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Abstract. The purpose of this article is to provide an overview of the real Clifford Fourier-
Stieltjes transform (CFST) and of its important properties. Additionally, we introduce the defi-
nition of convolution of Clifford functions of bounded variation.
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1 INTRODUCTION

1.1 Function of bounded variation and its Fourier-Stieltjes transform

The concept of functions of bounded variation plays an important role in probability theory.
Among the known attempts made in this direction, the most notable ones are due to Beurling
[1], Bochner [2, 6], and Cramér [10].

Let σ(x) be a nondecreasing real or complex-valued function of the real variable x, having
bounded variation on the whole real axis:

∫
R |dσ(x)| < ∞. It is well known that σ(x) has at

most an enumerable set of discontinuity points. In such a point we define

σ(x) =
1

2
[σ(x+ 0) + σ(x− 0)].

For any function σ(x) as above, the expression

f(t) =

∫
R
eitxdσ(x), −∞ < t <∞ (1)

defines the Fourier-Stieltjes transform of σ(x). The Fourier-Stieltjes transform (FST) is a well-
known generalization of the classical Fourier transform, and is frequently applied in certain
areas of theoretical and applied probability and stochastic processes contexts.

There has recently been much interest in the construction of higher dimensional counterparts
of the Fourier-Stieltjes transform in the framework of quaternion and Clifford analyses [13, 14].
It is the object of the present paper to give an overview on the (real) Clifford Fourier-Stieltjes
transform (CFST), and on some of its important properties [13]. The underlying functions are
continuous functions of bounded variation defined in Rm and taking values in a Clifford algebra.
We also introduce the definition of convolution of Clifford functions of bounded variation. The
convolution is related to pairs of functions belonging to a certain class in the same way as in the
classical case.

The used methods also allow a generalization to the case of Clifford functions that satisfy
higher dimensional generalizations of Cauchy-Riemann or Dirac systems. We leave the details
of this slight generalization to the interested reader.

1.2 Some basic concepts of Clifford analysis

In the present subsection, we review some definitions and basic algebraic facts of a special
Clifford algebra of signature (0,m). For more details, we refer the reader to [7, 16].

Let {e1, e2, . . . , em} be an orthonormal basis of the Euclidean vector space Rm with a product
according to the multiplication rules:

eiej + ejei = −2δi,j, i, j = 1, . . . ,m,

where δi,j is the Kronecker symbol. Whence, the set {eA : A ⊆ {1, . . . ,m}} with eA =
eh1eh2 . . . ehr , 1 ≤ h1 < . . . < hr ≤ m, and eφ = 1 forms a basis of the 2m-dimensional Clifford
algebra Cl0,m over R. Any Clifford number a in Cl0,m may thus be written as a =

∑
A eAaA,

aA ∈ R, or still as a =
∑m

k=0[a]k, where [a]k =
∑
|A|=k eAaA is the so-called k-vector part of

a (k = 0, 1, . . . ,m). The real vector space Rm will be embedded in Cl0,m by identifying the
element (x1, . . . , xm) ∈ Rm with the Clifford vector x given by

x := e1x1 + · · ·+ emxm.
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It is worth noting that the square of a vector x is scalar-valued and equals the norm squared
up to a minus sign: x2 = −|x|2. Throughout the paper, we consider Cl0,m-valued functions
defined in Rm, i.e. functions of the form

f : Rm −→ Cl0,m, f(x) =
∑
A

fA(x)eA, (2)

where fA are real-valued functions defined in Rm. Properties (like integrability, continuity or
differentiability) that are ascribed to f have to be fulfilled by all components fA.

Let

L1(Rm;Cl0,m) := {f ∈ Rm −→ Cl0,m :

∫
Rm
|f(x)|dσ(x) <∞}

denote the linear Hilbert space of integrable Cl0,m-valued functions defined in Rm. The left-
sided Clifford Fourier transform (CFT) of f ∈ L1(Rm;Cl0,m) is given by [9]

F(f) : Rm −→ Cl0,m, F(f)(ω) :=

∫
Rm

e(ω,x) f(x) dσ(x), (3)

where the kernel function

e : Rm × Rm −→ Cl0,m, e(ω,x) :=
m∏
i=1

e−em+1−i ωm+1−i xm+1−i .

