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Abstract. In this paper two enhancements of the classical Moving Least Squares approach
will be presented. The first one is an interpolating weighting function, which leads to MLS
shape functions fulfilling the interpolation condition exactly. This enables a direct application
of essential boundary conditions without additional numerical effort. In contrast to existing
approaches using singular weighting functions, this new weighting type leads to regular values
of the weights and coefficients matrices in the whole domain even at the support points.

The second approach is the adaptation of the nodal influence domains according to the nodal
configuration. For this purpose the influence radius is interpolated depending on the direction
from the distances to the natural neighbor nodes. This leads to a more uniform and reduced
number of influencing nodes for systems with grading node density than with the classical cir-
cular influence domains. Furthermore the numerical effort of the analysis will be reduced
significantly.
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1 INTRODUCTION

The Element-free Galerkin Method [1] has become a very popular tool for the simulation of
mechanical problems with moving boundaries. The internally applied Moving Least Squares
approximation [2] uses in general Gaussian or cubic weighting functions and has compact sup-
port. Due to the approximative character of this method the obtained shape functions do not
fulfill the interpolation condition, which causes additional numerical effort for the imposition
of the essential boundary conditions. The application of a singular weighting function, which
leads to singular coefficient matrices at the nodes, can solve this problem, but requires a very
careful placement of the integration points. In [3] and [4] special procedures for the handling
of such singular matrices were proposed, which require additional numerical effort. In this
paper a non-singular weighting function is presented, which leads to an exact fulfillment of
the interpolation condition. This weighting function leads to regular values of the weights and
the coefficient matrices in the whole interpolation domain even at the nodes. Furthermore this
function gives much more stable results for varying size of the influence radius and for strongly
distorted nodal arrangements than classical weighting function types.

Finally a new concept will be presented, which enables an efficient analysis of systems with
strongly varying node density. In this concept the nodal influence domains are adapted de-
pending on the nodal configuration by interpolating the influence radius for each direction from
the distances to the natural neighbor nodes. This approach requires a Voronoi diagram of the
domain, which is available in this study since Delaunay triangles are used as integration back-
ground cells. In the numerical examples it will be shown, that this enhanced method leads to
similar results as the classical approach, but will reduce the numerical effort significantly.

2 MOVING LEAST SQUARES APPROACH (MLS)

An arbitrary function u is interpolated at a point x by a polynomial as

uh(x) =
[
1 x y x2 xy y2 ...

]  a1

:
an

 = pT (x)a (1)

where p(x) is the base vector and a contains the coefficients of the polynomial. These coef-
ficients are constant in the interpolation domain and can be determined directly if the number
of supporting points m used for the interpolation is equivalent to the number of coefficients
n. This principle is applied for example in the Finite Element Method, where an element-wise
interpolation is realized. There the coefficients are simply given as

a = PT−1

ũ (2)

where ũ contains the function values at the supporting points

ũ =
[

ũ1 ... ũm

]T (3)

and P consists of the values of the polynomial basis calculated at the supporting points

P =


P1(x1) P1(x2) . . . P1(xm)
P2(x1) P2(x2) . . . P2(xm)

...
... . . . ...

Pn(x1) Pn(x2) . . . Pn(xm)

 . (4)
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Within the “Moving Least Squares” (MLS) approximation method [2] the number of sup-
porting points m exceeds the number of coefficients n, which leads to an overdetermined system
of equations. This kind of optimization problem can be solved by using a least squares approach

Pũ = PPTa(x) (5)

with changing (“moving”) coefficients a(x). In order to obtain a compact support and a local
character of the MLS-approach a distance depending weighting function w = w(s) was intro-
duced, where s is the normalized distance between the interpolation point and the considered
supporting point

si =
‖x− xi‖

D
(6)

and D is the influence radius, which is defined as a numerical parameter. All types of functions
can be used as weighting function w(s) which have their maximum in s = 0 and vanish outside
of the influence domain specified by s = 1. The nodes whose weighting function values do not
vanish at the interpolation point are the influencing nodes of the interpolation point.

