress driven relaxation of homogeneous and bi-layer nanoplates as
well as the contribution from the surface elasticity to the effective stiffness of
nanobeams. The numerical results are compared with new analytical solutions
that are derived for these simple problems and also for the problem involving
the surface-stress-driven relaxation of a homogeneous nanoplate. The results are
also validated by comparing with those obtained from both fully atomistic simu-
lations and previous multiscale calculations based upon the surface Cauchy-Born
model.

e An electromechanical finite element model for piezoelectric energy harvester
plates33 (2009), C. D. Marqui Junior, A. Erturk, D. J. Inman
In this paper, an electromechanical FE plate model is derived for piezoelectric
energy harvesting from base excitations. The mechanics of the plate is based
on the classical (Kirchhoff) plate theory, which is appropriate for modeling of
typical piezoelectric energy harvesters since they are usually designed and man-
ufactured as thin plates. Presence of conductive electrodes is taken into account
in the FE model. The predictions of the FE model are verified against the ana-
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lytical solution for a unimorph cantilever and then against the experimental and
analytical results of a bimorph cantilever with a tip mass reported in the litera-
ture.

e Topology optimization of energy harvesting devices using piezoelectric materi-
als™? (2009), B. Zheng, C. J. Chang and H. C. Gea
In this work, SIMP based topology optimization is extended to piezoelectric ma-
terials. The optimised topology of piezoelectric plates subjected to static point
load or axial load at the free end and pressure load over the plate is determined.
Topology optimization has been applied to the design of piezoelectric transduc-
ers, the locations of piezoelectric materials are predefined and only the optimal
layout of elastic materials is considered. In this paper, both elastic materials as
well as piezoelectric materials are considered for the design of energy harvesting
devices under the topology optimization formulation. The objective function for
this study is to maximize the energy conversion factor. The sensitivities of both
stored strain energy and electrical energy are derived by the adjoint method.

e A level set approach for optimal design of smart energy harvesters> (2010), S.
Chen, S. Gonella, W. Chen and W. K. Liu
A level set based topology optimization scheme to maximize energy conversion
in piezoelectric energy harvesters is proposed. A cantilever under 31 mode is
optimized and the optimized topology is compared with the minimum compli-
ance optimal topology of a cantilever beam of ratio 2:1. The material is con-
centrated close to the clamped end as against an elastic beam in which material
is concentrated far from the neutral axis. A cylindrical energy harvester is op-
timized initially with a single material and then with multiple materials. The
shape gradient of the energy conversion efficiency is analytically derived using
the material time derivative approach and the adjoint variable method. A design
velocity field is then constructed using the steepest descent method, which is
further integrated into level set methods. The reconciled level set (RLS) method
is employed to solve multi-material shape and topology optimization problems,
using the Merriman-Bence-Osher (MBO) operator.

e Topology optimization of piezoelectric energy harvesting devices considering
static and harmonic dynamic loads’% (2012), J. Y. Noh and G. H. Yoon
The design optimal layouts for piezoelectric energy harvesting devices (EHDs)
by considering the effect of static and harmonic dynamic mechanical loads is
determined. The optimal material distributions of a piezoelectric material con-
sidering the harmonic dynamic coupling effects between the electric energy and
a structure for efficient EHDs, harmonic dynamic responses and the complex
sensitivity analyses for various objectives related to the energy efficiency are
calculated and derived. For the relaxation method of the density design variable
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for TO, material properties such as the anisotropic linear elasticity coefficients,
piezoelectric coefficients, and permittivity coefficients are independently inter-
polated through the solid isotropic material with penalization (SIMP) approach
with three penalization values. It is concluded in this work that for dynamic load
whose excitation frequency is below the first peak of the objective function such
as power, electric energy, and conversion factor, it is likely that static results can
be used. But for dynamic loads with higher excitation frequencies, the present
approach should be considered.

o First-principles based multiscale model of piezoelectric nanowires with surface
eﬁects3 7 (2012), M. T. Hoang, J. Yvonnet, A. Mitrushchenkov and G. Chambaud
A methodology for computation of the surface piezoelectric coefficients es3, €31
and e;s for (1010) surfaces for wurtzite AIN, GaN and ZnO nanowires by first-
principles calculations through the Berry phase theory is proposed. The coef-
ficients can be used within a continuum piezoelectric model extended with a
surface energy. We have solved the equations of the continuum model with a
finite element technique and compared the results with full first-principles cal-
culations of nanowires with diameters ranging from 0.6 nm to 3.9 nm. A good
agreement is found between the continuum and first-principles results for the ef-
fective piezoelectric coefficient along the axial direction of the nanowire. It is
concluded that for all materials, an increase of the effective piezoelectric coeffi-
cients is found when the diameter of the nanowire decreases.

e Piezoelectric nanogenerators based on zinc oxide nanowire arrays>8 (2006), Z.
L. Wang and J. Song
This is the first paper to propose the energy conversion ability of Zinc Ox-
ide piezoelectric nano wires. Nano wire (NW) array is constructed to convert
nanoscale mechanical energy to electrical energy. The nano wires are made of
piezoelectric Zinc Oxide. The aligned nano wires are deflected by a conduc-
tive atomic force microscope tip in contact mode. The bending of the nanowire
creates a strain field and charge separation in the nanowire. The rectifying char-
acteristic of the Schottky barrier formed between the metal tip and the NW leads
to electrical current generation. The efficiency of the NW-based piezoelectric
power generator is estimated to be 17 to 30%.

e Surface piezoelectricity: Size effects in nanostructures and the emergence of
piezoelectricity in non-piezoelectric materials®>® (2011), S. Dai, M. Gharbi, P,
Sharma and H. S. Park
A combination of a theoretical framework and atomistic calculations, the con-
cept of surface piezoelectricity is highlighted, which can be used to interpret
the piezoelectricity of nanostructures. Three specific material systems (ZnO,
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SrTiO3, and BaTiOs3) are considered and the renormalization of apparent piezo-
electric behavior at small scales is discussed. The interesting finding of this
paper is that interplay of symmetry and surface effect lead nanostructures of
certain non-piezoelectric materials to exhibit piezoelectric behavior.

e Surface effects on the piezoelectricity of ZnO nanowires*’ (2013), S. Dai and H.
S. Park
The results in this paper show that the [2110] oriented nanowires have a larger
effective piezoelectric constant than the [0110] oriented nanowires. If proper
treatment of the polar surfaces is performed, the effective piezoelectric constants
for all nanowires are found to decrease with decreasing size, with all values
smaller than the respective bulk ones. It is demonstrated that the underlying
atomistic mechanism is responsible for the reduction in piezoelectric constants.
Regardless of whether the surface is expanded or contracted in response to sur-
face stresses, the bond length of the ZnO dimer closest to the surface was found
to decrease, thus causing a decrease in polarization at the nanowire surface and
thereby reduction in effective piezoelectric constant. It is concluded that due to
the observed decrease in piezoelectric constant for all three nanowire orienta-
tions with decreasing size, larger diameter square or nearly square cross-section
nanowires may be utilized in practical applications if maximum energy genera-
tion or harvesting using ZnO nanowires is desired.

e Surface effects on the electromechanical coupling and bending behaviours of
piezoelectric nanowires*! (2011), Z. Yan and L. Jiang
In this paper surface effects, including surface elasticity, residual surface stress
and surface piezoelectricity, are considered to study the electromechanical cou-
pling behaviour of piezoelectric nanowires with the Euler-Bernoulli beam the-
ory. The surface-layer-based model is used to derive an explicit formula for
electromechanical coupling coefficient. The influence of surface effects upon
the beam stiffness is found to be more prominent for slender beams. The sig-
nificant enhancement of electromechanical coupling coefficient due to surface
effects is also observed with the decrease in nanobeam thickness, which implies
that surface effects can be employed for performance improvement of nanostruc-
tured piezoelectric materials in potential applications as nanogenerators.

e Surface effects on the electroelastic responses of a thin piezoelectric plate with
nanoscale thickness* (2012), Z. Yan and L. Jiang
The electroelastic responses of a thin piezoelectric plate under mechanical and
electrical loads with the consideration of surface effects is studied. Surface ef-
fects, including surface elasticity, residual surface stress and surface piezoelec-
tricity, are incorporated into the conventional Kirchhoff plate theory for a piezo-
electric plate via the surface piezoelectricity model and the generalized Young-
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Laplace equations. The proposed model predicts size-dependent behaviours of
the piezoelectric thin plate with nanoscale thickness. It is found that surface
effects have significant influence on the electroelastic responses of the piezo-
electric nanoplate. But with the increase of the plate thickness from nanome-
ter scale, such influence on the electroelastic responses of the plate diminishes
and the predicted electromechanical behaviour of the piezoelectric nanoplate ap-
proaches that of the conventional piezoelectric plate as expected.
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1.8 Results and discussion

1.8.1 XFEM-MCS methodology for inverse problem of flaw detec-
tion

An iterative method to treat the Inverse Problem of detecting cracks and voids in two-
dimensional piezoelectric structures is proposed. The method involves solving the
forward problem for various flaw configurations and at each iteration the response
of piezoelectric material is minimized at known specific points along the boundary
to match measured data. Extended finite element method (XFEM) is employed for
solving the forward problem as it allows the use of a single regular mesh for a large
number of iterations with different flaw geometries. Minimization of cost function
is performed by Multilevel Coordinate Search (MCS) method. The algorithm is an
intermediate between purely heuristic methods and methods that allow an assessment
of the quality of the minimum obtained and is in spirit similar to the direct method
for global optimization. In this work the XFEM-MCS methodology is applied to 2D
electromechanical problems where flaws considered are straight cracks and elliptical
voids. The results show that this methodology can be effectively employed for damage
detection in piezoelectric materials. The number of flaws in the domain is assumed to
be one.

Because no experimental measurements are available in this study, they are simulated
by XFEM. In order to avoid inverse-crimes, we used two different mesh sizes for
creating the data and for solving the inverse problem, that is, to generate the target
data, a mesh finer to the one used for solving the inverse problem is employed. The
experimental set up to determine the target data is as shown in the figure 1.12. The
XFEM-MCS methodology is adopted to detect following defects,

e Edge crack

e Interior crack
e Elliptical Void
e [rregular void

In this section, the results obtained for edge crack example is shown. More details
on this example and the remaining numerical examples can be found in Chapter 2.

The piezoelectric plate containing the edge crack is assumed to be made of PZT-4.
The size of the plate is 10 x 10 units. The The edge crack to be determined can be
defined by two independent parameters. The x-coordinate and y-coordinate of the tip
inside the piezoelectric domain. The coordinates of the tip along the edge is assumed
to know apriori. The coordinate of the tip inside the domain in this example is con-
sidered as (2.5,5.75). The mesh size used for the inverse problem is such that h = %.
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Figure 1.12: Boundary conditions and Loads on the modeled Piezoelectric plate

The plate is assumed to be subjected to a line load along the top end of the plate as
shown in figure 1.12. The magnitude of the load is 1 MPa acting vertically upwards.
The bottom end of the plate is clamped and the electric potential is set to zero. The
measurements are made along the right edge 4 of the plate. The number of discrete
points in which the measurements are made is 25. These may be considered as the lo-
cation of pseudo sensors. The crack pattern detected with varying iterations is shown
in figure 1.13. The convergence of the algorithm with the number of function calls
is shown in figure 1.14. The method determine the minima in few initial iterations.
The algorithm then performs global search to ensure that the minima determined is not
local. This global search leads to higher values of objective function as evident from
the spikes in the figure 1.14. The convergence of the parameters to be determined,
the x and y coordinate of the crack tip, is shown in the figure 1.15 and 1.16. The
convergence pattern for the parameters look almost similar. The global search by the
algorithm leads to deviations, in these figures, from the actual solution in parameter
space inspite of determining the actual parameters within few initial iterations. The
optimal parameters are obtained at 194" iteration.

The examples in chapter 2, prove that the algorithm can detect a single straight crack
and elliptical void in piezoelectric materials. However one does not know before hand
whether flaw present in the specimen is a crack or void. The performance of the al-
gorithm in detecting a crack using parameters defining elliptical void is shown in Fig-
ure 1.17. The result obtained is a flat elliptical void like the one shown in figure 1.17.
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Figure 1.13: Best crack parameters obtained using XFEM-MCS algorithm for Edge
crack estimation
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Figure 1.14: Convergence of XFEM-MCS methodology for two parameter estimation
(Edge Crack) showing the variation of residual with number of function calls.
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Figure 1.15: Convergence of XFEM-MCS methodology for 1* parameter estimation
(Edge Crack) - X - coordinate of the interior crack tip.
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Figure 1.16: Convergence of XFEM-MCS methodology for 2" parameter estimation
(Edge Crack) - Y - coordinate of the interior crack tip.
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It is possible to know from the outcome that a defect is present in the domain and
it could be a crack. So it is recommended that irrespective of problem in hand the
elliptical void defined by five parameters can be used to detect defect.

10

Actual crack
9 Best result - MCS

Figure 1.17: Best result determined by MCS for an inclined crack
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1.8.2 XFEM-level set methodology for inverse problem of flaw de-
tection

An iterative procedure to solve the inverse problem of detecting multiple voids in
piezoelectric structure is proposed. In each iteration the forward problem is solved
for various void configurations, and at each iteration, the mechanical and electrical
responses of a piezoelectric structure is minimized at known specific points along the
boundary to match measured data. The numerical method based on combination of
classical shape derivative and of the level set method for front propagation used in
structural optimization is utilized to minimize the cost function. The results obtained
show that this method is effectively able to determine the number of voids in a piezo-
electric structure and its corresponding locations.

In this work, the number of flaws to be determined in the piezoelectric domain need not
be known apriori. The piezoelectric domain is initialized with uniformly distributed
voids all over the domain, in order to enable the algorithm to determine the global
minima. The experimental setup is such that the piezoelectric plate is clamped at the
bottom end while a line load is applied along the top end of the plate. Several exper-
imental setups are required in order to ensure uniqueness of the solution. Also when
there are voids located one above the other, measurement along only one edge may
not be sufficient to determine the actual void. The experimental setup is shown in fig-
ure 1.18. Four types of measurement data are obtained. The edge 1 is clamped, load
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Figure 1.18: Boundary conditions and loads on the modeled Piezoelectric plate

is applied along the edge 3, displacement and electric potential values are determined
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along the edge 2 at 25 discrete points. Then the edge 2 is clamped, load is applied
along the edge 4, measurements are made along the edge 3. Similarly 2 more exper-
iment data are generated. The XFEM-Levelset coupled methodology is adopted to
detect following defects,

e Single square void

e Multiple voids

e Multiple cracks

e Multiple voids and cracks

In this section, the detection of single square void is performed. The remaining exam-
ples and more details about this example can be found in Chapter 3. The voids closer
to the actual one merge together and take the shape of the actual void while the ones
far from the actual void reduce in size and vanish finally. The void configurations are
modified in each iteration by updating the level set function. The level set function is
changed by solving Hamilton-Jacobi equation in each iteration. The level set function
is regularized at various intervals so as to smooth the void shapes. The level set values
are changed to signed distance function when regularised. The evolution of void con-
figurations is showm in figure 1.20. The noise present in the measurement is + 1%.

OO0
YO0
YO0

Figure 1.19: Initialization

The variation of detection with increased percentage of noise is shown in figure 1.21.
The residual norm increases rapidly with increase in the noise level.
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Figure 1.20: Void configuration after 40 and the final void configuration
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Figure 1.21: The variation of residual norm with increase in percentage of noise

1.8.3 XFEM and level sets for the inverse problem of inclusion de-
tection

An algorithm to solve the inverse problem of detecting inclusion interfaces in a piezo-
electric structure is proposed. The material interfaces are implicitly represented by
level sets which are identified by applying regularization using total variation penalty
terms. The inverse problem is solved iteratively and the extended finite element method
is used for the analysis of the structure in each iteration. The formulation is presented
for three-dimensional structures and inclusions made of different materials are detected
by using multiple level sets. The results obtained prove that the iterative procedure pro-
posed can determine the location and approximate shape of material sub-domains in
the presence of higher noise levels.

In this work the number, location and approximate shape of inclusions in a piezoelec-
tric domain is determined. The interface of inclusions is implicitly represented by level
sets. The level set has a negative value inside the inclusions and a positive outside the
inclusions. The piezoelectric domain is initialized by uniformly distributed circular
inclusions all over the domain. The velocity function which depends on the response
of the piezoelectric structure is determined, by performing analysis using XFEM . The
level set functions are updated by solving Hamilton-Jacobi equation. The material pa-
rameters of the inclusion is assumed to be known apriori. The numerical examples
solved in this section are,
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1.8 Results and discussion

e Detection of multiple inclusions in a piezoelectric plate

e Detection of multiple inclusions in a piezoelectric cube

e Detection of multiple defects in a piezoelectric plate

e Detection of inclusions made of different materials using multiple level sets

The example of determining multiple defects (i.e.) cracks, inclusions an voids in a
piezoelectric plate is presented in this section. More details about this example and the
other examples can be found in Chapter 4. The XFEM- level set algorithm proposed
is employed in determining the number, approximate location and shape of defects in
a damaged piezoelectric domain. The defect may be an air void, a crack or inclusion
with lower stiffness or permittivity. The piezoelectric domain has two inclusions, one
air void and a straight line crack as shown in figure 1.22. Among the two inclusions,
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Figure 1.22: Piezoelectric domain with defects

one of them has stiffness ratio C, = 0.1 and permittivity ratio x,, = 0.1, while the other
inclusion has stiffness ratio C, = 0.15 and permittivity ratio x, = 0.15, with respect to
the background material. The initial assumption is such that circular inclusions with
stiffness ratio C, = 0.1 and permittivity ratio k, = 0.1, are distributed throughout the
domain. The initial interface configuration changes with each iteration so that the ob-
jective function decreases. As shown in figure 1.23, the interfaces far from the defects
disappear and the ones nearer gradually take the shape of the defects. It is interesting
to note that at the crack location a flat elliptical inclusion is formed. Though the algo-
rithm cannot determine the crack profile it can atleast detect approximate location of
crack like defects. As the inclusion material properties assumed is different from the
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1.8 Results and discussion

properties of true defects in the domain, the algorithm over estimates or underestimates
the size of the inclusions. The size of voids is over estimated and the size of inclusions
with higher stiffness and permittivity ratios than the one assumed are underestimated.
This example proves that the algorithm can determine the number of defects present in
the piezoelectric structure and their corresponding approximate locations.
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Figure 1.23: Top row : Initial assumption and interface after 50 iterations, second row
: Interface after 100 and 300 iterations, bottom row : Inclusion locations detected by
the proposed algorithm (stiffness and permittivity ratio = 0.1).

The convergence of the objective function with iterations is shown in figure 1.24.
The resolution to which a void/inclusion can be determined depends on two factors,
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Figure 1.24: Convergence of the objective function with iterations.

the mesh size and spacing of sensors. For example, in a 50 x 50 mesh, the radius of the
smallest circular inclusion that could be detected is almost equal to the width/height
of a finite element. Figure 4.8 shows the detected inclusion and the actual interface,
the radius of the inclusion is 0.25 units. 50 uniformly spaced pseudo sensors are as-
sumed to be present at the measurement edges. Though a 50 x 50 mesh is employed
in solving the inverse problem in iteration, if the pseudo sensors are restricted to 25,
then this inclusion cannot be detected. This is because the inclusion might lie between
two sensors and so the response measurements obtained may not be sensitive to the
inclusion. The spatial resolution thereby depends on spacing between sensors and the
mesh size used in each iteration of the inverse analysis.
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Figure 1.25: The smallest inclusion detected with a mesh of 50X50 and with 50 pseudo
sensors. The radius of the actual void = 0.25 units

1.8.4 XFEM and level sets for optimization of nano beams

A computational method for the optimization of nanostructures, where our specific
interest is in capturing and elucidating surface stress and surface elastic effects on the
optimal nanodesign is presented. XFEM is used to solve the nanomechanical boundary
value problem, which involves a discontinuity in the strain field and the presence of
surface effects along the interface. The boundary of the nano-structure is implicitly
represented by a level set function, which is considered as the design variable in the
optimization process. Two objective functions, minimizing the total potential energy
of a nanostructure subjected to a material volume constraint and minimizing the least
square error compared to a target displacement, are chosen for the numerical examples.
The results show optimal topologies of a nanobeam subject to cantilever and fixed
boundary conditions. The numerical examples demonstrate the importance of size
and aspect ratio in determining how surface effects impact the optimized topology of
nanobeams.

Nano beams of thickness lesser than 100 nm exhibit increased stiffness when compared
to macro beams of the same aspect ratio. This increased stiffness is attributed the
presence of surface elasticity in nano beams. The optimization of such nano beams
using XFEM and level sets is performed in chapter 5. Three different nano beams are
optimized,

e Cantilever beam
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e Fixed beam
e simply supported beam

The simply supported nano beam optimization is presented in this section while the re-
maining examples are shown in chapter 5. Two different objective function are tested,
to find which one among them influences the optimal topology,

e Ji - Minimum compliance

e J> - Minimum least square error compared to a target displacement

1.8.4.1 Objective function J;

This numerical example concerns the optimization of simply supported nanobeams.
For the J; objective function, we consider a simply supported beam of aspect ratio 8
of dimension 80 x 10 nm that is optimized for minimum compliance. A point load of
3.6 nN is applied at the mid span and the volume ratio is constrained to 40%. Taking
advantage of the symmetry boundary conditions, half the beam is modeled for compu-
tational efficiency. The optimum topology obtained is shown in Figure 1.26(a). The
optimization process is repeated by neglecting surface effects, with the result shown in
Figure 1.26(b). It is evident from Figures 1.26(a) and 1.26(b) that surface effects do
not have influence on the optimum topologies obtained for the minimum total potential
energy objective function.

