
EFFICIENT SOLUTION APPROACH TO
NONLINEAR OPTIMAL CONTROL

PROBLEMS AND APPLICATION TO
AUTONOMOUS DRIVING

D I S S E R T A T I O N

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

vorgelegt der
Fakultät für Informatik und Automatisierung

der Technische Universität Ilmenau

von
M. Sc. Evgeny Lazutkin

geboren am 11. September 1989 in Moskau,
Russland

Gutachter:

1. Univ.-Prof. Dr.-Ing. habil. Pu Li, Technische Universität Ilmenau
2. Prof. Dr.-Ing. habil. Thomas Rauschenbach, Fraunhofer IOSB-AST Ilmenau
3. Univ.-Prof. Dr.-Ing. habil. Rudibert King, Technische Universität Berlin

Tag der Einreichung : 02.07.2018
Tag der wissenschaftlichen Aussprache: 06.11.2018

urn:nbn:de:gbv:ilm1-2018000504

I dedicate this doctoral thesis to my family, especially my beloved wife Yauheniya
and our wonderful daughter Valerie.

Acknowledgements

Firstly, I would like to thank my supervisor, Prof. Dr.-Ing. habil. Pu Li for his
patience, encouragement and advices. During my master program he gave me an in-
spiration to dedicate my research activity in the area of applied dynamic optimization.
Besides my supervisor, I would like to thank my co-supervisor Dr. rer. nat. Abebe
Geletu for his support, permanent inspiration and helpful discussions. Without their
guidance, constructive and collegial cooperation, this research could not have been
successfully conducted.

I am eternally grateful to my loving parents Tatiana and Yuri for their unreserved
love and support throughout the years of study. Without their support I could not
finish my thesis. I would like to express my profound gratitude to my sincere brother
Dmitry for his advices. I am especially thankful to my beloved wife Yauheniya for her
every day support, love and patience.

I would like also to thank all my friends whom I met in Ilmenau, especially Olek-
sandr and Maria, Vasilii and Anna, Dzmitry and Daria, Dmitrii and Dasha for being
wonderful company during all these years.

I want to express my gratefulness to the stuff members of the SOP group for their
constant support during my research work, exclusively Dr.-Ing. Siegbert Hopfgarten,
Prof. Dr.-Ing. habil. Horst Puta, Mr. Björn Töpper, Dipl.-Ing. (FH) Jens Holland-
moritz, M. Sc. Shih-Jan Lin and M. Sc. Xujiang Huang. It was an honor to me to
work with you within our research group. I wish them all the best and good luck.

Some parts of this research work were conducted within the Model Driven Physi-
cal Systems Operation (MODRIO) project under the financial support of the ITEA2
and German Ministry of Education and Research (BMBF). This support is gratefully
acknowledged. In addition, I would like to thank the Audi AG for the equipment and
technical support during the Audi Autonomous Driving Cup 2017 competition, where
our team won the first place.

Finally, I am highly grateful for the reviewers of this thesis and for the promotion
committee.

Abstract

This thesis deals with the numerical solution of dynamic nonlinear optimization prob-
lems and the development of new methods for their analysis in order to increase the
efficiency of calculations. The operation of many natural and technical processes can
be formulated as a nonlinear optimal control problem with constraints. Because of the
increasing complexity, the solution of such a problem becomes challenging, in particular
if it has to be obtained in real-time. The approach of combined multiple-shooting with
collocation is efficient for solving such problems even if they contain fast dynamics.
Thus, the first target of this work is to further improve its computational performance
by providing an analytical Hessian and realizing a parallel-computing scheme. First,
the formulas for computing the second-order sensitivities for the combined approach
were derived. Using multiple-shooting, the solutions of model equations and evalua-
tions of both first-order and second-order sensitivities can be provided independently
for each time interval. Therefore, the second contribution is dedicated to the realiza-
tion of a parallel computing scheme. As a result, a high speedup factor is attained
through parallelization leading to reduction of computational expenses. As a third
contribution, a novel control-variable correlation analysis was introduced, which indi-
cates the necessity of employing the analytical Hessian instead of its approximation to
efficiently solve an optimization problem. The numerical performance of these three
contributions was demonstrated through challenging dynamic optimization problems
including optimal control of a large-scale problem containing more than one thousand
dynamic variables.

The combined method converts the continuous dynamic optimization problem into
a nonlinear programming problem using a given number of time intervals. However,
there have been no comprehensive rules to properly choose this number. Therefore,
the fourth target of this work is devoted to the analysis of the underlying optimization
problem with the special focus on the number of discrete time intervals. From the
application point of view, the number of time intervals should be selected to simul-
taneously achieve the balance between the numerical accuracy and the computation
load for solving the discretized optimization problem. Moreover, it is imperative to
find the minimum number of time intervals to guarantee this balance. Thus, in the
context of collocation on finite elements, a novel bilevel approach was proposed, where
the outer loop is responsible for finding the minimum number of time intervals and
the inner loop evaluates an upper limit of the approximation error by solving an error
maximization problem by manipulating the control variables. In this way, a minimum
number of time intervals can be determined guaranteeing a user defined error toler-
ance. Moreover, the impact of the initial conditions on the maximum approximation
error is taken into account so that the determined number of intervals is valid for
varying initial conditions and thus can be applied to nonlinear model predictive con-
trol (NMPC). Several case studies were conducted to demonstrate the efficacy of the
proposed approach. Both theoretically developed methods as well as the combined

6

approach were implemented using open-source software as a generalized framework for
testing purposes.

Finally, the developed methods were applied to autonomous driving in the NMPC
framework. Autonomous driving is the current trend in the automotive industry with
the aim of designing and producing fully automated or self-driving vehicles. Control
design and field operation of autonomous vehicles impose several challenges and thus
extensive as well as intensive research studies need to be made to cover the growing
industrial demand. In this work, the vehicle motion was modeled as a dynamic opti-
mization problem which is efficiently solved on-line. The successful test of the NMPC
with two model vehicles (with scale of 1:5 and 1:8 to real vehicles) demonstrated the
effectiveness of the developed approach.
Keywords: Multiple-shooting, collocation, interior-point method, nonlinear model
predictive control, autonomous driving, error estimation

Zusammenfassung

Diese Arbeit beschäftigt sich mit der numerischen Lösung von dynamischen nichtlin-
earen Optimierungsaufgaben und der Entwicklung neuer Methoden für deren Analyse,
um die Effizienz der Berechnungen zu erhöhen. Der Betrieb vieler natürlicher und
technischer Prozesse kann als nichtlineares Optimierungsproblem mit Beschränkungen
formuliert werden. Aufgrund der steigenden Komplexität wird die Lösung eines solchen
Problems zu einer Herausforderung, insbesondere wenn das Problem in Echtzeit gelöst
werden muss. Der Ansatz des kombinierten Mehrfachschießverfahren mit Kolloka-
tion ist effizient, um solche Probleme zu lösen, auch wenn sie eine schnelle Dynamik
aufweisen. So ist das erste Ziel dieser Arbeit die weitere Verbesserung der Rechen-
leistung durch die Bereitstellung einer analytischen Hesse-Matrix und die Realisierung
eines Parallelberechnungs-Schemas. Zunächst wurden die Formeln zur Berechnung der
Sensitivitäten zweiter Ordnung für den kombinierten Ansatz abgeleitet. Mit Hilfe des
Mehrfachschießverfahrens können die Lösungen von Modellgleichungen und Auswer-
tungen von Sensitivitäten erster und zweiter Ordnung für jedes Zeitintervall unab-
hängig voneinander berechnet werden. Der zweite Beitrag widmet sich daher der Re-
alisierung eines parallelen Rechenschemas. Dadurch wird ein hoher Beschleunigungs-
faktor durch Parallelisierung erreicht, der zu einer Reduzierung des Rechenaufwands
führt. Als dritter Beitrag wurde eine neuartige Korrelationsanalyse der Steuergrößen
eingeführt, die auf die Notwendigkeit hinweist, die analytische Hesse-Matrix anstelle
seiner Approximation einzusetzen, um ein Optimierungsproblem effizient zu lösen.
Die numerische Leistung dieser drei Beiträge wurde mit Hilfe von herausfordern-
den dynamischen Optimierungsproblemen einschließlich der optimalen Steuerung eines
großen Problems mit mehr als tausend dynamischen Variablen demonstriert.

Die kombinierte Methode wandelt das Problem der kontinuierlichen dynamischen
Optimierung in ein nichtlineares Programmierungsproblem mit einer vorgegebenen An-
zahl der Zeitintervalle um. Es gibt jedoch keine umfassenden Regeln, um diese Anzahl
der Zeitintervalle passend zu wählen. Daher widmet sich das vierte Ziel dieser Arbeit
der Analyse der zugrunde liegenden Optimierungsprobleme mit dem besonderen Fokus
auf der Anzahl der diskreten Zeitintervalle. Aus Anwendungssicht sollte die Anzahl der
Zeitintervalle so gewählt werden, dass gleichzeitig die Bilanz zwischen der numerischen
Genauigkeit und der Rechenlast zur Lösung des diskreten Optimierungsproblems er-
reicht wird. Darüber hinaus ist es unerlässlich, die Mindestanzahl an Zeitintervallen
zu finden, um diese Genauigkeit zu gewährleisten. So wurde im Rahmen der Kolloka-
tion auf finiten Elementen ein neuartiger Bilevel-Ansatz vorgeschlagen, bei dem die
äußere Schleife für die Ermittlung der minimalen Anzahl von Zeitintervallen zuständig
ist und die innere Schleife eine obere Grenze des Approximationsfehlers auswertet,
indem sie ein Fehlermaximierungsproblem durch Manipulation der Steuergrößen löst.
Auf diese Weise kann eine Mindestanzahl von Zeitintervallen festgelegt werden, die
eine benutzerdefinierte Fehlertoleranz gewährleistet. Außerdem wird der Einfluss der
Anfangsbedingungen auf den maximalen Approximationsfehler berücksichtigt, so dass

8

die ermittelte Anzahl von Intervallen für unterschiedliche Anfangsbedingungen gilt und
somit für die nichtlineare modellprädiktive Regelung (engl.: nonlinear model predictive
control (NMPC)) angewendet werden kann. Mehrere Fallstudien wurden verwendet,
um die Wirksamkeit des vorgeschlagenen Ansatzes zu demonstrieren. Sowohl die the-
oretisch entwickelten Methoden als auch der kombinierte Ansatz wurden mit Hilfe von
Open-Source-Software als allgemeines Framework für Testzwecke implementiert.

Schließlich wurden die entwickelten Methoden auf das autonome Fahren im NMPC-
Framework angewendet. Autonomes Fahren ist der aktuelle Trend in der Automobilin-
dustrie mit dem Ziel, vollautomatisierte oder selbstfahrende Fahrzeuge zu entwickeln
und zu produzieren. Reglerentwurf und -betrieb von autonomen Fahrzeugen stellen
mehrere Herausforderungen dar, weshalb umfangreiche und intensive Forschungsar-
beiten notwendig sind, um den wachsenden industriellen Bedarf abzudecken. Die
Fahrzeugbewegung wurde als ein dynamisches Optimierungsproblem dargestellt, das
online effizient gelöst wird. Der erfolgreiche Test der NMPC mit zwei Modellfahrzeu-
gen (im Maßstab 1:5 und 1:8 im Vergleich zum realen Fahrzeug) zeigte die Effizienz
des entwickelten Ansatzes.
Schlüsselwörter: Mehrfachschießverfahren, Kollokationsverfahren, Innere-Punkte-
Methode, Nichtlineare modellprädiktive Regelung, Autonomes Fahren, Fehlerschätzung

List of Abbreviations

GPS Global positioning system
C2C Car-to-car (communication)
C2I Car-to-infrastructure (communication)
CMSC Combined multiple-shooting with collocation (method)
AH Analytical Hessian
BFGS Broyden-Fletcher-Goldfarb-Shanno (method)
NMPC Nonlinear model predictive control
NOCP Nonlinear optimal control problem
ODE Ordinary differential equation
DAE Differential algebraic equation
CVP Control vector parameterization
BVP Boundary value problem
PID Proportional-Integral-Derivative (controller)
PI Proportional-Integral (controller)
IPM Interior-point method
KKT Karush-Kuhn-Tucker (optimality conditions)
NLP Nonlinear programming (problem)
NS Newton solver
SC Sensitivity computation
ADTF Automotive data and time-triggered framework
IPOPT Interior-point optimizer
MPC Model predictive control

List of Symbols

In the list below the most important symbols are gathered together.

x(t) Vector of differential state variables
z(t) Vector of algebraic variables
u(t) Vector of control variables
p Vector of time independent parameters
t Time
J Objective function
M Mayer term
L Lagrange term
x0 Initial values of state variables
t0 Initial time
tf Final time
hp Path constraints
ht Terminal constraints
N Number of time intervals
∆t Length of the time interval
nx Number of state variables
nz Number of algebraic variables
nu Number of control variables
npc Number of path constraints
nt Number of terminal constraints
G Nonlinear equation system
Xc Vector of state and algebraic variables at collocation points in single time interval
Xp Vector of parameterized state variables in single time interval
V Vector of parameterized control variables in single time interval
Nxz Total number of variables at collocation points in single time interval
Φ Vector function of the second-order sensitivities with respect to parameterized

state variables
Ψ Vector function of the second-order sensitivities with respect to parameterized

control variables
NX
S Dimension of the Φ function

NU
S Dimension of the Ψ function

Npc Total number of path constraints
Nc Number of collocation points
gi i-th equality constraint
hj j-th inequality constraint
ω Vector of the optimization variables
∇ Nabla operator
λi Lagrange multiplier for the i-th equality constraint
µj Lagrange multiplier for the j-th inequality constraint

12

ss Slack variables
H Hessian matrix of the Lagrangian function
αk Step-size in k-th iteration
αi,j Correlation coefficient between i-th and j-th column
Θ Angle between two columns in sensitivity matrix
xN(t) Numerically computed state profile using the Lagrange polynomials
xN,k Value of the state trajectory at k-th collocation point
τi,j j-th collocation point in i-th time interval
t̂i Noncollocation point in i-th time interval
e(t̂i) Value of the error function at noncollocation point
e
(q)
max Maximum approximation error of the q-th state variable in the i-th interval
x(q)(t̂i) Analytical solution of the q-th state variable at the noncollocation point t̂i
x
(q)
N (t̂i) Numerical solution of the q-th state variable at the noncollocation point t̂i
e
(l)
max Maximum approximation error in l-th iteration

∆N− Decrement of the number of time intervals
∆N+ Increment of the number of time intervals
ε User-defined error tolerance
εN Tolerance of the Newton method
εI Tolerance of the IPOPT
εA Tolerance of the bilevel approach
E Expected value (operator)
A State matrix
B Control matrix
R Measurement error covariance matrix
Q Process noise covariance matrix
P−k A priori estimate error covariance
Pk A posteriori estimate error covariance
cα Tire cornering stiffness
JI Rotational moment of inertia
Px Weighting factor for the final longitudinal coordinate
Py Weighting factor for the final lateral coordinate
qx Weighting factor for the longitudinal coordinates
qy Weighting factor for the lateral coordinates
rv Weighting factor for the velocity
rδ Weighting factor for the steering angle
β(t) Sideslip angle
ψ(t) Heading angle
v(t) Vehicle velocity
δ(t) Steering angle
xRabs Absolute longitudinal coordinate of the robot
yRabs Absolute lateral coordinate of the robot
xHabs Absolute longitudinal coordinate of the obstacle
yHabs Absolute lateral coordinate of the obstacle

13

xrel Relative longitudinal coordinate of the obstacle
yrel Relative lateral coordinate of the obstacle

List of Figures

1.1 Levels of automation from SAE . 24
1.2 The way to autonomous driving . 25
1.3 Thesis structure . 29

3.1 General NMPC framework block diagramm 38
3.2 NMPC working principle . 39

4.1 Control profiles generated from PRBSs for the CSTR problem 53
4.2 Convergence profiles during solution of the CSTR problem 53
4.3 Convergence profiles during solution of the SAT problem 55

5.1 The bi-level solution framework . 60
5.2 Impact of the prediction horizon . 67
5.3 Impact of the approximation error at noncollocation points on the con-

straint violation . 69

6.1 Main software components . 71
6.2 CMSC algorithm structure . 72
6.3 Sequential computations . 73
6.4 Parallel computations . 74

7.1 Determination of the absolute coordinates of the center of an obstacle . 83
7.2 General control scheme of the robot SUMMIT 85
7.3 Obstacle avoidance - trajectory . 87
7.4 Obstacle avoidance - computation time 87
7.5 Obstacle avoidance - control trajectories 88
7.6 Developed framework for Audi Q2 model vehicle 89
7.7 Slalom driving test using 12 time intervals 92
7.8 Lane keeping - driving route . 94
7.9 Lane keeping - computation time . 94
7.10 Lane keeping - optimal control profiles 95

8.1 Advantages of the NMPC for autonomous driving 98

9.1 Closed loop control scheme. 101

List of Tables

4.1 Correlation values between controls for CSTR 52
4.2 Correlation values between controls for SAT 54

5.1 Obtained results for the BCBTR problem 67
5.2 Obtained results for the NCSTR problem 68
5.3 Results of the bilevel-II approach for the NCSTR problem 68

7.1 Obtained results using bilevel-II approach 91
7.2 Bézier curves for slalom maneuver . 91

List of Publications

Journal articles:

I. E. Lazutkin, A. Geletu, and P. Li: An approach to determining the number
of time intervals for solving dynamic optimization problems, Ind. Eng. Chem.
Res., 12(57), pp. 4340-4350, 2018.

II. E. Lazutkin, A. Geletu, S. Hopfgarten, and P. Li: An analytical Hessian and
parallel-computing approach for efficient dynamic optimization based on control-
variable correlation analysis, Ind. Eng. Chem. Res., 48(54), pp. 12086-12095,
2015.

Conference articles:

III. E. Drozdova, S. Hopfgarten, E. Lazutkin, and P. Li: Autonomous driving of
a mobile robot using a combined multiple-shooting and collocation method, 9th

IFAC symposium on intelligent autonomous vehicles, 15(49), pp. 193-198, 2016.

IV. E. Lazutkin, S. Hopfgarten, A. Geletu, and P. Li: A toolchain for solving dy-
namic optimization problems using symbolic and parallel computing, Proceed-
ings of the 11th International Modelica Conference, pp. 311-320, 2015.

V. E. Lazutkin, A. Geletu, S. Hopfgarten, and P. Li: Modified multiple shooting
combined with collocation method in JModelica.org with symbolic calculations,
Proceedings of the 10th International Modelica Conference, pp. 999-1006, 2014.

Other contributions to conferences, workshops, etc.:

VI. S.-J. Lin, E. Lazutkin, X. Huang, W. Zhang, N.-T. Pham, P. Li: Autonomes
Fahren mit modellgestützter Echtzeitoptimierung und künstlicher Intelligenz,
Audi Autonomous Driving Cup 2017 Competition, Ingolstadt, Germany, 2017.

VII. E. Lazutkin, P. Li: Verbesserter Ansatz des kombinierten Mehrfachschießver-
fahrens mit Kollokation zur dynamischen Optimierung und Anwendung auf au-
tonomes Fahren, 51. Regelungstechnisches Kolloquium, Boppard, Germany,
2017.

VIII. E. Lazutkin, A. Geletu, S. Hopfgarten, P. Li: Sensitivity computation based
on CasADi for dynamical optimization, 16th European Workshop on Automatic
Differentiation, Jena, Germany, 2014.

Contents

Acknowledgements 3

Abstract 5

Zusammenfassung 7

List of Abbreviations 9

List of Symbols 11

List of Figures 15

List of Tables 17

List of Publications 19

1 Introduction 23
1.1 Motivation . 23
1.2 Objectives and contributions . 27
1.3 Outline of the thesis . 29

2 State-of-the-art 31

3 Problem formulation and solution approach 37
3.1 Problem statement . 37
3.2 Nonlinear model predictive control . 37
3.3 Combined multiple-shooting with collocation 41

3.3.1 Transformation to an NLP problem 41
3.3.2 Computation of first-order sensitivities 42
3.3.3 Computation of second-order sensitivities 43
3.3.4 Handling of path and terminal constraints 44

3.4 Primal-dual interior-point method . 45

4 Correlation analysis of control variables 49
4.1 Idea of the correlation analysis . 49
4.2 Demonstration examples . 51

5 An approach to determining the number of time intervals 57
5.1 Error estimation problem . 57
5.2 Bilevel problem formulation . 59

5.2.1 The outer loop . 61
5.2.2 The inner loop . 61

22 Contents

5.3 Implementation details . 63
5.4 Illustrative examples . 65

6 Numerical implementation issues 71
6.1 Component description . 71
6.2 Algorithm implementation . 72
6.3 Experiment: optimal control of the large-scale nonlinear system 75

7 Nonlinear model predictive control for autonomous driving 77
7.1 Kalman filter . 77
7.2 Obstacle detection and avoidance . 81

7.2.1 Mobile robot and mathematical model 81
7.2.2 Obstacle description . 82
7.2.3 Pre-commissioning activities . 83
7.2.4 Experimental results using mobile robot 85

7.3 City driving scenario . 88
7.3.1 Vehicle description and control framework design 88
7.3.2 Preliminary analysis . 90
7.3.3 Experimental results using vehicle model 93

8 Conclusions and future research 97
8.1 Summary of contributions . 97
8.2 Further research directions . 99

9 Appendix 101

Bibliography 109

Index 119

Chapter 1

Introduction

1.1 Motivation

Autonomous driving is the current trend in the automotive industry with the aim of
designing and producing fully automated or self-driving vehicles. The deployment and
operation of autonomous vehicles in realistic road scenarios brings several challenges
and thus extensive as well as intensive research studies need to be made to cover the
growing industrial demand. In the past decade, significant progress has been made
in the research and application of driving assistance features, e.g., emergency braking
and lane keeping assistance systems. These features augment existing active safety
systems such as electronic stability program. Autonomous driving has attracted a lot
of attention both from the public and the government due to the potential to trans-
form the automobile industry and transportation system. The main interest lies in the
dramatic increase of the road safety. Autonomous vehicle is a developing technology
which may prove to be the next big revolution in overall transportation. As of now,
several major companies including Audi, BMW and Mercedes-Benz are developing
and testing prototype vehicles with plans to eventually release the technology to the
market in the near future. Autonomous cars are no longer just an unrealistic element
of futuristic science-fiction films. This is a real technology. Within the ever-increasing
ongoing process of globalization, people have become more dependent on the trans-
portation system. Enormous demand on the efficient solution approaches is required
due to several major reasons: (i) more than 90% of all traffic accidents are due to
human error (ii) traffic jams are often caused by distracted drivers (iii) air pollution
and (iv) finding the optimal routes. Therefore, autonomous driving technologies can
solve these issues and are predicted to be one of the most important innovations within
the automotive industry.

When designing and implementing an autonomous driving vehicle, there exist three
major goals. The first place is dedicated to the efficiency which leads to the increas-
ing of the maximum throughput on highways and reduction of the air pollution. The
second goal is safety, which is responsible for elimination of the mortality due to car
accidents. The third goal is the affordability. Hence, the designed control system
should be reliable and inexpensive. These three goals require advances in computa-
tional power and sensor technology. Thus, the development of autonomous vehicle
is concerned with the design of an intelligent system with highly advanced control
algorithms.