For i = 1, . . . ,m, xi will denote the space and ωi the angular frequency variables. It is of
interest to remark at this point that the product in (3) has to be performed in a fixed order since,
in general, e(ω,x) does not commute with every element of Cl0,m.

Under suitable conditions, the original signal f can be reconstructed from F(f) by the in-
verse transform. The inverse (left-sided) Clifford Fourier transform of g ∈ L1(Rm;Cl0,m) is
defined as follows:

F−1(g) : Rm −→ Cl0,m, F−1(g)(x) =
1

(2π)m

∫
Rm

e(ω,x) g(ω) dσ(ω) (4)

where e(ω,x) :=
∏m

i=1 e
ei ωi xi is called the inverse (left-sided) Clifford Fourier kernel.

2 THE CLIFFORD FOURIER-STIELTJES TRANSFORM AND ITS PROPERTIES

In this section we review the (real) Clifford Fourier-Stieltjes transform (CFST).

2.1 The (real) Clifford Fourier-Stieltjes transform

In the sequel, consider the function

α : Rm −→ Cl0,m, x 7−→ α(x) :=
m∏
i=1

αi(xi)

where αi : R −→ Cl0,m are of bounded variation on R:∫
R
|dαi(xi)| := Mi <∞,
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and such that |αi| ≤ δi for real numbers δi < ∞. From here it follows that α is of bounded
variation also, since it holds∫

Rm
|dα(x)| =

∫
Rm

m∏
i=1

|dαi(xi)| =
m∏
i=1

Mi := M <∞

and, such that

|α(x)| ≤
m∏
i=1

δi := δ <∞.

The class of all such functions is denoted by (V ). Unless otherwise stated, throughout this
paper the product is meant to be performed in a fixed order:

m∏
i=1

αi(xi) := α1(x1)α2(x2) . . . αm(xm).

For the sets of discontinuity points of each αi(xi), we further assume that there exist the limits

lim
xi−→yi+

αi(xi) = αi(yi + 0), and lim
xi−→yi−

αi(xi) = αi(yi − 0) (i = 1, . . . ,m)

(taken over all directions) for which

αi(yi) =
1

2

[
αi(yi + 0) + αi(yi − 0)

]
holds almost everywhere on R. Each function αi is said to be a Clifford distribution.

The idea behind the construction of a Clifford counterpart of the Stieltjes integral is to replace
the exponential function in (1) by a suitable (noncommutative) exponential product. Due to the
noncommutativity of the algebra, we recall two different types of CFST [13]:

Definition 2.1. The CFST FS(α) : Rm −→ Cl0,m of α(x) is defined as the Stieltjes integrals:

1. Right-sided CFST:

FSr(α)(ω) :=

∫
Rm

dα(x) e(ω,x), (5)

2. Left-sided CFST:

FS l(α)(ω) :=

∫
Rm

e(ω,−x) dα(x). (6)

The function α(x) which generates (5) and (6) is essentially unique.

Remark 2.2. We recall the reader that, the order of the exponentials in (5)-(6) are fixed because
of the noncommutativity of the underlying product. It is of interest to remark at this point that in
the case m = 2 the formulae above reduce to the definitions for the right- and left-sided QFST
introduced by the authors in [14]. Detailed information about the QFST and its properties can
be found in [14]. For m = 1 the CFST is identical to the classical FST.
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Remark 2.3. Throughout this text we may investigate the integral (5) only that, for simplicity,
we denote by FS(α). Nevertheless, all computations can be easily converted for (6). In view
of (5) and (6), a straightforward calculation shows that:

FS(α)(ω) =

∫
Rm

e(ω,x) dα(x) = FS l(α)(−ω).

From now on, we denote the class of functions which can be represented as (5) by B. Func-
tions in B are called (right) Clifford Bochner functions and B will be referred to as the (right)
Clifford Bochner set. It follows that members of B are entire functions of the real variables ωi.

It is immediately clear that B is a linear space, and every element f of B is a bounded
uniformly continuous function:

|f(ω)| ≤
∫
Rm
|dα(x)| = M <∞. (7)

We recall from [13] the following result.

Theorem 2.4. If a function belongs to B and is identically equal to zero for all ωi ≤ 0 (i =
1, . . . ,m), then it is the Fourier-Stieltjes transform of an absolutely continuous function.