Using the introduced weighting function, Eq. (5) is expanded to

B(x)ũ = A(x)a(x), (7)

where A(x) and B(x) are given as

A(x) = PW(x)PT ,

B(x) = PW(x),
(8)

and the diagonal matrix W(x) can be determined as

W(x) =


w(x− x1) 0 . . . 0

0 w(x− x2) . . . 0
...

... . . . ...
0 0 . . . w(x− xm)

 . (9)

The interpolated value of the function u at x can be obtained by introducing the MLS shape
functions

uh(x) = ΦΦΦMLS(x)ũ, ΦΦΦMLS(x) = pT (x)A(x)−1B(x). (10)

Similar to Eq. (2) the invertibility of the matrix A(x) has to be assured, which is not automat-
ically given if the interpolation point is in the influence domain of at least n nodes. This is
fulfilled for a linear or quadratic polynomial basis in 2D if these nodes span two or three linear
independent vectors, respectively, as derived in [5].

In contrast to the Finite Element Method the MLS approximation does not pass through the
nodal values caused by the applied least squares approach. This implies that the interpolation
condition is not fulfilled,

ΦMLS
i (xj) 6= δij. (11)

3



3 WEIGHTING FUNCTIONS

A large number of different weighting functions for the Moving Least Squares approach can be
found in the literature. In this section one of the most common weighting type, the Gaussian
weighting function, is shortly discussed. This weighting function is of exponential type and is
given e.g. in [5] as

wG(s) =


e−

s2

α2 − e−
1

α2

1− e−
1

α2

s ≤ 1

0 s > 1

. (12)

In Fig. 1 the Gaussian weighting function is displayed for the one-dimensional case. Due to
the applied least square approach explained in the previous section, the obtained nodal shape
functions have a strong dependence on the size of the influence radius D. In Fig. 2 a single
nodal shape function of the middle node of a regular one-dimensional set of nodes is shown for
increasing D. The figure indicates that with increasing influence radius, the shape function error
at each support point, caused by the approximative character of the MLS approach, increases
dramatically. This problem is even more significant for irregular nodal setups. As a result the
application of geometrical boundary conditions is difficult and additional numerical effort is
necessary to fulfill these conditions.

Because of the presented problems using classical weighting function types, in [6] the au-
thors presented a regularized weighting function which enables the fulfillment of the MLS in-
terpolation condition with very high accuracy without additional numerical effort

ΦMLS
i (xj) ≈ δij. (13)

The weighting function value of a node i at an interpolation point x was introduced as follows

wR(s) =
w̃R(s)

m∑
j=1

w̃R(sj)

(14)

with

w̃R(s) =
(sγ + ε)−2 − (1 + ε)−2

ε−2 − (1 + ε)−2
; ε � 1. (15)

 0

 1

101

w
(s

)

s= ||x-xi||/D

Gaussian
Regularized

Interpolating
nodes

Figure 1: Gaussian, regularized and new interpolating weighting functions for a single node with neighbor nodes
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Figure 2: Nodal shape function of the MLS interpolation with Gaussian, regularized and interpolating weighting
function and linear polynomial basis for regular and irregular sets of nodes
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In [6] it is recommended to choose the regularization parameter ε as

ε = 10−5 (16)

and the exponent in Eq. (15) is taken as γ = 2. In Fig. 1 the regularized weighting function
is displayed additionally as a function of the standardized distance s and the position of the
supporting points. In Fig. 2 a single nodal shape function obtained by using the regularized
weighting function type is shown for different values of the influence radius D. The figure
clearly points out that the interpolation condition is fulfilled with very high accuracy even for
irregular sets of nodes with grading node density. In clear contrast to the shape functions ob-
tained with the Gaussian weighting function the influence radius D influences the regularized
shape function characteristics marginally if a certain value of D is reached.

