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Abstract— We propose an enhanced iterative scheme for the
precise reconstruction of piezoelectric material parameters from
electric impedance and mechanical displacement measurements.
It is based on finite element simulations of the full three-
dimensional piezoelectric equations, combined with an inexact
Newton-iterative or nonlinear Landweber iterative inversion
scheme. We apply our scheme to two piezoelectric materials and
test its performance. For the first material the manufacturer
provides a full data set, whereas for the second one, no material
data set is available. For both cases, our inverse scheme, using
electric impedance measurements as input data, performs well.

Index Terms— Piezoelectricity, material parameter determina-
tion, inverse problem, finite element method

I. INTRODUCTION

For the optimal design of piezoelectric devices, efficient
numerical simulation tools have been developed, that avoid
expensive and time-consuming experiments by numerically
solving the mathematical formulation of the underlying phys-
ical model, i.e., the system of partial differential equations
with appropriate boundary conditions. Among all methods,
the Finite Element (FE) method has become the standard
numerical calculation scheme for the computer simulation
of technical systems (see, e.g., [1], [2]) and in special for
piezoelectric systems (cf., e.g. [3]). The accuracy of these
methods, however, relies heavily on the material parameters
steering the interaction of mechanical and electrical quantities.
So far, these parameters have been estimated by experiments
on test samples, whose special shape allows simplifications in
the model. Hence, explicit formulas for parameter extraction
from resonance frequencies exist (cf., e.g., for loss-less models
[4],[5] and [6], [7], [8], [9], [10] considering losses.). How-
ever, the results of these estimation formulas do not provide
sufficiently precise information on the material coefficients,
giving rise to inaccurate results in computational simulations.
Therefore, it was our aim to propose and implement a com-
putational scheme that enables the determination of the whole
material parameter set being appropriate for FE simulations.

The paper is organized as follows. In Sec. II, we discuss
the necessity of material parameters appropriate for FE simu-
lations and why a pure experimental based material parameter
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determination is not sufficient. The FE method for the piezo-
electric partial differential equations are briefly described in
Sec. III, followed by Sec. IV and V presenting our inversion
scheme and the sensitivity analysis. The computational aspects
are discussed in Sec. VI. In Sec. VII we provide a detailed
discussion of the results, when applying our inverse scheme
to both piezoelectric material.

II. NECESSITY OF PARAMETER ADAPTION FOR FEM
The main difference between mathematical models which

are involved in the determination of material tensors using
well-known resonance methods and real world simulations is
the difference in the assumed space dimension. Thus, a dis-
crepancy in the exactness of the material parameters is present
for the following reasons. Published data sets are always a
collection of parameters determined from a set of mono-modal
samples operating at different frequency ranges. However,
due to frequency dependency, the parameter sets are never
precise enough for three dimensional numerical computations.
In addition, most experimental based determinations of piezo-
electric material parameters extract the data in the (sE,d, εT)
form. For a standard FE implementation, the (cE , e, εS) form
is required (see Sec. III). Each conversion of the data sets
form the (sE,d, εT) to the (cE , e, εS) form distributes error
components from single parameters to others, so that the
exactness of the parameters decreases. Our proposed inverse
scheme allows for an adjustment of given data sets to measured
electric impedances and determines directly the parameters in
the (cE , e, εS) form . Even though, we can not proof, that
our scheme identifies the physical parameters, we obtain for
a selected frequency range a complete and consistent data set,
which serves for further precise numerical computations. The
proposed method will even be suited for the case, when no
manufacturer’s data are present, as long as one can provide
appropriate initial guesses.

III. PHYSICAL EQUATIONS AND FINITE ELEMENT
DISCRETIZATION

The material law describing the piezoelectric effect in the
linearized case of small mechanical deformations and electric
fields, reads as

[σ] = [cE ][S] − [e]T E (1)
D = [e][S] + [εS ]E (2)
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relating the mechanical stress tensor [σ] and the electrical
displacement D, respectively, to the mechanical strain tensor
[S] and the electric field E. Due to the symmetry of the
mechanical tensors [σ] and S], we may rewrite them in Voigt
notation as follows

σ = (σxxσyyσzzσyzσxzσxy)T (3)
S = (sxxsyyszzsyzsxzsxy)

T
. (4)

For the electrostatic case, we may express E as the gradient
of an electric potential φ

E = −∇φ ,

and S in terms of the mechanical displacements u

S = Bu .

