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Abstract. Reasonably accurate cost estimation of the structural system is quite desirable at 
the early stages of the design process of a construction project. However, the numerous 
interactions among the many cost-variables make the prediction difficult. Artificial neural 
networks (ANN) and case-based reasoning (CBR) are reported to overcome this difficulty. 
This paper presents a comparison of CBR and ANN augmented by genetic algorithms (GA) 
conducted by using spreadsheet simulations. GA was used to determine the optimum weights 
for the ANN and CBR models. The cost data of twenty-nine actual cases of residential 
building projects were used as an example application. Two different sets of cases were 
randomly selected from the data set for training and testing purposes. Prediction rates of 
84% in the GA/CBR study and 89% in the GA/ANN study were obtained. The advantages and 
disadvantages of the two approaches are discussed in the light of the experiments and the 
findings. It appears that GA/ANN is a more suitable model for this example of cost estimation 
where the prediction of numerical values is required and only a limited number of cases exist. 
The integration of GA into CBR and ANN in a spreadsheet format is likely to improve the 
prediction rates. 
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1 INTRODUCTION  

Cost-estimating models are very useful for making decisions at the early stages of a 
building design process. Designers use a number of cost estimating techniques and intuitive 
judgment by utilizing both their experience and data from previous projects. When little is 
known about the project’s scope, cost estimating depends on the relationship between the 
basic design variables and the final cost of the project. However, the assessment of the impact 
of different combinations of various design variables on construction cost is very difficult. 
Using conventional statistical methods such as regression analysis to identify the cost-
governing factors is mostly unsuccessful. Another major disadvantage of the conventional 
techniques is the requirement that a specific mathematical form be defined for the cost 
function. Two AI techniques are able to overcome the drawbacks of conventional methods. 
Current research demonstrated that ANN and CBR can be successfully used in cost estimation 
[1,2,3,4]. 

This paper attempts to present transparent models of ANN and CBR in spreadsheet format. 
A three-layer ANN simulated in a spreadsheet format by Hegazy and Ayed [2] is the first 
model used for cost-estimation in this study. The second one is the spreadsheet simulation of 
a CBR model developed by utilizing an Excel-based CBR software [5]. The two Excel 
templates of these AI techniques are populated with cost data at hand to establish cost 
estimation models. Then to improve the prediction accuracy of these models, a spreadsheet 
add-in tool based on GA is used to optimize attribute weights [6]. The GA augmented CBR 
(GA/CBR) and the GA augmented ANN (GA/ANN) models are compared in light of the cost 
prediction models developed. Finally, conclusions are drawn. 

2 CASE STUDY 

The sample data employed for cost estimation in this paper comes from a research report 
of cost analyses of residential building construction undertaken in Turkey [7]. As a 
developing country, Turkey experiences rapid population growth, and parallel to this an 
increasing demand for housing. Residential building construction constitutes 72.8% of the 
construction market [8]. Eighty-two percent of these buildings are 4–8 storey apartment 
blocks with reinforced concrete structural systems [8]. The cost of the structural system is an 
important issue in these circumstances.  

The cost of a building consists of several items including the structural system, the walls, 
the doors and windows, the mechanical system, finishings, etc. The relative weights of these 
items differ for different projects according to the type and usage of the buildings [9], and as a 
result, cost estimating requires extensive multi-disciplinary collaboration [10]. It has been 
observed that the cost of building materials constitutes about 60% of the cost of residential 
buildings [11]. For multistory reinforced concrete residential apartment buildings however, 
the structural frame system including the foundations covers about 25% of the total 
construction cost [12]. The overall cost of a multistory residential building may come down 
considerably if the structural system is designed efficiently. It is understandable that both 
architects and structural engineers should exercise maximum care in making design decisions 
for the structural system. Eight design factors were identified as affecting the unit structural 
cost of a typical building. These factors include:  1) the total area of the building, 2) the ratio 
of the typical floor area to the total area of the building, 3) the ratio of the ground floor area to 
the total area of the building, 4) the number of floors, 5) the type of overhang, 6) the location 
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of the core, 7) the type of floor structure, 8) the foundation system of the building. These 
design variables were then used as input parameters to determine the output parameter (i.e., 
the unit structural cost). First, the basic principles involved in the two models and the 
simulation procedure are described. Then, with the input and output values defined, relevant 
data are entered into the Excel-based spreadsheet model. CBR and ANN are compared in the 
following section. Then conclusions are drawn.  