In this paper the regularized weighting type is enhanced in order to obtain a true interpolation
MLS approach. Based on the following formulation

wI(s) =
s−α − 1

m∑
j=1

(s−α
j − 1)

, (17)

which can not be evaluated numerically at the support points, the following final weighting
function is formulated

wI(s) =
sα

i (s−α − 1)

sα
i

m∑
j=1

(s−α
j − 1)

, (18)

where si denotes the distance to the closest support point. Eq. (18) can be simplified as

wI(si) =
1− sα

i

1 + sα
i

m∑
j=1,j 6=i

s−α
j + sα

i m

; wI(si6=j) =
sα

i (s−α
j − 1)

1 + sα
i

m∑
j=1,j 6=i

s−α
j + sα

i m

. (19)

If no pair of support points with equal positions exists, the weighting function in Eq. (19)
provides always regular numerical values even at all support points, where we obtain

wI(si = 0) = 1; wI(si6=j) = 0. (20)

In this paper the exponent is chosen as α = 4. In Fig. 1 and Fig. 2 the shape functions using
this interpolating weighting type are displayed, which show no visible deviation to the shape
functions using the almost interpolating regularized weighting type. In the first example the
differences in the numerical results between both weighting types are investigated.
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4 NODAL INFLUENCE DOMAINS

4.1 Circular influence domains

x

a)

x

b)

Figure 3: Neighbor search a) from the nodal positions with varying D and b) from the interpolation point with
unique D

1 2 43

5 6 7 8

9 11 1210 9 11 1210

5 86 7

1 2 43

a) adjacent nodes b) neighbor nodes

Figure 4: Influence domain with β = 1.01 using the maximum distance a) to the adjacent nodes and b) to the
natural neighbor nodes

The distance depending weighting function type leads to circular and spherical influence
domains in two and three dimensions, respectively. Alternatively to this type, rectangular or
other shaped influence domains have been applied [7], but the distance depending type is more
general and mostly realized in efficient implementations. If the influence radius D is assumed to
be equal for all nodes, the influencing nodes can be determined directly from the interpolation
point, which is shown in Fig. 3b. For a varying D the neighbor search has to be performed
from the nodes as shown in Fig. 3a. For domains with grading node density the influence radius
of each node DI is assumed generally in that way, that a given number of the other nodes is
covered by the influence domain. This may lead to some problems in the corners of a domain,
which will be shown in the final numerical example. In [8] an improved concept is proposed,
whereby the influence radius is chosen to be

DI = β · rImax , β > 1, (21)
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with
rImax = max‖xi − xI‖, i ∈ JA

I , (22)

where JA
I represents the set of adjacent nodes. The adjacent nodes are these nodes, which span

a triangular integration cell with the node I . In Fig. 4a the resulting influence domains of some
regular distributed nodes are shown.

In this work triangular integration cells are used similarly to [8], which are computed here
using a constrained Delaunay triangulation [9]. For cases where the Delaunay triangulation is
not unique, e.g. for regular nodal configurations as shown in Fig. 4, the maximum distance of
the adjacent nodes is not unique as well and leads to non-uniform influence radii for uniform
nodal positions. This lack is fixed in this work by taken the set of natural neighbor nodes JN

I

instead of the adjacent nodes JA
I for the determination of the maximum distance. Neighbor

nodes of I are these nodes, which share a common edge with I in the Voronoi diagram [10].
The natural neighbor nodes can be simply obtained by the determination of these Delaunay
triangles, which have the node I on their circumcircle. All nodes which span these triangles are
the natural neighbor nodes of I . The obtained nodal influence domains are always unique since
the Voronoi diagram is unique. In Fig. 4b it is shown, that the influence domains have the same
size for a regular set of nodes.

