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Abstract. In this paper, we present an empirical approach for objective and quantitative 
benchmarking of optimization algorithms with respect to characteristics induced by the forward 
calculation. Due to the professional background of the authors, this benchmarking strategy is 
illustrated on a selection of search methods in regard to expected characteristics of geotechnical 
parameter back calculation problems. Starting from brief introduction into the approach 
employed, a strategy for optimization algorithm benchmarking is introduced. The benchmarking 
utilizes statistical tests carried out on well-known test functions superposed with perturbations, 
both chosen to mimic objective function topologies found for geotechnical objective function 
topologies. Here, the moved axis parallel hyper-ellipsoid test function and the generalized Ackley 
test function in conjunction with an adjustable quantity of objective function topology roughness 
and fraction of failing forward calculations is analyzed. In total, results for 5 optimization 
algorithms are presented, compared and discussed.  
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1    MOTIVATION 
For numerical simulations, it is essential to use a model parameter set which generates a 

realistic system response. In practice, parameter back calculation based on the direct approach is 
often used for this purpose in which mathematical optimisation algorithms are a critical 
component. Many different optimization algorithms are known and are available within the 
literature (for an overview, see e.g. [11] or [7]). These algorithms use a variety of approaches to 
perform the search for optimal parameter combinations. However, the performance and 
convergence of the different optimization algorithms itself varies strongly, and also depend 
strongly on the optimization problem to solve. Exorbitant computational costs or, in the worst 
case, an improper or random parameter set will be returned if an unsuitable optimization 
algorithm is selected. Therefore, a suitable optimization algorithm has to be carefully selected 
for each problem. 

For optimization algorithms, the performance by means of “finding the optimum reliable” and 

“low computational cost” cannot be assessed in a closed mathematical form in most of the cases. 

However, we may use a statistical analysis of the solution obtained from optimization runs to 
make conclusions on some properties of the optimization algorithm and the search-performance. 
For this approach, the success rates of finding the optimum is treated as a stochastic value and 
statistical measures are applicable. Hereafter the approach used and some results are presented. 

2    EMPIRICAL BENCHMARKING APPROACH 
The parameter identification approach using the direct back analysis method consists of an 

iterative procedure controlled by an optimization algorithm. The model parameters are iteratively 
changed in such a way to achieve better agreement between the model results and the measured 
values, e.g. the field measurements. This agreement (or disagreement) is measured by the 
objective function f(x). The aim of the optimization algorithm is therefore to iteratively minimize 
the objective function value. 

The computational cost caused by this iterative process is mainly influenced by the number 
of forward calculations (usually numerical simulations) requested by the optimization algorithm. 
The processor usage of the optimization algorithm itself on the other hand is usually neglectable. 
A typical single forward calculation used in Geotechnics (e.g. Finite Element model of an 
excavation pit) requires often 5 min calculation time or more while the optimization algorithm 
itself needs less than 1 sec. Minimizing the computational cost of an optimization sequence is 
therefore equivalent with minimizing the number of forward calculations. 

For the statistical approach applied here, no “real life” forward calculation has been used to 

avoid high calculation time. Therefore, the normal calculation scheme for an objective function 
value has been altered by substituting the time-consuming forward calculation by a well-defined 
and well-known test function. This substitution has no influence on the iterative process 
controlled by the optimization algorithm nor have the optimization algorithms to be adapted. 
From view of the optimization algorithm, an objective function value is still calculated based on 
a parameter vector. 

As stated by [2] and also by the experience of the authors (e.g. [6, 8, 14]), many objective 
functions from the field of (geo-)technics have a globally convex shape, in which often secondary 
(locally optimal) solutions are present. Furthermore many objective functions show a certain 
‘roughness’ or ‘noise’ at a smaller scale. Additionally for some parameter vectors a forward 

calculation can fail reproducible (e.g. no convergence in the Finite Element Method) and no 
objective function value can be calculated accordingly. 
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In view of these facts, two test functions have been chosen for the benchmarking presented: 
Firstly, the Moved axis parallel hyper-ellipsoid function, which has no secondary optima and one 
global optimum [10]. Secondly, the Ackley test function in its generalized form, which shows 
several secondary optima of varying objective function values and a single global optimum (see 
[1] for details). 

