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Abstract. We give a sufficient and a necessary condition for an analytic function f on the unit
disc D with Hadamard gaps, that is, for f(z) =

∞∑
k=1

akz
nk where nk+1

nk
≥ λ > 1 for all k ∈ IN,

to belong to the weighted logarithmic Bloch space Bα
ω,log as well as to the corresponding little

weighted logarithmic Bloch space Bα
ω,log,0, under some conditions posed on the weight function

ω. Also, we study the relations between the class Bα
ω,log and some other classes of analytic

functions by the help of analytic functions in the Hadamard gap class.
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1 INTRODUCTION

Hadamard gaps are known to study some classes and spaces of holomorphic and hyperholo-
morphic functions. A wide variety of characterization not only in the type of function spaces,
where functions are holomorphic and hyperholomorphic, but also in the coefficients which ex-
tend over Taylor or Fourier series expansions. It is one of the important tasks in the study of
function spaces to seek for characterizations of functions by the help of their Taylor or Fourier
series expansions. In the past few decades both Taylor and Fourier series expansions were stud-
ied by the help of Hadamard gap class (see [1, 6, 8, 9, 10] and others).
In the present paper, we shall obtain a sufficient and a necessary condition for an analytic func-
tion f on the unit disc with Hadamard gaps to belong to the weighted logarithmic Bloch space
Bα

ω,log as well as to the corresponding little weighted logarithmic Bloch space Bα
ω,log,0, under

some conditions posed on the weight function ω.
Let D = {z : |z| < 1} be the open unit disk in the complex plane C. Recall that the well known
Bloch space (cf. [2]) is defined as follows:

B = {f : f analytic in D and sup
z∈D

(1− |z|2)|f ′(z)| < ∞}

and the little Bloch space B0 (cf. [2]) is given as follows

lim
|z|→1−

(1− |z|2)|f ′(z)| = 0.

Recently, for given a reasonable function ω : (0, 1] → (0,∞), the weighted Bloch space Bω is
defined in [5] as the set of all analytic functions f on D satisfying

(1− |z|)|f ′(z)| ≤ Cω(1− |z|), z ∈ D,

for some fixed C = Cf > 0. In the special case where ω ≡ 1,Bω reduces to the classical Bloch
space B.
The Dirichlet space is defined by

D = {f : f analytic in D and
∫

D
|f ′(z)|2dA(z) < ∞},

where dA(z) is the Euclidean area element dxdy.
Let 0 < q < ∞. Then the Besov-type spaces consist of analytic functions on D such that

Bq =
{
f : f analytic in D and sup

a∈D

∫

D
|f ′(z)|q(1− |z|2)q−2(1− |ϕa(z)|2)2 dA(z) < ∞

}
,

these classes are introduced and studied intensively Stroethoff (cf. [14]). Here, ϕa stands for
the Möbius transformation, where ϕa(z) = a−z

1−āz
. In 1994, Aulaskari and Lappan [2] introduced

a class of holomorphic functions, the so called Qp-spaces as follows:

Qp =
{
f : f analytic in D and sup

a∈D

∫

D
|f ′(z)|2gp(z, a) dA(z) < ∞

}
,

where the weight function
g(z, a) = log

∣∣∣∣
1− āz

a− z

∣∣∣∣
is defined as the composition of the Möbius transformation ϕa and the fundamental solution of
the two-dimensional real Laplacian. Now, we give the following definitions:
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Definition 1.1 Let 0 < α < ∞ and ω : (0, 1] → (0,∞). For an analytic function f in D, we
define the weighted α-Bloch space Bα

ω , as follows:

Bα
ω =

{
f : f analytic in D and ‖f‖Bα

ω
= sup

z∈D

(1− |z|)α|f ′(z)|
ω(1− |z|) < ∞

}
. (1)

Also, the little weighted α-Bloch space Bα
ω,0, is a subspace of Bα

ω consisting of all f ∈ Bα
ω such

that

lim
|z|→1−

(1− |z|)α|f ′(z)|
ω(1− |z|) = 0. (2)

Miao [10] studied a gap series with Hadamard condition as in the following theorem:

Theorem 1.1 Let 0 < p < ∞. If f(z) =
∞∑

k=1
akz

nk is analytic on D and has Hadamard gaps,
that is, if

nk+1

nk

≥ λ > 1, (k = 1, 2, . . .),

then the following statements are equivalent:

(I) f ∈ Bp; (II) f ∈ Bp
0; (III)

∞∑
k=1

|ak|p < ∞.

Remark 1.1 The expression ‖f‖Bα
ω

defines a seminorm while the natural norm is given by

‖f‖ω,α = |f(0)|+ ‖f‖Bα
ω
.

With this norm the space Bα
ω is a Banach space.

Definition 1.2 Let 0 < α < ∞ and ω : (0, 1] → (0,∞). For an analytic function f in D, we
define the weighted logarithmic α-Bloch space Bα

ω,log as follows:

Bα
ω,log =

{
f : f analytic in D and ‖f‖Bα

ω,log
= sup

z∈D

(1− |z|)α|f ′(z)|
ω(1− |z|) log

1

1− |z| < ∞
}
. (3)

Moreover, the little weighted logarithmic α-Bloch space Bα
ω,log,0 is a subspace of Bα

ω,log consist-
ing of all f ∈ Bα

ω,log such that

lim
|z|→1−

(1− |z|)α|f ′(z)|
ω(1− |z|) log

1

1− |z| = 0. (4)

Remark 1.2 The expression ‖f‖Bα
ω,log

defines a seminorm while the natural norm is given by

‖f‖ω,log,α = |f(0)|+ ‖f‖Bα
ω,log

.

