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Abstract. In the paper presented, reinforced concrete shells of revolution are analyzed in both 
meridional and circumferential directions. Taking into account the physical non-linearity of the 
material, the internal forces and the deflections of the shell as well as the strain distribution at 
the cross-sections are calculated. The behavior of concrete under compression is described by 
linear and non-linear stress-strain relations. The description of the behavior of concrete under 
tension must account for tension stiffening effects. A tri-linear function is used to formulate the 
material law of reinforcement. 
The problem cannot be solved analytically due to the physical non-linearity. Thus a numerical 
solution is formulated by means of the LAGRANGE Principle of the minimum of the total 
potential energy. The kinematically admissible field of deformation is defined by the 
displacements u in the meridional and w in the radial direction. These displacements must 
satisfy the equations of compatibility and the kinematical boundary conditions of the shell. The 
strains are linearly distributed across the wall thickness. The strain energy depends on the 
specific of the material behavior. Using integral formulations of the material law [1], the strain 
energy of each part of the cross-section is defined as a function of the strains at the boundaries 
of the cross-sections. 
The shell is discretised in the meridional direction. Various methods of numerical 
differentiation and numerical integration are applied in order to determine the deformations 
and the strain energy. The unknown displacements u and w are calculated by a non-restricted 
extremum problem based on the minimum of the total potential energy. From mathematical 
point of view, the objective function is a convex function, thus the minimum can be determined 
without difficulty. The advantage of this formulation is that unlike non-linear methods with 
path-following algorithms the calculation does not have to account for changing stiffness and 
load increments. All iterations necessary to find the solution are integrated into the “Solver”. 
The model presented provides many ways of investigating the influence of various material 
parameters on the stresses and deformations of the entire shell structure.  
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1    INTRODUCTION 
The energy method with integral formulation of the material behavior [1], [2], [3] has 

proved to be a highly effective approach to the physical and geometric non-linear analysis of 
composite cross-sections and beam elements. In this paper an extension of the method is 
presented, which facilitates analysis of the physical non-linear bearing capacity of shell 
structures under certain conditions. Finite elements based on cross-section discretisation and 
path-following algorithms are used normally in the non-linear analysis of the behavior of shell 
structures. Due to the integral formulation of the material behavior in the numerical approach 
presented a discretisation of the cross-section is not required. The necessary iterations are 
integrated into the algorithms to solve the non-linear optimization problem. 

2    BASICS OF MODELING 
The energy method with integral description of the material behavior [1] uses a kinematic 

formulation of the mechanical problem based on the LAGRANGE Principle of the minimum of 
the total potential energy 

 Minimumai →Π+Π=Π . (1) 

Applying this principle creates an unconstrained non-linear optimization problem, with the 
strains or the displacements as the unknowns. 

The internal energy Πi
c of the cross-section with the domain B is the sum of the strain 

energy Πi,j
c of cross-section parts j (j = 1, 2, …m). The strain energy Πi,j

c of a cross-section part 
is determined by the integral 
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The material behavior is usually described in terms of stress-strain-relations 

 ( )εσσ = . (3) 

The specific of this method is the integral formulation of the material law by the functions 
W(ε), F(ε) and Φ(ε). These functions are partial integrals of eq. (3) 
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Using the GAUSS’ theorem [2], the double integral eq. (2) is transformed into a line integral 
along the boundary Lj of the region Bj 
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A new coordinate system η,ζ is defined with the same origin as the coordinate system y,z 
where the ζ-axes have the direction of the grad ε. Thus the strain ε is a coordinate of the η,ζ-
system and eq. (4) can be transformed into 
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If the line curve is given by single pieces Li it is determined thus: 
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This equation can be solved exactly for the practical cases of piecewise straight-line contoured 
and punctual cross-section parts. 