Proof. Let f be any function in B. By hypothesis,

f(ω) =

∫
Rm

dα(x) e(ω,x), (8)

where
∫
Rm |dσ(x)| = M <∞. For x = x1e1 + · · ·+ xmem ∈ Cl0,m we set

Cl0,m 3 x̃ :=
1

2

m∑
i=1

(x2
i + 1)ei.

Let Rm,+
0 := R+

0 × · · · × R+
0︸ ︷︷ ︸

m times

. We define the function G(x) as follows

G(x) :=
1

(2π)m

∫
Rm,+0

f(ω) e(ω, x̃)dω.

Evidently G(x) is analytic for all xi (i = 1, . . . ,m) since it is the product of analytic functions
for any fixed xi. We suppose from now on that this condition is satisfied. From the definition of
the function f follows that there exists a constant M > 0 so that |f(ω)| ≤ M < ∞. From (8)
and since f(ω) = 0 for all ωi ≤ 0 (i = 1, . . . ,m), we may write

|G(x)| ≤ 1

(2π)m

∫
Rm,+0

|f(ω)|
m∏
i=1

e−
x2i+1

2
ωidωi ≤

M

(2π)m

m∏
i=1

2

x2
i + 1

.

By straightforward calculation we may show that∫
Rm
|G(x)|dx ≤ M

(2π)m

m∏
i=1

∫
R

2

x2
i + 1

dxi = M <∞.

This proves the theorem.

5



For practical purposes, if f ∈ B is given then for any real variables ωi, and real constants ai
(i = 1, . . . ,m) a direct computation shows that

|f(ω)| =

∣∣∣∣(∫ a1

−∞
+

∫ ∞
a1

)(∫ a2

−∞
+

∫ ∞
a2

)
. . .

(∫ am

−∞
+

∫ ∞
am

)
dα(x) e(ω,x)

∣∣∣∣
≤

m∏
i=1

(∣∣αi(∞)− αi(am+1−i)
∣∣+
∣∣αi(am+1−i)− αi(−∞)

∣∣)
since

∣∣∣e(ω,x)
∣∣∣ = 1. If f ∈ B is given, then

f(0) =
m∏
i=1

(
αi(∞)− αi(−∞)

)
.

In particular, a simple argument gives

f(−ω) =

∫
Rm

dα(x) e(−ω,x) =

∫
Rm

e(−ω,x) dα(x) = g(ω), (9)

where g is any function which can be represented as FS l(α)(ω).

2.2 Lévy’s inversion formula

This subsection provides an explicit formula for computing a Clifford function once its
Fourier-Stieltjes integral is known.

Theorem 2.5. For every αi : R −→ Cl0,m (i = 1, . . . ,m), we consider the functions

gi(ωi) =

∫
R
dαi(xi) e

eiωixi .

For any real numbers a and b the following equality holds:

αi(a)− αi(b) = lim
T−→∞

1

2π

∫ T

−T
gi(ωi)

eeibωi − eeiaωi
eiωi

dωi. (10)

In particular, it holds

αi(xi + 0)− αi(xi − 0) = lim
T−→∞

1

2T

∫ T

−T
gi(ωi)e

−eixiωidωi.

Proof. We begin with the following observation:

gi(ωi)
(
e−eiaωi − e−eibωi

)
=

∫
R
dαi(xi) e

eiωi(xi−a) −
∫
R
dαi(xi) e

eiωi(xi−b)

=

∫
R
dαi(xi + a) eeiωixi −

∫
R
dαi(xi + b) eeiωixi

6



= lim
T−→∞

[
αi(T + a)eeiTωi − αi(−T + a)e−eiTωi

−αi(T + b)eeiTωi + σi(−T + b)e−eiTωi

−
∫ T

−T

(
αi(xi + a)− αi(xi + b)

)
dxi e

eiωixieiωi

]
= −

∫
R

(
αi(xi + a)− αi(xi + b)

)
dxi e

eiωixieiωi.

Therefore, it is easy to see that

gi(ωi)
(
e−eiaωi − e−eibωi

) 1

−eiωi
=

∫
R

(
αi(xi + a)− αi(xi + b)

)
dxi e

eiωixi .

