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Abstract. In this paper proposed the application of two-parameters damage model, based on 
non-linear finite element approach, to the analysis of masonry panels. Masonry is treated as a 
homogenized material, for which the material characteristics can be defined by using 
homogenization technique. The masonry panels subjected to shear loading are studied by 
using the proposed procedure within the framework of three-dimensional analyses. Finally, 
the model is validated with a comparison with experimental results available in the literature.  
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1 INTRODUCTION 

In recent years growing attention has been paid by researches in structural mechanics to 
masonry structures with the intent to provide theoretical and numerical tools for better 
understanding the complex mechanical behaviour of such structures. The complex mechanical 
behaviour of masonry structures depends strongly on the composite nature of masonry 
material. Masonry is constituted by blocks of natural or artificial material jointed by dry or 
mortar joints; the latter are the weakness – areas of such a composite material and notably 
affect the overall response of the assembly with a number of kinematical modes at joints such 
as sliding, opening – closing and dilatancy. The predictive modeling of the masonry structures 
behaviour, particularly in the non-linear range, represents a challenge due to their discrete and 
composite nature. An adequate computational model should include the fundamental  
mechanisms that characterize the masonry behaviour at failure, i.e: 

• sliding along a bed or head joint at low values of normal stresses, 
• cracking of the masonry units in direct tension, 
• diagonal tensile cracking of masonry units at values of normal stress sufficient to 

develop frictional behaviour in the joints and 
• splitting of units in tension as a result of mortar dilatancy at high values of normal 

stresses. 
The damage theory model revealed to be a good choice to exploit in this area of structural 

mechanics due to especially to its efficiency. The main problems of this model are the 
definition of the damage evolution curve and the introduction in the model of the ortothropy. 
Mechanical properties of the masonry can be obtained from the behaviour of its constitutive 
materials (brick and mortar) through a homogenization technique. The mechanical parameters 
can also be calibrated using a micro-modeling approach. 

This paper presents the application of a two-parameters, isotropic, damage model, based on 
the finite elements method, to simulate the ultimate response. 

2 THE CONCEPTION OF DAMAGE MODEL 

The nonlinear behaviour of masonry can be modelled using concepts of damage theory. In 
this case an adequate damage function is defined for taking into account different response of 
masonry under tension and compression states. Cracking can, therefore, be interpreted as a 
local damage effect, defined by the evolution of known material parameters and by one or 
several functions which control  the onset and evolution of damage. The model takes into 
account all the important aspects which should be considered in the nonlinear analysis of 
masonry structures such as the effect of stiffness degradation due to mechanical effects and 
the problem of objectivity of the results with respect to the finite element mesh. 

A useful concept for understanding the effect of damage is that of effective stress. The 
damaged  and effective undamaged σ  stress tensors are correlated, according to continuum 
damage mechanics, by the relation: 

dσ

 σ)(Dε)(σ d1d1d −=−=  (1) 

where d is a scalar value, ranging from 0 to 1 and representing the local damage parameter, D 
is the elastic stiffness matrix and ε is the strain tensor. 

The damage function ),( rg τ defines the limit of the region of undamaged response and is 
written at time t as: 
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where the undamaged complementary energy norm is defined as: 

 ( ) ( )( )t0t 2 σΛγ=τ  (3) 

where ( )σΛ0  is the elastic complementary energy 
For Simo’s damage model 1=γ .  

( )tr  in the damage function (2) is the current damage strength measured with an energy norm 
and can be given as: 

 ( ) ( ) ( ){ }t0t rmaxr τ= ,  (4) 

where ( )  denotes the initial damage threshold of the material. 0r

The initial damage threshold , can be considered to carry out a similar function to the 
initial yield stress in an analysis involving an elasto-plastic material. However, in a damage 
analysis, the value of the damage threshold influences the degradation of the elastic modulus 
matrix. A value for  may be obtained from: 
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where  is the uniaxial tensile stress at which damage commences and Et
dσ 0 is the undamaged 

Young’s modulus. The damage criterion is enforced by computing the elastic complementary 
energy function as damage progresses: 
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The damage flow rule defines the damage softening and is given by 
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where is the damage consistency parameter and defines damage loading/unloading 
conditions according to the Kuhn-Tucker relations 

