
17th International Conference on the Applications of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. Könke (eds.)
Weimar, Germany, 12–14 July 2006

AUTOMATING PRELIMINARY COLUMN FORCE CALCULATIONS
IN MULTI-STOREY BUILDINGS

E. Lourens*, G. van Rooyen

*University of Stellenbosch, South Africa
E-mail: elizmari@gmail.com

Keywords: Column Forces, Building Design, Computing, Multi-storey Buildings.

Abstract. In civil engineering practice, values of column forces are often required before any
detailed analysis of the structure has been performed. One of the reasons for this arises from
the fast-tracked nature of the majority of construction projects: foundations are laid and base
columns constructed whilst analysis and design are still in progress. A need for quick results
when feasibility studies are performed or when evaluating the effect of design changes on
supporting columns form other situations in which column forces are required, but where a
detailed analysis to get these forces seems superfluous. Thus it was concluded that the
development of an efficient tool for column force calculations, in which the extensive input
required in a finite element analysis is to be avoided, would be highly beneficial.

The automation of the process is achieved by making use of a Voronoi diagram. The Voronoi
diagram is used a) for subdividing the floor into influence areas and b) as a basis for
automatic load assignment.

The implemented procedure is integrated into a CAD system in which the relevant geometric
information of the floor, i.e. its shape and column layout, can be defined or uploaded.

A brief description of the implementation is included. Some comparative results and
considerations regarding the continuation of the study are given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digitale Bibliothek Thüringen

https://core.ac.uk/display/224742161?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1 INTRODUCTION

In civil engineering practice, values of column forces in multi-storey buildings are often
required before any detailed analysis of the structure has been performed. One of the reasons
for this arises from the fast-tracked nature of the majority of construction projects:
foundations are laid and base columns constructed whilst analysis and design are still in
progress. A need for quick results when feasibility studies are performed or when evaluating
the effect of design changes on supporting columns form other situations in which column
forces are required, but where a detailed analysis to get these forces seems superfluous. Thus
it was concluded that the development of an efficient tool for column force calculations, in
which the extensive input required in a finite element analysis is to be avoided, would be
highly beneficial.

The automation of the process is achieved by making use of a Voronoi diagram. The
Voronoi diagram is used a) for subdividing the floor into influence areas and b) as a basis for
automatic load assignment.

The implemented procedure is integrated into a CAD system in which the relevant
geometric information of the floor, i.e. its shape and column layout, can be defined or
uploaded.

As an initial investigation the force on a column was calculated based solely on the
influence area of the column’s Voronoi cell i.e. a geometrical problem is solved without
taking any stiffness properties into consideration.

2 THE VORONOI DIAGRAM

2.1 Theoretical Background

2.1.1 Definition of the Voronoi diagram
Let P := {p1,p2,…,pn} be a set of n distinct points in the plane. Each of these points

represents a site. The Voronoi diagram of P is defined as the subdivision of the plane into n
cells, a cell for each site in P, with the property that a point q lies in the cell corresponding to
a site pi if and only if dist(q,pi) < dist(q,pj) for each pj Є P with j ≠ i.

2.1.2 Computing the Voronoi diagram
The algorithm used to compute the Voronoi diagram, a plane sweep algorithm commonly

known as Fortune’s algorithm, has been identified as optimal [1]. Although the algorithm is
thoroughly explained in literature, difficulties were encountered during its implementation
due to a lack of clarity on a certain implementation step. It was thus deemed necessary to
include a description of the algorithm.

The algorithm involves sweeping a horizontal line - the sweep line - from top to bottom
over the plane. As the sweep line moves downwards over the plane it strikes certain special
points referred to as the event points. Relevant information regarding the structure of the
diagram (i.e. its edges and vertices) is stored at these specific occurrences only. The
following paragraphs are dedicated to explaining the algorithm in more detail.

A fundamental concept of the algorithm is the formation and development of the beach
line: a line situated above the sweep line and consisting of a sequence of parabolic arcs.
Referring to Figure 1a, it is easy to visualize that each parabola corresponding to a certain site

 3

pi above the sweep line bounds the locus of points that are closer to pi than to the sweep line.
Thus the beach line can be seen as the line bounding the locus of points that are closer to any
site above the sweep line than to the sweep line itself. The beach line is defined as the line
passing through, for each x-coordinate, the lowest point of all parabolas.

As the sweep line moves from top to bottom the edges of the Voronoi diagram are traced
out by the breakpoints separating the different parabolic arcs that form the beach line. Refer
to Figure 1b for clarity.

Figure 1a and 1b: The beach line

The previously mentioned event points represent the points where, during the planar
sweep, the combinatorial structure of the beach line changes. The first type of event, a site
event, occurs when the sweep line strikes a new site. At this instance a new parabolic arc is
formed which at first is simply a vertical line segment connecting the site to the beach line.
As the downward movement of the sweep line progresses, this new parabola widens and the
breakpoints at its beginning and end start tracing out a new edge. The edge is initially not
connected to the rest of the Voronoi diagram above the sweep line and it is when such
growing edges connect to form a vertex, that the second type of event, a circle event, takes
place.