3 SPREADSHEET SIMULATION OF ANN 

ANN is among the most popular AI techniques. The fundamental idea behind ANN was 
originally developed by researchers who were inspired by the functioning mechanism of the 
human brain. It resembles the human brain in two aspects; (1) the knowledge is acquired by 
the network through a learning process, and (2) inter-neuron connection strengths known as 
synaptic weights are used to store the knowledge [13]. ANN consists of an input layer, one or 
more hidden layers and an output layer. The input layer receives data from outside the 
network; hidden layers, whose input and output signals remain within the network, extract 
and remember features and subfeatures in order to generate predictions; and the output layer 
sends data out of the network. The synaptic weights are trained to contain meaningful 
information, whereas before training, they are random and have no meaning. There is an 
extensive literature on ANN and corresponding information can easily be found elsewhere 
[13, 14, 15, and 16]. 

In this section, a spreadsheet simulation of ANN was implemented on Microsoft Excel. 
Many practitioners are familiar with spreadsheet applications. Excel-based simulation of 
ANN is a simple and transparent approach to ANN modeling. It was adapted from the work of 
Hegazy and Ayed [2]. The spreadsheet represents a template for an ANN with one hidden-
layer that is suitable for most applications [17]. The processing of the template incorporates 
seven steps, following the widely known back-propagation formulation [14]. The general 
structure and forward computations of this type of ANN are presented in the following steps:  

Step 1. Data organization: As a preliminary stage to ANN modeling, the problem at hand 
needs to be thoroughly analyzed. Through this process, the independent factors affecting the 
problem are identified and considered as (N) input parameters represented by nodes at the 
input layer of the ANN. Similarly, the number of intermediate outputs (L) and associated 
conclusions (O) are represented by nodes at the hidden and output layers, respectively. The 
relationships between the input layer and hidden layers are denoted by W while the 
relationships between the hidden layer and the output layer are denoted by W’. Once input 
and output parameters are identified, their corresponding data are collected from the (P) cases. 
A schematic illustration of ANN Excel simulation notations of N, L, O, P, W, and W’ are 
shown in Figure 1. 

To implement this step, the data are first transformed into numerical values and stored in a 
data-set that is a matrix of (N+O) columns and (P) rows (Figure 2). The numerical 
transformation of textual data is done in a continuous or binary manner. The minimum and 
maximum values of each variable are also identified in this step for use in Step 2.  
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Figure 1. Schematic Illustration of ANN Excel Simulation Notations of N, L, O, P, W, W’ 

 
 
 
 
 
 
 
 

 

 

Figure 2. Schematic Illustration of ANN Excel Simulation Notations of N, L, O, P, W, W’ 

Step 2. Data scaling: In this step, the values in the input-data matrix (N columns by P 
rows) are scaled to fit a range of [-1 to 1] to suit ANN processing. This is done by using the 
following formula:  

 ( )
( ) 1

MinColumn MaxColumn 
MinColumn Value Unscaled2Value Scaled −

−
−×

=  (1) 

This scaling formula is written in one cell (B15 for example, in Figure 3), and then copied 
to all cells in the scaled matrix. To the right of this matrix, a column was added with unit 
values associated with the bias node, as illustrated in Figure 3. 

 

 

 A  B C D E F 
1 Inputs Outputs 
2 

Project 
 No. 1 2 … N O 

3 1      
4 2      
5 3      
6 M      
7 P      
8 Min.:      

9 Max.:      

N 

1 

2 

3 

4 

O

Bias 2
W

L

W’

Bias 1 

1 2 3 P 

1

2

MIN(B3:B7) MIN(F3:F7) 

MAX(B3:B7) MAX(F3:F7) 
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Figure 3. Scaling of input values to a range (-1,1) 

Step 3. Weight matrix (W): The third step is to construct and initialize the weight matrix 
(Figure 4). All inputs (1 to N) and a bias node were fully connected to the hidden nodes. The 
number of hidden nodes (L) was set as one-half of the total input and output nodes, as 
heuristically suggested in the literature [17]. All of the values in the weight matrix are 
considered variables to be determined in the ANN modeling. Hegazy and Ayed [2] suggested 
that setting the initial weight values to 1 is appropriate for inputs scaled to a range of (-1 to 1). 
 

