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Abstract. One of the simplest principle in the design of light-weight structures is to avoid 
bending. This can be achieved by dissolving girders into members acting purely in axial 
tension or compression. The employment of cables for the tensioned members leads to even 
lighter structures which are called cable-strut structures. They constitute a subclass of spatial 
structures. To give fast information about the general feasibility of an architectural concept 
employing cable-strut structures is a challenging task due to their sophisticated mechanical 
behavior. In this regard it is essential to control if the structure is stable and if pre-stress can 
be applied. This paper presents a tool using the spreadsheet software Microsoft (MS) Excel 
which can give such information. Therefore it is not necessary to purchase special software 
and the according time consuming training is much lower. The tool was developed on basis of 
the extended Maxwell’s rule, which besides topology also considers the geometry of the 
structure. For this the rank of the node equilibrium matrix is crucial. Significance and 
determination of the rank and the implementation of the corresponding algorithms in MS 
Excel are described in the following. The presented tool is able to support the structural 
designer in an early stage of the project in finding a feasible architectural concept for cable-
strut structures. As examples for the application of the software tool two special cable-strut 
structures, so called tensegrity structures, were examined for their mechanical behavior. 
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1 THEORETICAL BASIS 

1.1 Maxwell’s rule 
The geometry and topology design concept of spatial structures comprises fundamental 

information about the load bearing behavior. The questions if the structure is stable and if pre-
stress can be applied can be answered based on the extension of the well known Maxwell’s 
rule. The number of bars, which are at least necessary to stabilize a space frame with 
frictionless joints, can be determined by Maxwell’s rule.  

The rule for the construction of rigid two-dimensional frameworks with b bars and j 
frictionless joints is: 

b = 2 j – 3 

and: 

b = 3 j – 6 

for rigid three-dimensional frameworks. 

Maxwell himself assumed exceptions of his rule. He anticipated that stiff structures may be 
possible with a smaller number of bars and also cases occur, where the structure is free to 
move even if his rule is satisfied [1]. 

1.2 The extended Maxwell’s rule 
In the seventies of the 20th century Calladine [2] went back to the exceptions of Maxwell’s 

rule. The result from his study is the extended version of Maxwell’s rule, which includes all 
possible cases: 

3 j – b – c = m – s 

Therein c is the number of kinematic constraints (c  6 in three dimensions), m the 
number of internal mechanisms and s the number of self-stress states. 

The two dimensional example in Figure 1 illustrates the advancement of the rule. The 
structure has six joints, three cinematic constraints and nine bars, so Maxwell’s rule is exactly 
fulfilled. Despite this fact the structure is obviously not stable and includes one mechanism m 
and one self-stress state s. The self-stress state can not stabilize the whole structure. 
Configurations like this can be checked with the presented tool as described in the following. 

Figure 1 Two dimensional structure which satisfies Maxwell’s rule but includes a mechanism 
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2 ALGORITHMS 

2.1 Determination of m and s 
The key value for the calculation of m and s is the rank of the equilibrium matrix of the 

nodes. The largest number of linear independent column vectors and the largest number of 
linear independent row vectors are always equal. This number rA is called rank of the matrix. 
The equilibrium matrix A is a (m x n) matrix, where m is the number of joints (j * 3) and n is 
the number of unknown element forces. The Matrix A contains the direction cosines, in the x, 
y, z directions, of each element. One feasible method to determine the rank of a matrix is the 
singular value decomposition (SVD). For this the number of non-zero singular values of a 
matrix is identical with the rank of this matrix. Detailed information on this operation and on 
its application to the equilibrium matrix is given in [3]. 

After the rank determination, m and s can be calculated with the following formulas: 

s = b – rA 

m = 3 j – c – rA 

The values of m and s depend not only on the number of bars and joints, nor even on the 
topology of the structure, but essentially on the complete geometry [4]. 