The strain energy Πi
E of a beam element is obtained when Πi

C is integrated over the entire 
length l of the element [3] 
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The potential energy of the external loads of a cross-section depends on the internal forces 
and the corresponding deformations 

 ( )yzzy
C
a MMN κκε ++−=Π 0 . (9) 

The potential energy of external loads for elements is given by the integral of the external loads 
and the corresponding displacements over the length of the element 
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The equilibrium conditions are not used directly in the calculation. For the right result to be 
determined, the equilibrium conditions have to be fulfilled. It is thus possible to evaluate the 
result by the internal forces. The internal forces Nx, My, Mz are defined by the partial derivatives 
of the strain energy of the corresponding cross-section with respect to the strains and the 
curvatures 
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3    EXTENSION OF THE MODEL FOR SHELLS OF REVOLUTION 
Shells of revolution under axial symmetric load are characterized by constant strains and 

stresses in the circumferential direction, meaning that a discretisation of the shell is only 
necessary in the meridional direction. The displacements of the middle surface of a shell under 
axial symmetric load are u in the meridional direction and w in the radial direction.  
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Fig. 1: Definitions and displacements 

 

The strain ε0ϕ and curvature κϕ in the circumferential direction and the strain ε0x and 
curvature κx in the meridian direction at the surface of the shell are given by the derivatives of 
the displacements u and w  

 w′=ϕε 0  (14) 

 w ′′−=ϕκ  (15) 

 ux ′=0ε  (16) 

 wx ′′−=κ . (17) 

According to the BERNOULLI hypothesis cross-sections normal to the element axis remain 
plane during the deformation process. Thus the strain at an arbitrary point of the cross-section 
is defined by the linear function 

 ( ) zzy ϕϕϕ κεε += 0,  (18) 

in the circumferential direction and 

 ( ) zzy xxx κεε += 0,  (19) 

in the meridional direction. 

 

4    CONSTITUTIVE MODELS 
One important advantage of this method is that it allows for the inclusion of arbitrary 

materials without changing the mathematical model, that is, if their behavior is described with 
stress-strain-relations. Only the equations (2) and (3) need to change. The function of the strain 
energy is either increasing or constant for all possible courses of stress functions, with the result 
that the objective function is a convex function, thus the minimum can be determined. This 
means that effects such as strain softening, cracking etc. can be taken into account. In this paper 
only the relevant materials of concrete and reinforcement will be described. 

Shells of revolution under axial symmetric load are characterized by cracks in the 
meridional direction. This is due to membrane forces in the circumferential direction and cracks 
in the circumferential direction due to bending moments in the meridional direction. This crack 
formation shows that the main stresses for these structures are distributed in both the 
meridional and the circumferential direction. Ignoringing the lateral strain for the uncracked as 
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well as for the cracked concrete, the behavior can be described using one-dimensional stress-
strain-relations. 

According the Euro code [4] the material law for concrete in compression is given by a non-
linear curve. The stress-strain-relations used are described in [2], [3], together with their 
integrals. For concrete in tension various constitutive relations are applied. The Euro code uses 
a linear curve up to the tension strength and then a constant curve for the residual strength, 
which describes the tension stiffening (Fig. 2a) 
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Another approximation of the tension stiffening for reinforced concrete can be given by a 
linear decreasing function (Fig. 2b) 
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or by an exponential function (Fig. 2c) 
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The reinforcement is defined by the multi-linear stress-strain-relation of the Euro code. 
Consideration of tension stiffening in the constitutive laws for concrete in tension defined a 
smeared crack model for reinforced concrete. In this case the crack width is determined by the 
reinforcement strain εs and the maximum crack distance scr 

 crscr sw ε= . (23) 

   

a) constant curve for tension 
stiffening  

b) linear decreasing curve for 
tension stiffening 

c) exponential curve for tension 
stiffening 

Fig. 2: Constitutive laws for concrete in tension 
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5    NUMERICAL IMPLEMENTATION 
The calculation of the deformation parameters of the shell surface requires the derivation of 

the displacements. According to the axially symmetric deformation, the displacements in 
circumferential direction can be derivated easily  
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In the meridional direction, two numerical differentiation methods are used: finite 
differences and analytical differentiation of shape functions. With the ordinary central 
difference quotient the deformation parameters of the shell surface in the meridional direction 
are given 
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Considering further parts of the TAYLOR theorem enhanced central difference quotients are 
determined 
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To approximate the displacements with shape functions, second-degree polynomials are 
applied for the displacements u in the meridional and third-degree polynomials for the 
displacements w in the radial direction. An additional node in the centre of the element is 
defined in order to determine the degrees of freedom of the shape function u (Fig. 3). 
Depending on the unknown displacement ua, um and ub at the element, the following shape 
functions and their derivations are compiled  

