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Abstract. We consider efficient numerical methods for the solution of partial differential equa-
tions with stochastic coefficients or right hand side. The discretization is performed by the
stochastic finite element method (SFEM). Separation of spatial and stochastic variables in the
random input data is achieved via a Karhunen-Loève expansion or Wiener’s polynomial chaos
expansion. We discuss solution strategies for the Galerkin system that take advantage of the
special structure of the system matrix. For stochastic coefficients linear in a set of independent
random variables we employ Krylov subspace recycling techniques after having decoupled the
large SFEM stiffness matrix.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224742196?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 INTRODUCTION

Physical phenomena occuring in structural mechanics are mathematically modelled by partial
differential equations together with appropriate boundary conditions. Their approximate so-
lution can be computed efficiently and accurately for instance by the finite element method.
On the other hand, input data such as material parameters, boundary conditions and loads con-
tain measurement or modelling errors that may outweigh discretization errors coming from the
numerical simulation.
In recent years it has become popular to take account of this problem in the model itself by
treating all input data as spatially dependent random variables, i.e., random fields (RFs) [2].
Consequently the randomness is propagated to the output data, e.g. the displacements, and al-
lows to quantify the uncertainty of the output.

From the mathematical point of view the task is to solve a stochastic boundary value problem.
To fix ideas we consider the Lamé-Navier equation on a bounded domain D ⊂ Rn, n = 2, 3.
Young’s modulusE and the body force density function F are now random fields, whereas Pois-
son’s ratio ν is deterministic. For simplicity we impose homogeneous deterministic boundary
conditons on ∂D = B0 ∪ B1. The task is to find a displacement random field u : D × Ω → R,
such that

E(x , ω)

2(1 + ν)

[
∇2u(x , ω) +

1

1− 2ν
∇(∇ · u(x , ω))

]
+ F (x , ω) = 0 in D, (1a)

u(x , ω) = 0 on B0, (1b)
σ(u(x , ω))n = 0 on B1, (1c)

is fulfilled P -almost surely, where (Ω,A, P ) is the (complete) probabitity space under consid-
eration.

This paper is concerned with one possibility for the discretization of (1), namely the stochastic
finite element method [8].
The basic principle of the SFEM is to treat the spatial and stochastic parts of the problem
separately. Ansatz and test functions are elements of tensor product spaces that contain solely
deterministic or stochastic shape functions. As a consequence, the discretization of the spatial
part is independent of that of the stochastic part.
On the other hand the total number of degrees of freedom (DOFs) is exactly the number of
DOFs of the deterministic problem multiplied by the number of stochastic DOFs. Therefore we
require efficient solvers for the large linear systems that arise from SFEM.

Following a short review of the basic steps to apply SFEM in Section 2, we discuss strategies
for coping with the complexity of SFEM in Section 3. They depend on the representation of the
random input data which is addressed in Section 2. Finally we present the results of numerical
experiments on a plane strain test problem given in [3].
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2 REVIEW OF THE STOCHASTIC FINITE ELEMENT METHOD

In analogy to the case of deterministic input data we recast the stochastic boundary value prob-
lem (1) to an equivalent variational formulation in the tensor product space H1

Γ(D) ⊗ L2
P (Ω),

where
H1

Γ(D) := {w ∈ H1(D)n : w = 0 on B1}. (2)

is the variational space for the deterministic companion piece to (1). We seek a function u ∈
H1

Γ(D)⊗ L2
P (Ω) such that there holds

1

1 + ν

〈∫
D

E ε(u) : ε(v)dx +
ν

1− 2ν

∫
D

E (∇ · u) (∇ · v)dx

〉
=

〈∫
D

F · vdx
〉
, (3)

for all test functions v ∈ H1
Γ(D)⊗ L2

P (Ω). Here 〈·〉 denotes the expectation operator w.r.t. the
probability space.

2.1 Discretization steps

For practical applications it is realistic to assume that the input RFs depend on a finite number
of mutually independent random variables {ξm}M

m=1 only. These random variables are required
to have a probability density function ρm : Γm → [0,∞). Since we assume the {ξm}M

m=1 to be
independent, their joint probability density function is given by

ρ(ξ) := ρ1(ξ1) · · · ρM(ξM), ξ ∈ Γ := Γ1 × · · · × ΓM .