From the last equality and from the inverse Fourier transform formula we find

αi(xi + a)− αi(xi + b) =
1

2π

∫
R
gi(ωi)

e−eiaωi − e−eibωi
−eiωi

e−eixiωidωi,

and, in particular taking xi = 0 we find

αi(a)− αi(b) =
1

2π

∫
R
g(ωi)

e−eiaωi − e−eibωi
−eiωi

dωi,

and this completes the proof.

Formula (10) is known as the Lévy’s inversion formula. It is immediately clear if two Clif-
ford functions have the same Fourier-Stieltjes integral, then they are identical up to an additive
(Clifford) constant.

3 UNIFORM CONTINUITY

In this section we discuss uniform continuity and its relationship to CFST. We begin by
defining uniform continuity.

Definition 3.1. A Clifford function f : Rm −→ Cl0,m is uniformly continuous on Rm if and
only if for all ε > 0 there exists a δ > 0 such that |f(ω)−f(t)| < ε for all ω, t ∈ Rm whenever
|ω − t| < δ.

We now prove some results related to the asymptotic behaviour of the CFST which run:

Proposition 3.2. Let f be an element of B. For any natural number n, let fn : Rm−1 ×
[−n, n] −→ Cl0,m be the function given by

fn(ω) =

∫ n

−n

∫
Rm−1

dα(x) e(ω,x).

Then fn(ω) −→n−→∞ f(ω) uniformly. Also, if fn are uniformly continuous functions then f
is a uniformly continuous function.
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Proof. A first straightforward computation shows that∣∣∣f(ω)− fn(ω)
∣∣∣ =

∣∣∣∣∫
Rm

dα(x) e(ω,x)−
∫ n

−n

∫
Rm−1

dα(x) e(ω,x)

∣∣∣∣
=

∣∣∣∣∫ −n
−∞

∫
Rm−1

dα(x) e(ω,x) +

∫ ∞
n

∫
Rm−1

dα(x) e(ω,x)

∣∣∣∣
≤

m−1∏
i=1

∣∣αi(∞)− αi(−∞)
∣∣ |αm(−n)− αm(−∞)|

+
m−1∏
i=1

∣∣αi(∞)− αi(−∞)
∣∣ |αm(∞)− αm(n)| .

Moreover, having in mind that

αm(−n)− αm(−∞) −→n−→∞ 0, and αm(∞)− αm(n) −→n−→∞ 0,

and hence, fn(ω) −→n−→∞ f(ω) uniformly. In addition, we claim that if fn(ω) are uniformly
continuous functions it follows that f(ω) is an uniformly continuous function.

In like manner, we have an analogous result.

Proposition 3.3. Let f be an element of B. For any natural number n, let fn : [−n, n] ×
Rm−1 −→ Cl0,m be the function given by

fn(ω) =

∫
Rm−1

∫ n

−n
dα(x) e(ω,x).

Then fn(ω) −→n−→∞ f(ω) uniformly. Also, if fn are uniformly continuous functions then f
is a uniformly continuous function.

Proposition 3.4. Let f be an element of B. For any natural number n, let fn : [−n, n]m −→
Cl0,m be the function given by

fn(ω) =

∫
[−n,n]m

dα(x) e(ω,x).

Then fn(ω) −→n−→∞ f(ω) uniformly. Also, if fn are uniformly continuous functions then f
is a uniformly continuous function.

Proof. For simplicity and without loss of generality we will prove the case m = 2 only. We set

A := dα1(x1)dα2(x2) ee1ω1x1 ee2ω2x2 .

The key to the proof is the simple observation that:∫ ∞
−∞

∫ ∞
−∞

A−
∫ n

−n

∫ n

−n
A =

∫ −n
−∞

∫ −n
−∞

A+

∫ −n
−∞

∫ n

−n
A+

∫ −n
−∞

∫ ∞
n

A

+

∫ n

−n

∫ −n
−∞

A+

∫ n

−n

∫ ∞
n

A

+

∫ ∞
n

∫ −n
−∞

A+

∫ ∞
n

∫ n

−n
A+

∫ ∞
n

∫ ∞
n

A.

For the remaining part of the proof, we use similar arguments as in Proposition 3.2.
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We come now to the main result of this section.

