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∗Freiberg University of Mining and Technology
Freiberg, Germany

E-mail: lethu@mailserver.tu-freiberg.de

Keywords: Complex quaternion analysis, orthogonal decomposition, boundary value prob-
lems.

Abstract. It is well known that complex quaternion analysis plays an important role in the
study of higher order boundary value problems of mathematical physics. Following the ideas
given for real quaternion analysis, the paper deals with certain orthogonal decompositions of
the complex quaternion Hilbert space into its subspaces of null solutions of Dirac type oper-
ator with an arbitrary complex potential. We then apply them to consider related boundary
value problems, and to prove the existence and uniqueness as well as the explicit representation
formulae of the underlying solutions.
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1 INTRODUCTION AND STATEMENT OF RESULTS

Complex quaternion analysis is an active research subject by itself and it is thought to play an
important role in the treatment of 3D and 4D boundary value problems of mathematical physics.
A thorough treatment is listed in the bibliography, e.g. K. Gürlebeck and W. Sprößig [4, 6], V.
Kravchenko and M. Shapiro [13], V. Kravchenko [14], M. Shapiro and N. Vasilevski [22, 23],
and A. Sudbery [30]. This function theory, which involves the study of complex quaternion
functions, may also provide the foundations to generalize the classical theory of holomorphic
functions of one complex variable onto the multidimensional situation.

During the last years much effort has been done in the study of orthogonal decompositions
of quaternion and Clifford Hilbert spaces, starting for example with the works of S. Bernstein
[1, 2], B. Goldschmidt [3], K. Gürlebeck and W. Sprößig [4, 5, 6], V. Kravchenko and M.
Shapiro [11, 12], E.I. Obolaschvili [16, 17, 18], J. Ryan [19, 20], M. Shapiro and L.M. Tovar
[24], F. Sommen and Z. Xu [25], W. Sprößig [26, 28], I. Stern [29], and Z. Xu [33]. Their
investigations provide powerful tools to study certain elliptic boundary value problems of partial
differential equations within the framework of quaternion and Clifford analyses. So that this
research domain has interacted elegantly in numerous problems of mathematical physics (cf. [9,
27, 32]). Those works include, among others, the Laplace, Helmholtz, Maxwell, Schrödinger,
Klein-Gordon, Lamé and Stokes (later Navier-Stokes) equations. However, as far as we know,
relatively little effort has been done to establish orthogonal decompositions involving complex
quaternion Hilbert spaces. Clearly it would be appropriate for us to explore this connection in
detail.

This paper is organized as follows. In Section 2 we describe the fundamental solution of the
operators D±α = D ± α, where D denotes the classical Dirac operator and α is an arbitrary
complex constant. As a first step towards we are able to define the Teodorescu and Cauchy-
Fueter operators Tα and Fα, which have the same properties as the operators T and F related to
the operator D. Let G be a symmetric domain in R3 with a piecewise smooth Liapunov bound-
ary Γ. In Section 3 we deduce a proper orthogonal decomposition (with complex potential) of
the complex quaternion Hilbert space L2(G,CH):

L2(G,CH) = kerDα ∩ L2(G,CH)⊕CH Dα

◦
W 1

2 (G,CH). (1)

Here
◦
W 1

2(G,CH) is the complex quaternion analogue to the Sobolev space
◦
W 1

2(G) of functions
that vanish on Γ.

We are at liberty to define and give in an explicit manner the corresponding orthoprojections
Pα and Qα onto the subspaces of this decomposition. Further investigation shows a closed
connection of such decomposition to the following problem:

(−∆ + 2Re(α)D + |α|2)u = f in G

u = g on Γ.

In the case of the unique solvability the solution of these boundary value problem can be repre-
sented explicitly. Lastly, Section 3 links decomposition (1) to the following Dirichlet problem:

n∏
i=1

(l)

Dαi
Dαi

u = f in G;

u = g0, Dα1Dα1u = g1, . . . , Dαn−1Dαn−1 . . . Dα1Dα1u = gn−1 on Γ
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where
∏(l) denotes the left product of the underlying sequences. We shall apply the decompo-

sition (1) to prove the existence and uniqueness, and a representation formula for the solution
of this boundary value problem, leaving aside for the moment the question of whether the be-
haviour of the problem is regular and stable. We will follow mainly the notations introduced in
[15]. For more details see [4, 26].