The first order differential operator B computes as

B =
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i.e., the transposed of the divergence DIV of a dyadic. The
material tensors [cE ], [εS ], and [e], appearing in (1), (2)
are the elasticity coefficients, the dielectric constants, and
the piezoelectric coupling coefficients, respectively. According
to the crystal structure and polarization of the piezoelectric
material, these matrices show a certain symmetry and sparsity
pattern (cf. [4]). For the 6mm crystal class we have, e.g.

[cE ] =





















c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 (c11 − c12)/2





















[e] =







0 0 0 0 e15 0

0 0 0 e15 0 0

e31 e31 e33 0 0 0






(5)

[εS ] =







ε11 0 0

0 ε11 0

0 0 ε33






.

The mechanical behavior of piezoelectric materials is de-
scribed by Newton’s law

DIVσ = BT
σ = ρ

∂2u

∂t2
, (6)

where ρ denotes the density. Since these materials are insulat-
ing, i.e., do not contain free volume charges, the electric field
is determined by

∇ ·D = 0 . (7)

Combining (1), (2), (6) and (7), we arrive at a system of four
partial differential equations for u and φ, inside a piezoelectric
body Ω

ρ
∂2u

∂t2
− BT

(

[cE ]Bu + [e]T ∇φ
)

= 0 in Ω (8)

−∇ ·
(

[e]Bu− [εS ]∇φ
)

= 0 in Ω . (9)

Considering the experimental setting of vanishing normal
stress at the boundary, and two electrodes being applied at
opposite positions Γg and Γe, one of them loaded by a
prescribed electric potential φe, we arrive at the boundary
conditions

σn = 0 on ∂Ω
φ = 0 on Γg

φ = φe on Γe

D · n = 0 on ∂Ω \ (Γg ∪ Γe) .

(10)

Therewith, the variational formulation for the case of a har-
monic excitation reads as

∫

Ω

(

− ρω2ûTv + (Bû)T [cE ](Bv)

+ (∇φ̂)T [e](Bv)

)

dΩ = 0 (11)
∫

Ω

(

(∇ψ)T [e](Bû) − (∇φ̂)T [ε](∇ψ)

)

dΩ

= 0 (12)

with ω the angular frequency and v, ψ appropriate test
functions.

The application of a finite element discretization scheme
to these equations ends up with a linear system of equations,
which can be summarized as [11]
(

−ω2Muu + Kuu Kuφ

KT
uφ −Kφφ

) (

û

φ̂

)

=

(

0
0

)

. (13)

Herein Kuu, and Muu denote the mechanical stiffness,
and mass matrix, respectively, Kφφ and Kuφ the dielectric
stiffness- and the piezoelectric coupling matrix, û the nodal
vector of displacement and φ̂ the nodal vector of scalar
electric potential. We want to note, the we allow for our
material tensors to have complex entries, in order to model the
damping behavior, namely mechanical relaxation, imperfect
piezoelectric energy conversion and dielectric dissipation (see,
e.g. [12]), of piezoelectric materials.

IV. PARAMETER IDENTIFICATION ALGORITHM

The main task we are concerned with is to adapt all
occurring material parameters in the piezoelectric equations
in such a way, that simulated results coincide with those
received from measurements, namely the electric impedance.
In an abstract setting this can be formulated with the so called
parameter-to-solution map F̂

F̂ : Cnpar → Cnfreq , F̂(p) = ŷ (14)
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mapping from the set of npar complex valued parameters
p = (cE11 , c

E
12 , c

E
13 , c

E
33 , c

E
44 , e15 , e31 , e33 , ε

S
11 , ε

S
33) or sub-

sets of it to the set of measuremets ŷ taken at nfreq different
frequencies. (To stress that the computations are performed
in frequency domain all expressions are marked by ·̂.) The
measurements may either contain measured impedances or
mechanical displacements or a combination of them at dif-
ferent frequencies ωi, i = 1, ..., nfreq.