0≥µ&

 ( ) ( ) 0rg0rg0 =τµ≤τ≥µ ,,,, &&  (8) 

In addition, to simplify the calculations in damage analysis, the damage multiplier µ& is 
defined so that 

 r&& =µ  (9) 

From the consistency of the damage condition in (2) it is given that  

 µ==τ &&& r  (10) 

According to (10), the definition (3) we have  
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( tG τ∂∂ / )  defines the damage rate with respect to the undamaged elastic complementary 
norm. If the damage potential function G is assumed to be independent of d, substitution  of 
(10) into (7) will lead to: 

 G=d  (12) 

with the undamaged condition being enforced so that 
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Damage accumulation functions is given by: 
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For no damage, G(r)t = 0. The characteristic material parameters, A and B, would generally 
be obtained from experimental data. 

3 NUMERICAL ANALYSIS 

The damage model described in the present paper has been implemented in numerical 
analysis of masonry panel subjected to shear loading (schematically reported in Fig.1). The 
applied load in the numerical simulation consisted in incremental shear loading. The masonry 
panel is characterized by the following geometrical parameters: 

H = 96 cm , L = 104 cm , W = 12 cm. 

 
Figure 1 Finite element mesh and load condition for analysed masonry panel 
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The values of the mechanical parameters used in the numerical analysis to describe the 
masonry behaviour are summarized in Table 1, 2. Meshes obtained adopting 8-node solid 
elements are considered for the computations. 

The comparison between numerical and experimental (taken from technical literature) 
load- – displacement diagrams is shown in Figure 2. The numerical analysis reproduces 
satisfactorily the experimental behaviour. The trend of the experimental diagrams shows that 
masonry panel should not completely collapsed at the end of the experiment.  
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Figure 2 Load- displacement diagram for the masonry panel 

 

Undamaged elastic modulus E = 2500 MPa 
Shear modulus Gxy =900 MPa 
Poisson’s ratio νxy = 0,10 

Table 1 Elastic material properties of masonry 

 

Uniaxial elastic limit in compression fc0 = 1,80 MPa 

Uniaxial initial compressive strength fc = 3,00 MPa 

Uniaxial initial tensile strength ft = 0,2 MPa 

Shear strength fτ = 0,4 Mpa 

Fracture Energy Gf = 0,4 N/mm 

A parameter Ac = 0,3 

B parameter Bc = 1,0 
Table 2 Material properties of masonry used in the damage model 
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An incremental solution strategy has been proposed, based on a formulation in terms of 
displacements, stresses, damage and load parameters, and on a path-following iterative 
scheme which solves, in the incremental step, all the equations of the problem. It allowed a 
reliable recovery of the whole wall behaviour, even in the presence of strongly unstable 
damage growth. 

The damage contour for principal stress is shown in Figure 3. The failure mechanism is 
characterized by the formation, growth and propagation of inclined damage bands, as it 
typically occurs in structures subjected to horizontal forces. It can be noted that the 
mechanical response of wall subjected to shear loading is characterized by: 

• an initial elastic response; 

• a first steep softening branch due to the damage propagation concentrated where the 
maximum tensile strains occur; 

• a hardening phase during which the plastic evolution process becomes more significant 
than the damage one; 

• a softening branch due to the formation and growth of the damage band. 

 
Figure 3 Damage contours for principal stress (for different factor of shear loading: a) Load Factor = 2; 

b) Load Factor = 3,08; c) Load factor = 4,02; d) Load Factor = 5,06) 

4 CONCLUSIONS  

Proposed damage model, able to represent the behaviour of  homogenizated masonry 
structures, has been formulated and applied to the analysis of masonry shear panels. The 
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comparison with experimental results have confirmed its capability of well reproducing, 
qualitatively and quantitatively, the complex behaviour of the masonry structures.  

One of the advantages of a such a model is the independence of the analysis with respect to 
cracking directions which can be simply identified a posteriori once the non-linear solution is 
obtained. This allows to overcome the problems associated with most elastic-plastic-brittle 
smeared cracking models. Moreover  valuable features of this model are: 

• the relatively few number of the required material parameters; 

• its easy implementation into existing finite element codes. 
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