4.2 Adapted influence domains using interpolated neighbor node distances

1

2

p1
I

rj
I

p2
I

ϕ2j
I

ϕ1j
I

Interpolation
point

I

‖pj
I‖

Figure 5: Interpolation of the nodal distances

For problems with strongly varying node density, the above explained circular influence do-
mains may lead to a large number of influencing nodes in the part of the structure with the larger
density, since the influence radius is unique in all directions. This results in a larger numerical
effort for the affected integration points, since the MLS operations are more time consuming
with increasing number of influencing nodes. In this paper a new concept is presented, where
the influence radius of each node is formulated depending on the direction,

DI

(
rj

I

‖rj
I‖

)
= β · ‖pj

I‖, β > 1, (23)
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a) Irregular nodal configuration

neighbors
w(ϕij)

w(cosϕij)

b) Regular nodal configuration

neighbors
w(ϕij)

w(cosϕij)

c) Corner of regular configuration

neighbors
w(ϕij)

w(cosϕij)

Figure 6: Adapted nodal influence domains using interpolated neighbor node distances

where ‖pj
I‖ is the actual radius obtained by interpolating the distances of all natural neighbor

nodes JN
I to the actual node I . This is realized here by an interpolation scheme using weighted

radii, which was proposed in [11] for response surface applications and is based on the Shepard
interpolation [12]. By applying this approach the actual radius reads

‖pj
I‖ =

∑
i ‖pi

I‖w
ij
I∑

i w
ij
I

, i ∈ JN
I , (24)

where is ‖pi
I‖ is the distance of the neighbor node i to the actual investigated node I . The

weighting function values wij
I have been introduced in [11] as

wij
I =

[
ϕij

I + ε
]−2

, 0 ≤ ϕij
I ≤ π, (25)

where ϕij
I is the enclosed angle between the vectors from the node I to the interpolation point

and to the neighbor node i (Fig. 5) and ε is again a regularization parameter, which is taken here
as ε = 10−5. In Fig. 6 the resulting influence domains are shown for irregular and regular nodal
configurations. The enclosed angle ϕij

I is obtained in [11] from

cosϕij
I =

piT
I rj

I

‖pi
I‖‖r

j
I‖

. (26)

In this paper a slightly modified weighting function is used

wij
I =

[
1− cos ϕij

I + ε
]−1

, (27)

which leads to similar influence domains as the function in Eq. (25), but requires less operations
especially for the computation of the derivatives of the nodal shape functions. Fig. 6 shows
additionally the influence domains using Eq. (27). Both formulations in Eq. (25) and Eq. (27)
lead to a at least C2 continuous function for DI .

If the scaling factor in Eq. (23) is chosen as β = 1 the number of influencing nodes for each
interpolation point is at least three, which are the three nodes spanning the Delaunay triangle
containing the interpolation point, except at the nodes, where only the node itself has a nonzero
shape function value. This is similar as in the Natural Neighbor Interpolation [13]. For the
application in the MLS approach it is necessary to choose β > 1 in order to obtain smooth
nodal shape functions.

9



5 NUMERICAL EXAMPLES

5.1 MLS-shape functions for regular and irregular sets of nodes

Within this example the interpolation errors are calculated for a regular and an irregular set
of 5 × 5 nodes with a distance of a = 0.25m by using the Gaussian, the regularized and the
interpolating weighting functions. In Fig. 7 both investigated nodal sets are displayed.

A

a

a

a

a

A

Bd

Figure 7: Investigated regular and irregular sets of nodes

First the interpolation error at the supporting points for the shape function of node A is ana-
lyzed for a varying influence radius D using the regular nodal set. The regularization term for
the regularized weighting function is assumed to be ε = 10−5 and the Gaussian shape parameter
is taken with α = 0.3295. In Table 1 the obtained maximum error is given for all investigated

D
∣∣ΦMLS

i,G (xj)− δij

∣∣
max

∣∣ΦMLS
i,R (xj)− δij

∣∣
max

∣∣ΦMLS
i,I (xj)− δij

∣∣
max

0.3 m 0.6 % 4.29 · 10−8 % 0
0.4 m 10.1 % 2.48 · 10−7 % 0
0.5 m 30.5 % 7.20 · 10−7 % 0
0.6 m 49.5 % 1.65 · 10−6 % 0
1.0 m 81.5 % 1.42 · 10−5 % 0

Table 1: Maximum interpolation error at the nodes as a function of the influence radius using Gaussian (G),
regularized (R) and interpolating (I) weighting types

weighting types. It can be seen, that with increasing influence radius the error using the Gaus-
sian weighting function increases but the error from the regularized type remains very small.
Furthermore the interpolating weighting type leads to exact fulfillment of the interpolation con-
dition.