Figure 2: A circle event

1a. 1b.

 4

Referring to Figure 2, a circle event marks the disappearance of a parabolic arc from the
beach line. This happens at an instant where a circle passing through points pi,pj and pk, with
the vertex q at its centre and its lowest point on the sweep line, can be drawn. To be more
specific, a circle event can be defined as an event where the sweep line reaches the lowest
point of a circle through three sites defining consecutive arcs on the beach line.

The construction of the Voronoi diagram can now be perceived to consist of a sequence of
a) site events, when new edges start to grow and b) circle events, when two growing edges
meet to form a vertex.

2.2 Implementation
The fundamental classes used in the calculations leading to the set of edges and vertices

defining the Voronoi diagram are presented in Figure 3. These classes are used by a number
of key methods that will now be discussed individually.

determineEventQueue():
By arranging the defined sites from top to bottom an initial list object, representing the event
queue, is formed. The list returned by this method only serves as a starting point: the event
queue object itself changes continually due to the addition of circle events.

calculate():
This is the core method in which the strategy of the algorithm is applied. Its basic structure is
as follows:

while the event queue is not empty
 do Remove the event with the largest y-coordinate from the queue
 if the event is a site event
 then handleSiteEvent()
 else handleCircleEvent()

handleSiteEvent():
When a site event is encountered the current position of the beach line, a
SortableBeachLineArcList object populated with the parabolic arcs (BeachLineArc objects) as
they exist at that instant, as well as a reference to the site event itself, are passed on to this
method. The procedure to handle the event is defined as follows:

1. Search the list of arcs to find the arc vertically above the current site. If a) the event
queue contains a circle event that has a pointer to this arc and b) the current site lies
within such a circle, the circle event must be removed from the queue.

2. Create the new parabolic arc for the site and place it into the arc list in the correct

position.

3. Create a new instance of a HalfEdge object for the edge separating the current site
from the site responsible for the parabolic arc situated vertically above the current site.

4. Detection of circle events: Checks are performed on two sets of triples of consecutive

arcs in the arc list. The triple that has the new arc as its left arc is checked to see

 5

whether the breakpoints converge, followed by a check on the triple where the new arc
is the right arc. If a circle event is detected, it is inserted into the event queue.

handleCircleEvent():
The method requires the same input as that passed on to the previous one. The event is
handled in three steps:

1. Remove a) the disappearing arc from the arc list and b) all circle events that has a

pointer to it from the event queue. Create a new breakpoint using the sites responsible
for the arcs on each side of the disappearing arc and update the references of these side
arcs accordingly.

2. Create a new vertex at the center of the circle causing the event and add it to the set of

vertices. Use the new breakpoint (defined in 1.) and the vertex to create a new
HalfEdge record starting at the vertex.

3. Perform checks and take action in a manner analogous to step 4 under

handleSiteEvent(), but for the triples of consecutive arcs use a) the triple that has the
former left neighbor as its middle arc and b) the former right neighbor.

As a last remark on implementation, it can be said that the algorithm as described above
has been shown to handle degenerate cases (e.g. two or more events situated on a common
horizontal line; coinciding circle events in situations where four or more co-circular sites
exist, etc.) correctly.

Figure 3: UML diagram of the classes used for calculating the Voronoi diagram

 6

3 INTEGRATION WITH CAD

It was decided to integrate the Voronoi functionality into the CADEMIA system [2] in
order to permit the geometrical definition of the building. For this purpose a number of
classes were required to tie the new functionality into the existing structure of the CAD
software.

3.1 Added classes

3.1.1 Commands
The CADEMIA interface Cmd, defines, amongst others, methods doCmd(), undoCmd()

and redoCmd(), and is implemented by the following classes:

DefineOuterBoundary and DefineInnerBoundary:
Through an extension to the selectByPickIntersect command existing in the CADEMIA

software, these commands permit the definition of an outer boundary of the floor as well as
any inner boundaries (e.g. lift shafts) it may have.

AddColumn:
Column objects, representing the sites for the computation of the Voronoi diagram, are

added to the database.

Figure 4: A floor geometry divided into influence areas based on the Voronoi diagram.

 7

Calculate:
The Voronoi diagram is calculated and visually displayed through the graphical user

interface as illustrated in Figure 4. Although the implementation of Fortune’s algorithm has
already been discussed (paragraph 2.2) it is necessary to elaborate on its implementation
within CADEMIA. To start with, the computation of the Voronoi diagram is treated as an
unbounded problem and the solution consequently produces edges that originally extend past
the boundaries of the floor under consideration. This required the addition of another key
method to the computation:

trim():
All intersections between the edges and the defined outer boundary and/or the set of inner
boundaries are calculated and used to determine which parts of the affected edges are to be
thrown away.