With this norm the space Bα
ω,log is a Banach space.
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Note that, If α = 1 and ω ≡ 1, then logarithmic α-Bloch space Bα
ω,log reduces to the logarithmic

Bloch space Blog see [4]. The logarithmic Bloch space Blog first appeared in the study of bound-
edness of the Hankle operators on the Bergman and Hardy spaces followed by many authors.
For more details of the logarithmic Bloch space we refer to [4, 7, 15, 16] and others.
For a point a ∈ D and 0 < r < 1, the pseudo-hyperbolic disk D(a, r) with pseudo-hyperbolic
center a and pseudo-hyperbolic radius r is defined by D(a, r) = ϕa(rD).
The pseudo-hyperbolic disk D(a, r) is also an Euclidean disk: its Euclidean center and Eu-
clidean radius are (1−r2)a

1−r2|a|2 and (1−|a|2)r
1−r2|a|2 , respectively (see [14]). Let A denote the normalized

Lebesgue area measure on D, and for a Lebesgue measurable set K1 ⊂ D, denote by |K1| the
measure of K1 with respect to A. It follows immediately that:

|D(a, r)| = (1− |a|2)2

(1− r2|a|2)2
r2.

Now, we give a few facts about the Möbius function ϕa, which will be used in Section 3. First,
the function ϕa is easily seen to be its own inverse under composition:

(ϕa ◦ ϕa)(z) = z for all a, z ∈ D .

The following identity can be obtained by straight forward computation:

1− |ϕa(z)|2 =
(1− |a|2)(1− |z|2)

|1− az|2 for all a, z ∈ D (see [14]).

A slightly different form in which we will apply the above identity is:

1− |ϕa(z)|2
1− |z|2 = |ϕ′a(z)| (see [14]).

For a ∈ D, the substitution z = ϕa(w) results in the Jacobian change in measure given by

dA(w) = |ϕ′a(z)|2dA(z).

For a Lebesgue integrable or a non-negative Lebesgue measurable function h on D we thus
have the following change-of-variable formula:

∫

D(0,r)
h(ϕa(w))d(z) =

∫

D(a,r)
h(z)

(
1− |ϕa(z)|2

1− |z|2
)2

dA(z) .

Two quantities Af and Bf , both depending on an analytic function f on D, are said to be
equivalent, written as Af ≈ Bf , if there exists a finite positive constant C not depending on f
such that for every analytic function f on D we have:

1

C
Bf ≤ Af ≤ CBf .

If the quantities Af and Bf , are equivalent, then in particular we have Af < ∞ if and only if
Bf < ∞.

In the present work, we shall obtain a sufficient and a necessary condition for an analytic func-
tion f on the unit disc with Hadamard gaps to belong to the weighted logarithmic Bloch space
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Bα
ω,log as well as to the corresponding little weighted logarithmic Bloch space Bα

ω,log,0, under
some conditions posed on the weight function ω. Important properties of the weight function ω
are also proved, then we give characterization of holomorphic functions in the weighted Dirich-
let space in terms of their Taylor coefficients, where the weighted Dirichlet space Dω is the
collection of all analytic functions f in D, for which

∫

D

|f ′(z)|2
ω(1− |z|) dA(z) < ∞. (5)

2 LACUNARY SERIES IN Bα
ω,LOG AND Bα

ω,LOG,0

In this section we give some criteria for lacunary series belonging to Bα
ω,log or Bα

ω,log,0. These
will be used to show some strict inclusions between Bα

ω,log or Bα
ω,log,0 and some other function

spaces in the next section. We first give necessary conditions on Taylor coefficients such that an
analytic function is in Bα

ω,log or Bα
ω,log,0. This may be of independent interest.

Proposition 2.1 Let 0 < α < ∞, ω : (0, 1] → (0,∞), and let f(z) =
∞∑

n=0
anz

n be an analytic
function on D.
(i) If f ∈ Bα

ω,log, then

lim
n→∞ sup n1−α|an| log n

ω( 1
n
)
≤ e‖f‖Bα

ω,log
.

(ii) If f ∈ Bα
ω,log,0, then

lim
n→∞ sup n1−α|an| log n

ω( 1
n
)

= 0.

Proof: (i) It is easy to see that, for n ≥ 1,

an =
1

2πn

∫ 2π

0
f ′(reiθ) r1−nei(1−n)θdθ. (6)

Thus,

|an| ≤ 1

2πn

∫ 2π

0
|f ′(reiθ)|r1−ndθ

≤
‖f‖Bα

ω,log

2πn

∫ 2π

0

r1−nω(1− r)

(1− r)α log 1
1−r

dθ

=
‖f‖Bα

ω,log
r1−nω(1− r)

n(1− r)α log 1
1−r

.

Let r = 1− 1
n
, we get for n > 1, that

|an| ≤
‖f‖Bα

ω,log
(1− 1

n
)1−nω( 1

n
)

n1−α log n
.

So,
lim

n→∞ sup n1−α|an| log n

ω( 1
n
)
≤ ‖f‖Bα

ω,log
lim

n→∞ sup
(
1− 1

n

)1−n

= e ‖f‖Bα
ω,log

.
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(ii) By (6) we have

|an| ≤ 1

2πn

∫ 2π

0
|f ′(reiθ)|r1−ndθ.

