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Abstract. It is well-known that the solution of the fundamental equations of linear elasticity for
a homogeneous isotropic material in plane stress and strain state cases can be equivalently re-
duced to the solution of a biharmonic equation. The discrete version of the Theorem of Goursat
is used to describe the solution of the discrete biharmonic equation by the help of two discrete
holomorphic functions. In order to obtain a Taylor expansion of discrete holomorphic functions
we introduce a basis of discrete polynomials which fulfill the so-called Appell property with
respect to the discrete adjoint Cauchy-Riemann operator. All these steps are very important
in the field of fracture mechanics, where stress and displacement fields in the neighborhood of
singularities caused by cracks and notches have to be calculated with high accuracy. Using
the sum representation of holomorphic functions it seems possible to reproduce the order of
singularity and to determine important mechanical characteristics.
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1 INTRODUCTION

We are interested in problems of fracture mechanics, where stress and displacement fields
in the neighbourhood of singularities caused by cracks and notches have to be calculated. The
relationship between linear elasticity theory and complex function theory is studied based on
finite differences. Using the well-known forward and backward differences we define diffe-
rence operators and describe discrete harmonic as well as discrete holomorphic functions. An
important result is the discrete theorem of Goursat. In order to get a representation formula for
the components of the displacement vector near the singularities we use discrete polynomials
which fulfill the so-called Appell property with respect to the adjoint discrete Cauchy-Riemann
operator and introduce a Taylor expansion of discrete holomorphic functions.

2 THE EQUIVALENCE BETWEEN SOLUTIONS OF EQUATIONS IN LINEAR
ELASTICITY THEORY AND SOLUTIONS OF A DISCRETE BIHARMONIC
EQUATION

We study the finite difference equations

µ∆hu0 + (λ+ µ)D−1
h e = 0 (1)

µ∆hu1 + (λ+ µ)D−2
h e = 0,

which approximate the well-known Lamé equations in the bounded domain G . We consider
a uniform lattice IR2

h = {mh = (m1h,m2h) with m1,m2 ∈ ZZ } and the mesh width h and
denote by Gh = (G ∩ IR2

h) the discrete domain. The vector components of the external forces
are equal to zero and u0 and u1 describe the components of the displacement vector u. We
define by ∆h the discrete Laplace operator with

∆hu(m1h,m2h) = −4h−2u(m1h,m2h) + h−2u((m1 − 1)h,m2h)

+h−2u((m1+1)h,m2h)+ h−2u(m1h, (m2−1)h)+ h−2u(m1h, (m2+1)h)

and consider forward and backward differences in the form

D1
hu(m1h,m2h) = h−1(u((m1 + 1)h,m2h)− u(m1h,m2h))

= D−1
h u((m1 + 1)h,m2h) and

D2
hu(m1h,m2h) = h−1(u(m1h, (m2 + 1)h)− u(m1h,m2h))

= D−2
h u(m1h, (m2 + 1)h) .

In detail, e = D1
hu0 +D2

hu1 and

µ =
E

2(1 + ν)
, λ =

Eν

(1 + ν)(1− 2ν)
, λ+ µ =

µ

1− 2ν
,

where E is the elasticity modul, ν the strain number and µ the shear modulus. For the system
(1) we use the discretized ansatz of Papkovic-Neuber

2µu0 = −D−1
h Θ + 2αΦ1 (2)

2µu1 = −D−2
h Θ + 2αΦ2
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with the stress function Θ, the material constant α and the discrete harmonic functions Φ1

and Φ2. By substituting (2) into (1) we obtain

D−1
h

(
2µ

(1− 2ν)
e−∆hΘ

)
= 0

D−2
h

(
2µ

(1− 2ν)
e−∆hΘ

)
= 0 ,

because Φ1 and Φ2 are discrete harmonic. Consequently, the gradient of the expression in
parenthesis is equal to zero and therefore the expression must be a constant. Similar to the
classical theory it can be assumed that this constant is equal to zero. Therefore we have

2µe = (1− 2ν)∆hΘ . (3)

From e = D1
hu0 +D2

hu1 and (2) it follows

2µe = −∆hΘ + 2α (D1
hΦ1 +D2

hΦ2). (4)

By comparing (3) und (4) we obtain

2(1− ν)∆hΘ = 2α(D1
hΦ1 +D2

hΦ2) . (5)

Consequently, the solution Θ consists of one part Φ0 ∈ ker∆h and an inhomogeneous part in
relation with equation (5). Based on this result we write the discrete stress function in the form

