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Abstract. Sensor faults can affect the dependability and the accuracy of structural health
monitoring (SHM) systems. Recent studies demonstrate that artificial neural networks can be
used to detect sensor faults. In this paper, decentralized artificial neural networks (ANNs) are
applied for autonomous sensor fault detection. On each sensor node of a wireless SHM system,
an ANN is implemented to measure and to process structural response data. Structural response
data is predicted by each sensor node based on correlations between adjacent sensor nodes and
on redundancies inherent in the SHM system. Evaluating the deviations (or residuals) between
measured and predicted data, sensor faults are autonomously detected by the wireless sensor
nodes in a fully decentralized manner. A prototype SHM system implemented in this study,
which is capable of decentralized autonomous sensor fault detection, is validated in laboratory
experiments through simulated sensor faults. Several topologies and modes of operation of
the embedded ANNs are investigated with respect to the dependability and the accuracy of the
fault detection approach. In conclusion, the prototype SHM system is able to accurately detect
sensor faults, demonstrating that neural networks, processing decentralized structural response
data, facilitate autonomous fault detection, thus increasing the dependability and the accuracy
of structural health monitoring systems.
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1 INTRODUCTION

Structural health monitoring (SHM) systems can be deployed to evaluate the conditions and
to ensure the structural integrity of civil engineering structures. To eradicate problems related
to cost and installation time in conventional wired SHM systems, wireless sensor nodes are
employed. An advantage of wireless sensor nodes is the collocation of processing power with
sensing modules; hence, embedded computing can be employed to perform a variety of SHM
tasks. Over their lifetime, the wireless sensor nodes can become inaccurate, faulty, or may even
break. To ensure the dependability and the accuracy of the SHM system, and the integrity of
the structure, sensor faults must be reliably detected in real time [1].

For sensor fault detection, artificial neural networks (ANN) have been used in several
engineering diciplines. Smarsly and Law (2014), for example, have proposed the use of ANNs
for sensor fault detection by utilizing the analytical redundancy in the correlations between
sensor outputs [2]. Obst (April 2009) has presented a distributed recurrent neural network with
local communication to detect sensor faults [3]. Basirat and Khan (June 2009) have introduced
a neural network approach to distinguish accurate sensor data from faulty sensor data [4]. Yuen
and Lam (2006) have presented a method to develop ANN designs for damage detection in
structural health monitoring [5]. Venkatasubramanian et al. (1990) have tested various neural
network topologies for detecting process failures, such as sensor faults [6].

In this paper, a wireless SHM system with decentralized, autonomous fault detection,
producing minimal wireless transmission, is presented. One ANN is embedded into each
sensor node and trained to autonomously detect sensor faults by comparing measured data
with predicted data. To this end, the measured data collected from the structure is transformed
into the frequency domain, and correlated Fourier amplitudes from different sensor nodes at
selected frequencies are fed to each ANN. By using only Fourier amplitudes at selected peaks
of the frequency spectrum, corresponding to natural frequencies of the structure, a significant
reduction in wireless data transmission and storage is achieved. The ANNs are optimized for
the test structure used in this study, enabling efficient and accurate sensor fault detection.

In the first part of the paper, background information on sensor fault detection using artificial
neural networks is given, followed by a description of the mode of operation of the proposed
SHM system. In the second part of the paper, the implementation of the SHM system is
shown, and laboratory experiments, devised to validate the SHM system, are presented. Several
topologies and modes of operation of the embedded ANNs are tested with simulated sensor
faults. The performance of the ANNs is investigated with respect to the dependability and the
accuracy of the fault detection approach, the results are discussed and an optimal configuration
for the presented test structure is defined. The paper concludes with a summary and a brief
outlook on future work directions.

2 SENSOR FAULT DETECTION USING ARTIFICIAL NEURAL NETWORKS

The following section gives a brief overview of sensor fault detection associated with
artificial neural networks, and shows the general architecture of the proposed SHM system.

A well-known approach towards fault detection is the installation of physically redundant
sensors. Faulty sensors can be identified through the deviation of their measurements from
the measurements of correlated sensors. Physical redundancy, although efficient for sensor
fault detection, causes increased installation and maintenance costs due to multiple installations
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of sensors. Representing a more efficient approach, analytical redundancy typically uses
mathematical functions, mapping the characteristics of the structure and the correlations of the
installed sensors [7]. Specifically, virtual sensor measurements are computed for each sensor
and then compared to the actual measurements. If the properties of a structure are known,
physics-based models, e.g. finite element models, can be used in combination with data from
adjacent sensor nodes to predict measurements of a sensor. However, to use numerical models,
a priori knowledge about the structure is required.

Without a priori knowledge, analytical redundancy can be implemented on wireless sensor
nodes based on data-driven models, such as artificial neural networks. ANNs are a class of
algorithms that are inspired by biological nervous systems, such as the human brain. ANNs are
used to approximate non-linear functions through adaptation to given data sets. Applications of
ANNs are used in several areas, i.a. cancer detection, pattern recognition in image analysis, and
sensor fault detection.