From the FE solution of the piezoelectric PDEs we obtain
directly the mechanical displacement û and electric potential
φ̂ at all FE nodes and by a post-processing step the electric
impedance Ẑ(ωi)

q̂e(ωi) =

∫

Γe

nT
(

−[e]BT û(ωi) + [εS ]∇φ̂(ωi)
)

dΓe

Ẑ(ωi) =
φe

jωiq̂e(ωi)
, i = 1, ..., nfreq, (15)

where q̂e(ωi) denotes the computed surface charges on the
loaded electrode.

Eventhough, solving (13) is a linear problem, the operator F̂
is strongly nonlinear. Furtheron, it is not guaranteed that each
parameter will depend in a stable manner on the measurements
and additionally the right-hand side in (14) is contaminated
with data noise, which makes (14) a typical ill-posed problem.
Its solution requires appropriate regularization methods, from
which we have investigated a regularizing Newton method and
a regularizing modified Landweber iteration. Both methods
are minimizing the norm of the residual ||F̂(p) − ŷ|| until a
lower bound of τδ with τ > 1 is reached. Here, the variable δ
denotes a measure of the quality of the measurements, being
more precise ||ŷ − ŷδ|| ≤ δ where ŷ denotes exact data for
this model and ŷδ contains a certain noise level resulting from
inexactness in the measurements. Doing so the early stopping
of the iterations avoids amplification of the noise components
in the computed data. In both methods, we need to compute
the Jacobian F̂ ′. Forming for a parameter increment dp the
difference F̂(p + dp) − F̂(p), one obtains F̂(p)′[dp] = dŷ,
where in discrete form dŷ = (dû, dφ̂) and dû and dφ̂ are
solutions of the following system
(

Kuu Kuφ

KT
uφ −Kφφ

) (

dû

dφ̂

)

=

(

dKuu dKuφ

dKT
uφ −dKφφ

) (

û

φ̂

)

.

Here, the matrix on the RHS is obtained by substituting the
parameters p by dp in the bilinear forms of (11) and applying
the FE assembly.

1) Inexact Newton Iteration: In algorithmical design, the
application of the inexact Newton iteration (see, e.g., [13],
[14], [15]) results in the following algorithm.

CHOOSE p0;
SET k = 0;
WHILE ‖ŷ − F̂(pk)‖ ≥ τδ

SET i = 0;
SET s

k,δ
0 = 0;

WHILE ||ŷδ − F̂(pk,δ) − F̂ ′(pk,δ)[sk,δ
i ]||

≥ ηk||ŷ
δ − F̂(pk)|| (*)

s
k,δ
i+1 = Φ(F̂ ′(pk,δ), ŷδ − F̂(pk,δ), sk,δ

i );

i = i+ 1;
pk+1,δ = pk,δ + θsk,δ

i ;
k = k + 1;

Here, the mapping Φ stands representatively for a linear itera-
tive regularizing method, e.g. Landweber, ν− or the conjugate
gradient method (see again [16], [14], [13]) are possible
choices. Mainly, our choice for these iterative methods bases
on the fact, that the regularization parameter, here the number
of iteration steps, can easily be determined a posteriori by
the discrepancy principle in (*). The steering parameter 0 <
ηk ≤ η̄ < 1 influences the trade of between convergence
and stability of the inner method. For optimal choices of ηk

see [17]. Applying additionally linesearch strategies steering
the parameter θ > 0 improves convergence and prevents
divergence. The initial guess p0 of unknown materials will be
accomplished using the methods prescribed in the standards
[4], [5] or taking over parameters from well known materials
with similar physical properties.