Nowadays, there are six formal definitions of levels of automation from the Society
of Automotive Engineers (SAE) within the norm SAE J3016. The meaning of these

24 Chapter 1. Introduction

levels is summarized in Figure 1.1. The levels span from no automation where the
driver operates the vehicle, to fully automated vehicle where the system controls the
entire driving. One major difference in the SAE definition: who is monitoring the driv-
ing environment? At the lower levels 0, 1 and 2 the monitoring is made by the human
driver while in the higher levels 3, 4 and 5 the vehicle will have total control of driving
during specific circumstances. In the zero level, the full-time performance is conducted

Level Name Execution
of steering and

acceleration/braking

Monitoring
of driving

environment

Fallback
performance

of driving task

Driving
modes

0 No
automation

Driver Driver Driver Not
available

1 Driving
assistance

Driver and system Driver Driver Some driving
modes

2 Partial
automation

System Driver Driver Some driving
modes

3 Conditional
automation

System System Driver Some driving
modes

4 High
automation

System System System Some driving
modes

5 Full
automation

System System System All driving
modes

Figure 1.1: Levels of automation from SAE

by the driver, including all aspects of the dynamic driving task. In the next level of
automation, some driving modes are supported by the system. The execution by a
driver assistant system of either steering or velocity control using information about
the driving environment is conducted with the expectation that the driver performs
all remaining tasks. In addition, the driver should be prepared to perform the task
completely by himself. The difference between first and second level is that the system
is capable to control both steering and velocity. However, the remained operational
condition are still the same. In the third level, an automated driving system of all
aspects of the dynamic driving task is introduced, with the condition that the driver
will respond appropriately to a request to intervene. The fourth level of automation,
the system must react by itself, even if a driver does not respond appropriately to a
request to intervene the driving task. The last level of automation means completely
autonomous vehicle, where the system takes all aspects of the dynamic driving task
under all roadway and environmental conditions. In this level, the steering wheel or
pedals are not even needed. The current state-of-the-art in the automobile industry is
the third level. Therefore, further research towards level five is highly required.

Highly automated driving requires complex control mechanisms that make optimal
decisions based on the current measurements and information. The tactical level of
the decision-making process implements this intelligence through a sophisticated hi-
erarchy of a high-level behavioral strategy and a low-level maneuver planning. The

1.1. Motivation 25

determined driving decisions will be passed to the subsequent trajectory planning.
It plays a central role in the automated driving function and has a great impact on
the driving comfort and the overall traffic safety. The framework should allow diver-
sity in the decision-making for various traffic situations and modular expandability
of the control system. It means that the existing control framework should be eas-
ily extended by new behavioral strategies to deal with further traffic situations. The

Automatic parking

Highway driving

Country roads

City driving cycle

DRIVING CYCLE

Emergency assistance

Collision avoidance

Collision prediction

Autonomous collision
detection and

avoidance system

RISK ANALYSIS

Full range cruise
control

Traffic jam assistance

Adaptive cruise

control

Cruise control

VELOCITY
CONTROL

Decision making

system

Decision support
system

Computer vision

analysis

Basic image
processing

 ENVIRONMENT
RECOGNITION

AUTONOMOUS
DRIVING

Figure 1.2: The way to autonomous driving

important parts are indicated in Figure 1.2, where the major blocks describe the way

26 Chapter 1. Introduction

to the autonomous driving concept. The side arrows in Figure 1.2 indicate the rising
technological complexity. Based on the Figure 1.2, there are several aspects that need
to be discussed.

Primarily, to be able to respond to all different kinds of traffic conditions, the car
must be able to detect other cars, pedestrians and information signs in all types of
weather conditions and for all types of road situations. This is a prerequisite for the
car to know how to act according to the situation on the road. Depending on the
information collected through the sensors, the car makes decision on how to handle
each specific scenario, depending on the programmed rules and procedures. This
enables continuous improvement of the system in the future development process.

Secondly, autonomous cars navigate by using a combination of several systems
such as radars, virtual maps, satellites and other sensors. It is possible to drive
autonomously if having access to a high precision 3D map of the surrounding en-
vironment. The construction of such maps is a highly complicated and expensive task.
Unfortunately, the navigation systems used today based on GPS does not always guar-
antee sufficient precision and can therefore not be used by itself for the navigation. To
be able to drive safely the car needs to know its position on the road in the accuracy of
centimeters. Among the different approaches and techniques, following hardware may
be found: (i) laser scanner (ii) lidar (iii) radar (iv) high-precision GPS (v) computer
vision. An automated car uses a combination of hardware and software to locate itself
in the real world.

Laser scanner is a device that emits light through a process of optical amplifica-
tion based on the stimulated emission of electromagnetic radiation. Lidar is a remote
sensing technology that measures distance by illuminating a target with a laser and
analyzing the reflected light. Lidar uses ultraviolet, visible or near infrared light to
image objects. A narrow laser-beam can map physical features with very high reso-
lutions. Radar is an object-detection system that uses radio waves to determine the
range, altitude, direction, or speed of objects. The radar antenna transmits pulses of
radio waves or microwaves that bounce off any object in their path. The object returns
a tiny part of the wave’s energy to antenna that is usually located at the same site as
the transmitter. The GPS is a space-based satellite navigation system that provides
location and time information in all weather conditions, anywhere on or near the Earth
where there is an unobstructed line of sight to four or more GPS satellites. The com-
puter vision is any form of signal processing for which the input is an image, such as
a photograph or video frame. Most image-processing techniques involve treating the
image as a two-dimensional signal and applying standard signal-processing techniques
to it.

The objective of automated driving is approached mainly from two different di-
rections. On the one hand, the automotive industry tries to reach this goal from the
practical and economical points of view. On the other hand, the robotic researchers,
who are working on algorithms dealing with environment perception and artificial intel-
ligence, try to realize different applications for autonomous systems besides driver-less
transportation systems. One of the big challenges nowadays is to combine the best of
these two directions. Moreover, the reliable operation of autonomous vehicles is still

1.2. Objectives and contributions 27

a challenge and a major barrier in the large scale acceptance and deployment of this
technology.

Driving intelligence is such a huge complicated task due to all of the processes
that are happening in the background. Autonomous vehicles face essentially five chal-
lenges: (i) technology integrity (ii) infrastructure investment (iii) consumer acceptance
(iv) legislation and (v) business. To help overcoming these challenges, autonomous ve-
hicles should be capable of exchanging information among themselves to increase the
performance of the control system by gathering more information for the underlying
algorithms. For instance, vehicles can communicate in real-time with each other −
car-to-car communication (C2C) and with the infrastructure − car-to-infrastructure
communication (C2I). Under infrastructure one can understand the communication
with, e.g., mobile phones or the road itself. Decentralizing the vehicle perception
would decrease the need of standalone solutions, complex sensing devices, and artifi-
cial intelligence technology, while it would increase the redundancy of the system.

However, many critical challenges still need to be overwhelmed. From the technical
perspective, the autonomous driving related technologies are not so reliable. From the
cost perspective, the highly precise sensors are still expensive in comparison to the
cost of the vehicles. The reliable operation of autonomous vehicles is still a challenge
and a major barrier in the large scale acceptance and deployment of the technology.
Right now, autonomous vehicles are still in a research and development phase. Based
on theories of innovation and design, this doctoral thesis will analyze the development
and improvement of efficient solution methods for autonomous vehicles with the main
focus on the real-time optimal control strategies. This research will examine essential
issues of autonomous driving technology that are the basic foundation of the driving
intelligence.

The current development stage of the autonomous driving is at a stage of progress
that it will soon put this concept into reality. Undoubtedly, driving requires forecasting
(looking-ahead), which can be highly uncertain in some driving scenarios. The simplest
way to deal with uncertain forecasts in autonomous driving is to reduce the vehicle
speed and wait until the uncertainty becomes negligible. Nevertheless, this is not the
preferred driving mode. For such scenarios, control design for autonomous driving is a
real challenge. The use of classical controllers would entail several heuristics to assess
the criticality of the situation and accordingly activate a control strategy which is finely
tuned for that particular situation. It has been a standard approach in the automotive
industry with regards to the development of active safety systems. However, this
approach does not safely extend to the domain of self-driving cars. Therefore, further
studies are needed to provide the efficient, safe and stable operations, which makes
this doctoral work actual and important.

1.2 Objectives and contributions

The first objective is to investigate the numerical solution of the optimal control prob-
lem to provide fast numerical computation with the focus on the application to the

28 Chapter 1. Introduction

autonomous vehicles. Although much progress has been made in improving computa-
tion efficiency, further studies need to be carried out to explore the potential of the
existing approaches. Therefore, the aim is to extend the combined multiple-shooting
with collocation (CMSC) method in such a way that the computation efficiency can
be enhanced in comparison to those of the existing approaches. This extension leads
to following novel contributions. First, the formulas for analytical second-order sen-
sitivities are derived in the context of the CMSC method. As a result, an analytical
Hessian (AH) can be used to improve the solution performance. However, the compu-
tational cost for an AH is higher than that for a numerical approximation, such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Therefore, as a second contribu-
tion, a new method is introduced for evaluating the profitability of using an AH by
analyzing correlations between control (independent) variables of dynamic optimiza-
tion problems. Correlation relationships are analyzed analytically by checking linear
dependencies of the columns of the sensitivity matrix and numerically by calculating
the angles between the corresponding columns. The latter is achieved by a simulation
step with control signals in the form of a pseudorandom binary sequence. Conse-
quently, the degree of difficulty for solving a dynamic optimization problem under
consideration can be examined a priori. Third, by employing the decomposed struc-
ture of the CMSC method, parallel processing is implemented for computing state
values and both first- and second-order sensitivities using automatic differentiation.
Through case studies, this parallel-computing strategy can speed up the computation
considerably, particularly for large-scale problems [61].

The second objective is dedicated to investigation of the numerical solution of the
differential equations within the optimal control problem. Of course, many previous
studies have devoted considerable efforts on the analysis and improvement of the accu-
racy of numerical methods for the solution of both differential equations and dynamic
optimization problems. However, most available approaches are principally a poste-
riori methods, i.e., to ensure a given error tolerance, a number of time intervals is
defined and updated during the solution of the discretized optimization problem. The
shortcoming of an a posteriori method lies in the fact that the error estimation is
made under a fixed operating condition, i.e., with given control profiles and a given
initial condition. In fact, besides the choice of a discretization scheme, control pro-
files and initial states have a significant influence on the numerical error. Therefore,
a novel bilevel approach for a priori error estimation by taking the effect of both the
discretization scheme and the operating condition into account is presented. In the
context of collocation on finite elements, an upper limit of the approximation error will
be gained by formulating and solving an error maximization problem. The proposed
bilevel approach is based on error analysis of state profiles at specific noncollocation
points considering controls and initial states as decision variables. In this way, a min-
imum number of time intervals will be determined, which guarantees a user-defined
error tolerance for solving the original dynamic optimization problem. As a result, the
a priori determined number of time intervals is valid for varying operating conditions
and thus can be used for nonlinear model predictive control (NMPC) [62].

The third objective is to implement the theoretically developed methods from the

1.3. Outline of the thesis 29

contributions above into a generalized framework for the solution and analysis of the
dynamic optimization problems [60, 63], the generality and effectiveness of which are
demonstrated via several applications.

The fourth objective is focused on addressing the fundamental problem of au-
tonomous driving, because it is perhaps the hottest topic in the automotive industry
right now. The design and implementation of real-time control is the most important
task for autonomous vehicle. Therefore, this dissertation focuses on the challenges
associated with the application of control strategies for fully autonomous driving cou-
pled with prediction strategies of vehicle behavior. To achieve this goal, the driving
task is described as a nonlinear optimal control problem [34]. From the motivation de-
scribed in the previous section, the following objectives for this doctoral thesis can be
identified. Once the mathematical vehicle model is available, it will be firstly investi-
gated through the proposed framework using the developed control-variable correlation
analysis and bilevel approach. Aftermath, the closed-loop solution of the problem will
be realized in the form of NMPC. The implemented real-time framework for the au-
tonomous driving will be tested using two different model vehicles and several road
situations.

1.3 Outline of the thesis

A schematic of this dissertation is depicted in Figure 1.3 and serves as a pictorial
guide of how the chapters are linked. The contributions of the individual chapters are
highlighted below.

Chapter 2
State-of-the-art

Chapter 3
Problem formulation

and solution
approach

Chapter 4
Control-variable

correlation
analysis

Chapter 5
Determining the
number of time

intervals

Chapter 6
Numerical

implementation

Chapter 7
Autonomous

driving

Chapter 8
Conclusions
and further

work

Chapter 1
Introduction

Figure 1.3: Thesis structure

30 Chapter 1. Introduction

Chapter 1 describes the motivation of this thesis and highlights important aspects
and problems encountered in the autonomous driving.

Chapter 2 introduces the state-of-the-art and the progress achieved by the research
work in order to demonstrate that the results of this thesis are novel and important.

Chapter 3 formulates the nonlinear optimal control problem (NOCP) that is ad-
dressed in this dissertation. Since this thesis deals with a direct solution approach of
continuous NOCP, a detailed treatment of this problem with the help of CMSC method
is presented, which leads to the so-called nonlinear programming (NLP) problem. Fur-
thermore, it is shown how the resulted NLP problem is solved using the primal-dual
interior-point method within the NMPC framework. Moreover, the extension of the
CMSC method to handle the second-order analytical sensitivities is presented.

However, it is not always required to use analytical second-order sensitivities.
Therefore, Chapter 4 presents the control-variable correlation analysis to investigate
the necessity of the employment of second-order sensitivities. Several case studies are
used to demonstrate this issue.

Because the NOCP is solved using direct solution approach, the first step is to dis-
cretize the problem using a certain number of time intervals. However, until now there
were no comprehensive rules. Hence, Chapter 5 presents an approach to determining
the number of time intervals. The numerical implementation issues are discussed in
Chapter 6.

Chapter 7 demonstrates the realization of the NMPC scheme using two model
vehicles using different task in the underlying NOCP, which are highly relevant for the
enhancement of the autonomous driving technology. The obtained results and further
research directions are thoroughly discussed in Chapter 8. This doctoral thesis ends
with an appendix, bibliography and index.

Chapter 2

State-of-the-art

The autonomous driving task in this work is considered as a dynamic optimiza-
tion problem which includes the model equations of vehicle motion. The solution
of dynamic optimization problems with ordinary differential equations (ODEs) or
differential-algebraic equations (DAEs) still poses a great challenge especially for online
implementations such as nonlinear model predictive control and real-time parameter
estimation [86, 101, 50]. Although many efficient approaches have been developed
to address large-scale dynamic optimization problems, further studies are needed to
enhance the efficiency of existing solution algorithms in the context of discretization,
sensitivity calculation, and parallel computing.

Two major and widely used discretization methods are collocation on finite elements
[27, 16, 17] and the multiple-shooting strategy [19, 64, 58]. In the collocation approach,
the DAE system is fully discretized, leading to a large number of optimization variables
in the nonlinear programming (NLP) formulation along with a corresponding number
of equality constraints. On the other hand, the multiple-shooting approach decomposes
the dynamic optimization problem into smaller problems over individual time intervals,
thus allowing for the easy implementation of parallel computing [65].

The control vector parametrization (CVP) method is known as a sequential ap-
proach [98, 99]. Its basic idea is to discretize control variables over time intervals and
obtain the states by solving DAEs by an integration scheme. A quasi-sequential ap-
proach was proposed by Hong et al. [49] in which only control variables are treated as
decision variables and collocation on finite elements is used for discretization, leading
to a two-stage solution strategy. An adaptive collocation scheme for this approach was
introduced by Bartl et al. [11].

Recently, a combined multiple-shooting and collocation (CMSC) approach was pro-
posed to exploit the advantages of both collocation and multiple-shooting [92]. In this
approach, the discretization of model equations is based on the collocation method for
individual time intervals, whereas optimality and state continuity are ensured in the
resulting NLP in the context of the multiple-shooting method. It has been demon-
strated that this approach is highly efficient for solving dynamic optimization problems
[92, 60].

In this study, the advantages of the CMSC approach are further exploited by
introducing an analytical Hessian (AH) and implementing parallel computing. It is
known that the use of exact second-order sensitivities to provide an AH is beneficial for
the solution of the resulting NLP problem. The results obtained using CVP indicate
that exact second-order sensitivities, obtained by deriving and solving a differential
equation system over the whole time horizon, can enhance robustness and convergence
rate [97, 9, 10]. An extension of this method was made in the framework of collocation

32 Chapter 2. State-of-the-art

on finite elements and considering piecewise constant controls [13, 12]. Moreover,
there is wide interest in automatic sensitivity computation [67, 78]. However, the
computation of an AH is known to be highly expensive, which might counterbalance
the computational advantages. Therefore, a method to examine the profitability of
using an AH instead of a numerical approximation is highly desired.

Another way to enhance the efficiency of solving dynamic optimization problems is
to decompose the resulting NLP problem and implement a parallel-computing strat-
egy. The single-shooting method was implemented using parallel computation of first-
order sensitivities [45]. Parallel computing was also implemented in the context of
multiple-shooting involving DAE integration and sensitivity computation [65]. In the
context of collocation on finite elements, parallel computing was also realized by a
Schur-complement decomposition within an interior-point algorithm [104]. This de-
composition method introduces coupling variables to ensure the continuity of state
trajectories, leading to high computational costs. This approach was further improved
by Kang et al. [53] by utilizing the block structure of the resulting NLP. In the work of
Zavala et al. [109], the optimizer was also adapted to the Schur-complement method to
provide parallel computing for solving parameter estimation problems. More recently,
Washington and Swartz [103] implemented a parallel-computing scheme in the context
of multiple-shooting, but state trajectories in each time interval were computed using a
numerical integrator [48]. In addition, the CMSC method was also implemented using
parallel computing in an open-source environment, but with numerically approximated
second-order derivatives [8].

To numerically solve a dynamic optimization problem, the model equations need
to be discretized over a time horizon. Having chosen a discretization method, one
needs to decide the number of time intervals in the time horizon under consideration.
However, there have been no comprehensive rules for this purpose. Therefore, it is
imperative to enhance the computational efficiency for the solution of such problems.
In principle, the decision is made to achieve a compromise between the numerical
accuracy of the discretization and the computation load for solving the discretized
optimization problem. A larger number of time intervals will lead to, on the one hand,
a shorter length of the time intervals and thus a lower discretization error. On the other
hand, the dimension of the resulting NLP problem will be higher, thus demanding
a greater computational expense. In contrast, if the problem is discretized with a
small number of time intervals, the resulting state trajectory will be highly inaccurate,
which may cause constraint violations. Therefore, it is desired to choose a minimum
number of time intervals which can guarantee a user-specified error tolerance. The
current situation is that the number of time intervals is usually chosen intuitively or
empirically in practice.

There have been many studies on error estimation in solving ODEs and DAEs. The
early work of Ahmed and Wright [1] considered a numerical solution of linear ODEs by
means of collocation. In further studies, Wright et al. [106] introduced a subdivision-
criterion-function for an adaptive mesh selection for boundary value problems (BVPs).
Ascher and Petzold [5] discussed the solution of DAEs using projected implicit Runge-
Kutta methods for linear problems in terms of stability, oscillation properties, and

33

accuracy. In Auzinger et al. [6] an error estimate based on the ideas of Zadunaisky
[108] and Stetter [91] for the global error of collocation methods was presented. Fur-
thermore, the authors discussed a mesh selection strategy aiming at equidistribution
for an approximation of the numerical solution of singular BVPs computed by a collo-
cation approach [7]. Guo and Wang [43] proposed two algorithms with the accuracy of
the Legendre-Gauss collocation method. Their later work [102] described the solution
of linear ODEs based on the Legendre-Gauss-Radau interpolation and adaptation of
this approach to a multistep version. Moreover, Koch [59] presented a posteriori error
estimate of singular BVPs and proposed a representation of the numerical error. In
addition, Wright [105] investigated various adaptive methods for piecewise polynomial
collocation of ODEs and compared two techniques, namely interval subdivision and
mesh redistribution. Moreover, a local error estimation of a class of two-step Runge-
Kutta methods for the numerical solution of ODEs was investigated [28].

Many previous studies have also been made to estimate the numerical error in
solving the discretized optimization problem. A large portion of the work was in the
context of collocation on finite elements (time intervals). Cuthrell and Biegler [26]
developed a strategy in which each element length is adjusted by the NLP solver to
detect the discontinuities in control profiles using a slightly modified method of de Boor
[32, 30, 31]. Logsdon and Biegler [69] explored a discretization and NLP formulation by
considering stability and error properties of implicit Runge-Kutta methods for DAEs
to obtain appropriate error constraints. Furthermore, Vasantharajan and Biegler [96]
introduced a direct error enforcement in the NLP solution, where the authors remarked
that simultaneous handling of element placing and nonlinear error constraints can be
very difficult. In the work of Seferlis and Hrymak [89] the accuracy was improved by
adaptively placing the breakpoints between elements so that the approximation error
can be equally distributed among the finite elements. Furthermore, Tanartkit and
Biegler [93, 94] introduced a bilevel strategy in which the outer problem determines
the number of required elements to fulfill a defined tolerance of state profiles and the
inner problem solves the dynamic optimization problem. This strategy was further
improved and investigated by Biegler et al. [17].

Huntington and Rao [51] investigated the numerical accuracy by modifying the
number of elements and collocation points. Recently, a method to distribute the mesh
points using various density functions was introduced by Zhao and Tsiotras [110]. In
addition, Darby et al. [29] investigated an hp-adaptive pseudospectral method for the
numerical solution of dynamic optimization problems. The approach consists of iter-
atively determining a number of required finite elements, the length of each element,
and a polynomial degree to obtain the solution for a user-defined tolerance. Unfor-
tunately, this approach requires iterative solution of the NLP, which takes additional
computational burdens; therefore, it will be difficult to use this approach for online
applications, especially for large-scale optimization problems.

In addition, the error estimation in the framework of control vector parametrization
(CVP) has also been studied. Binder et al. [18] proposed a method in which a
hierarchy of successively refined finite dimensional optimization problems are solved.
The adaptation is built on a multiscale setting involving wavelets. Schlegel et al.

34 Chapter 2. State-of-the-art

[88] presented an extension and modification of the work by Binder et al. [18]. An
adaptive CVP method was also introduced in the study of Mehrpouya et al. [76],
for determining the control structure and the number of switching points using the
homotopy continuation technique.

Moreover, in the context of the quasi-sequential approach proposed by Hong et
al. [49], Bartl et al. [11] presented a technique for adaptive mesh selection during
solving the NLP problem with a variable interval length. The movable elements are
combined with the concept of co-simulations, which improves the tolerance of state
profiles by consequently dividing a given time interval into multiple subintervals until
the required state profile tolerance is guaranteed. Note that the original number of
discrete intervals in the NLP formulation does not change. In addition, the authors
[11] proposed an empirical method for error estimation based on first-order derivative
analysis.

Furthermore, Paiva and Fontes [79] recently proposed an adaptive time-mesh al-
gorithm considering different levels of refinement. The information on the adjoint
multipliers was used for interval refinement. The necessary condition of optimality
in the form of the Maximum Principle of Pontryagin [15] was applied. Nevertheless,
the permanent mesh refinement during solving the optimization problem increases the
computation time and may negatively influence its online applications.

Above all, in digital signal processing, one of the most applied methods for deter-
mining suitable sampling frequency (i.e., the length of time intervals) is to apply the
Nyquist-Shannon theorem [90], especially for linear systems. However, because the
theorem gives no explicit relationship between the sampling frequency and the dis-
cretization accuracy, in practical applications, the sampling frequency is chosen much
higher than what is suggested by the Nyquist-Shannon theorem. This leads to a con-
servative decision for the discretization, i.e., the number of time intervals used is much
higher than necessary.

In the last past decades, the enormous interest in dynamic optimization was con-
centrated in the area of autonomous vehicle driving. In recent years, obstacle de-
tection and avoidance as well as lane-keeping have got major attention in studies.
MPC has proved as a promising control strategy with many desired features. Unlike
pre-mission planning and offline design of nominal references, MPC provides adaptive
control strategies based on the actual and spontaneous traffic situation, leading to
a higher level of system autonomy and robustness. There are varieties of MPC ap-
proaches to autonomous vehicle steering, differing in used vehicle models, application
purposes, optimization problem formulations, numerical solution techniques, applied
software, etc.

A predictive control approach was reported by Keviczky et al. [56] where a nonlin-
ear bicycle model with constant tire forces and a tire model considering the interaction
between tractive force and cornering force in a combined braking and steering. An
Euler method was employed to discretize the optimal control problem where the steer-
ing angle was used as the control variable. The problem was solved with a commercial
software in different simulation scenarios.