2.2 Implementing in MS Excel 
The Excel add-in was developed using visual basic for applications (VBA) as 

programming language. The add-in can be employed to calculate the above described values 
m and s for general plane and spatial structures. An Excel worksheet works as user interface. 
The required input data are the node coordinates, the kinematic constraints and the topology 
of the connections. Using a virtual reality modeling language (VRML) plug in, it is possible 
to visualize the input data of the structure in any internet browser. The VBA algorithm 
generates the node equilibrium matrix based on the input data. Subsequently the SVD of this 
matrix is carried out and the number of non-zero singular values can be achieved. One has to 
note that none of this values is actually equal to zero, but some are much smaller than others. 
Pellegrino [3] recommends to treat values as zero if they are smaller than 10-3 after being 
multiplied with the largest singular value. This procedure is valid for the most structural 
assemblies and therefore basis for the rank determination in the VBA algorithm. The output 
of the values m and s will be presented in an worksheet. 

2.3 Relevance of m and s 
A summary of the information about the fundamental mechanical properties of spatial 

structures, that can be derived from the values m and s, is given in Table 1. 
 
Table 1 Information about the fundamental mechanical properties on basis of m and s 
1 m = 0 

s = 0 
The structure is stable and can not be pre-stressed.  

 useable 
2 m > 0 

s = 0 
The structure is not stable and can not be pre-stressed.  

 unusable 
3 m = 0 

s > 0 
The structure is stable and can be pre-stressed.  

 useable 
4 m > 0 

s > 0 
The structure has mechanisms and can be pre-stressed.  

 conditionally useable (further investigation necessary) 
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Structures which belong to the fourth row of table 1 are considered as kinematically 
indeterminate (m > 0) and statically indeterminate (s > 0). In this case further investigations of 
the vector of the element pre-stress forces (t0) are necessary. 

2.4 Check of t0 
For classical buildings, structures with internal mechanisms are not desirable. Within a few 

special constructions, for instance cable nets or tensegrity structures, these mechanisms are 
accepted and part of the concept. Condition for the load bearing capacity of such structures is, 
that the pre-stress stabilizes all mechanisms. This can be clarified with the investigation of t0. 
The vector t0 is filled with the element forces for the loading case pre-stress and must be a 
solution of the following homogeneous equation system. 

A t0 = 0 

It has to be examined whether element forces in t0 are equal to or approximately zero. If 
this is not the case, the available mechanisms can be stabilised by pre-stress. 

The two dimensional example in Figure 1 includes one mechanism and one state of self 
stress. But the self-stress state can not stabilize the whole structure, which is therefore not 
stable and unusable. To make this visible in Figure 2 the normalised pre-stress forces 
(contained in t0) are assigned to the elements, the diagonal elements are the bars. 

 

When using cables, because of their unilateral rigidity, it must be checked additionally if 
the cables are tensioned and the bars are subjected to compression. 

2.5 Determination of t0 
As mentioned above, the SVD of the equilibrium matrix in the described Excel add-in is 

used for the rank determination. This decomposes the matrix A to: 

A = U W VT 

For a (m x n) matrix the m left singular vectors are returned in U and the n right singular 
vectors are returned in V. The matrix W is diagonal and contains the singular values of A.  

The right singular vectors are of special interest. All right singular vectors with a 
corresponding singular value equal to zero are self-stress states [4]. The self-stress state is 
identical with t0 only for the case s = 1. In the Excel tool, the self-stress state (s1) is plotted to 
a worksheet. 

To determine t0 in the case of s > 1 either an equation system or a system of inequalities, 
depending on the requested qualitative distribution of pre-stress, has to be solved. For 

Figure 2 Two dimensional structure with normalised element pre-stress forces. 
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instance, if for symmetrical structures the pres-tress forces shall be the same in certain 
elements, an equation system has to be used.  

But if within cable-strut structures all cables shall be tensioned and all bars shall be 
subjected to compression, a system of inequalities has to be solved to determine a feasible 
domain of coefficients α. 

The number of inequalities is equal to the number of elements n and the number of 
unknowns is equal to the number of states of self-stress s, as shown below.  

α11 s11 + α21 s21 + … αs1 ss1 ≤ 0 
α12 s12 + α22 s22 + … αs2 ss2 ≤ 0 

… 
α1b s1b + α2b s2b + … αsb ssb ≤ 0 

α1b+1 s1b+1 + α2b+1 s2b+1 + … αsb+1 ssb+1 ≥ 0 
… 

α1b+c s1b+c + α2b+c s2b+c + … αsb+c ssb+c ≥ 0 

Using the calculated coefficients α1 to αs the element pre-stress vector t0 can be determined 
with the following equation. 

t0 = α1 s1 + α2 s2 + … αs ss 

On the left side of Figure 3 there is an example for a two dimensional structure with s = 2. 
The diagonals are the bars, all other elements are cables. On the right side the feasible domain 
of α1 and α2 is shown. 