Θ = Φ0 + Φ1 ·m1h+ Φ2 ·m2h− A1

with ∆hΦ0 = ∆hΦ1 = ∆hΦ2 = 0 and ∆hA1 = −hD1
hD

−1
h Φ1 − hD2

hD
−2
h Φ2 . We can prove

that the equation
∆hΘ = 2(D1

hΦ1 +D2
hΦ2)

holds and together with (5) we obtain α = 2(1− ν) . Finally it follows from (5)

∆h ∆hΘ = 2D1
h∆hΦ1 + 2D2

h∆hΦ2 = 0 ,

the important property of the stress function Θ.
Using forward and backward differences we define discrete Cauchy Riemann operators by

D1h =

(
D−1
h −D2

h

D−2
h D1

h

)
and D2h =

(
D1
h D2

h

−D−2
h D−1

h

)
.

We remark that we have a factorization of the discrete Laplacian in the form

D1hD2h =

(
∆h 0
0 ∆h

)

and D1h approximates the classical operator ∂
∂x

+ i ∂
∂y

while D2h approximates ∂
∂x
− i ∂

∂y
.

A complex function ϕh(mh) =

(
p
q

)
is called discrete holomorphic if

D1h

(
p
q

)
=

(
0
0

)
.

In detail, we look at the equation system D−1
h p = D2

hq and D−2
h p = −D1

hq which approxi-
mates the classical Cauchy-Riemann equations.

In order to manage the link between linear elasticity and complex function theory we use the
discrete version of the Theorem of Goursat.
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3 THE DISCRETE THEOREM OF GOURSAT

Using the group homomorphism between complex numbers a + ib and matrices
(
a −b
b a

)

we are able to present the discrete version of the Theorem of Goursat.

Theorem 3.1 Each real-valued solution u(mh) of the difference equation ∆h∆hu(mh) = 0
in a domain composed by rectangles which are oriented parallel to the axes can be represented

by the help of two discrete holomorphic functions ϕh(mh) =

(
p
q

)
and ψh(mh) =

(
p1
q1

)

such that
(
u
0

)
=

1

2

((
m1h m2h
−m2h m1h

)(
p
q

)
+

(
m1h −m2h
m2h m1h

)(
p
−q

)
+

(
p1 − A
q1

)
+

(
p1 − A
−q1

))
.

In this notation A is a solution of the Poisson equation ∆hA = −hD1
hD

−1
h p−hD2

hD
−2
h q. For

small mesh width h the right hand side of this equation is small. The details of the proof are
published in [1].

Consequently, we have on the one hand the solution of the biharmonic equation in the form

u = p ·m1h+ q ·m2h+ p1 − A

with ∆hA = −hD1
hD

−1
h p − hD2

hD
−2
h q and the discrete harmonic functions p, q and p1. On

the other hand the discrete stress function from section 2 has the form

Θ = Φ0 + Φ1 ·m1h+ Φ2 ·m2h− A1

with ∆hA1 = −hD1
hD

−1
h Φ1 − hD2

hD
−2
h Φ2 and the discrete harmonic functions Φ0, Φ1 and

Φ2. Using (2), the components of the displacement vector can be written in the form

2µu0 = −(D−1
h Φ0 +D−1

h (Φ1 ·m1h) +D−1
h (Φ2 ·m2h)−D−1

h A1) + 2αΦ1

= −(D−1
h Φ0 +D−1

h Φ1 ·m1h+D−1
h Φ2 ·m2h−D−1

h A1) (6)
+2αΦ1(m1h,m2h)− Φ1((m1 − 1)h,m2h)

and

2µu1 = −(D−2
h Φ0 +D−2

h (Φ1 ·m1h) +D−2
h (Φ2 ·m2h)−D−2

h A1) + 2αΦ2

= −(D−2
h Φ0 +D−2

h Φ1 ·m1h+D−2
h Φ2 ·m2h−D−2

h A1) (7)
+2αΦ2(m1h,m2h)− Φ2(m1h, (m2 − 1)h) .

In order to get a Taylor expansion of the discrete holomorphic functions we introduce discrete
polynomials which fulfill the so-called Appell property. This property means that the complex
derivation of a basis function leads to a multiple of another basis function. More precisely,
a system of polynomials {P n(z)} is called Appell system, if d

dz
P n(z) = nP n−1(z) with

n = 1, 2, . . . For more details see [3].
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4 DISCRETE POLYNOMIALS

In the discrete case the polynomials defined in the next theorem fulfill the Appell property.