Kim et al. [57] proposed an MPC-based path tracking algorithm including steer-

35

ing actuator dynamics. The problem was solved by a quadratic programming method.
Various scenarios of simulation results concerning prediction and control horizon lengths,
model order of the steering system and speed were reported.

Using an extended bicycle model with lagged tire force for better prediction ac-
curacy, the work of Choi and Choi [24] addressed electronic stability control relying
on MPC. Based on the nonlinear model, a reference trajectory is generated to main-
tain the vehicle yaw stability. To avoid the computational burden in satisfying state
inequalities, the reference strategy is followed applying a linear MPC scheme which
can easily be obtained in a closed form. Furthermore, Schildbach and Borelli [87]
presents a new algorithm for detecting the safety of lane changes on highways and for
computing safe lane change trajectories.

MPC exploits the model of the system dynamics to predict the future system
evolution and to accordingly select the best control action with respect to a specified
performance criterion. In addition, inequality constraints on control and state variables
can be satisfied by MPC. Therefore, using MPC represents a promising control strategy
for autonomous driving and outperforms control schemes based on the proportional-
integral-differential (PID) regulator.

Most previous MPC applications have considered simple vehicle models, simple
discretization techniques (i.e., the Euler method) and consider only simulative inves-
tigations [20, 14, 70]. In Cairano et al. [23] a switched MPC controller was proposed,
where different local MPC controllers were used depending on the tire force condi-
tions. Similar investigations were conducted by Gao et al. [39]. In Frasch et al. [36]
multiple-shooting was applied for the discretization to solve the dynamic optimization
problem based on a bicycle model. A linear MPC was analyzed in Katriniok et al.
[55] based on linearized longitudinal and lateral dynamics and a highly precise GPS. A
tube-based robust NMPC approach was suggested by Gao et al. [38] for lane-keeping
and obstacle avoidance. The approach is based on a control law where nominal states
and controls are obtained from a nominal NMPC and an offline calculated robust
invariant set. Both simulation and experimentation results were given for obstacle
avoidance. The robustness of the proposed nonlinear MPC algorithm was investigated
by introducing tube-based constraints. In Yu et al. [107] a simulative investigation was
conducted where a kinematic vehicle model was considered and the state estimation
was conducted by an unscented Kalman filter.

Based on the literature review, the autonomous driving within the NMPC frame-
work represents a great challenge and is considered as a hot topic in academia and
in industry. According to the high requirements for autonomous vehicles, existing
algorithms and methods should be significantly improved in order to guarantee the
reliability of the overall concept.

Chapter 3

Problem formulation and solution
approach

3.1 Problem statement

This work considers nonlinear dynamic optimization problems of the form

min
u(t)

{
J = M (x(tf)) +

∫ tf

t0

L(x(t), z(t), u(t), t)dt

}
subject to: ẋ(t) = f(x(t), z(t), u(t), p, t), x(t0) = x0,

0 = g(x(t), z(t), u(t), p, t),

hp(x(t), z(t), u(t)) ≤ 0, ht(x(tf)) = 0, (3.1)
xmin ≤ x(t) ≤ xmax, zmin ≤ z(t) ≤ zmax,

umin ≤ u(t) ≤ umax, t ∈ [t0, tf],

where x(t) ∈ <nx represents the vector of state variables, z(t) ∈ <nz denotes the vector
of algebraic variables and u(t) ∈ <nu is the control vector. The time-independent
parameters are defined as p ∈ <np . The initial state x(t0) is supposed to be known
and fixed. The final state x(tf) may be fixed or free. The time horizon is defined as
t ∈ [t0, tf], with initial time t0 and terminal time tf . The functions f : <nx×<nz×<nu×
<np×[t0, tf]→ <nx and g : <nx×<nz×<nu×<np×[t0, tf]→ <nz in the model equations
as well as the objective function J , consisting of the Mayer term M : <nx → < and
the Lagrange term L : <nx × <nz × <nu × [t0, tf] → <, are assumed to be twice
differentiable. The differential states, algebraic and control variables are bounded as
indicated by the box-constraints. The functions hp : <nx × <nz × <nu → <npc and
ht : <nx → <nt denote path and terminal constraints, respectively.

3.2 Nonlinear model predictive control

Section 3.1 describes only the general form of the continuous dynamic optimization
problem. The important question is how to use this problem formulation for control-
ling the real physical system. Recently, a variety of control strategies are available.
Depending on the type of application and system configurations one can choose a
proper design of the controller. For instance, classical controllers, such as PID or PI,
are successfully applied for regulation and tracking of given setpoints. However, when

38 Chapter 3. Problem formulation and solution approach

state and control constraints are taken into account, these controllers become unsuit-
able. In addition, in the presence of disturbances, classical controllers do not guarantee
the stability of the system, especially in the presence of derivative components in the
controller. To overcome these limitations, an advanced strategy called NMPC can be
applied to guarantee the constraints imposed on the system. This control strategy
was firstly introduced in 1963 [80] but has gained more interest after almost 20 years,
after its successful application in the process industry [82, 40]. However, this control
technique was applied for systems with slow dynamics and relatively large sampling
times. Nevertheless, in the last two decades, a growing interest in the application of
the NMPC on fast dynamic systems with high sampling rates has been raised, lead-
ing to an intensive research work for developing and implementing new and efficient
methods.

The core of the NMPC controller is the solution of state and control constrained
dynamic optimization problem on prediction horizons. The model equations are used
to predict the possible future behavior of the system and decide the most suitable
control signals for leading the system to a desired behavior. The constraints in the
optimization problem are formulated considering physical limitations in the actuators
and the states and control ranges of operation or imposed by environment (e.g., in
autonomous driving). Practically, a general control scheme of the real plant can be
described as a set of devices that are integrated together in order to enforce a desired
plant behavior. A block diagram describing the general structure of a control system
is shown Figure 3.1, where the gray dashed box indicates the physical parts of the
system.

Setpoint
generator

NMPC
controller Actuators Sensors Plant

Filter /
Observer

+
‒

External
targets

Control
signals

Measured
states

Estimated
states

Figure 3.1: General NMPC framework block diagramm

The main components of the NMPC controller can be implemented on an external
computer or embedded system. The controller computes a suitable control strategy
and applies it to actuators, which realize it on a physical system, which is called the
plant. Using appropriate sensors, the system states can be measured. However, it is
not always possible to measure all the system states directly. To compute them, special
computational units, like filter or observer, can be applied. Afterwards, the estimated
states are compared with given or computed reference state trajectories by the setpoint
generator. This control strategy is known as feedback and allows the controller to give

3.2. Nonlinear model predictive control 39

a proactive response to uncertainties, which generally can arise from a combined effect
of external disturbances, measurement noise and plant-model mismatch. A scheme of
the NMPC technique is shown in Figure 3.2.

𝑡0 𝑡1 𝑡2 𝑡3 ⋯⋯ ⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯

Past Future

𝑡𝑓

Reference

Predicted output
 Control strategy

I. Time horizon

𝑡−1 𝑡0 𝑡1 𝑡2 ⋯⋯ ⋯ ⋯ ⋯ ⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 𝑡3 𝑡𝑓

II. Time horizon

Past Future

𝑡−2 𝑡0 𝑡1 𝑡2 ⋯⋯ ⋯ ⋯ ⋯ ⋯⋯ ⋯⋯ 𝑡3 𝑡𝑓 𝑡−1

III. Time horizon

Past Future

Figure 3.2: NMPC working principle

In general, NMPC works by repeatedly solving (i.e., every sampling time) a finite
dimensional NLP problem considering the current state as the initial state value x0 of
the problem. The prediction horizon is always relative to the current state and recedes
away from the initial point as the dynamic moves forward. The predicted states and
controls are continually updated to take into account of the most recent target and
measured data. Since data measurement are taken into account in every feedback
loop, predictive control has the advantage of feedback controller, achieving stability
and good control performance.

For each prediction, the solution of the NMPC problem is a sequence of optimal
control inputs, which minimizes an objective function and leads the dynamic towards
the desired behavior. At time t = t0 the NMPC problem is solved and the actuator
applies only the first element of the optimal control input computed for the time
t = [t0, t1]. After that, the prediction horizon is receded, the current state is measured
(or estimated) using sensors (or observers), and the NMPC problem is solved again

40 Chapter 3. Problem formulation and solution approach

using the measured (or estimated) state as initial state. This process is repeated
iteratively while the system is in operation.

The main idea of such control scheme is very simple, but it is important to an-
alyze the key components, which are crucial for obtaining an efficient and reliable
control strategy. First, the objective function is a real-valued performance criteria for
the best control signal which leads to the desired behavior. Since the optimization is
performed online, the complexity of the objective function should be set according to
the application and preferably defined as simple as possible. Typically, a quadratic
objective function is used because it provides a well-conditioned optimization problem
with smooth behavior. Second, there is no standard rule for selecting the prediction
horizon N , but it is advisable to use such value of N and interval length which allow a
prediction beyond the key dynamic of the system (e.g., transient part of dynamics) or
at least big enough to consider the possible critical constraints that could exist in such
way that the controller can manage them. Therefore, it should be large enough for
obtaining a good performance but simultaneously it should consider the corresponding
complexity in solving the optimization problem. Third, the core part of the predictive
controller is the prediction and, thus, a model is required. Defining an appropriate
model is a key point in the controller design. The prediction model should be descrip-
tive to capture the most significant dynamics of the system and simple for solving the
optimization problem. In practice, it is not beneficial to spend excessive effort improv-
ing model accuracy, which can result in high order models but may have little impact
on the systems behavior. Moreover, the feedback property of the NMPC scheme gen-
erally corrects small modeling errors. Thus, the dynamic model should be as simple as
possible to reduce complexity in the solution of the NMPC problem, but must consider
the inherent characteristics of the system to achieve a good performance.

The necessity of the application of the NMPC controller can be explained in sev-
eral ways. In the presence of unknown disturbances or unmodeled system dynamics,
it is necessary to use a feedback-like controller which solves the optimization prob-
lem repeatedly in real-time. Suppose the optimal control problem with prediction
horizon N has been solved. Then, it would be sufficient to apply the whole optimal
control sequence computed by the optimizer and not only the first element, as shown
in Figure 3.2. However, this is possible only if the process model is exact, there are
no external disturbances, and if the control input is applied instantaneously to the
process. Unfortunately, in the real applications, these conditions are never satisfied
because of the model-plant mismatch due to the complexity of the system. Likewise,
unknown disturbances are likely to occur, as well as noise in the measurements, which
means that the initial state cannot be correctly determined. Moreover, actuators need
some time to react (i.e., so-called dead time) and thus, there exist deviations between
the optimal and the applied control. Nevertheless, predictive control has shown to
be very efficient for controlling very complex systems and has outperformed typical
control strategies that have been used for many years in the industry. Compared to
traditional control techniques such as conventional controllers, predictive controllers
offer the following set of advantages. It is possible to specify the desired limitations in
the process (considering control and state constraints), as well as the desired behav-

3.3. Combined multiple-shooting with collocation 41

ior through the objective function employed in the formulation of the optimal control
problem. It can handle large-scale control problems of dynamic systems with multiple
inputs and outputs. The propagation of measurement noise through the control signal
is reduced. Disturbance compensation is also achieved due to the feedback feature
given by the receding horizon technique. In addition, the initialization of successive
optimization problems is simple, because the structure of the NLP problem does not
change between computations. Moreover, NMPC is based on a well-established theo-
retical background. Different studies about stability and robustness support the use
of this control technique. The extensive studies on mathematical optimization tools
used to solve optimal control problems have increased in the last decades, giving, as a
result, different robust solvers that can be used in general NMPC applications [42].

Besides these positive characteristics and advantages, the application of the NMPC
can become very challenging in systems where time is a crucial factor, such as au-
tonomous driving. In particular, MPC becomes challenging due to the following rea-
sons. If the model equations are nonlinear and the optimization problem is nonconvex,
the following potential problems could arise. It might not be possible to obtain a global
optimal solution. Instead, many sub-optimal local solutions can be found. This turns
the problem very difficult to solve, which implies more computational effort for ob-
taining the true optimal solution. Systems with fast or even slow dynamics require the
solution of the optimization problem in real-time, i.e., within the single time interval
(in the range of milliseconds). Thus, it is necessary to compute the solution of the
problem as fast as possible in order to obtain the optimal control input. Therefore,
the main bottleneck when using NMPC for controlling dynamic systems with high
sampling rates is the computational burden for obtaining the optimal solution at each
sampling time. Dealing with this problem is the one of several main focuses of the
work presented in this thesis. Since the problem (3.1) is continuous, it is difficult
to directly solve this problem within NMPC framework. Therefore, this problem is
converted into an NLP problem with help of CMSC method, which is discussed in the
next subsection.

3.3 Combined multiple-shooting with collocation

3.3.1 Transformation to an NLP problem

To transform the dynamic optimization problem (3.1) into a finite-dimensional NLP
problem, the combined multiple-shooting with collocation method [61, 60, 92] is ap-
plied. The time horizon [t0, tf] is divided into N intervals, and in each interval, the
state variables are treated using the multiple-shooting method. It should be noted that,
in this work, equidistant time intervals are considered. Over each time interval the
state variables are parametrized as initial values; that is, xp = [xp,0,xp,1, ...,xp,N]. Due
to its simplicity of implementation and practical applicability, the piecewise constant
form for control variable parameterization u = [u0,u1, ...,uN−1] is chosen. Considering
xp ∈ <nx·(N+1) and u ∈ <nu·N as decision variables, problem (3.1) is now transformed

42 Chapter 3. Problem formulation and solution approach

to the following NLP problem

min
xp,u

{
M(xp,N) +

N−1∑
i=0

Li(xp,i,ui)

}
subject to: xp,0 − x0 = 0,

xp,i = P · x̂i (xp,i−1,ui−1) , i = 1, . . . , N, (3.2)
Hp(x̂i (xp,i−1,ui−1) ,ui−1) ≤ 0,

Ht(xp,N) = 0,

xmin ≤ xp ≤ xmax,

umin ≤ u ≤ umax,

where x0 denotes the initial values of the state variables. The equality constraints
xp,i = P · x̂i (xp,i−1,ui−1) are introduced to ensure continuity of the differential states
between neighboring intervals. However, the state vector x̂i consists of all state and
algebraic variables at collocation points. Therefore, the projection matrix P selects
only the differential states at last collocation point from the vector x̂i (xp,i−1,ui−1),
since this state vector includes state and algebraic variables at all collocation points
in each interval and has dependency only on the parameterized states xp,i−1 ∈ <nx

and controls ui−1 ∈ <nu . Note, that the model equations are not directly involved in
the NLP problem formulation (3.2), because in each time interval, they as well as the
required (at least) first-order sensitivities are solved at the collocation points in the
simulation layer.

Based on the multiple-shooting discretization, in contrast to the pure collocation,
the model equations are not considered directly in the NLP problem (3.2). Therefore,
the problem dimension is highly reduced and time intervals are independent, which
allows parallel computing. On the other hand the model equations are discretized
using collocation method, which guarantees high approximation accuracy. Thus, the
combined approach gathers together the advantages of both methods, which plays a
crucial role for further practical engineering applications.

3.3.2 Computation of first-order sensitivities

In the CMSC method, for each time interval, a collocation method is employed. The
state and algebraic variables are approximated inside each time interval by a linear
combination of the Lagrange polynomials using the Radau scheme with Nc collocation
points. For the sake of brevity, the index for time intervals is dropped here and
therefore the decision variables for the individual time interval are denoted as Xp and
V for parameterized state and control variables, respectively. After this, the state
and algebraic variables Xc at all collocation points have implicit dependency on the
decision variables Xp and V . Therefore, the discretized dynamic model equations for
each time interval can be written in the compact form

[G(Xc(Xp, V), Xp, V)]Nxz×1 = 0, (3.3)

3.3. Combined multiple-shooting with collocation 43

where Nxz = (nx + nz) · Nc and Xc ∈ <Nxz . To obtain the first-order sensitivities
for individual time intervals, two differentiation operators ∂

∂Xp and ∂
∂V

are applied to
equation (3.3), which yields[

∂G

∂Xc

]
Nxz×Nxz

·
[
∂Xc

∂Xp

]
Nxz×nx

= −
[
∂G

∂Xp

]
Nxz×nx

, (3.4)[
∂G

∂Xc

]
Nxz×Nxz

·
[
∂Xc

∂V

]
Nxz×nu

= −
[
∂G

∂V

]
Nxz×nu

. (3.5)

The construction of the linear equation systems for the first-order sensitivities can
be done in a straightforward manner using automatic differentiation. Because of the
CMSC method, equations (3.4) and (3.5) have a sparse structure and thus can be
solved for ∂Xc

∂Xp and ∂Xc

∂V
by a linear sparse algebra algorithm. Note that sensitivity

equations can be combined together since the left-hand-side matrix is the same.

3.3.3 Computation of second-order sensitivities

In this subsection, the formulas for computing second-order sensitivities for the CMSC
method are derived. In general, there are two types of second-order sensitivities:
derivatives of functions with respect to all variables (both states and controls) in the
context of simultaneous approaches and derivatives of state variables with respect to
controls in the context of (quasi-) sequential approaches. The CMSC method is a kind
of simultaneous approach, and thus, we need to compute the second-order derivatives of
states with respect to controls and parameterized state variables. In comparison with
the approaches of previous studies [97, 12], where sensitivities have to be transferred
from one time interval to the next (so-called global sensitivities) in the context of single
shooting, we employ the advantage of the CMSC method that the computations of the
second-order sensitivities in different time intervals are independent. The second-order
sensitivities of the state continuity condition (i.e., the equality constraints of problem
(3.2) are obtained simply as those on the last collocation point of the time intervals.

In each time interval, the first-order sensitivities
[
∂Xc

∂Xp

]
and

[
∂Xc

∂V

]k solved from
equations (3.4) and (3.5) have implicit dependency on the decision variables of only this
interval. To clearly explain the derivation, the first-order sensitivity (matrix) equation
(3.4) is reformulated as a vector of linear equations. This is made by multiplying the
matrix ∂G

∂Xc with the vector
[
∂Xc

∂Xp

]k and the result is added with the vector
[
∂G
∂Xp

]k,
where k = 1, ..., nx is the column number. This procedure is also done for equation
(3.5), where k = 1, ..., nu. As a result, equations (3.4) and (3.5) can be rewritten in
the compact form[

Φ(Xc(Xp, V), Xp, V,
∂Xc

∂Xp
(Xp, V))

]
NX

S ×1
= 0, (3.6)[

Ψ(Xc(Xp, V), Xp, V,
∂Xc

∂V
(Xp, V))

]
NU

S ×1
= 0, (3.7)

44 Chapter 3. Problem formulation and solution approach

where NX
S = Nxz ·nx and NU

S = Nxz ·nu. Applying both differentiation operators ∂
∂Xp

and ∂
∂V

to equations (3.6) and (3.7), the equations for second-order sensitivities can
be expressed as follows[

∂Φ

∂(∂X
c

∂Xp)

]
NX

S ×N
X
S

[
∂2Xc

∂Xp,2

]
NX

S ×nx

= −
[
∂Φ

∂Xc

]
NX

S ×Nxz

· ∂X
c

∂Xp
−
[
∂Φ

∂Xp

]
NX

S ×nx

, (3.8)

[
∂Φ

∂(∂X
c

∂Xp)

]
NX

S ×N
X
S

[
∂2Xc

∂Xp∂V

]
NX

S ×nu

= −
[
∂Φ

∂Xc

]
NX

S ×Nxz

· ∂X
c

∂V
−
[
∂Φ

∂V

]
NX

S ×nu

, (3.9)

[
∂Ψ

∂(∂X
c

∂V
)

]
NU

S ×N
U
S

[
∂2Xc

∂V ∂Xp

]
NU

S ×nx

= −
[
∂Ψ

∂Xc

]
NU

S ×Nxz

· ∂X
c

∂Xp
−
[
∂Ψ

∂Xp

]
NU

S ×nx

, (3.10)

[
∂Ψ

∂(∂X
c

∂V
)

]
NU

S ×N
U
S

[
∂2Xc

∂V 2

]
NU

S ×nu

= −
[
∂Ψ

∂Xc

]
NU

S ×Nxz

· ∂X
c

∂V
−
[
∂Ψ

∂V

]
NU

S ×nu

.(3.11)

It can be seen that the matrix dimensions grow rapidly as the numbers of state and
control variables increases, as indicated in equations (3.8) - (3.11). In these equations,
the partial derivative matrices can be generated by applying automatic differentiation.
Note that equation (3.10) can be eliminated, because the sensitivities ∂2Xc

∂Xp∂V
and ∂2Xc

∂V ∂Xp

are exactly the same. Then, the second-order derivatives can be calculated by solving
the above linear matrix equations by a sparse linear solver, and the results provide an
AH for the CMSC method.

However, there are two major obstacles to using an AH, especially for solving
large-scale problems. First, in general, the generation of an AH is complicated. Nev-
ertheless, it is quite straightforward using our approach as described above. Second,
the computation time for each NLP iteration of an AH can be expensive; specifically,
the computation time for each NLP iteration using an AH is higher than that using
a BFGS approximation. Hence, an improvement in computation time for solving an
NLP can be achieved only if the difference between the numbers of NLP iterations
required when using an AH approach and a BFGS formula is sufficiently large. There-
fore, in the next chapter, a method based on a priori simulation is proposed to examine
whether an AH is beneficial for solving dynamic optimization problems.

3.3.4 Handling of path and terminal constraints

Similarly to equation (3.3), the discretized form of the path constraints can be written
for the individual time intervals as follows

[Hp(X
c(Xp, V), V)]Npc×1 ≤ 0, (3.12)

where Npc = npc ·Nc. For the sake of brevity, the index for time intervals is dropped
here. To obtain the first-order sensitivities for individual time intervals, the same

3.4. Primal-dual interior-point method 45

differentiation operators ∂
∂Xp and ∂

∂V
are applied to equation (3.12), which yield[

∂Hp

∂Xp

]
Npc×nx

=

[
∂Hp

∂Xc

]
Npc×Nxz

·
[
∂Xc

∂Xp

]
Nxz×nx

, (3.13)[
∂Hp

∂V

]
Npc×nu

=

[
∂Hp

∂Xc

]
Npc×Nxz

·
[
∂Xc

∂V

]
Nxz×nu

+

[
∂Hp

∂V

]
Npc×nu

, (3.14)

where numerical values of the first-order sensitivities with respect to parameterized
state and control variables are available from the solution of the linear equations
systems (3.4) and (3.5) and the structure of the derivative matrices ∂Hp

∂Xc and
∂Hp

∂V
should

be precomputed and further evaluated using numerical values of state and algebraic
variables at collocation points. If the AH is used, the second-order sensitivities can be
computed in the same way as written in the previous section.

The discretized form of the terminal constraints can be directly constructed as
follows, because of the additional state parameterization at final time

Ht(X
p) = 0, (3.15)

where Ht ∈ <nt . The first and second-order sensitivities can be directly computed
using numerical values of state variables from the last time interval obtained by the
optimizer.

3.4 Primal-dual interior-point method

Without loss of generality, the optimization problem defined in (3.2) can be rewritten
in more compact form. The standard notation of an optimization problem is given by

min
ω
f(ω)

subject to: gi(ω) = 0, i = 1, . . . , p , (3.16)
hj(ω) ≤ 0, j = 1, . . . ,m ,

where ω ∈ <d is the vector of optimization variables, f : <d → < is the objective
function to be minimized, g(ω) = [g1(ω), . . . , gp(ω)]T is the set of equality constraints,
and h(ω) = [h1(ω), . . . , hm(ω)]T is the set of inequality constraints. The goal consists in
finding an optimal value ω∗ that minimizes an objective function f(ω), while satisfying
the constraints. Our special interest belongs to special class of NLP problems, namely
convex optimization. The NLP problems can be classified as convex if f(ω) and hj(ω)
are convex functions of ω and the equality constraints gi(ω) are affine. The most
important property in convex problems is that if there exists a local minimum, it
is also a global minimum. Many applications in different fields can be described as
convex problems, making convex optimization very attractive.

Nowadays, interior-point methods (IPMs) are the most widely used numerical
methods for solving (3.16) optimization problem. The very first version was proposed

46 Chapter 3. Problem formulation and solution approach

by Karmarkar [54] and currently many researches have been focused on IPM and its
applications.

