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Abstract. The theory of regular quaternionic functions of a reduced quaternionic variable is a
3-dimensional generalization of complex analysis. The Moisil-Theodorescu system (MTS) is a
regularity condition for such functions depending on the radius vector r = ix+jy+kz seen as a
reduced quaternionic variable. The analogues of the main theorems of complex analysis for the
MTS in quaternion forms are established: Cauchy, Cauchy integral formula, Taylor and Laurent
series, approximation theorems and Cauchy type integral properties. The analogues of positive
powers (inner spherical monogenics) are investigated: the set of recurrence formulas between
the inner spherical monogenics and the explicit formulas are established. Some applications of
the regular function in the elasticity theory and hydrodynamics are given.
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1 INTRODUCTION

In two-dimensional problems of the mathematical physics the methods of complex variable
theory are effectively used. As a generalization in multidimensional problems the methods
of hypercomplex functions are developed since 1930s papers by R. Fueter, G.C. Moisil and
N. Theodorescu (see [1]–[5] and references therein). In [6] one can find a short survey on
applications of hypercomplex functions in the three-dimensional theory of elasticity. In a recent
paper [7] a new alternative Kolosov-Muskhelishvili formula for the elastic displacement field
by means of a (paravector–valued) monogenic, an anti-monogenic and a ψ–hyperholomorphic
function is proposed.

In the three-dimensional space the Moisil-Theodorescu system is an analogue of the Cauchy–
Riemann system and its theory was developed in three ways: as a theory of partial differential
equations, as a part of Clifford analysis [1], and as the theory of regular quaternionic functions
of the reduced quaternionic variable [2], [8]– [10]. In this paper we use the last way and give
a short survey of our results.

2 PRELIMINARIES AND NOTATIONS

Let i, j, k be the basic quaternions obeying the following rules of multiplication:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

An element q of the quaternion algebra H we write in the form q = q0 + iqx + jqy + kqz =
q0 + q, where q0, qx, qy, qz are the real numbers, q0 is called the scalar part of the quaternion,
q = iqx + jqy + kqz is called the vector part of the quaternion q. The quaternion conjugation is
denoted as q̃ = q0 − q.

Let x, y, z be the Cartesian coordinates in the Euclidean space R3. Let Ω be a domain of R3

with a piecewise smooth boundary. A quaternion-valued function or, briefly, H-valued function
f of a reduced quaternionic variable r = ix+ jy+ kz ∈ R3 is a mapping f : Ω→ H, such that

f(r) = f0(r) + f(r) = f0(x, y, z) + ifx(x, y, z) + jfy(x, y, z) + kfz(x, y, z).

The functions f0, fx, fy, fz are real-valued defined in Ω. Continuity, differentiability or in-
tegrability of f are defined coordinate-wisely. For continuously real–differentiable functions
f : Ω ⊂ R3 → H, which we will denote for simplicity by f ∈ C1(Ω,H), the operator
∇ = i∂x + j∂y + k∂z is called the generalized Cauchy– Riemann operator.

According to R. Fueter a function f is called left– or right–regular in Ω if∇f = 0 or f∇ = 0,
respectively, for r ∈ Ω. From now on in the main part we use only the left-regular functions
that, for simplicity, we call regular. With the vectorial notations the regulariry condition is given
as follows:

∇f(r) = −∇ · f(r) +∇f0(r) +∇× f(r) = 0, (1)

where ∇f0, ∇ · f , ∇× f are the usual gradient, divergence and curl, respectively.
The equations of elastic equilibrium are called the Lame equations:

Lu ≡ (λ+ 2µ)∇(∇ · u)− µ∇× (∇× u) = 0. (2)

If we introduce the next notations

(λ+ 2µ)∇ · u = f0, −µ∇× u = f , (3)
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then the Lame equation (2) is transformed into the MTS:

∇ · f = 0, ∇f0 +∇× f = 0, (4)

thus the quaternion function f = f0 + f is regular. Such the connection between the Lame
equation and quaternion functions was first pointed by G.Moisil.