Theorem 3.5. Let f ∈ B be given, and g : Rm −→ Cl0,m be a continuous and absolutely
integrable function. For any α : Rm −→ Cl0,m the following relations hold:

1.
∫
Rm

f(t)g(ω − t)dt =

∫
Rm

dα(x)

∫
Rm

e(ω,x) g(ω − t)dt;

2.
∫
Rm

f(t)g(t)dt = (2π)m
∫
Rm

dα(x)F−1(g)(x).

Proof. Assume g : Rm −→ Cl0,m to be a continuous and absolutely integrable function. For
any real variables ρi (i = 1, . . . ,m) let Ωρi := [−ρ1, ρ1] × · · · × [−ρm, ρm] ⊂ Rm. We now
define the function

R : Rm × Rm −→ Cl0,m, (x,ρ) 7−→ R(x,ρ) :=

∫
Ωρi

m∏
i=1

eeitixig(t)dt.

Take

fn(t) =

∫
[−n,n]m

dα(x)
m∏
i=1

eeitixi .

Using the fact that g is an absolutely integrable function it follows∫
Ωρi

fn(t)g(t)dt =

∫
Ωρi

(∫
[−n,n]m

dα(x)
m∏
i=1

eeitixi

)
g(t)dt

=

∫
[−n,n]m

dα(x)

∫
Ωρi

m∏
i=1

eeitixig(t)dt

=

∫
[−n,n]m

dα(x)R(x, ρ). (11)

From the last proposition we know that lim
n−→∞

fn(ω) = f(ω) uniformly. Moreover, since g(t)

is an absolutely integrable function it follows that R(x,ρ) is a uniformly continuous function.
Hence

lim
n−→∞

∫
Ωρi

fn(t)g(t)dt =

∫
Ωρi

f(t)g(t)dt. (12)

With this argument at hand, and from (11) we conclude that

lim
n−→∞

∫
Ωρi

fn(t)g(t)dt =

∫
Rm

dα(x)R(x,ρ). (13)

From the last equality and from (12) we obtain∫
Rm

dα(x)R(x,ρ) =

∫
Ωρi

f(t)g(t)dt.

9



In addition, we have

R(x,ρ) −→
ρi −→∞
(i = 1, . . . ,m)

∫
Rm

m∏
i=1

eeitixig(t)dt

and hence, for any fixed ai it follows∫
Ωai

dα(x)R(x,ρ) −→
ρi −→∞
(i = 1, . . . ,m)

∫
Ωai

dα(x)

∫
Rm

m∏
i=1

eeitixig(t)dt. (14)

For the sake of simplicity, in the considerations to follow we will often omit the argument and
write simply R instead of R(x,ρ). Since R is uniformly bounded then there exists a positive
constant M so that |R| ≤ M for all real numbers xi and ρi. Without loss of generality, we will
prove the case m = 2 only. A direct computation shows that

I :=

∣∣∣∣∫ −a1
−∞

∫ −a2
−∞

dα1(x1)dα2(x2)R +

∫ a1

−a1

∫ −a2
−∞

dα1(x1)dα2(x2)R

+

∫ ∞
a1

∫ −a2
−∞

dα1(x1)dα2(x2)R +

∫ −a1
−∞

∫ a2

−a2
dα1(x1)dα2(x2)R

+

∫ ∞
a1

∫ a2

−a2
dα1(x1)dα2(x2)R +

∫ −a1
−∞

∫ ∞
a2

dα1(x1)dα2(x2)R

+

∫ a1

−a1

∫ ∞
a2

dα1(x1)dα2(x2)R +

∫ ∞
a1

∫ ∞
a2

dα1(x1)dα2(x2)R

∣∣∣∣ .
Therefore, we obtain

I ≤ M
[∣∣α1(−a2)− α1(−∞)

∣∣ ∣∣α2(−a1)− α2(−∞)
∣∣

+
∣∣α1(−a2)− α1(−∞)

∣∣ ∣∣α2(a1)− α2(−a1)
∣∣+
∣∣α1(−a2)− α1(−∞)

∣∣ ∣∣α2(∞)− α2(a1)
∣∣

+
∣∣α1(a2)− α1(−a2)

∣∣ ∣∣α2(−a1)− α2(−∞)
∣∣+
∣∣α1(a2)− α1(−a2)

∣∣ ∣∣α2(∞)− α2(a1)
∣∣

+
∣∣α1(∞)− α1(a2)

∣∣ ∣∣α2(−a1)− α2(−∞)
∣∣+
∣∣α1(∞)− α1(a2)

∣∣ ∣∣α2(a1)− α2(−a1)
∣∣

+
∣∣α1(∞)− α1(a2)

∣∣ ∣∣α2(∞)− α2(a1)
∣∣] −→a1,a2−→∞ 0.