Another addition to the computation was necessitated by the need for a set of objects
representing the Voronoi cells. These VoronoiCell objects and their contribution to the
calculations generating the actual forces on the columns will be discussed at a later stage. For
the moment, consider the following:

buildCells():
A set of GeneralPath objects defining the cells of the Voronoi diagram is created by a)
identifying the edges and segments of outer and/or inner boundary that contribute to the cell
boundary and b) putting them together in the correct order.

AddLoad:
In a manner analogous to that described for defining a boundary, Load objects are created

and added to the database. The geometric elements defining the loaded area, e.g. the four line
objects of the square in Figure 5, are selected by drawing an intersecting window and
assembled into the geometrical object that defines, in conjunction with a kN/m2 pressure
value, the load.

Transfer:
The areas of the different cells are calculated by bounding line integration for linear,

quadratic and cubic segments, based on the Gauss divergence theorem. Due to the fact that
all geometric objects in CADEMIA can be separated into these three segment types, the
integration is exact. The cell areas are then intersected with the areas corresponding to the
Load objects (refer to Figure 5) in order to calculate the force transferred to each column.

3.1.2 Components
All elements in CADEMIA’s component set implement interface Component. For an

element (e.g. an edge or vertex) to be displayed by the graphical user interface, it must
implement the methods defined in Component. In this regard classes Column,
OuterBoundary, InnerBoundary, Edge, HalfEdge, VoronoiCell and Load were all either
directly or indirectly made to implement Component. As regards the boundary classes, as
well as classes VoronoiCell and Load, the implementation was done indirectly by extending
an already existing component, namely ComponentGeneralPath.

 8

Figure 5: Adding a load and transferring the forces.

4 COMPARATIVE RESULTS

The accuracy of the forces obtained using this automated process was determined through
comparison with the results of finite element analyses. Figure 6 shows displacement contour
levels and deformations (inlay) for the floor of Figure 4 resulting from a finite element
analysis. This specific floor is an industrial coffer slab structure with varying stiffness and
self-weight. It generated an average error of 29% for the 67 pairs of column force values.
Towards this the internal and edge columns contributed 13% and 33%, respectively. These
errors were considerably larger than those obtained with other floors which had uniform
stiffness and where the columns were spaced more evenly.

Figure 6: Displacement contour levels for the finite element model of the floor of Figure 4.

 9

Although the finite element results were chosen for benchmarking purposes it is important
to note that there exists another set of data for comparison. This set comprises the forces as
calculated in industry: rough approximations are generated using rulers to approximate
influence areas and accumulating these forces using spreadsheets. Upon reflection, the
developed software does exactly this, except faster and more accurately.

A tendency towards larger errors for columns situated on the boundary of the floor was
observed. It is our aim to, through the generation of more comparative data, identify more of
these tendencies, to investigate their causes and to ultimately try to compensate for them in an
effective way.

5 ASPECTS THAT NEED TO BE ADDRESSED

5.1 Line approximations used for curves
There are a number of instances where intersections between GeneralPath objects and

Edge objects are required; consider trim() and the need to have a segmented boundary when
creating the Voronoi cells. Calculating these intersections poses a problem when the
GeneralPath contains non-linear elements and as a consequence the boundaries currently used
in the calculations are line approximations of the actual GeneralPath objects. Accuracy can
be improved by creating the ability to calculate intersections between quadratic or cubic
GeneralPath segments and line objects.

5.2 Building the Voronoi cell
A problem currently under consideration
concerns the development of a robust way in
which to identify, assemble and combine the
different geometrical elements defining the
Voronoi cell. The difficulties encountered during
the development of the buildCells() method stem
from, amongst others, the possibility of more
than one area contributing to a single Voronoi
cell object. The situation is illustrated in Figure
7. The problem primarily consists of
distinguishing between the segments of the
boundary, whether an inner or outer boundary,
that should be identified as belonging to the set
of elements comprising the cell, and those that
should not.

Figure 7: Building the Voronoi cell

6 OUTSTANDING FUNCTIONALITY

6.1 Building definition
The functionality as it exists at present solves a two-dimensional problem and needs to be

extended to allow for the definition of the building in three dimensions. It is only when this
extension has been carried out that the vertical accumulation of the forces can be calculated –
a task that can be dealt with as a flow problem in the column network.

 10

6.2 The effect of walls
Walls are currently modeled using a number of linearly placed columns. The error caused

by this simplification as well as its variation with the amount of columns chosen to represent
the wall, is a topic for future investigation.

6.3 Horizontal loading
Horizontal forces, imposed on a structure through the workings of earthquakes and wind,

are currently not taken into consideration. The possibility of accounting for these forces in
the software creates a future study topic.

REFERENCES
[1] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational Geometry

- Algorithms and Applications, Springer, Berlin Heidelberg, 1997.

[2] www.cademia.de: CADEMIA – das Open Source CAD System.