3 MAIN THEOREMS OF QUATERNIONIC ANALYSIS

Cauchys integral theorem, the formula of Borel-Pompeiu, Cauchys integral formula, Cauchys
integral formula for the derivative and some other main properties are established.

Let us call a H–valued function F as a primitive of the regular function f if ∇F = f , i.e.
∇·F = −f0, ∇F0+∇×F = f . Obviously,∇(∇F) = −∆F = ∇f = 0 and F is a harmonic
function. Such the primitive function is not regular. Another notion of a monogenic primitive
function is introduced by means of a hypercomplex derivative of a monogenic function (see
[11]).

3.1 Analogues of Powers

In higher dimensions analogues of positive powers are constructed by symmetrization of
products of the Fueter variables [2] . Now we show a certain other way for introducing the
set of regular polynomials. Let us introduce homogeneous polynomials P l,m(r), l + m = n,
(l,m = 0, 1, ..., n; n = 0, 1, ...) by means of recurrent formulas:

P l,m(r) = P 1,0(r)P l−1,m(r) + P 0,1(r)P l,m−1(r), (5)

where P 1,0(r) = x + jz, P 0,1(r) = y − iz, P 0,0 = 1 and it is assumed that P p,q = 0, if at least
one of the numbers p, q < 0.

It can be proved that these polynomials are linearly independent over R, any finite linear
combination

∑
l,m P

l,m(r)Cl,m with Cl,m = const ∈ H is regular everywhere. Also the poly-
nomials P l,m(r) form a basis of the space of homogeneous regular polynomials of order n.
There exist convenient formulas for derivatives:

∂

∂x
P l,m(r) = (l +m)P l−1,m(r),

∂

∂y
P l,m(r) = (l +m)P l,m−1(r),

∂

∂z
P l,m(r) = (l +m)

[
−iP l,m−1(r) + jP l−1,m(r)

]
.

(6)

Some other properties of regular polynomials are investigated: the structure of scalar and vector
parts, recurrent formulas for scalar and vector parts, explicit formulas for components etc.

Analogues of negative powers are noted P−l−1,−m−1(r) and are introduced in the usual way:

P−l−1,−m−1(r) =
(−1)n+1

n!

∂n

∂xl∂ym
r

r3
(l,m = 0, 1, ..., n; n = 0, 1, ...) (7)

The Taylor and Laurent series generalizations by means of introduced powers are proved.

3.2 Approximation Theorems

Runge’s Theorem. Each H–valued function f that is regular in an open (not necessarily
connected) subset D of R3 with a connected complement can be uniformly approximated on
each compactum K b D arbitrarily closely by regular polynomials.
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Lavrent’ev’s Theorem. Each H–valued function f ∈ C0 on a closed subset D of R3 can be
uniformly approximated on this set arbitrarily closely by regular polynomials if and only if this
set is a nowhere dense compactum in R3 that does not separate R3.

Keldysh’s Theorem. Each H–valued function f ∈ C0(D̄) that is regular in a domain D
can be uniformly approximated on a closed domain D̄ ∈ R3 arbitrarily closely by regular
polynomials if and only if the complement of D consists of a single domain G∞ that contains
the point at infinity.

Details can be found in [8].

4 APPLICATIONS

4.1 Three-dimensional Kolosov-Muskhelishvili formulae

In plane problems of theory of elasticity the basis of complex function applications is the
representation of the general solution of the equilibrium equations in terms of two arbitrary
analytic functions called the Kolosov-Muskhelishvili formulae. In this section a variant of three-
dimensional quaternion generalization of the Kolosov-Muskhelishvili formulae is presented,
which is effectively applied to solve the basic problems of the theory of elasticity for the ball.

The general solution of the Lame equation (2) in a star–shaped domain Ω∗ is expressed in
terms of two regular in Ω∗ functions ϕ, ψ in the form

2µu(r) = κΦ(r)− rϕ̃(r)− ψ̃(r), κ = −3λ+ 7µ

λ+ µ
, (8)

where as Φ one can take any primitive of function ϕ, having subordinated ψ to the condition
κΦ0 = r ·ϕ + ψ0.