2 PRELIMINARIES

We begin by recalling some basic algebraic facts about real and complex quaternions neces-
sary for the sequel. Let {e0, e1, e2, e3} be an orthonormal basis of the Euclidean vector space R4

with the (quaternionic) product given according to the multiplication rules: e2
1 = e2

2 = e2
3 = −1;

e1e2 = e3, e2e3 = e1, and e3e1 = e2. This noncommutative product generates the algebra of
real quaternions denoted by H. We put e0 = 1, the latter being the identity element. The real
vector space R4 will be embedded in H by identifying the element a = (a0, a1, a2, a3) ∈ R4

with the element a =
∑3

j=0 ajej of the algebra. Throughout our presentation, we denote the
algebra of quaternions with complex coefficients by CH, where its elements are in the form
a = a1 + ia2, where a1 and a2 are real quaternions, and iej = eji, (j = 1, . . . , 3). In this
sense real numbers, complex numbers, and real quaternions can be regarded as special cases
of complex quaternions. It is fairly known as the algebra of complex quaternions (terminology
due to W. Hamilton).

The conjugation corresponding to CH is readily given by

aCH := a1 − ia2 =
3∑
j=0

(
a1
jej − ia2

jej
)
, a1

j , a
2
j ∈ R.

We consider functions defined onG and taking values in the algebra of complex quaternions.
A complex quaternion-valued function f : G −→ CH or, briefly, an CH-valued function will
take the following form

f(x) = f0(x) + f1(x)e1 + f2(x)e2 + f3(x)e3 =: f0(x) + f(x),

where fl (l = 0, 1, 2, 3), are complex-valued functions defined on G. The spaces L2(G,CH),
W k

2 (G,CH) and C0,β(Γ,CH) are defined componentwise respectively as the Lebesgue space
of all CH-valued functions whose square is Lebesgue integrable in G, the Sobolev space of
k-times differentiable CH-valued functions whose k-th derivative belongs to L2(G,CH), and
the Hölder continous CH-valued function space with the exponent β.

We now turn our attention to some simple considerations that are necessary in our study
of orthogonal decompositions in complex quaternion Hilbert spaces. Let us denote by D =∑3

k=1 ∂kek the classical Dirac operator, and let G be a symmetric domain relative to the origin
with a piecewise smooth Liapunov boundary Γ.

In the complex quaternion Hilbert space L2(G,CH) we consider the following inner product
using the complex quaternion conjugation:

(u, v)CH :=

∫
G

u(x)
CH
v(x)dGx, u, v ∈ L2(G,CH).
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Recall the basic fact that two elements u and v are called orthogonal if and only if (u, v)CH = 0.
We proceed by finding the orthogonal decomposition for the Dirac type operator Dα = D + α
[10], where α is an arbitrary complex constant. First of all, we describe the fundamental solution
of this operator from the well known fundamental solution of the Helmholtz type operator
∆ + α2I . As usual, I denotes the identity operator.

Recall from [8, 10] (cf. [9, 31]) that in case α ∈ C the fundamental solutions of the
Helmholtz type operator are given, respectively, by

Θα(x) := − 1

4π|x|
e−iα|x|, Θ̃α(x) := − 1

4π|x|
eiα|x|,

for x ∈ R3 \ {(0, 0, 0)}. In greater detail, from the factorization of the Helmholtz operator

∆ + α2 = (D + α)(−D + α)

it follows (−D+α)Θα ∈ ker(D+α), and−(D+α)Θα ∈ ker(D−α). We have, in effect, the
following fundamental solutions of the Dirac type operators D±α := D ± α related to Θα(x):

Kα(x) = (α +
x

|x|2
+ iα

x

|x|
)Θα(x), K−α(x) = (−α +

x

|x|2
+ iα

x

|x|
)Θα(x),

and Θ̃α(x):

K̃α(x) = (α +
x

|x|2
− iα x

|x|
)Θ̃α(x), K̃−α(x) = (−α +

x

|x|2
− iα x

|x|
)Θ̃α(x).

We proceed by finding the complex quaternion conjugations of the above functions. Keeping in
mind that the functions Θα and Θ̃α contain the scalar variable |x| and complex numbers only,
then their complex quaternion conjugations are defined as follows:

Θα(x)
CH

= Θ̃α(x), Θ̃α(x)
CH

= Θα(x).

That leads to the complex quaternion conjugations of the fundamental solutions Kα(x) and
K̃α(x):

Kα(x)
CH

= K̃α(−x), K̃α(x)
CH

= Kα(−x).

In the sequel, let Γ′ be an arbitrary parallel surface to Γ. Following [7, 6], the set of functions
ϕl := Kα(y − xl) is complete in ker(D + α) ∩ L2(G,CH), where {xl} is a dense set on Γ′.
We proceed by introducing the operators Tα and Fα with the fundamental solution described
beforehand as its kernel:

(Tαu)(x) := −
∫
G

K̃α(x− y)u(y)dGy, (Fαu)(x) :=

∫
Γ

K̃α(x− y)n(y)u(y)dΓy.