1.8.4.2 Objective function J,

Finally, we consider the optimization of a simply supported beam subject to objective
function J>. Geometries of 80 x 10, 160 x 20, 320 x 40 and 480 x 60 nm were
considered. All beams were subjected to a point load of 3.6 nN at the mid span, while
the target displacement at the load location was fixed as 9.3 nm. The stiffness ratios
obtained were 11.44%, 6.19%, 3.27%, and 2.5%, respectively, while the volume ratios
were 0.57, 0.63, 0.66 and 0.67, respectively.

The optimal topologies are shown in Figure 1.27. As can be seen, the optimal
topology changes with dimension, even though the aspect ratio remains constant, and
in particular changes dramatically once the nanobeam thickness decreases to 20 nm.
For these simply supported nanobeams loaded at the mid span, a stiffness ratio of
around 6.2% appears to lead to significant differences in topology.
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Figure 1.26: Optimal topology for objective function J; for a 80 x 10 nm simply
supported nanobeam (a) with and (b) without surface effects.
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Figure 1.27: Optimal topology for objective function J, for a simply supported (a)

40f
301
201
101
/@ a4 a
0
_10 L
_20 . . . 4
0 20 40 60 80
X
(b)
100
50 1
@)
O
ordb®-*
0
_50 L
0 5‘0 160 1t">0 260
X
(d)

80x10, (b) 160x20, (c) 320x40, and (d) 480x60 nanobeam.
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Figure 1.28: A piezoelectric nano cantilever plate subjected to point load, F at free
end.

1.8.5 XFEM and level sets for optimization of nano piezoelectric
structures

Piezoelectric nanostructures exhibit size dependent properties because of surface elas-
ticity and surface piezoelectricity. In this work, a conventional cantilever energy har-
vester with piezoelectric nano layers is analysed. An extended finite element formu-
lation is presented for the analysis of piezoelectric nano beams and nano plates. The
finite element model for plates is derived based on Kirchoff plate assumptions and
linear through-the-thickness electric potential distribution is assumed. Topology op-
timization of piezoelectric structures and also piezoelectric layers in an energy har-
vesting device is performed in order to maximize energy conversion. The influence of
surface effects and optimization to maximize energy conversion of nano piezoelectric
structures is studied.

Our final example considers a nanoscale bimorph, which as shown in figure 1.28 is
comprised of two cantilever piezoelectric nanoplates each of dimension 600X300X10
nm placed one over another subjected to point load at the free end. Surface elastic-
ity and surface piezoelectricity are accounted for at the top and bottom surfaces of
the bimorph, while interface effects between the two nanoplates are neglected. Three
electrodes in total, which are placed at the top, middle and bottom of the bimorph, are
present. Under open circuit conditions, the electrode at the middle of the bimorph is
grounded, while under closed circuit conditions, all the electrodes are grounded.

The approximation of the electric potential field is made by discretizing the plate
into several sublayers with linear variation of electric potential within each sublayer®>.
The number of sublayers for electric potential discretizaton is taken to be 10.
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Before performing topology optimization, it was determined that the nominal EMCC
of the piezoelectric bimorph, where each plate had dimension 600x300x 10 nm, is
1.25 and 1.07 under closed and open circuit conditions respectively.

We then perform topology optimization of the piezoelectric bimorph to maximize
energy conversion. Level set optimization method is adopted and the velocity of level
sets is determined by solving an adjoint problem. The volume fraction of the optimized
topology is 0.69. The optimized topology of the cantilever piezoelectric nano bimorph
is shown in figure 6.8. The optimized topology has more material concentrated close
to the fixed end because of higher strain in this region. The ratio of EMCC of the opti-
mized nano cantilever plate with surface effects to a solid nano bimorph plate without
surface effects is 1.6 and 1.32 under closed and open circuit conditions respectively.

Maintaining the ratio between dimensions, the depth of each bimorph plate is in-
creased to 20 nm. The ratio of EMCC of the optimized nano cantilever bimorph to
a solid nano bimorph without surface effects is 1.45 and 1.27 under closed and open
circuit conditions respectively. The optimized topology of the cantilever piezoelectric
nano bimorph is shown in figure 1.29. It is clear from the results that as we approach
nano scale the inclusion of surface effects leads to increase in efficiency of a nano
plate.

The optimized topology without including surface effects for a bimorph made of
plates of size 600x300x 10 nm is shown in figure 6.9. When the ratio between the di-
mensions of the plate is maintained, the optimal topology remains unchanged provided
the surface effects are not included.

The inclusion of surface effects has led to removal of more material close to the
fixed end. In figure 1.29(a), material is removed upto 150 nm from the clamped end.
In figure 1.29(b), material is removed upto around (2 x) 225 nm from the clamped
end, while for a cantilever plate without including surface effects material is removed
only upto 250 nm from the clamped end as shown in figure 1.30. In figure 1.30, it can
be seen that more material is removed far from the clamped end. When the surface
piezoelectric effects are included increase in energy conversion occurs inspite of more
material removal compared to a nano piezoelectric plate without surface effects.
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Figure 1.29: (a) Optimized topology (top view) of a 600x300x 10 nm cantilever piezo-
electric nano bimorph plate subjected to point load at free end including surface effects;
(b) Optimized topology (top view) of a 600x300x 10 nm cantilever piezoelectric nano
bimorph plate subjected to point load at free end including surface effects.
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Figure 1.30: Optimized topology (top view) of same geometry but without surface
effects.
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Chapter 2

Detection of a single flaw in
Piezoelectric Structures using XFEM

2.1 Contribution of authors

The work presented in this chapter is published as, S.S.Nanthakumar, T. Lahmer, T.
Rabczuk, Detection of flaws in piezoelectric structures using extended FEM, Interna-
tional Journal for Numerical Methods in Engineering 96 (2013) 373389. The final
publication is available in
http://onlinelibrary.wiley.com/doi/10.1002/nme.4565/abstract.
The original text from this publication is used in this chapter.

e S.S.Nanthakumar

Literature review about various possible methods to be coupled with XFEM
Coding of the XFEM-MCS algorithm

Solving of numerical examples included

Preparing the manuscript
e Prof. Tom Lahmer

— Assistance in choosing the optimization scheme
— Discussions to better understand inverse problems

— Reviewing the manuscript before submission
e Prof. Timon Rabczuk

— Discussions to better understand XFEM

— Reviewing the manuscript before submission
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2.2 Introduction

The intrinsic electromechanical coupling behavior of piezoelectric materials has found
its application in sensors (e.g., sonars), actuators (e.g., ultrasonic cleaners, ultra-precision
positioners, ink jetprint heads), signal transmitters (e.g., cellular phone, remote car
opener), and surface acoustic wave devices to mention a few. Recently, piezoelectric
materials are used in several applications in aircraft industry, for example, shaping the
wing of aircraft to improve aerodynamic performance*. In diesel engines, solenoid
injectors are replaced by piezo actuated injectors*. In such applications, piezoelectric
materials may experience high stress and electric field concentrations as a result of
which they may fail due to fracture or dielectric breakdown. Besides these materials
are inhomogeneous, inherently brittle and have low fracture toughness. So assess-
ment of defects like cracks and voids is needed to ensure the reliability of piezoelectric
components. Numerical simulation of fracture in piezoelectric ceramics is primarily
based on a linear elastic fracture mechanics model*®. The fundamentals of piezoelec-
tric fracture mechanics can be found in*’. The analytical work to study the fracture
mechanics of piezoelectric ceramics are based on Stroh and Lekhnitskii Formalism.
Suo et al.* extended the Stroh formalism to piezoelectric problems, considering a
semi infinite piezoelectric ceramic with a crack inside. Sosa*’ considered an elliptic
hole with major axis perpendicular to the polarization direction inside piezoelectric
ceramic, and obtained the field variables around the cavity. Xu and Rajapakse’® ex-
tended this work considering an arbitrarily oriented elliptic hole and concluding that
the highest concentrations occur when the elliptical hole is 33° with respect to the po-
larization direction. A short overview and a critical discussion about the present state
in the field of piezoelectric fracture mechanics is given by>!. FEM analysis of cracks
in piezoelectric structures under dynamic electro-mechanical loading considering the
influence of dielectric medium inside the crack is presented in >33, A survey on nu-
merical algorithms for crack analyses in piezoelectric structures to be used along with
FEM for determining fracture parameters is presented in>*.

FEM can become cumbersome while modeling crack growth because of the need
for remeshing. Mesh free methods offer the advantage of circumventing remeshing
in modeling crack growth3>3%7 and in FSI problems>8. One of the mesh free meth-
ods, element free Galerkin method>?:00-61-62 i coupled with optimisation techniques
and adopted in NDE applications®? to iteratively solve inverse problems. XFEM algo-
rithm?? also enables crack growth modeling without remeshing. In XFEM a standard
displacement-based approximation is enriched near a crack by incorporating both dis-
continuous fields and the near tip asymptotic fields through a partition of unity method.
XFEM exploits the partition of unity property of finite elements identified by Melenk
and Babuska®, which allows local enrichment functions to be easily incorporated into
a finite element approximation. In XFEM, level sets are commonly used to model lo-
cation of cracks®, holes and material interfaces (inclusions)?!. Several features are
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proposed to improve the performance of XFEM?%>%0. Bechet et al.?* presented an
application of XFEM to the analysis of fracture in piezoelectric materials. His pa-
per focuses on definition of new crack tip enrichment functions suitable for cracks in
piezoelectric structures. An extension of XFEM for dynamic fracture in piezoelectric
materials is presented in>*

Waisman et al '8 investigates an XFEM-GA detection algorithm initially proposed
by Rabinovich et al ! on elastostatic problems with different types of flaws. Rus et al !¢
presented a series of studies on damage detection in piezoelectric materials in which
the forward problem is solved iteratively using FEM and BEM, the cost functional is
minimized by using Genetic Algorithm. An inverse problem to determine the material
tensor entries of a piezoelectric transducer by using the measured impedance values
for different frequency points as input is solved in Lahmer et al®’.

The aim of this work is to develop a strategy to uniquely identify straight cracks
and elliptical voids in piezoelectric structures. The inverse problem is solved itera-
tively and XFEM is used in each iteration to solve the forward problem for various
trial flaw configurations. For defect identification ill-posedness and missing convexity
of the inverse problem has to be considered. Therefore, we need to look for a global
optimization method to determine the minimum cost functional. In this work we have
employed MCS?, a generalization of the DIRECT algorithm®, which can be seen
as an intermediate algorithm between methods like implicit filtering, Nelder-Meads,
Hooke-Jeeves and the nondeterministic methods like genetic algorithm, simulated an-
nealing or the particle swarm algorithm on the pure heuristical side.

2.3 Basic Piezoelectric Relations

The electro-elastic response of a piezoelectric body of volume € and regular boundary
surface S, is governed by the mechanical and electrostatic equilibrium equations,

Di,i —q= 0in Q (2.2)

where f;, ¢ are mechanical body force components and electric body charge respec-
tively. o;; and D; are the symmetric Cauchy stress tensor and electric displacement
vector components. They are related to the linear Lagrange symmetric strain tensor,
&, and electric field vector, E; through the converse and direct linear piezoelectric
constitutive equations,

0ij = C i ju€n — exijEx (2.3)

D; = ej€p + K ik Ex (2.4)
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Cﬁkl,eki ; and Kf}{ denote fourth-order elastic stiffness tensor at constant electric field,
piezoelectric coupling tensor and dielectric permittivity tensor at constant strain re-
spectively. The strain tensor and electric field vector components are linked to me-
chanical displacement components u; and electric field potential ¢, respectively, by the

following relations,
1

&j =5 (i) + (uji)) (2.5)

Ei=—9, (2.6)

The piezoelectric body €, could be subjected to the following essential and natural
boundary conditions:
Essential boundary conditions

u=i (or)p =9 onT, 2.7
Natural boundary conditions
oijnj=F; (or) Dinij=—QonT, (2.8)

where iZ,¢, F;, Q and n; are mechanical displacement, electric potential, surface force
components, surface charge and outward unit normal vector components respectively.
The crack faces C™ and C~ are assumed to be both traction-free and electrically im-
permeable.

Figure 2.1: Piezoelectric domain with a Crack
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2.4 Extended Finite Element Formulation

In XFEM the cracks and void boundaries are implicitly modeled by level set func-
tions%>2! . The position of any point of interest with respect to the discontinuity can
be uniquely identified using the normal level set function, f and the tangential level set
function,g as shown in Figure 2.2. The crack surface is defined as the subset of the
zero level set of f, where g is negative. The crack front is defined as the intersection
of the two zero level sets.

S0
s —0
g=0 ol

g0

g>0

g<0

Figure 2.2: Levelset Functions

In XFEM, the approximation of displacement and electric potential field in a piezo-
electric material are given by,

= En0m - £ Ea0a 7§ E o (Lot

icl —1jeJ —1kek i—1
(2.9)
m; 4 )
=Y Ni(x ¢,+ZZN dMEN - Y Y Nx) | Y6 M (r,0)B} ).
icl —1jeJ M=1kek i=1
(2.10)

where J is the set of all nodes whose support is cut by the strong discontinuity or void
boundary. The set K contains all the nodes that lies within a fixed region around the
crack tip®, n. denotes the number of cracks/voids, m; is the number of crack tips and
[ is the number of additional degrees of freedom of crack tip enriched nodes. a;,by, o
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and B, are the additional degrees of freedom to be found. For cracks, we choose step

function as enrichment in J that ensures jump in displacement and electric potential
field,

F™) = sign [ £ (X)} _ sign [ ) (X,)} 2.11)
F™(X) = sign [n.(X —X(Nw min(X — XM); xM e T, (2.12)

where 7 is the outward unit normal of the crack face.

As the approximation does not have Kronecker-delta property, shifting of enrichment
functions is performed in order to recover this property.

For voids, F,(N ) =0 and 1, for nodes that lie inside and outside the voids respectively.
The nodes that lie exactly over the void boundary are not enriched?!. The last term in
Equation (2.9) and (2.10) will vanish for voids. Bechet et al>* concluded that compar-
ing results obtained using a specifically designed six-fold enrichment for electrome-
chanical problems with the standard four-fold enrichment of the isotropic elasticity in
similar settings shows almost no difference. Also the forward problem has to be solved
in each iteration and it is advantageous to have lesser additional degrees of freedom. So
in this work the standard four-fold enrichment functions are used for both displacement
and electric potential field. Numerical integration of stiffness matrix of the elements
containing the crack tip is performed using polar integration approach presented in
Chahine et al??>. Substituting the displacement field from equation (2.9) and electric
potential field from equation (2.10) into the weak form illustrated in Piefort et al’?, the
standard discrete system of equations is obtained,

Kuu Kua Kiujb u Klb;(b Klb;OC KZ/3 (P f
Kl;;“ K‘“’ K a o+ | K ki KP a v=4¢ % (213
ba  ohb b
Ky K Kj b Kf;‘b Kf;“ Ksﬁ B f
9 9 ob ¢¢ ¢0€ ¢I3
K%?” K%?“ ng a p— Kl.‘j“’ K;W K“B a o= gl‘;‘
u a

(2.14)
K.“.”:fB TCB,;jdQ; K = fBTCB FMaq = (ka7
K = fBTCB G )dQ:(Kj?,V) K = fF 'BICB,,;FNde;
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2.5 Inverse Problem

The task now is to identify the size and location of straight cracks and elliptical voids,
i.e. the determination of N parameters defining the flaw geometries, py by measure-
ments on boundary of the piezoelectric structure which is assumed to be stressed by
moderate loads that do not cause the crack to grow further. The measurements on the
boundary include both the mechanical displacements and the electric potential. The
piezoelectric structure is subjected to mechanical loads. We define the following for-
ward operator which maps the parameters defining the flaw to measurements on the
boundary of the structure,

F:X—=Y (2.15)

pn = (u,v,9) (2.16)
In (2.15) X denotes the parameter space, i.e. the space of all possible crack forms
and Y, the space of measurements (here displacements and electric potential). Assum-
ing that ¥£X” contains measured data with noise, the inverse problem corresponds to
solving for py in

F(pn) = x"** (2.17)

which can be approximated by minimizing the least-squares cost functional,

NWIL’IIS 2 %
= ( Y | =Y ) : (2.18)
i=1

The forward operator or parameter-to-solution map F is assumed to be continuous in
the neighbourhood of the minimum. As mentioned earlier the inverse problem of dam-
age detection is solved iteratively. Iterative methods are computationally more expen-
sive as they need to solve a direct problem at each step. XFEM proves advantageous in
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2.5 Inverse Problem

this regard as the background mesh remains the same for all iterations while the flaw
configuration alone varies in each iteration. This means that the set of enriched nodes
and the stiffness matrices of the associated elements alone vary with each iteration,
while the FEM portion of global stiffness matrix, which comprises almost 90% of the
elements in the matrix, remains unchanged throughout. The time consuming process of
meshing, developing nodal connectivity and assembling the entire stiffness matrix are
all circumvented by employing XFEM to solve the forward problem in each iteration.
The minimum size of flaw that can be determined depends on the size of background
mesh adopted in solving the forward problem, provided boundary measurements are
sensitive to such flaws.

2.5.1 Multilevel Coordinate Search-MCS

The inverse problem of flaw detection is generally ill-posed as uniqueness and stable
dependency of the solution cannot be guaranteed beforehand. Seeking however, a finite
number of parameters defining flaw geometry renders the inverse problem to a finite
dimensional nonlinear optimization problem. In order to solve the non-convex inverse

Figure 2.3: 3D Contour plot of the negative of objective function defined in equa-
tion 2.18 for a crack identification problem with N=2. The optimum is located at point
(5.25,5.25)

problem, for example, determining the minimum of the objective function like the one
shown in figure 2.3, an optimization technique needs to be applied which,

e starts with global searches, as initial guess cannot be given in high quality.

e allows bound constraints. This is because the trial parameters should be such
that crack shall not leave the electromechanical domain.
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2.5 Inverse Problem

e performs local search in surroundings of the minima. Smoothness of the cost
function closer to the global minimum can be exploited in local searches, which
can significantly improve convergence and make the approach more efficient.

e provides a reliable convergence analysis. At the end, we want to present results
which stem from an optimization theory that guarantees convergence as opposed
to many heuristic global search strategies which only after computing a large
number of samples guarantee convergence to a high probability.

Looking at literature, the method of choice is the Multilevel Coordinate Search (MCS)
algorithm proposed in Huyer et al?>, which has its base on ideas of the DIRECT
method®. Kelley introduces the DIRECT’! as “worth considering as an intermedi-
ate algorithmic level between methods like implicit filtering, Nelder-Mead or Hooke-
Jeeves on the conservative side and nondeterministic methods like simulated annealing
or genetic algorithms on the radical side” . The MCS is as stated by the proposers, as
an intermediate between purely heuristic methods and methods that allow an assess-
ment of the quality of the minimum obtained. It is in its nature similar to the DIRECT
search algorithm (which is a modification of the standard Lipschitzian approach how-
ever without the need to specify a Lipschitz constant), however the MCS is additionally
guaranteed to converge if the objective function is continuous in the neighbourhood of
a global minimizer. The algorithm provides techniques of local search that lead to fast
convergence as soon as the global part of the algorithm has indicated regions worth of
local search.

2.5.2 Key components of MCS

In this subsection, we briefly summarize the concepts implemented in the MCS. For
details we refer however to the main article?>. As in DIRECT, the minimizer is tried to
be found by successsively dividing the search domain into smaller boxes which contain
distinguishable points, so-called base points. The algorithm has features of both global
and local search where the balance is found by applying multilevel approaches. In this
strategy, every box is assigned a value s depending on how often it has already been
processed. Boxes with level values exceeding a certain threshold are assumed to be too
small for further subdivision. Other boxes have a label zero, indicating that they have
already been subdivided and can be ignored at this sweep. Whenever a box is split, the
subboxes obtain level number s+ 1 or min(s + 2, s,,4x). The algorithm proceeds with
sweeps over all boxes at low level (large boxes) which comprises the global search and
compares the function values. Now the algorithm proceeds to higher levels (generally
boxes that have been split more often) and compare on every level the cost function
values, then leading to local search. Details about initialization, sweeps, splitting of
boxes, the local search based on a local quadratic model by triple searches can be
retrieved from Huyer et al?>. Additionally in Huyer et al?® a promising convergence
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theorem is stated, under the assumption that there is an €> 0 such that f(y) > f(x) for
any nonglobal local minimizer y and for any y € [u, v] with sufficiently large norm, the
MCS algorithm with local search finds a global minimizer after at most S sweeps for
any large enough s,,4.

2.6 Numerical Examples

The performance of the algorithm that has been proposed for identifying flaws in piezo-
electric structures is demonstrated by applying them to certain flaw detection problems
in this section. In all the following examples a piezoelectric plate (10 x 10 units) made
of PZT-5H with material properties shown in Table 2.1 is considered. We have used
plane strain assumption in which all field variables depend on (x,y), where y is the
polarization direction.

The material properties correspond to poling in y direction. The fact that the elastic

Table 2.1: Properties of Piezoelectric Material, PZT-5H
Elastic Constants Piezoelectric constants  Dielectric constants

C11=126 GPa 21=-6.5 C/m? k11=15.04 C/(GVm)
C1,=84.1 GPa €=23.3 C/m? k20=13 C/(GVm)
C»=117 GPa e16=17 C/m?