2) Modified Landweber Iteration: Alternatively one can
implement a nonlinear iterative regularizing method, where
the most simple one is nonlinear Landweber’s iteration. Here
during the fixed-point iterations an adjoint problem applied to
the residual will be solved, see e.g. [16] or [18]

pk+1,δ = pk,δ + wk,δF̂ ′(pk,δ)∗(ŷδ − F̂(pk,δ)), k = 1, ....
(16)

with ||wk,δF̂ ′(pk,δ)|| ≤ 1||. The operator F̂ ′(pk,δ)∗ =
F̂ ′(pk,δ)H (complex conjugate) denotes the adjoint of
F̂ ′(pk,δ). The special choices of wk,δ , e.g.

wk,δ :=
||F̂ ′(pk,δ)∗(ŷδ − F̂(pk,δ))||2

||F̂ ′(pk,δ)F̂ ′(pk,δ)∗(ŷδ − F̂(pk,δ))||2
(17)

or

wk,δ :=
||ŷδ − F̂(pk,δ)||2

||F̂ ′(pk,δ)∗(ŷδ − F̂(pk,δ))||2
(18)

transforms the Landweber iteration into a steepest descent
or minimal error method which remarkably speed up the
convergence compared to the classical Landweber iteration.

A crucial point for the successful identification is an
appropriate scaling of both parameters and measurements.
Thus, within the identification methods the parameters are
equilibrated, i.e. p = ξ ∗ p where ξ ≈ diag(1/p1, ...1/pNpar

).
To compare the measured and computed electric impedances,
denoted by ŷδ

i and F̂i(p), at different frequencies, we evaluate
the following logarithmic norm

||ŷ − F̂(p)||w :=

Nfreq
∑

i=1

| log(ŷδ
i ) − log(F̂i(p))|2)

| log(ŷδ
i )|

2
.

Therewith, we consider the different orders of magnitudes
between impedance measurements at various frequencies.
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TABLE I
COMPUTED CONFIDENCE INTERVALS OF DIFFERENT MODE SHAPES

c
E
11

c
E
33

c
E
12

c
E
13

c
E
44

Radial 0.096 0.12 0.2 0.05 5.8e+05
Thickness 1.8 2.1 1.1e+06 1.7 1.6e+05
Longitudinal 0.14 0.17 0.30 0.086 1.86e+06
Transversal 1.96 4.0 28.9 7.7 3.3e+03
Shear 0.014 0.06 0.027 0.033 0.016

e15 e31 e33 ε
S
11

ε
S
33

Radial 3.0e+06 3.82 1.22 5.47e+7 1.84
Thickness 2.8e+05 2.6e+03 3.3 3.9e+05 2.0
Longitudinal 9.09e+06 12.03 3.7 9.48e+07 6.03
Transversal 1.61e+06 1.19e+03 29.0 1.34e+07 16.1
Shear 0.68 73.5 11.7 33.3 1.28

V. SENSITIVITY ANALYSIS

Since not all material parameters show a visible impact on
the solution of the piezoelectric PDEs, we like to understand,
which of them dominate in the different types of probes.
These are differing in e.g. geometry, polarization and range
of excitation frequency. In the following we interprete the
linearization F̂ ′ of the highly nonlinear relation between
parameters and observations F̂(p) = ŷ. Confidence intervals
of the identified parameters can be estimated by evaluating
diagonal entries of the inverse of the information matrix

C =

nfreq
∑

i=1

(

F̂ ′(p, ωi)
HF̂ ′(p, ωi)

)

−1

∈ Cnpar×npar . (19)

The sensitivity of each parameter is related to a diagonal entry
in this matrix C and one can say that the probability that

|pexact
i − pcomputed

i | ≤
√

Ciiχ2
npar

(1 − α), i = 1, ..., npar

(20)
is larger than (1 − α), where χ2

npar
(1 − α) denotes the

(1 − α) quantile of the χ2
npar

probability distribution. Thus,
the smaller the term on the RHS in (20), the more reliable
the identified parameter and the higher its influence on the
transducers behavior can be considered. Table I contains upper
bounds of the sizes of the confidence intervals using α =
0.01 for transducers working in radial, thickness, longitudinal,
transversal and thickness shear mode.

Setting a threshold of approximately 10, the set of parame-
ters of each mode disintegrates into two subsets of parameters.
Parameters, whose confidence interval are sufficiently small,
are reliable, the others are far away from identifiability. In the
latter case results from identifications of other modes have
to be called on. Due to the dependency of the computed
confidence intervals on the location and number of selected
frequencies their values can only be compared qualitatively,
but not quantitatively. An appropriate choice of measurement
locations providing the highest amount of information for the
identification process can be achieved by means of optimal
experiment design and is discussed in [19].
A Remark concerning the shear mode: In the frequency range,
where we see the first mode of the shear vibration, higher
modes of the thickness vibration are present (see Figure 5).
Performing measurements at such a frequency interval allows
to identify even parameters, dominating in thickness mode.