 

 

 

 

 
Figure 4. Weight matrix (W) from (N) inputs to (L) hidden nodes 

Step 4. Output of hidden nodes: This step is to allow the hidden nodes to process the 
input data and produce values to be forwarded to the next layer. According to ANN 
processing, each hidden node j receives activation Xj, which is the sum product of scaled 
inputs by their associated connection weights. Accordingly, each hidden node produces an 
output '

jX  that is a function of its activation, as follows:  

 ( ) 0.1BWIX j1

N

1i
ijij ×+×= ∑

=

 (2) 

 )(Xtanh X j
'
j =  (3) 

Experimenting with different activation functions such as linear, logistic, and tanh has 
shown that the tanh function produces the best results. As shown in Figure 5, a formula was 
written for the first row of all hidden nodes and then copied to the cells below.  

 A B C D E F 

M       

13 Project 
 No. Scaled Inputs 

14  1 2 … N Bias 1 
15 1     1 
16 2     1 
17 M     1 
18 P     1 

 A B C D E F 
M       

25 To 
Hidden Weights from Inputs & Bias 1  

26  I’
1 I’

2 … I’
N Bias 1 

27  Node 1      
28 Node 2      
29 Node 3      
30 M      
31 Node L      

=2*(B3-B$8)/(B$9-B$8)-1 
Made once and copied to all cells 

Cells contain weights values put 
initially as 1.0s. The matrix elements 

are set as variables in the 
optimization. 



 6

 
 
 
 
 
 
 
 
 

 

 

 

Figure 5. Outputs of hidden nodes 

Step 5. Weight matrix (W'): Similar to the weight matrix constructed in Step 3, a second 
matrix was constructed to connect the (L) hidden and bias nodes to the single output node 
(Figure 6). These weights are additional variables in the model and were initialized as 
previously described in Step 3.  

Step 6. Final ANN output: Similar to Step 4, the output of the ANN (O) is computed by 
calculating the sum product (Y) of each hidden node by its connection weight and then 
processing this value through the tanh function as follows (see Figure 7 for Excel 
calculations): 

 Y = ( ) 1.0BwX 2

L

1j

'
j1

'
j ×+×∑

=

 (4) 

 O = tanh (Y) (5) 

 

 
 
 
 
 

 

Figure 6. Weights W’ from hidden nodes to output nodes 

 A B C D E F 
       

39 Project 
 No. Hidden Nodes   

40  Node 1 Node 2 … Node L Bias 2 
41 1     1 
42 2     1 
43 M     1 
44 P     1 
45       

A B C D E F 
      

  Hidden Nodes   
 1 2 .............. Bias 2 

Output 1     1 
      
      
      
      
      
      

=Tanh(SUMPRODUCT 
(B15:F15,$B$27:$F$27)) 
Formula made once and 
copied down 

=Tanh(SUMPRODUCT 
(B15:F15,$B$31:$F$31)) 
Formula made once and 
copied down 

Cells contain weight values put 
initially as 1.0s. The matrix elements 

are set as variables in the 
optimization.
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Figure 7. Final ANN Outputs 

Step 7. Scaling back the ANN output and calculating the error: In this step, the ANN 
output (O) is scaled back to the original range of values using the reverse of formula (1) as 
follows:  

Output Scaled Back OutputMin  
2

Output)Min  Output1)(Max  Value(Output  
+

−+
=          (6) 

To calculate a measure of the ANN performance, a column is constructed in the 
spreadsheet (see Figure 8) for determining the error between the actual output and ANN 
output as follows: 

 100
Output Actual

)Output ActualOutputNetwork  Neural((%)Error  Estimating ×
−

=  (7) 

It is customary in ANN simulation to use some cases for training and others for testing. 
The average error of each batch can be calculated and placed in a different cell and then 
combined in a cell that determines the overall performance of the ANN. For example: 

Weighted Error (%) = 0.5 (Test Set Average Error) + 0.5 (Training Set Average Error)       (8) 

where weights of 0.5 and 0.5 are assumed for illustration.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 A  B C D E F 
M       