C66:23 GPa

constants, the dielectric permittivity constants and the piezoelectric constants have dif-
ferent orders will make the stiffness matrix ill-conditioned and leads to unstable results.
Dimension changing method adopted in’? is done to overcome the matrix illness. As
shown in figure 2.4, the piezoelectric plate is subjected to mechanical line load (7))
at top edge, the bottom edge is fixed and electric potential is set to zero. Horizontal
displacement, u, vertical displacement, v and electric potential, ¢ are measured along
the right edge of the plate at 25 sensor locations. A similar setup is employed in Rus
et al for detection of voids in a piezoelectric plate. It is shown in Rus et al.!¢ that,
excitation of the specimen by a mechanical traction transverse to the polarization di-
rection provides better identifiability than applying an electrical load. Besides, as the
measurements are made at boundary of specimen, far away from crack tips in most
cases and as the permittivity of air is 1073 orders of magnitude less than that of the
piezoelectric material, the impermeable crack assumption holds without much loss of
accuracy in most cases.

Measurements
Since no experimental measurements are available in this study, they are simulated by
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Figure 2.4: Boundary conditions and Loads on the modeled Piezoelectric plate

XFEM. In order to avoid inverse-crimes we used two different mesh sizes for creating
the data and for solving forward problem. To generate the target data, a mesh finer to
the one used for solving the inverse problem is employed. In addition, the generated
synthetic data , are perturbed by a 1% of random noise : y“XF = yXFEM (1 4+0.01B),
where B is a random number between -1 and +1.

2.6.1 Edge Crack

In case of an edge crack, one end of the crack is visible and the location of interior
crack tip is the one to be determined. So the number of parameters to be determined
is two, py=(X,,Y.). The convergence plot indicates that the MCS predicts the global
minima well before the total number of iterations. The search algorithm then devi-
ates from the parameter corresponding to global minima and searches the parameter
space for better function values. After reaching maximum number of iterations, which
depends on the total number of parameters to be determined, the algorithm gives the
best parameter value corresponding to the global minima. In this example, the coor-
dinate of crack tip to be determined is (2.5,5.75). The mesh size used for solving the
forward problem is h = 1/50. The plate is subjected to T;,=1 GPa at the top edge of
the plate. The search space for parameters is set to be [0.25,9.75]. Figure 2.5 shows
the convergence of the algorithm for this two parameter identification problem. The
algorithm is usually stopped based on two criteria, (1) maximum number of function
evaluations (2) number of sweeps to be performed when there is no further improve-
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Figure 2.5: Convergence of XFEM-MCS methodology for two parameter estimation
(Edge Crack)
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ment in solution. The maximum number of function evaluations suggested in Huyer
et al.23 is 50 * n% + 10, where 1 is the number of parameters to be determined. In this
work for several test problems solved, the stopping criteria is set as maximum num-
ber of function evaluations. The algorithm converges comfortably before reaching the
stopping criteria with sufficient accuracy. There is no considerable improvement in
solution beyond the maximum number of function evaluations. In this example the
optimal parameters are obtained at 194" iteration. The value of s,,4,, Which restricts
the number of splits performed in each box, is set as 5 *n + 10 where n is the number
of parameters to be determined. This is the default value specified in Huyer et al.>> and
changing this value affects the relative number of global and local searches performed.
Higher s,,,, values like the one assigned leads to increased global searches which is
favourable for the damage detection inverse problem solved in these examples.

10 T -
9 - .
8 - .
7 - _
6 - .
5| Actual Crack 1

10th Iteration

4r - 50th Iteration 1
3r B 100" Iteration 1
ol Best Crack - MCS |
1 - .
O 1 1

Figure 2.6: Best crack parameters obtained using XFEM-MCS algorithm for edge
crack estimation

2.6.2 Interior Crack

In this case the parameters to be identified are the coordinates of the two crack tips that
lie in the interior of the piezoelectric plate, py=(x1c,V1c,*2¢,y2c). As the parameter to
be identified is four, the maximum number of evaluations increases correspondingly.
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In this example the numerical value of crack tip coordinates to be determined are :
(2.0,5.0),(7.0,6.5). The mesh size used for solving the forward problem is h = 1/50.
The plate is subjected to 7T)y=1 GPa at the top edge of the plate. The search space
for parameters is set to be [0.25,9.75]. Besides this bound the trial parameters that
lead to crack whose length is so shorter such that it does not traverse through atleast
3 elements are assigned a higher function value, so that they get neglected during
the global search. Figure 2.7 shows the convergence of the algorithm for this four
parameter identification problem. Figure 2.8 shows the crack configurations generated
by the optimization algorithm at various iterations and the best crack configuration
(i.e.) the crack corresponding to least L error of cost functional. It is evident from the
plots that the optimisation algorithm converges to the minima but still deviates from
it and keeps searching globally for better optima. After specified number of iterations
it returns the best parameters which corressponds to least objective function value. In
this example the optimal parameters are obtained at 731* iteration.

2.6.3 Elliptical Void

In case of an elliptical void, the parameters to be predicted are length of major axis,
length of minor axis and coordinates of center of the ellipse. So the total number
of parameters to be determined is again four, py=(a,b,xc,yc). The elliptical void
detected in this test problem is defined by following parameters: center of void (X,,Y.)
=(7.0,6.5), length of first axis, a = 0.5, length of second axis, b = 0.75 . The bounds for
the coordinates of center of void is [0.5,9.5]. The lengths of the two axis are restricted
to one-fourth of the horizontal dimension of the specimen. Besides these bounds the
trial parameters which lead to voids whose boundary intersect with the plate boundary
are assigned a higher function value, so that they get neglected during the global search.
The mesh size used for solving the forward problem is h= 1/75. The plate is subjected
to Ty,=1 GPa at the top edge of the plate. Figures 2.9 and 2.10 show convergence of the
algorithm to actual parameters and the final void boundary detected. In this example
the optimal parameters are obtained at 666" iteration.

2.6.4 Non-Elliptical void configurations

As shown in previous section, the XFEM-MCS algorithm can detect elliptical voids.
It is shown in this section that the algorithm can also identify irregular void shapes
and determine the equivalent elliptical form of the boundary of such voids. In order
to enhance the detection of non elliptical void shapes, the number of parameters to be
determined is increased to five. Besides the parameters described in previous section,
angle made by one axis of the ellipse with horizontal, is also considered as an addi-
tional parameter. The bound for angle is [0, 7/2].

The algorithm is tested for an inclined elliptical void, angle made by first axis with
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Figure 2.7: Convergence of XFEM-MCS methodology for Four parameter estimation
(Interior Crack)
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Figure 2.8: Best crack parameters obtained using XFEM-MCS algorithm for interior
crack estimation
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Figure 2.9: Convergence of XFEM-MCS methodology for Four parameter estimation
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Figure 2.10: Best Void parameters obtained using XFEM-MCS algorithm for detection
of Elliptical Void
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horizontal = 7 /4 (anticlockwise). Besides this bound the trial parameters which lead
to voids whose boundary intersect with the plate boundary are assigned a higher func-
tion value, so that they get neglected during the global search. Figure 2.11 shows the
final void boundary detected. The performance of the algorithm in predicting irregu-
lar void boundary is tested by applying them to several non elliptical shapes, two of
which are shown in figure 2.12. It is evident from the results that the XFEM-MCS
algorithm proves to be handy in identifying irregular voids as well. These examples
prove that the algorithm can detect a straight crack and elliptical void in piezoelectric
materials. However one does not know before hand whether flaw present in the spec-
imen is a crack or void. The performance of the algorithm in detecting a crack using
parameters defining elliptical void is shown in figure 2.13. The result is encouraging,
because when a narrow void like the one shown in figure 2.13 is obtained as solution,
an engineering mind can judge the nature of flaw in specimen. So it is recommended
that irrespective of problem in hand the elliptical void defined by five parameters can
be used to detect defect.

2.6.5 Influence of Noise and inexactness in material parameters

It is well known that a small perturbation in measurement data may highly influence
the solution of the inverse problem. It is impossible to get noise free data and quality
of crack detection falls rapidly with the increase in noise component in the target data.
Figure 2.14 shows the rate of divergence of objective function with increase in noise.
In the figure, 2-parameter estimation corresponds to edge crack problem solved in
section 2.6.1 and 4-parameter estimation corresponds to interior crack problem solved
in section 2.6.2. In figure 2.14, systematic noise means a constant value of noise in
all sensor locations while random noise means a varying value of noise in each sensor
location. For example, 1% of random noise means a varying noise value not exceeding
1% in each sensor location while 1% of systematic noise means a constant 1% of noise
value in the sensor locations. It is evident from figure 2.14 that rate of divergence of
objective function with increase in noise has an almost linear behavior. The inference
is that by discretizing the sought for flaws defined by finite parameters (here < 5) the
inverse problem is sufficiently well regularized.

Piezoelectric material constants are estimated by measurements proposed by the
IEEE Standard from well-defined test samples or model based identifications’3. Also
explicit formulas are developed for parameter extraction from resonance characteristics
and other measureable quantities. However, these results always provide information
on the material coefficients with remaining uncertainty. The influence of inexactness
in material constants on the solution of inverse problem is shown in figure 2.15. The
results shown in the figure are obtained by solving elliptical void example shown in
section 2.6.3 with varying material constant values compared to the one that corre-
sponds to target measurement values. It is evident from the figure that the variation in
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piezoelectric coupling coefficients have more influence on the solution when compared
to variation in elastic and permittivity constants.

2.7 Conclusion

In this paper an algorithm to detect and quantify defects in piezoelectric plates is de-
veloped. The inverse problem is solved iteratively, XFEM is used for solving the
forward problem in each iteration. XFEM offers the advantage of maintaining a fixed
background mesh irrespective of the trial flaw configurations. This alleviates the need
for remeshing the domain in each forward iteration and therefore is computationally
efficient. The cost functional is minimised by using a global search algorithm, Multi-
level Coordinate Search (MCS). This optimization method strikes a balance between
optimization methods which are fast but converge to local optima and the heuristic
optimization methods which are computationally expensive. It is evident from the test
problems shown, that the XFEM-MCS algorithm proves to be robust in identifying
defects in piezoelectric structures.

10 T LTI LT T T T T TTTT
Actual Void
Best void - MCS R

Figure 2.11: Best Void boundary determined by MCS for an inclined elliptical void
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Figure 2.12: Best Void boundary determined by MCS for non-elliptical voids
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Figure 2.13: Best result determined by MCS for an inclined crack
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Chapter 3

Detection of multiple flaws in
piezoelectric structures using XFEM
and level sets

3.1 Contribution of authors

The work presented in this chapter is published as, S.S.Nanthakumar, T. Lahmer, T.
Rabczuk, Detection of multiple flaws in piezoelectric structures using XFEM and level
sets, Computer Methods in Applied Mechanics and Engineering 275 (2014) 98112.
The final publication is availablein http: //www.sciencedirect.com/science/
article/pii/S0045782514000796.

The original text from this publication is used in this chapter.

e S.S.Nanthakumar

— Literature review about level set based optmization method
— Coding of the XFEM-level set algorithm
— Solving of numerical examples included

— Preparing the manuscript
e Prof. Tom Lahmer

— Discussions in various stages of preparing the manuscript and concepts
related to inverse problems.

— Reviewing the manuscript before submission

e Prof. Timon Rabczuk
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— Discussions to improve the numerical examples

— Reviewing the manuscript before submission

3.2 Introduction

The optimization schemes utilized commonly in solving the inverse problem of dam-
age detection are genetic algorithm!® and global search methods like the one shown
in Chapter 2. The number of iterations in these methods increase in proportion to
the number of parameters used to define the flaws. Because of this limitation, most
previous studies were restricted to detecting only one single void or crack of simple
geometry. For example, in Chapter 2, the void is explicitly defined by five parameters.
The parameters are obtained by minimizing the objective function using Multilevel
Coordinate Search algorithm (MCS)?>. The method proposed can detect the location
and equivalent elliptical shape of only one single void in a piezoelectric structure.

A new numerical method based on the combination of the classical shape deriva-
tive and of the level-set method for front propagation in the context of structural opti-
mization is proposed in Allaire et al?®. XFEM based level set schemes for structural
optimization is presented in Peng et al’#. The level set function is updated in each
iteration by solving transport Hamilton-Jacobi equation explicitly with variable time
step9’75.

The aim of this work is to propose a strategy to detect multiple voids in 2D piezo-
electric structures by combining shape derivative and level sets as employed in struc-
tural optimization problems. XFEM utilizes implicit level set functions for defining
flaws which in turn leads to independence of background mesh to flaw configuration, .
Thereby it becomes a natural choice for solving the forward problem in each iteration
for different flaw configurations.

The outline of this chapter is as follows. Section 3.3 comprises details on com-
bining shape derivative and level set method to minimize the objective function and
thereby detecting the location of voids. Section 3.4 shows numerical examples to prove
the ability of this method in solving the intended inverse problem iteratively.

3.3 Shape derivative and level set method

The shape, size and location of voids can be implicitly represented using level sets as
shown in Figure 3.1. In the process, the location of voids will be identified by change
in level set function values, with respect to fictitious time, . The evolution of void
shapes, which corresponds to the change in these implicit function, ®(x(¢)) = 0 with

7
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Level set function — ®

Figure 3.1: (a) Contour plot of level set function, (b) The corresponding irregular void
boundary.

respect to time, is governed by the Hamilton-Jacobi equation®,

0P (x)
ot

Moving the level-set isolines along the descent gradient direction is equivalent to trans-
porting & by solving the Hamilton-Jacobi equation. This Hamilton-Jacobi equation is
posed not only on the void boundaries but on the entire domain, as the velocity V,, is
known everywhere. The velocity, V), is related to the sensitivity of the objective func-
tion to variation in level set function values. The change in the objective function due
to perturbation of flaw boundaries is given by the shape derivative. The shape deriva-
tive is obtained by solving an adjoint problem. In the adjoint case the governing PDEs
(2.3) and (2.4) are solved with Neumann boundary condition as,

+V,|VP| =0 3.1)

ojjnj =u—u"" (and) Dini= ¢ —9"““ on T, (3.2)

and Dirichlet boundary conditions as shown in equation 2.7. The velocity at iteration
n in location of node i, V" is given by the shape derivative as shown below,

—V" = gradeJ, = o”;je";; — D" ;E"; 3.3)

The subscripts u and p corresponds to actual and adjoint state respectively. The Hamilton-
Jacobi equation is posed not only on the void boundary but in the entire domain, as
the velocity V,, can be computed everywhere. Hamilton-Jacobi equations do not usu-
ally admit smooth solutions. Existence and uniqueness are obtained in the framework
of viscosity solutions which help in convenient definition of generalized shape mo-
tion. The discrete solution of HJ equation is obtained by an explicit first order upwind
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scheme .
CI)"+1 L
o Tmin(V",0)¢" (Dy @, Dy @) +max (V{",0)¢" (Dy @, D, @) =0
(3.4)
inwhich,cb o o
qu);l — 1+1Ax i ’D;q);’l — 2i Axl_l
g (dt,d)= \/min (d+,0)* + max (d—,0)?,
¢~ (d*,d") = /max(d*,0)> +min (d~,0)"
The level set function is periodically regularized by solving,
P
— +sign(Pg) (|VP|—1) =0. (3.5)

ot

The solution to this equation is a signed distance function to initial isoline, ®(. Ex-
tended finite element analysis performed in each iteration requires signed distance
value from crack or inclusion boundary in order to determine enrichment function
values and so the regularization step is performed in each iteration.

The steps involved in this void detection algorithm are as follows,

Initialization of level set function @ is done. In order to avoid local optima the
voids are uniformly distributed all over the domain.

Computation of actual state u; and adjoint state py is performed. These are de-
termined by solving equations (2.3) and (2.4) posed in domain £ with essential
boundary condition shown in equation (2.7) and two different natural boundary
conditions shown in equations (2.8) and (3.2) for actual and adjoint states re-
spectively. Using equation (3.3), the velocity to move the void boundary (i.e.)
the shape derivative is determined.

The new void configuration is given by the level-set function ®;_ | by solving the
transport Hamilton-Jacobi equation (3.1) after a fictitious time step Af; starting
from the initial shape ®; with velocity V; computed in terms of u; and py.

The level set values are regularized by solving equation (3.5) as ;| is no more
a signed distance function.

The algorithm is stopped when the velocity values are less than a tolerance value,
which can also be seen from no significant change in void configuration with
iterations.
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3.4 Numerical Examples

The proposed XFEM and level set based optimization algorithm is tested by several
flaw detection problems. In the examples, a plate (10 x 10 units) made of PZT-5H
with material properties shown in Table 2.1 is considered. Plane strain assumption is
used. The material properties are such that the piezoelectric plate is poled in y direction
as shown in figure 3.2. The elastic constants, the dielectric permittivity constants and
the piezoelectric constants are of different orders, so stiffness matrix is ill-conditioned
and that may lead to unstable results. Hence to overcome the matrix illness we take
advantage of the dimension changing method 7>76.

Tyy
A A

EDGE -3
AP

EDGE - 4 EDGE -2

EDGE - 1

T

o0 =

\ e

Figure 3.2: Boundary conditions and loads on the modeled Piezoelectric plate

As shown in Figure 3.2, the piezoelectric plate is subjected to a mechanical line
load (7yy) at edge 3 while edge 1 is fixed; the electric potential is set to zero. The
horizontal displacement, u, the vertical displacement, v and the electric potential ¢ are
measured along the edge 2 of the plate at 25 uniformly spaced sensor locations that
are uniformly spaced. In Rus et al'%, a similar setup is employed to detect voids in a
piezoelectric plate and it was shown that the excitation of the piezoelectric specimen
by a static mechanical traction transverse to the polarization direction provides better
identifiability than applying a static electrical load. The response data from four set
of experiments are utilised in each iteration. When edge 1 is fixed, 7,y is applied
at edge 3. When edge 2 is fixed, 7y, is applied at edge 4 and so on. More than
one setup is required to serve two purposes. First, to overcome local minima and
second, when there are two voids exactly one above other, one void might hide the

80



3.4 Numerical Examples

other making it difficult for a single experimental setup to detect their exact locations.
Inverse problems are generally ill posed. Performing several experiments constraints
the search space thereby making this problem well posed.

Measurements

As there are no experimental measurements available for this study, they are simulated
numerically by XFEM. Two different mesh sizes are adopted for creating the data and
for solving the forward problem so as to avoid “inverse-crimes”. In order to generate
the target data, a finer mesh compared to the one used for solving the inverse problem
is used. Besides, a random noise of about +1% is added to the generated synthetic
data yEXP = yXFEM(1 1+ 0.01B), where B is a random number between -1 and +1.

3.4.1 Single void

In this example, the location of a single square void is detected using the proposed
methodology. The initial assumption is such that the voids are uniformly distributed
all over the domain. As it is evident from figure 3.3 with each iteration the trial voids
which are distant from the actual void location vanish. The trial voids closer to the ac-
tual void gradually merge together and approach the square shape. This example shows
the flexibility of the level set representation of voids which enables their detection of
any shape. The explicit representation of void shapes may lead an increased number of
parameters corresponding to the least objective function value. Evolutionary or search
algorithm may require a higher number of iterations as the number of iterations depend
on the number of parameters to be determined. In chapter 2, maximum of 5 parameters
defining void shape have been determined with the number of iterations given by 50n?,
n is the number of parameters, using MCS?> for optimization. MCS is a zero order
method which does not require gradient information. In the current proposed method,
the number of iterations is considerably reduced because the gradient information is
indirectly obtained from the solution of the adjoint problem. In each iteration, the
governing equation is solved twice, once to determine the actual response and then
to compute the adjoint variables. The Hamilton-Jacobi equation is solved explicitly,
hence the time step is restricted such that it satisfies the CFL condition. Figure 3.4
shows the convergence of the algorithm with iterations.

3.4.2 Multiple voids

In this example, the location and the number of several voids present in a piezoelectric
structure is detected using the proposed methodology. Similar to the previous exam-
ple the initial assumption is such that the voids are uniformly distributed all over the
domain. As shown in the figure 3.5, the trial voids far from the actual voids gradually
reduce in size and finally vanish. The trial voids lying within or along the boundary
of the actual voids merge and change shape until they match the shape of actual voids.
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Figure 3.3: Top row : Initial void configuration, Void configuration after 20 iterations,
second row : Void configuration after 40 and 80 iterations, Bottom row : Final void
configuration
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Figure 3.4: (a) Convergence of the objective function, J with iteration, (b) Convergence
of L? norm of error in parameter space with iterations. P, approximated level set value
at nodes and P/, level set values corresponding to true void configuration

This example shows that the number of iterations is almost independent of the number
of voids to be determined. The level set function is updated in each iteration by solving
the HJ equation explicitly. The number of explicit time steps required to solve the HJ
equation varies. For each XFEM analysis, 10 explicit time steps of the HJ transport
equation is performed. Depending on the reduction in the objective function values,
this number is gradually reduced such that the objective function values decreases with
increasing number of iterations. Solving this inverse problem of multiple voids using
search algorithm requires explicitly parametrizing the multiple void locations and their
shapes. The number of parameters cannot be known a priori as the number of voids
in the piezoelectric plate is unknown. This proposed method is able to determine,
how many number of voids are present in the structure and where they are located.
The algorithm predicts three voids in the structure and their corresponding locations.
Figure 3.6 shows the convergence of the algorithm.