Theorem 4.1 For polynomials P n(m1h,m2h) =

(
P n
0 (m1h,m2h)
P n
1 (m1h,m2h)

)
with n ≥ 1 it holds

1

2

(
D1
h D2

h

−D−2
h D−1

h

)(
P n
0 (m1h,m2h)
P n
1 (m1h,m2h)

)
= n

(
P n−1
0 (m1h,m2h)

P n−1
1 ((m1 − 1)h,m2h)

)
,

where

P n
0 =

n∑

s=0(2)

(
n
s

)
(−1)s/2

n−s/2−1∏

k=s/2

(m1 − k)h

s/2∏

l=1−s/2
(m2 + l)h and

P n
1 =

n∑

s=1(2)

(
n
s

)
(−1)(s−1)/2

n−s/2−3/2∏

k=(s−1)/2

(m1 − k)h

(s−1)/2∏

l=(1−s)/2
(m2 + l)h .

In the following we are interested in the properties of the discrete polynomials. First of all it
is easy to prove that these polynomials are discret holomorphic. From the equation

1

2

(
D−1
h −D2

h

D−2
h D1

h

)(
P n
0 (m1h,m2h)

P n
1 ((m1 − 1)h,m2h)

)
=

(
0
0

)

it follows immediately

1

4

(
D−1
h −D2

h

D−2
h D1

h

)(
D1
h D2

h

−D−2
h D−1

h

)(
P n
0 (m1h,m2h)
P n
1 (m1h,m2h)

)

=
n

2

(
D−1
h −D2

h

D−2
h D1

h

)(
P n−1
0 (m1h,m2h)

P n−1
1 ((m1 − 1)h,m2h)

)
=

(
0
0

)

such that the polynomials are also discrete harmonic.
In the next step we prove that the discrete polynomials are linearly independent. Especially

we show that the identity
(
P0(m1h,m2h)
P1(m1h,m2h)

)
:=

n∑

j=0

aj

(
P j
0 (m1h,m2h)

P j
1 (m1h,m2h)

)
≡
(

0
0

)

is only true for all (m1h,m2h) ∈ Gh with (0, 0) ∈ Gh iff all aj with j = 0, . . . , n are equal
to zero. Based on the structure of the polynomials we have

(
P0(0, 0)
P1(0, 0)

)
=

(
a0
0

)
.

The real part is only in case a0 = 0 equal to zero. By using the Appell property and a small
change in the difference operator which realizes a shift from the point ((m1 − 1)h,m2h) to
(m1h,m2h) we get

1

2

(
D1
h D2

h

−D−2
h −hD1

hD
−2
h D−1

h +hD1
hD

−1
h

)(
P0(m1h,m2h)
P1(m1h,m2h)

)
=

n∑

j=0

jaj

(
P j−1
0 (m1h,m2h)

P j−1
1 (m1h,m2h)

)
≡
(
0
0

)
.
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This identity is true at the mesh point (m1h,m2h) = (0, 0) iff and only iff a1 = 0 . We
repeat the application of the modified difference operator in order to prove that for all aj,
j = 0, . . . , n the equation aj = 0 must be fulfilled.

We show now that the polynomials can also be developed in powers of mh−nh . We denote
by N = N1 · N2 the number of inner mesh points of a rectangle Gh and investigate for fixed
degree of the polynomial n = N − 1 the identity

N1∑

n1=1

N2∑

n2=1

an1,n2

(
P n
0 ((m1 − n1)h, (m2 − n2)h)
P n
1 ((m1 − n1)h, (m2 − n2)h)

)
≡
(

0
0

)
.

To this equation we add n more equations by applying step by step the modified difference
operator. Based on the Appell property the degree of the polynomials becomes smaller and
smaller. If we write the equation system in matrix form with complex elements and a vanishing
right hand side it is clear that all an1,n2 are equal to zero if the determinant of the matrix on
the left hand side is different from zero. From this point of view it is enough to study the
structure of the matrix. By transposing it becomes obviously that we consider a Vandermonde
matrix. In order to show that the column vectors of the transposed matrix are linear independend
we look line by line at the linear combination of these column vectors. In each row we have
polynomials with increasing degree in one and the same mesh point. For these polynomials
we already proved the linear independence and altogether we get this property for the whole
column vector.

5 OUTLOOK

For the discrete holomorphic functions we use the Taylor expansion

Φ(m1h,m2h) =
N−1∑

n=0

bn P
n(m1h,m2h)

and substitute this term into the equations (6) and (7). By this way it is possible to describe the
components of the displacement vector by the help of a finite sum and our polynomial basis.
Another posibility in order to calculate the displacement vector is the use of the discrete Borel
Pompeiu formula. For this formula we refer to [4]
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