Starting from the initial guess for the optimal solution, IPM iteratively generate
steps towards the minimum point inside the feasible region described by constraints.
The most popular IPM are primal-barrier, primal-dual and its derivative predictor-
corrector. This thesis is oriented only on the primal-dual interior-point method, which
is more effective than primal-barrier method, especially when high accuracy is required
[21]. An efficient version of IPM has been developed in FORTRAN around 1992 [75].
Since then the source code has been significantly improved and was made available in
many programming languages, such as C++ or Python. The IPOPT solver [100] is
programmed to work fine with large-scale constrained optimization problems, which
implies solution of large-scale sparse matrices, which can be exploited by advanced
linear space algebra solvers. The standard version on IPOPT includes free HSL-
MA27 [81] linear solver, which is based on direct method based on a sparse Gaussian
elimination approach. Furthermore, the source-code can be compiled with several
other linear algebra solvers.

The main idea in primal-dual interior-point method is the solution of the Karush-
Kuhn-Tucker (KKT) optimality conditions by introducing a slack variable in the in-
equality constraints (3.16) to transform them into equality constraints so that the
Newton method can be applied to solve the optimization problem. In general, the
KKT optimality conditions are given as follows

∇f(ω) +

p∑
i=1

λi · ∇gi(ω) +
m∑
j=1

µj · ∇hj(ω) = 0 , (3.17)

gi(ω) = 0 , (3.18)
hj(ω) + ssj = 0 , (3.19)
µj · ssj = 0 , (3.20)
µj ≥ 0 , (3.21)

where j = 1, . . . ,m, i = 1, . . . , p, ss ∈ <m are the slack variables for the inequality
constraints, λ ∈ <p is the vector of dual variables for the equality constraints and
µ ∈ <m the vector of dual variables for the inequality constraints. However, in order
to use the Newton method for the KKT system above, it is necessary to provide the
following modifications. The complementary condition (3.20) is relaxed by making
the equation equal to γ (which allows a modification of the right hand side at each
iteration), and the variables µ ≥ 0 and ss ≥ 0. A search direction is obtained by
linearizing the modified system and solving the following linear system


H(ω, λ, µ) ∇g(ω)T ∇h(ω)T 0
g(ω) 0 0 0
∇h(ω) 0 0 I

0 0 S Y




∆ω
∆λ
∆µ
∆s

 = −


Rω

Rλ

Rµ

Rs

 , (3.22)

3.4. Primal-dual interior-point method 47

where S = diag(ss1, . . . , s
s
m), Y = diag(µ1, . . . , µm), H(ω, λ, µ) is the Hessian of the

Lagrangian function, and residuals in the right-hand side Rω, Rλ, Rµ, Rs defined
by left-hand sides of equations (3.17) - (3.20). In addition, the Hessian matrix of
Lagrangian function is technically defined as

H(ω, λ, µ) = ∇2f(ω) +

p∑
i=1

λi∇2gi(ω) +
m∑
j=1

µj∇2hj(ω). (3.23)

Unfortunately, the exact Hessian matrix is in most cases hard to calculate. Therefore,
in general the L-BFGS [77] (where "L" stands for "Limited-memory") method for the
Hessian approximation is applied. In addition, the residual vector in the left-hand side
of (3.22) is defined as follows

Rω

Rλ

Rµ

Rs

 =


∇f(x) +∇g(ω)T · λ+∇h(ω)T · µ

g(ω)
h(ω) + ss

SY − γ1

 , (3.24)

where 1 = [1, 1, . . . , 1]T .

Furthermore, this method uses standard iteration scheme defined as follows

(ωk+1, λk+1, µk+1, ss,k+1) = (ωk, λk, µk, ss,k) + αk(∆ωk,∆λk,∆µk,∆ss,k), (3.25)

where αk can be computed using, e.g., Armijo-rule [77]. The algorithm stops when
the norm of the residual vector is less than a given small tolerance ε. In this the-
sis, the primal-dual interior-point algorithm is employed for the solution of resulted
NLP problem within IPOPT software [100]. The IPOPT solver modifies the objective
function by adding penalization of slack variables, so that

f̂(ω) = f(ω) + Θ ·
m∑
j=1

ln(ssj), (3.26)

where Θ serves for controlling of slack variables and therefore at the end of convergence
Θ→ 0. The complementarity condition (3.20) are relaxed by γ, as well as Θ. But this
condition will be satisfied after the algorithm converges with γ → 0.

In order to use IPOPT software to obtain the numerical solution of the NLP, it
is required to provide important information, such as the number of optimization
variables, number of equalities and inequalities constraints, the definition of the cost
function, constraints, and bounds on the decision variables and box-constraints for
constraints. To start the search process, it is also necessary to compute at least the
first-order derivatives, i.e., the gradient of the objective function, Jacobian matrix
of equality and inequality constraints. As it was mentioned before, to compute the
Hessian matrix at each iteration, it is possible to employ the IPOPT’s approximation
using L-BFGS method. However, if the analytical Hessian is available, it can be easily

48 Chapter 3. Problem formulation and solution approach

supplied directly to the algorithm. Further information about primal-dual interior-
point method can be found in [95, 100].

Chapter 4

Correlation analysis of control
variables

4.1 Idea of the correlation analysis

The basic idea of correlation analysis comes from parameter estimation problems where
a model under consideration will be non-identifiable if there are strong correlations be-
tween model parameters [25, 74, 66]. In such situations, the NLP solver will experience
convergence difficulties to an optimal point, because the resulting sensitivity matrix
tends to be singular or ill-conditioned. Based on these considerations, a novel ap-
proach to determine the use of an analytical or approximate Hessian by analyzing
control-variable correlations of the dynamic optimization problem is proposed [61].
This is done through a priori simulation using proper input control profiles. As in
parameter estimation, the convergence to an optimal point will be slow if there are
strong correlations between control variables. Such correlations can arise from im-
proper modeling of the system. Now, we investigate correlations of control variables
in a dynamic systems described by

ẋ(t) = f (x(t), u(t), t) , x(t0) = x0, (4.1)

where x(t) ∈ <nx , u(t) ∈ <nu are state and control vectors, respectively. The known
initial state vector is given by x0. The decision variables are u(t) and have to be
determined by the optimization method.

Mathematically, a correlation between ui and uj (U-U correlation) means that the
two control variables have a functional relationship. The physical meaning of such
a correlation is that the effects of ui and uj on the system will be compensated.
A straightforward way to identify U-U correlations in a system described by equation
(4.1) is to analyze the state sensitivity matrix to the controls

(
∂x
∂u

)
. If there are linearly

dependent columns in this matrix, then the corresponding controls are correlated.
Based on equation (4.1), the sensitivities of states to the control variables can be

expressed as

d

dt

(
∂x
∂u

)
=

(
∂f
∂x

)
·
(
∂x
∂u

)
+

(
∂f
∂u

)
. (4.2)

If the initial state of the system x0 is a steady-state, the initial condition of equation

50 Chapter 4. Correlation analysis of control variables

(4.2) can be written as(
∂x
∂u

∣∣∣∣
t=t0

)
=

(
∂f
∂x

∣∣∣∣
t=t0

)−1
·

(
∂f
∂u

∣∣∣∣
t=t0

)
. (4.3)

The solution of (4.2) can be similarly obtained as in [66]. Based on this solution,
(
∂x
∂u

)
has a linear (integral) relation with

(
∂f
∂u

)
from t0 to t. Consequently, the columns

in
(
∂x
∂u

)
will be linearly dependent, i.e., the control variables are correlated, if at any

time the columns of
(
∂f
∂u

)
are linearly dependent. As a result, U-U correlations can be

identified by analyzing the linear dependence of the columns of the function sensitivity(
∂f
∂u

)
which is easy to achieve. If the following equality holds true(

∂f
∂ui

)
= αi,j ·

(
∂f
∂uj

)
, (4.4)

then there is a correlation between ui and uj. If the coefficient αi,j is a constant, it is
a structural correlation, that is, this correlation does not depend on control variables.
If the coefficient αi,j is a function of control variables, αi,j (ui, uj), it is a practical
correlation and can be resolved and remedied by selecting proper control profiles. In
this way, the dependence of a U-U correlation of the controls can be identified. As a
simple example, consider ẋ = − (u1 + u2) ·x. Then ∂f

∂u1
= ∂f

∂u2
; that is, u1 and u2 have a

structural correlation. If we have ẋ = −u1 ·u2 ·x, then ∂f
∂u1

= u2
u1
· ∂f
∂u2

, which means that
u1 and u2 are practically correlated. It should be noted that this correlation analysis
is not limited to ordinary differential equations. In fact, it can be easily extended to
handle DAE systems.

However, the method of correlation analysis presented above can only explicitly
determine whether there is or is not a correlation in the system under consideration,
that is, it provides a result that two control variables are either 0% or 100% correlated.
Nevertheless, control variables in a system are usually correlated between 0% (weak
correlation) and 100% (strong correlation). Therefore, an index is needed to quantify
the degree of a correlation between two controls. Such an index can be readily obtained
by calculating the angles of the corresponding columns in the matrix of

(
∂x
∂u

)
. If

the control profiles are given, one can obtain this matrix through simulation. The
construction of this matrix in straightforward. The resulting sensitivities from each
time interval are vertically concatenated together.

Considering two columns in the matrix
(
∂x
∂u

)
, v = [v1, . . . , vn]T , w = [w1, . . . , wn]T ,

the angle between the two columns can be calculated as

Θ = arccos

(∑n
i=1 vi · wi√∑n

i=1 v
2
i ·
∑n

i=1w
2
i

)
. (4.5)

From the viewpoint of optimality conditions, a U-U correlation negatively affects
the regularity conditions, that is, the Mangasarian-Fromovitz constraint qualification

4.2. Demonstration examples 51

[77] (MFCQ), when the angle describing the collinearity of two columns is close to
0◦. Then, the Jacobian matrix of the equality constraints in the NLP tends to be
ill-conditioned, and hence, the NLP solver will need more iterations to converge. It
is clear that the presence of correlated control variables will also negatively affect the
convergence rate when the BFGS method is used, that is, the approximated Hessian
might be insufficient and thus causes slow convergence of the optimization algorithm.
Therefore, an AH is desired to accelerate the convergence if there is a U-U correlation.
Because an a priori simulation is needed to perform the correlation analysis, proper
profiles of control inputs need to be selected. Here, the pseudorandom binary sequence
(PRBS) is proposed as a stimulating signal. The PRBS has been widely used for system
identification [68, 44], since it exhibits many preferred properties (e.g., persistently
exciting, being white-noise-like, and having maximum power for a limited amplitude)
[73, 85]. These properties are also advantageous for the purpose of identifying control-
variable correlations, because the input signals should include a broad frequency band
and both persistently and sufficiently excite the system within a limited time horizon.

4.2 Demonstration examples

The problem below was firstly introduced by Luus [71] and further analyzed by Balsa-
Canto et al. [9]. The purpose of this optimization problem is to determine four control
variables of the continuous stirred-tank reactor (CSTR) to maximize the economic ben-
efit. The system dynamics is represented by several simultaneous chemical reactions.
The dynamic optimization problem is formulated as [9]:

max
u(t)

x8(tf)

subject to: ẋ1(t) = u4(t)− q · x1(t)− 17.6 · x1(t) · x2(t)− 23 · x1(t) · x6(t) · u3(t),
ẋ2(t) = u1(t)− q · x2(t)− 17.6 · x1(t) · x2(t)− 146 · x2(t) · x3(t),
ẋ3(t) = u2(t)− q · x3(t)− 73 · x2(t) · x3(t),
ẋ4(t) = −q · x4(t) + 35.2 · x1(t) · x2(t)− 51.3 · x4(t) · x5(t),
ẋ5(t) = −q · x5(t) + 219 · x2(t) · x3(t)− 51.3 · x4(t) · x5(t),
ẋ6(t) = −q · x6(t) + 102 · x4(t) · x5(t)− 23 · x1(t) · x6(t) · u3(t),
ẋ7(t) = −q · x7(t) + 46 · x1(t) · x6(t) · u3(t), (4.6)
ẋ8(t) = 5.8 · (q · x1(t)− u4(t))− 3.7 · u1(t)− 4.1 · u2(t) +

q · (23 · x4(t) + 11 · x5(t) + 28 · x6(t) + 35 · x7(t))− 5 · u23(t)− 0.09,

q = (u1(t) + u2(t) + u4(t)),

x(t0) = [0.1883, 0.2507, 0.0467, 0.0899, 0.1804, 0.1394, 0.1046, 0.0]T ,

0 ≤ u1(t) ≤ 20, 0 ≤ u2(t) ≤ 6,

0 ≤ u3(t) ≤ 4, 0 ≤ u4(t) ≤ 20,

t0 ≤ t ≤ tf ,

t0 = 0, tf = 0.2.

52 Chapter 4. Correlation analysis of control variables

The Jacobian of the right-hand side f of the model equations with respect to the control
variables u = [u1, u2, u3, , u4]

T is given by

∂f
∂u

=



−x1(t) −x1(t) −23 · x1(t) · x6(t) 1− x1(t)
1− x2(t) −x2(t) 0 −x2(t)
−x3(t) 1− x3(t) 0 −x3(t)
−x4(t) −x4(t) 0 −x4(t)
−x5(t) −x5(t) 0 −x5(t)
−x6(t) −x6(t) −23 · x1(t) · x6(t) −x6(t)
−x7(t) −x7(t) 46 · x1(t) · x6(t) −x7(t)
3.7 + ξ 4.1 + ξ −10 · u3(t) 5.8 + ξ


, (4.7)

where ξ = 5.8 ·x1(t)+23 ·x4(t)+11 ·x5(t)+28 ·x6(t)+35 ·x7(t). It can be seen that the
first, second, and fourth column are nearly linearly dependent. This means that the
matrix ∂f

∂u tends to be ill-conditioned, which will cause convergence difficulties during
the solution of the resulting NLP problem.

Now, we calculate the angles between these columns using simulation, based on four
PRBS signals as control profiles as shown in Figure 4.1. In order to compute state
trajectories and corresponding sensitivities the original dynamic optimization problem
(4.6) is discretized using CMSC method by applying 60 equidistant time intervals.

The calculated angles are given in Table 4.1, showing that there are strong U-U
correlation pairs, namely, u1-u2, u1-u4, and u2-u4. Consequently, it will be favorable

Table 4.1: Correlation values between controls for CSTR
u1 u2 u3 u4

u1 0.0◦ 12.1◦ 123.6◦ 14.5◦

u2 12.1◦ 0.0◦ 123.4◦ 14.2◦

u3 123.6◦ 123.4◦ 0.0◦ 123.1◦

u4 14.5◦ 14.2◦ 123.1◦ 0.0◦

to solve this problem using an AH instead of the BFGS method.
As predicted from the correlation analysis, the solution of this problem indicates

that the analytical Hessian is indeed much more efficient than the BFGS method. It
can be seen that the convergence is very slow (1687 NLP iterations) using the BFGS
method, whereas a significant improvement (22 NLP iterations) is achieved using the
AH, see Figure 4.2A. This leads to a significant reduction in computation time. The
convergence rate in terms of the objective-function value and the primal and dual
infeasibilities (reported by IPOPT) is shown in Figure 4.2, where only the first 100
iterations are plotted for the BFGS method. It can be clearly seen from Figure 4.2B,C
that a feasible solution is difficult to achieve using the BFGS method.

The second problem is an optimal control of a rigid satellite [52, 83] initially un-
dergoing a tumbling motion. The system dynamics is described by seven ordinary

4.2. Demonstration examples 53

ξ ξ ξ

∂
∂ =

− − − −
− − −
− − −
− − −
− − −
− − − −
− − −

− + − + − − +

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

x t x t x t x t x t

x t x t x t

x t x t x t

x t x t x t

x t x t x t

x t x t x t x t x t

x t x t x t x t x t

u t

f
u

() () 23 () () 1 ()

1 () () 0 ()

() 1 () 0 ()

() () 0 ()

() () 0 ()

() () 23 () () ()

() () 46 () () ()

3.7 4.1 10 () 5.8

1 1 1 6 1

2 2 2

3 3 3

4 4 4

5 5 5

6 6 1 6 6

7 7 1 6 7

3

(36)

where ξ = 5.8x1(t) + 23x4(t) + 11x5(t) + 28x6(t) + 35x7(t). It
can be seen that the first, second, and fourth column are nearly
linearly dependent. This means that the matrix ∂f/∂u tends to
be ill-conditioned. Now, we calculate the angles between these
columns using simulation, based on four PRBS signals as
control profiles as shown in Figure 1. The calculated angles are
given in Table 2, showing that there are strong U−U
correlation pairs, namely, u1−u2, u1−u4, and u2−u4.

Consequently, it will be favorable to solve this problem using
an AH instead of the BFGS method. As predicted from the
correlation analysis, the solution of this problem indicates that
the analytical Hessian is indeed much more efficient than the
BFGS method, as shown in Table 3. It can be seen that the
convergence is very slow (1687 NLP iterations) using the
BFGS method, whereas a significant improvement (22 NLP

iterations) is achieved using the AH. This leads to a significant
reduction in computation time. The convergence rate in terms
of the objective-function value and the primal and dual
infeasibilities (reported by Ipopt) is shown in Figure 2, where
only first 100 iterations are plotted for the BFGS method. It can
be clearly seen from Figure 2B,C that a feasible solution is
difficult to achieve using the BFGS method. Moreover, it is
interesting to note from Table 3 that the improvement in
computation time by parallel computing (using six processors)
is insignificant because the communication time takes a large
portion of the total computation time.

5.2. Satellite Control. Optimal control of a rigid
satellite46,47 initially undergoing a tumbling motion is
considered in this case study. The system dynamics is described
by seven ordinary differential equations. The optimal control
problem is formulated as follows

∫|| − || + || ||x t x u tmin{ () 0.5 d }
u t t

t

()
f f

2 2

0

f

(37)

subject to

̇ = − +x x x x x x x0.5()1 5 4 6 3 7 2 (38)

̇ = + −x x x x x x x0.5()2 5 3 6 4 7 1 (39)

̇ = − + −x x x x x x x0.5()3 5 2 6 1 7 4 (40)

̇ = − + +x x x x x x x0.5()4 5 1 6 2 7 3 (41)

̇ = − + −x I I x x T u I[()]5 2 3 6 7 1s 1 1
1

(42)

̇ = − + −x I I x x T u I[()]6 3 1 7 5 2s 2 2
1

(43)

̇ = − + −x I I x x T u I[()]7 1 2 5 6 3s 3 3
1

(44)

Figure 1. Control profiles generated from PRBSs for the CSTR model.

Table 2. Correlation Values between Controls for the CSTR
Model

u1 u2 u3 u4

u1 0.0° 12.1° 123.6° 14.5°
u2 12.1° 0.0° 123.4° 14.2°
u3 123.6° 123.4° 0.0° 123.1°
u4 14.5° 14.2° 123.1° 0.0°

Table 3. CSTR Problem Solutions

method one CPU six CPUs objective iterations

BFGS 112.407 93.119 21.82414 1687
AH 2.651 1.795 21.82414 22

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b02369
Ind. Eng. Chem. Res. 2015, 54, 12086−12095

12091

Figure 4.1: Control profiles generated from PRBSs for the CSTR problem

=x t() [0, 0, 0, 0, 0.01, 0.005, 0.001]0
T

(45)

=x [0.70106, 0.0923, 0.56098, 0.43047, 0, 0, 0]f
T

(46)

≤ ≤ = =t t t t t, 0, 1000 f 0 f (47)

where I1 = 106, I2 = 833333, and I3 = 916677 represent the
principal moments of inertia and T1s = 550, T2s = 50, T3s = 550
are the corresponding time constants. The Jacobian of the
right-hand-side functions of eqs 38−44 with respect to the
control variables is represented by

∂
∂ =

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥⎥

T I

T I

T I

f
u

0 0 0
0 0 0
0 0 0
0 0 0
/ 0 0

0 / 0

0 0 /

1s 1

2s 2

3s 3 (48)

From eq 48, it can be clearly seen that the columns are linearly
independent, and thus, the controls are not correlated with
each other. The angles between the columns calculated through
simulation using PRBS signals as control profiles are given in
Table 4, indicating very weak correlations between the controls.
Consequently, it is expected that the problem can be efficiently
solved using the BFGS method. As indicated in Table 5,
although the number of iterations required using the BFGS
method is greater, the computation time is less than that
required using an AH. This is because the computation cost of
the AH is higher than that of the BFGS method. The
convergence rate is indicated in Figure 3. It can be seen that, to

solve this problem, the convergence rate is almost the same
when using either the AH or BFGS method.

5.3. Combined-Cycle Power Plant. The model of a
combined-cycle power plant was taken from in Casella et al.48

and is available in the JModelica repository. It contains 10
differential states, 124 algebraic variables, and 1 control variable.
A correlation analysis for this problem is not relevant,

because only one control variable is involved in the DAE
system. Here, we solve this problem by the proposed approach
and by a serial algorithm, namely, the collocation method from
JModelica. The resulting computation times are shown in
Figure 4, where the bold gray line shows the time for the
solution of the problem using the collocation method.
It can be seen from Figure 4 that, when using four or six

processors, our approach slightly outperforms the serial
collocation method using the BFGS method. In addition, the
computation time for applying an AH to this problem is higher
than for using the BFGS method. This is because the difference
between the numbers of NLP iterations required for AH (37

Figure 2. Convergence profiles during solution of the CSTR problem.

Table 4. Correlation Values between Controls for the SAT
Model

u1 u2 u3

u1 0.0° 98.3° 95.9°
u2 98.3° 0.0° 102.7°
u3 95.9° 102.7° 0.0°

Table 5. SAT Problem Solutions

method one CPU six CPUs objective iterations

BFGS 0.591 0.464 0.46394578 13
AH 0.908 0.617 0.46394578 8

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b02369
Ind. Eng. Chem. Res. 2015, 54, 12086−12095

12092

Figure 4.2: Convergence profiles during solution of the CSTR problem

54 Chapter 4. Correlation analysis of control variables

differential equations. The optimal control problem is formulated as follows

min
u(t)

{
‖x(tf)− xf‖2 + 0.5 ·

∫ tf

t0

‖u‖2dt
}

subject to:
ẋ1 = 0.5 · (x5x4 − x6x3 + x7x2) ,

ẋ2 = 0.5 · (x5x3 + x6x4 − x7x1) ,
ẋ3 = 0.5 · (−x5x2 + x6x1 − x7x4) ,
ẋ4 = −0.5 · (x5x1 + x6x2 + x7x3) ,

ẋ5 = ((I2 − I3)x6x7 + T1su1) · I−11 , (4.8)
ẋ6 = ((I3 − I1)x7x5 + T2su2) · I−12 ,

ẋ7 = ((I1 − I2)x5x6 + T3su3) · I−13 ,

x(t0) = [0, 0, 0, 1, 0.01, 0.005, 0.001]T ,

xf = [0.70106, 0.0923, 0.56098, 0.43047, 0, 0, 0]T ,

t0 ≤ t ≤ tf , t0 = 0, tf = 100.

where I1 = 106, I2 = 833333, I3 = 916677 represent principal moments of inertia and
T1s = 550, T2s = 50, T3s = 550 are the corresponding time constants. The Jacobian of
the right-hand-side functions of model equations with respect to the control variables
is represented by

∂f
∂u

=



0 0 0
0 0 0
0 0 0
0 0 0
T1s
I1

0 0

0 T2s
I2

0

0 0 T3s
I3


. (4.9)

From equation (4.9), it can be clearly seen that the columns are linearly independent,
and thus, the controls are not correlated with each other. The angles between the
columns calculated through simulation using PRBS signals as control profiles are given
in Table 4.2, indicating very weak correlations between the controls. Consequently, it
is expected that the problem can be efficiently solved using the BFGS method.