Extending the last inequality to a total of 2m terms (m > 2), and using (14) we get

lim
ai−→∞

∫
Ωai

dα(x)R(x,ρ) =

∫
Rm

dα(x)

∫
Rm

m∏
i=1

eeitixig(t)dt.

From here and (13) we find∫
Rm

f(t)g(t)dt =

∫
Rm

dα(x)

∫
Rm

m∏
i=1

eeitixig(t)dt = (2π)m
∫
Rm

dα(x)F−1(g)(x).

Making the change of variables ti −→ ωi − ti (i = 1, . . . ,m) in the definition of g we finally
find ∫

Rm
f(t)g(ω − t)dt =

∫
Rm

dα(x)

∫
Rm

m∏
i=1

eeitixi g(ω − t)dt.
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4 CONVOLUTION

In this section we introduce the definition of convolution of Clifford functions. The convo-
lution is related to pairs of Clifford functions belonging to (V).

Definition 4.1. Let α, β : Rm −→ Cl0,m belong to (V ). The convolution α � β of α and β is
the uniquely determined function γ : Rm −→ Cl0,m given by

γ = α� β :=

∫
Rm

α(x− y) dβ(y) (15)

for every x,y ∈ Rm.

We underline that due to the noncommutativity of the quaternionic product, α � β does not
coincide with β�α in general. We notice that the function γ given by (15) is well defined since
it obviously holds

|γ(x)| ≤
∫
Rm
|α(x− y)||dβ(y)| ≤ δ

∫
Rm
|dβ(y)| <∞.

Let α, β, ζ be elements of (V ), and λ a Clifford constant. In particular, the convolution retains
the following properties:

1. (α� β)� ζ = α� (β � ζ);

2. α� (β ± ζ) = α� β ± α� ζ;

3. λ(α� β) = (λα)� β, (α� β)λ = α� (βλ);

4. λ(α� β) 6= α� (λβ) in general.

Next we formulate the results of this section.

Proposition 4.2. If α and β are elements of (V ) then the function γ defined by (15) belongs to
(V ).

Proof. Let x, z ∈ Rm. Since α is a continuous function then for every ε > 0 there exists a real
δ = δ(ε) > 0 such that

|α(x)− α(z)| < ε

M

whenever |x − z| < δ. The constant M > 0 is chosen so that
∫
Rm |dβ(y)| = M for every

y ∈ Rm. Hence, it holds

|γ(x)− γ(z)| =
∣∣∣∣∫

Rm
(α(x− y)− α(z− y)) dβ(y)

∣∣∣∣ < ε.

Consequently γ is a continuous function in x. Since x ∈ Rm is arbitrarily chosen it follows that
γ is also continuous.
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Proposition 4.3. Let α and β be elements of (V ). If α ∈ L1(Rm;Cl0,m) then it holds

‖γ‖L1(Rm;Cl0,m) ≤M‖α‖L1(Rm;Cl0,m).

Proof. Let α and β be any functions in (V ). A first straightforward computation shows that

‖γ‖L1(Rm;Cl0,m) =

∫
Rm
|γ(x)|dσ(x)

=

∫
Rm

∣∣∣∫
Rm

α(x− y)dβ(y)
∣∣∣dσ(x)

≤
∫
Rm

(∫
Rm
|α(x− y)|dσ(x)

)
|dβ(y)|

= M‖α‖L1(Rm;Cl0,m).

In consequence, the following result holds:

Corollary 4.4. Let α, β and αn be elements of (V ). If α, αn ∈ L1(Rm;Cl0,m) then it holds

‖γn − γ‖L1(Rm;Cl0,m) −→ 0

when n −→∞, where γn = αn � β and γ = α� β.

Proof. From the previous proposition a direct computation shows that

‖γn − γ‖L1(Rm;Cl0,m) ≤M‖αn − α‖L1(Rm;Cl0,m),

and from this follows our assertion.
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[16] K. Gürlebeck, K. Habetha, and W. Sprößig. Holomorphic Functions in the Plane and
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