Another form of general solution of the Lame equation in Ω∗ is given in terms of two regular
in Ω∗ functions f,∇g0 by V. V. Naumov (see [12]) in the form:

u(r) =
r

µ
× I1f +∇

{
r2

[
3λ+ 7µ

4µ(λ+ 2µ)
I1/2 − 1

µ
I1

]
f0

}
+∇g0, (9)

where f = (λ+ 2µ)∇ · u− µ∇× u; Iα is the operator of radial integration:

Iαf(r) =

1∫

0

tαf(rt)dt.

It can be shown that both representations (8) and (9) are equivalent, in particular cases of
plane and axially symmetric deformations both representations go into the Kolosov-Muskhelishvili
and Solovyev formulae. Some details can be found in [6].

4.2 Equilibrium problems for elastic ball

Using the representation (9) it is shown that the main problems of elastic ball equilibrium can
be obtained in a closed form as analogues of the Poisson and Neumann formulas. Solutions of
these problems are also expressed in terms of solutions of the Dirichlet and Neumann problems
for three independent harmonic functions in a ball. For example, let us consider the equilibrium
of a ball U with a radius R when on its boundary S purely normal displacements are given:

{
Lu(r) = 0, r ∈ U, u ∈ C2(U) ∩ C1(U)

ur|∂U = u(θ, ϕ) ∈ C0(∂U); uθ|∂U = uϕ|∂U = 0.
(10)
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By mean of the quaternion representation (9) the solution of this problem is obtained in the
form

µu(r) =
r

R
F +

R2 − r2

2R
∇ [æ(2æ− 1)Iæ − 2æ− 1]F, æ =

2(ν − 1)

3− 4ν
∈
(
−1, −2

3

)
,

(11)
where F is a solution of the next Dirichlet problem:

{
∆F (r) = 0, r ∈ U,
F |r=R = µu(ϑ, ϕ) ∈ C0(S).

(12)

Then using the Poisson formula for the solution of the Dirichlet problem (12) and radial inte-
gration operator Iα properties, we have the solution of the problem (10) in the closed form:

ur(r) =
1− t2
4πR2

∮
u(2æ + 1)

[
(2− æ)

t

s3
+

2æ2 − æ

2æ + 1
· c
s3

+ 3(1− t2)
t− c
2s5

+

+
æ

2t
(1− 2æ)(

1

s
− (æ + 1)Iæ 1

s
)

]
dS;

{
uθ(r)

uϕ(r)

}
=

1

4πR2

∮
u

{
ξ

η

}(
1

2
+ æ

)
(1− t2)

[
3
t2 − 1

s5
+

4æ2 − 2æ

(2æ + 1)s3
+

+ (æ− 2æ2)Iæ+1 1

s3

]
dS,

where s2 = 1− 2tc + t2, t = r/R, c = cos γ = cos θ cos θ′ + sin θ sin θ′ cos (ϕ− ϕ′), ξ = c,θ,
η = c,ϕ(sin θ)−1. Integrals Iωs−α are integral representations of the Appell hypergeometric
function [6].

Analogous results are obtained for the case of the Stokes flow [13].

5 CONCLUSION

In this paper the theory of the Moisil-Theodorescu system in terms of regular quaternionic
functions of reduced quaternionic variable is used. The analogues of positive powers (inner
spherical monogenics) are investigated: the set of recurrence formulas between the inner spher-
ical monogenics and the explicit formulas are established in Cartesian coordinates. Unlike [11],
we used another notion of primitive of regular function. Therefore, we have another version of
three-dimensional quaternionic analogue of the complex Kolosov-Muskhelishvili formulae. As
applications the problem of elastic sphere equilibrium in the case of normal displacements is
solved. The solution is expressed in terms of one harmonic function, which is the solution of
the Dirichlet problem with the boundary condition as in the original problem. This solution is
also expressed in terms of quadratures of elementary functions and the Appell hypergeometric
function.

The reported study was funded by RFBR according to the research project N 15-41-05081.
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