The influence of the minimum nodal distance on the interpolation accuracy is investigated on
the irregular set of nodes shown in Fig. 7 by decreasing the distance between node A and B. The
influence radius is kept constant with D = 0.5m. In Table 2 the obtained interpolation errors are
shown. The table clearly indicates that the interpolation error by using the regularized weighting
function is very small for larger values of dAB/D and increases for decreasing minimum nodal
distance. The application of the interpolating weighting function leads again to an exactly
fulfilled interpolation condition.
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dAB/D
∣∣ΦMLS

i,G (xj)− δij

∣∣
max

∣∣ΦMLS
i,R (xj)− δij

∣∣
max

∣∣ΦMLS
i,I (xj)− δij

∣∣
max

0.4 36.8 % 9.61 · 10−7 % 0
0.2 47.7 % 2.57 · 10−6 % 0
0.1 55.2 % 1.02 · 10−5 % 0

0.01 59.0 % 1.05 · 10−3 % 0
0.001 59.0 % 1.05 · 10−1 % 0

Table 2: Maximum numerical error as a function of the minimum nodal distance

5.2 Patch test with irregular nodal distribution

The representation of a linear displacement field depending on the integration density is
analyzed in this example. For this investigation a system according to [14] is chosen, which
is shown with load and boundary conditions in Fig. 8. The thickness of the panel is taken as
d = 1m and the material properties are assumed to be E = 105N/m2 for the Young’s modulus
and ν = 0.2 for the Poisson’s ratio. The application of the boundary tractions on the left side is

20m

1
0
m

p = 1N/m2p = 1N/m2

Figure 8: Patch test system with loading and boundary conditions

necessary due to the only point-wise fulfillment of the essential boundary conditions.
In Fig. 9 the obtained maximum displacement error at the nodes is shown depending on the

number of equally weighted integration points per triangular background cell. The calculations
are carried out with a linear basis and by choosing D = 15m. The figure clearly indicates,
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Figure 9: Maximum nodal displacement error for the patch test depending on the number of integration points

that the integration error decreases with increasing integration order for all three weighting
types. The results using the regularized and the interpolating weighting function show no visible
difference.
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5.3 Infinite plate with a hole

L

r

L

x
θ

y

a

σ0

A

B

Figure 10: Infinite plate with a hole and investigated meshless discretization with 65 nodes

In this example an infinite plate with a hole is investigated under tension loading. The bench-
mark example was proposed by [15]. It has been chosen here to investigate the differences
between the presented nodal influence domains. In Fig. 10 the system with loading and bound-
ary conditions is shown. Due to the symmetry of the plate, in the numerical analysis only one
quarter is discretized. In order to approximate an infinite plate the ratio between the hole radius
a and the half plate length L is taken very small as a/L = 0.01. The analytical displacement
solution is given in [15] as

ux(r, θ) =
a

8G

(
r

a
(κ + 1) cos(θ) + 2

a

r
[(1 + κ) cos(θ) + cos(3θ)]− 2

a3

r3 cos(3θ)

)
,

uy(r, θ) =
a

8G

(
r

a
(κ− 3) sin(θ) + 2

a

r
[(1− κ) sin(θ) + sin(3θ)]− 2

a3

r3 sin(3θ)

)
,

(28)

where G is the shear modulus and κ indicates the Kolosov constant. For plane stress conditions
κ = (3− ν)/(1 + ν).