VI. COMPUTATIONAL ASPECTS

Concerning the forward problem, the piezoelectric sam-
ples operating at radial, thickness and longitudinal mode are
modeled as rotationally symmetric problems. The others, the
thin plates vibrating in transversal and shear modes need
full three dimensional meshes. Approximately 250 2nd order
quadrilateral elements are used for the rotationally symmetric
and 320 2nd order hexahedron elements for the 3D case. The
sparse direct solver PARDISO, an efficient software for solv-
ing large sparse symmetric and unsymmetric linear systems of
equations, is employed to solve the arising algebraic system
of equations [20]. Solving the inverse problem, namely the
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Fig. 1. Development of residual of the methods proposed during the
parameter identification at the longitudinal mode, Pz36

inexact Newton (e.g. with the ν - methods as inner method)
or modified Landweber methods comes with a price since here
the forward problem needs to be solved repeatedly. Figure 1
compares the two different methods fitting the longitudinal
mode of Pz36, and displays the decrease of the residuals (for
the fitting results, see Fig. 8). Here, all real and imaginary
parts of the parameters are determined simultaneously. Both
methods are run until the norm of the residual (‖ŷ − F̂(p)‖)
falls below 5.0×10−4. The computing times are 17.5 minutes
for the Newton-ν-methods (8 steps) and around 22.4 minutes
for the modified Landweber’s iteration (10 steps) on a 64 bit
Intel(R) Pentium(R) D CPU 2.80GHz machine. In case, that
the initial guess is not as suitable as in this case, it is advisable
to start the inverse calculation with less input, i.e. a viewer
number of measurements until one reaches a certain accuracy.
Then, we restart the program evaluating an increasing number
of impedance measurements and improve the exactness of the
results.

VII. IDENTIFICATION RESULTS

In this section we will present results of our proposed
method applied to two different piezoelectric materials. On the
one hand, we have chosen a well known material, where the
manufacturer provides a complete set of material parameters
(Pz26, Ferroperm) and on the other hand a recently developed
material (Pz36, Ferroperm), for which until now, no material
data are available. For the first material, Pz26, we use the



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. X, NO. XX, NOVEMBER 2005 5

manufacturer’s data as starting values for our developed in-
verse scheme and determine real and complex valued material
parameters appropriate for precise FE simulations. For the
second material, we show how one can obtain a consistent
parameter set, even if one starts more or less from the scratch.

A. Pz-26
The manufacturer’s data for this material, which is a hard

PZT with low ageing rates and low loss [21], are given in
Table II. For our investigations, we used the three piezoelectric

TABLE II
PUBLISHED MATERIAL PARAMETERS OF PZ26, FERROPERM

c
E
11

c
E
33

c
E
12

c
E
13

c
E
44

1.68e+11 1.23e+11 1.10e+11 9.99e+10 3.01e+10
e15 e31 e33 ε

S
11

ε
S
33

9.86 -2.80 14.7 7.33e-09 6.2e-09

samples as listed in Tab.III.

TABLE III
GEOMETRY OF THE USED PZ26 SAMPLES

Name Geometry
Disc 1 radius = 8 mm, thickness = 1 mm
Disc 2 radius = 8 mm, thickness = 4 mm
Bar length = 20 mm, width = 5 mm, height = 1 mm

1) Radial Mode: We start our investigation with disc 1,
which operates at its radial mode. We use the manufacturer’s
data as starting parameters and apply our inverse scheme in
order to fit the simulated impedance curve to the measured
one. Figure 2 displays the three curves, namely the measured
impedance and the two simulated impedances computed with
the manufacturer’s as well as fitted material parameters. As
can be seen, the material parameters obtained by our inverse
scheme provides improvements concerning the location of the
resonance frequency and appropriate damping. Results of the
identification concerning the real valued parameters are listed
in Table IV. For the initial guesses of the imaginary part of the