Because f ∈ Bα
ω,log,0, we know that every ε > 0, there is a δ > 0 such that for every r ∈ (0, 1),

and 1− r < δ, with
|f ′(reiθ)|(1− r)α

ω(1− r)
log

1

1− r
< ε

Now, let r = 1− 1
n
. Then n = 1

1−r
> 1

δ
, and hence

|an| ≤ ε

2πn

∫ 2π

0

r1−nω(1− r)

(1− r)α log 1
1−r

dθ =
ε(1− 1

n
)ω( 1

n
)

n1−α log n
.

So,
n1−α|an| log n

ω( 1
n
)

< ε(1− 1

n
)1−n.

Because
lim

n→∞ (1− 1

n
)1−n = e.

There exists N0 > 0 such that for n > N0, (1 − 1
n
)1−n < e + 1. Let N = max{1

δ
, N0}. Then,

if n > N,

n1−α|an| log n

ω( 1
n
)

< (e + 1)ε

Thus
lim

n→∞ sup n1−α|an| log n

ω( 1
n
)

= 0.

The proof is complete.

We need the following lemma in the next

Lemma 2.1 Let 0 < α < ∞, and ω : (0, 1] → (0,∞), continuous and nondecreasing
function. If nk+1

nk
≥ λ > 1 for all k ≥ 1, then for sufficiently large k, we have

ω( 1
nk+1

)nα
k+1 log nk

ω( 1
nk

)nα
k log nk+1

≥ λα > 1 (7)

Proof: Suppose (7) is not true. Then we have

lim
k→∞

inf
ω( 1

nk+1
)nα

k+1 log nk

ω( 1
nk

)nα
k log nk+1

= S < λα. (8)

Let λk = nk+1

nk
. Then λk ≥ λ > 1. So,

lim
k→∞

inf
1(

1 + log λk

log nk

)
ω( 1

nk
)

ω( 1
nk+1

)

= lim
k→∞

inf
ω( 1

nk+1
) log nk

ω( 1
nk

) log nk+1

= lim
k→∞

inf
ω( 1

nk+1
) nα

k+1 log nk

ω( 1
nk

) nα
k log nk+1

.
1

λα
k

= lim
k→∞

inf
1

λα
k

.
ω( 1

nk+1
) nα

k+1 log nk

ω( 1
nk

) nα
k log nk+1

≤ S

λα
< 1.

6



Hence

lim
k→∞

sup
(
1 +

log λk

log nk

) ω( 1
nk

)

ω( 1
nk+1

)
=

λα

S
> 1,

lim
k→∞

sup
( ω( 1

nk
)

ω( 1
nk+1

)
+

ω( 1
nk

)

ω( 1
nk+1

)

log λk

log nk

)
=

λα

S
> 1.

Hence ω is continuous, we obtain

ω(0)

ω(0)
+ lim

k→∞
sup

ω( 1
nk

)

ω( 1
nk+1

)

log λk

log nk

=
λα

S
> 1.

1 + lim
k→∞

sup
ω( 1

nk
)

ω( 1
nk+1

)

log λk

log nk

=
λα

S
> 1.

Hence,

lim
k→∞

sup
ω( 1

nk
)

ω( 1
nk+1

)

log λk

log nk

=
λα

S
− 1 > 0. (9)

Let τk = log λk

log nk
. By (9) we know that, for 0 < ε < λα

S
− 1, there exists a subsequence of {τk},

for convergence, we still denote it by {τk}, such that τk ≥ ε > 0 for all k ≥ 1. Now we have

ω( 1
nk+1

)nα
k+1 log nk

ω( 1
nk

)nα
k log nk+1

=
λα

k(
1 + log λk

log nk

)
ω( 1

nk
)

ω( 1
nk+1

)

=

(
n

log λk
log nk
k

)α

(
1 + log λk

log nk

)
ω( 1

nk
)

ω( 1
nk+1

)

=
nατk

k

(1 + τk)
ω( 1

nk
)

ω( 1
nk+1

)

.

Since τk ≥ ε > 0 and nk →∞ as k →∞, it is obvious that

lim
k→∞

inf
nατk

k

(1 + τk)
ω( 1

nk
)

ω( 1
nk+1

)

= ∞.

Hence

lim
k→∞

inf
ω( 1

nk+1
)nα

k+1 log nk

ω( 1
nk

)nα
k log nk+1

= ∞.

This is contradiction to (8), and the proof is complete.

Now we give the criteria for lacunary series in Bα
ω,log and Bα

ω,log,0

Theorem 2.1 Let 0 < α < ∞, ω : (0, 1] → (0,∞), continuous and nondecreasing function
and let f(z) =

∞∑
k=1

akz
nk be an analytic function on D with Hadamard gaps, which means

nk+1

nk
≥ λ > 1 for all k ≥ 1.

(i) f ∈ Bα
ω,log, if and only if

lim
k→∞

sup n1−α
k |ak| log nk

ω( 1
nk

)
< ∞. (10)
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(ii) f ∈ Bα
ω,log,0, if and only if

lim
k→∞

sup n1−α
k |ak| log nk

ω( 1
nk

)
= 0. (11)

Proof: (i) By Proposition 2.1 (i), we need only prove ” ⇐ ”. Suppose that f satisfies (10).
Without loss of generality, we may assume that nk > 1. Then by (10), there is a constant
M > 0 such that

|ak| ≤ Mnα−1
k (log nk)

−1ω(
1

nk

).