3.4.3 Cracks

In this example, the approximate location of cracks is detected using voids uniformly
distributed over the domain as initial assumption. The algorithm is expected to locate
the cracks but it cannot determine the exact profile of the crack. The algorithm can
actually determine the “equivalent” void configuration. In order to analyse the cracked
piezoelectric structure, the cracks are represented by two level sets, one defines the
shape of the cracks, while the other defines the length of the cracks. The results ob-
tained with increase in iteration is shown in figure 3.7. The piezoelectric domain has
two cracks and location of the cracks is detected by the algorithm. The algorithm gives
voids of almost elliptical shape as output in the crack locations. Figure 3.8 shows the
convergence of the algorithm with iterations.
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Figure 3.5: Top row : Initial void configuration, Void configuration after 20 iterations,
second row : Void configuration after 30 and 50 iterations, Bottom row : Void config-
uration after 100 and 150 iterations, Final void configuration
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Figure 3.6: (a) Convergence of the objective function, J with iteration, (b) Convergence
of L? norm of error in parameter space with iterations. P, approximated level set value
at nodes and P/, level set values corresponding to true void configuration

3.4.4 Voids and cracks

In this example, a more general damaged domain is studied. The structure contains
both cracks and voids which is common in an actual piezoelectric domain. The algo-
rithm should be able to locate the defects. Initially voids are assumed to be located all
over the domain. As the iteration progresses, the voids that are located near a crack
or void remains while other voids disappear. The remaining voids, gradually change
shape into an almost elliptical void at the crack location. They also tend to the actual
void profile at the void location. Figure 3.9 shows that the algorithm is able to detect
the location of all three defects. Figure 3.10 shows the convergence of the algorithm
with iterations.

Influence of noiseandnumbero fsensors

In the above examples the noise is restricted to +1. The influence of increased propor-
tion of noise is shown in figure 3.11. It is evident from the figure that with increase in
noise there is reduction in accuracy of the algorithm. On the other hand, the accuracy
of the algorithm also depends on number of sensors along the measurement boundary.
In order to study the influence of number of sensors on performance of the algorithm,
an example problem of detecting a circular void of radius 0.75 cm located at the center
of a square piezoelectric plate (10 cm x 10 cm) is solved several times, with different
number of sensors each time. The error in parameter space with increasing number of
sensors along the measurement boundary is shown in Fig. 3.12. The curve becomes
almost asymptotic as the number of sensors exceeds seven. As mentioned earlier, the
number of sensors used in all the numerical examples is 25 and these many sensors
were sufficient to detect flaws located anywhere in the domain.
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Figure 3.7: Top row : Initial void configuration, Void configuration after 20 iterations,
second row : Void configuration after 50 and 100 iterations, Bottom row : Final void

configuration.
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Figure 3.8: (a) Convergence of the objective function, J with iterations, (b) Conver-
gence of L norm of error in parameter space with iterations. P, approximated level set
value at nodes and P/, level set values corresponding to true void configuration

3.5 Conclusion

In this chapter a methodology to detect multiple crack and void locations in a piezo-
electric specimen is proposed. In each iteration, XFEM is used to solve the direct
problem. The mesh remains unchanged in all iterations thereby considerably reducing
computational time. The shape derivative and level sets are used to minimize the ob-
jective function. An adjoint problem is solved in each iteration to determine the shape
derivative. Multiple setups are used to overcome the problem of local optima. The
void configuration does not require external parameterization as it is implicitly repre-
sented by level sets. The numerical examples demonstrate the efficiency of the method
in detecting any number of cracks and voids in specimen. The method proposed is
more robust compared to iterative methods previously proposed in literature in which
genetic or search algorithms are used for the optimization.
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Figure 3.9: Top row : Initial void configuration, Void configuration after 20 iterations,
second row : Void configuration after 50 and 100 iterations, Bottom row : Final void

configuration.
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Figure 3.10: (a) Convergence of the objective function, J with iterations, (b) Conver-
gence of L? norm of error in parameter space with iterations. P, approximated level set
value at nodes and P/, level set values corresponding to true void configuration
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Chapter 4

Detection of material interfaces using
a regularised level set method in
piezoelectric structures

4.1 Contribution of authors

The work presented in this chapter is published as, S.S.Nanthakumar, T. Lahmer, X.
Zhuang, G. Zi and T. Rabczuk, (2015): Detection of material interfaces using a reg-
ularized level set method in piezoelectric structures, Inverse Problems in Science and
Engineering, DOI: 10.1080/17415977.2015.1017485. The final publication is avail-
able in

http://dx.doi.org/10.1080/17415977.2015.1017485

The original text from this publication is used in this chapter.

e S.S.Nanthakumar

Literature review about multiple level sets and total variation regularization

Coding of the XFEM-multiple level set algorithm

Solving of numerical examples included

Preparing the manuscript
e Prof. Tom Lahmer

— Discussions in various stages of preparing the manuscript and regarding
concepts related to regularization

— Reviewing the manuscript before submission

e Prof. Xiaoying Zhuang
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— Reviewing the manuscript before submission
e Prof. Goanseup Zi

— Reviewing the manuscript before submission
e Prof. Timon Rabczuk

— Discussions to improve the numerical examples

— Reviewing the manuscript before submission

4.2 Introduction

The inverse problem of identifying material interfaces from boundary measurements
arise in several fields of science and engineering. Level set method, a framework
proposed initially for tracking evolving interfaces using implicit representations® has
received considerable attention in solving the inverse problem of interface detection. A
survey on application of level set methods in inverse problems and optimal design can
be found in Burger et al’’. Combination of level set method along with total variation
regularization for solving inverse problems is proposed in Tai et al*®. Multiple level
sets for determining several subdomains made of more than two different materials is
presented in Nielsen et al?®. In this work we intend to detect the interfaces between
material subdomains in a piezoelectric structure.

The aim of this work is to extend the level set algorithm utilised in chapter 3 to detect
the number and location of inclusions of known material parameters in two and three
dimensional piezoelectric structures. The improvements made in this work are,

e The method is extended to detection of inclusions in a three dimensional piezo-
electric structure.

e The level sets are regularised by a total variation norm, so as to improve detection
in the presence of noise.

e Multiple level sets are utilised in order to identify more than two material sub-
domains in a piezoelectric structure.

The outline of the chapter is as follows. Sections 4.3 and 4.4 describe the level set
method and the derivation of adjoint problem respectively. Numerical examples are
tested in section 4.5 to prove that the algorithm can detect boundary of material sub-
domains in piezoelectric structures.
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4.3 Inverse problem

The interface of inclusions which is represented implicitly by the level set function, ®
is to be determined using the responses measured on the boundary of the piezoelec-
tric structure. Mechanical displacements and electric potentials are the measurements
taken on the boundary. The inverse problem is solved iteratively as an optimization
problem with the following objective function,

7= 3 [ = 20N @) Far+ pR(» @
r

The level set function which minimizes the L? norm of the difference between numer-
ical, xYUM and experimental responses, yX” gives the actual inclusion interface. As
defined in Tai et al?8, total variation norm of r, the material ratio is taken as the reg-
ularisation, R(r) = [, |Vr|dQ. The iterative methods of solving inverse problem are
expensive and time consuming as the direct problem is solved at each step. Numerical
method like FEM requires remeshing in each iteration so that the element edges align
with the updated inclusion interface. In contrast, the XFEM offers the advantage of
maintaining a fixed mesh irrespective of the varying interface in each iteration. There-
fore in XFEM only the stiffness coefficients corresponding to enriched DOFS and the
DOFS of those nodes which lie within the inclusions vary in each iteration whereas the
FEM portion of global stiffness matrix, which comprises the bulk of matrix, remains
the same.

4.3.1 The Level set method

The interface of inclusions can be implicitly represented by using the level sets. The
level set function @ can be in turn used to construct a function, r which can represent
distinct material properties in different sub-domains. If the ratio of material constants
with respect to the background material is | in the subdomain with negative level set
values and if the ratio of material constants is r, in the subdomain with positive level

set values, then the function r can be written as?°,

re %[n(l + sign(®)) + r2(1 — sign(®))]. 4.2)

Multiple level sets can be used to represent more than two sub-domains as shown in
figure 4.1. For example, the function r for representing four regions each of different
material ratios can be written as,

r=1r(1+85)(1+82) +r(1+51)(1 = 8) +r3(1 =S1)(1+82) +ra(1 =S1)(1 - $2)] (4.3)

S1 and S correspond to the sign of the level set functions ®; and ®; respectively. ry,
ry, r3 and r4 are material ratios in the four regions. The ratios can also be replaced
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Figure 4.1: Multiple level sets representation : The union of two level set functions, ¢;
and ¢, gives the actual domain with inclusions

directly by the material tensors of the corresponding sub regions. The evolution of
level set functions and the detection of different material regions, is governed by the
Hamilton-Jacobi equation®.

0D (x,1)
ot

Determining & by solving Hamilton-Jacobi equation is equivalent to moving the level
set isolines in the descent direction. The Hamilton-Jacobi equation is posed not only
along the interface but on the entire domain. The velocity V is related to the sensitivity
of the objective function to variation in the material properties over the domain. The
change in the objective function due to perturbation of inclusion interface is given by

%. In this work, the derivative % is obtained by solving an adjoint problem.
r r

+V|VD|=0. (4.4)

4.3.2 Measurement techniques

The mechanical displacement in piezoelectric ceramics can be measured using fibre
optics probes, laser interferometry’® and capacitance gauge. These methods are ca-
pable of measuring displacement of less than 1 nm. In Burianova et al’%, the three
dimensional deformed configuration of a bulk ceramic sample subjected an AC driving
field is obtained using laser interferometry. The boundary displacements data required
can be obtained by adopting these experimental methods.

Similarly there are works’® that present ways of measuring electric potential distribu-
tion on the surface of a piezoelectric ceramic.

4.3.3 Selection of the regularisation parameter, 3

In this work, the regularization parameter is determined by a variant of the L-curve
criterion. Among the methods available in literature like discrepancy principle, Gen-
eralized Cross Validation (GCV), Unbiased Predictive Risk Estimator (UPRE) and so
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on®, the L-curve criterion and GCV offer the advantage of not requiring prior knowl-
edge about noise level.

An L-curve* is a log-log plot of residual norm and solution norm. There are two flat
regions in the curve representing under regularisation and over regularisation. The
corner point which corresponds to the transition between the two regions and the asso-
ciated value of B gives the optimal regularization parameter.

New variants of the L-curve criterion are proposed in literature like the residual L-
curve®! and solution L-curve®?. The residual L-curve is given by plot between regu-
larization parameter and regularised residual norm.

4.4 The forward and adjoint problem

In literature 2883, the adjoint problem for a general elliptic partial differential equation

is defined, which is here extended for a piezoelectric case. Consider a problem do-
main  with boundary I, the piezoelectric behaviour of the domain is expressed using
material constitutive equations as,

0ij = CFijuew — exijEx 4.5)

D; = ej & + K ikEx, (4.6)

where CF ijii> exij and k. are the elastic stiffness at constant electric field, the piezo-
electric constant and dielectric permittivity tensor at constant strain, respectively. The
Cauchy stress tensor o;; and electric displacement D; have to satisfy the mechanical
and electrostatic equilibrium equations

G,’jJ‘—f-fl‘:O in Q, 4.7
D;i—qg=0in Q. (4.8)
Based on the above equations the strong form can be written as,
V. (C:e(u)—e’ :E(¢))=0 in Q
Ve(k:E(¢)+e:€u)=0 in Q
u=0 and ¢ =0 on I'p
6(u,¢)n=F, and Dw,y)n=—-Q on Iy

4.9)

where F;, Q and n denote the surface traction, surface charge and outward unit normal
vector respectively. I'p and I, are the displacement and force boundary respectively.V,,
and V, are defined as ,

%802%§T 9 a2 a2\
Va=| 0 % 0 2 0 & | ad Ve=(35 3 %)
0o 0 2 2 9
dz dy OJx
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The weak formulation for the governing equations of piezoelectricity based on the
principle of virtual work is as follows,

/(s(u)T:C:e(w)—e(u)T:e:E(I[!)—E((p)T:e:e(w)—E(¢)T K:E(y)) dQ
Q

—/p.wdF—/q.l[!dF:O

(4.10)

VueV,VoecVandVweV,VyeV.Visthe space containing admissible displace-
ment and electric potential fields.
The objective function (without regularisation term) to be minimized is,

J(C(x),e(x), k(x)) = / %(u—umew)zdm / %(q) — gmeas)24p @.11)

Let, J} = %( w2 and J, = (q) — ¢™%)2, The material distribution in Q is
given by, C(x) = r(x)Cp, K(x) = r(x )Kb, e(x) = r(x)ep. For the sake of simplicity it is
assumed that the displacements and electrical potentials are measured along the same
boundary, I"".

The first variation of J(C(x),e(x), x(x)) is given by,

aJ
du

L Sudr+ / 8125¢ dl’ 4.12)

0J(C(x),e(x),x(x)) =
[
The governing problem for the latter can be determined by differentiating the weak
formulation, equation (4.10) as shown below,

/(e(ﬁu)T :C:ew)+£eu)! :8C:e(w)—€e(bu) :e:E(y)

Q
—e(u)! :8e.E(y)—E(8¢) :e:e(w)—E(¢)" : 8e: e(w)
E(8¢°)" : x:E(y)—E(¢)" : 8x:E(y))dQ=0

Considering w and ¥ as the trial functions, the virtual work principle with du and & ¢
as the virtual fields yields,

/(G(Su)T :C:e(w)—€(8u)" ;e E(y)—E(8¢) :e:e(w)—E(8¢)" : x:E(y)) dQ

Q

(4.13)

—/ p. 5ud1"—r/q. 60 dl' =0

(4.14)
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having set p = (W, y).n = % and ¢ = D(w,y).n = %—{;

Comparing equations (4.13) and (4.14) we have,

—/(e(u)T .5C: e(w)—e(u)’ : 8e: E(y)—E($)" : 8e: e(w)

@ (4.15)

—E(¢)T:5K:E(I[I)dQ:/p. 8udF+/q. 6¢ dr.
Ty Ty

Comparing the above identity with equation 4.12, the variation of J(C(x), e(x), k(x))
18,

SJ(C(x), e(x), k(x)) =€(u)T : 8C : e(w) — e(u)” : e : E(y) —E ()7 : Se : £(w)

—E(¢)" :8x:E(y)
(4.16)
where w and Y are solutions of the adjoint problem. The governing equations for the
adjoint problem can be obtained from equation 4.14 as follows,

—/5uT V- (C: &(w)) dQ+/8uTC:£(w)ndF—|—/8uT V,(e: E(y)) dQ
Q r Q
—/SuTe:E(I[I)ndF+/8¢T V.(e:g(w)) dQ—/8¢Te:£(w)ndF
I Q r

+ [ 80T V.(x: E(y)) dQ— | 8¢ x: E(y)ndl'— | p.8udl
/ / /

Imposing [ éu’ (C:€(w)—e:E(y)) - ndl =0
I'p
and [ 8¢7 (x: E(y)+e:€(w)) -ndl'=0, leads to,

/5uT (Vu(—C: e(w)+eT : E(y)) dQ+/8uT ((C:e(w)—e: E(W))-n—p)dT+
Q I'y

/6¢T (Vo(k: E(W)+e:ew)) dQ+/8¢T (k: E(y)+e:ew))-n—q)dl =0.
'y

(4.18)
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The strong form of the adjoint problem is,

V,-(C:e(w)—e! :E(y))=0 in Q
Vok:E(y)+e:€w)=0 in Q

w=0 and y=0 on Ip (4.19)
O'(w,l[l).n:% and D(w,l[l).n:% on Ty
du 1eXi)

where, C(x) = r(x)Cp, k(x) = r(x)kp, €(x) = r(x)ep. This is the simplest case in
which the ratio remains the same for C, k and e. Cy, K}, and e}, correspond to elastic,
permittivity and piezoelectric constants of the background material (PZT-4). From
equation 4.16, the derivative of objective function with respect to material ratio can be
written as,

% —e(u): 9 elw) —ew): 25 E(y) ~E(9): 2 e(w)
~E(9): 2% Ey) (420

=€(u):Cp:€w)—€(u):ep:E(Y)—E(9):ep:€(w)
—E(¢): xp: E(y).

The extended velocity of the zero level set at node i, V; is as shown below,

v ( ‘”) @.21)

0P
aJ aJ JdR or
E - (5 +BE) . (ﬁ) (4.22)
JoR Vr
== V. (W) (4.23)

The Hamilton-Jacobi equations usually do not admit smooth solutions. Existence and
uniqueness are achieved in the framework of viscosity solutions which help in conve-
nient definition of generalized shape motion. The discrete solution of H-J equation is
obtained by an explicit first-order upwind scheme 2.

The steps involved in this inclusion interface detection algorithm are as follows,

e Initialization of level set function ®y. In order to avoid local optima, circu-
lar inclusions are distributed all over the domain. In the case of multiple level
sets, this is the initial assumption for all the level set functions. In the case of
three-dimensional structures, spherical inclusions are assumed to be distributed
throughout the domain.
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Table 4.1: Properties of Piezoelectric Material, PZT-4
Elastic Constants Piezoelectric constants Dielectric constants

C11=139 GPa e13=-6.98 C/m” x11=60 C/(GVm)
C1,=77.8 GPa ex3=13.8 C/m? k33=54.7 C/(GVm)
C13=74.3 GPa e15=13.4 C/m?

C33=1 13 GPa

C44=25.6 GPa

e In each iteration, n the actual state u, and adjoint state p, are determined by
performing XFEM analysis. This involves solving equations (4.9) and (4.19)
for actual and adjoint states respectively. The shape derivative is obtained from
equation (4.22).

e The updated inclusion interface is given by the level set function ®,,; | obtained
by solving the H-J equation (4.4) using upwind finite difference scheme, with
time step Az, and velocity V,,, starting from the initial interface ®,,.

e In case of multiple level sets, each of them is updated by solving HJ equation
with its corresponding velocities. For example, in case of two level sets formu-

lation expressed in equation (4.3), (V,,); = %'8%:1 and (V)2 = %3%2

e The algorithm is regarded as converged when the gradient of the objective func-
tion is less than a fixed tolerance, which can also be seen from no significant
change in the geometry of the inclusion interface between successive iterations.

4.5 Numerical Examples

Several examples are solved in this section to test the capability and correctness of the
proposed method in detecting the interface of inclusions. The piezoelectric material
used in the examples is PZT-4. The material properties of PZT-4 is shown in table 4.1
and the material of PZT-4 is regarded as transversely isotropic. The piezoelectric plate
is subjected to a mechanical line load (7y,) at edge 3 while edge 1 is fixed and the
electric potential is set to zero as shown in figure 3.2. Measurements such as hori-
zontal displacement u, vertical displacement v and electric potential ¢ are taken at 20
uniformly spaced discrete points along edges 2 and 4 . The response data from four
sets of experiments are utilised in each iteration. When edge 1 is fixed, T,y is applied
at edge 3. When edge 2 is fixed, Ty, is applied at edge 4 and so on.

Similarly for 3D example, a piezoelectric cube specimen is used. A strip of unit width
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Figure 4.2: Boundary conditions and loads on the modelled Piezoelectric cube

along the face 1 is fixed; electric potential set to zero and uniform surface load is ap-
plied over the strip in face 3 as shown in figure 4.2. Three components of mechanical
displacement and electric potential are measured at sensor locations along the dotted
lines in faces 2 and 4. In the setup shown in figure 4.2, the centre line of load and sup-
port and the measurement line are located at the middle of the cube. The measurements
are made at uniformly spaced 25 discrete points along the measurement line. Exper-
iments are also performed with centre line of load and support and the measurement
line being located at i and % of width of the cube (i.e.) moving along the Z-axis. Then
experiments similar to these three are performed repeatedly with the support located at
face 4 and load being applied along face 2, then with support at face 3 and load at face
1 and so on. Therefore the total number of experiments performed is twelve. Response
data from several experiment setups are required to overcome the local minima and
also when there are two inclusions exactly one above other, since one might hide the
other making it difficult for a single experiment to detect inclusion locations. Inverse
problems are generally ill-posed. Performing several experiments constrains the search
space thereby making this problem well-posed with respect to unique identifiability.
In Rus et al'®, a similar setup is used to determine the location of circular voids in a
piezoelectric plate and it was shown that excitation of piezoelectric specimen by static
mechanical traction transverse to the polarization direction offers the highest identifia-
bility when compared to applying a static electrical load.
Measurements
Experimental measurements are not available for this study and so they are generated
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numerically using the XFEM. Different mesh sizes are used to generate the data and to
solve the forward problem in order to avoid “inverse-crime”. The mesh used in target
data generation is finer than the one used for solving the inverse problem. In addition,
a systematic noise of about 1% is added to the generated response data.

4.5.1 Multiple inclusions

In this example, multiple inclusion interfaces in a two dimensional piezoelectric struc-
ture shown in figure 4.3 are detected. The target data is generated by XFEM analysis
with a mesh size of h = 1/75. In inverse analysis, the mesh size used in each iteration
is h = 1/50. The initial assumption is such that there are circular inclusions uniformly
distributed all over the domain. In this example, the inclusions are made of material
with Cy1 = 13.8 GPa; Ci3 = 7.5 GPa and C33 = 11.5 GPa and Cgg = 3.25 GPa; ¢e3
- 6.98 C/m?, e33 = 13.8 C/m? and e;5 = 13.4 C/m?; x1; = 15.1 C/(GV m) and K33
13.7 C/(GV m) ; (i.e.) stiffness ratio, C, ~ 0.1 and permittivity ratio, k, ~ 0.25,
with respect to the background material. The coupling constants are assumed to be
the same throughout the domain (i.e.) the coupling ratio is one. The number of inclu-
sions present in the domain is three. As shown in figure 4.4, the interfaces far from
the actual inclusions disappear gradually with iterations while the nearer ones take the
shape of true inclusions. In each iteration, the governing equation is solved twice, once
to determine the actual response and then to compute the adjoint variables. The H-J
equation is solved explicitly, hence the time step is restricted such that it satisfies the
CFL condition. Figure 4.5 shows the convergence of the algorithm with respect to it-
erations. Figure 4.6 shows the final shapes of inclusions obtained with higher values
of systematic noise. The regularisation parameter, 3 used for noise levels 2% and 5%
are 0.5e-4 and 2e-4 respectively. Figure 4.7 shows the relationship between /2 norm of
error in parameter space with respect to varying levels of noise at appropriate values
of B. The figure also shows the best values of 8 with increasing noise levels.