As depicted in Figure 1, ANNs essentially consist of interconnected data processing units,
called “artificial neurons” [8]. Usually, the neurons are grouped in different layers: one input
layer, one output layer, and one or more hidden layers. The connections between the neurons,
termed “synapses”, have adaptive weights according to the connection strength between two
neurons. The connections are used for data exchange between the neurons: the output of the
neurons of one layer is used as the input of the neurons of the next layer. ANNs adapt to
different applications by learning. Progress in learning is achieved by adjusting the weights of
the synapses until a set of given input values results in the desired output values. ANNs can be
customized to various objectives by using different topologies, neuron functions, and learning
strategies [9].
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Figure 1: Example for an artificial neural network with two input neurons, two hidden neurons and two output
neurons, connected by synapses

The SHM system prototype proposed in this study consists of wireless sensor nodes and a
host computer, both linked through a base station. The components of the SHM system perform
different tasks, as shown in the data flow in Figure 2. During system operation, the sensor nodes
collect acceleration response data. The fundamental frequency as well as the corresponding
Fourier magnitude of the acceleration response data of the structure are estimated by the sensor
nodes using the fast Fourier transform (FFT) and a peak picking algorithm. For decentralized
sensor fault detection, a distinct artificial neural network is embedded into each sensor node.
In the ANN, the output of a sensor node is represented either by the input of an input neuron
or by the output of an output neuron. The predicted magnitude of a sensor node, used for
decentralized fault detection, is returned as output, the calculated magnitudes of neighbor sensor
nodes are used as input. The processed data is transmitted wirelessly to the base station and then
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to the host computer. On the host computer, the data is stored in a MySQL database. Additional
diagnostics and information retrieval are conducted on the host computer in further steps.
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Figure 2: Hardware components and dataflow of the proposed SHM system

3 IMPLEMENTATION AND VALIDATION OF THE PROTOTYPE SHM SYSTEM

In this section, the implementation of the proposed SHM system is described. Laboratory
experiments, devised to validate the SHM system, are presented and the test results are
discussed.

3.1 Implementation

The proposed SHM system is implemented in an object-oriented way using the Java
programming language. The sensor nodes and the base station are of type “Oracle Sun SPOT”.
The main board of the Sun SPOTs features a 400 MHz ARM main processor, 1 MB of memory,
8 MB of flash memory and an IEEE 802.15.4 radio transceiver. The application board contains
a 3-axis digital output accelerometer, an ambient light sensor, a temperature sensor, and eight
tricolor LEDs. The accelerometer ranges between ± 2 g and ± 8 g and has a maximum sampling
rate of 125 Hz [10].

3.2 Laboratory experiments

To validate the fault detection approach, the sensor nodes are installed on a test structure,
as shown in Figure 3. The test structure is a 4-story frame structure consisting of steel
plates of 25 cm× 50 cm× 0.75 mm. The plates are mounted on threaded rods with a vertical
clearance of 23 cm. At the bottom of the structure, the rods are fixed into a solid block of
40 cm× 60 cm× 30 cm. The SHM system is installed on the test structure by mounting one
wireless sensor node in the middle of story 3 and story 4, and two sensor nodes on story 2, one
in the middle and one shifted aside by 20 cm.

In several test runs, the structure is excited by deflecting the top story. A test run includes
a training phase and a data collection phase, each performed simultaneously on every sensor
node. The training phase of the SHM system consists of the implementation and the training
of an artificial neural network. The training of the ANN is completed through several sampling
events used as training input. A sampling event includes the excitation of the structure, sampling
of 512 acceleration measurements, on-board estimation of the fundamental frequency and
corresponding Fourier magnitude, and wireless data exchange with the other sensor nodes. The
data collection phase consists of any desired number of sampling events, sensor fault detection,
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Figure 3: Instrumentation of the test structure

and data storage. After every sampling event, the predicted magnitude of each sensor node is
predicted by using the measured magnitudes of the other sensor nodes as input to the neural
network. The deviation of the measured magnitude and the predicted magnitude is calculated
by the sensor node. A deviation exceeding a threshold is indicative of a sensor fault.