TABLE IV
RESULTS OF FITTING AT RADIAL MODE, REAL PARTS, PZ26

c
E
11

c
E
33

c
E
12

c
E
13

c
E
44

1.62e+11 1.26e+11 1.10e+11 9.82e+10 3.00e+10
e15 e31 e33 ε

S
11

ε
S
33

9.86 -2.82 14.26 7.33e-09 6.32e-09

complex valued material parameters, we have assumed a value
being approximately one per mill from its real part. This can be
motivated considering the usual Rayleigh damping as a special
case of complex valued parameters (see, e.g., [22], [11]). If
one has found appropriate values for the Rayleigh damping
coefficients α(ω) and β(ω), complex valued parameters can
be computed via

[c̃E ] :=
1 + jβ0

1 − jα0

[cE ] [ẽ] :=
1

1 − jα0

[e]

[ε̃] :=
1

1 − jα0

[ε] ,
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Fig. 2. Radial mode: measured and simulated impedance curves, Pz26

where α(ω) = α0ω and β(ω) = β0/ω. The values in Tab.

TABLE V
IMAGINARY PARTS, INITIAL GUESS AND IDENTIFIED PARAMETERS,

RADIAL MODE, PZ26

c
E
11

c
E
33

c
E
12

c
E
13

c
E
44

1.68e+9 1.23e+9 1.10e+9 9.99e+8 3.01e+8
7.07e+07 4.48e+08 5.33e+07 1.85e+08 1.13e+08

e15 e31 e33 ε
S
11

ε
S
33

0.098 -0.028 0.14 7.3e-11 6.2e-11
0.1001 -0.0286 0.135 7.34-11 6.52e-11

V reveal that in particular for the mechanical parts the initial
damping was too strong. Figure 3 shows the measured and
simulated phase of the electric impedance. Again, using the
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x 105

−100

−80

−60

−40

−20

0

20

40

60

80

100

Frequency ω (Hz)

P
ha

se
 a

rg
(Z

) (
Ω

)

 

 
Fitting
Measurement
Initial guess

Fig. 3. Phase of the electric impedance at radial mode, Pz26

fitted material parameters, we achieve a good approximation
of the measured impedance curve.

2) Combined Radial and Thickness Mode: Of great interest
for a simulation based material parameter identification are
such geometries, where different modes occur in a similar fre-
quency range and allow to adapt for a larger set of parameters.
This is exemplarily done with disc 2, where the radial mode
is at 140 kHz and the thickness mode at 510 kHz. Now, we
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use in our inverse scheme already the data set obtained by our
first fitting procedure. The results can be seen in Fig. 4, where
we again display the measured and simulated (once with the
manufacturer’s and once with the fitted material parameters)
impedance curves. Since the impedance curve shows quite
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Planar and Thickness Mode

Measurement
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Fig. 4. Simultaneous fitting of radial and thickness mode, Pz26

a lot of piezoelectric coupling modes, we can not expect to
obtain a fitting as in the previous case. Table VI lists the real
and imaginary material parameters as obtained by the inverse
scheme.

TABLE VI
RESULTS OF SIMULTANEOUS FITTING AT THICKNESS AND RADIAL MODE,

REAL AND IMAGINARY PARTS, PZ26

Real parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

1.682e+11 1.25e+11 9.84e+10 9.47e+10 2.92e+10

e15 e31 e33 ε
S
11

ε
S
33

10.33 -2.84 14.62 7.18-09 6.28e-09

Imaginary parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

6.24e+07 2.50e+08 5.33e+07 1.33e+08 2.27+07

e15 e31 e33 ε
S
11

ε
S
33

0.09966 -0.0287 0.13 1.25e-10 2.1e-10

3) Thickness Shear Mode: The largest discrepancy between
manufacturer’s data and measurements are noticeable for the
shear mode. Figure 5 compares the measured and simulated
impedance curves, and in Tab. VII we list the real and
imaginary parts of the fitted material parameters.