3 APPLICATION EXAMPLE 

As examples of use two spatial tensegrity structures are to be examined. Tensegrity 
structures are a subclass of cable-strut structures containing internal mechanisms, which can 

b - bars 

c - cables 

Figure 3 Two dimensional structure with s = 2 and feasible domain of α1 and α2 
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be stabilised by pre-stress. Richard Buckminster Fuller created the neologism from tens(ion) 
and (int)egrity 60 years ago.  

The two examples have similar shape but differ considerably in their mechanical behavior. 
This can be shown with the presented Excel tool. 

The basic module of the first example structure is a three-bar module with triangular base 
polygons. This is the most simple spatial tensegrity module. It consists of three bars and nine 
cables and is characterised by a twist-angle of 30° between upper and lower base polygons. 
The example comprises of three stages of three-bar modules. Here the modules are installed 
on top of each other in a way that the bars of the upper module are placed in the middle of the 
upper polygon cable of the lower unit. This creates regular hexagons in the intermediate 
planes and results in a “pure” tensegrity in which none of the bars are in direct contact with 
each other. A topology check shows that the example has 18 nodes and 6 kinematic 
constraints. In order to be stable it must have (3 * 18 – 6 = 48) elements according to 
Maxwell’s rule. But, in fact, the structure only owns 36 elements. A geometry check shows 
the structure is nevertheless stable, but contains (m = 13) internal mechanisms. The state of 
self-stress (s = 1) stabilises the structure. However, how model tests show, the structure is not 
stiff enough to carry significant loads besides own weight. That’s why, such topologies are 
often only being used for Tensegrity sculptures [5].  

Figure 4 shows on the left a screenshot of the structure view with the VRML plug in, and 
on the right a screenshot of the worksheet with the output data. For the case s = 1, s1 is 
identical with the normalised t0. In the table of topology the bars are in the first nine rows, 
followed by the horizontal cables and the vertical cables in the end.  

Figure 4 Left: Structure view of the first example; Right: Table of Topology and computed 
state of self-stress s1. 
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The second example structure is to be assembled using the same basic module as in example 
one. Different to the first one is the vertical addition of the modules in such a way, that the bar 
ends of two adjacent stages are directly in contact. Consequently, the whole tower contains 
only 12 nodes and needs, according to Maxwell’s rule, at least (3 * 12 – 6 = 30) elements to 
be stable. This condition is exactly fulfilled. The geometry check shows, that the structure 
nevertheless contains (m = 3) internal mechanisms, but can be stabilised by (s = 3) 
independent states of self-stress.  

Such a topology was built as a landmark on the trade area of Rostock [6]. 

 

In Figure 5 the second example is plotted and a part of the MS Excel worksheet shows (s = 
3) independent states of self-stress and a determined vector of element pre-stress forces t0. 
Here the pre-stress force shall be the same in each stage. 
 

4 CONCLUSION / OUTLOOK 

The question of stability is certainly the first to be solved when cable-strut structures are to 
be designed. A software tool was developed, for this purpose, that gives information about the 
stability while using only standard software and freeware. The theoretical and mathematical 
basics for the used algorithms and the implementing in MS Excel where described.  

Figure 5 Left: Structure view of the second example; Right: Table of Topology and 
computed states of self-stress s1 to s3 and an feasible t0. 
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The use of the tool was demonstrated on two special cable-strut structures, so called 
tensegrity structures. It can be shown, that in an early stage of design different concepts with 
regard to their principle load bearing behavior can be evaluated. 

An interesting additional feature of the described tool could be to survey the robustness of 
the structure. Robust design of structures considers the sensitivity to unavoidable variations of 
input parameters. That means a less variability of the system response, and so a better 
predictability of this. Robustness can be measured e.g. by means of standard deviations of 
certain input and response quantities. More detailed information about robust design of 
structures can be read in [7] and [8]. 

The scattered input parameter on an investigation of robustness of pre-stressed cable-strut 
structures could be the element length. So it would be good to know if the structure is more 
ore less sensitive to manufacturing tolerances. To minimise the standard deviation of the 
element pre-stress force could be the objective of the optimisation. 
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