Hence
|zf ′(z)|
1− |z| log

1

1− |z| ≤
( ∞∑

k=1

nk|ak||z|nk−1
)( ∞∑

n=0

|z|n
)( ∞∑

n=1

|z|n
n

)

≤ M
( ∞∑

n=1

( ∑

nk≤n

ω( 1
nk

)nα
k

log nk

)
|z|n

)( ∞∑

n=0

|z|n
n

)
. (12)

By Lemma 2.1, there is a constant K > 0 such that for every k ≥ K,

ω( 1
nk+1

) log nk nα
k+1

ω( 1
nk

) log nk+1 nα
k

≥ λα > 1.

We may assume that K ≥ 3. Hence

nα
kω( 1

nk
)

log nk

≤
nα

k+1ω( 1
nk+1

)

λα log nk+1

. (13)

Let nk0 ≤ n ≤ nk0 + 1. Without loss of generality, we may assume that k0 > K. Then, for
K ≤ k < k0, by (13) and the fact that x

log x
is increasing with respect to x for x ≥ 3, we get

nα
kω( 1

nk
)

log nk

≤
nα

k0
ω( 1

nk0
)

λα(k0−k) log nk0

≤ nαω( 1
n
)

λα(k0−k) log n
.

Therefore, we have
k0∑

k=K

nα
kω( 1

nk
)

log nk

≤ nαω( 1
n
)

log n

k0∑

k=K

1

λα(k0−k)
≤ nαω( 1

n
)

(1− λα) log n
. (14)

On the other hand, for 1 ≤ k < K, since we have only finite terms, we can find a constant
M̄ > 0 such that

nα
kω( 1

nk
)

log nk

≤ M̄
nαω( 1

n
)

log n
.

Thus
K−1∑

k=1

nα
kω( 1

nk
)

log nk

≤ M̄K
nαω( 1

n
)

log n
. (15)

Combining (14) and (15) we know that there is a constant R > 0 such that

∑

nk≤n

nα
kω( 1

nk
)

log nk

≤ R
nαω( 1

n
)

log n
. (16)
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From (12) and (16), notice that nk > 1, we have

|zf ′(z)|
1− |z| log

1

1− |z| ≤ MR
( ∞∑

n=2

nαω( 1
n
)

log n
|z|n

)( ∞∑

n=1

|z|n
n

)

≤ MR
( ∞∑

n=3

(n−1∑

k=2

kαω( 1
k
)

(n− k) log k

)
|z|n

)
. (17)

It is easy to see that, for 2 ≤ k < n,
kαω( 1

k
)

log k
≤ Cnαω( 1

n
)

log n
, where C > 0 is a constant. Then

kαω( 1
k
)

(n− k) log k
≤ Cnαω( 1

n
)

(n− k) log n
.

Hence
n−1∑

k=2

kαω( 1
k
)

(n− k) log k
≤ Cω( 1

n
)nα

log n

n−1∑

k=2

1

n− k
≤ C1ω( 1

n
)nα log n

log n
= C1ω(

1

n
)nα. (18)

Thus, by (17) and (18), we have

|zf ′(z)|
1− |z| log

1

1− |z| ≤ C1MR
∞∑

n=3

nαω(
1

n
)|z|n ≤ C2

|z|ω(1− |z|)
(1− |z|)1+α

.

Hence,

sup
z∈D

|f ′(z)|(1− |z|
2)α

ω(1− |z|) log
1

1− |z| ≤ 2α sup
z∈D

|f ′(z)| (1− |z|)
α

ω(1− |z|) log
1

1− |z| ≤ 2αC2 < ∞.

So f ∈ Bα
ω,log.

(ii) By Theorem 2.1 (ii), we need only prove ” ⇐ ”. Suppose that f satisfies (11). Without loss
of generality, we may assume that nk > 1. Denote A = sup

k≥1
|ak|n1−α

k ω−1( 1
nk

) log nk. Then by

(11), A < +∞, and for every ε > 0, there is a constant K = K(ε) > 0 such that for every
k > K, |ak|n1−α

k ω−1( 1
nk

) log nk < ε. Denote

M =
K∑

k=1

nα
kω( 1

nk
)

log nk

.

Since the series has only finite terms, M < +∞. Thus

|zf ′(z)|
1− |z| log

1

1− |z| ≤
( ∞∑

k=1

nk|ak||z|nk−1
)( ∞∑

n=0

|z|n
)( ∞∑

n=1

|z|n
n

)

≤ A
( K∑

k=1

nα
kω( 1

nk
)

log nk

|z|nk−1
)( ∞∑

n=0

|z|n
)( ∞∑

n=1

|z|n
n

)

+ ε
( ∞∑

k=K+1

nα
kω( 1

nk
)

log nk

|z|nk−1
)( ∞∑

n=0

|z|n
)( ∞∑

n=1

|z|n
n

)

≤ AM |z|
1− |z| log

1

1− |z| + ε C2
|z|

(1− |z|)1+α
.
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The second term of the right hand side is from the proof of (i). Hence

|f ′(z)| (1− |z|)
α

ω(1− |z|) log
1

1− |z| ≤ AM
(1− |z|)α

ω(1− |z|) log
1

1− |z| + C2ε.

