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Abstract. Many structures in different engineering applications suffer from cracking. In order
to make reliable prognosis about the serviceability of those structures it is of utmost impor-
tance to identify cracks as precisely as possible by non-destructive testing. A novel approach
(XIGA), which combines the Isogeometric Analysis (IGA) and the Extended Finite Element
Method (XFEM) is used for the forward problem, namely the analysis of a cracked material,
see [1]. Applying the NURBS (Non-Uniform Rational B-Spline) based approach from IGA to-
gether with the XFEM allows to describe effectively arbitrarily shaped cracks and avoids the
necessity of remeshing during the crack identification problem. We want to exploit these ad-
vantages for the inverse problem of detecting existing cracks by non-destructive testing, see e.g.
[2]. The quality of the reconstructed cracks however depends on two major issues, namely the
quality of the measured data (measurement error) and the discretization of the crack model.
The first one will be taken into account by applying regularizing methods with a posteriori stop-
ping criteria. The second one is critical in the sense that too few degrees of freedom, i.e. the
number of control points of the NURBS, do not allow for a precise description of the crack. An
increased number of control points, however, increases the number of unknowns in the inverse
analysis and intensifies the ill-posedness. The trade-off between accuracy and stability is aimed
to be found by applying an inverse multilevel algorithm [3, 4] where the identification is started
with short knot vectors which successively will be enlarged during the identification process.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224742364?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

Many materials like concrete or brittle smart materials suffer from cracking caused due to
intensive dynamic loadings. Cracked piezoelectric specimens have e.g. been investigated by X-
Ray inspection, see Figure 1. Due to the very thin and often sharp forms of the cracks, discrete

Figure 1: Cracks inside anisotropic smart materials

crack models are advantagueous to smeared crack approaches. Often, the cracks result from
some extensional and rare loads, e.g. impacts due to accidents or on buildings after earthquakes
while thinking of civil engineering objects. Now after a structure or specimen has been dam-
aged, it is of high importance to know the degree of the damage (e.g. the length and shape of a
crack) to derive whether the structure still has full capacity or not. By non-destructive testing,
e.g. applying moderate loads, one can compare the behavior of the damaged structure to the
behaviour of an undamaged one in means of displacements, accelerations, modal values and
draw conclusions about the severity of the damage.

Previous works on identifying discrete cracks are e.g. reported in [2] where the authors use an
XFEM approach and apply genetic algorithms to detect the cracks from some measurements on
the boundaries of the specimens where the cracks are assumed to be straight lines. This may in
many cases be a sufficient approximation. In some cases however, see e.g. Figure 1, the cracks
exhibit some curved forms.

The aim of this work is to develop a strategy to uniquely identify cracks of arbitrary shape. In
this work we propose an efficient strategy which shall allow to identify cracks without branch-
ing. The model itself consits of an extended isogeometric analysis which allows to model
moving cracks without the need of remeshing.
For the identification one has to consider the ill-posedness of the problem, which will be done
by applying regularizing iterative methods in a multilevel setting.

2 XIGA ANALYSIS

Recently, two papers appeared which treat the combination of the Extended Finite Element
Method with Isogeometric Analysis [1, 5]. In these works advantages of the XFEM and IGA
approaches to a so called Extended Isogeometric Analysis (XIGA) are brought together. While
XFEM is capable of describing discontinuities by enriching the shape functions along the crack
by the Heaviside function and analytical solutions around the crack tip, the IGA allows for
a very flexible geometrical description of both, the computational domain and the crack [6].
Further, the IGA has been shown to be superior to classsical FEM in terms of robustness and
accuracy for may problems.
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The approximated displacement field uh in case of an XIGA is given by

uh(ξ1, ξ2) =
nen∑
i=1

Rps,qs
i (ξ1, ξ2)ui +

nH∑
j=1

Rps,qs
j (ξ1, ξ2)Haj (1)

+

nQ∑
k=1

Rps,qs
k (ξ1, ξ2)

4∑
α=1

Qαb
α
k ,

where R are the spline based ansatz functions of order ps and qs and (ξ1, ξ2) coordinates in
parametric space. With nen, nH , nQ the numbers of non-zero basis functions, the number of nen
basis functions that have a crack face (but no crack tip) and the number of nen basis functions
around the crack tip are denoted, respectively.
The H - Heaviside function is a common tool in XFEM analysis, taking values +1 if the point
under consideration is above the crack and−1 in the opposite case. For the crack tip enrichment
functions the following basis is appropriate

Q(r, θ) = {Q1, Q2, Q3, Q4} =

{√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin θ sin

θ

2
,
√
r sin θ cos

θ

2

}
,

where polar coordinates are considered with r =
√
x2

1 + x2
2 being the distance to the crack and

θ = arctan(x2/x1), see Figure 2.