As described in Sec. V, we have quite different confidence
intervals for the different piezoelectric modes. Providing a
consistent data set, we choose the material parameters out of
our fitting results according to the confidence intervals. Table
VIII provides this consistent data set for our first piezoelec-
tric material under investigation. Since damping is a really
frequency depended phenomena, no consistent data set will
be provided here. Using now this set of material parameters
and performing FE simulations of the electric impedance of
our three samples, results still in the good comparison to the
measured ones.
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Fig. 5. Fitting of shear mode, Pz26

TABLE VII
FITTING AT SHEAR MODE, REAL AND IMAGINARY MATERIAL

PARAMETERS, PZ26

Real parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

1.31e+11 1.11e+11 1.06e+11 9.18e+10 2.12e+10

e15 e31 e33 ε
S
11

ε
S
33

8.18 -2.38 14.05 7.19e-09 6.41e-09

Imaginary parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

1.03e+09 8.15e+08 1.06e+09 9.81e+08 2.4e+08

e15 e31 e33 ε
S
11

ε
S
33

0.102 -0.028 0.13 7.33e-11 6.48e-11

VIII. PZ-36

For our second practical application, we have chosen Pz36,
which is a new type of piezoceramic material with very low
acoustic impedance [21]. Until now, no manufacturer data are
published. The samples listed in Tab. IX have been used for
our investigations. To obtain starting material parameters for
our inverse scheme, we have measured the electric impedances
and have extracted the parameters according to the IEEE
standard [4]. Since the used samples do not fulfill the IEEE
standard, we can not expect to obtain good starting values.
However, this is not our intention, since we also want to
demonstrate, that our developed inverse scheme performs well,
even for such starting parameters. The values of this procedure
are listed in Tab. X.

TABLE VIII
CONSISTENT DATA SET FOR PZ26 FROM FEM BASED FITTING, REAL

PARTS

c
E
11

c
E
33

c
E
12

c
E
13

c
E
44

1.31e+11 1.25e+11 1.1e+11 9.7e+10 2.12e+10
e15 e31 e33 ε

S
11

ε
S
33

8.18 -2.82 14.26 7.19e-09 6.33e-09
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TABLE IX
GEOMETRY OF THE USED PZ36 SAMPLES

Name Geometry
Disc radius = 8 mm, thickness = 1 mm
Cylinder radius = 2.5 mm, length = 18 mm
Bar length = 25 mm, width = 4 mm, height = 1 mm

TABLE X
MATERIAL PARAMETERS OF PZ36, AS EXTRACTED FROM IMPEDANCE

MEASUREMENTS ACCORDING TO IEEE STANDARD

c
E
11

c
E
33

c
E
12

c
E
13

c
E
44

4.49e+10 3.46e+10 7.21e+11 7.29e+10 1.32e+10
e15 e31 e33 ε

S
11

ε
S
33

2.56 -0.41 6.57 4.16e-09 5.59e-09

A. Radial Mode
We start our procedure with our piezoelectric disc (see Tab.

IX) and investigate in the radial mode. Figure 6 displays the
measured and computed electric impedances. Due to the clear
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Fig. 6. Fitting at radial mode, Pz36

radial mode of this sample, we achieve an optimal fitting. The
obtained material parameters are shown in Tab. XI.

TABLE XI
RESULTS RADIAL MODE, REAL AND IMAGINARY PARTS, PZ36

Real parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

5.59e+10 3.41e+10 1.029e+10 1.53e+10 1.13e+10

e15 e31 e33 ε
S
11

ε
S
33

2.56 -0.0409 6.96 4.659e-09 3.743e-09

Imaginary parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

3.15e+08 3.03e+08 9.26e+07 2.15e+08 1.13e+08

e15 e31 e33 ε
S
11

ε
S
33

0.0256 -0.00041 0.067 4.66e-11 3.815e-11

B. Thickness Mode
The second fitting is performed on the same piezoelectric

disc by investigating into the thickness mode and using as
starting values the one obtained by the radial mode (see Tab.

XI). As can be seen from Fig. 7, this mode is disturbed by a
lot of smaller ones, which is mainly due to the geometry of
the sample. However, our inverse scheme still achieves a good
result. The material parameters, as obtained by our scheme,
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Fig. 7. Fitting at thickness mode, Pz36

are listed in Tab. XII.