Since
lim
|z|→1−

(1− |z|)α

ω(1− |z|) log
1

1− |z| = 0,

we can choose r, 0 < r < 1, such that for |z| > r,

AM
(1− |z|2)α

ω(1− |z|) log
1

1− |z| < ε.

Hence, for |z| > r

|f ′(z)|(1− |z|
2)α

ω(1− |z|) log
1

1− |z| < 2α(1 + C2)ε,

which means that
lim
|z|→1−

|f ′(z)|(1− |z|
2)α

ω(1− |z|) log
1

1− |z| = 0.

Thus f ∈ Bα
ω,log,0.

In the end of Section 1, we have seen that

M(B) = M(B0) = H∞ ⋂Bω,log.

It is natural to ask that if it is true that H∞ and Bω,log are not included in each other. Since it
is well known that H∞ 6⊂ Bω, and by Lemma 2.1, Bω,log ⊂ Bω, we see that H∞ 6⊂ Bω,log. The
following result show that Bω,log 6⊂ H∞ (note that Bω,log,0 ⊂ Bω,log), and so H∞ and Bω,log are
indeed not included in each other.

Corollary 2.1 Let ω : (0, 1] → (0,∞), so Bω,log,0 6⊂ H∞.

Proof: Let f(z) =
∞∑

k=2
akz

2k
=

∞∑
k=2

(k log k)−1z2k
. Then

lim
k→∞

sup |ak| log 2k

ω( 1
2k )

= lim
k→∞

sup
k log 2

ω( 1
2k )k log k

= 0.

Thus, by Theorem 2.1, f ∈ Bω,log,0. Since

lim
r→1
|f(r)| = lim

r→1

∞∑

k=2

r2k

k log k
= ∞.

We know that f 6∈ H∞, and the proof is complete.

Corollary 2.2 Let ω : (0, 1] → (0,∞), so Bω,0 6⊂ H∞.

Proof: The prove is very similar as Corollary 2.1.
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3 STRICT INCLUSIONS

In this section we study the relations between the space Bα
ω,log and some other spaces. The

following result shows that the space Bα
ω,log is quite close to the α-Bloch space Bα. Anyhow,

they are not same.

The following lemma is useful in our study

Lemma 3.1 [3] For 0 < p ≤ 1, a ∈ D and z = reiθ in D,

∫ 2π

0

dθ

|1− āreiθ|2p
≤ C

(1− |a|r)p
,

where C > 0 is a constant.

Theorem 3.1 Let ω : (0, 1] → (0,∞) and 0 < α < ∞. Then
⋃

0<α∗<α

Bα∗
ω 6⊆ Bα

ω,log,0 6⊆ Bα
ω,log 6⊆ Bα

ω,0.

Proof: The inclusion Bα
ω,log ⊂ Bα

ω,0 is proved in (see [12] Lemma 2.2). It is obvious that
Bα

ω,log,0 ⊂ Bα
ω,log. To prove the left hand side inclusion, let 0 < α∗ < α, and let f ∈ Bα∗

ω . Then

‖f‖Bα∗
ω

= sup
z∈D

|f ′(z)| (1− |z|)
α

ω(1− |z|) < ∞.

Hence,

lim
|z|→1−

|f ′(z)|(1− |z|
2)α

ω(1− |z|) log
1

1− |z| = ‖f‖Bα∗
ω

lim
|z|→1−

(1− |z|2)α−α∗ log
1

1− |z| = 0.

Thus f ∈ Bα
ω,log,0.

Now we prove the strictness of the inclusions. First, let f1(z) =
∞∑

k=1
akz

2k
, where ak =

2−k(1−α)(k log k)−1ω( 1
2k ). Then

lim
k→∞

sup |ak|(2k)1−α log 2k

ω( 1
2k )

= lim
k→∞

sup
log 2

log k
= 0.

Thus, by Theorem 2.1, f1 ∈ Bα
ω,log,0. But for every α∗, 0 < α∗ < α,

lim
k→∞

sup |ak|(2
k)1−α∗

ω( 1
2k )

= lim
k→∞

sup 2k(α−α∗)(k log 2)−1 = ∞.

So, by Corollary 2.2, f1 6∈ Bα∗
ω .

Next, let f2(z) =
∞∑

k=1
akz

2k
, where ak = 2−k(1−α)(k log 2)−1ω( 1

2k ). Then

lim
k→∞

sup |ak|(2k)1−α log 2k

ω( 1
2k )

= 1 < ∞.

Thus, by Theorem 2.1, f2 ∈ Bα
ω,log\Bα

ω,log,0.

11



Finally, let f3(z) =
∞∑

k=1
akz

2k
, where ak = 2−k(1−α)(log k)−1ω( 1

2k ). Then

lim
k→∞

sup |ak|(2
k)1−α

ω( 1
2k )

= 0.

So, we have f3 ∈ Bα
ω,0. But

lim
k→∞

sup |ak|(2k)1−α log 2k

ω( 1
2k )

= lim
k→∞

sup
k log 2

log 2
= ∞.

So by Theorem 2.1, f3 6∈ Bα
ω,log. The proof is complete.

The following is a direct consequence of Theorem 3.1.

Corollary 3.1 Let ω : (0, 1] → (0,∞) and 0 < α1 < α2 < ∞. ThenBα1
ω,log 6⊂ Bα2

ω,log, Bα1
ω,log,0 6⊂

Bα2
ω,log,0.