Figure 2: A two dimensional medium with a crack, previously published in [1].

The NURBS - functions {Rp
i } are defined as

Rp
i (ξ) =

Ni,p(ξ)wi∑n
ii=1Nii,p(ξ)wii

(2)

with the recursive definition of the B-spline basis functions

Ni,0(ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 otherwise (3)

and

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ), for p = 1, 2, 3, .... (4)
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For more details we refer to [1]. The physical model is a two-dimensional elastostatic problem
derived from the following equilibrium equations

BTσ + b = 0 in Ω,

together with natural boundary conditions

σn = T , on Γt

and essential boundary conditions
u = u, on Γu

compare with Fig. 2
A point on a crack is modelled with the help of NURBS curves C. Those are defined by a set
of N control points πi := (Xi,1, Xi,2), i.e.

C(ξ) =
N∑
i=1

Ri(ξ)(πi)

The vector of control points handling the geometrical description of the crack is denoted by
pN := (π1, ..., πi, ....πN). This vector will the sought-for quantity in the inverse crack analysis.

3 CRACK IDENTIFICATION

In the sequel it will be assumed that some structure suffered from cracking due to an extreme
load. The task is now, to identify the position and form of the crack, i.e. the exact determination
of the entries of the set of control points pN of the crack by measurements on the boundary of
the structure which is assumed to be stressed by moderate loads which do not cause the crack
further to grow. We define the following forward operator which maps the control points to
displacements on the boundary of the structure

F : X → Y (5)
pN 7→ (u1, u2)|Γ. (6)

Assuming that yδ contains measured data with data error level δ, the inverse problems corre-
sponds to solving for pN in

F (pN) = yδ. (7)

In (5) X denotes the parameter space, i.e. the space of all possible crack forms and Y the
space of measurements (here displacements) which are assumed to in L2(Ω). In the sequel, the
forward operator or parameter-to-solution map F is assumed to be continuous, differentiable
and its Frechét derivative F ′ to be Lipschitz continuous and normalized such that ||F ′(p)|| ≤
1, ∀ p ∈ D(F ). For the measured data we further assume, that the following condition holds

||y − yδ|| ≤ δ,

where y are exact data and δ is an upper bound of the data error, assumed to be estimable.
Solving equations of type (7) is not only an inverse but also an ill-posed problem, as existence
and uniqueness of the solution are not guaranteed. Additionally, high instability may be intro-
duced due to errors in the data, i.e. small perturbations in the data lead to large perturbations
and oscillations in the solution.
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This requires the three strategies:

• As existence is not guaranteed, a solutions in the sense of ,,least-squares” is sought-for,

• As uniqueness is not guaranteed, a close initial guess of the solution needs to be provided,

• As stability is not guaranteed, regularizing methods have to be applied.

3.1 Identification procedure and regularization

In order to solve (7) iterative regularizing methods will be applied. The regularization fol-
lows two strategies

1. Regularization by discretization, see e.g. [7, 8]

2. Regularization by early stopping (a posteriori discrepancy principles), see e.g. [8, 9].

Now, for the solution of (7) modified Landweber Methods are run on finite dimensional sub-
spaces XN of X , i.e. XN := ProjNX of X , where ProjN denotes an orthogonal projection,
i.e.

XN ⊆ X, with X0 ⊆ X1 ⊆ ... ⊆ XN and
⋃
N∈N

XN = X. (8)

Let the union ∪N∈NXN be dense in X . The initial guess is denoted by p0
0 and the first iterate at

level N by p0,δ
N , p† denotes the exact solution. The following local condition is assumed to hold

on each discrete subspace XN

||F (p)− F (ProjNp
†)− F ′(p)(p− ProjNp†)|| ≤ ηN ||F (p)− F (ProjNp

†)|| (9)

for all p ∈ XN ∩ Bρ/2(ProjNp
†) ⊆ D(F ) with ηN ≤

1

4
.

Iterations on every level are defined as follows

pk+1,δ
N = pk,δN + ωk,δN sk,δN , sk,δN := ProjNF

′(pk,δN )∗(yδ − F (pkN)) (10)

where the step-size ωk,δN is chosen as

ωk,δN :=
||yδ − F (pk,δN )||2

||sk,δN ||2
, (11)

which renders the discrete classical Landweber iteration a discrete version of the minimal error
method, see also [10, 11, 12]. The method can be regarded as a gradient-type iteration with
optimal step-length choice. Convergence results and regularizing properties are worked out in
[4, 13] under the given conditions, where an application of the same strategy to recover material
nonlinearities approximated by cubic splines is reported. Instead of the minimal error update
sk,δN an update according to quasi Newton - Methods (Broyden, BFGS) is easily implemented
(as we work in finite dimensional spaces). A convergence theory for Broyden’s method for
ill-posed problems is given in [8], for the BFGS method corresponding results are not known to
the author.