Table 4.2: Correlation values between controls for SAT
u1 u2 u3

u1 0.0◦ 98.3◦ 95.9◦

u2 98.3◦ 0.0◦ 102.7◦

u3 95.9◦ 102.7◦ 0.0◦

The time horizon is divided into 60 equidistant time intervals. The IPOPT default

4.2. Demonstration examples 55

convergence tolerance 10−8 is used in solving the resulting NLP problem. The con-
vergence rate is indicated in Figure 4.3. The numbers of iterations required using the
BFGS method and using AH are equal to 13 and 8 iterations, respectively. However,
the computation cost is less than that required using an AH. Therefore, using the
BFGS method is preferred.

iterations) and for the BFGS method (49 iterations) is not
significant. In this case, the computation cost for AH takes a
large portion of the total computation time.
It is shown in Figure 4 that, when the number of processors

used is increased from one to six, the total computation times
for both methods decrease. However, more time is required for
10 processors than for six processors, because of the fast-
growing communication time between the master and worker
processors.
5.4. Distillation Column. This is a large-scale model

available in JModelica. The original model was developed by
Diehl,49 and an extended version was coded in Modelica based
on the work of Hedengren.50 The distillation column has 40
trays for separating a mixture of methanol and n-propanol. This
DAE model contains 125 differential states (molar vapor flux,
temperature, liquid mole fractions for each tray, a reboiler, and
a condenser), 1000 algebraic variables, and 2 control signals
(volumetric reflux flow and heat input). The objective of this

problem is to achieve given set points for temperatures and
controls after a short reflux breakdown.
Using an a priori simulation with PRBSs as the control

profiles, the results show that the angle between the two
control variables is 116.19°. Thus, the two controls are weakly
correlated, and therefore, the BFGS method is expected to
achieve efficient computation.
We solved this problem again by our approach with the

BFGS method and by the serial algorithm in the context of the
collocation method available in JModelica. The results are
shown in Figure 5, where the bold gray line shows the
computation time using the collocation method.
It can be seen from Figure 5A that, as the number of

processors for parallel computing is increased, the total

Figure 3. Convergence profiles during solution of the SAT problem.

Figure 4. Computation time taken to solve the CCPP problem using
parallel computing.

Figure 5. Computation time and speedup factor for solving the DIST
problem using parallel computing.

Industrial & Engineering Chemistry Research Article

DOI: 10.1021/acs.iecr.5b02369
Ind. Eng. Chem. Res. 2015, 54, 12086−12095

12093

Figure 4.3: Convergence profiles during solution of the SAT problem

Through both practical engineering examples the viability of the proposed control-
variable correlation analysis was demonstrated. Furthermore, this approach will be
applied for the a priori investigation of the vehicle models in the design of control
strategies for autonomous driving.

Chapter 5

An approach to determining the
number of time intervals

5.1 Error estimation problem

The CMSC method, on the one hand, allows us to convert a time-dependent dynamic
optimization problem (3.1) into an NLP problem (3.2) and provides fast numerical
solution [61]. On the other hand, the numerical solution is only an approximation of
the analytical solution of the original problem. The numerical accuracy of the approx-
imation plays an important role in the realizability of the solution of the optimization
problem. Therefore, in this study, the focus is on the investigation of the impact as
well as the determination of the number of time intervals on the approximation errors
of the numerically computed state trajectories.

For the analysis of the approximation error, three factors should be taken into ac-
count in solving the NLP problem described above: the discretization method together
with the order of polynomials used in the algorithm; the number of time intervals used
for the discretization; and the variation of the state trajectories over the time horizon
which is caused by the operating condition. In this study, we assume that a discretiza-
tion scheme is already selected with a fixed order of polynomials. Thus, the interest
here is to analyze the impact of the number of time intervals for the collocation and
the operating conditions (i.e., control profiles as well as the initial state values) on the
numerical error.

Applying the CMSC method, collocation on finite elements is used for the dis-
cretization of state trajectories inside each time interval. For simplicity of the analy-
sis, the number of Radau collocation points is chosen as nc = 3 . Thus, in each time
interval, a state trajectory x(t), namely its analytical solution, will be approximated
by a numerically computed profile xN(t) using Lagrange polynomials

xN(t) =
nc∑
k=0

nc∏
j=0
j 6=k

t− tj
tk − tj

· xN,k, (5.1)

where xN,k is the value of the state trajectory at the k-th collocation point. Based on
the principle of the collocation methods, the numerical and analytical state values at
the collocation points are nearly identical, within the tolerance of the solution method
used in the simulation layer [92, 61]. Thus, x(tk) = xN,k, where tk denotes the time
position of the k-th collocation point. Therefore, it is not necessary to investigate

58 Chapter 5. An approach to determining the number of time intervals

approximation errors at the collocation points. Instead, we need to analyze the errors
at noncollocation points.

Theoretically, the number of noncollocation points is infinite, which makes an error
estimation overcomplicated. To overcome this difficulty, we choose a single noncollo-
cation point in each time interval. Consider the i-th time interval [ti−1, ti] with corre-
sponding Radau collocation points {ti−1, τi,1, τi,2, τi,3}. Hence, t̂i = τi,1+0.5·(τi,2 − τi,1)
is a noncollocation point, since this point is farther away from two neighboring col-
location points than any other noncollocation points between [τi,1, τi,2]. The state
profile between the collocation points is approximated by the Lagrange polynomial.
Intuitively, a maximum error will be at the midpoint between two adjacent colloca-
tion points. Therefore, we chose this point as the noncollocation point which is also
employed for error estimation in the work of Bartl et al. [11]. It is noted that this
noncollocation point is not the midpoint of the time interval as mentioned in the work
of Vasantharajan and Biegler [96]. Nevertheless, the analysis of the approximation
errors can be easily extended by analyzing additional noncollocation points. Such an
extension does not change the idea of the proposed approach, which is described in
the next section.

Furthermore, the error function e(t̂i) at the specified noncollocation points over the
time horizon [t0, tf] is introduced and defined as

e(t̂i) = |x(t̂i)− xN(t̂i)|, i ∈ {1, . . . , N} . (5.2)

Hence, the absolute value of the numerical error e(t̂i), defined in (5.2), will be increased
if the difference between x(t̂i) and xN(t̂i) is increased, pointwise. Since the form of the
function xN(t) is fixed by the selected discretization scheme, the difference between
the two functions will be high if x(t) has a high oscillating behavior over t ∈ [ti, ti+1].
As a result, the numerical error depends on the amplitude of this oscillating function,
i.e., the greater the amplitude, the larger the numerical error will be. Such a behavior
depends on the operating conditions (i.e., the initial condition and the control profiles)
of the system.

Considering equidistant time intervals, the length of each time interval is deter-
mined as ∆t = (tf − t0) /N . From the numerical point of view, the smaller the value
of ∆t, the less will be the resulting approximation error. However, the number of
intervals will be larger, which causes higher computational cost because the dimension
of the NLP problem (3.2) will be higher. Hence, it is required to find a compromise,
in terms of the number of time intervals, between the approximation error over the
time horizon [t0, tf] and the computational load.

Therefore, the main goal of this study is to find a minimum number of time inter-
vals in a given fixed time horizon so that the maximum approximation error at the
noncollocation points will be less or equal to a user-specified tolerance ε of the state
accuracy. For this purpose, the NLP problem (3.2) is reformulated by considering
the number of time intervals N as an additional degree of freedom, and by introduc-
ing an inequality constraint for controlling the maximum approximation error at the
noncollocation points. Hence, the error maximization problem is formulated as

5.2. Bilevel problem formulation 59

max
xp,u,x̃0,N

{
ei,qmax

}
subject to: xp,0 − x̃0 = 0,

xp,i = x̂i (xp,i−1,ui−1) , i = 1, . . . , N,

xmin ≤ xp ≤ xmax, (5.3)
umin ≤ u ≤ umax,

ei,qmax − ε ≤ 0.

The variable ei,qmax denotes the maximum approximation error of the q-th state variable,
q ∈ {1, . . . , nx} in the i-th interval, i ∈ {1, . . . , N} and technically it is equal to

ei,qmax = max
i∈{1,...,N}

{
|x(q)(t̂i)− x(q)N (t̂i)|

}
, (5.4)

where the analytical and numerical solutions of the q-th state variable at the noncol-
location point t̂i are defined as x(q)(t̂i) and x(q)N (t̂i), respectively. Since the number of
time intervals is an integer variable, problem (5.3) can be classified as a mixed-integer
nonlinear program (MINLP).

In addition, as indicated in problem (3.1), the system dynamics is described by a set
of differential equations f with a given initial condition x0 of the state variables. Thus,
the solution of the model equations has a strong dependence on the initial condition.
Moreover, if problem (3.1) is considered in a NMPC framework, the initial conditions
x0 cannot be considered as fixed values anymore, because in every prediction horizon
they will be correspondingly updated. Furthermore, the resulting behavior of state
trajectories is not only associated with the initial condition but also has the strong
dependency on the control profile u(t) in the given time horizon [t0, tf]. Thus, the
combined impact on the resulting approximation errors, in the numerically computed
state trajectories concerning variable initial values of the state variables and control
profiles, has to be examined by solving (5.3).

In particular, the main focus is on the maximum of the approximation error to
determine the associated minimum number of time intervals in order to balance the
computation expense and the numerical tolerance of the state accuracy. Furthermore,
for online applications such as NMPC, it is important to find the maximum approxi-
mation error a priori, such that the determined minimum number of intervals ensures
the error tolerance for any operating conditions.

5.2 Bilevel problem formulation

Since the MINLP problem (5.3) is hard to solve directly, we transform it into a more
convenient bilevel form, where the discretized (originally continuous) variables xp,u
and the integer variable N are treated separately from each other. The inner loop
determines the state trajectories with corresponding approximation errors to be es-

60 Chapter 5. An approach to determining the number of time intervals

timated with the continuous independent variables. The outer loop determines the
number of time intervals N in such a manner that the given approximation error
tolerance is guaranteed. Therefore, both problems are combined together and have
bilateral dependencies. It should be noted that the problem formulated is in a general
form and it is independent of the chosen discretization method. The proposed bilevel
scheme is given in Figure 5.1 .

Outer loop

Minimize: Number of
time intervals

Inner loop

Maximize: Approximation
errors

Solution
of NLP (3.2)

𝑙 = 𝑙 + 1

𝑁(𝑙) = 𝑁(𝑙−1) + ∆𝑁+
 𝑁(𝑙)

𝑒𝑚𝑚𝑚
(𝑙) 𝑁(0)

𝑙 = 0

Yes

No

𝑁(𝑙−1) = 𝑁(𝑙−1) − ∆𝑁−

𝑙 = 0

No

Yes

𝑁(𝑙)

𝑒𝑚𝑚𝑚
(𝑙−1) ≤ 𝜀

?
𝑙 = 1

?

Figure 5.1: The bi-level solution framework

Starting from the initial guess N (0) for a number of time intervals and setting
the iteration counter l to zero, the inner loop determines in each l-th iteration the
maximum approximation error e(l)max for the given fixed number of intervals from the
outer loop by adjusting the control variables u(t) and the initial condition x0 of the
state variables. Based on the results from the inner loop, the outer loop updates the
number of time intervals.

On the one hand, if it is found that e(l)max, already in the first iteration (l = 1),
is equal or less than the predefined tolerance ε, the number of time intervals will be
reduced, using a decrement ∆N− and again supplied to the inner loop. The iteration
counter will be reset to zero. On the other hand, if the determined maximum approxi-
mation tolerance is larger than the predefined tolerance ε, the number of time intervals
will be enlarged, i.e., using an increment ∆N+, and again supplied to the inner loop.

5.2. Bilevel problem formulation 61

The computation will terminate based on fulfillment of two conditions: l 6= 1 and
e
(l−1)
max ≤ ε. The resulting number of time intervals is the minimum number and can be
applied for the solution of the NLP problem (3.2). It should be noted, however, that if
the original problem (3.2) is an offline optimization problem (e.g., optimal operation of
batch distillation), the initial condition is fixed. In this case, the problem formulated
in (5.3) needs to be modified; i.e., the independent variables should not include the
initial state values.

The major difference between the proposed bilevel approach and the one suggested
by Tanartkit and Biegler [93, 94] lies in the fact that the objective function of the
inner loop in our approach considers an error maximization, but in the inner loop of
Tanartkit and Biegler the objective function of the original NLP problem was used.
In addition, the bi-level strategy is a priori analysis and to be carried out offline, and
thus the computation time is not a critical issue.

5.2.1 The outer loop

The outer loop is responsible for finding a minimum number of time intervals so that
the upper limit of approximation errors over the fixed time horizon [t0, tf] can be
guaranteed, i.e.,

min
N(l)
{N (l)}

subject to: e(q)max ≤ ε, (5.5)

where l = 0, 1, . . . means the (global) iteration index of the bilevel approach.
Problem (5.5) is solved in a heuristic manner, i.e., if the maximum approximation

error provided from the inner loop violates the predefined tolerance ε, the number of
time intervals will be increased using an increment ∆N+. In the case that already in
the first iteration the error constraint is fulfilled, the number of time intervals will be
decreased using a decrement ∆N−, as indicated in Figure 5.1. Practically, the values of
the increment and decrement can simply be chosen to be equal to 1. Nevertheless, other
update strategies can also be used. However, a large increment cannot guarantee that
the found number of time intervals is a minimum. Therefore, other update strategies
will be much more complicated than the proposed one. As a result, its new value will
be supplied to the inner loop, leading to an improved maximum approximation error.
If the maximum approximation error is smaller than the tolerance, the corresponding
number of time intervals is determined as the minimum number of time intervals. The
final result can be applied for the discretization of the original problem (3.1).

5.2.2 The inner loop

As described above, the inner loop solves the error maximization problem with the
updated number of time intervals provided by the outer loop. Taking into account
the model equations and box-constraints imposed on state and control variables in

62 Chapter 5. An approach to determining the number of time intervals

problem (3.1), but ignoring the original objective function, the NLP problem in the
inner loop is posed as

(Bilevel-I) max
xp,u,s

s

subject to: xp,0 − x̃0 = 0, (5.6)
xp,i = x̂i (xp,i−1,ui−1) , i = 1, . . . , N, (5.7)

max
i∈{1,...,N}

{eq(t̂i)} − s = 0, (5.8)

xmin ≤ xp,i ≤ xmax, i = 0, . . . , N, (5.9)
umin ≤ ui ≤ umax, i = 0, . . . , N − 1, (5.10)
smin ≤ s ≤ smax, (5.11)

where s ∈ <1 defines the maximum approximation error and has the same meaning as
the selected q-th state variable, q ∈ {1, . . . , nx}, under consideration. Equation (5.8)
is introduced to evaluate the approximation error in the time horizon and thus, selects
the maximum value from all calculated approximation errors in the time intervals i ∈
{1, . . . , N}. The term eq

(
t̂i
)
describes the approximation error at the noncollocation

point t̂i in the i-th interval and can be computed using equation (5.2). Inequalities
(5.9) − (5.10) define box constraints on the parametrized states and controls. These
bounds are the same as in the original dynamic optimization problem formulation
(3.1). The lower and upper bounds (5.11) of s are chosen as smin = 0 and smax = 1,
respectively. The value of smax is chosen empirically. Problem bilevel-I allows us to
find the maximum approximation error with controls as decision variables. The initial
condition x̃0 (the values of state trajectories), defined in the equality constraint (5.6),
is fixed in this problem, which represents the case of an offline optimal control.

For an online application (as in the case of NMPC), the initial condition will vary
from time to time. Thus, the impact of the initial condition on the approximation error
needs to be considered. To include the initial values of states as decision variables, the
corresponding NLP problem is formulated as follows

(Bilevel-II) max
xp,u,s

s

subject to: xp,0 ≤ xp,0 ≤ xp,0, (5.12)
constraints (5.7)− (5.11),

where, in contrast to equation (5.6), in inequality (5.12), the initial states are allowed
to vary within a lower bound xp,0 and an upper bound xp,0. Thus, bilevel-II is con-
cerned with the simultaneous impact of both the initial condition and control variables.
Therefore, the solution of this problem (i.e., the minimum number of intervals) will be
valid for an online application with a guaranteed state profile accuracy for varying ini-
tial conditions. In the bilevel-II problem, the bounds for the initial state values should
be defined. Otherwise initial state values can be infinite due to the maximization of
the approximation error, which is a contradiction to a physical process. Therefore,

5.3. Implementation details 63

one can investigate the related process to constrain the initial state values, i.e., to
determine proper values of xp,0 and xp,0. For instance, state variables of chemical
processes are usually mole fractions of components of a mixture. To prevent violations
of the physical bounds on the mole fractions additional constraints representing the
sum of all mole fractions equal to one should be introduced. The use of component
balance equation makes it unnecessary to introduce such constraints in the optimiza-
tion problem formulation. However, in the formulation of the bilevel-II problem, these
constraints should be explicitly posed for limiting the initial state values.

The implementation details, considering the solution of bilevel-I and bilevel-II prob-
lems, are given in the next subsection.

5.3 Implementation details
One difficulty in solving the NLP problems bilevel-I and bilevel-II is the evaluation
of the approximation error. In the NLP problem (3.2) the model equations are not
directly involved in the problem formulation. The discretized model equations Gi for
the i-th time interval are solved in the simulation layer and can be written in the
following compact form

[Gi (xi (xp,i,ui) ,xp,i,ui)]ng
= 0, (5.13)

where ng = nx · nc and i = 0, . . . , N − 1. Thus, the values of the state variables at
the collocation points can be obtained by solving the nonlinear equations Gi for xi
using a Newton solver. Based on these results, the value of the q-th state x(q)N (t̂i) at a
noncollocation point t̂i, required in equation (5.4), can be computed by an interpolation
using the Lagrange polynomials (5.1).

Furthermore, the analytical (exact) value x(q)(t̂i) at the noncollocation points for
the error evaluation should be made available . For this purpose, an additional solution
of the model equations with a reduced interval length is employed. The reduced length
of time interval is so determined that the last collocation point lies exactly at the
noncollocation point t̂i . Since the state values at this point are also achieved by the
Newton method, they are quasi-analytical. To illustrate this aspect, the following two
simple differential equations are considered:

ẋ1(t) = u1(t)− x1(t), (5.14)
ẋ2(t) = −x2(t) · u2(t), (5.15)

where t ∈ [0, 1], x1(0) = x2(0) = 1.0 and control variables are defined as constants, i.e
u1(t) = u2(t) = 2.0. To demonstrate the proposed error estimation approach, equa-
tions (5.14) and (5.15) are solved both analytically and numerically, using a single
time interval. Consequently, the errors between analytical/quasi-analytical and inter-
polated state values are compared with each other. It is shown that, for the equations
(5.14) and (5.15) the differences between the real approximation error and that com-
puted by the proposed approach are equal to 3.58 · 10−7 and 1.47 · 10−6, respectively,

64 Chapter 5. An approach to determining the number of time intervals

which supports the reliability of the proposed approach.

It is worth noting that this error estimation approach is straightforward and does
not require additional computations as in the residual approach [96, 11]. Moreover, if
the state profiles are nonsmooth or if a state trajectory changes dramatically inside an
interval or between two neighboring intervals, the residual approach may be insufficient
[84, 96]. Nevertheless, our method here can determine the approximation error more
precisely even in such situations, because the quasi-analytical values of state variables
satisfy the model equations.

To solve the inner NLP problem, the sensitivities of the approximation error are
required and calculated as follows. According to the continuity condition (5.7) the state
variables xi at the collocation points in the i-th interval have an implicit dependency
on the decision variables xp,i and ui. Hence, to obtain the first-order sensitivities in
individual time intervals, two differentiation operators ∂/∂xp,i and ∂/∂ui are applied
to equation (5.13), which yields[

∂Gi

∂xi

]
ng×ng

·
[
∂xi
∂xp,i

]
ng×nx

= −
[
∂Gi

∂xp,i

]
ng×nx

, (5.16)[
∂Gi

∂xi

]
ng×ng

·
[
∂xi
∂ui

]
ng×nu

= −
[
∂Gi

∂ui

]
ng×nu

. (5.17)

The above linear equation systems can be generated in a straightforward manner using,
e.g., automatic differentiation. In the CMSC method, equations (5.16) and (5.17) have
a sparse structure and thus can be solved for ∂xi

∂xp,i
and ∂xi

∂ui
by a sparse linear algebra

algorithm.

Moreover, because of the equality constraint (5.8), the sensitivities of the quasi-
analytical state variables are computed in the same way as in equations (5.16) and
(5.17) based on the solution of the nonlinear equation system (5.13) with the reduced
interval length. Furthermore, the state value computed by the interpolation at the
noncollocation point x(q)N (t̂i) has the same dependency on the decision variables xp,i
and ui in the i-th interval. For instance, the sensitivities with respect to the control
variable ui, at a noncollocation point can be obtained by applying the same derivative
operator ∂/∂ui on the equation (5.1) for the q-th state variable in the i-th interval as

∂x(i,q)
(
xp,i,ui; t̂i

)
∂ui

=
Nc∑
d=0

Nc∏
j=0
j 6=d

t̂i − tj
td − tj

· ∂x
(i,q)
d (xp,i,ui)
∂ui

. (5.18)

The sensitivities with respect to the parametrized initial conditions of state variables
are similarly computed using the ∂/∂xp,i operator.

In addition, the constraint (5.8) is not smooth, because it contains maximum and
absolute operators. However, both of them can be approximated using a softmax
function [41], which is differentiable and smooth. For instance, the maximum between

5.4. Illustrative examples 65

two absolute values of numbers α and β can be computed in the following way:

max{|α|, |β|} ≈ ln (exp (|α|) + exp (|β|)) , (5.19)

with

|α| = max{α,−α} ≈ ln (exp (α) + exp (−α)) , (5.20)
|β| = max{β,−β} ≈ ln (exp (β) + exp (−β)) . (5.21)

From the numerical experiments, it is found that the proposed bilevel approach
converges locally because of the nonlinear and nonconvex model equations. Thus,
during the numerical tests the solution is initialized multiple times using random values
(i.e., with uniform distribution) for the control variables and the initial state values to
obtain a global maximum approximation error.

5.4 Illustrative examples
To demonstrate the effectiveness of the proposed approach, this section presents the
solution of two dynamic optimization problems, namely a bifunctional catalyst blend
in a tubular reactor [72] (BCBTR) and a nonlinear continuous stirred tank reactor [71]
(NCSTR). In the BCBTR problem the resulting optimal control profile depends on
the initial guess which leads to multiplicity of optimal solutions [72]. Therefore, the
maximum approximation error obtained by different control profiles is also different.
The challenge in the NCSTR problem is due to the correlations between three of the
four control variables [61].

During the solution of the bilevel approaches, the NLP problems in the inner loop
were solved 300 times using randomized initial guesses for each given number of time
intervals from the outer loop. The computation time is not critical because an a priori
result is to be gained. Nevertheless, since the multiple runs are independent, the
computational burdens can be significantly reduced through parallel computing.

In addition, one state variable needs to be selected for evaluating the approximation
error. This state variable can be selected based either on the state dynamics, e.g.,
larger amplitudes cause higher approximation errors, or on the importance, because
in large-scale problems only a small number of state variables have higher priority.
Nevertheless, after the maximum approximation error for a defined state is found,
numerical errors of all other state variables can be easily computed, using a simulation
step with the resulting control profile.

The tolerance 10−8 in IPOPT was used for solving the NLP problem in the two
examples. For the computation of the state values at collocation and noncollocation
points the Newton method was applied with the tolerance 10−12. This tolerance plays
a major role within the bilevel approach. The value of it should be low enough in
order to compute quasi-analytical state values at noncollocation points closer to the
real unknown analytical values. Moreover, if this tolerance is high, the IPOPT solver
will experience convergence difficulties due to the continuity conditions for the state

66 Chapter 5. An approach to determining the number of time intervals

variables formulated by the multiple-shooting discretization. In general, the relation
between the Newton tolerance εN , the IPOPT tolerance εI and the algorithm tolerance
εA can be described as εN ≤ εI ≤ εA.