Following [13], We say that an analytic function f belongs to the space Qp,ω, 0 < p < ∞, if

sup
a∈D

∫

D
|f ′(z)|2 gp(z, a)

ω(1− |z|)dA(z) < ∞,

where g(z, a) = log|1−āz
a−z

| is the Green’s function of D with singularity at a. Similarly, an
analytic function f belongs to the space Qp,ω,0, 0 < p < ∞, if

lim
|a|→1−

∫

D
|f ′(z)|2 gp(z, a)

ω(1− |z|)dA(z) = 0.

We also recall that the weighted Dirichlet space Dω is the collection of the analytic functions f
for which ∫

D
|f ′(z)|2 1

ω(1− |z|)dA(z) < ∞.

An important tool in the study of Dω space is the auxiliary function Ψω defined by

Ψω(s) = sup
0<t<1

ω(st)

ω(t)
, 0 < s < 1.

The following condition has played a crucial role in the study of Dω space:
∫ 1

t

1
Ψω(s)

ds

s2
< ∞. (19)

The function theory ofDω obviously depends on the properties of ω. Given two weight functions
ω1 and ω2, we are going to write ω1

<∼ ω2 if there exists a constant C > 0, independent of t,
such that ω1(t) ≤ Cω2(t) for all t. The notation ω1

>∼ ω2 is used in a similar fashion. When
ω1

<∼ ω2
<∼ω2 we write ω1 ≈ ω1.

Lemma 3.2 If ω satisfies condition (19), then the function

ω∗(t) = t
∫ 1

t

ω(s)

s2
ds (where, 0 < t < 1),

12



has the following properties :

(a) ω∗ is nondecreasing on (0, 1).

(b) ω∗(t)
t

is nonincreasing on (0, 1).

(c) ω∗(t) ≥ ω(t) for all t ∈ (0, 1).

(d) ω∗<∼ ω on (0, 1).

If ω(t) = ω(1) for t ≥ 1, then we also have

(e) ω∗(t) = ω∗(1) = ω(1) for t ≥ 1, so ω∗ ≈ ω on (0, 1).

Proof: If t ∈ (0, 1), then a change of variables gives

ω∗(t) = t
∫ 1

t
ω(s)

ds

s2
=

∫ 1
t

1
ω(ts)

ds

s2

= ω(t)
∫ 1

t

1

ω(ts)

ω(t)

ds

s2
≤ ω(t)

∫ 1
t

1
Ψω(s)

ds

s2
.

So condition (19) implies that ω∗(t)<∼ ω(t) for t ∈ (0, 1). This yields property (e) and shows
that ω∗(t) is well defined for all 0 < t < 1.
Since

ω∗(t)
t

=
∫ 1

t

ω(s)

s2
ds

and ω is nonnegative, we see that the function ω∗(t)
t

is decreasing. This proves (b). Property (e)
follows from a direct calculation.
Using the assumption that ω is nondecreasing again, we obtain

ω∗(t) = t
∫ 1

t

ω(s)

s2
ds ≥ t ω(t)

∫ 1

t

ds

s2
= (1− t)ω(t)

for all 0 < t < 1. This proves property (c).

It remains for us to show that ω∗ is nondecreasing. To this end, we fix 0 ≤ t1 < t < 1 and
consider the difference

S1 = ω∗(t1)− ω∗(t) = t1

∫ 1

t1

ω(s)

s2
ds− t

∫ 1

t

ω(s)

s2
ds

Since ω is nondecreasing and nonnegative, we have

S1 ≥ t1ω(1)
∫ 1

t1

ds

s2
− tω(1)

∫ 1

t

ds

s2
= (t− t1)ω(1) ≥ 0.

This proves property (a) and completes the proof of the lemma.

Corollary 3.2 If ω satisfies condition (19), then there exists a constant C > 0 such that
ω(2t) ≤ C ω(t) for all 0 < 2t < 1.

13



Proof: For any t > 0, we have

ω∗(2t)
ω∗(t)

=
2

1∫
2t

ω(s)
s2 ds

1∫
t

ω(s)
s2 ds

≤ 2.

The desired estimate now follows from parts (c) and (d) of Lemma 3.1.

We begin with an estimate of the weighted Dirichlet integral interms of Taylor coefficients

Lemma 3.3 Let ω : (0, 1] → (0,∞), then for any s ≥ 1, α ≥ 1 and 0 ≤ β < 1, we have
∫ 1

0
rα−1(1− r)−β dr

ω(1− r)
≈

1
α

ω( 1
α
)

∞∑

s=1

(1− α)s(
1
α
)s−β

s!(s− β)
,

where

(1− α)s = (1− α)(2− α)(3− α) . . . (s− α), s ≥ 1,

(1− α)0 = 1, 1− α 6= 0.

Proof: Let
I =

∫ 1

0
rα−1(1− r)−β dr

ω(1− r)
.

By a change of variables we have

I =
∫ 1

0
(1− t)α−1t−β dt

ω(t)
.

We write I = I1 + I2, where

I1 =
∫ 1

α

0
(1− t)α−1t−β dt

ω(t)
.

and
I2 =

∫ 1

1
α

(1− t)α−1t−β dt

ω(t)
.

By part (c) of Lemma 3.1, we have

I1 ≤
∫ 1

α

0
(1− t)α−1t−β dt

ω∗(t)
.

According to part (b) of Lemma 3.1, the function ω∗(t)
t

is decreasing on (0, 1), so

I1 ≤
1
α

ω∗( 1
α
)

∫ 1
α

0
(1− t)α−1t−(β+1)dt.