64 Project  
No 

ANN 
Output     

65 1      
66 2      
67 M      
68      
69      
70 P      

=Tanh(SUMPRODUCT 
(B41:E41,$B$54:$F$54)) 
Formula made once and copied down 



 8

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 8. Scaling output back and calculating the error 

4 SPREADSHEET SIMULATION OF CBR 

Case based reasoning (CBR) involves applying past experiences, in the form of prior cases, 
to guide current decision making. Therefore, the basic element of a CBR system is the ‘case 
base’ [18]. In essence, the cased based reasoner assigns an outcome to a problem based on the 
outcomes of recent similar prior cases [19]. A case is situation-specific, unlike a rule, which is 
a unit of generalized knowledge [20]. A case is considered as a set of features, attributes, and 
relations of a given situation and its associated outcome(s). For a bibliographic categorization 
and review of CBR research see Aamodt and Plaza [21]; Watson and Marir [22] and Stottler 
[23]. 

As a simple and transparent approach to CBR modeling, a spreadsheet simulation of a 
case-based system was implemented on Excel. This spreadsheet model may present an 
estimation template for many prediction problems. The processing of the template involves 
seven steps. 

Step 1. Data organization and formatting to a case spreadsheet: The problem at hand is 
analyzed and the factors affecting the problem are determined. These factors are represented 
in  (F) columns in the spreadsheet (Figure 9). Similarly, the associated output (O) is also 
represented in a column. Once information about (P) cases is available, this information is 
entered row by row. The data matrix is therefore composed of (F+O) columns and (P) rows 

 A B C D E F 
M       

79 Project 
No. 

NN 
output 
scaled 
back 

Actual 
Output

% 
ERROR

 
 

80 1      
81 2      
82 3      
83 M      
84      
85      
86      
87      
88 P      
89 M      
90      
91 T      

   
92 Error on P cases     
93 Error on T cases    
94 Weighted Error     
       
       
       

=(B65+1)($F$9-$F$8)/2+$F$8 
Made once and copied down 

=F3 
Made once and copied down

=(C80-B80)*100/B80 
Made once and copied down 

=AVERAGE(D80:D87) 

=AVERAGE(D88:D91) 

=0.5*D92+0.5*D93 
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(Figure 9) (A blank row is reserved above the matrix for weight values, which will be used in 
Step 5).  

A matrix of (R) reference cases is located below the data matrix. This matrix contains all 
(F) input and (O) outputs associated with these cases. The performance of the CBR model is 
tested by using these reference cases.  

After formatting, it is necessary to add semantics to the data in the form of meanings about 
the fields (F) and field similarities. To implement this in an Excel spreadsheet, the data are 
arranged into numerical (N) and textual (C) field values. 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 9. Data Organization and Formatting  

Step 2.  Field similarity function for textual symbols: Field similarity functions are used 
to define how similar the field values are to each other. Field similarities are computed with 
respect to each reference case in the reference matrix. This computation is done for every case 
in the casebase.  

A specific similarity function for nominal values (textual symbols) (C) is defined as 
follows: 

If text f1 appears exactly in text f2 or if text f2 appears exactly in text f1,   

                        then similarity (f1,f2)= 1, or else similarity (f1,f2)= 0.                             (9) 

This similarity formula is written in one cell, and then copied to all celss in the Similarity 
Matrix in Figure 10 (C columns by P rows).  

 
 
 
 
 

1  A  B C D E F G H 
2  Weights        

3 Case No. 
CASE BASE 

Factors (Inputs) Output

4   1 … N 1 … C O 
5 1        
6 2        
7 3        
8 :        
9 P        
10          
11  1        
12  :        
13  R        
14          
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Figure 10. Field Similarity Function for Textual Symbols 

Step 3. Field similarity function for numerical values: These values denote magnitudes. 
Accordingly, the similarity measure is as follows: 

If f1≠ f2 

          then similarity (f1,f2)= min(|f1|,|f2|)/max(|f1|,|f2|), or else similarity (f1,f2)= 1.          (10) 

This similarity formula is written in one cell, and then copied to all cells in the Similarity 
Matrix in Figure 11 (N columns by P rows).  