In the Tables 5.1 and 5.2 below, the first column shows the predefined error toler-
ance ε and the second column presents the resulting minimum number of time intervals
and the maximum approximation error by solving the bilevel-I problem. The last col-
umn shows the maximum error by solving the original dynamic optimization problem
discretized with the number of time intervals listed in the second column. Table 5.3
describes the results by solving the bilevel-II problem with predefined error tolerance
ε given in the first column. The second and third columns show the results of the
bilevel approach using different lengths of the prediction horizon.

The BCBTR problem is formulated as follows [72]

max
u(t)

x7(tf)

subject to: ẋ1(t) = −k1 · x1(t),
ẋ2(t) = k1 · x1(t)− (k2 + k3) · x2(t) + k4 · x5(t),
ẋ3(t) = k2 · x2(t),
ẋ4(t) = −k6 · x4(t) + k5 · x5(t), (5.22)
ẋ5(t) = k3 · x2(t) + k6 · x4(t)− (k4 + k5 + k8 + k9) · x5(t)

+ k7 · x6(t) + k10 · x7(t),
ẋ6(t) = k8 · x5(t)− k7 · x6(t),
ẋ7(t) = k9 · x5(t)− k10 · x7(t),
x(t0) = [1, 0, 0, 0, 0, 0, 0]T ,

t0 ≤ t ≤ tf , t0 = 0, tf = 2000,

0.6 ≤ u(t) ≤ 0.9,

The chemical reaction is described by seven differential equations, where xi, i = 1, . . . , 7
are the mole fractions of different chemical components [72]. Each rate constant ki, i =
1, . . . 10 is expressed as a cubic function of the catalyst blend u(t), that is

ki = ci,1 + ci,2 · u(t) + ci,3 · u2(t) + ci,4 · u3(t), (5.23)

where the coefficients ci,j, j = 1, . . . 4 are experimentally obtained [72].
Without loss of generality, for the a priori determination of the minimum number

of time intervals, the state variable x7(t) is selected for the error analysis. This state
variable describes the mole fraction of the product (benzene), which is to be maximized
at the exit of the tubular reactor. First, the original optimization problem (5.22) is
converted into the bilevel-I problem. The results are given in Table 5.1.

As shown in Table 5.1, as the error tolerance decreases, the required number of
time intervals increases. The resulting maximum error is less than the corresponding
tolerance value. Then, using the minimum number of intervals determined by bilevel-I,
the BCBTR problem is solved. Because of the nonconvexity of the problem, multiple

5.4. Illustrative examples 67

Table 5.1: Obtained results for the BCBTR problem
Bilevel-I Original NLP

ε N emax êmax
2 · 10−5 10 1.927 · 10−5 1.911 · 10−5

1 · 10−5 21 9.556 · 10−6 9.044 · 10−6

5 · 10−6 37 4.948 · 10−6 3.564 · 10−6

optimal solutions for the same number of time intervals are obtained, depending on
the initial guess of the control values. Therefore, problem (5.22) is transformed into
problem (3.2) and solved 200 times using random initializations. The largest value of
the approximation error obtained by solving the problems is chosen to compare with
the maximum error obtained by the bilevel approach. As shown in the last column of
Table 5.1, the numerical error resulted by solving the original optimal control problem
is less than that by solving the bilevel-I problem, i.e., the a priori determined minimum
number of time intervals can guarantee the predefined error tolerance. Moreover,
considering the tolerance ε = 2 ·10−5, 10 time intervals are required, as shown in Table
5.1. As a test, if we apply 9 time intervals instead for solving the original optimization
problem, then êmax = 2.051 · 10−5 which violates the predefined error tolerance. To
formulate the constraints of the initial state values in the bilevel-II problem of this case
study, we introduce the lower and upper bound for each initial state being equal to 0
and 1, respectively, and an equality constraint that the sum of all the mole fractions is
equal to 1. In addition, different lengths of the time horizon are used to demonstrate
the simultaneous impact of the initial condition and control profiles. The relations
between the length of time horizon, error tolerance and number of time intervals are
shown in Figure 5.2.

10 20 30 40 50

1

2

3
" = 1 " 10!3

10 20 30 40 50

Length of the prediction horizon

10

20

30

40

M
in

im
um

 n
um

be
r

of
 ti

m
e

in
te

rv
al

s " = 1 " 10!4

(A)

Figure 5.2: Impact of the prediction horizon

It can be seen that when using the bilevel-II approach with different lengths of the
prediction horizon, a suitable number of time intervals which guarantees a predefined
error tolerance can be found. For instance, if a very low error tolerance is specified,

68 Chapter 5. An approach to determining the number of time intervals

i.e., if very accurate results are desired, then the problem should be discretized using a
very large number of intervals, which will be computationally expensive for an NMPC
application. As a result, the solutions here provide alternative options for designing
of a model predictive controller, from which a compromise between the length of the
prediction horizon and the numerical accuracy can be decided.

The second demonstration example problem is from Luus [71] and was also ana-
lyzed by Balsa-Canto et al. [9]. The purpose is to determine optimal control profiles
for maximizing the economic benefits, with the problem (4.6) as defined in the previ-
ous section. The controls include the flow-rates of three feed streams and an electrical
energy input for the photochemical reaction. The system dynamics is described by sev-
eral simultaneous chemical reactions. This particular problem is challenging, because
the system is highly nonlinear and the optimal control profiles are quite complicated
[9]. For demonstration of our bi-level approach, the minimum number of intervals is
determined relying on the maximum approximation error of the state variable x1(t).
The results of bilevel-I problem are given in Table 5.2. It is shown that the number
of time intervals required increases, when a higher accuracy of the state trajectory is
specified. Using the determined number of intervals to solve the original problem, the
resulting error is smaller than the corresponding error tolerance.

Table 5.2: Obtained results for the NCSTR problem
Bilevel-I Original NLP

ε N emax êmax
1 · 10−3 8 6.228 · 10−4 0.533 · 10−4

1.125 · 10−4 12 1.191 · 10−4 0.081 · 10−4

5 · 10−6 22 4.4 · 10−6 0.4 · 10−6

For the formulation of the bilevel-II problem, the constraints of the initial state
values for x1(t)-x7(t) are treated in the same way as in the last case study, since they
are mole fractions. Two different lengths for the prediction horizon are considered, i.e.,

Table 5.3: Results of the bilevel-II approach for the NCSTR problem
tf = 0.1 tf = 0.2

ε N emax N emax
1 · 10−3 5 8.96181 · 10−4 9 6.00485 · 10−4

1.125 · 10−4 7 3.78346 · 10−5 13 5.03151 · 10−5

5 · 10−6 12 3.37374 · 10−6 24 4.79487 · 10−6

tf = 0.1 and tf = 0.2. It can be seen in Table 5.3, that if a shorter prediction horizon
is used (second column), the number of intervals is smaller than those obtained by
solving the bilevel-I problem. However, a shorter length of the prediction horizon in a
NMPC application may be insufficient in terms of, e.g., handling model uncertainties
or disturbances. In the third column of Table 5.3, the bilevel-II approach is applied
with tf = 0.2. As expected, if the initial state values are taken as variables, the

5.4. Illustrative examples 69

solution of the bilevel-II problem leads to the approximation errors larger than those
obtained by solving the bilevel-I problem. Consequently, the number of time intervals
required will be higher by all investigated tolerances ε as indicated in the last column
in Table 5.3.

0 50 100 150 200 250

Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x 2
(t

)

#10-3

" = 3 " 10!4

(15 intervals)
" = 2 " 10!4

(27 intervals)
Constraint

Figure 5.3: Impact of the approximation error at noncollocation points on the con-
straint violation

One of the important points during the solution of the dynamic optimization is to
satisfy the inequality constraints in the process operation. If the number of intervals
is fewer than required, the resulting numerical error of state variables may lead to
violations of inequality constraints. To demonstrate this issue, the BCBTR problem
has been selected, where x2(t) is chosen with a constraint x2(t) ≤ 1.2 · 10−3. The
results are shown in Figure 5.3. By using ε = 3 · 10−4 and ε = 2 · 10−4, 15 and 27 time
intervals are required, respectively. With these numbers of time intervals the original
optimization problem (5.22) is discretized and then solved numerically. It can be seen
that the violation of the inequality constraint can be neglected with 27 intervals and
that the violation is significant with 15 intervals. These results were published in the
work of Lazutkin et. al. [62].

Chapter 6

Numerical implementation issues

6.1 Component description
The major goal of designing a new CMSC framework is to eliminate several disad-
vantages of the first version of the previous framework suggested in [92]. At the same
time to perform an efficient standalone implementation using open-source libraries and
solvers of a toolchain for solving dynamic optimization problems. Therefore, in this
work the developed toolchain aims to present multiple advantages for the end-users:
extensibility, generality, problem independent design, user-friendly interface, integra-
bility. The main software components of the framework [61, 63] are given in Figure 6.1.
The major goal of this framework is to have the possibility to solve different dynamic
optimization problems without providing any algorithmic implementations.

Modelica

Optimica

Python libraries

NumPy

SciPy

Matplotlib

time os

Collections

multiprocessing

pyipopt

CasADi

pyjmi

CMSC

Solution

Figure 6.1: Main software components

Modelica [37] is an object-oriented modeling environment commonly used for com-
plex industrial systems. It also possesses the typical characteristics of encapsulation,
modularization, inheritance and polymorphism. Object-oriented modeling has become
increasingly popular, especially since the turn of the millennium. One of the main rea-
sons for this is the degree of abstraction, which makes it possible to use this technique
in numerous areas with a consistent and standardized approach. The Optimica exten-
sion [2] allows the formulation of optimization problems. JModelica [3] provides an
important platform for the user-generated implementation of efficient algorithms for
the optimization of processes and technical systems, which is becoming increasingly
important. In Figure 6.1 the JModelica is indicated by the module pyjmi, which con-
tains the transfer function between Modelica and Optimica models and their symbolic

72 Chapter 6. Numerical implementation issues

representation in Python [47]. The development of JModelica was aimed at creating an
environment for detailed analysis and further development of powerful algorithms for
the dynamic optimization and simulation of complex systems. Another essential tool
used in this work is CasADi [4]. The main focus was on a flexible implementation of
own algorithms for developers and users. General functions for the implementation are
available from several pure Python libraries, i.e., parallel computing is implemented
using the standard multiprocessing Python module.

6.2 Algorithm implementation
In summary, the transformation from the dynamic optimization problem to an NLP is
done completely automatically, see Figure 6.2, where developed methods from Chap-
ters 4 and 5 are also integrated within main CMSC framework as independent exten-
sions.

INITIALIZATION

Extract the
problem

Symbolic
transformation Define multiple-

shooting and
collocation DISCRETIZATION

Discretize
model

equations

Scaling

INITIALIZE
SOLVERS

Sensitivity
solver

Newton
solver

PREPARE
OPTIMIZER
FUNCTIONS

Objective
function

Constraint
vector

Jacobian of
constraint

vector

Gradient of
objective
function

Setup
optimizer
properties

PREPARE
PARALLEL

PROCESSING

Algorithm options

Prepare
Hessian
matrix

OPTIMIZE OPTIMAL
SOLUTION

Control-variable
correlation

analysis

Bilevel
Approach

Figure 6.2: CMSC algorithm structure

The framework uses a set of parameters, such as number of time intervals and collo-
cation points, defined in the algorithm options. The whole set of parameters is available

6.2. Algorithm implementation 73

in the documentation. Based on these parameters, the first step is to transfer the for-
mulated dynamic optimization problem from Modelica to its symbolic representation
in Python. To guarantee the generality of the framework, the special preprocessing
procedure was developed to analyze the optimization problem symbolically, which was
not done in the previous implementation [92]. As a result, the important parameters
(e.g., the number of state and control variables, type of the problem, model equations,
etc.) can be extracted from the problem formulation automatically. Moreover, using
the preprocessing procedure the dynamic optimization problem is available in Python
language for further post-processing procedures.

The second step is to perform the discretization of the model equations. Using the
defined number of time intervals and collocation points per time interval the framework
automatically generates the vectors with symbolic variables. These vectors represent
the state variables to be computed at collocation points, parameterized state and
control variables. This step is done with the help of CasADi. The model equations
are initialized as symbolic functions and then evaluating them using defined vectors.
The required discretized nonlinear equations in the form of equation (3.3) is available.
This system of equations is implemented in the appropriate symbolic function, which
will be solved using the CasADi Newton solver (NS). Moreover, appropriate callback
functions for sensitivity computations (SC) are constructed for the system of equations
(3.4) and (3.5) by using the linear algebra solver CSparse.

Based on the used optimizer, i.e., IPOPT [100], the framework automatically pre-
pares required symbolic functions for objective function and its gradient, constraint
vector and its Jacobian. When using analytical second-order sensitivities (analytical
Hessian), the appropriate function callback is activated. Otherwise, these sensitivi-
ties are approximated within the IPOPT solver. The construction of all functions is
made completely automatically in a problem-independent manner. An example of the
symbolic construction is given in the Appendix with the help of simple dynamic opti-
mization problem. Note that the original version of the CMSC method in [92] suffers
from the lack of automatic construction of such functions.

Based on the nature of the CMSC method, the parallel computations are available
for computation of the state trajectories and corresponding sensitivities with respect
to the optimization variables. The default option for the number of used processes
is equal to one, which leads to the computation scheme given in Figure 6.3, where

Process 𝟏
𝑵𝑵𝟏

𝑺𝑺𝟏

𝑵𝑵𝑵

𝑺𝑺𝑵

Figure 6.3: Sequential computations

a single process performs the sequential computation starting with the first interval.

74 Chapter 6. Numerical implementation issues

This procedure is done in every optimizer iteration.
Providing the adaptation of the function callbacks, it is possible to provide parallel

processing in order to reduce computation burdens. The modified scheme is given in
Figure 6.4, where p = N

M
, N and M denote the number of time intervals and the

number of parallel processes, respectively .

Process 𝟏
𝑵𝑵𝟏

𝑺𝑺𝟏

𝑵𝑵𝒑

𝑺𝑺𝒑

𝑵𝑵𝒑+𝟏

𝑺𝑺𝒑+𝟏

𝑵𝑵𝟐∙𝒑

𝑺𝑺𝟐∙𝒑

𝑵𝑵(𝑴−𝟏)∙𝒑+𝟏

𝑺𝑺(𝑴−𝟏)∙𝒑+𝟏

𝑵𝑵𝑴∙𝒑

𝑺𝑺𝑴∙𝒑

Process 𝟐

Process 𝑴

C
O
M
B
I
N
E

R
E
S
U
L
T
S

Figure 6.4: Parallel computations

After providing the problem decomposition, each process receives equal number of
time intervals to be solved. However, other decomposition techniques may be used.
It should be noted that the time taken for the communications between the master
processor and the worker processors can be significant when too many worker proces-
sors are used to solve a small-scale problem. In such a case, the maximum speedup
factor can be achieved when fewer worker processors are used. The parallelization
is done using multiprocessing and not multithreading, since the CasADi package is
not thread-safe. Using parallel processing the computation time can be significantly
reduced [61].

As indicated in Figure 6.2, the proposed bilevel approach and control-variable cor-
relation analysis are interfaced to the CMSC toolchain, where Modelica and Optimica
models are used to formulate the dynamic optimization problems. Using JModelica,
the Modelica and Optimica models are transferred to a symbolic representation and
made accessible in Python. Then CasADi is used for performing the discretization of
the model equations, automatic differentiation, the calculation of first-order sensitiv-
ities, and for generating the Jacobian matrix required by the optimizer as well as for
solving the discretized DAEs. The simulation using PRBS, transformation to bilevel-I
and bilevel-II problems and other important symbolic manipulations are made auto-
matically. Finally, IPOPT [100] is used for solving the NLP problems, e.g., bilevel-I
and bilevel-II problems.

6.3. Experiment: optimal control of the large-scale nonlinear system 75

In summary, the developed CMSC framework has the following important features:
(i) user-friendly interface (ii) suitable for the rapid prototyping (iii) extensible (iv)
general and (v) parallel processing.

6.3 Experiment: optimal control of the large-scale
nonlinear system

For experimentation a large-scale dynamic optimization model is considered that is
related with a distillation column and it is available under JModelica. The original
model was developed by Diehl [33] and an extended version was coded in Modelica
based on the work of Hedengren [46]. The distillation column has 40 trays for separat-
ing a mixture of methanol and n-propanol. This DAE model contains 125 differential
states (molar vapor flux, temperature, liquid mole fractions for each tray, a reboiler,
and a condenser), 1000 algebraic variables, and 2 control signals (volumetric reflux
flow and heat input). The problem formulation can be found in the work of Cai [22].
Using an a priori simulation with PRBSs as the control profiles, the results show that
the angle between the two control variables is 116.19◦. Thus, the two controls are
weakly correlated, and therefore, the BFGS method is expected to achieve efficient
computations.

This problem is solved again by CMSC approach with the BFGS method and by
the serial algorithm in the context of the collocation method available in JModelica
by taking 60 time intervals. As the number of processors for parallel computing is
increased, the total computation time decreases. As compared to pure collocation
method, the CMSC approach takes less computation time when the number of proces-
sors is larger than two. A factor-of-4 speedup is achieved when solving this problem
with 10 processors. The corresponding computation time is equal to ca. 227 seconds.
Note that this speedup factor represents only the part that can be parallelized, that is,
without including the time spent by IPOPT. However, when using a single processor,
the time required for the solution by the proposed approach is much higher, since,
unlike for the collocation method, model equations and sensitivities have to be solved
in each NLP iteration. For instance, the CMSC approach takes almost 600 seconds,
when the pure collocation method solves the resulted NLP problem in approximately
370 seconds. Therefore, it can be concluded that the proposed approach is suitable for
solving large-scale problems using the parallel-computing strategy [61].

Chapter 7

Nonlinear model predictive control for
autonomous driving

The presented CMSC method as well as the control-variable correlation analysis and
the bilevel approach play significant role in designing and implementing the control
framework for autonomous driving. However, autonomous vehicle should be capable
to compute its orientation and position in global and local coordinate systems in or-
der to supply this information to the underlying controller, i.e., to properly control
speed and to compute steering strategy. The vehicle’s position plays significant role
while performing challenging driving tasks such as obstacle avoidance, driving in in-
tersections, conducting overtake maneuver, parking, etc. However, the position of the
vehicle cannot be computed exactly due to several reasons: (i) vehicle is not equipped
with precise sensors because of their high costs (ii) restricted and uncertain sensor
information (iii) computational demand. Fortunately, there is a method to provide
data-filtering, i.e., state estimation in real-time.

7.1 Kalman filter

As it was already mentioned, the sensors have relative noisy data and therefore the
data cannot be directly applied to the underlying controller. In 1960, R.E. Kalman
published his famous paper describing a recursive solution to the discrete-data linear
filtering problem. Since that time, due in large part to advances in digital computing,
the Kalman filter has been the subject of extensive research and application, particu-
larly in the area of autonomous or assisted navigation. The Kalman filter is a set of
mathematical equations that provides an efficient state estimation of the process states
in a way that minimizes the mean of the squared error. The filter is very powerful in
several aspects: it supports estimations of past, present, and even future states, and
it can do so even when the precise nature of the modeled system is unknown.

The importance of the Kalman filter may be highlighted from two sides. On the
one hand, the unmeasurable or noisy signals (i.e., state variables) can provide valuable
information about a physical process. Therefore, improved supervision of the process
can be gained. On the other hand, the more information the controller has about the
process it controls, the better (i.e., more accurate) it can control it. Moreover, state
estimators can be practical or economical alternatives to real measurements, since
some of the states cannot be even measured or the corresponding hardware is too
expensive.

78Chapter 7. Nonlinear model predictive control for autonomous driving

From the theoretical point of view, there is a necessary condition for the Kalman
filter to work correctly. The system, for which the states are to be estimated, should
be observable. Observability for the discrete-time systems can be defined as follows.
The discrete-time linear system

x(k + 1) = A · x(k) +B · u(k), (7.1)
y(k) = C · x(k) +D · u(k), (7.2)

is observable if there is a finite number of time steps k so that the knowledge about the
input sequence u(0), · · · , u(k−1) and the output sequence y(0), · · · , y(k−1) is sufficient
to determine the initial state of the system, x(0). Formally, if the observability matrix
Mo has the full rank (rank is equal to n, where n is the order of the system model), the
system is observable. The rank can be checked by calculating the determinant of Mo.
Non-observability has several consequences: (i) the transfer function from the input
variable u to the output variable y has an order that is less than the number of state
variables (ii) there are state variables or linear combinations of state variables that do
not show any response (iii) the steady-state value of the Kalman filter gain cannot be
computed; therefore, the state estimation cannot be computed. Naturally, the Kalman
filter is a state estimator which produces an optimal estimate in the sense that the
mean value E[ex(k) · eTx (k)] of the estimation errors is minimized, where ex(k) =
xest(k)− x(k) is the estimation error vector. The Kalman filter estimate is sometimes
denoted the least mean-square estimate. It is assumed that the system for which the
states are to be estimated is excited by random disturbances, i.e., process noise, and
that the measurements contain white measurement noise. The Kalman filter algorithm
was originally developed for systems assumed to be represented with a linear state-
space model equations. However, in many applications the system model is nonlinear.
Nevertheless, the linear model is just a special case of a nonlinear model. The Kalman
filter for nonlinear models is denoted as the extended Kalman filter (EKF).

The principal working scheme of the Kalman filter may be grouped into two parts:
time and measurement update equations. The time update equations are responsible
for projecting forward in time the current state and error covariance estimates to obtain
the a priori estimates for the next time step. The measurement update equations are
responsible for the feedback, i.e., for incorporating a new measurement into the a priori
estimate to obtain an improved a posteriori estimate. The time update equations can
also be thought of as predictor equations, while the measurement update equations
can be thought of as corrector equations. The Kalman filter addresses the general
problem of trying to estimate the state of a discrete-time controlled process that is
governed by the linear stochastic difference equation

x(k + 1) = A · x(k) +B · u(k) + w(k), (7.3)

with the measurement

y(k + 1) = H · x(k) + v(k), (7.4)

7.1. Kalman filter 79

where H denotes measurement matrix. The random variables w(k) and v(k) represent
the process and measurement noise, respectively. They are assumed to be independent
of each other, white-noise-like, and with normal probability distributions. In practice,
the process noise covariance and measurement noise covariance matrices might change
with each time step or measurement, however in this work they assumed to be constant.

Without loss of generality, the vector x̂−k ∈ <n denotes a priori state estimate at
step k of the process prior to step k, and x̂k ∈ <n is a posteriori state estimate at
step k given measurement yk. Thus, a priori e−k and a posteriori ek estimate errors are
defined as

e−k = xk − x̂−k , (7.5)
ek = xk − x̂k. (7.6)

Defining a priori estimate error covariance P−k and a posteriori estimate error covari-
ance Pk as

P−k = E[e−k · e
−T
k], (7.7)

Pk = E[ek · eTk], (7.8)

the Kalman filter algorithm can be summarized as follows

x̂−k = A · x̂k−1 +B · uk−1, (7.9)
P−k = A · Pk−1 · AT +Q, (7.10)

Kk = P−k ·H
T ·
(
H · P−k ·H

T +R
)−1

, (7.11)
x̂k = x̂−k +Kk ·

(
zk −H · x̂−k

)
, (7.12)

Pk = (I −Kk ·H) · P−k . (7.13)

In the algorithm (7.9)-(7.13), the first task during the measurement update is to com-
pute the Kalman gain matrix Kk. The next step is to actually measure the process
to obtain zk, and then to generate an a posteriori state estimate by incorporating the
measurement. The final step is to obtain an a posteriori error covariance estimate. Af-
ter each time and measurement update pair, the process is repeated with the previous
a posteriori estimates used to project or predict the new a priori estimates.

In the actual implementation of the filter, the measurement noise covariance R is
usually measured prior to operation of the filter. In general, obtaining the measure-
ment covariance R is practically possible. However, the determination of the process
noise covariance Q is more difficult since it is impossible to directly observe a system
under estimation. Sometimes a relatively simple (poor) process model can produce ac-
ceptable results if one injects enough uncertainty into the process via the selection of Q.
However, in this case one would hope that the process measurements are reliable. Any-
way, the good performance of the estimation process my be obtained by tuning both
R and Q matrices. For instance, the larger Q values the stronger measurement-based
updating of the state estimates. In this work, both matrices are tuned and assumed

80Chapter 7. Nonlinear model predictive control for autonomous driving

to be constant during the tests. Consequently, the estimation error covariance Pk and
the Kalman gain Kk will stabilize quickly and then remain constant.