We can now identify L2
P (Ω) with L2

ρ(Γ) and reformulate (3) in terms of the random vector ξ to
obtain the problem of finding a function u ∈ H1

Γ(D)⊗ L2
ρ(Γ) such that

1
1+ν

∫
Γ
ρ(ξ)

[∫
D
E ε(u) : ε(v)dx + ν

1−2ν

∫
D
E (∇ · u) (∇ · v)dx

]
dξ =

∫
Γ
ρ(ξ)

∫
D
F ·vdxdξ,

(4)
for all test functions v ∈ H1

Γ(D)⊗ L2
ρ(Γ).

For the discretization of (4) we form the tensor product space Xh ⊗W h, where

Xh := span{φ1(x ),φ2(x ), . . . ,φNx
(x )} ⊂ H1

Γ(D) (5)

is any suitable finite dimensional subspace of the deterministic variational space and

W h := span{ψ1(ξ), ψ2(ξ), . . . , ψNξ
(ξ)} ⊂ L2

ρ(Γ) (6)

is a finite dimensional subspace of the stochastic one. A basis of this discrete variational space
consists of all functions φi(x )ψj(ξ) where φi is a basis function of Xh and ψj belongs to a
basis of W h. Thus Ansatz and test functions have the form

uh(x , ξ) =
∑
i,j

ui,jφi(x )ψj(ξ)

We insert the approximation uh into equation (4) together with a test function v(x , ξ) =
φk(x )ψ`(ξ) and obtain a system of equations in Nx ·Nξ unknowns:

AU = F. (7)
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2.2 Structure of Galerkin equations

The stiffness matrix A as well as the solution U and load vector F possess a special block
structure. For further explanation we define the matrices

A`,j =

∫
Γ

ρ(ξ)ψj(ξ)ψ`(ξ)K(ξ)dξ ∈ RNx×Nx , `, j = 1, . . . , Nξ, (8)

each of them the size of a deterministic problem, along with the vectors

fj =

∫
Γ

ρ(ξ)ψj(ξ)f (ξ)dξ ∈ RNx , j = 1, . . . , Nξ. (9)

In (8) and (9) we introduced a matrix K(ξ) ∈ RNx×Nx and a vector f (ξ) ∈ RNx that depend on
the random vector ξ:

[K(ξ)]i,k = 1
1+ν

∫
D
E(x , ξ) ε(φi(x )) : ε(φk(x ))dx+ ν

1−ν−2ν2

∫
D
E(x , ξ)∇·φi(x )∇·φk(x )dx ,

(10)

[f ]k =
∫

D
F (x , ξ) · φk(x )dx , i, k = 1, . . . , Nx . (11)

Finally we obtain stiffness matrix A and load vector F

A =

 A1,1 . . . A1,Nξ

...
...

ANξ ,1 . . . ANξ ,Nξ

 , F =

 f1
...

fNξ

 ,
together with the solution vector

U =

 u1
...

uNξ

 , uj =

 u1,j
...

uNx ,j

 ∈ RNx , j = 1, . . . , Nξ.

So far we cannot solve equation (7), because the connection of the input random fields to the
set of random variables {ξ}M

m=1 is not yet specified. The last ingredient for the application of
SFEM is the specification of the RF model and the construction of the stochastic variational
space W h in (6) that strongly depends on the modeler’s knowledge of the randomness in the
input data.

3 REPRESENTATION OF RANDOM FIELDS

A random field κ is a mapping κ : D × Ω → R, such that for every fixed point x ∈ D in
the spatial domain, κ(x , ·) is a random variable with respect to the probability space (Ω,A, P ).
The random field κ is completely determined by all finite-dimensional distribution functions
Fx (a) = P (κ(x1) < a1 ∧ κ(x2) < a2 ∧ · · · ∧ κ(xd) < ad).
In most applications this information is not available. A widely used modelling assumption
is for the random field to depend on second order random variables, i.e., κ(x , ·) is a random
variable with finite mean and variance. Therefore it suffices to characterize κ by means of its
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statistical moments up to order two: the mean value 〈κ(x )〉, x ∈ D, and the covariance function
Covκ : D ×D → R,

Covκ(x ,y) := 〈(κ(x , ·)− 〈κ(x )〉)(κ(y , ·)− 〈κ(y)〉)〉, x ,y ∈ D ×D. (12)

In view of the solution strategies discussed in Section 3, we distinguish two types of RF models:
(a) random fields that are linear and (b) random fields nonlinear in M independent random
variables {ξm}M

m=1. Furthermore we consider only RF models that separate the dependencies
on the spatial variable x and the stochastic variable ω.