 

 
 
 
 
 
 
 

 
 

Figure 11. Field Similarity Function for Numerical Values 

 
 Step 4. Weight matrix: After all the field similarity values are calculated in an (F×P) 

matrix, the weight matrix is constructed (see Figure 12) for the computation of matching 
scores. All of the values in the weight matrix are considered variables to be determined in 
CBR modeling. A weighted score is calculated from the field weights and field similarity 
values. For positive weights and for normalized results of field similarities, linear weight 
scores are always between 0 and 1, with score 1 indicating the case most similar to the 
reference case and 0 the least. 

 

1 J  K L M N O P R 
2          

3 Case No. 
FIELD SIMILARITIES 

For Reference Case 1 Output 

4   1 … N 1 … C O 
5 1         
6 2         
7 3         
8 :         
9 P         

10          

1 J  K L M N O P R 
2         

3 Case 
No. 

FIELD SIMILARITIES 
For Reference Case 1 Output 

4  1 … N 1 … C O 

5 1         
6 2         
7 3         
8 :         
9 P         
10         

=IF 
(D5=D$11,"1","0") 
Once made and then 
copied to other cells 

=MIN(B5,B$11)/MAX(B5,B$11) 
Once made and then copied to other 
cells 
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Figure 12.  Weight Matrix 

 Step 5. Case similarity function: Similar to Steps 2 and 3, case similarities are computed 
with respect to a reference case and this is done for every case in the casebase. Each field 
value is compared with the corresponding field value in the reference case. The similarity 
between reference case and a case in the casebase is computed by using a case similarity 
function that defines linear weighted scores based on the following formula:  

                           Similarity (case, reference) = (∑ wi×vi) / (∑ |wi|)                               (11) 

where vi = similarity (ri, ci), i.e., the similarity between the reference and the case for field i, 
and wi: weight of field i. The formula is made once for cell S5 in Figure 13 and then copied 
down to the other cells. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13. Case Similarity Function 

Step 6: Sorting scores and corresponding outputs: The highest case similarity score 
indicates the closest matching case (in the casebase) to the reference case. In order to find the 
output value of the highest scored case, the scores are sorted by output values (Figure 14). 
 

 

 

 

 

1  A  B C D E F G H 
2  Weights 1 1 1 1 1 1 0 

3 Case No. 
CASE BASE 

Factors (Inputs) Output 

4   1 … N 1 … C O 
5 1        
6 2        

1   R S 
2    

3  Output Scores 

4  O  

5 1   
6 2   
7 3   
8 :   
9 P   
10    

Weight values are put initially as 
1.0s. These cells are set as 
variables in the optimization. 

=(SUM(B$2*K5,C$2*L5,D
$2*M5,E$2*N5,F$2*O5,G$
2*P5))/(SUM(B$2,C$2,D$,
E$2,F$2,G$2)) 
Formula made once and 
copied down
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Figure 14. Sorting Scores and Corresponding Outputs 

Step 7: Highest score and calculating the error: In this step, the CBR output is 
compared to the actual output of the reference case by the percentage formula (see Figure 15). 
This step is repeated for all the cases in the reference matrix. Then the average error is 
calculated for all reference cases. 

 

 

 

 

 

 

 

 
 

Figure 15. Highest Score and Calculating the Error 

5 GENETIC ALGORITHMS 

GA uses the method of evolution, specifically survival of the fittest. The theory behind GA 
is that a population of certain species will adapt to live better in its environment after many 
generations of random evolution. Thus, GA first creates a population of possible solutions to 
the problem.  Individuals in the population are then allowed to randomly breed, which is 
called crossover, until the fittest offspring (the one that solves the problem best) is generated.  
After a large number of generations, a population eventually emerges where the individuals 

1   T U V 
2     

3  Scores 
Project 

No. Output 

4     

5 1    
6 2    
7 3    
8 :    
9 P    
10     

1  V Y Z 

2     

3  Output 
Actual 
Output Error 

4     

5    

6     
:     

n Average 
Error   

     
     

Columns sorted in a 
descending order 

=ABS((100-((V5*100)/Y5))/100)

=Average (E1, E2, …, ER)
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will provide an optimum solution. The basic principles of GA are well described in many 
texts [e.g., 24, 25]. 