TABLE XII
RESULTS THICKNESS MODE, PZ36

Real parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

6.02e+10 3.45e+10 1.02e+10 1.51e+10 1.12e+10

e15 e31 e33 ε
S
11

ε
S
33

2.55 -0.0409 6.54 4.65e-09 3.69e-09,

Imaginary parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

7.24e+08 1.82e+08 1.03e+08 1.49e+08 1.13e+08

e15 e31 e33 ε
S
11

ε
S
33

0.025 -0.000409 0.0407 4.665e-11 5.35293e-11,

C. Longitudinal Mode
To perform the fitting for the longitudinal mode, we use

the cylindrical sample as listed in Tab. IX. Figure 8 shows
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Fig. 8. Fitting at longitudinal mode, Pz36

the electric impedances, and Tab. XIII displays the obtained
material parameters.
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TABLE XIII
RESULTS LONGITUDINAL MODE, PZ36

Real values
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

5.68e+10 3.77e+10 1.03e+10 1.45e+10 1.13e+10

e15 e31 e33 ε
S
11

ε
S
33

2.56 -0.041 6.42 4.65e-09 4.58e-09

Imaginary values
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

5.62e+08 3.52e+08 1.03e+08 1.48e+08 1.13e+08

e15 e31 e33 ε
S
11

ε
S
33

0.0256 -0.00041 0.055 4.66e-11 5.02e-11

D. Shear Mode
The last sample used for determining the material parame-

ters for Pz36, is operating at its shear mode. Figure 9 displays
electric impedances as obtained from the measurement and
simulations. The fitted material parameters computed by our
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Fig. 9. Fitting at shear mode, Pz36

inverse scheme are listed in Tab. XIV.

TABLE XIV
RESULTS SHEAR MODE, PZ36

Real parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

5.64e+10 3.48e+10 1.03e+10 1.49e+10 1.13e+10

e15 e31 e33 ε
S
11

ε
S
33

2.78 -0.041 6.87 4.66e-09 3.55e-09

Imaginary parts
c

E
11

c
E
33

c
E
12

c
E
13

c
E
44

5.44e+08 3.47e+08 1.03e+08 1.50e+08 4.04e+07

e15 e31 e33 ε
S
11

ε
S
33

0.023 -0.00041 0.068 4.66e-11 3.92e-11

E. Thickness Mode, verification of identification results
Applying the proposed simulation based inversion scheme

to a set of differently shaped samples and considering again
those parameters with small confidence intervals provides a
rather consistent, except frequency dependency, set of piezo-
electric material parameters, see Table XV. In order to show

the improvement in the data set, we apply the identified
material parameters to a sample, which has not been con-
sidered so far, namely a radial disc working in thickness
mode with a thickness of 4 mm and diameter of 16 mm.
Figure 10 shows the simulated impedance curve which gives
a reasonable approximation to the measured one. Still, and
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Fig. 10. Computed impedance of a not identified specimen using the
identified parameters compared to the simulation with the initial guess and
measurement

TABLE XV
CONSISTENT DATA SET FOR PZ36 FROM FEM BASED FITTING, REAL

PARTS

c
E
11

c
E
33

c
E
12

c
E
13

c
E
44

5.61e+10 3.48e+10 1.06e+10 1.5e+10 1.13e+10
e15 e31 e33 ε

S
11

ε
S
33

2.56 -0.041 6.88 4.66e-09 3.78e-09

this is not avoidable, the effects of frequency dependencies
are visible in the results. If one really wants to perform an
exact three dimensional computer simulation one should not
obviate a problem specific parameter adaptation, for which our
developed scheme can easily be applied.

IX. CONCLUSION

The proposed method has turned out to be an indispensable
tool for the generation of suitable material parameters for FE
simulations. In addition, it proofs to be an appropriate proce-
dure to determine material parameters with a high accuracy for
newly developed piezoelectric ceramics. Its universality allows
to consider all ponderable geometries and mode shapes of both
lossless and lossy materials.

Further work on this subject is devoted to the simulation
based identification of material parameters in piezoelectric
compounds such as the determination of nonlinearities in the
material parameters and those induced by the history of the
materials, namely hysteresis.
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