The multilevel algorithm is now implemented as follows

1. Start the iterations (10) with an initial guess on the coarsest level (e.g. 2 control points
for a straight line approximation of the crack).
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2. Run the iterations until an inner discrepancy principle of the type

||F (pk+1,δ
N )− yδ|| ≤ C̃1(δ + ||(ProjN − I)p†||) (12)

becomes active or until a maximal number of iterations is reached.

3. Refine, i.e. include additional control points for the crack description and switch to the
next finer level.

4. Use the last iterate from the preceding level as initial value, i.e. p0,δ
N+1 := p

k∗(N,δ),δ
N .

5. Continue the iterations (10) on the new level.

6. Stop, if on level N the outer discrepancy principle

||yδ − F (p
k∗(N,δ),δ
N )|| ≤ Cδ ≤ ||yδ − F (pk,δN )||, C > 2

1 + ηN
1− 2ηN

> 2.

tells to stop or when a maximal number of iterations is reached.

The inner discrepancy principle (12) contains both, an estimate on the data error δ and an
estimate of the approximation error as we work on finite dimensional subspace of the true crack
forms. For details, see [10, 13].
Quantities like the number of control points, the degree of the splines and measures on the
curvature of p† allow to estimate the term ||(ProjN − I)p†||.
Additional refinements are possible, e.g. the refinement of the number of control points used
for the XIGA analysis and increase in the spline orders ps, qs.
Remark: The assumed error in the data are genereally not only due to measurement errors but
also due to shortcomings of the model. However, in the language of inverse problem theory
both measurement and model error are simultaneously estimated by the data error δ.

4 NUMERICAL RESULTS

First numerical results are presented in the following. The shape and loading of the double
cantilever beam is according to Fig. 3, where a plane stress state is considered with elasticity
modulus E = 3.0 × 107N/mm2 and Possion’s ratio ν = 0.3. Vertical tensile loads are applied
for X = 0, X = 1

4
L and X = 1

2
L. Derivatives of the forward operator with respect to changes

in the input parameters (the coordinates of the control points) are computed numerically. A
derivation of the linearization and the adjoint operator of it, is work in progress, with which
the parameter-updates skN can be implemented more efficiently. Nevertheless, the numerical
approach already helps to get an understanding of model-based reconstruction of crack having
arbirtrary shapes. For the inner iterations a maximal number of 10 is prescribed. After four
refinements, the algorithm stops in case of no data noise, else according to the discrepancy
principle. The initially assumed crack, the exact crack and its reconstruction are shown in
Figure 4. Figure 5 replots Figure 4 under different scaling together with intermediate solutions
at the switch of a coearser to the next finer level.
The following table summarizes error norms (l2) for the reconstructed crack and the corespond-
ing residuals for different data noise levels δ.
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Figure 3: Geometry and loading of the double cantilever beam, previously published in [1].

0 10 20 30 40 50 60
0

10

20

X

Y

Initial Guess (−⋅−)

Exact Crack
Reconstructed Crack (−−)

Crack Reconstruction

Figure 4: Initial, Exact and Reconstructed Crack
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Figure 5: Same as Figure 4 with reconstructed crack a level 4 with intermediate solutions at the end of the iterations
on levels 1, 2, 3.
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δ in % ||pkN − ProjNp†|| ||F (pkN)− yδ||
0 0.49 0.00075
0.5 0.51 0.00114
1 0.53 0.0015
2 0.62 0.0018
5 1.1 0.0024

Table 1: Errors in parameter and image space between reconstructed and exact solution for different noise level
terms

5 SUMMARY, CONCLUSIONS AND OUTLOOK

The combination of the Isogeometric Analysis with the Extended Finite Element Method
provides a tool which is extremely useful for inverse crack analysis. The flexibility in geometric
descriptions of crack and computational domain and the missing need of remeshing make it
a very efficient tool. From the numerical examples, instability during the reconstruction of
crack is a critical issue. More pronounced seems however the question of unique identifiability.
Analytic answers to this are of utmost importance, in particular for designing the experiment
properly. Application of BFGS Newton’s method to ill-posed problems needs to be analysed.
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