For this study, the commercial GA software Evolver was used to find the optimum weights 
of the ANN and CBR models [6]. Evolver works as an add-in to Microsoft Excel. Weight 
matrices of ANN and CBR simulations are constructed as variables to be optimized in Excel 
by Evolver. The ANN weighted error is set to be minimized by GA optimization while CBR 
score weights are set to be maximized. Determining weight values by GA increased the 
prediction accuracy in both models compared to previously used other weight generation 
methods such as gradient descent, feature counting, etc. [26, 4]  

6 COST DATA AS AN EXAMPLE APPLICATION 

ANN spreadsheet simulation: The ANN Excel template was modified to suit the 
development of a cost model for residential building projects. First eight input variables and 
one output variable (i.e., the cost of the structural system per square meter) were defined. The 
values of the selected variables were extracted from Saner’s [7] study. Using the described 
procedure for simulating ANN on Excel, the data associated with the 29 projects studied by 
Saner [7] were then entered into Excel. All ranges and matrix dimensions were set according 
to the number of inputs, the number of outputs, historical examples, test examples, and hidden 
nodes (i.e., N=8, O=1, P=22, T=7 and L=4, respectively). Evolver was able to come up with 
an overall weighted error of 11%, with 0.5 weight on the training set and 0.5 weight on the 
testing set.  

CBR spreadsheet simulation: The CBR-Excel template was populated by the same cost 
data collected from residential building construction projects [7]. Relevant data were also 
entered into the CBR-Excel model using the procedure described. The dataset of 29 projects 
was randomly split into an input set containing 24 projects (P=24), and a test set containing 5 
projects (R=5). In other words, the CBR-Excel simulation described previously was set as 
follows: N=4, C=5, O=1, P=24, R=5. The GA-augmented CBR model yielded an average 
error of 16%. 

When GA is used to generate weights in the CBR study, one of the cases in the input 
casebase is removed and called an evaluation case. The similarities between the attributes of 
the evaluation case and the corresponding attributes of the remaining cases are calculated by 
using Equations (8 and 9). Then the case similarities are derived between the evaluation case 
versus the remaining input cases by taking the average of all attribute similarities. The 
relationship that governs the similarity of the input case that has an output that is closest to the 
output of the evaluation case is plugged into the GA algorithm (Evolver) for maximization.  
In this study, the range of attribute weights was set between 1 and 10, the default population 
size of 50 was used, and Evolver was run 15,000 times to find the optimum attribute weights 
that generated the maximum case similarity closest to 1 (100%). Weights generated by 
Evolver were then plugged into the CBR Excel model manually. 

In ANN modeling, the optimization variables are the weights generated in the transition 
from inputs nodes to hidden nodes, and from hidden nodes to output nodes (Figures 4 and 6). 
ANN weights are optimized by GA in order to reach the minimum average error value. 
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7 COMPARISON OF GA/CBR AND GA/ANN 

This study has evaluated the performance of GA-augmented ANN (GA/ANN) and 
GA-augmented CBR (GA/CBR) in predicting the unit cost of a building’s structural system. 
So far, these two techniques were compared based on their prediction accuracy. However, 
there are other characteristics of these techniques that will have an equal, if not greater impact 
upon their adoption. The relative merits and shortcomings of these techniques are discussed 
below. Five characteristics are considered to assess these techniques’ utility: preprocessing 
effort, configurability, explanatory value, accuracy, and improvement potential.  

7.1 Preprocessing Effort for Conversion of Data 
Data consist of cases and their related features. The content could be both in numerical and 

textual form. The techniques of handling data for ANN and CBR systems are different. ANN 
can handle only numerical values, which also need to be scaled to a certain range. 
Conversions of numerical and textual input data are essential to suit ANN processing. The 
numerical values are often scaled to a range of [-1, 1] for tanh activation function to avoid 
fluctuations in the mathematical calculations of the ANN system. Although both CBR and 
ANN systems require the organization of data into a matrix form to suit the Excel format, 
ANN needs three additional steps in order to process input data and produce a meaningful 
output. This certainly adds to the preprocessing effort. Spreadsheet simulations have the 
advantage of transparency, but they cannot avoid the considerable time required to build them 
up, when compared with commercial software. Therefore, ANN is at a disadvantage when 
dealing with a large data set. It is easier to use CBR which handles cases in their original 
representations, without converting the data from one type to another. This may also be 
important in order to prevent loss of information since modifications to data may deteriorate 
learning performance from the level that might have been attained by learning from the 
original data [27]. In this study, data were in the form of both numerical and textual values. 
Features expressed as text were used in the CBR study. Textual data were subjected to 
numerical transformation in a continuous manner in the ANN study; the numerical data were 
reduced to a range [-1, 1] with a linear scaling formula. 