The numerical analyses have been performed by investigating three different discretization
levels with 65, 341 and 2133 nodes. Fig. 10 shows the discretization with 65 nodes. The figure
indicates, that the node density increases with decreasing distance to the hole. This is similar for
all three discretizations. The following discretization schemes are used for the investigations:

• Three-node (CST), four-node (Q4) and nine-node (Q9) iso-parametric finite elements
with linear, bilinear and quadratic shape functions

• MLS approach with circular nodal influence domains (CD) and a given number of influ-
encing nodes (IN) for each node

• MLS approach with circular nodal influence domains using the scaled maximum distance
to the natural neighbor nodes (NN)

• MLS approach with adapted nodal influence domains (AD) using scaled interpolated
nodal distances
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The number of influencing nodes is chosen as: 9 nodes for the linear basis, 12 nodes for the
bilinear basis and 30 nodes for the quadratic basis. The scaling factor β is taken as β = 1.3 for
the linear basis, β = 1.5 for the bilinear basis and β = 2.5 for the quadratic basis.

In Fig. 11 the number of influencing nodes and the interpolated nodal influence radius at
the interpolation points is shown for the MLS approach with linear basis and the discretization
using 65 nodes. The figure clearly indicates, that the number of influencing nodes is nearly
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a) 9 influencing nodes b) Neighbor nodes, β = 1.3 c) Adapted domains, β = 1.3
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Figure 11: Number of influencing nodes and interpolated nodal influence radius by using a) a fixed number of
nodes in the influence domain of each node, b) using the maximum distance to the natural neighbor nodes and c)
using adapted nodal influence domains with interpolated radii

similar for case a) and case b), whereby for the first case a concentration close to the hole can
be seen, which is caused by the large influence radii of the corner nodes. By using the adapted
nodal influence domains, the number of influencing nodes is much smaller in the middle part
and almost uniform in the whole structure.

In Table 3 the influence of the different approaches on the computational effort is given for
the coarsest discretization. All meshless calculations have been carried out using the regular-
ized spline weighting function and 25 Gauss integration points per triangular integration cell.
The table shows, that the application of the adapted nodal influence domains, which leads to
a reduced number of influencing nodes for the most integration points, enables an remarkable
efficiency increase for the shape function and stiffness matrix computation and even for the so-
lution of the global system of equations. The additional numerical effort for the interpolation of
the nodal influence radius leads at the end to a large reduction of the total numerical costs. This
is much more significant for a nonlinear analyses, where the shape functions have to be com-
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Number of operations [106]

a) Weights b) Shapes c) Stiffness d) Solution Total

MLS-IN-CD Linear 9 nodes 40.41 12.17 43.07 0.99 96.64
MLS-IN-CD Bilinear 12 nodes 61.64 19.24 78.37 1.12 160.37
MLS-IN-CD Quadratic 30 nodes 324.51 82.23 569.55 1.26 977.55

MLS-NN-CD Linear β = 1.3 36.65 13.31 59.23 0.96 110.15
MLS-NN-CD Bilinear β = 1.5 58.07 21.77 122.16 1.13 203.13
MLS-NN-CD Quadratic β = 2.5 398.45 92.79 827.33 1.26 1319.83

MLS-NN-AD Linear β = 1.3 43.88 9.13 15.86 0.63 69.50
MLS-NN-AD Bilinear β = 1.5 55.16 13.45 24.67 0.87 94.15
MLS-NN-AD Quadratic β = 2.5 143.97 63.62 181.78 1.15 390.52

Table 3: Required computational effort for a) the neighbor search and the weighting function calculation, b) the
shape function computation, c) the stiffness matrix calculation and d) the solution of the global system of equations

puted only after each discretization update and the stiffness matrix calculation and the solution
of the global system have to be performed in every iteration step.

Finally the convergence and the accuracy of the different approaches are analyzed using the
averaged relative error of the uy displacement at point A and the ux displacement at point B

η =
1

2

∣∣∣∣∣ ũA
y − uA

y,exact

uA
y,exact

∣∣∣∣∣+ 1

2

∣∣∣∣∣ ũB
x − uB

x,exact

uB
x,exact

∣∣∣∣∣ . (29)

In Fig. 12 the error value η is shown for the FEM and MLS calculations depending on the
discretization level. The figure indicates, that in general all approaches lead to similar results.
Generally the MLS errors using the adapted nodal influence domains are slightly higher than
these using the circular domains, nevertheless the results are still better as these obtained with
the comparable finite elements.