4.5.1.1 Maesh size effects and parameter uncertainty

The resolution to which a void/inclusion can be determined depends on two factors,
the mesh size and spacing of sensors. For example, in a 50 x50 mesh, the radius of the
smallest circular inclusion that could be detected is almost equal to the width/height of
a finite element. Figure 4.8 shows the detected inclusion and the actual interface, the
radius of the inclusion is 0.25 units. 50 uniformly spaced pseudo sensors are assumed
to be present at the measurement edges. Though a 50 x50 mesh is employed in solving
the inverse problem in iteration, if the pseudo sensors are restricted to 25, then this
inclusion cannot be detected. This is because the inclusion might lie between two sen-
sors and so the response measurements obtained may not be sensitive to the inclusion.
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Figure 4.3: (a) Multiple inclusions in a piezoelectric specimen, (b) Energy density
contour
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Figure 4.4: Level set function, @ ; Top row : Initial interface configuration, Interface
configuration after 50 iterations, Second row : Interface configuration after 75 itera-
tions and final interface configuration determined by the algorithm.
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Figure 4.5: (a) Convergence of the objective function, J with iterations, (b) Conver-
gence of /2 norm of error in parameter space with iterations. P, approximated level set
value at nodes and P/, level set values corresponding to true interface configuration.
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Figure 4.6: Final reconstruction: (a) with 2% noise, (b) with 5% noise
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The spatial resolution thereby depends on spacing between sensors and the mesh size
used in each iteration of the inverse analysis.
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Figure 4.8: The smallest inclusion detected with a mesh of 50x50 and with 50 pseudo
sensors. The radius of the actual void = 0.25 units

The uncertainty of piezoelectric strain constant obtained by dynamic resonance method 34,
is evaluated as =~ 1%. So there may be variations in the piezoelectric coupling con-
stants used for the analysis. The proposed method can handle uncertainty in piezoelec-
tric constants of upto 1%. The method becomes unstable when the uncertainty exceeds
1%. Besides there may also be uncertainty in the stiffness and permittivity ratios that
define the inclusions in the specimen.

4.5.2 Multiple inclusions in a 3D piezoelectric structure

In this example, the inclusion interface in a three-dimensional piezoelectric structure
shown in figure 4.9 is detected using the proposed algorithm. The target data is gen-
erated by XFEM analysis with a mesh size of h = 1/50. In inverse analysis, the mesh
size used in each iteration is h = 1/25. The initial assumption is such that spherical
inclusions are distributed uniformly all over the domain. The three-dimensional struc-
ture is a cube. Mechanical displacements and electric potentials are measured along
the boundary of this cubic piezoelectric structure with inclusions inside the domain. In
this example, the inclusion is made of a material with stiffness ratio, C, = 0.1 and per-
mittivity ratio, K, = 0.1, with respect to the background material (PZT-4). The number
of inclusions present in the domain is two. As shown in figure 4.10, the spherical inclu-
sions far from the true inclusions disappear after some iterations. The level set values
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at nodes are updated in each iteration by solving H-J equation and the number of ex-
plicit time steps is restricted so that the objective function decreases with each iteration.
The implicit representation of inclusion interface using level sets offers the flexibility
of determining interface of any shape. Explicit representation is possible only when
there is apriori information about number of inclusions in the domain, which is not
required in the proposed methodology. As shown in figure 4.10, the algorithm detects
the two inclusions, their corresponding locations and approximate shapes. Figure 4.11
shows the convergence of the algorithm. The noise level in the target data is increased
to 2% and then to 5%. The final inclusion shapes obtained are shown in figure 4.12.
The algorithm remains stable even under such higher values of noise because of total
variation regularisation. The regularisation parameter, 3 is le-3 and 2.5¢-3 for 2% and
5% of noise respectively. Figure 4.13 shows the relationship between /> norm of error
in parameter space with respect to varying levels of noise at appropriate values of f3.
The residual L-curve is shown in Figure 4.14. The corner represents the optimal reg-
ularization parameter. This curve corresponds to data with noise 5%. The curve is
obtained by performing inverse analysis for regularization parameters ranging from
1e0 to 1e-3. Figure 4.15 shows the regularised solution obtained for different values of
the regularisation parameter, f3.

4.5.3 Multiple defects

In this example, the algorithm proposed is employed in determining the number, ap-
proximate location and shape of defects in a damaged piezoelectric domain. The defect
may be an air void, a crack or inclusion with lower stiffness or permittivity. The piezo-
electric domain has two inclusions, one air void and a straight line crack as shown in
figure 4.16. Among the two inclusions, one of them has stiffness ratio C, = 0.1 and
permittivity ratio x, = 0.1, while the other inclusion has stiffness ratio C, = 0.15 and
permittivity ratio K, = 0.15, with respect to the background material. The initial as-
sumption is such that circular inclusions with stiffness ratio C, = 0.1 and permittivity
ratio K, = 0.1, are distributed throughout the domain. The initial interface configura-
tion changes with each iteration so that the objective function decreases. As shown in
figure 4.17, the interfaces far from the defects disappear and the ones nearer gradually
take the shape of the defects. It is interesting to note that at the crack location a flat el-
liptical inclusion is formed. Though the algorithm cannot determine the crack profile it
can atleast detect approximate location of crack like defects. As the inclusion material
properties assumed is different from the properties of true defects in the domain, the
algorithm over estimates or underestimates the size of the inclusions. The size of voids
is over estimated and the size of inclusions with higher stiffness and permittivity ra-
tios than the one assumed are underestimated. This example proves that the algorithm
can determine the number of defects present in the piezoelectric structure and their
corresponding approximate locations. The convergence of the algorithm in shown in
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Figure 4.9: (a) Multiple inclusions in a 3D piezoelectric specimen, (b) Energy density
contour across plane A, (c) Energy density contour across plane B
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Figure 4.10: Top row : Initial interface configuration, Interface configuration after 20
iterations, second row : Void configuration after 50 and 100 iterations, Bottom row :
Final void configuration and actual void configuration.
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Figure 4.11: (a) Convergence of the objective function, J with iterations, (b) Conver-
gence of /2 norm of error in parameter space with iterations. P, approximated level set
value at nodes and P/, level set values corresponding to true interface configuration.
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Figure 4.12: Final reconstruction: (a) with 2% noise, (b) with 5% noise
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Figure 4.13: (a) Variation of /?> norm of error in parameter space with different levels
of noise, (b) Variation of regularisation parameter § with different levels of noise
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Figure 4.15: The regularised solution for (a) f = le-3, (b) B =2.5¢e-3, (c) B = 1e0
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figure 4.18. In the figure 4.18, the level set values corresponding to true interface con-
figuration, P/ is determined assuming a flat ellipse in the crack location.

Figure 4.16: Piezoelectric domain with defects

4.5.4 Multiple level sets

In this example, multiple inclusions each made of different materials are detected by
using multiple level sets. The piezoelectric domain has three inclusions, two of which
has stiffness ratio, C, = 0.1 and permittivity ratio, K, = 0.25 (Material A), while the
other inclusion has stiffness ratio, C, = 2 and permittivity ratio, k, = 1.75 (Material
B). As there are two different materials, the number of level sets required to determine
the interfaces is two. The first level set function, ®; corresponds to interface between
material A and the actual piezoelectric domain. The second level set function, ®,
corresponds to interface between material B and the actual piezoelectric domain. Two
level sets can represent up to four regions but in this example we need to find interfaces
between only three regions. As shown in figure 4.19, the initial assumption is such that
inclusions made of material A and B are distributed all over the domain for level set
function, ®; and P, respectively. The level set functions ®; and P, are updated by
solving H-J equation in each iteration. As shown in figure 4.19, ®; determines the
interface of two inclusions made of material A and ¥, determines the interface of the
inclusion made of material B. The actual piezoelectric domain is represented by the
union of ®; and ®;. The convergence of the algorithm is shown in figure 4.20.
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Figure 4.17: Top row : Initial assumption and interface after 50 iterations, second row
: Interface after 100 and 300 iterations, bottom row : Inclusion locations detected by
the proposed algorithm (stiffness and permittivity ratio = 0.1).
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Figure 4.18: (a) Convergence of the objective function, J with iterations, (b) Conver-
gence of /2 norm of error in parameter space with iterations. P, approximated level set
value at nodes and P/, level set values corresponding to true interface configuration.

4.6 Conclusion

In this work, a methodology to identify the interface of inclusions in piezoelectric
structures is proposed. The inclusion materials may either be with lesser or higher
stiffness and permittivity compared to the background material. The XFEM is used in
determining the responses for varying inclusion interfaces in each iteration as it offers
the advantage of mesh independence. If the interface has to be parameterized explic-
itly, prior information about the number of material subdomains may be required, while
the proposed algorithm detects multiple inclusion interface inspite of no prior informa-
tion. The approximate location of defects like voids, cracks and impurities with low
stiffness and permittivity than the actual piezoelectric material can be identified using
the proposed methodology. The method is then extended to show that the detection of
inclusions made of two different materials is also possible by using multiple level sets.
The method requires several experiment setups so as to overcome local optima and to
ensure uniqueness. The influence of total variation regularisation in enabling detection
in the presence higher noise levels is studied.
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Figure 4.19: Evolution of level set functions, ¢; and ¢, ; Top row : Initial interface
configuration, Second row : Interface configuration after 100 iterations, Third row :
Interface configuration after 250 iterations, Fourth row : Final configuration of ¢; and
¢, Bottom row : Union of ¢ and ¢, and true interface configuration.
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Figure 4.20: (a) Convergence of /> norm of error in parameter space with iterations.
P, approximated level set value at nodes and P/, level set values corresponding to true
level set function ¢, , (b) Convergence of /> norm of error in parameter space with iter-
ations. P, approximated level set value at nodes and P/, level set values corresponding
to true level set function ¢;.
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Chapter 5

Topology optimization of nano elastic
beams

5.1 Contribution of authors

The work presented in this chapter is published as, S.S.Nanthakumar, N. Valizadeh,
H.S. Park and T. Rabczuk, Surface effects on shape and topology optimization of
nanostructures, Computational Mechanics (2014). The final publication is available

in
http://dx.doi.org/10.1007/s00466-015-1159-9.
The original text from this publication is used in this chapter.

e S.S.Nanthakumar

— Literature review about nano elasticity
— Coding of the XFEM-level set algorithm for optimizing nano structures
— Solving of numerical examples

— Preparing the manuscript
e Navid Valizadeh

— Assistance in preparing the manuscript except numerical examples section

— Discussions to better understand nano elasticity
e Prof. Harold S Park

— Discussions in various stages of preparing the manuscript and concepts
related to surface effects in nano elasticity.
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— Reviewing the manuscript and making several improvements before sub-
mission

e Prof. Timon Rabczuk

— Discussions to improve the numerical examples

— Reviewing the manuscript before submission

5.2 Introduction

Due to their unique physical properties, nanostructures 886 have recently attracted sig-
nificant attention from the scientific community. In addition to their electronic, thermal
and optical properties, nanostructures can exhibit mechanical behavior and properties
that are superior to those of the corresponding bulk material. The underlying physical
mechanism for the changes in the mechanical and other physical properties with de-
creasing structure size, is the increasing significance of surface effects, which is due to
increasing surface area to volume ratio®’.

The physical origin of the surface effects is that atoms at the surfaces of a material
have fewer bonding neighbors than atoms that lie within the material bulk '°. This so-
called undercoordination of the surface atoms causes them to exhibit different elastic
properties than atoms in the bulk, which can lead to either stiffening or softening of
the nanostructure, as described by Zhou and Huang3 and recently reviewed by Park et
al'l. Surface effects also have a first order effect on the deformation mechanisms and
plasticity in nanostructures, as illustrated in various works 38990 and recently summa-
rized by Weinberger and Cai®!. Therefore, it is critical to consider surface effects when
discussing the mechanical behavior and properties of nanomaterials, particularly when
any characteristic dimension of the nanostructure is smaller than about 100 nm ',

These unique mechanical properties have motivated researchers to develop compu-
tational approaches that capture these surface effects based on either linear or nonlinear
continuum theories. For example, many computational approaches3!9293-94 are based
on the well-known Gurtin-Murdoch linear surface elasticity theory !?, which consid-
ers the surface to be an entity of zero thickness that has its own elastic properties
that are distinct from the bulk. Other approaches have considered a bulk plus surface
ansatz of various forms incorporating finite deformation kinematics. The approaches
not bound on the Gurtin-Murdoch framework include the work by Steinmann and co-
workers?>%, and the surface Cauchy-Born approach of Park and co-workers®7-%8.99,
The interested reader is also referred to the recent review of Javili et al '%0.

However, most theoretical and computational studies have focused on determining
how surface effects impact specific mechanical properties, i.e. the Young’s modu-
lus !, plastic deformation mechanisms®!-%8, resonant frequencies %1%, bending re-
sponse 193194 "and more generally the mechanical response of nanostructures such as

115



5.3 Continuum model

nanowires or nanobeams. What has not been done to-date is to investigate how sur-
face effects impact the topology of nanostructures within the concept of optimally
performing structures. This topic has a significant history and literature for bulk mate-
rials 105:26.106 1t has not been studied for surface-dominated nanostructures.

The objective of this work is therefore to present a numerical method that can
be used to study the optimization of nanostructures, while accounting for the criti-
cal physics of interest, that of nanoscale surface effects. The formulation is general,
and can be applied to different materials such as FCC metals or silicon so long as the
relevant surface elastic constants are known. This is done through a coupling of the ex-
tended finite element method (XFEM)®* and the level set method?®. By using XFEM
to solve the nanomechanical boundary value problem including surface effects based
on Gurtin-Murdoch surface elasticity theory 243! we are able to maintain a fixed
background FE mesh while only the structural topology varies. The level set method
in which the front velocity is derived from a shape sensitivity analysis by solving an
adjoint problem is based on the ideas proposed by Allaire et al.?S.

The outline of this chapter is as follows. In Sect. 5.3, based on Gurtin-Murdoch sur-
face elasticity theory !, the continuum model for an elastic solid considering surface
effects is presented. Sect. 5.4 illustrates the level set method for structural optimiza-
tion. In Sect. 5.5, the objective functions and the material derivative for shape sensi-
tivity analysis are presented. A brief overview on the XFEM formulation is given in
Sect. 5.6 followed by numerical examples in Sect. 5.7, and finally concluding remarks.

5.3 Continuum model

We consider an elastic solid Q with a material surface dQ. According to continuum
theory of elastic material surfaces ', the equilibrium equations for a nanostructure can
be written as:

V-6+b=0 in Q 5.1
Vs-04+[6-n]=0 onI" (5.2)

where the first equation refers to bulk equilibrium and the second equation refers to the
generalized Young-Laplace equation'? resulting from mechanical equilibrium on the
surface. In the above equations, & represents bulk Cauchy stress tensor, b represents
the body force vector, 0y denotes the surface stress tensor, n is the outward unit normal
vector to I, and V- 63 = Vo, : P. Here P is the tangential projection tensor to I' at
x € T which is defined as P(x) = I — n(x) ® n(x), I is the second order unit tensor. I"
is the boundary of the domain Q. Furthermore, the boundary conditions are given by

t onIy

c-n
(5.3)
u

=u onI'p
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where f and u are the prescribed traction and displacement, respectively, and I'y and
I'p are the Neumann and Dirichlet boundaries. The bulk strain tensor € and surface
strain tensor € are written as

€= %(Vqu (Vu)T) (5.4)
e,=P-¢-P (5.5)

where u is the displacement vector. Assuming a linear elastic bulk material and an
isotropic linear elastic surface, the constitutive equations for the bulk and surface can
be written as

o = Chulk . g (5.6)
d
o, = 8(-2/ (5.7)

where 7 is the surface energy density given by

1
}/:3/0+Ts:ss+§es:©s:es (5.8)

where 7}y is the surface free energy density that exists even when €; = 0, and 7, = 7,P
is the surface residual stress tensor. By substituting 5.8 into 5.7, 0 can be obtained by

o, =17,+C’: g (5.9

In the above equations, C?* and C* are the fourth-order elastic stiffness tensors asso-
ciated with the bulk and surface, respectively, and are defined as

C%flk = 466 + (661 + 61 6k) (5.10)

ikt = AsPijPu + s (PacPji + Py Pj) (5.11)

where A and u, and Ay and p are the Lamé constants of the bulk and surface, respec-
tively.

It should be noted that the surface is considered as a special case of a coherent im-
perfect interface between two materials when one of them exists in a vacuum phase 2.
It is assumed that the surface adheres to the bulk and therefore we have:

u=0 (ie) (W)"—(u) =0 onT (5.12)

Having defined the constitutive and field equations, we derive the weak form of
the boundary value problem based on the principle of stationary potential energy. The
total potential energy IT of the system is given by

IT= Hbulk + Hs - Hext (5- 13)

117



5.4 Level set method

where I1,, I1;, and I, represent the bulk elastic strain energy, surface elastic energy
and the work of external forces, respectively, which are given by

1
H,,u,k:—/ £:Clk . e4Q (5.14)
2J)o
I, = / ydl' (5.15)
I
nex,:/ u-idr+/u-bdg (5.16)
I'y Q

The stationary condition of 6.10 is given by
Dg, J1=0 (5.17)

where D, Y is the directional derivative (or Gateaux derivative) of the functional Y in
the direction m. Applying the stationary condition, the weak form of the equilibrium
equations can be obtained by findingu € {u =& onTp,u € H' (Q)} such that

/ e(u) : CH* - g(Su)dQ + / £,(u): C* : &,(6u)dTl

Q r (5.18)

:-/zszss(su)dm/ 6u~idF+/ Su-bdQ
r Iy Q

for all Su € {Su=0 onTp,6u € H'(Q)}. This weak form can be written in a
simplified form as

a(u,0u)+as(u,6u) = —I;(6u)+1(ou) (5.19)

where the bilinear functionals a(u, du) and as(u,éu), and linear functionals /(du) and
I;(6u) are defined as

a(u,0u) = /Qc(u,8u) dQ = /Qs(u) : CHIk: g(8u)dQ

as(u,bu) = /mcs(u, Ou)dl’ = ag.‘-:S(u) :C*: g4(6u)dl

(5.20)
l(8u):/aQ 8u-fd1“—|—/95u'bd9
N

1,(8u) = /aQ T, : £4(8u)dT

5.4 Level set method

The level set method (LSM), which was first introduced by Osher and Sethian %7 for
tracking moving interfaces, has been extensively applied to many different research
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fields such as image processing, computer graphics, fluid mechanics, and crack prop-
agation over the past three decades. The first research work on incorporating the level
set method '°7 in structural shape and topology optimization was performed by Sethian
and Wiegmann'%®, They used the level set method to represent the design structure
and to alter the design shape based on a Von Mises equivalent stress criterion. Later,
Osher and Santosa!??, Allaire et al.?%, and Wang et al.!'? independently proposed a
new class of structural optimization method based on a combination of the level set
method with the shape sensitivity analysis framework. The main idea of this method is
to model the process of structural optimization via a scalar level set function which dy-
namically changes in time. Therefore, the evolution of the design shape is governed by
the Hamilton-Jacobi (H-J) partial differential equation (PDE) in which the front speed
(or velocity vector) links the H-J equation with the shape sensitivity analysis. This
method is usually called conventional level set method and is widely used in structural
optimization 10111,

We assume D C R? (d=2 or 3) as the whole structural shape and topology design
domain including all admissible shapes Q, i.e. Q C D. A level set function ®(x) which
partitions the design domain D into three parts, i.e. the solid, void and the boundary
which are defined as

Solid: ®(x) <0 VxeQ\JIQ
Boundary: ®(x)=0 VxcdQND (5.21)
Void: ®(x)>0 VYxeD\Q

The basic idea of the level set method for structural optimization is to describe the
structural design boundary, I'(x) implicitly by the zero level set of a higher dimensional
level set function (see 5.1):

I(x) = {x e RY|®(x) =0} (5.22)

To allow the design boundary for a dynamic evolution in the optimization process, we
introduce ¢ as a fictitious time. Thus the dynamic design boundary is defined as

(1) = {x(t) e RY|®(x(r),r) = 0} (5.23)

By differentiating {®(x(¢),7) = 0} with respect to time !, we obtain the well-known
Hamilton-Jacobi partial differential equation

dD(x(t),1)
ot

IThis is the same as taking the material derivative of {®(x(t),t) = 0}.

+V®(x(t),1)-V =0 (5.24)
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Figure 5.1: Level set description of a plate with a hole. (/eft) Design domain (right)
level set function.

where V = ‘é—’; denotes the velocity vector of the design boundary. This equation can
be further written considering the unit outward normal n = % to the boundary and
normal component of velocity vector V,, =V -n,

a—<I>—|—V,,|V<I>| =0 (5.25)
dt
By solving this Hamilton-Jacobi equation, the level set function and consequently the
structural design boundary is updated during the optimization process. It should be
noted that here V,, is a quantity that links the level set method to the shape design
sensitivity analysis 0.