As described above, the Kalman filter addresses the general problem of trying to
estimate the state of a discrete-time controlled process that is governed by a linear
stochastic difference equation. However, the model for the autonomous vehicle is
nonlinear, which is governed by the nonlinear stochastic difference equation in general
form

xk = f(xk−1, uk−1, wk−1), (7.14)
zk = h(xk, vk), (7.15)

where the random variables wk and vk again represent the process and measurement
noise as previously. In practice the individual values of the noise wk and vk at each
time step are unknown. However, one can approximate the state and measurement
vector by assuming both noises to be zero

x̃k = f(x̃k−1, uk−1, 0), (7.16)
z̃k = h(x̃k, 0), (7.17)

where x̃k is some a posteriori estimate of the state, from a previous time step k. To
estimate a process with nonlinear character, equations (7.14) and (7.15) are linearized

xk = x̃k + Ak(xk−1 − x̃k−1) +Wk · wk−1, (7.18)
zk = z̃k +Hk(xk−1 − x̃k−1) + Vk · vk−1, (7.19)

where xk and zk are the actual state and measurement vectors, x̃k and z̃k are the
approximate state and measurement vectors, with Jacobian matrices

Ak =
∂f

∂x
(x̂k−1, uk−1, 0), Wk = ∂f

∂w
(x̂k−1, uk−1, 0), (7.20)

Hk =
∂h

∂x
(x̃k, 0), Vk = ∂h

∂v
(x̃k, 0). (7.21)

Consequently, the time and measurement update equations in the case of EKF can
be summarized as follows:

x̂−k = f(x̂k−1, uk−1, 0), (7.22)
P−k = Ak · Pk−1 · ATk +Wk ·Qk−1 ·W T

k , (7.23)

Kk = P−k ·H
T
k ·
(
Hk · P−k ·H

T
k + Vk ·R · V T

k

)−1
, (7.24)

x̂k = x̂−k +Kk ·
(
zk − h(x̂−k , uk−1, 0)

)
, (7.25)

Pk = (I −Kk ·Hk) · P−k . (7.26)

In this work, the EKF is used in both test studies, which are described in the
next subsections, aiming to demonstrate the importance of the state estimation for

7.2. Obstacle detection and avoidance 81

the autonomous driving.

7.2 Obstacle detection and avoidance
This experiment deals with an optimal control of an autonomous mobile robot which
is used for achieving a desired final position (landing problem) and simultaneously
following the desired trajectory (tracking problem) in the presence of the unknown
obstacles [34].

7.2.1 Mobile robot and mathematical model

The mobile robot SUMMIT is considered as an autonomous vehicle with high mobility
and off-road capability. The robot’s high maneuverability and thus also its small
turning circle is made possible by the fact that the front and rear axles can be steered.
The high off-road capability is achieved by the all-wheel drive. It is equipped with a
symmetric two-axles counter steering system. The symmetric property means that the
distances between both the front and the rear axle to the mass center of the rigid body
are equal. The planar positioning is achieved by steering angle and driving velocity
control of the four wheels. The wheels are manipulated axle-wise. The angular velocity
of the rear wheels is measured by an encoder. It is assumed that the front wheels
behave like the rear wheels because the control input is the same. One brushless DC
motor per axle drives the wheels with no differential. Two servo motors, one at each
axle, serve for adjusting the steering angle. The mobile robot is not equipped with a
braking system. It stops by blocking the wheels. A Hokuyo laser scanner is used as a
sensor for the detection of obstacles. The communication between the computer and
the robot is realized by a TCP/IP protocol using a Wi-Fi network and the software
Player/Stage is used as an interface for sending control signals and receiving sensor
data. Player/Stage is a free software used for research in the field of robotics and
sensor systems. A detailed execution and documentation of this software can be found
in the Internet.

The mathematical model of motion equations is formulated as follows

ẋ1(t) =
cα · cos(u2) · (−2 · x1 · x3u1 · (lh − lv))

m · u1 · cos(x1)
− x3, (7.27)

ẋ2(t) = x3, (7.28)

ẋ3(t) =
cα · cos(u2) · u2 · (lh + lv) + x1 · (lh − lv)− x3

u1
· (l2h + l2v)

JI
, (7.29)

ẋ4(t) = u1 · cos(x1 + x2), (7.30)
ẋ5(t) = u1 · sin(x1 + x2), (7.31)

where cα is a lateral tire stiffness, lh and lv are the distances between the wheel contact
point of a rear wheel or front wheel and the fixed plane of the robot, m is the mass
of the robot and JI is the rotational moment of inertia of the robot. The control

82Chapter 7. Nonlinear model predictive control for autonomous driving

variables u1 and u2 are the velocity and the steering angle of the robot. The model
contains five state variables: x1 - sideslip angle, x2 - yaw angle, x3 - yaw rate, x4
- longitudinal coordinate, x5 - lateral coordinate. The parameters m = 14.695 [kg],
lh = 0.1924 [m], lv = 0.1776 [m] were measured directly. However, the parameters
cα = 250 [N/rad] and JI = 0.5024 [Nm] were determined experimentally by solving
the parameter estimation problem.

7.2.2 Obstacle description

The laser scanner installed on the robot was used for obstacle detection. It is an
infrared laser with a wavelength of 785 [nm] with following parameters: detection
range - 5600 [mm], resolution - 1 [mm], scanning angle - 240◦, angle resolution -
0.352◦, scanning time - 100 [ms/scan]. The scanning angle of the laser is 240◦ For
obstacle detection, however, it is not necessary to look at the entire area, since only
the obstacles ahead are important. For this reason, the scan range to be analyzed is
limited to 120◦ in this work. The entire scanning area contains 682 points. Using the
chosen scan angle, only the area between point 170 up to point 511 is of interest. This
corresponds to 60◦ for each side of the robot. The determination of the center obstacle
is given in the Figure 7.1, where xRabs and yRabs are the absolute coordinates of the robot,
xHabs and yHabs are the absolute coordinates, xrel and yrel are the relative coordinates of
the obstacle. Figure 7.1 also shows the yaw angle ξ of the robot. When the robot is
turned to the left relative to the axis xabs, the yaw angle is negative, i.e., ξ = −ψ. At
a turn to the right the yaw angle is therefore positive, i.e., ξ = ψ. The calculation of
the absolute coordinates of the obstacle is described using following equations

xHabs = xRabs + xrel · cos(ξ)− yrel · sin(ξ), (7.32)
yHabs = yRabs + yrel · cos(ξ) + xrel · sin(ξ), (7.33)

Using the center of the obstacle, it can be mathematically described as ellipse
(7.34), while the elliptical shape was stretched along the main axis, where

1 ≤ (xpos − xHabs)2

a2
+

(ypos − yHabs)2

b2
. (7.34)

The parameters a and b describe main and minor ellipse axis, respectively. Physically,
due to (7.34), the robot position must not be within the ellipse. Based on the boundary
points of the obstacle obtained by the laser, b is calculated by

b = (ybeginrel − y
end
rel) + 2 · θ, (7.35)

where θ denotes the safety area between robot and obstacle. The ellipse equation
requires that a should be always greater than b. In this work, a = 1.2 [m] was selected,
if b < 1.2 [m]. Otherwise, a = 1.15 · b, depending on the size of the obstacle.

7.2. Obstacle detection and avoidance 83

𝜉

𝜉
𝑥𝑟𝑟𝑟

𝑦𝑟𝑟𝑟

𝜉

𝑥 𝑟
𝑟𝑟

co
s𝜉

𝑦 𝑟

𝑟𝑟
si

n
𝜉

𝑋𝑟𝑟𝑟 𝑋𝑎𝑎𝑎

𝑌𝑎𝑎𝑎

𝑌𝑟𝑟𝑟

𝑦𝑟𝑟𝑟 cos 𝜉

𝑥𝑟𝑟𝑟 sin 𝜉

𝑦𝑎𝑎𝑎𝑅 𝑦𝑎𝑎𝑎𝐻

𝑥𝑎𝑎𝑎𝑅

𝑥𝑎𝑎𝑎𝐻

Obstacle

Robot

Figure 7.1: Determination of the absolute coordinates of the center of an obstacle

7.2.3 Pre-commissioning activities

During the test runs, it was found that the desired values of control variables trans-
mitted to the robot (i.e., speed and steering angle) are not realized. Therefore, it
is necessary to determine the interdependencies between desired and real values of
steering angle as well as velocity.

According to the tests it was found that the real and desired velocities have linear
relationships. The coefficient is equal to kv = 1.4. For instance, if the desired velocity
is equal to 1 [m/s], for internal controller, a signal which corresponds to the 1.4 [m/s]
should be sent. This factor was determined by the time measurements between two
fixed points of the coordinate plane, i.e., using the straight-forward movement of the
mobile robot with fixed desired velocity.

However, the relationships between real and desired steering angle are nonlinear. In
order to achieve the best results, the nonlinearity of the steering angle is approximated
by a neural network with a single hidden layer, which contains six neurons. The number
of neurons in the hidden layer is selected based on the accuracy of the approximate
dependency between target and actual steering angles. The input data was collected
based on the simple circle runs and the realized steering angle was computed using
geometrical relations based on the length of the chord and the height of the circle
segment above the chord.

Another important point for achieving the autonomy of the mobile robot is the

84Chapter 7. Nonlinear model predictive control for autonomous driving

determination of its position. This problem was solved by employing the EKF. The
diagonal entries of the covariance matrices Q and R characterize the yaw angle, lon-
gitudinal and lateral coordinates. The diagonal values in this matrices are selected as
follows, Q = [0.1, 0.1, 100] and R = [1, 1, 10]. The mutual influence of the state vari-
ables on each other during the measurements is not taken into account here. Therefore,
the non-diagonal entries of the matrices Q and R are zeros. To evaluate the perfor-
mance of the EKF the following test was conducted. The sine form change of the
steering angle and constant velocity were transmitted to the low-level controller of the
robot and the real and estimated trajectories were compared. However, there were
relative large deviations between them.

This effect can be explained from the mechanical construction of the suspension
system. The resulting steering angle is described by the following relationship: δ′ =
u2 ± ν, where ν is the backlash (weakness of fastening between shaft and wheel) and
δ
′ represents the resulting steering angle of the robot. Therefore, in order to use the
EKF, it is necessary that the corrected expectation value becomes zero. This is done
by correcting the transmitted measured values, which is described below.

Assuming that the transmitted data from the mobile robot is correct, the following
relationships can be formulated:

xk = xk−1 + ∆xk|k−1, (7.36)
yk = yk−1 + ∆yk|k−1, (7.37)

where xk and yk represent the robot position at discrete time k, xk−1 and yk−1 the
robot position at discrete time k − 1, ∆xk|k−1 and ∆yk|k−1 the distance covered by
the robot during the interval [k − 1, k]. However, the transmitted data is faulty, the
coefficients of the measurement error along the longitudinal direction df and along the
lateral direction ds are introduced. Both coefficients increase in time. During the test
run, it was recognized that the increment in the longitudinal direction is negligible.
However, the increment of the coefficient in the lateral direction cannot be neglected
and can be computed as

dsk = dsk−1 + dds ·∆tk|k−1, (7.38)

where dsk is a value of the coefficient ds at time point k, dsk−1 is a value of the
coefficient ds at the previous time point k − 1, ∆tk|k−1 is the elapsed time between k
and k − 1 and dds is a gradient of ds. The coefficients df = 0.01 and dds = 0.053
were determined empirically by analyzing the recorded data from several test runs.
Therefore, the following correction equations are added to the control framework.

xk = xk−1 + ∆xk|k−1 + ∆tk|k−1 · dsk−1 · vk|k−1 · sin(ψk|k−1) +

+∆tk|k−1 · df · vk|k−1 · cos(ψk|k−1), (7.39)
yk = yk−1 + ∆yk|k−1 + ∆tk|k−1 · dsk−1 · vk|k−1 · cos(ψk|k−1) +

+∆tk|k−1 · df · vk|k−1 · sin(ψk|k−1). (7.40)

7.2. Obstacle detection and avoidance 85

After this modification, the maximum error between the measured and correct tra-
jectory is about 0.08 [m]. Based on this value, it is concluded that the implemented
EKF combined with adjustment equations (7.39) and (7.40) provides correct estima-
tion of the mobile robot position, which plays a crucial role for avoiding the unknown
obstacles.

The designed control framework is given in Figure 7.2.

Corrections of
steering angle
and velocity

NMPC
controller

Mobile
robot

Correction of
measured data

Measurements

Current robot
position

Laser
scanner

Scanned
data

Figure 7.2: General control scheme of the robot SUMMIT

The description of the NMPC controller and real tests are given in the next sub-
section.

7.2.4 Experimental results using mobile robot

The NMPC controller involves the discretized mathematical model (7.27) - (7.31).
Because of the robot mechanics, the control variables are constrained as

0.1 ≤ u1(t) ≤ 1.0, − 0.06 ≤ u2(t) ≤ 0.06, (7.41)

where velocity u1(t) is given in [m/s] and steering angle u2(t) is measured in radians.
It can be seen that the lower bound of the velocity is different from zero. This is
done due to the model equations, since the velocity occurs as a divisor. However, if
the robot achieves the desired position (or the estimated robot position is near several
centimeters around the landing point), the NMPC controller will be shut down and
the wheels will be blocked by a stop command. The state variables are also bounded
as given below

−0.15 ≤ x1(t) ≤ 0.15, (7.42)
−π ≤ x2(t) ≤ π, (7.43)
−0.8 ≤ x3(t) ≤ 0.8, (7.44)

0 ≤ x4(t) ≤ 22, (7.45)
−1.5 ≤ x5(t) ≤ 1.5. (7.46)

86Chapter 7. Nonlinear model predictive control for autonomous driving

The bounds imposed on the longitudinal x4(t) and lateral x5(t) coordinates are due
to the testing scenario. Before the real test will be provided, the model equations
are firstly analyzed using the proposed control-variable correlation analysis and bilevel
approach. It was found that there are no correlations between control variables. The
angle between columns in the sensitivity matrix is equal to 95.46◦. Therefore, the
BFGS approximation of the Hessian matrix can be used without any drawbacks in the
computational performance. The bilevel approach was applied by taking into account
the time horizon with fixed final time tf = 2.72 [s]. The desired approximation toler-
ance ε is equal to 2.5 · 10−4. On the one hand, by solving the bilevel-I problem only
N = 6 time intervals are needed, and the maximum approximation error is equal to
0.00023308. On the other hand, the solution of the bilevel-II problem indicates that
the desired tolerance can be achieved only if N = 16 time intervals are used for dis-
cretization. The corresponding maximum approximation error is equal to 0.00022176.
Therefore, this obtained minimum number of time intervals is used for the practical
test. The performance index incorporates several factors: (i) the exactness of reaching
the final position (ii) the deviation of the longitudinal and lateral coordinates from the
desired direction and (iii) the control effort. The objective function J is formulated as

J = Px · (xpos,N − xend,N)2 + Py · (ypos,N − yend,N)2 +

+
N−1∑
k=0

[
qx · (xpos,k − xend,k)2 + qy · (ypos,k − yend,k)2 + rv · u21,k + rδ · u22,k

]
,(7.47)

involving following weight coefficients Px = 1, Py = 10, qx = 1, qy = 5, rv = rδ = 0.5.
The resulting NLP problem contains N = 16 time intervals (i.e., ∆t = 0.17).

The problem was solved using the IPOPT optimizer installed on a notebook with an
Intel Core i3-2350CPU@2.3 GHz x 4, 64 bit Ubuntu 12.04 LTS Linux. Because of
the mechanics, it was found to use additional velocity constraints in the first three
time intervals, i.e., the maximum velocity is restricted to 0.4 [m/s], 0.7 [m/s], 0.9
[m/s]. The required sensitivities were computed with the help of Eigen library (see:
www.eigen.tuxfamily.org). The state trajectories inside each time interval were com-
puted using own programmed Newton method. The tolerance in IPOPT is equal to
10−4 due to the robot mechanics. The obtained results are given in Figure 7.3. It can
be seen that the robot has no collision with unknown obstacles.

The computation time is given in Figure 7.4. It can be seen that using the CMSC
approach the real-time control can be guaranteed using the NMPC scheme. The
computation time slightly rises in front of each obstacle, since more time is needed
to compute the optimal trajectory. The mean value of the computation time is equal
to ca. 12 [ms], which means that BFGS approximation can be used in the NMPC
framework, as was predicted by the control-variable correlation analysis.

As indicated in Figure 7.5 before each obstacle (red circles) the robot velocity
reduces almost to the minimum value. This effect is expected due to the secured areas
around the obstacles, mechanical capabilities of the mobile robot, and used objective
function. Using the obtained optimal control profiles the maximum approximation

7.2. Obstacle detection and avoidance 87

-1.5 -1 -0.5 0 0.5

y-Coordinate [m]

0

2

4

6

8

10

12

14

16

18

20

x
-C

o
or

d
in

at
e

[m
]

Robot path
Obstacle

Driving direction

Figure 7.3: Obstacle avoidance - trajectory

0 2 4 6 8 10 12 14 16 18 20

Distance [m]

0

0.05

0.1

C
om

p
u
ta

ti
on

ti
m

e
[s
]

Figure 7.4: Obstacle avoidance - computation time

88Chapter 7. Nonlinear model predictive control for autonomous driving

0 2 4 6 8 10 12 14 16 18 20

0.2

0.4

0.6

0.8

1

V
el
o
ci
ty

[m
/s

]

0 2 4 6 8 10 12 14 16 18 20

Distance [m]

-0.05

0

0.05

S
te

er
in

g
an

gl
e

[r
ad

]

Figure 7.5: Obstacle avoidance - control trajectories

error was computed. It is equal to 1.425·10−5, which is below the desired approximation
tolerance. Thus, the proposed bilevel approach can correctly determine the minimum
number of time intervals.

7.3 City driving scenario

7.3.1 Vehicle description and control framework design

The object under investigation is the Audi Q2 model vehicle (scale 1:8). In compari-
son to the mobile robot, the prescribed development framework is ADTF (Automotive
Data and Time-triggered Framework). The Audi Q2 model allows more flexible ma-
nipulations than the mobile robot SUMMIT. These features are reflected in user-
specified adjustment of low-level regulators, possibilities to get raw-data from sensors,
and implementation of additional components for numerical computations. The ve-
hicle is equipped with a set of ultrasonic sensors, camera, speed wheel sensor, and
miniTX board. This includes an Intel Core i3 processor, an 8 GB RAM, a fast 128
GB M.2 SSD hard drive and an NIVIDIA GeForce GTX1050Ti graphics card. In
addition to two gigabit Ethernet ports, the board also has several USB3.0 interfaces
and a USB-C port. Furthermore, a Bluetooth and a WLAN module (IEEE 802.11ac)
is available. In Figure 7.6 the developed framework for real-time control is presented.

7.3. City driving scenario 89

Information level

 Camera | Odometry | IMU

Data processing level

High-level control

Low-level control

Lane information | Sensor data

Logic | Trajectory planning

Servomotor | PI-Controller for motor

NMPC

Kalman
-Filter

Orientation

Figure 7.6: Developed framework for Audi Q2 model vehicle

The whole control framework is separated into four major levels. In the information
level all required data from sensors and hardware is collected and supplied to the
data processing level, where it will be processed. The lane information is obtained
using image processing techniques. Note that the information about lane profile is
supposed to be available and the low-level controller for the servomotor, which is used
for steering, is adjusted. Therefore, the implementation aspects of these parts are
out of the scope of this thesis. In addition, the Kalman-Filter is also implemented in
this level. The implementation of Kalman-Filter allows to know the vehicle position
on the coordinate plane in every sampling instance. The vehicle orientation includes
longitudinal and lateral coordinates as well as heading angle. Based on the driving
tests the covariance matrices for the process and observation noise are equal to Q =
10 and R = 15, respectively. The initial value for the estimated error covariance
is equal to P0 = 0.5. In the high-level control the logic unit and the trajectory
planing are implemented. The trajectory planning is combined with NMPC controller.
The controller receives the preplanned trajectories if required. However, in the lane
following mode the NMPC controller computes new control sequences always in local
vehicle coordinates. The logic unit is responsible for overall system monitoring, e.g.,
switching the mode of the NMPC controller. In the low level control a PI-controller
is designed to control the vehicle velocity. To design the proper coefficients of the
proportional GP and integral GI gain coefficients, several tests using unit step function
were performed. Based on the obtained results the following coefficients were selected
GP = 20 and GI = 20. The regulator for the steering angle is already available and

90Chapter 7. Nonlinear model predictive control for autonomous driving

further modifications are not required.

7.3.2 Preliminary analysis

In this section the main focus of the experiments is to investigate the main feature
of the autonomous driving, namely lane keeping assistant system. This model vehicle
was employed for the Audi Autonomous Driving Cup 2017 competition.

The mathematical model for this vehicle is formulated as follows

ẋ(t) = v(t) · cos(ψ(t) + β(t)) (7.48)
ẏ(t) = v(t) · sin(ψ(t) + β(t)) (7.49)

ψ̇(t) =
v(t)

lf + lr
· tan(δ(t)) (7.50)

β ≈ lr
lf + lr

· δ(t) (7.51)

where β(t) denotes sideslip angle [rad], ψ(t) is heading angle [rad], v(t) - velocity [m/s],
δ(t) - steering angle [rad], x(t) and y(t) are longitudinal and lateral coordinates in [m],
lf and lr in [m] are distances between center of gravity and front / rear axes, respec-
tively. This model mimics the main state and control variables, which are important
to achieve the goal.

Before the adjustment of the lane-keeping assistant system, the vehicle model
(7.48)-(7.51) will be firstly analyzed using control-variable correlation analysis, to
check which Hessian matrix (analytical or approximated) should be used and how
many time intervals should be involved for discretization.

According to the control-variable correlation analysis, it was found that control
variables v(t) and δ(t) are uncorrelated, i.e., the angle between columns in the sensitiv-
ity matrix is equal to 99.361◦. It means that for this model the Hessian approximation
using BFGS method will be enough to guarantee fast convergence rate.

For the analysis of the discretization a time horizon should be selected and fixed.
Because of the constraints imposed on the vehicle velocity, i.e., 0.4 ≤ v(t) ≤ 1.0 [m/s],
the time horizon is equal to 0 ≤ t ≤ tf , where tf = 1.2 [s]. This value can guarantee
an appropriate prediction length and can balance between prediction, computational
load, and spontaneous change of the lane shape. Another important motivation for
such prediction length is that the vehicle model defined above is simple and cannot
capture the important longitudinal and lateral vehicle dynamics. Because of the bilevel
approach, described in Chapter 5, the tolerance of the approximation should be se-
lected. Since the vehicle model is represented as point motion of the center of gravity,
the approximation error should be low enough, e.g., 10−5 ≤ ε ≤ 10−7, to avoid the ef-
fects of, e.g., inertia, vehicle parameters, and unpredictable disturbances. The results
of the bilevel approach are summarized in Table 7.1, where all three noncollocation
points are investigated. In Chapter 5 the bilevel approach was provided only for the
second noncollocation point t̂2, which lies between first and second collocation point.
Here, the first t̂1 and third t̂3 noncollocation points are also investigated to analyze the

7.3. City driving scenario 91

approximation error, whose selection is also based on the same principle as in Chap-
ter 5. The analysis in Table 7.1 was conducted under following additional operation

Table 7.1: Obtained results using bilevel-II approach
t̂1 t̂2 t̂3

ε N emax N emax N emax
5 · 10−5 4 2.328 · 10−5 3 3.540 · 10−6 3 3.812 · 10−5

1 · 10−6 9 9.096 · 10−7 4 8.414 · 10−7 8 7.516 · 10−7

3 · 10−7 12 2.882 · 10−7 5 2.759 · 10−7 11 1.972 · 10−7

conditions x(t0) = 4.5821 and y(t0) = 3.6539, as well as imposed constraints on these
state variables, i.e., 1.108 ≤ x(t) ≤ 4.582 and 2.994 ≤ y(t) ≤ 3.874. The boundaries
imposed on longitudinal and lateral coordinates describe the allowed movement of the
vehicle inside this rectangle. Especially, the lateral constraints describe the road lanes,
which must not be violated by the wheels. Because of the mechanical limitations, the
steering angle is also restricted as −0.46 ≤ δ(t) ≤ 0.49 radians. According to the
results in Table 7.1 the number of required time intervals is dependent of the position
of the noncollocation point. The largest impact is caused by the first noncolloca-
tion point. Therefore, for the practical implementation of the NMPC scheme, three
experiments are conducted, i.e., using 4, 9, and 12 time intervals.