This together with part (d) of Lemma 3.1 shows that

I1 ≤
1
α

ω( 1
α
)

∫ 1
α

0
(1− t)α−1t−(β+1)dt.

14



From [11], the binomial theorem states that

(1− t)−(1−α) =
∞∑

s=0

(α− 1)(α− 2) . . . (α− s)(−1)sts

s!
,

which may be written

(1− t)−(1−α) =
∞∑

s=0

(1− α)(2− α) . . . (s− α)ts

s!
.

Therefore, in factorial function notation,

(1− t)α−1 = (1− t)−(1−α) =
∞∑

s=0

(1− α)st
s

s!

It is easy to see that
∫ 1

α

0
(1− t)α−1t−(β+1)dt =

∫ 1
α

0

∞∑

s=0

(1− α)st
s−β−1

s!
dt =

∞∑

s=0

(1− α)s

s!

∫ 1
α

0
ts−β−1dt

=
∞∑

s=0

(1− α)s(
1
α
)s−β

s!(s− β)

I1 ≤
1
α

ω( 1
α
)

∞∑

s=1

(1− α)s(
1
α
)s−β

s!(s− β)

Since ω(t) is increasing function, we have

I2 =
∫ 1

1
α

(1− t)α−1t−(β+1) t

ω(1
t
)
dt.

≤
1
α

ω( 1
α
)

∫ 1

1
α

(1− t)α−1t−βdt.

=
1
α

ω( 1
α
)

∞∑

s=1

(1− α)s

s!(s− β)

[
1− (

1

α
)s−β

]

Combining this with what was proved in previous paragraph, we have

I <∼
1
α

ω( 1
α
)

∞∑

s=1

(1− α)s(
1
α
)s−β

s!(s− β)
.

On the other hand, we have
I ≥

∫ 1

1
α

(1− t)α−1t−β dt

ω(t)

The assumption that ω(t) is increasing gives

I ≥
1
α

ω( 1
α
)

∞∑

s=1

(1− α)s(
1
α
)s−β

s!(s− β)
.

This complete the prove of the theorem.
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Theorem 3.2 Let ω : (0, 1] → (0,∞) and

f(z) =
∞∑

n=1

anz
n,

then
∫

D
|f ′(z)|2 dA(z)

ω(1− |z|) ≈
∞∑

n=1

n|an|2
ω( 1

n
)

∞∑

s=1

(1− 2n)s(
1
2n

)s

s!s
.

Proof: Let

I(f) =
∫

D
|f ′(z)|2 dA(z)

ω(1− |z|)
Using polar coordinates one gets

I(f) =
∫ 1

0

∫ 2π

0
|
∞∑

n=1

nanzn−1|2 dθdr

ω(1− r)

=
∫ 1

0

∫ 2π

0

∞∑

n=1

n2|an|2r2n−1 dθdr

ω(1− r)
.

≤ 2π
∞∑

n=1

n2|an|2
∫ 1

0
r2n−1 dr

ω(1− r)

We apply Lemma 3.2 with β = 0 and α = 2n to obtain

I(f) ≤ 2π
∞∑

n=1

n2|an|2
1
2n

ω( 1
2n

)

∞∑

s=1

(1− 2n)s(
1
2n

)s

s!s
.

I(f) ≈ 2π
∞∑

n=1

n2|an|2
ω( 1

2n
)

1

2n

∞∑

s=1

(1− 2n)s(
1
2n

)s

s!s

≈
∞∑

n=1

n|an|2
ω( 1

n
)

∞∑

s=1

(1− 2n)s(
1
2n

)s

s!s

It is well known that an analytic function f(z) =
∞∑

n=1
anzn belongs to the weighted Dirichlet

space if and only if
∞∑

n=1

n|an|2
ω( 1

n
)

∞∑
s=1

(1−2n)s(
1
2n

)s

s!s
< ∞.

It is easy to prove that Qp,ω = Bω and Qp,ω,0 = Bω,0 for all p, 1 < p < ∞.

We give the relation between Bα
ω,log and the Qp,ω,0 spaces.

Theorem 3.3 Let Mω = sup
z∈D 1

2

|f ′(z)|2
ω(1−|z|) < ∞, we obtain that

(i) If 0 < α < 1
2
, then

Bα
ω,log 6⊆ Dω ⊂

⋂

p>0

Qp,ω,0.

(ii) If 1
2

< α ≤ 1, then
Bα

ω,log 6⊆ Qω,2α−1,0.
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Proof: (i) In the view of Corollary 3.1, we need only prove B
1
2
ω,log 6⊂ Dω. Let f ∈ B

1
2
ω,log. Then

‖f‖
B

1
2
ω,log

= sup
z∈D

|f ′(z)|(1− |z|
2)

1
2

ω(1− |z|) log
1

1− |z| < ∞.

Let

I =
∫

D
|f ′(z)|2 1

ω(1− |z|)dA(z) =
(∫

D 1
2

+
∫

D\D 1
2

)
|f ′(z)|2 dA(z)

ω(1− |z|) = I1 + I2,

where D 1
2

= {z : |z| < 1
2
}. It is obvious that I1 ≤ M < ∞. For I2 we have

I2 ≤ ‖f‖
B

1
2
ω,log

∫

D\D 1
2

dA(z)

(1− |z|2)(log 1
1−|z|)

2
≤ 2π‖f‖

B
1
2
ω,log

∫ 1

1
2

rdr

(1− r)(log 1
1−r

)2

≤ 2π‖f‖
B

1
2
ω,log

∫ ∞

log 2

dt

t2
=

2π

log 2
‖f‖

B
1
2
ω,log

< ∞.