6 CONCLUSIONS

In this paper two enhancements of the classical Moving Least Squares approach have been
presented. The first one is a non-singular interpolating weighting function, which leads to MLS
shape functions fulfilling the interpolation condition exactly. This enables a direct application
of essential boundary conditions without additional numerical effort. Furthermore this weight-
ing function leads to results, which are much more independent of a distortion of the nodal
configuration and the size of the influence domain as these obtained with classical weighting
types. Nevertheless, for practical applications the results are similar as these obtained with the
regularized weighting type presented by the authors in previous publications.

The second approach, which was presented in this paper, is the adaptation of the nodal in-
fluence domains according to the nodal configurations. For this purpose the influence radius is
interpolated depending on the direction from the distances to the natural neighbor nodes. This
leads to a more uniform and reduced number of influencing nodes for systems with varying
node density than the classical circular influence domains. It could be shown, that the small
additional numerical effort for interpolating the influence radius leads to remarkable reduction
of the total numerical cost in a linear analysis while obtaining similar results. For nonlinear
calculations this advantage would be even more significant.
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satzmöglichkeiten zur Berechnung von Stahlbetontragwerken. Habilitationthesis, Univer-
sity of Karlsruhe, Germany, 2001.

[6] T. Most and C. Bucher. A Moving Least Squares weighting function for the Element-free
Galerkin Method which almost fulfills essential boundary conditions. Structural Engi-
neering and Mechanics, 21(3):315–332, 2005.

[7] J. Dolbow and T. Belytschko. Numerical integration of the galerkin weak form in meshfree
methods. Computational Mechanics, 23:219–230, 1999.

[8] M. K. Alves and R. Rossi. A modified element-free Galerkin method with essential bound-
ary conditions enforced by an extended partition of unity finite element weight function.
International Journal for Numerical Methods In Engineering, 57:1523–1552, 2003.

[9] S. H. Lo. Delaunay triangulation of non-convex planar domains. International Journal
for Numerical Methods in Engineering, 28:2695–2707, 1989.

[10] P. J. Green and R. R. Sibson. Computing dirichlet tessellations in the plane. The Computer
Journal, 21:168–173, 1978.

[11] D. Roos. Approximation und Interpolation von Grenzzustandsfunktionen zur Sicher-
heitsbewertung nichtlinearer Finite-Elemente-Strukturen. PhD thesis, Bauhaus-University
Weimar, Germany, 2002.

[12] D. Shepard. A two-dimensional interpolation function for irregular spaced data. In Proc.
23rd Nat. Conf. ACM, pages 517–24. 1968.

[13] R. Sibson. A vector identity for the dirichlet tesselation. In Mathematical Proceedings of
the Cambridge Philosophical Society 87, pages 151–155, 1980.

15



[14] J. F. Unger. Development of an efficient algorithm for the application of the Natural
Neighbor Interpolation for crack growth simulations. Diploma thesis, Bauhaus-University
Weimar, Germany, 2003.

[15] S. P. Timoshenko and J. N. Goodier. Theory of Elasticity (Third ed.). McGraw Hill, New
York, 1970.

16



1e-03

1e-02

1e-01

1e+00

65 341 2133

R
el

at
iv

e 
di

sp
la

ce
m

en
t e

rr
or

 [-
]

Number of nodes

Linear basis

FEM-CST
MLS-IN-CD

MLS-NN-CD
MLS-NN-AD

1e-03

1e-02

1e-01

65 341 2133

R
el

at
iv

e 
di

sp
la

ce
m

en
t e

rr
or

 [-
]

Number of nodes

Bilinear basis

FEM-Q4
MLS-IN-CD

MLS-NN-CD
MLS-NN-AD

1e-04

1e-03

1e-02

1e-01

65 341 2133

R
el

at
iv

e 
di

sp
la

ce
m

en
t e

rr
or

 [-
]

Number of nodes

Quadratic basis

FEM-Q9
MLS-IN-CD

MLS-NN-CD
MLS-NN-AD

Figure 12: Relative displacement error η depending on the discretization level for the infinite plate with a hole
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