The Hamilton-Jacobi equations usually do not admit smooth solutions. Existence
and uniqueness are achieved in the framework of viscosity solutions which provide a
convenient definition of the generalized shape motion. The discrete solution of the H-J
equation is obtained by an explicit first-order upwind scheme?°. The level set function
is regularized periodically by solving

aa—?Jrsign(dJo)(HVd)H —-1)=0. (5.26)
Solving this equation gives a signed distance function with respect to an initial isoline,
®(. This ensures smoother interfaces and also that the signed distance from the inter-
face can be used as enrichment values for the nodes whose support is cut by the zero
level sets, for the XFEM analysis performed in each iteration.
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5.5 Material derivative approach and sensitivity analysis

5.5 Material derivative approach and sensitivity anal-
ysis
In this work, we consider two objective functions. The first considers the total potential

energy of the nanostructure under equilibrium and volume constraints. For this case,
the topology optimization problem can be defined as

o Iy
Subject to / dQ—V =0 (5.28)
Q
a(u,v,Q)+a;(u,v,Q) =—1;(v,Q)+1(v,Q) (5.29)

The second is a least square error objective function compared to a target displacement,
which can be written as

Minimize J»(Q) = ( / u— ug|2dT) 2 (5.30)

r
Subject to (5.31)
a(u,v,Q)+a;(u,v,Q) = —1;(v,Q)+1(v,Q) (5.32)

Here we assume v = du and 9y = 0. To perform shape optimization, it is essential to
find the relationship between a variation in design variables and the resulting variations
in cost functional ' using a sensitivity analysis method. For this purpose, we use the
material derivative concept from continuum mechanics.

5.5.1 Material derivative

Consider an initial structural domain £ which is transformed into a deformed (or per-
turbed) structural domain Q; in a fictitious time 7. This transformation can be viewed
as a mapping T : x — xz(x),x € Q such that

xe=T(x,7T) (533)
Q. =T(Q,1) '
A design velocity field can be defined as
V(e ) = dx; _ dT (x, ) _ dT (x,T) (5.34)

T dt dr ot
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5.5 Material derivative approach and sensitivity analysis

Based on the linear Taylor’s series expansion of T (x,7) around 7 = 0, any material
point in the initial domain x € Q can be mapped onto a new material point in the
perturbed domain x; € Q; as

xe(x) =T (x,7) =x+1V(x) (5.35)

The material derivative of quantity z is defined as

Hx) = %Zf(x—l- V()| =04V (5.36)

where the over dot represents the material derivative and the prime denotes a local
derivative.

Lemma 1l Let¥; be a domain functional defined as
lP] — /gz ff(.xT)dQT

with f7 being a regular function defined in Q;, then the material derivative of W is
given by

¥, = /Q () + F(x) (V-V ()] dQ
= [1F@)+V- (v))de
_ / Fx)dQ+ / F(0)(V (x).n)dT
Q r

Lemma 2 Let W, be a boundary functional defined as

1112 — /F gf(.x'r> drf

with g; being a regular function defined on I';, then the material derivative of ¥ is
given by

= [ [¢0)+ Kg()(V (x).m)] aT

= |1/ + (V) -+ Kg(0)) (V () )} T
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5.5 Material derivative approach and sensitivity analysis

where k¥ = divn = V - n is the curvature of I in R? and twice the mean curvature of I’
3
in R°.

With these Lemmas!!? at hand, the material derivative of the objective functionals
can be obtained as (see appendix A.1 for details),

jlz/u bdQ+/ubV dF+/Vutn+Kut)V dr (5.37)
Q

/2|u—uo|u dF+/ (Ju—uol?))
(5.38)

i|u— uo[?) V, dT

1 |
= 5(/|u—uo\2dr)z (5.39)

5.5.2 Sensitivity analysis

In order to convert the constrained optimization problem to an unconstrained problem,
an augmented objective functional L is constructed as

=J(u,Q)+x(Q)
) ) 5.40
:QL(/QdQ—V)-l-%(/QdQ—V)z ©-40)

in which A is the Lagrange multiplier and A is a penalization parameter. These pa-
rameters are updated at each iteration k of the optimization process by the following
rule

k+1 k 1 v,
A =2 +—k(/QdQ—V)

(5.41)
Ak+1 CAk
where { € (0,1) is a constant parameter.
The shape derivative of augmented Lagrangian L is defined as
L'=J(uQ)+x(Q) (5.42)
- / G.V,dT (5.43)
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5.6 Extended finite element method

G=— /e(u) . Pk g(w) dT°

K(PE(W)P : Tg)ar (5.44)

k(Pe(u)P: C* : Pe(w)P)dl

"J\"J\"J

1 _
7(Q) = / max{0, A + —(/ dQ —V)}V,dl (5.45)
o0 Ao
Based on the steepest descent direction,

Vi=— /s(u) . Chulk ; g(w) dT

K(Pe(w)P : T5)dl (5.46)

K(P&(u)P:C*: Pe(w)P)dl

"J\_"‘J\"J

J =— / VZdl <0 (5.47)
r

Velocity extension The normal velocity of the front V), is to be extended from the
front to the whole design domain in order to solve the HJ equation 5.25. Different
techniques for velocity extension have been proposed in the literature e.g. the normal,
natural, Hilbertian and Helmholtz velocity extension methods (see!'!? for a review on
different velocity extension strategies). It is obvious from 5.46 that the velocity com-
prises two parts, the bulk, V}, and surface terms, V;. The bulk part of velocity, V,, can
be obtained at each node whereas the surface part, V; can be determined only along the
surface. In order to solve HJ equation 5.25 that is posed throughout the domain, the
surface part of velocity Vs is extended by extrapolation to the nodes that belong to the
cut elements. The value of the speed function at the closest point on the surface is as-
signed as the extension velocity to the nodal point““, such that the condition V,; =V,
at @ = 0 is satisfied.

5.6 Extended finite element method

XFEM is a robust numerical approach that enables modelling the evolution of dis-
continuities such as cracks without remeshing. It is used to analyze the nanobeams
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5.6 Extended finite element method

in each step of the iterative optimization process, where the XFEM formulation for
solving nanomechanical boundary value problems including surface effects is based
on the work of Farsad et al.®*. In XFEM, the cracks, voids and material interfaces are
implicitly represented by using level set functions®>2!. In XFEM, the approximation
of the displacement field in a material with several material subdomains is given by

=Y Ni(X)u;+u"" (5.48)

i€l

Z Y Ni(X)al F(x) (5.49)

=1jeJ
where a; is the additional degrees of freedom (DOF) that accounts for the jump in the
strain field, n. denotes the number of material interfaces, and J is the set of all nodes
whose support is cut by the material interface. In this work, the absolute enrichment
function F(X) 3

ZN )[9:(X)| — |N:(X) (X)) (5.50)

is used in order to account for the discontinuous strain field along I'. The voids are
assumed to be filled with a material that is 1000 times softer than the stiffness of the
nanostructure. The usage of a softer material enables the traction and displacement
boundary to intersect with the void boundary. The stiffness coefficients are determined
by numerical integration performed over sub triangles on either side of the inclusion
interface. Substituting the displacement field in equation 5.48 to the weak formula-
tion 5.18, the algebraic finite element equations can be obtained. The expressions for
a(u,ou), ag(u,ou), I;(0u) and I(Su) for an element can be rewritten using the FE
approximation as,

af(u, 5u) = Su°’ (ﬂ/ BT {C™M\B dQe¢ | u (5.51)

a;(u,0u) + [{(0u) =
/ (Pe(u)P) {C°} (Pe(Su)P)dT®
r‘e

+ / T, (Pe(u)P)dT*
(5.52)

—sueT (r/ BTM{C*}M,B dT* | u*
+ou” [ BTM} 7 ar

ITe

125



5.7 Numerical examples

1¢(8u) = Su°T / NTFare + / NTb doe (5.53)
I, Q¢

where u € H'(Q) and Su € H'(Q).
The final system of discrete algebraic XFEM equations is,

(Kp+Ks)u=—fs+ fou (5.54)

Ky = / BT {C"*}BdQ
Q
Ks:/BTM,T,.{CS}-M,,Bdr
r

(5.55)
fs= /BT ‘M, Tsdl
r

Fo— / NTFdT+ / NTbdQ
I'y Q

where K is the surface stiffness matrix, while f is the surface residual. Mp and C*
are defined as in Farsad et al.*,

Py P,  PuPp»

Mp=| P, P, PPy (5.56)
2Py 1Py 2PiaPy PL+ PPy

C* =MLS*Mp (5.57)
St S22 0

S = Si2Sn» 0 (5.58)
0 0 S

The steps involved in the process of optimizing nano structures using XFEM and level
set coupled methodology is shown as a flowchart in figure 5.2.

5.7 Numerical examples

In this section, several examples are solved to determine the influence of surface ef-
fects on the optimum topology of nanostructures specifically, nanobeams. Our choice
of nanobeams is driven by multiple reasons. First, nanobeams are the basic functional
element in most nanoelectromechanical systems (NEMS) 1116117 'Second, the topol-
ogy optimization of beams has been widely studied in the literature, and as a result,
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5.7 Numerical examples

Initialize level set
function, ¢

Perform XFEM anal-
ysis of topology, @
with surface stresses,
so that Eq. 5.18 is
numerically solved.

l

Determine velocity of
level set, V,, at fixed
Eulerian grid points
for J; or J»

Velocity due to surface effects
: Velocity value at the surface
is extended to the grid point,
so that the condition V,,; =V,
at the isoline is satisfied.

|
H-Jeq. 525 1s
solved to determine
the updated level set
function ¢

i

@1 1is regularized pe-
riodically by solving

5.26 9 (P() = ¢1
If velocity, :
No v, < Yes Stop. Opti
mum topology
tolerance : .
is obtained.
value

Figure 5.2: Flowchart showing steps involved in the process of optimizing nano struc-
tures with surface effects
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5.7 Numerical examples

Table 5.1: E (bulk Youngs modulus), v (Poisson ratio) and S, jx; (surface stiffness) for
Gold (Au) from atomistic calculations.®

E(GPa)lv  [S1111=S2000 (J/m?)
36 1(0.44 5.26

S1120=S211 (J/m*»)S1212 (J/m?)|7¥ (J/m?)
2.53 3.95 1.57

it would be interesting to examine how surface effects alter the optimal topologies of
nanobeams when surface effects are accounted for. Manufacturability of the optimal
topologies may be an issue with regards to the smallest nanobeams we have optimized
in this work.

The topology optimization is performed for two different beams, i.e. cantilever
and fixed beam. The objective functions discussed in Section 5.5 are employed, i.e.
minimum total potential energy and minimum least square error compared to a tar-
get displacement. The nanobeam is assumed to be made of gold, where the bulk and
surface properties are given in Table 5.1. For the XFEM analysis, the domain is dis-
cretized by using bilinear quadrilateral (Q4) elements.

In the following numerical examples, the velocity of the level set function, V,, is
evaluated at all node points, so as to solve the HJ equation throughout the domain.
From equation 5.46, it can be seen that it also includes surface terms which are avail-
able only along the interface. The surface terms are extrapolated to nodes of those
elements which are cut by the interface, while these terms are neglected at all other
nodal locations.

A short cantilever beam of size 32x20 units subjected to a point load at the free
end is optimized using the level set method. The optimum topology for a volume ratio
of 0.4 is shown in figure 5.3 (b). The optimum topology is similar to the one shown in
Sigmund et al. 5. obtained by SIMP.

In order to obtain best results using conventional level set method, the optimiza-
tion process is initialized with sufficiently large number of voids that are uniformly
distributed all over the domain2° as shown in figure 5.3 (a).

5.7.1 Cantilever beam
5.7.1.1 Objective function J;

In this section, optimization of nanobeams subject to cantilever boundary conditions
is performed such that total potential energy is minimized. The first geometry is an
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Figure 5.3: (a) Initialization (b) Optimum topology for a short cantilever beam sub-
jected to a point load at free end by Level set method (c) by SIMP>.
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5.7 Numerical examples

80x20 nm beam that is optimized for minimum total potential energy. The load ap-
plied at the free end is a point load of magnitude 3.6 nN, while the volume ratio,
which is defined as the ratio of volume of the optimized beam to the initial volume,
is restricted to 70%. The optimum topology with a mesh of 120x30 bilinear quadri-
lateral elements is shown in Figure 5.4(a). The optimization process is then repeated
by neglecting surface effects, i.e. taking Cy = 0 and 7, = 0, with the result seen in
Figure 5.4(b).

It is evident from the optimum topologies shown in Figure 5.4 that surface effects
do not influence the optimum topology for the minimum energy objective function.
This occurs though the stiffness ratio, which is defined as the ratio between the differ-
ence in vertical displacement at the load location with and without surface effects, and
the vertical displacement at the load location with surface effects, is about 4.25%.

Besides the thickness, the aspect ratio is known to have an important effect on the
mechanical properties of nano beams®-118 and thus we consider a nanobeam with
dimensions of 200x20 nm, for an aspect ratio of 10. The stiffness ratio of this beam
is found to be 4.35%, while the volume ratio is again constrained to 70%. Again, no
noticeable differences for the J; objective function was observed even when surface
effects are accounted for.

The main reason why little difference is observed between the optimal topologies
with and without surface effects in Figures 5.4 and 5.5 is due to the fact that the volume
constraint is the same for both problems. As will be shown in the subsequent exam-
ples with the J, objective function, for that objective function the volume fraction is
allowed to vary. This will prove to be key in allowing surface effects to change the op-
timal design as less material is needed due to the stiffening that is induced by surface
effects 3094,

5.7.1.2 Objective function J,

We now consider a different objective function, i.e. the minimization of the least square
error objective function, for the cantilever nanobeam.

A cantilever nanobeam of size 40x 10 nm is subjected to a point load of 3.6 nN
at the free (40,0) nm end. The target displacement at the load location is 16 nm. The
optimum topology obtained is shown in Figure 5.6, where the volume ratio of the
optimum topology is 0.59 and the stiffness ratio of the 40x 10 nm beam is 8.6%.

Now the aspect ratio is maintained as 4 and the thickness of the beam is increased.
Thus, Figure 5.6 shows the optimum shape obtained for beam of size 320x80 nm,
which have stiffness ratios of 1.05% and volume ratio of 0.71.

The optimum topology obtained for the 320 x 80 nm beam with and without surface
effects appear similar, which suggests that for this particular aspect ratio and objective
function, surface effects lose their effect once the nanobeam thickness is larger than
about 80 nm. However, the 10 nm thick nanobeam have different optimal designs,

130



5.7 Numerical examples

40}

30t

20

Y
S

® o Qjogo»

0 20 40 60 80

()

40

30t

® e 02020»

20

Y
S

0 20 40 60 80
X
(b)

Figure 5.4: Optimal topology for 8020 nm cantilever nano beam for objective func-
tion J; (a) with surface effects , (b) without surface effects, i.e. taking C; and 7; to be
Zero.
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Figure 5.5: Optimal topology for 200x20 nm cantilever nano beam for objective func-
tion J; (a) with surface effects , (b) without surface effects, i.e. taking C; and 7; to be
Zero.
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which is driven by the fact that the smaller nanostructures are stiffer!! as demonstrated
by the stiffness ratios, and thus require less material to conform to the maximum dis-
placement constraint.
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Figure 5.6: The optimal topology obtained for J, objective function for 40 x 10 nm and
320x 80 nm cantilever beams without surface effects (a),(c) and with surface effects

(b),(d).

The intermediate topologies obtained at various iteration steps are shown in fig-
ure 5.7, for the optimization of the 40x 10 cantilever nano beam with surface effects.
The convergence of the optimization process with decrease in mesh size is shown in
figure 5.8. It is evident from the figure that volume ratio of the optimum topology
converges for a mesh size smaller than 120x30 (i.e.) h = % for the problem solved in
this example. The optimum topology obtained for three different mesh sizes 120x30,
160x40 and 180x45 are shown in the figure 5.9.
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Figure 5.7: Intermediate topologies for optimization of objective function J, for 40x 10
nm cantilever nanobeam with surface effects at iteration (a)l, (b)15, (c)35, (d)75,
(e)200.

Figure 5.8: Convergence of Volume ratio, for objective function J, with iterations
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Figure 5.9: Optimal topology for objective function J, for 40x10 nm cantilever
nanobeam with surface effects for mesh sizes (a)120x30 (b)160x40 and (c) 180x45.
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5.7.2 Fixed beam
5.7.2.1 Objective function J;

We now consider a nanobeam with fixed boundary conditions subject to both objective
functions. For the minimum potential energy (J;) constraint, we first consider a fixed
nanobeam of dimensions 80x 10 nm. A load of 3.6 nN is applied at the midpoint and
the volume ratio is constrained to 70%. We exploit the symmetry boundary condi-
tions and thus model only half of the nanobeam. The stiffness ratio of the 8010 nm
nanobeam is found to be 6.9%, and the optimum topology both with and without sur-
face effects is shown in figure 5.10, where again only slight differences are observed
for the structure including surface effects.

We also consider larger aspect ratio nanobeam of dimensions 200 x 10 nm, which
leads to a stiffness ratio of 8.4%, while the volume ratio was constrained to be 70%.
The topologies obtained do not change for the J; objective function with inclusion of
surface effects even for an increased nanobeam aspect ratio.

5.7.2.2 Objective function J,

We next consider the optimal design of a fixed nanobeam subjected to the J, objective
function. The 80x 10 nm fixed nanobeam is subjected, as for the J; case above, to
a point load of 3.6 nN at the midspan where the displacement at the load location is
restricted to 4.7 nm, and where again exploiting symmetry only half of the beam is
modeled.

The optimum topology obtained is shown in Figure 5.11(a), where the volume
ratio of the optimum topology is 0.65. The optimization process is again repeated by
increasing the dimension to 160x20 nm in figure 5.11(b), which thus keeps the aspect
ratio constant at 8. The volume ratio of 0.71 for the larger nanobeam is higher than that
of the 80x 10 beam due to reduced stiffness that occurs for larger nanobeam sizes 101,94
which enables the nanobeam in figure 5.11(a) to have more voids while still allowing
only the maximal displacement at the load location.

While figure 5.11 shows the optimal design for an aspect ratio of 8, figure 5.12
shows the optimal design when the aspect ratio is increased to 12, for nanobeam thick-
nesses of 10 and 20 nm, and when the displacement at the load location is restricted
to 12 nm. The volume ratio of the optimum topology is 0.65 for the 10 nm thick
nanobeam, and 0.7 for the 20 nm thick nanobeam. It is evident from figure 5.12 that
increasing the aspect ratio causes the surface effects to play a strong role in influencing
the optimal design of the fixed nanobeams.

The stiffness ratios for 80x 10 nm and 120x 10 nm are 6.9% and 7.9% respectively.
The stiffness ratios increase with increase in length of the fixed beam until the beam
length reaches 320 nm (at a constant depth of 10 nm) after which they gradually start
decreasing. A stiffness ratio of around 8% or more leads to significant difference
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Figure 5.10: Optimal topology for objective function J; for 80x 10 nm fixed nanobeam
(a) with surface effects, (b) without surface effects, i.e. taking C; and 7, to be zero.
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Figure 5.11: Optimal topology for objective function J> for (a) 8010 nm and (b)
160x20 nm fixed nanobeam.
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Figure 5.12: Optimal topology for objective function J, for (a) 120x10 nm and (b)
240x20 nm fixed nanobeam.
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Figure 5.13: Initialization (a),(c) and their corressponding Optimal topologies (b),(d)
for objective function J; for 120x 10 nm

in optimum topology in a fixed nano beam compared to a micro/macro fixed beam
subjected to point load at mid span for objective function J,.

Different initializations are tried and the optimum topology shown in figure 5.12(a),
is the one with least volume ratios among the optimum topologies obtained. The ini-
tializations and the corresponding optimum topologies are shown in figure 5.13.

5.8 Conclusion

We have presented a coupled XFEM/level set methodology to perform shape and topol-
ogy optimization of nanostructures while accounting for nanoscale surface effects. The
new formulation was used in conjunction with two objective functions, those of mini-
mum potential energy and least square error to the targeted displacement. While sur-
face effects did not impact the optimized structure for the minimum potential energy
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objective function, substantial size and aspect ratio effects were observed for the least
square displacement error objective function. These arise due to the change in volume
and stiffness ratios. Thus optimum topologies are influenced by the size-dependent
stiffening of nanostructures that occurs with decreasing size as a result of the sur-
face effects. Overall, the methodology presented here should enable new insights and
approaches to designing and engineering the behavior and performance of nanoscale
structural elements.
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Chapter 6

Topology optimization of nano
piezoelectric structures

6.1 Contribution of authors

The work presented in this chapter is yet to be submitted to a journal.

e S.S.Nanthakumar

Literature review about nano piezoelectricity and energy harvesting

Coding of the XFEM-level set algorithm for optimizing nano piezoelectric
structures

Solving of numerical examples

Preparing the manuscript
e Tom Lahmer

— Improvements in derivation of adjoint problem
e Prof. Harold S Park

— Discussions in various stages of preparing the manuscript and concepts
related to surface effects in nano piezoelectricity.