3.1 Karhunen-Loève expansion

Gaussian RFs can be represented by their (truncated) Karhunen-Loève expansion (KL expan-
sion) (cf. [16]) that is linear in a set of mutually uncorrelated and hence independent Gaussian
random variables. In general, every random field κ with given mean value and bounded, con-
tinuous covariance function posseses an L2

P -convergent expansion

κ(x , ω) = 〈κ(x )〉+
∞∑
i=1

√
λiki(x )ξi(ω), (13)

where {ξi}i≥1 is a sequence of mutually uncorrelated centered random variables of unit vari-
ance. The deterministic functions ki(x ) solve the integral equation∫

D

Covκ(x ,y)ki(y)dy = λiki(x ) ∀x ∈ D.

For non-Gaussian fields the KL expansion can be employed with independence of the under-
lying variables as an additional modelling assumption. In numerical simulations one truncates
expansion (13) after M + 1 terms.

3.2 Wiener’s polynomial chaos expansion

Type (b) contains RFs that are represented with the help of Wiener’s polynomial chaos expan-
sion, where the total degree of polynomials is greater than one. One may think of lognormal
fields, that are nonlinear transformations of Gaussian RFs.
For the construction of Wiener’s polynomial chaos let {hj}∞j=0 denote the Hermite polynomials,
I the set of multi-indices α ∈ NN

0 , |α| <∞, and

Hα(η(ω)) :=
∞∏

j=1

hαj
(ηj(ω)),

where η(ω) := [η1(ω), . . . , ηj(ω), . . . ]T is a random vector. Every random variable X : Ω → R
with finite variance, i.e., X ∈ L2

P (Ω) posseses an L2
P -convergent approximation in multivariate

Hermite polynomials of uncorrelated standard Gaussian random variables named Wiener chaos
expansion (cf. [12]):

X(ω) =
∑
α∈I

cαHα(η(ω)).

As κ(x , ·) is a random variable for every x ∈ D let the chaos coefficients depend on the spatial
variable x to obtain the formal expansion of a random field:

κ(x , ω) =
∑
α∈I

κα(x )Hα(η(ω)). (14)
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One truncates expansion (14) by using only multivariate Hermite polynomials in M variables
such that the total degree sums to at most d.

4 SOLUTION STRATEGIES FOR THE DISCRETE SYSTEM

Having a representation of the random fields in problem (1) at hand we can now turn to the
discussion of solution strategies for the discrete stochastic variational problem (7). There are
several possibilities for breaking the complexity of this large system, for instance block iterative
solvers combined with clever data management [10] or multilevel methods and hierarchical
approaches are employed [13, 15, 10]. In any case it is important to analyze the structure of the
stiffness matrix A and load vector F depending on the the RF type of the input data.
For simplicity we assume the RF’s E and F to be fully cross-correlated, i.e. their random
behaviour underlies the same set of independent random variables. In any case we have to
expand the input RFs in the given stochastic basis (6), that is compute expansions of form

E(x , ξ) =

Nξ∑
m=1

Em(x )ψm(ξ), F (x , ξ) =

Nξ∑
m=1

Fm(x )ψm(ξ). (15)

Then the matrix K(ξ) and vector f (ξ) from (10) take on the form

K(ξ) =

Nξ∑
m=1

Kmψm(ξ), f(ξ) =

Nξ∑
m=1

fmψm(ξ),

with matrices Km and fm given by

[Km]i,k = 1
1+ν

∫
D
Em(x ) ε(φi(x )) : ε(φk(x ))dx + ν

1−ν−2ν2

∫
D
Em(x )∇·φi(x )∇·φk(x )dx ,

(16)
[fm]k =

∫
D
Fm(x ) · φk(x )dx , i, k = 1, . . . , Nx , m = 1 . . . , Nξ.

As a consequence the stiffness matrix A and load vector F from (7) possess the form of sums
of Kronecker tensors

A =

Nξ∑
m=1

Gm ⊗Km, F =

Nξ∑
m=1

gm ⊗ fm. (17)

The matrices Gm and vectors gm depend on the stochastic basis functions from (6) only:

[Gm]`,k = 〈ψmψkψ`〉, [gm]k = 〈ψmψk〉, m, `, k = 1, . . . , Nξ. (18)

4.1 Random fields linear in ξ

For input RFs of type (a) we will use the discrete stochastic variational space

W h = W h
1 ⊗ . . .W h

M , W h
m = Pαm(ξm) ⊂ L2

ρm
(Γm), αm ∈ N0, m = 1, . . . ,M. (19)

It consists of products of global polynomials of maximum degree αm in variable ξm. Conse-
quently we have Nξ =

∏M
m=1(1 + αm) DOFs in the stochastic space. There are other construc-

tions, for instance spaces based on piecewise polynomials on Γ [1], but our choice is due to the
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solution strategy for linear input RFs.
If E is of form (13) there are only M + 1 terms in sum (17), where Gm and gm are given by

[G0]`,k = 〈ψkψ`〉, [g0]` = 〈ψ`〉,
[Gm]`,k = 〈ξmψkψ`〉, [gm]` = 〈ξmψ`〉, `, k = 1, . . . , Nξ, m = 1, . . . ,M.