Both test functions exhibit no roughness or failed parameter vectors. In order to incorporate 
both characteristics the original test function f(x) is superposed with a noise field r(x) according 
to Eq. (1) and (2). In Eq. (2) srnd(■) is a pseudo-random number generator returning equal-
distributed numbers ranging from 0.0 to 1.0, while for one and the same argument (■) always the 

same number is retuned. The control variable τ is the noise scaling factor. According to Eq. (3) a 
parameter vector x is considered “failed” if the pseudo-random number for x is smaller or equal 
to a predefined failure probability pf. 

𝑓∗(𝑥) ∶= 𝑓(𝑥) + 𝑟(𝑥) (1) 

𝑟(𝑥) ∶= 𝜏 (
1

2
−

1

𝑛
∑ srnd(𝑥𝑖)
𝑛
𝑖=1 ) (2) 

srnd(𝑥) ≤ 𝑝𝑓 (3) 

The majority of optimization algorithms will not find the exact location of the test function 
global optimum (x*), but will rather move asymptotically towards x* due to underlying 
paradigms. The optimization sequence is considered to be successful, if the parameter set xmin 
with the smallest objective function value is located within Ψ as defined by Eq. (4). 

Ψ = {𝑥𝑚𝑖𝑛 | ‖𝑥𝑚𝑖𝑛 − 𝑥∗‖2
 
≤ 𝑑𝛹} (4) 

The search range Ω and dΨ has been chosen as follows (please note that the relative size of Ψ 

for both test functions is equal compared to Ω): 

- Ackley Test Function: -1.0 ≤ xi ≤ +2.0 with dΨ = 0.1 

- Moved axis parallel hyper-ellipsoid function: -10.0 ≤ xi ≤ +20.0 with dΨ = 1.0 

To assess the probability of which an optimization algorithm is able to converge within Ψ on 

a test function for given values of pf. and τ, a large number of optimization sequences is repeatedly 
run. For each sequence, the start parameter sets are chosen randomly within Ω and the number 

of forward calculation is limited to 500. The quotient of successful sequences over the total 
number of sequences is considered as success rate p. The number of optimization sequences is 
increased until the success rate is stabilizing, what usually corresponds to some 10’000 runs. 

3    RESULTS 
The empirical benchmarking approach described above has been applied to 5 selected 

optimization algorithms. Namely, Monte-Carlo method (MC), a gradient descent method (GD) 
(e.g. [12, 11]), an evolutionary-genetic algorithm (EG) [e.g. 11], the Simplex-Nelder-Mead 
optimizer (SNM) [9] and the particle swarm optimizer (PSO) [5, 4]. For each algorithm both test 
functions have been used with n = {2, 3, 4, 6, 8 and 10} unknown parameters. 

The diagrams of Figure 3 show on the vertical axis the success rate p. over the noise control 
variable τ and, respectively, the failure rate pf. The main conclusions are: 

- The MC method performs well for n = 2. For higher n it clearly suffers from the “curse 

of dimensionality” [3]. 
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- The GD performs works very nice for smooth objective function topologies with no 
secondary optima. It performs very badly if secondary optima are present, as it is the case 
for the Ackley test function. The GD is also not robust to noise and failing forward 
calculations. 

- The SNM optimizer is much more robust than the GD. Nevertheless, due to its local 
character the success rate for the Ackley test function is ~50% even for the ideal case of 
τ = 0 and pf = 0. 

- The EG algorithm class is very popular among many researchers due to its high 
robustness. This robustness is also visible in Figure 3. The major drawback of this method 
is its need for a large number of forward calculations as also stated by [13]. 

- For both test function the PSO (10 particles) used shows the best performance values. It 
outperforms clearly all other tested algorithms including the EG method. This finding is 
in agreement with the experience of other researchers, e.g. [13]. 

The results of Figure 3 show clearly how different the optimization algorithms behave for the 
two test functions. This illustrates how the nonlinearity of the objective function has a strong 
influence to the performance of the optimization algorithm.  

Figure 1: Results of the 5 tested optimization algorithms 
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4    CONCLUSION AND OUTLOOK 
In the present paper an approach for impartial and quantitative benchmarking of optimization 

algorithms has been briefly presented and applied to 5 selected optimization algorithms. Of all 
the optimization algorithms tested, the PSO shows the best performance. However, if an 
objective function with a severely different nonlinearity is present, or if the number of unknown 
parameters n increases strongly the PSO may be outperformed by other algorithms. 

The next step will be to apply the benchmarking to more algorithms and to define a rating 
function based on the performance profiles to provide an objective rating method for optimization 
algorithms. 
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