— Reviewing the manuscript and making several improvements
e Prof. Timon Rabczuk

— Discussions to improve the numerical examples
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6.2 Introduction

6.2 Introduction

Piezoelectric energy harvesters have garnered significant attention because of their
ability to convert ambient mechanical energy into electrical energy !!*120. These en-
ergy harvesters have been utilized in a wide range of applications, where a review of
vibration based energy harvesters is presented in Sodano et al 2!,

Because of their wide usage, approaches to design piezoelectric energy harvesters
with higher energy conversion efficiency have also been developed. One such approach
is using computational topology optimization, where the geometry of the energy har-
vesters can be tuned to maximize the energy conversion efficiency. Examples of us-
ing topology optimization to design superior piezoelectric energy harvesters abound,
including maximizing electromechanical conversion for a certain vibration mode 22,
designing a layout comprising the energy harvester as well as the electrical circuit!?3,
maximizing the energy conversion factor in cantilever plate energy harvesters sub-
ject to static loads3*, performing topology optimization of energy harvesters using as
the design variables the densities that define the presence of piezoelectric material in
each finite element !?*, topology optimization of cantilevered energy harvesters with
the design variable as the geometry of elastic substructure 2>, and designing the opti-
mal configuration of a cantilever and a cylindrical piezoelectric energy harvesters with
single and multiple materials>>.

However, most piezoelectric energy harvesters have been used in bulk material
systems. The exciting possibility of using nanoscale piezoelectric energy harvesters
emerged in 2006 with the discovery of piezoelectricity from ZnO nanowires by Wang
et al'*. Many researchers have since extended the original seminal work, including
the development of self-powered nano generators that can provide gate voltage to ef-
fectively control charge transport ', lateral and vertical integration of ZnO nanowires
into arrays that are capable of producing sufficient power to operate real devices 1>, and
the experimental determination that the piezoelectric coefficient d3z of ZnO nanobelt
is much larger compared to bulk ZnO throgh measurements made using piezoresponse
force microscope 6. A recent review on the electromechanical properties and perfor-
mance of ZnO, and other piezoelectric nanostructures was performed by Espinosa et
al 127 )

Along with experimental work, there have been some recent theoretical studies into
the surface piezoelectric properties of nanostructures and nanowires. Dai et al.>® high-
lighted the concept of surface piezoelectricity using combination of theory and atom-
istic calculations, and then analyzed the (0001) surfaces of ZnO. Other works have
also found that ZnO nanostructures exhibit different piezoelectric properties as com-
pared to bulk ZnO 28129 while surface effects the piezoelectricity of ZnO nanowires
was studied by Dai et al*?. Other researchers have developed analytic surface piezo-
electric studies, including an explicit formula for the electromechanical coupling co-
efficient considering surface effects*! for piezoelectric nanowires, an Euler-Bernoulli
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6.3 Governing equations of surface piezoelectricity

beam theory for the vibrational and buckling behavior of piezoelectric nanobeams '3,

and the electroelastic response of thin piezoelectric places considering surface effects
using Kirchoff plate theory?.

The objective of this work is to develop and apply topology optimization techniques
to study how surface electromechanical effects impact the energy conversion efficiency
of piezoelectric nanostructures. We accomplish this by discretizing the equations of
surface piezoelectricity using the extended finite element method (XFEM), and using
this numerical formulation to study energy harvesting from piezoelectric nanowires,
nanoplates, and piezoelectric layers in energy harvesters accounting for both surface
elastic and surface piezoelectric effects.

6.3 Governing equations of surface piezoelectricity

We consider a piezoelectric domain £ with a material surface I'. Based on the contin-
uum theory of surface piezoelectricity >, the equilibrium equations are

V.o+b=0 in Q (6.1)
V-D—g=0 in Q (6.2)
Vy-0,=0 onI’ (6.3)
Vs-Dg =0 onI" (6.4)

where 6 and D are mechanical stress and electric displacement, respectively, while o'
and Dy are the surface stress and the surface electric displacement, respectively. In the

above equation, V6=V 0o : P, where ’:’ is the double tensor contraction.
The linear piezoelectric constitutive relations for the bulk and surface are,

c=C:e—e':E (6.5)
D=e:e+x:E (6.6)
o;=Ts+C’:&,—e5: Eg 6.7)
Ds=os+el g5+ K, E; (6.8)

where C and C° are the fourth-order elastic stiffness tensors associated with the bulk
and surface, respectively, while e and e correspond to the bulk and surface piezoelec-
tric third order tensors, respectively. Ty and @; give the residual surface stress and
residual surface electric displacement respectively. € and E are the bulk strain tensor
and bulk electric field vector while & and E are their corresponding surface counter-
parts.

The surface energy density ¥ is given as,

1 1
y:'y0+‘rs:£s+a)s:Es+§£s:@s:£s+§Es:Ks:Es+Es:es:£s (6.9)
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6.3 Governing equations of surface piezoelectricity

Having defined the constitutive and field equations, we derive the weak form of the
boundary value problem based on the principle of stationary potential energy. The
total potential energy I1 of the system is given by

1= Hbulk + HS - Hext (6 10)

where I1j,;;, I1; and I1,y represent the bulk internal energy, surface internal energy
and the work of external forces, respectively. The stationary condition of 6.10 is given
by

Dgs, J1=0 (6.11)

where Dg,lI is the directional derivative (or Gateaux derivative) of the functional I1
in the direction ou. Applying the stationary condition, the weak formulation of the
governing equations is as follows,

/ ()’ : C: g(8u)dQ - / ¢’ E(5¢)dQ
/E £(5u)dQ — /E K :E(5¢)dQ
+/r£s u :Cs:es(Su dF—/l_es u :eST:ES(6¢)dF
—/Es(d))T ey : eS(Su)dF—/Es(cp)T K, E,(5¢)dT

/1:5 £,(Su)dl— /a)s. (8¢)dT+ [ Su-Tdr

I'n

6.12)

+/ 6u-bdQ—/ 5¢-qdQ
Q Q
This weak formulation can be written in simplified form as,

a(u,,0u,8¢)+as(u,¢,6u,8¢)=—I;(6u,69)+1(6u,8¢) (6.13)

The expressions for an element using the finite element (FE) approximation can be
written as follows,

a‘(u,¢,5u,6¢)

— suc’ / BT{C)B, dQ | u¢ +u¢” / BT {e}"B, dQ | 5¢°
e : (6.14)

+¢" /Bﬁ{e}B,,dQ Su® —¢°" /BqT,{K}B,,,dQ 3¢°
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6.4 XFEM formulation for nano-piezoelectricity

_/ (Pe(u)P) : {C,} : (Pe(5u)P dF+/ (Pe(u)P) : {e,} : (PpE(59))dT

+ / (PE(9)): {e.) : (Pe(Su)P)aT - / (P4E(9)): (K} : (PoE(69))dT
r

r

—_— / BIMT{C}M,B, dI" | 5u® —u®’ / BIM {e}' PyBy dT" | 5¢¢
r r

— ¢ / By Py{e}MpB, dl | bu® —¢°' / ByPy{K}PyBy dl" | 8¢°
(6.15)
[“(5u,89) :/rs . (Pe(5u)P) dF+/ws  (PyE(89)) dT
r

r (6.16)

—~su” [ BIMyz,ar+ 80" [ By o, ar

1*(5u,80) — 5ucT / NTEdT + / NTbdQ | — 5¢°T / NTgdQ  (6.17)
Q Q

where B, and By are strain-displacement and electric field-potential matrix respec-

tively. The projection tensor P and transformation matrix M, are as defined in litera-
131,94
ture "~ 7.

6.4 XFEM formulation for nano-piezoelectricity

In this work, we utilized the extended finite element method (XFEM), to discretize the
finite element equations given previously in Eqgs. (6.14),(6.15),(6.16),(6.17) and the
weak form (6.12). We utilize XFEM, rather than the standard FEM in the present
work due to its ability to represent evolving interfaces and discontinuities, which is
essential in the topology optimization process.

The displacement field, u”* and electric potential field, ¢” for a piezoelectric mate-
rial in the XFEM formulation are expressed as:

"x) = Y NXui+ Y Y M (X)alV EN (6.18)
i€l N=1leL
=Y Ni(X)9; + Z Y nx)aMEN) (6.19)
iel =1leL
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6.5 Topology optimization of piezoelectric nano energy harvesters

where a; and @; are the additional degrees of freedom that account for the jump in
displacement and electric potential field, respectively, n. denotes the number of inclu-
sion interfaces, J is the set of all nodes whose support is cut by the material interface.
FW) in equations (6.18) and (6.19) is absolute signed distance function values from
the interfaces. Substituting the test and trial functions (6.18) and (6.19), into the weak
form (6.13) yields the final discrete system of equations:

(Kb, + K5, )u® + (K5, +K5,)9° = —(f5 + f2) (6.20)

(K2, + K5, ul+ (K5, +K54)9° = — (g5 + 82 (6.21)

where the specific form of the bulk and surface stiffness matrices can be found in
appendix B.2. The piezoelectric energy harvesters we consider are thin flexible struc-
tures, and so a Kirchoff plate theory adopted in Erturk et al. >3 is employed in this work.
Details are given in the appendix B.3.

6.5 Topology optimization of piezoelectric nano energy
harvesters

6.5.1 Objective function

A common objective function in topology optimization of piezoelectric energy har-
vesters is the maximization of energy conversion. The electromechanical coupling
coefficient (EMCC), k is defined as 132

K= L0
I, I,

(6.22)

where I1,, is elasto-dielectric energy, I1, and I1; are the stored elastic and dielectric
energy respectively.

m,, — / e(u) e E(9)dQ (6.23)
Q
I, = | eu)’Ce(u)dQ (6.24)
Q
I, = / E(¢) xE(¢)dQ (6.25)
Q
The energy harvesting device is assumed to be subjected only to mechanical static load
and so the EMCC may be rewritten as3>,
I,
K= 6.26
0 (6.26)
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6.5 Topology optimization of piezoelectric nano energy harvesters

The higher the coupling coefficient higher the energy conversion and thereby better the
performance of the energy harvesting device. The shape and topology of the piezoelec-
tric layer is modified such as maximum energy conversion is obtained. The geometry
of the piezoelectric layer is defined by the level set function. So the design variable in
this optimization problem is the level set function, ®. The objective function is ,

1 I

Minimize J(®P) = 2= (6.27)
d

Subject to /QdQ—V:O (6.28)
a(u,¢,0u,00)+as(u,¢,0u,09) =—I;(6u,00)+1(du,09) (6.29)

The optimum configuration is obtained by using the level set based topology optimiza-
tion method described in the following section.

6.5.2 Level set method and sensitivity analysis

In Osher et al.'?7 the level set method (LSM) is proposed, which is a numerical tech-
nique to track moving interfaces and shapes. The LSM has been used in structural
sensitivity, analysis, i.e. by Allaire et al?® and Wang et al.!33. In topology optimiza-
tion, the LSM is valuable as it enables several initial defined voids to merge, move and
change shapes leading to a modified topology of the structure that minimizes the ob-
jective function. In LSM, optimal structures obtained are free from grayscale, since the
structural boundaries are represented as the iso-surface of level set function. Level set
function is dynamically updated at each time step by solving Hamilton-Jacobi partial
differential equation to minimize the objective function.

2 el (6.30)
The above H-J equation is solved to obtain the updated level set function and thereby
the updated topology of the design structure. More details on level set based TO for
nano structures may be found in Nanthakumar et al 1!, The velocity to update level set
function, V,, is obtained by performing sensitivity analysis as discussed subsequently.
The material derivative approach and the related lemmas presented in Choi et al.!'!?
are adopted to determine the material time derivative of the objective function (see B.1
for details).

J— He(”a ) B He(u7u)nd(¢a¢) 6.31)
I ) I, (¢ ) ¢ )2

a(9,0
C1 I (u,u) +Co Ty( ¢, 9) (6.32)

<
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6.5 Topology optimization of piezoelectric nano energy harvesters

where,
He(u,u):/ 2£(u’)T:Cb”lkze(u)dQ+/£(u)T:Cb“lk:s(u)VndF
Q r
+ / 2&5(u)T : C*: g5(u)dl’ (6.33)
r

+/F[V(ss(u)T L C es(u)) - n+ (€5 ()T C : £5(u))N)] VadT

Hd(q),q)):/QzE((p’)T : xb"lk:E(q))dQJr/rE((p)T kP . E()V,dT
+/FZES(¢’)T . x°: Eg(¢)dl (6.34)

+ [[VE@) & Ea())-n+ (Ealw) : & E(9))0)] Vil
1

C = (6.35)
Hd(‘Pa q))
T, (u,u)
CG=——F7-—""7"5 (6.36)
Hd((pa (p)z
The augmented Lagrangian, L defining the unconstrained optimization problem is
L=J(u,¢,Q)+x(Q) (6.37)
The shape derivative of augmented Lagrangian L is defined as
L'=J'(u,9,Q)+2'(Q) (6.38)
J = /G.VndF (6.39)
G :/ C e(u')T : Chk g (u) dQ +/C1 gs(u)" : C°: g5(u)dl
Q r
+/ CE$) : xb”lk:E(¢)dQ+/C2Es((b)T K Ey(¢)dT
Q r
—/es(w)rs-ndF—/ss(u)T:(Cs:ss(w)-ndl"
r r
+/F£s(u)T:eST :Es(w)-ndr+/rEs(¢)T:eszes(w)ndr (6.40)
+/Es )Tk Eg(y) ndF—/ e(u)’ - Clk: g(w)dQ
Q
/ P E(y )dF+/ E(9)": "™ : g(w)dT
Q

+/ E(@)" : "k E(y)dQ
Q
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6.6 Numerical Examples

Table 6.1: Electromechanical properties of bulk ZnO
Elastic Constants Piezoelectric constants Dielectric constants

C11=206 GPa e31=-0.58 C/m*>  x11=8.11 C/(GVm)
C12=117 GPa ex3=1.55C/m?>  Kk33=11.2C/(GVm)
C13=118 GPa e15=0.48 C/m?

C33=211 GPa

Cy4=44.3 GPu

Table 6.2: Electromechanical properties of surface ZnO
Elastic Constants Piezoelectric constants

Cl =442 N/m  ¢,=0216C/m

CL=142N/m  €,=0451C/m

C=142N/m  ¢.=0253C/m
C5;=35N/m

CL,=11.7N/m

Based on steepest descent direction
G — _Vn

6.41
J/z—/v,fdrgo (04D
r
In equation A.9, u and ¢ are the actual variables while w and y are the adjoint vari-
ables.

6.6 Numerical Examples

In this section we study the energy harvesting capability of a piezoelectric nanobeam,
nanoplate and a cantilever energy harvester with nanoscale piezoelectric layers. We
also perform topology optimization of these piezoelectric structures. We consider ex-
amples both with and without surface piezoelectricity to examine the effects that sur-
face effects have on the energy harvesting ability. In all examples, ZnO is the piezo-
electric material of choice, where the surface elastic and piezoelectric properties of
ZnO are shown in tables 6.1 and 6.2%7.
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— Analytical
1.05¢ *  XFEM

0 50 100 150 200
thickness, h (nm)

Figure 6.1: Variation of nominal energy conversion factor with nanobeam depth, with
the beam aspect ratio constant at 20.

6.6.1 Piezoelectric nano beam
6.6.1.1 Finite Element Model Validation

In our first example, we consider a two-dimensional cantilever beam of dimension
200x 10 nm subject to a constant mechanical load at the free end. The beam is meshed
with 200 x 10, 4-node bilinear quadrilateral finite elements, and the poling direction
is vertically upwards along the thickness direction. The bulk energy conversion factor

(ECF,) for this case can be analytically obtained by the following expression*!,

2
€3
(Ciikss+e€3))

The expression including surface effects can be obtained based on the derivation given
in Jiang et al.*! for this example problem as,

ECF, = (6.42)

he%] +2e31€3;
h(Crikss +e3)) +2(CY K33 +e31€3))

Figure 6.1 shows the variation of ECF with increasing nanobeam depth for a constant
aspect ratio of 20, where the y-axis of the figure plots the nominal ECF (i.e.) the value
ECF;/ECF,. This aspect ratio is chosen as it is clear in plane strain conditions from
Eq. 6.43 that the ECF is dependent only on the nanobeam thickness. As expected the
surface elastic and piezoelectric effects lose their significance as the depth increases.
The plot shows good agreement between XFEM and the analytical results.

ECF; = (6.43)
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6.6 Numerical Examples

size |[nominal EMCC (C*,e* # 0) nominal EMCC (e* # 0)
40 x 10 1.16
80 x 20 1.034
160 x 40 0.98 1.05

Table 6.3: Nominal EMCC of optimized piezoelectric nano beam under open circuit
condition

size |nominal EMCC (C*,¢® # 0)
40 x 10 2.4
80 x 20 2.2
160 x 40 2.1

Table 6.4: Nominal EMCC of optimized piezoelectric nano beam under closed circuit
condition

6.6.1.2 Optimization of Piezoelectric Nanobeam

We now perform topology optimization of the two-dimensional nanobeams under both
open and closed circuit boundary conditions to examine not only the enhancements in
ECF that are possible, but also to delineate the relative effects of surface piezoelectric-
ity and elasticity on the ECF. To do so, we again subject the cantilever nanobeam to a
mechanical point load acting vertically downwards at its free end, while the nanobeam
is poled along the thickness direction. The nanobeam is placed over a substrate made
of material with a Young’s modulus of E=150 GPa, where the substrate dimensions are
the same as the nanobeam, though surface effects on the substrate are neglected. Elec-
trodes are placed above and below the nanobeam; open circuit conditions are achieved
by grounding the bottom electrode while the top electrode is free, while in closed cir-
cuit both the top and bottom electrodes are grounded.

Tables 6.3 and 6.4 show the various sizes considered for both open and closed cir-
cuit electrical boundary conditions. Different thicknesses were chosen to illustrate the
size-dependent nature of the surface effects. There are several noticeable and interest-
ing trends, which we now discuss.

The first effect is that, for both open and closed circuit, the nominal EMCC de-
creases with increasing nanobeam thickness. In fact, for some cases the optimized
EMCC is actually less than one, which means that the optimized topology results in
a smaller increase in energy conversion than would be obtained by just keeping the
pre-optimized, solid beam.

When voids are created in the material through the topology optimization process,
both surface piezoelectric and surface elastic effects compete to drive the trend in en-
ergy conversion, as illustrated in Table 6.3 for the open circuit boundary condition.
To delineate these effects, we considered two separate cases, first including both sur-
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6.6 Numerical Examples

Figure 6.2: Optimal topology for maximizing ECF of a piezoelectric nano cantilever
beam, 4010 nm.

face piezoelectric and elastic effects (C°, ¢ # 0), and then considering only surface
piezoelectric effects (¢* # 0). As shown in Table 6.3, when surface elastic constants
are ignored, the nominal EMCC increases. This demonstrates that the surface elastic
effects in ZnO act to reduce the energy conversion ability of the nanobeams.

The second effect is that the energy conversion is substantially higher for the
closed circuit boundary condition, which corresponds to the flow of current across the
nanobeam cross section, as compared to the open circuit boundary condition, which
corresponds to a build up of voltage across the nanobeam cross section.

A cantilever nano beam (40x 10 nm) made of Zinc Oxide is optimized to maximise
energy conversion. The beam is meshed with 120x30 Q4 elements. The nominal
EMCC (ratio of EMCC with and without including surface effects) of the cantilever
nano beam before optimization is 1.05 for open circuit and 1.16 for closed circuit.

The optimised topology of 40x 10 nm beam with surface effects is shown in fig-
ure 6.2. Under open circuit condition, the nominal EMCC of the optimised topology
of the cantilever nano beam 40X 10 nm (aspect ratio = 4) is 1.16. The size of the nano
piezoelectric beam is increased to 80x20 nm, 160x40 nm with the same aspect ratio
of 4. The nominal EMCC obtained for 8020 nm and 160x40 nm are 1.04 and 0.98
respectively. The nominal EMCC of 160x40 nm, when surface elasticity is excluded
and only when surface piezoelectricity is included, is 1.05.

Under closed circuit condition, the nominal EMCC of the optimised topology of
the cantilever nano beam 40x 10 nm (aspect ratio = 4) is 2.4. The size of the nano
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6.6 Numerical Examples

Figure 6.3: A cantilever energy harvester with piezoelectric nano layer subjected to
point load, F at free end.

piezoelectric beam is increased to 80x20 nm, 160x40 nm with the same aspect ratio
of 4. The nominal EMCC obtained for 8020 nm and 160x40 nm are 2.2 and 2.1
respectively.

6.6.2 Three-Dimensional Piezoelectric Nanoplate

In this section, we examine the piezoelectric behavior of a three-dimensional nanoplate
on substrate, as illustrated in Figure 6.3. We refer to this system as an energy harvest-
ing device (EHD) in the following discussion. This particular geometry was chosen
because while the two-dimensional nanobeam geometry studied previously is simple,
manufacturing the complex shapes that emerge from the topology optimization may
pose significant challenges, particularly with a beam thickness of around 10 nm. In
this example, the in-plane dimensions of the nano plate are kept fixed with dimensions
in the hundreds of nanometers. Thus, the holes that are formed through the thickness,
which have feature sizes larger than tens of nanometers, could likely be lithographi-
cally manufactured using technology that is available today.

The EHD is comprised of a substrate and a piezoelectric layer. The substrate is
assumed to be made of aluminum, and the thickness of the substrate, Hy and the piezo-
electric layer, H), are taken to be 125 nm and 100 nm respectively. The length and
width of this EHD is assumed to be 4x2 um. Two electrical boundary conditions are
considered, with electrodes on the top of the nanoplate and underneath the substrate. In
boundary condition A, both the top and bottom electrodes are grounded. In boundary
condition B, only the bottom electrode is grounded. The nominal EMCC under bound-
ary condition A and B is 1.03 and 1.01 respectively. The nominal EMCC is close to
one because the thickness of the piezo layer large enough such that the surface effects
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have a minimal effect on the EMCC.

We then optimize the geometry of the piezoelectric nanoplate to maximize the
EMCC of the EHD, while the geometry and shape of the substrate remains unchanged.
The optimized topology of the 100 nm thick piezoelectric nanoplate is shown in fig-
ure 6.4(a). The nominal EMCC of this optimized EHD is 1.32 and 1.3 under boundary
conditions A and B respectively.