Using appropriate stochastic shape functions the matrices G0, . . . , Gm become diagonal [1, 7].
Due to the tensor product structure of (19) it suffices to construct double orthogonal polynomials
in each random variable ξm. For that one has to solveM tridiagonal eigenproblems each of them
of size αm.
Hence the global stiffness matrix A in (7) is block diagonal, so the large linear system in (7)
decouples into a sequence of independent lower dimensional problems in Nx unknowns. Of
course this sequence of systems can be solved on a parallel machine, but we employ iterative
methods for the sequential solution of these systems.
Recently de Sturler et al. [6] proposed two algorithms, a modification of GCROT [4] and a
new one named GCRO-DR, that recycle Krylov subspaces when solving a sequence of linear
systems. Both methods are based on the GCRO algorithm [5]. They recycle the outer approxi-
mation and correction spaces but the construction of these spaces follows different approaches.
The modified GRCOT simply recycles the subspaces created by ordinary GRCOT, whereas
GCRO-DR recycles spaces that contain approximate eigenvectors of the system matrix.
Since all system matrices in the sequence are related to one finite element stiffness matrix A,
recycling of information generated during the solution process of one system in the sequence
could be useful for the solution of the next one in order to reduce the total cost of the solution
process.

4.2 Random fields nonlinear in ξ

In connection with RF of type (b) that are represented by Wiener’s polynomial chaos expansion
we make use of the discrete stochastic variational space

W h = {Hα(ξ), α ∈ IN} , (20)

where IN := {α ∈ NM
0 , |α| ≤ d}. Hence there areNξ = |IN | =

(
M+d

d

)
DOFs in the stochastic

space. For input RFs nonlinear in ξ one has to allow for higher order terms in (17). In contrast
to type (a), no suitable stochastic shape functions have yet been found to decouple the large
stiffness matrix A. Nevertheless there is some hope to exploit the special structure of both the
system matrix and right hand side in (17) to make computations feasible.
In recent investigations Hackbusch et al. [11] provide a general framework for truncated iter-
ations on structured matrices. They use an appropriate truncation operator after each iteration
step to preserve the special structure of all intermediate matrices as well as the convergence rate
of the iterative process.
It is still an open question whether we can make use of an truncated iteration to evaluate A−1,
for instance by an approximate Newton-Schulz iteration, because it is not known whether the
desired result, i.e., the inverse of a sum of Kronecker tensors posseses the same structure or can
at least be approximated by such a structured matrix.
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5 EXPERIMENTS

5.1 Model problem

We consider a plane strain problem given in Part II, Chapter 4 of [3], that is we solve the Lamé-
Navier equation (1) for the case n = 2. It is a model for the settlement of a foundation on an
elastic soil mass, where Young’s modulus E is subject to random fluctuations resulting from
measurement errors or the lack of knowlegde on the exact material properties of the soil.

Let D = [0, 60]× [0,−30] ⊂ R2, ∂D = B1∪B2∪B3∪B4∪B5 as shown in Figure 1. We look
for the components u and v of the displacement vector u = [u, v]T . Poisson’s ratio ν = 0.3
is fixed, as well as the body force density function, F (x ) = 0 for all x ∈ D. The boundary
conditions are listed below:

v = 0, (σ(u)n)1 = 0 on B1,

u = 0, (σ(u)n)2 = 0 on B2 ∪B5,

σ(u)n = 0 on B3,

σ(u)n = [0,−0.2 · 106]T on B4.

Figure 1: Domain and boundary for plane strain problem.

5.1.1 Representation of random input

Young’s modulus E is modeled as a lognormal RF,

E = E(x , ω) = exp(a+ b κ(x , ω)). (21)

It results from a nonlinear transformation of a centered homogeneous Gaussian RF κ with co-
variance function

Covκ(x ,y) = exp(−|x − y |2/`2).