To find a suitable artificial neural network architecture for the laboratory test setup, several
different topologies and neuron behaviors are tested offline. Finally, the optimal ANN is
embedded into each sensor node to validate the fault detection online. To train and to test the
ANNs, 100 test samples are generated. To this end, the test structure is excited and acceleration
response data is collected and stored in the database. The acceleration response data is split
randomly into 70% of training data and 30% of test data. Then, sensor faults are simulated to
validate the autonomous sensor fault detection. For each simulated sensor fault, 30 test cases
are generated. Different types of sensor faults are simulated through a manipulation of one
sensor node by

a) substituting the sensor readings with randomized values
b) rotating the sensor node by 45◦

c) shifting the sensor node by 20 cm

The topology of the ANNs is optimized according to three criteria: prediction accuracy,
ability of sensor fault detection, and time consumption during training. To optimize the
topology, various numbers of hidden layers and hidden neurons per layer are tested. Interlayer
connections, allowing only synapses between neurons in adjacent layers, as well as supralayer
connections, allowing synapses between neurons in distant layers, are applied. As for the neuron
behaviors, different training algorithms, backpropagation [11] and resilient backpropagation
[12], are tested. The training and testing of each type of fault is repeated five times. As
a perfomance measure, the root mean square errors (RMSEs) between the measured and the
predicted data are calculated and averaged for all repetitions.
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3.3 Test results

The efficiency of sensor fault detection depends on the increases of the RMSEs between the
measured and the predicted magnitude of the sensor node. Benchmarks for different neural
network topologies are shown in Table 1. For non-faulty sensor data, small RMSEs indicate
a good approximation. The smallest RMSEs between 0.063 and 0.144, representing the best
results, are retrieved with interlayer connected topologies and backward propagation. Using
topologies with supralayer connections or the resilient backpropagation training algorithm leads
to RMSEs between 0.132 and 0.208. When propagating data of simulated sensor faults through
the ANNs, increased RMSE indicate efficient sensor fault detection. The RMSEs of all ANNs
increase by a factor of 1.5 to 12 for different simulated sensor faults. Run times during training
deviate by a factor of up to 40 between 4.6 s and 172.4 s. In general, the time increases with
the number of hidden neurons within an ANN. Using resilient backpropagation, compared to
backpropagation, increases the training time considerably by a factor of around 6 for identical
topologies.

By comparing the benchmarks of different ANN topologies and taking all criteria and results
into consideration, a 3-2-1 interlayer-connected ANN with backpropagation is concluded to
be most appropriate for the test structure Figure 4. The results are marked bold in Table 1.
The RMSE of 0.102 for the test data is within the lower third of all results. With respect to
the simulated sensor faults, the RMSEs of 0.807, 0.603, and 0.410 for randomizing, rotating,
and shifting the sensor nodes are within the top quarter of all results. These RMSEs correlate
with relative errors of 30.05 %, 27.78 %, and 18.87 % respectively. The training of the 3-2-1
topology, executed in 13 s, was the second fasted.

Table 1: Arithmetic mean of root mean square errors during training and fault detection, and time consumed
during training for several network topologies

Simulated sensor faults
Topology Testing Random Rotated Shifted Time [s]

Interlayer,
backpropagation

3-1 0.149 0.767 0.612 0.334 6.6

3-2-1 0.102 0.807 0.603 0.410 13.0
3-3-1 0.144 0.751 0.581 0.283 17.2
3-5-1 0.081 0.784 0.597 0.370 25.0
3-7-1 0.063 0.756 0.587 0.294 32.2

3-2-2-1 0.092 0.813 0.625 0.432 21.0
3-5-5-1 0.137 1.213 0.752 0.938 46.6

Interlayer and
supralayer,
backpropagation

3-3-1 0.147 0.762 0.593 0.317 15.2
3-5-1 0.132 0.764 0.600 0.324 22.6

3-2-2-1 0.137 0.760 0.601 0.312 19.4

interlayer,
resilient
backpropagation

3-3-1 0.153 0.783 0.610 0.364 113.0
3-5-1 0.143 0.729 0.598 0.249 172.4

3-2-2-1 0.208 0.744 0.607 0.282 120.6

81



wih

o1

whΩ

h1

i2

i1

i3

h2

Predicted
magnitude

Calculated
magnitudes

Figure 4: Optimal ANN topology for sensor fault detection: 3-3-1 feedforward neural network
with unidirectional interlayer synapses

4 SUMMARY AND CONCLUSIONS

This paper has presented a decentralized autonomous sensor fault detection strategy for
wireless structural health monitoring systems based on artificial neural networks. Autonomous
sensor fault detection has been implemented by embedding artificial neural networks into the
sensor nodes. The ANNs have been trained to predict expected sensor data to be compared
to measured sensor data in order to detect sensor faults. To verify the proposed approach, the
SHM system has been installed on a test structure for validating tests. Several different network
models have been tested to identify an efficient, resource-saving configuration. As a result,
an artificial neural network with 3-2-1 interconnected topology and backpropagation training
algorithm training has been proven to be the optimal solution for the structure tested in this
study. In summary, it can be concluded that sensor fault detection using neural networks can
improve the dependability and the accuracy of structural health monitoring systems.

In future work, different types of artificial neural networks and further topologies may be
investigated. The SHM system may be tested under varying conditions on test structures with
other stimuli or on site. To ensure portability of the proposed fault detection approach, the SHM
system may be implemented on other types of sensor nodes.
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