  

a) finite differences b) shape functions 

Fig. 3: Element discretisation and approximation of longitudinal displacements 
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The coefficients of the shape function w are determined by the unknown displacements wa 
and wb as well as the unknown rotations ϕa and ϕb at the beginning and the end of the element  
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Thus for the discretisation in n elements with k=n+1 nodes the application of the finite 
differences is implies 2n+2 unknowns without considering the static boundary conditions. 
Using shape functions 4n+3 unknowns have to be determined in order to solve the optimization 
problem. 

Depending on the used numerical differential method used, an appropriate method for the 
numerical integration is applied. Within context of the finite differences the trapezoidal rule is 
used. For the shape functions the GAUSS quadrature with three supporting points is used. This 
means that the integration will be exact for polynomials of degree equal to and smaller then 
seven.  

6    EXAMPLES 
The application of the method presented will be demonstrated using two general examples. 

The results will be compared with the results from the literature. 

6.1    Cylindrical shell with membrane forces 
 

 

  Concrete C25/30 
Ec = 3050 kN/cm² 
fcc = -2.5 kN/cm² 
fct = 0.26 kN/cm² 
εct2 = 0.0025 
for eq.(20): βct = 0.4 
for eq.(22): α = 1515 

 
Reinforcement BSt 500 

fy1 = 50 kN/cm² 
fy2 = 52.5 kN/cm² 

Fig. 4: Geometric and material of the cylindrical shell 
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In the first example a cylindrical shell with membrane boundary conditions (Fig. 4) and 
constant internal pressure is analyzed [5]. The focus of the investigation is the influence of the 
modeling of concrete in tension on the crack width. The structure is analyzed with various 
percentage of reinforcement (as=15cm²/m and as=30cm²/m). 

 

 

The three constitutive laws eq. (20)-(22) are used for the calculation. Therefore the tension 
stiffening is acting until the elastic limit of the reinforcement εct1<ε≤2.5‰. The parameter βct of 
eq. (20) is given by the value of the model code [6]. The parameter α of eq. (22) is determined 
in such a way that the exponential function contacts the curve of the model code 90 (Fig. 5). 

 The reinforcement strains calculated by applying the various constitutive laws are shown in 
figure 6, together with the values of the literature. The influence of the modeling of concrete in 
tension becomes obviously. For example, the medium reinforcement strain is determined for 
the shell with a reinforcement of 15cm²/m by the internal pressure of 100kN/m between 0.7‰ 
and 1.5‰. 
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Fig. 5: modeling for concrete in tension  
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Using eq. (23) the crack width is varies between 0.1 mm and 0.2 mm. The proof of the crack 
width wcr=0.2mm for the serviceability of shells with fluid content, which to provides 
impermeability, is successful for the various internal pressures shown in table1. 

 
 Table 1: Max. internal pressure by admissible crack width wcr=0.2mm 

 as = 15 cm²/m as = 30 cm²/m 
Constant curve 117 200 

Linear decreasing curve 120 206 
Exponential curve 96 182 

Results of [5] 117 200 

 

6.2    Cylindrical shell with clamped ends 
 

 

The second example includes a cylindrical shell stressed by membrane forces and bending 
moments [7]. On the one hand side, the discretisation required for the various numerical 
methods is investigated. On the other, the influence of modeling tension stiffening on the crack 
area and the consequent redistribution of internal forces is analyzed.  