The (approximate) KL expansion of E is possible but cannot be used without further computa-
tions, because the probability density functions of the random variables therein are not known.
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Additionally one has to perform a combined KL and Wiener chaos expansion (cf. [14]). For
simplicity we compute a truncated KL expansion of the Gaussian RF κ and insert it in (21).
Thereafter the Wiener chaos coefficients Em can be computed in closed form, see [9].
The constants a and b are used to prescribe the mean value µE and the ratio of standard deviation
and mean value δE := σE

µE
, via

a = log µE − 1/2 log (1 + δ2
E), b =

√
log(1 + δ2

E).

In the computations we use ` = 30, µE = 50 · 106 and δE ∈ [0, 0.25].

5.1.2 Spatial discretization

We make use of FEMLAB’s structural mechanics application mode “Plane Strain”. The shape
functions of the two components of the displacement vector are quadratic polynomials on a
mesh of 735 triangles, so there are Nx = 2985 spatial degrees of freedom.

5.1.3 Stochastic discretization

We use a Wiener polynomial chaos expansion of the input and output random fields in M = 4
standard Gaussian random variables. The total degree of multivariate Hermite polynomials in
the expansion of E is limited to d = 1 to obtain a RF linear in the underlying variables.
The chaos coefficients of the input random field E(x , ω) are computed at prescribed grid points
of an equidistant hp finite element mesh that consists of 7 × 5 rectangles. The shape functions
are tensor product polynomials of degree at most 8 in each spatial direction on a rectangle.
FEMLAB then performs bilinear interpolation to compute the stiffness matrices Km in (16).

5.2 Results

We present the results of some numerical experiments when the sequence of Nξ systems in Nx

unknowns that comes from the discretizaton of the model problem stated above is solved by
Krylov subspace recycling methods.
We used an incomplete Cholesky factorization with drop tolerance 10−2 as preconditioner for
all solvers. The stopping criterion was a reduction of the Eucledian residual norm by a factor of
106. For GCROT the parameters were (see [4]) m = 15, s = 10, p1 = 0, p2 = 2, kthresh = 20,
kmax = 25 and knew = 5. For GCRO-DR we used m = 40 and k = 25. All parameters are
chosen in a way that at most m = 40 vectors must be stored during the iteration and up to
k = 25 vectors are recycled.
Table 1 shows the average iteration count per block system of the decoupled stiffness matrix A
when the total polynomial degree in the output RF is d = 3, hence Nξ = 256 linear systems
were to be solved. We observe a considerable reduction of average iteration counts for GCRO-
DR while GCROT with recycling performs worse. The iteration count increases while δE does.
In Table 2 we vary the polynomial degree in the stochastic space resulting in a larger number
linear systems in the sequence to be solved, which seems to have little influence on the average
iteration count. This may be due to the fact that a higher polynomial degree does not lead to a
better approximation of the random displacement field. Again GRCOT with recycling performs
worse than GCRO-DR a better preconditioner might repair.
All calculations were performed in MATLAB 7 SP3 together with FEMLAB 3.1.
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δE GMRES GCROT GCROT-rec. GCRO-DR-rec.
0.05 31 35 19 13
0.10 31 35 21 13
0.15 32 36 23 14
0.20 33 37 25 15
0.25 35 39 28 18

Table 1: Average iteration counts per linear system using full GMRES, GCROT without and with recycling and
GCRO-DR with recycling for M = 4 and d = 3.

d Nξ GMRES GCROT GCROT-rec. GCRO-DR-rec.
1 16 30 35 23 14
2 81 31 35 23 13
3 256 31 35 21 13
4 625 31 35 21 13
5 1296 32 36 21 13

Table 2: Average iteration counts per linear system using full GMRES, GCROT without and with recycling and
GCRO-DR with recycling for δE = 0.1 and M = 4.

6 CONCLUSIONS

We have discussed the special structure of linear systems resulting from a Galerkin finite ele-
ment discretization of a stochastic partial differential equation. We have shown how this struc-
ture can be exploited to solve the large systems efficiently. For random fields linear in the
underlying variables we demonstrated the usage of Krylov subspace recycling techniques that
can contribute to reduce the overall cost of the solution process, but much work remains to be
done.
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[16] M. Loève, Probability theory. volume II, Springer Verlag, New York, 1977.

11


	Introduction
	Review of the Stochastic Finite Element Method
	Discretization steps
	Structure of Galerkin equations

	Representation of random fields
	Karhunen-Loève expansion
	Wiener's polynomial chaos expansion

	Solution Strategies for the discrete system
	Random fields linear in bold0mu mumu `12`12`12
	Random fields nonlinear in bold0mu mumu `12`12`12

	Experiments
	Model problem
	Representation of random input
	Spatial discretization
	Stochastic discretization

	Results

	Conclusions