So I = I1 + I2 < ∞ and then f ∈ Dω.

To prove the strictness, let f4(z) =
∞∑

k=1
akz

2k
, where ak = k

−1−ε
2 2

−k
2 ω( 1

2k ), and 0 < ε < 1.

Then

lim
k→∞

sup |ak|2k(1− 1
2
) log 2k

ω( 1
2k )

= lim
k→∞

sup k
(1−ε)

2 log 2 = ∞.

Hence, by Theorem 2.1, f4 6∈ B
1
2
log,ω. On the other hand,

∞∑

n=1

2k|ak|2
ω( 1

2k )

∞∑

s=1

(1− 2n)s(
1
2n

)s

s!s
=

∞∑

k=1

k−(1+ε)ω(
1

2k
)
∞∑

s=1

(1− 2n)s(
1
2n

)s

s!s
< ∞.

So f ∈ Dω.

(ii) Let f ∈ ‖f‖Bα
ω,log

, 1
2

< α ≤ 1. Then

‖f‖Bα
ω,log

= sup
z∈D

|f ′(z)|(1− |z|
2)α

ω(1− |z|) log
1

1− |z| < ∞.

Let

I(a) =
∫

D
|f ′(z)|2 (1− |ϕa(z)|2)2α−1

ω(1− |z|) dA(z)

=
(∫

D 1
2

+
∫

D\D 1
2

)
|f ′(z)|2 (1− |ϕa(z)|2)2α−1

ω(1− |z|) dA(z) = I1(a) + I2(a).

Because 2α− 1 > 0, we have

lim
|a|→1−

I1(a) ≤ lim
|a|→1−

Mω

∫

D 1
2

(1− |ϕa(z)|2)2α−1dA(z) = 0.
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On the other hand,

I2(a) ≤ ‖f‖Bα
ω,log

∫

D\D 1
2

(1− |ϕa(z)|2)2α−1dA(z)

(1− |z|2)2α(log 1
1−|z|)

2

= ‖f‖Bα
ω,log

(1− |a|2)2α−1
∫

D\D 1
2

dA(z)

(1− |z|2)(log 1
1−|z|)

2|1− āz|4α−2

≤ ‖f‖Bα
ω,log

(1− |a|2)2α−1
∫ 1

1
2

rdr

(1− r)(log 1
1−r

)2

∫ 2π

0

dθ

|1− āreiθ|2(2α−1)
.

By using Lemma 3.1 when p = 2α− 1, we obtain
∫ 2π

0

dθ

|1− āreiθ|2(2α−1)
≤ C

(1− |a|r)2α−1
.

So
I2(a) ≤ C‖f‖Bα

ω,log
(1− |a|2)2α−1

∫ 1

1
2

rdr

(1− r)(log 1
1−r

)2(1− |a|r)2α−1
.

Because ∫ 1

1
2

dr

(1− r)(log 1
1−r

)2
=

∫ ∞
1
2

dt

t2
< ∞,

for every ε > 0, there is a δ, 1
2

< δ < 1, such that
∫ 1

δ

dr

(1− r)(log 1
1−r

)2
< ε. (20)

Now

I2(a) ≤ 22α−1C‖f‖Bα
ω,log

∫ 1

1
2

(
1− |a|

(1− |a|r)
)2α−1 dr

(1− r)(log 1
1−r

)2

≤ 22α−1C‖f‖Bα
ω,log

(∫ δ

1
2

+
∫ 1

δ

)(
1− |a|

(1− |a|r)
)2α−1 dr

(1− r)(log 1
1−r

)2

= 22α−1C‖f‖Bα
ω,log

(J1(a) + J2(a)).

Then by (20),

J2(a) =
∫ 1

δ

(
1− |a|

(1− |a|r)
)2α−1 dr

(1− r)(log 1
1−r

)2
≤

∫ 1

δ

dr

(1− r)(log 1
1−r

)2
< ε.

On the other hand,

J1(a) =
∫ δ

1
2

(
1− |a|

(1− |a|r)
)2α−1 dr

(1− r)(log 1
1−r

)2
≤ 1

log 2

(
1− |a|

(1− δ|a|)
)2α−1

Hence, if ”a” is sufficiently close to 1, then J1(a) < ε. Therefore,

I2(a) ≤ 22αC‖f‖Bα
ω,log

ε.

Thus lim
|a|→1−

I2(a) = 0, and so

lim
|a|→1−

I(a) = I1(a) + I2(a) = 0.
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Thus f ∈ Q2α−1,0.

To prove the strictness, let f5(z) =
∞∑

k=1
akz

2k
, where ak = k

−1−ε
2 2−k(1−α)ω( 1

2k ), and
0 < ε < 1. Then

∞∑

k=1

|ak|2k(1−(2α−1)) =
∞∑

k=1

k−(1+ε) < ∞.

So f5 ∈ Q2α−1,0. On the other hand,

lim
k→∞

sup |ak|2k(1−α) log 2k

ω( 1
2k )

= lim
k→∞

sup k
(1−ε)

2 log 2 = ∞.

So, by Theorem 2.1 , f5 6∈ Bα
ω,log. The proof is complete.
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