7.2 Configurability in the Spreadsheet Format 
Configurability is the measure of how much effort is required to build a prediction system 

that generates useful results. Considering the preprocessing effort mentioned in Section 7.1, 
CBR needs relatively little effort to construct. However, model building is a more complex 
issue than simply entering and converting data. An ANN model requires that the number of 
hidden layers, the number of hidden neurons, the number of bias nodes, the learning 
algorithm, and the transfer function be specified by the user, whereas CBR only needs the 
setting of the feature and case similarity functions. These variables are the tools of modeling, 
but analysts have to experiment with different combinations of these variables in order to find 
the optimum combination and result. Most of the books published on ANN modeling agree 
that the process is largely one of trial and error. Therefore, it takes considerable effort to 
configure the neural network architecture and doing so certainly requires a fair degree of 
expertise. For this reason, it is difficult to see how an ANN model could easily be built up 
within the spreadsheet format by analysts, where the analyst has to manually enter all the 
values, build up the model, evaluate the performance and then experiment with the model 
again and again until an optimum solution is reached. The burden of the training process in 
ANN could be intolerable in a spreadsheet format. CBR, on the other hand, does not require 
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experimentation with combinations of parameters to establish a prediction model. Since it 
does not predict from scratch, but retrieves cases from a casebase, it uses simple feature 
similarity and case similarity formulas, which can be made once in Excel and easily copied to 
all cells thereafter.  

7.3 Accuracy of Cost Prediction 
Not generating data from scratch but adjusting from a casebase enhances the 

configurability of CBR in Excel format, but it appears to be a disadvantage in this particular 
study because there were only few examples stored in the casebase. Consequently, the ANN 
model was able to produce cost values that were closer to actual costs than the CBR model. 
Even though CBR worked with full efficiency and selected the closest cost value, it definitely 
would never be able to predict better than what exists as the closest cost in its casebase. 
Although several methods utilizing highest score ranks were applied in order to get closer 
predictions, none produced better results.  If the ANN paradigm is suitable for the data 
available, a key aspect of many ANN models is that they are able to learn, and their behavior 
may improve with training and experience [28]. In this case this advantage of ANN provided 
superior prediction results over CBR. 

7.4 Explanatory Value 
Although ANN models are great learners, almost like humans, the rules behind their 

judgment are not explainable.  One attraction of the transparent spreadsheet simulations 
carried out in this study is that the analyst is able to see and control all the formulas and 
connections being used by the prediction model. However, in ANN, if a particular prediction 
is in some sense surprising to the analyst, it is harder to establish any rationale for the value 
generated. It is difficult to evaluate the outcome of an ANN study merely by studying the 
network architecture and neuron weights. By comparison, CBR appears to offer an advantage 
in this respect. Unlike reducing the error in ANN by generating weights through back-
propagation, CBR estimates by analogy. Cases are ordered in degree of similarity to the target 
case by utilizing similarity assessment methods calculated by assigning weights to the related 
features. Indeed, in addition to its explanatory value, this technique encourages the 
participation of the analyst in getting more accurate predictions.  

7.5 Improvement Potential via the Application of GA 
Weights are the important adjustable variables that can be freely manipulated on an Excel 

spreadsheet for accurate predictions. Both in ANN and CBR, the weights of the variables are 
adjusted in order to build up the optimum prediction model. Therefore, the improvement 
potential of these models is strongly tied to how realistic the weights of the variables are. In 
the GA/ANN and GA/CBR studies, the optimization of the weights is done by using genetic 
algorithms.   