To examine size effects on the EMCC and optimized topology, we then studied
the effect of replacing the 100 nm nanoplate with a 10 nm thick nanoplate, with the
optimized topology for the 10 nm nanoplate shown in Figure 6.4(b). The nominal
EMCC of the optimized EHD for 10 nm thick piezoelectric layer is 1.7 and 1.44 under
boundary conditions A and B respectively.

Topology optimization and surface effects improve the efficiency of the EHDs if the
thickness of the attached piezoelectric layer is reduced below about 100 nm. Manufac-
turing such optimum topologies is practically possible as the nano thick cross section
remains uniform throughout. The optimized topology for EHD with 10 nm nano plate
has more material removal compared to EHD with 100 nm nano plate and the EHD
with 10 nm nano plate exhibits increased energy conversion efficiency comparatively.
Figure 6.5 shows the variation of nominal EMCC with thickness of piezo layer under
open and closed circuit conditions.

6.6.3 Piezoelectric nano bimorph

Our final example considers a nanoscale bimorph, which as shown in Figure 6.6 is
comprised of two cantilever piezoelectric nanoplates each of dimension 600x300x 10
nm placed one over another subjected to point load at the free end. Surface elastic-
ity and surface piezoelectricity are accounted for at the top and bottom surfaces of
the bimorph, while interface effects between the two nanoplates are neglected. Three
electrodes in total, which are placed at the top, middle and bottom of the bimorph, are
present. Under open circuit conditions, the electrode at the middle of the bimorph is
grounded, while under closed circuit conditions, all the electrodes are grounded.

An analytic expression for the deflection of a piezoelectric nanoplate including
surface piezoelectric and elastic effects based on Kirchoff plate theory was recently
given by Jiang et al.*? as

w(x,y) = Z Z Appsin (m_7tx> sin (@> (6.44)
m=1n=1 a b
where 6
_ q
"= (6.45)
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Figure 6.4: Optimized topology (top view) of the piezoelectric layer of an EHD sub-
jected to point load at free end. (a) 100 nm thick nanoplate; (b) 10 nm thick nanoplate.
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Figure 6.5: The variation of nominal EMCC with varying thickness of piezo layer in
EHD under open and closed circuit conditions.

Figure 6.6: A piezoelectric nano cantilever plate subjected to point load, F at free end.
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Figure 6.7: Variation of dimensionless maximum deflection with depth of plate.

~2 3 s 5 2
- e h esiesr\ h mm\4 nmw\4
Y = ST U Y () LG L B (—) (_)
[(Cll + K’33> 12 + <C11 + K33 2 a + b

2 3 s = 2,24
-+ [<c12+%—33)g+(2c36+c§2+ E33 )l’l }X(W>

2 2
q refers to uniformly distributed load over the plate; ¢;; = ¢11 — B G =cpp— B

5 €33’ €33’
~ ci3e - €
e31 =e31 — 133333. K33 = K33 — % and m,n=1,3,5 ...

The FE model of the piezoelectgc nano plate is performed by an equivalent 2D model.

The approximation of the electric potential field is made by discretizing the plate
into several sublayers with linear variation of electric potential within each sublayer*>.
The number of sublayers for electric potential discretizaton is taken to be ten. The
piezoelectric plate considered in this example is poled vertically upwards along the
thickness direction as shown in Fig. 6.6. Figure 6.7 shows good agreement between
the analytic and FE solutions, where the dimensions of the nano plate were 200x50
nm for the length and width, while the depth was varied from 10 to 100 nm.

Before performing topology optimization, it was determined that the nominal EMCC
of the piezoelectric bimorph, where each plate had dimension 600x300x10 nm, is
1.25 and 1.07 under closed and open circuit conditions respectively.

We then perform topology optimization of the piezoelectric bimorph to maximize
energy conversion. Level set optimization method is adopted and the velocity of level
sets is determined by solving an adjoint problem. The volume fraction of the optimized
topology is 0.69. The optimized topology of the cantilever piezoelectric nano bimorph

(6.46)
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is shown in figure 6.8. The optimized topology has more material concentrated close
to the fixed end because of higher strain in this region. The ratio of EMCC of the opti-
mized nano cantilever plate with surface effects to a solid nano bimorph plate without
surface effects is 1.6 and 1.32 under closed and open circuit conditions respectively.

Maintaining the ratio between dimensions, the depth of each bmorph plate is in-
creased to 20 nm. The ratio of EMCC of the optimized nano cantilever bimorph to
a solid nano bimorph without surface effects is 1.45 and 1.27 under closed and open
circuit conditions respectively. The optimized topology of the cantilever piezoelectric
nano bimorph is shown in figure 6.8. It is clear from the results that as we approach
nano scale the inclusion of surface effects leads to increase in efficiency of a nano
plate.

The optimized topology without including surface effects for a bimorph made of
plates of size 600x300x 10 nm is shown in figure 6.9. When the ratio between the di-
mensions of the plate is maintained, the optimal topology remains unchanged provided
the surface effects are not included.

The inclusion of surface effects has led to removal of more material close to the
fixed end. In figure 6.8(a), material is removed upto 150 nm from the clamped end.
In figure 6.8(b), material is removed upto around (2 x) 225 nm from the clamped
end, while for a cantilever plate without including surface effects material is removed
only upto 250 nm from the clamped end as shown in figure 6.9. In figure 6.9, it can
be seen that more material is removed far from the clamped end. When the surface
piezoelectric effects are included increase in energy conversion occurs inspite of more
material removal compared to a nano piezoelectric plate without surface effects.

6.7 Conclusion

In this work piezoelectric nano structures are used as components of energy harvesting
devices. The size dependent behaviour of ZnO has led to increased energy conversion
as we approach nano scale. Finite element formulation for analysis of such piezoelec-
tric nano beams and piezoelectric nano plates is presented. The numerical examples
exhibit the ability of nano sized piezoelectric structures in increasing the efficiency of
EHDs. It is shown that the energy conversion can further be improved by performing
optimization of the geometry of the piezoelectric layers. As an initial study the topol-
ogy optimization is performed for static loads imposed at free end of cantilever energy
harvesters. The future work may deal with the behaviour of piezoelectric nano based
energy harvesters to vibration in the vicinity of resonant modes.
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Figure 6.8: (a) Optimized topology (top view) of a 600x300x 10 nm cantilever piezo-
electric nano bimorph plate subjected to point load at free end including surface effects;
(b) Optimized topology (top view) of a 600x300x 10 nm cantilever piezoelectric nano
bimorph plate subjected to point load at free end including surface effects.
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Figure 6.9: Optimized topology (top view) of same geometry but without surface ef-
fects.
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Chapter 7

Conclusions

7.1 Summary of findings

This dissertation is devoted to develop an algorithm to solve inverse and optimization
problems in piezoelectricity. Piezoelectric materials are widely used as sensors, actu-
ators and components in energy harvesters. If there are inherent flaws in these brittle
ceramics, they may lead to premature failure during service. The main work in this the-
sis is the coupled extended finite element method and level set algorithm for solving
the inverse problem of detecting flaws in the piezoelectric domain using displacement
and electric potential measurements made along the external boundary.

Energy harvesting in nano scale involves converting external kinetic energy into elec-
trical energy based on energy conversion by nano structured piezoelectric materials.
Surface elasticity and surface piezoelectricity lead to different behaviour in nano piezo-
electric materials compared to their bulk counterparts. The influence of these surface
effects on the energy conversion of nano piezoelectric structures is studied. An attempt
to increase energy conversion by performing topology optimization of these nano com-
ponents is made. From the work that has been done, the findings are summarized as
follows:

e Inverse problems

— XFEM-MCS methodology : The coupled XFEM and MCS methodology
is adopted to detect the location of an edge crack. The number of param-
eters to define an edge crack in a two dimensional structure is two. The
method is extended to determine an interior crack. In this case the number
of parameters to be determined is four. An elliptical void which requires
four parameters and an irregular void requiring five parameters are suc-
cessfully detected by using this methodology. In case of irregular void, an
equivalent elliptical void is determined. The number of iterations depend
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7.1 Summary of findings

on number of parameters. The method performs with a parametric error of
less than 5% for a noise value of upto 4%. In the MCS method, the maxi-
mum number of function evaluations suggested is 50 N> 4 10, where N is
the number of parameters to be determined.

— XFEM - level set methodology for detecting voids : The XFEM and level
set coupled method adopted in shape optimization is extended to detect
flaws in two dimensional piezoelectric plate. The domain is initialized with
circular voids uniformly distributed all over the domain. The initial level
set function gradually changes with iteration to define the shape of the tar-
get void. A square void in a domain is detected and then multiple voids are
detected. The method does not require initial information about number of
voids. The method can detect the number of voids in the domain , their lo-
cation and approximate shape. The method is also adopted to find location
of cracks in which the cracks are approximated as flat elliptical voids. In
the examples shown in this work , the method is able to detect (a) a square
void, (b) three voids with different shapes, (c) locations of two cracks, (d)
location of two cracks and a void in a piezoelectric domain.

— XFEM - level set methodology for detecting inclusions : The XFEM and
level set method is extended to determine the location of inclusions in two
and three dimensional structures. The domain is initialized with circular
inclusions in two dimension and spherical inclusions in three dimension
structures. Multiple inclusions are detected in a piezoelectric plate and in
a piezoelectric cube. Multiple level sets are adopted to detect inclusions
made of more than one material. The multiple level set is adopted to detect
the location and approximate shape of two inclusions each made of differ-
ent material compared to the domain. In case of two and three dimensional
inclusion detection problems the method remains stable upto a noise of 5%
because of Total Variation regularization.

e Optimization problems

— Nano elastic structures : The surface effects do not have significant in-
fluence on the optimized topology for the minimum compliance objective
function. While the optimized topology obtained for the minimum least
square error objective function is different before and after including the
surface effects. A nano cantilever beam and a nano fixed beam are opti-
mized. When the depth of beams approach 10 nm, stiffness ratio is more
than 8% which in turn leads to significant difference in optimum topology
with and without surface effects.

— Nano piezoelectric structures : The surface piezoelectricity plays a signif-
icant role in increasing the energy conversion of piezoelectric nano beams
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and nano plates. The comparison between different electrical boundary
conditions show that under closed circuit condition the nominal electrome-
chanical coupling coefficient is better than the one under open circuit con-
dition. A nominal energy conversion of upto 2.3 is obtained when topology
optimization of nano piezoelectric beam of depth 10 nm, is optimized un-
der closed circuit condition. The optimization of piezoelectric nano plate
layer in an energy harvesting device leads to a nominal electromechanical
coupling coefficient of upto 1.7 for a thickness of 10 nm.

7.2 Scope for future work

In the presented work inverse problem of void, crack and inclusion detection in piezo-
electric structures is solved. In addition optimization of topology of nano piezoelectric
layers in an energy harvesting device is performed to enhance energy conversion. A
few possible extensions to the current work can be as follows:

e The inverse problem relies mainly on the static response of the piezoelectric
domain. The dynamic response of piezoelectric structure such as resonant fre-
quency or electrical impedance may also be utilised to determine the defects in
the domain. Measuring such parameters are quite easier practically compared to
measuring displacements and potentials at certain discrete points.

e The XFEM - level set methodology developed for detecting defects is not re-
stricted to electromechanical problems. The method may be extended to other
coupled fields like hydromechanical problems.

e In practical applications the external kinetic energy is converted into cyclic os-
cillations in case of nano energy harvesters. As an initial study the topology
optimization of nano piezoelectric plates is performed for static loads imposed
at free end of cantilever energy harvesters. The future work may deal with the
behaviour of piezoelectric nano based energy harvesters to vibration in the vicin-
ity of resonant modes.

e The XFEM - level set methodology adopted relies on initialization. Several level
set methods are proposed to overcome this problem of optimal topology depend-
ing on initial topology. So the proposed algorithm for optimization and inverse
problems may be further improved to negate initialization step.
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Appendix A

A.1 Derivation of shape derivative

Firstly, the total potential energy objective function is considered. The objective func-
tion and its constraints are as follows,

Minimize J(Q) = [u.bdQ+ [ u.tdT
Q I'n
subject to :

a(u,ou,Q)+as(u,ou,Q) = —I;(u, Q) +1(u,Q)

(i.e.)

[e(8u) : Ct"*: g(u) dQ + [(Pe(Su)P) : Ts dT+

Q r

J(Pe(6u)P):C*: (Pe(u)P)dl' = [ubdQ+ [ u.tdl.
r Q Iy
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A.1 Derivation of shape derivative

Q-
—~

(u,w,Q) + as(u w,Q) + [((w,Q)
e(u) : CHk . g(w)dQ + / ) CPE - g (w')dQ +

T T T T S T B

e(u) : CHk . g(w)V,dT + / Pe(W)P: 7,dT+

(VS(PG(W)P Ts) ‘n—+ K(PS(W)P : TS))Vndr+

(Vs(Pe(u)P) : C*: Pe(w)P)-nV,dT'+
(Pe(u)P) : C*: Vy(Pe(W)P)) -nV,dl'+

k(Pe(u)P : C* : P€(w)P)V,dr.

i(w,Q) = / W bdQ+ / w.bV,dT+ / w.tdT

—+ /(V(w.t).n+ KWJ) V,dll
I'y

f:/u’.bdQ+/u.andF+/(V(u.t).n+ ku.t)V,dT.

Q

The Lagrangian of the objective functional is,
L=J+1w,Q)—a(u,w,Q)—as(u,w,Q)—I;(w,Q).
The material derivative of the Lagrangian is defined as ,

L=J+Iw,Q)—a(u,w,Q)—d;(u,w,Q) —I(w,Q).
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A.1 Derivation of shape derivative

All the terms that contain w' in the material derivative of Lagrangian are collected and
the sum of these terms is set to zero, to get the weak form of the state equation,

/w’.b dF+/w’.t dr = /s(u) . Pk g(w') dQ

n / Pe(W)P: Ty gr (A.6)

+/(P£(u)P :C*: Pe(W)P) dT.

All the terms that contain &’ in the material derivative of Lagrangian are collected and
the sum of these terms is set to zero, to get the weak form of the adjoint equation,

/u bdF+/utdF / ) CPE - g (w) dQ +

(A.7)
/ (Pe(u/)P: C* : Pe(w)P) dT.
I

Considering that I'y and I'p are not modified in the optimization process and as-
suming that the body forces are zero, the shape derivative of the objective functional
can be obtained from equation B.9,

= [ G.V,dT (A.8)
/

where,
£(u) : CPIE . g(w) dT — / K(PE(W)P: T5)) g1
Q

7=
(A.9)
e

k(P S . Pe(w)P) dT

The G obtained can be considered as the negative of velocity, V, required in order to
optimize the level set function. Therefore,

_ / G2dr.. (A.10)

From the above equation it is evident that the derivative is negative (i.e.) it ensures
decrease in the objective function with iterations.
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A.1 Derivation of shape derivative

If the objective function is a least square error compared to target displacement as
shown below,

J(Q) = (/|u—uo|2dr)% (A11)
I'n

J=co- (/2|u— Uojuar+ [ (V(ju-ugp),
I'y I'n (A12)

+ K|u — ug)?) V, dI.

Substituting in equation B.9 and collecting terms with u’, the weak form of the adjoint
can be obtained as,

¢ / 2\ — ug| u'dT" = / £(u)CPr e (w)dQ
Iy

¢ (A.13)
+ /(Pe(u')P :C*: Pe(w)P)dl
r

where, .
co = E(/|u—uo|2dr)—% (A.14)
I'n
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Appendix B

B.1 Derivation of adjoint problem

The objective function and its constraints are as follows,
e 1
Minimize J(®) =5 = — (B.1)

Subject to /QdQ—V =0 (B.2)
a(u,@,6u,89)+a;(u,¢,6u,69)=—1I;(6u,6¢9)+1(6u,69) (B.3)

a(u, ¢, w, v)
7 (u) : CPF - g(w)dQ + / ) CPIk - g (w)dQ +

—/eu el - E dQ—/ u) T.e dQ/ )V, dl
Q Q

el (u) : C*: g(w) - V,dl' — /E(¢') etk g(w)dQ —

{O\

E(9): ™ e(w)dQ - /E(¢)T- I g(w) VdT — [ B¢ x: B(w)d0-

O O T

E(¢) ¥)dQ — /E ) - V,dl

(B.4)
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B.1 Derivation of adjoint problem

dS(uv ¢7Wa 'I,) =
/as(u’)T :Cs: es(w)dF+/8S(u)T :Cs : €5(W)dT+
r

I
/[V(ss(u) .Cy: e5(W)) -n+(€5(u) : Cs : £5(W)) - 1] - Vi dT"
I

—/es(u’)T el {Eg(y)dll — /es(u)T el (Eg(y')dl
r r

/[V(«‘?s(u)Tif-’ir LE(W))) - + (5(w)" :eg : Es(W))n] - VydD
r

I(w) :F/es(w’)P: Tsdr+/r(Vs(8s(w) £ Tg)-n
+ 1 (&5(W) : T5))Vadl

i(w) = / W' .bdQ + / wbV,dl+ / Ww.tdT
Q r Iy

—l—/(V(w.t).n—i—le.t) V,dl
I'n

The Lagrangian of the objective functional is,
L= J—l—l(W) —a(u,(p,w, II,) _as(u7¢7w7 W) - lS<W)
The material derivative of the Lagrangian is defined as ,

L=J+i(w)—a(u,é,w,¥)—d,(u,¢,w,y)—is(w).

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

All the terms that contain u’ and ¢’ in the material derivative of Lagrangian are col-
lected and the sum of these terms is set to zero, to get the weak form of the adjoint
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B.2 Bulk and Surface Stiffness Matrices

equation,

/E(¢')T eIk g (w)dQ — /E(¢')T Kk E(Y)dO—
Q Q
/Es((p’)T ces: Es(w) dF—/ES((p')T : Ks: Eqwdl
:/2c2 E(¢)' :x:E(¢)d

B.2 Bulk and Surface Stiffness Matrices

The bulk and surface stiffness matrices are defined as follows,

= / BT {C}B,dQ

K, = / BIm,T{C*I\M,B, dT

Kb = / Bj{e}B,dQ

= / ByP;" {e;}M,B,dT
r

Kb, = / B]{e}" BydQ

o= / BIMpT {e}" PyBydl
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B.3 Finite element modelling of piezoelectric nano energy harvester plate

T
Kby — - [ By{x}Bgas

o (B.15)
K5, = —/B¢P {K;}PBydl

— / BTM, 1, dT

For — / NT 74T + / NT bdQ

(B.16)
/ BIPT @, dT

ext /NT qu

N, O
Bu - 0 Ny
Ny Ny (B.17)

Nx
(%)

B.3 Finite element modelling of piezoelectric nano en-
ergy harvester plate

Piezoelectric energy harvesters are usually thin flexible structures and so Kirchoff plate
theory adopted in Erturk et al.? is employed in this work. A rectangular finite element
with three mechanical degrees of freedom (u,v and w in X,y and z directions) is adopted
to model displacements in substructure and nano-piezo layer. The transverse displace-
ment is assumed to vary in polynomial form in an element,

w=Ta (B.18)
where the polynomial terms,
T = [lxyx2 xy v 2 Py y? x3yxy3] (B.19)

a is a vector of generalized coordinates. w; in terms of nodal displacements can written
as
w=NW (B.20)
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Figure B.1: Discretization for electric potential field with top and bottom layers having
surface material properties

where N = TA™!, A is a 12X12 transformation matrix comprising nodal values of T
and its derivatives while W is a vector of nodal variables. The vector of transverse
displacement and rotations and vector of curvatures are as follows,

T
ow Jdw _
[—ax 5 w} = B,W (B.21)
Pw Pw o ~Pw] T
[_a;; Tv gy ] —BW (B.22)

Approximation of electric potential field can be obtained by discretizing the nano-
piezoelectric plate into sublayers as shown in figure B.1 with linear potential distribu-
tion across the thickness for each sublayer as presented in Wang et al*3.

The electric potential field across the thickness can be defined as,

9" () = Nk ¢* (B.23)

where N’(; is the shape function of the electric potential function and ¢* denotes electric
potential at top and bottom surfaces of the sublayer.
|
N¢ = f[z—zi Zit+1 — 2 (B.24)

1

where ¢; is the thickness of the sublayer. The electric field for each sublayer element is
—k
E*=B¢ (B.25)

where By, = 1[I —1] and oF = [p% ¢+
The element mass and stiffness matrices as given in Erturk et al>? are,

M= / BmZ' pZBpdQ (B.26)
Q
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B.3 Finite element modelling of piezoelectric nano energy harvester plate

Jo?BLCB,dQ [ozBLe BydQ
K= (B.27)
Jo7ByeBudQ [ ByKBydQ

C, & and K are the plane stress (2D) constants in terms of 3D material constants33.
The piezoelectric nano plate (PNP) exhibit different surface elastic and surface piezo-
electric behaviour compared to the bulk. The PNP may be assumed to be a bulk plate
with surface elastic constants and surface piezoelectric constants at the top and bottom
sublayers of the discretization for electric potential field.

The surface stiffness matrix may be defined as,

Jo, B, C+CsBydQ; [q 2B, e+ BphidQ,
K, = (B.28)
Jo,2Bpe+&BudQ;  [o ByK+ KBydQ;

where € corresponds to the top and bottom sublayers, z is the distance of the mid-
surface of the top/bottom sublayers from the neutral surface. Cy, é; and Ky are the
surface elastic, piezoelectric and dielectric constants.
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