They are known as the Teodorescu transform and Cauchy-Fueter type operator, respectively.
As usual, n(y) =

∑3
k=1 nkek is the outer normal on Γ at the point y. We must bear in mind that

the Plemelj-Sokhotzki formulae (see e.g. [6, 26]) remain true for the operator Fα. As an aside,
we may then define the so called Plemelj projections Pα andQα [6, 26] onto the space of square
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integrable functions that have a Dα−holomorphic extension into the domains G or R3 \G, and
vanish at infinity.

Ultimately, let u ∈ C0,β(Γ,CH) (0 < β ≤ 1), it holds

n.t.− lim
t→x, t∈G

(Fαu)(t) = (Pαu)(x),

and

n.t.− lim
t→x, t/∈G

(Fαu)(t) = −(Qαu)(x)

where the notation n.t.-limit means nontangential limit.

Remark 2.1. From the above-mentioned relations of the fundamental solutions Kα and K̃α, the
kernel of the Teodorescu transform and Cauchy-Fueter type operator can also be chosen by Kα

with similar results.

3 AN ORTHOGONAL DECOMPOSITION FORMULA WITH COMPLEX POTEN-
TIAL

Let G denote an arbitrary symmetric domain relative to the origin. We begin by introducing
an orthogonal decomposition (Theorems 3.1 below) of the complex quaternion Hilbert space
L2(G,CH) into its subspaces of null solutions of the corresponding Dirac operator invoking
orthogonality with complex potential.

Using the classical Hopf maximum principle [21], it follows the result.

Theorem 3.1. The Hilbert space L2(G,CH) permits the following orthogonal decomposition:

L2(G,CH) = kerDα ∩ L2(G,CH)⊕CH Dα

◦
W 1

2 (G,CH).

Proof. Following the ideas given in [6, 26], we set X1 := kerDα ∩ L2(G,CH) and X2 :=
L2(G,CH)	CH X1. For each function u ∈ X2 there exists a function v ∈ W 1

2 (G,CH) so that
u = Dαv. For an arbitrary ϕ ∈ X1 we then have

0 = (u, ϕ)CH :=

∫
G

uCHϕdGy =

∫
G

(D + α)v
CH
ϕdGy =

∫
G

Dv
CH
ϕdGy +

∫
G

vCHαϕdGy

=

∫
G

D(v1 + iv2)
CH
ϕdGy +

∫
G

vCHαϕdGy

=

∫
G

3∑
k=1

3∑
j=0

∂kekv1
j ej + i∂kekv2

j ej
CH
ϕdGy +

∫
G

vCHαϕdGy

=
3∑

k=1

3∑
j=0

∫
G

(∂kejv
1
j ek − i∂kejv2

j ek)ϕdGy +

∫
G

vCHαϕdGy

= −
3∑

k=1

3∑
j=0

∫
G

(ejek∂kv
1
j − iejek∂kv2

j )ϕdGy +

∫
G

vCHαϕdGy
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=
3∑

k=1

3∑
j=0

∫
G

(ejv
1
j∂kekϕ− iejv2

j∂kekϕ)dGy −
∫
Γ

(ejekv
1
jnkϕ− iejekv2

jnkϕ)dΓy


+

∫
G

vCHαϕdGy

=

∫
G

vCHDϕdGy +

∫
G

vCHαϕdGy −
∫
Γ

vCHn(y)ϕ(y)dΓy

=

∫
G

vCHDαϕdGy +

∫
Γ

vCHn(y)
CH
ϕ(y)dΓy =

∫
Γ

ϕCHn(y)v(y)dΓy

CH

.

If we substitute ϕ := Kα(y − xl), and use the relation Kα(y − xl)
CH

= K̃α(xl − y) then

(Fαv)(xl) = 0, xl ∈ Γ′. That means trΓv ∈ imPα ∩ W
1
2

2 (Γ,CH). Hence, there exists a

function h ∈ kerDα ∩W 1
2 (G,CH) so that trΓh = trΓv. So far, let w := v − h ∈

◦
W 1

2 (G,CH)

then u = Dαv = Dαw ∈ Dα

◦
W 1

2 (G,CH).

Many results that follow, and in particular the following theorem for the existence of two
orthoprojections onto the occurring subspaces, are related in one way or another to the previous
orthogonal decomposition.