When comparing the model building effort of the two systems, it was mentioned that the 
primary advantage of CBR over ANN was that a CBR application did not need to be trained 
[29]. Yet in the GA/CBR study, the selection of the weights for similarity assessment turned 
out to be an important operation, which consumed as much time as the training procedure in 
ANN. By comparison, the integration of GA into ANN is a simpler procedure, which is 
carried out only once for the whole training cycle. On the other hand, weight generation in 
CBR is a critical issue on which the success of CBR heavily relies. The GA optimization for 
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feature weights in this CBR study was carried out once for each case in the casebase in order 
to get the most benefit out of the integrated system.  

For the study carried out with GA/ANN, the GA optimization for weights was not more 
successful than the simplex optimization method or back-propagation training [26]. However, 
GA produced several improvements in the GA/CBR study [4]. GA was able to reduce the 
effect of less important features; and it was able to eliminate the unimportant features when 
constraints were scored on a scale starting with 0. This means that if a feature is of no 
importance, it was assigned a 0 weight by GA. In the study carried out by Dogan et al. [4] it 
was found out that every feature could somewhat improve the accuracy of the prediction; so 
the constraints were set to begin from 1. Irrelevant features are also an important problem in 
ANN models and are investigated lately by Shi [30]. 

Whatever mechanism is being utilized, it is clear that although accuracy is the most 
important concern, it is not sufficient to consider the accuracy of prediction systems in 
isolation. The consistency (explanatory value), continuity (configurability and preprocessing 
effort) and potential improvement of the systems are also of great importance.  

8 CONCLUSIONS 

A GA/CBR and GA/ANN model were used by Dogan et al. [4] and Dogan et al.[26], 
respectively, to predict the structural unit cost of residential building projects. Both models 
were developed by using the same 29 building project cases. A prediction rate of 84% was 
obtained from the GA/CBR model, whereas the prediction rate obtained from the GA/ANN 
model was 89%. A comparison of the experiences with the development of CBR and ANN 
models shows the following: 

GA augmented ANN and CBR models may make better predictions than standard methods 
provided by commercial software of ANN and CBR [4, 26]. However, in both cases, the 
model building process is quite cumbersome for Excel simulations. It is even more 
cumbersome when these systems need to be updated with new cases for long-term use since 
all the model building process should be repeated and tested with each update. This is the 
reason why the spreadsheet system needs to be automated. Currently, there is no commercial 
software that can perform GA/CBR. However Jarmulak et al. [31] reported working GA 
integration into the CBR software called ReCall [32]. As far as ANN system is concerned, 
ANN software called NeuroShell [33] supports genetic training. 

Even after the release of integrated software, more research should be carried out for 
different data sets because specific recommendations are needed as to which approach would 
be more appropriate in what type of domain [for what type of output (numerical, textual, 
binary, etc...)] or for what type of input data (i.e., ratio of inputs/attributes and training and 
retrieving case numbers). Such guidelines would be of great help to developers of prediction 
models. 

Predicting the unit cost of the structural system of residential buildings in this study has a 
number of distinct characteristics compared to other prediction problems. First, the training 
set was comparatively small. Second, the predictions generally have a higher degree of 
significance to the analyst. This has the consequence that interaction, or collaboration, 
between the prediction system and the analyst is of great importance. Allowing the analyst to 
participate in the prediction process by utilizing spreadsheet simulations may lead to two 
beneficial effects. First, it may enhance accuracy. Analysts may provide some kind of sanity 
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check on the systems, while the system allows them to control far more characteristics 
manually than would be possible by commercial software. Second, it may increase confidence 
in the prediction. This consideration is also important in order to avoid the situation where 
end-users reject a prediction system.  

In this paper two artificial intelligence techniques augmented by an optimization technique 
were compared when used to predict the cost of the structural system of residential buildings. 
These techniques were compared in terms of preprocessing effort, accuracy, explanatory 
value, configurability, and improvement potential. Despite finding that there are differences in 
prediction accuracy levels, it is argued that the other characteristics of these techniques may 
also have an impact upon their adoption. It was found that the explanatory value of predicting 
by analogy gives CBR an advantage when considering its interaction with the analyst and 
end-users. It was also found that problems of configuring neural networks tend to counteract 
their superior performance in terms of accuracy. This preliminary research has shown that the 
AI techniques used in this study are locally significant but are not generalizable. It is believed 
that it is important to further investigate these AI methods, particularly to explore under which 
conditions they are most likely to be effective. 
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