 
Table 2: Comparison of the numerical results and the results of [7] 

 wx 
[mm] 

max Mx   
[kNm/m] 

min Mx   
[kNm/m] 

cracked zone 
[m] 

ordinary difference quotient, phys. linear 0.723 18.3 -75.1 - 

enhanced difference quotient, phys. linear 0.722 18.4 -72.0 - 

shape functions, phys. linear 0.723 18.7 -74.5 - 

results of [7], phys. linear 0.738 18.1 -75.4 - 

ordinary difference quotient, phys. non-linear 1.29 28.5 -57.4 from x=1.32 to x=5.28 

enhanced difference quotient, phys. non-linear 1.25 28.0 -54.5 from x=1.32 to x=5.28 

shape functions, phys. non-linear 1.05 24.3 -60.8 from x=1.65 to x=5.21 

results of [7], phys. non-linear 1.05 22.9 -59.0 from x=1.35 to x=5.12 

  
Concrete C30/37 

Ec = 3190 kN/cm² 
fcc = -3 kN/cm² 
fct = 0.2 kN/cm² 

 
Reinforcement BSt 500 

asx = axϕ = 2x7.85 cm²/m 
Es = 20000 kN/cm² 
fy = 50 kN/cm² 

Fig. 7: Geometric and material of the shell with clamped ends 
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The hydrostatically loaded shell is clamped on one side and free on the other (Fig. 7). 
Taking into account the tension stiffening, the concrete is divided into three layers. The 
exponential function eq. (22) with α=1500 is used for the marginal layers and with α=3000 for 
the central layer. For the cross-sections in the circumferential direction with significant 
membrane forces the width of the marginal layer is given by 2.5d1≤h/2. The width of the 
marginal layer of the cross-sections in the meridional direction with dominant bending 
moments is 2.5d1≤h/4. 
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Fig. 8: Result depending on the discretisation 
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Figure 8 presents the numerical results of the calculation with 60 unknowns. The results 
show, that the general behavior of the structure with physical non-linearity can be described 
very well in the meridional and the circumferential direction. The comparison of the calculated 
results with the values from the literature (table 2) reveals a close correlation. The variations 
between the results using finite differences and shape functions (Fig. 8, 10) are the results of 
the different consideration of the static boundary conditions. Using the shape functions the 
static boundary conditions are defined with w(x=0)=0 and ϕ(x=0)=0. For the finite differences 
w(x=0)=0 and κ(x=0)≠0 can be constituted.  

Due to the lower percentage of reinforcement of this shell the modeling of tension stiffening 
has a significant influence on the calculated displacements and forces (Fig. 9). If the tension 
stiffening is neglected the cracked zone increases to a distance from x=0.25m to x=9.65m, and 
the maximal radial displacements are 19.9mm. 

For the investigation of the accuracy in depending on the discretisation, the shell is analyzed 
with the number of nodes varying between 4 and 51. The outcome of this will be unknowns of 
between 12 and 100, which have to be determined. The results of the different discretisations 
with the three numerical methods described in chapter 5 are presented in figure 10. It is obvious 
that the discretisation with over then 60 unknowns, i.e. over 31 nodes for the finite difference 
and 16 for the shape functions, fails to improve the result. 
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Fig. 10: Result depending on the discretisation 

 

7    CONCLUSIONS 
The method proposed represents an alternative methodical approach to the physical non-

linear analysis of reinforced concrete shells of revolution. The kinematic formulations of the 
mechanical problem use the LAGRANGE principle of the minimum of the total potential 
energy and are solved by non-linear optimization.  

Arbitrary material laws can simply be implemented by changing the functions σ(ε), W(ε), 
F(ε) and φ(ε). Thus effects such as cracking, tension stiffening and strain hardening as well as 
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the redistribution of internal forces and deformations as a result of cracking can be taken into 
account without changing the mathematical and numerical models. 

Spreadsheet programs are adapted for the implementation of the algorithm, and the 
numerical results can be obtained by a solver for non-linear optimization problems. Applying 
the ordinary difference quotient enables a practical application of the method for shells of 
revolution with a high degree accuracy in terms of results. By using the calculated middle 
reinforcement strains a realistic estimation of crack width is possible. 

The examples reveal the dependence of the modeling of the tension stiffening on the cracked 
area. The considerable influence of the constitutive laws of concrete in tension on the crack 
width is also revealed. 

The authors would like to thank the DFG (Deutsche Forschungsgemeinschaft) for its 
sponsorship of the research. 
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