Theorem 3.2. There exist the orthoprojections

Pα : L2(G,CH) 7−→ kerDα ∩ L2(G,CH),

Qα : L2(G,CH) 7−→ Dα

◦
W 1

2 (G,CH) ∩ L2(G,CH)

with Qα = I −Pα. Furthermore we have

Pα = Fα(trΓTαFα)−1trΓTα

with ker Pα = Dα

◦
W 1

2 (G,CH), and imPα = kerDα ∩ L2(G,CH).

Proof. We refer to [4, 6, 15] for the proof.

We are now able to consider the related boundary value problem expressed as follows:

DαDαu = f in G,

u = g on Γ

where DαDα = −∆ + 2Re(α)D + |α|2 does not contain any complex term. The following
theorem can be proved.

Theorem 3.3. Let f ∈ W k
2 (G,CH) and g ∈ W k+ 3

2
2 (Γ,CH), then the Dirichlet problem

(−∆ + 2Re(α)D + |α|2)u = f inG,

u = g on Γ
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has the unique solution

u = Fαg + TαPαDαh+ TαQαTαf,

where h denotes a W k+2
2 (G,CH)-extension of g.

Proof. We seek to show that this function satisfies the Dirichlet problem. The first equation can
be rewritten as DαDαu = f . In addition, notice that

DαTα = I, DαQα = Dα, DαPα = 0, DαFα = 0.

A direct computation shows that

DαDαu = DαDαFαg +DαDαTαPαDαh+DαDαTαQαTαf

= DαTαf = f.

This function satisfies also the boundary condition. The proof of the uniqueness may be found
in [6].

In particular, if α is a pure complex number that means α := iλ (λ ∈ R) a similar result as
in [15] can be obtained:

L2(G,CH) = kerDiλ ∩ L2(G,CH)⊕CH D−iλ
◦
W 1

2 (G,CH).

Following the ideas given in [6, 26] we can now consider more general boundary value problems
(of order 2n) in R3 involving complex potentials. For the convenience, we denote the left- and
right-products of the sequences respectively by

m∏
i=k

(l)

Ai := AmAm−1 . . . Ak ,
m∏
i=k

(r)

Ai := AkAk+1 . . . Am .

In the sequel, let αi (i = 1, . . . , n) be arbitrary complex numbers, then we have:

Theorem 3.4. Let f ∈ L2(G,CH) and gi ∈ W
2n− 4i+1

2
2 (Γ,CH) (i = 0, . . . , n − 1) then the

Dirichlet problem

n∏
i=1

(l)

Dαi
Dαi

u = f in G;

u = g0, Dα1Dα1u = g1, . . . , Dαn−1Dαn−1 . . . Dα1Dα1u = gn−1 on Γ

has the unique solution u ∈ W 2n
2 (G,CH) given explicitly by the formula

u = r1(g0) + Tα1Qα1Tα1r2(g1) + . . .+
n−1∏
i=1

(r)

Tαi
Qαi

Tαi
rn(gn−1) +

n∏
i=1

(r)

Tαi
Qαi

Tαi
f,

where with k = 1, . . . , n

rk(gk−1) := Fαk
gk−1 + Tαk

Fαk
(trΓTαk

Fαk
)−1Qαk

gk−1.

7



In general, if we assume that (αk, βk) (k = 1, . . . , n) are pairs of complex numbers, which
are chosen such that the boundary value problems

Dαk
Dβk

u = fk inG,

u = gk−1 on Γ (k = 1, . . . , n),

are uniquely solvable, and Pαkβk
,Qαkβk

are projections defined by

Pαkβk
= Fαk

(trΓTβk
Fαk

)−1 trΓTβk
,

Qαkβk
= I −Pαkβk

.

In this sense the previous theorem can be generalized and stated as follows:

Theorem 3.5. Let f ∈ L2(G,CH) and gi ∈ W
2n− 4i+1

2
2 (Γ,CH) (i = 0, . . . , n − 1), then the

unique solution of the Dirichlet problem

n∏
i=1

(l)

Dαi
Dβi

u = f in G;

u = g0, Dα1Dβ1u = g1, . . . , Dαn−1Dβn−1 . . . Dα1Dβ1u = gn−1 on Γ

has the explicit representation

u = r1(g0) + Tβ1Qα1β1Tα1r2(g1) + . . .+
n−1∏
i=1

(r)

Tβi
Qαiβi

Tαi
rn(gn−1) +

n∏
i=1

(r)

Tβi
Qαiβi

Tαi
f,

where

rk(gk−1) := Fβk
gk−1 + Tβk

Fαk
(trΓTβk

Fαk
)−1Qβk

gk−1.
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