For demonstration purposes the slalom maneuver was selected. In the critical traffic
situations during the city driving cycle the similar driving behavior can occur. To
describe such kind of behavior the Bézier curves have been employed using Bernstein
polynomials, which have many advantages. These curves are simple, differentiable, and
dependent only from time and control points, which are used to describe the shape of
the curve. Here, three connected cubic Bézier curves are used with the following four
control points, defined in Table 7.2, where the control points are described pairwise
for longitudinal and lateral coordinates.

Table 7.2: Bézier curves for slalom maneuver
Control point 1st Bézier curve 2nd Bézier curve 3d Bézier curve

1 (4.5821, 3.6539) (3.3821, 3.2139) (2.3821, 3.6539)
2 (3.9821, 3.6539) (2.8821, 3.2139) (1.7821, 3.6539)
3 (3.9821, 3.2139) (2.8821, 3.6539) (1.7821, 3.2139)
3 (3.3821, 3.2139) (2.3821, 3.6539) (1.2821, 3.2139)

It can be seen that starting point of the second trajectory is the same as the last
point of the first trajectory. The same relations hold true between third and second
trajectories. For the practical experiment all three curves are combined together and
discretized using 70 points applying equidistant distance between neighboring discrete
points. The number of discrete points for trajectory tracking is chosen empirically.

92Chapter 7. Nonlinear model predictive control for autonomous driving

Consequently, the NMPC problem is formulated as follows

min
xp,v,δ

N∑
i=0

Qx · (xr,i − x(1)p,i)2 +Qy · (yr,i − x(2)p,i)2 (7.52)

+
N−1∑
j=0

Rd · δ2i +
N−2∑
j=0

Rc ·
(δj+1 − δj)2

∆t

subject to: xp,0 − x0 = 0,

xp,i = x̂i (xp,i−1, vi−1, δi−1) , i = 1, . . . , N, (7.53)
t0 ≤ t ≤ tf , t0 = 0, tf = 1.2,

0.4 ≤ vi ≤ 1.0, i = 1, . . . , N,

−0.46 ≤ δi ≤ 0.49, i = 1, . . . , N,

where Qx = 10 and Qy = 50 denote weighting matrices for the longitudinal and lateral
coordinates, Rd = 1 describes the weighting matrix for the energy minimization during
steering activity, and Rc = 0.1 is responsible for controlling the change rate of the
steering angle, x(1)p,i and x(2)p,i denote longitudinal and lateral coordinates, respectively.
The large weighting matrix for lateral coordinates is necessary because the vehicle
dimensions (width and length) are not included directly in the model equations.

Figure 7.7: Slalom driving test using 12 time intervals

Using 4 and 9 time intervals for the discretization deliver unsatisfactory results of

7.3. City driving scenario 93

the driving behavior. However, the maximum approximation error is guaranteed. In
addition, the lane width is not also considered as a constraint by NMPC formulation.
Therefore, the car body violates the lane restrictions more then 7 centimeters. This
happens because the reference trajectory is complicated to be performed within the
imposed physical constraints on the steering angle and the prediction horizon is short.
On the other hand, using 12 time intervals the driving performance is good and the
vehicle can perform safe and stable operations. The results are given in Figure 7.7.

The corresponding approximation error after the slalom experiment for all three
noncollocation points are equal to 7.589·10−9, 3.101·10−11, 3.927·10−9, which indicates
the correctness of the bilevel approach. Moreover, the maximum violation of the
lane width is equal to 1.8 centimeter and can be neglected. In addition, the state
estimation using EKF indicates improved results in comparison with the data delivered
by odometry.

7.3.3 Experimental results using vehicle model

Near the point (X, Y) = (8, 4) in the coordinate plane (Figure 7.8) the vehicle per-
forms a right turn maneuver. Since camera information is not available, the vehicle
drives using an appropriate preplanned trajectory using the Bézier curve with objective
function defined in problem (7.53) applying Qx = 10 and Qy = 20. Using the slightly
modified objective function for the lane keeping, see equation (7.54), the experiment
was conducted.

min
xp,v,δ

QxN · (xr,N − x
(1)
p,N)2 +

N∑
i=0

Qy · (yr,i − x(2)p,i)2 +
N−1∑
i=0

Rd · δ2i

+
N−2∑
j=0

Rc ·
(δj+1 − δj)2

∆t
+

N−2∑
j=0

Rv ·
(vj+1 − vj)2

∆t
, (7.54)

where QxN = 2, Qy = 2, Rc = Rv = 0.1. The results of the test are indicated in
Figure 7.8, where the dotted line denotes the estimated state trajectory. The overall
results demonstrates very stable performance of the implemented NMPC controller.
The state estimation of the vehicle trajectory was computed with the help of EKF,
where the measurement signal is the IMU sensor value of the heading angle. Because
of the sensor capabilities it is hard to obtain better results. However, the obtained
estimated vehicle trajectory violates the center line of the lane insignificantly. In Fig-
ure 7.9, the computation time for each MPC iteration is given. The mean value is 19
milliseconds. The computation time demonstrates the capability of the NMPC con-
troller to operate in real-time. Since the NMPC controller involved in the complicated
control framework, where all required computations are conducted using only CPU,
the computation time is a little bit higher than the test using only simulations. In
the simulative investigations the mean computation time is equal to 11 milliseconds.
However, the real computation time may be further reduced using decomposition of
the designed framework. This can be done if, e.g., the image processing algorithms

94Chapter 7. Nonlinear model predictive control for autonomous driving

-2 0 2 4 6 8 10 12 14 16

X coordinate [m]

-2

0

2

4

6

8

10

Y
 c

oo
rd

in
at

e
[m

]

Figure 7.8: Lane keeping - driving route

0 100 200 300 400 500 600 700

MPC iteration

0

0.02

0.04

0.06

C
om

pu
ta

tio
n

tim
e

[s
]

Figure 7.9: Lane keeping - computation time

7.3. City driving scenario 95

will be implemented only in graphics processing unit and the NMPC framework with
low-level controllers will be implemented in a CPU. However, this point is left pending
further development.

The obtained control signals are given in Figures 7.10.

0 100 200 300 400 500 600 700
0.4

0.6

0.8

1

V
el

oc
ity

 [m
/s

]

0 100 200 300 400 500 600 700

MPC iteration

-0.5

0

0.5

S
te

er
in

g
an

gl
e

[r
ad

]

Figure 7.10: Lane keeping - optimal control profiles

The change of the velocity is caused by the lane shape. Nearly for 300 MPC
iterations the vehicle drives along a straight line. Therefore, the vehicle can accelerate
up to the upper limit of the allowed velocity. The fluctuations of the steering angle
in the straight segments of the test track are due to the slightly unstable detection of
the lane constraints. However, the fluctuations are insignificant and almost cannot be
detected by the human eye. However, the NMPC controller accepts in every iteration
the camera information and provides corresponding steering actions. Note that the
vehicle drops off the initial values of the coordinates and heading angle to zero vector.
It reduces the computational efforts. Nevertheless, in the background of the NMPC
the state estimation for the global vehicle position is running. This is done to identify
and plan the trajectory for the right turn properly. The approximation error obtained
using bilevel-I approach and bilevel-II is guaranteed during the whole test run. The
real approximation error of the state trajectories is below the predefined tolerance
ε = 3 · 10−7. The insignificant violations of the lane lines was encountered during
the test. The car body violates them around 1 centimeter as maximum. Therefore,
the CMSC approach and developed theoretical methods for a priori analysis of the

96Chapter 7. Nonlinear model predictive control for autonomous driving

dynamic optimization problems are suitable for autonomous driving.

Chapter 8

Conclusions and future research

8.1 Summary of contributions

An efficient solution approach with analytical second-order derivatives and parallel
computing based on the CMSC method is proposed. To accelerate the solution process,
an analytical Hessian for the CMSC method is derived. In addition, a novel approach
for correlation analysis of control variables is proposed, that can be used to identify a
priori the degree of difficulty for solving dynamic optimization problems. This analysis
can easily be done by examining the angles of the columns in the sensitivity matrix
through simulation for which the PRBS as control signal is proposed. A decision on
whether to use a BFGS approximation or an analytical Hessian can be made based on
the result of this analysis. Nevertheless, a more detailed theoretical investigation of
this method is left for future research. Parallel computations in terms of time intervals
are applied to reduce the computational costs. In comparison to previous algorithms,
the parallel computation in this work is performed for the computations in individual
time intervals on a stand-alone computer. The developed framework was tested on
four dynamic optimization problems including a large-scale problem with more then
200000 variables after discretization. As a future work, the proposed framework will
be made available as a web-based toolchain for wider public availability.

For solving the dynamic optimization problems the very first step is to discretize
model equations over the fixed time horizon. The determination of the number of
time intervals represents an important issue for efficient solution of dynamic optimiza-
tion problems. However, there have been no comprehensive studies addressing this
issue. This work presents an approach for a priori determination of a minimum num-
ber of time intervals based on error estimation of state trajectories. The proposed
approach is a bilevel solution strategy, where the outer loop is responsible for finding
a minimum number of time intervals and the inner loop solves an error maximization
problem. The approximation errors are estimated at specific noncollocation points
within the given time horizon. The found number of time intervals using the bilevel
approach is sufficient to guarantee the accuracy of the state profiles of the original
dynamic optimization problem. It is based on the properties of the inner problem,
since the maximum approximation error is found using the optimization method. The
simultaneous impact of control variables and initial conditions of state variables on
the numerical error is investigated, so that the a priori determined number of time
intervals are valid for varying operating conditions. In addition, the proposed bilevel
strategy can facilitate efficient design of NMPC in the sense of balancing between
accuracy, length of the prediction horizon, and computational burden. On the basis

98 Chapter 8. Conclusions and future research

of the resulting number of time intervals, one can identify in advance the numerical
performance in solving the NMPC problem. The selection of control horizon based on
the control performance is beyond the scope of this work. Without loss of generality,
the number of time intervals for the control horizon can be the same as for the pre-
diction horizon. To demonstrate the viability of the bilevel approach, two case studies
are presented and it is shown that the a priori identified number of time intervals can
guarantee the error tolerance when it is applied to solve the original problem.

In addition, the theoretically developed methods were integrated in the general
purpose framework, which is also designed within this work. The major advantages
of this framework are (i) problem-independent solution interface, which relies on the
symbolic problem transformation (ii) simple extensibility of the framework (iii) parallel
computing approach for reduction of the computational costs (iv) enhanced suitability
for facilitating rapid-prototyping procedure.

Feedback using
measurements

Nonlinear vehicle
dynamics Spontaneous traffic

situations
Comfort and energy

optimal driving

Different objective
functions

State and control
constraints

Transferability
to real vehicles

Fast computation
time

Autonomous
driving using

NMPC

Figure 8.1: Advantages of the NMPC for autonomous driving

The main advantages of the NMPC strategy over, e.g., PID controller, are summa-
rized in Figure 8.1. The obtained results are properly and throughly discussed. It was
shown that proposed CMSC method is suitable for implementation of the real-time
feedback controller using different scenarios for autonomous driving vehicles.

Both developed methods were tested on the real engineering dynamic optimization
problems. The practical applicability of these methods was shown through realization
of the NMPC scheme using a mobile robot (1:5) and scaled (1:8) Audi Q2 vehicle

8.2. Further research directions 99

model, aiming to demonstrate the suitability of the CMSC method for autonomous
vehicles.

First, the mobile robot SUMMIT was used as a test vehicle to solve the trajectory
tracking and landing problems in an unknown environment with obstacles. The ob-
stacles were recognized using the installed laser scanner. The robot can successfully
overwhelm all encountered difficulties during the test run. The practical application
of these investigations is not only autonomous driving function for conventional vehi-
cles to avoid obstacles. The designed NMPC controller can be implemented and used
for special mission robots which investigate the planets, such as "Curiosity", which is
a car-sized rover designed to explore Mars. Therefore, the obtained results are very
important from practical point of view. The second part of practical experiments was
conducted using the Audi Q2 vehicle model with special interest on designing control
scheme for the lane keeping assistant system. The information of the lane was sup-
plied to the objective function as a virtually constructed middle line of the lane. The
main task of the NMPC controller was to follow this points. Practical experiments
include not only the development of the predictive controller, but also in designing
the Kalman filter for position estimation, developing the low-level PI controller and
implementation of the control framework. The conducted experiments demonstrates
outstanding results, approving the applicability of the CMSC method for designing
the lane keeping assistant.

In summary, it can be concluded that the fourth level of autonomous driving can be
achieved under laboratory conditions. Moreover, the theoretically developed methods
for a priori analysis of the dynamic optimization problems show the correct results not
only in simulative investigations, but also if they are applied on practical engineering
applications. The designed NMPC controller using CMSC method indicates real-time
capability and can be further developed for use in the serial production of autonomous
vehicles. The capability of the controller was proven using different test scenarios.

8.2 Further research directions

This doctoral thesis can be extended in several ways.
The modeling of the visibility due to varying weather conditions is very important

for autonomous driving but has not been principally investigated in previous studies.
Bad weather conditions such as rain, snow, fog have significant effects on visibility.
Intuitively, the driver will reduce the speed in the case of a low visibility. For au-
tonomous driving, sensors (e.g., camera, laser scanner etc.) will be used to detect
the environment but the delivered information may be uncertain due to bad weather
conditions. Therefore, it is necessary to model the weather conditions and the related
visibility, based on which the controller can provide proper control actions to navigate
under bad weather conditions. Although it is inevitably important to remark that the
design of a high-level control strategy for autonomous driving has not yet attracted
much attention both in theoretical research and in industrial applications. Therefore,
the next step is to carry out a systematic study aiming at developing a model-based

100 Chapter 8. Conclusions and future research

control strategy to enhance the robustness and adaptability of autonomous driving
under uncertain and varying conditions.

Based on the literature review, there is no agreement, which vehicle model should be
using in the controller design. On the one hand, for some traffic situations a simple ve-
hicle model may be used. On the other hand, the controller requires more information
about the real vehicle state. One extension leads to the development of a comprehen-
sive vehicle model which mimics sufficiently enough the real behavior of the vehicle,
balancing between complexity of the model equations and numerical performance dur-
ing the solution. Consequently, the next extension leads to the application of the
proposed approach within the switching (hybrid) model predictive control framework,
which can automatically choose the most appropriate vehicle models (which can be
obtained from a comprehensive vehicle model using simplifications). The main point
of this extension is a mathematical analysis of the hybrid controller in the presence of
switching model dynamics, objective functions, and constraints.

A novel vehicle model will be developed in the form of nonlinear differential equa-
tions, containing several sets of parameters: road (tire-road friction coefficient; road
grade and bank angles), environment (lateral and longitudinal wind forces; visibility
index), and vehicle (mass; tire cornering stiffness) parameters, respectively. Based
on our literature review, the existing models (kinematic model, dynamic model, tire
model, friction model etc.) treat these parameters individually, i.e., different models
contain different sets of parameters. Note that such a vehicle model including all these
parameters is not available. Therefore, this extension is to establish such a compact
model for the underlying model-based control algorithm to enhance the performance
of autonomous driving in terms of predictability, adaptability and robustness.

The considered autonomous driving vehicle is equipped with a number of sensors,
such as inertial measurement unit, ABS, cameras, etc. Therefore, the information
obtained from these sensors is uncertain, which actually calls for the design of so-called
stochastic NMPC. However, the stochastic optimization problems are hard to be solved
in real-time. Therefore, the theoretical investigation and practical implementation is
considered as a major issue for designing autonomous driving vehicles.

Moreover, from the implementation point of view, several extensions are also pos-
sible. Since the NMPC controller relies on the optimizer and sensitivity computations
using a linear algebra solver, one can highlight the custom implementation of them,
focusing on the specific characteristics of the vehicle models.

The next extension is dedicated to the design of a supervisory control scheme
based on the artificial intelligence techniques. With the help of artificial intelligence
many problems may be solved much easier in comparison with classical methods.
Moreover, these methods may provide a proper answer for designing the underlying
NMPC controller. For instance, convolutional neural networks may be applied for
(i) the automatic selection of the weighting matrices in the objective function (ii)
the fast recognition of the environment situation through camera (iii) overall system
monitoring.

Last but not least extension requires the purely theoretical investigation, leading
to the mathematical analysis of the convergence rate of the CMSC method.

Chapter 9

Appendix

Illustration example for comparison between the Nyquist-
Shannon theorem and the bilevel approach

To demonstrate the efficiency of the proposed bilevel approach over the Nyquist-
Shannon theorem for determining sampling intervals, a simple linear control system is
considered as shown in Figure 9.1, where a proportional controller is defined as Kp = 1
and the set point W (s) is a step function.

4
𝑠 + 2.8

1
𝑠
 𝐾𝑝

𝑈(𝑠) 𝑋1(𝑠) 𝑋2(𝑠) 𝑊(𝑠)

−

Plant / Process Controller

Figure 9.1: Closed loop control scheme.

The model equations in the state space form are as follows

ẋ1(t) = −2.8 · x1(t) + 4 · u(t), (9.1)
ẋ2(t) = x1(t). (9.2)

Our goal is to find the minimum number of time intervals that guarantees a
maximum approximation error ε = 0.002 of the state x2(t) in the time horizon
t ∈ [0, 5]. Without loss of generality, the control signal is considered to be limited
as −1 ≤ u(t) ≤ 1 and the initial conditions of the state variables are x1(0) = 0,
x2(0) = 0.

Applying the proposed bilevel approach, eight time intervals are needed to satisfy
the given tolerance and the corresponding maximum approximation error at the non-
collocation points is 0.001286. In contrast, using the Nyquist-Shannon theorem the
sampling frequency fs should determined by

fs ≥ 2 · fB, (9.3)

102 Chapter 9. Appendix

where fB = 0.321 Hz denotes the bandwidth frequency of the closed-loop system.
Therefore, the lower limit of the sampling frequency fs should be 0.642 Hz. Therefore,
the minimum number of time intervals determined by (9.3) is 3.2 which is rounded
to 4. Using 4 time intervals, the resulting maximum approximation error is 0.006751
which violates the tolerance. Hence, practically the sampling frequency is chosen from
20 up to 40 times larger than the bandwidth frequency [35]. For testing purposes,
the factor of 20 is chosen, which leads to a much higher number of time intervals, i.e.
N = 33, and also a much higher accuracy (i.e. the maximum approximation error is
1.4364 · 10−6) than necessary. Consequently, the proposed bilevel approach is highly
efficient and outperforms the results obtained by the Nyquist-Shannon theorem.

Demonstration of the CMSC method with the help of
a kinematic vehicle model

For demonstration purpose the kinematic vehicle model from Chapter 7 is chosen. The
problem is described as follows:

ẋ1(t) = u1(t) · cos(x3(t) +
lr

lf + lr
· u2(t)), (9.4)

ẋ2(t) = u1(t) · sin(x3(t) +
lr

lf + lr
· u2(t)), (9.5)

ẋ3(t) =
u1(t)

lf + lr
· tan(u2(t)). (9.6)

The model equations contains three state and two control variables, i.e., nx = 3
and nu = 2, respectively. For the sake of brevity, the number of time intervals N is
equal to 3. Applying the three-point-collocation scheme, e.g. Nc = 3, the number of
collocation points NNV to be computed is equal to

NNV = nx ·Nc ·N. (9.7)

Consequently, the number of optimization variables NOV is equal to

NOV = (nx + nu) ·N + nx. (9.8)

The vector of state variables at collocation points Xc,i in i-th intervals, i =
{1, . . . , N} can be constructed as follows:

Xc,i =
[
xc,i1,1, x

c,i
2,1, x

c,i
3,1, x

c,i
1,2, x

c,i
2,2, x

c,i
3,2, x

c,i
1,3, x

c,i
2,3, x

c,i
3,3

]
. (9.9)

The corresponding optimization variables Xo,i in the i-th intervals, i = {0, . . . , N},
are defined as

Xo,i =
[
xp,i0,1, x

p,i
0,2, x

p,i
0,3, u

i
1, u

i
2

]
. (9.10)

103

Therefore, the model equations (9.4) - (9.6) can be transformed into nonlinear
algebraic equations:

G1 = D1 −∆t · ui1 · cos

(
xc,i3,1 +

(
lr

lf + lr
· ui2
))

, (9.11)

G2 = D2 −∆t · ui1 · sin
(
xc,i3,1 +

(
lr

lf + lr
· ui2
))

, (9.12)

G3 = D3 −∆t · ui1
lf + lr

· tan
(
ui2
)
, (9.13)

G4 = D4 −∆t · ui1 · cos

(
xc,i3,2 +

(
lr

lf + lr
· ui2
))

, (9.14)

G5 = D5 −∆t · ui1 · sin
(
xc,i3,2 +

(
lr

lf + lr
· ui2
))

, (9.15)

G6 = D6 −∆t · ui1
lf + lr

· tan
(
ui2
)
, (9.16)

G7 = D7 −∆t · ui1 · cos

(
xc,i3,3 +

(
lr

lf + lr
· ui2
))

, (9.17)

G8 = D8 −∆t · ui1 · sin
(
xc,i3,3 +

(
lr

lf + lr
· ui2
))

, (9.18)

G9 = D9 −∆t · ui1
lf + lr

· tan
(
ui2
)
, (9.19)

where

D1 = L̇0,0 · xc,i1,1 + L̇0,1 · xc,i1,2 + L̇0,2 · xc,i1,3 + L̇0,3 · xp,i0,1, (9.20)

D2 = L̇0,0 · xc,i2,1 + L̇0,1 · xc,i2,2 + L̇0,2 · xc,i2,3 + L̇0,3 · xp,i0,2, (9.21)

D3 = L̇0,0 · xc,i3,1 + L̇0,1 · xc,i3,2 + L̇0,2 · xc,i3,3 + L̇0,3 · xp,i0,3, (9.22)

D4 = L̇1,0 · xc,i1,1 + L̇1,1 · xc,i1,2 + L̇1,2 · xc,i1,3 + L̇1,3 · xp,i0,1, (9.23)

D5 = L̇1,0 · xc,i2,1 + L̇1,1 · xc,i2,2 + L̇1,2 · xc,i2,3 + L̇1,3 · xp,i0,2, (9.24)

D6 = L̇1,0 · xc,i3,1 + L̇1,1 · xc,i3,2 + L̇1,2 · xc,i3,3 + L̇1,3 · xp,i0,3, (9.25)

D7 = L̇2,0 · xc,i1,1 + L̇2,1 · xc,i1,2 + L̇2,2 · xc,i1,3 + L̇2,3 · xp,i0,1, (9.26)

D8 = L̇2,0 · xc,i2,1 + L̇2,1 · xc,i2,2 + L̇2,2 · xc,i2,3 + L̇2,3 · xp,i0,2, (9.27)

D9 = L̇2,0 · xc,i3,1 + L̇2,1 · xc,i3,2 + L̇2,2 · xc,i3,3 + L̇2,3 · xp,i0,3. (9.28)

and

L̇ =

3.224744871392 1.16784008469 −0.25319726474 −4.1393876913
−3.56784008469 0.77525512860 1.053197264742 1.73938769134
5.531972647422 −7.5319726474 5.000000000000 −3.0

 . (9.29)

104 Chapter 9. Appendix

The discretized model equations G1, . . . , G9 are combined together into one func-
tion Gi, as indicated in equation (3.3) in Chapter 3. The sensitivity equations (3.4)
and (3.5) are merged together and the corresponding right-hand ∂Gi

∂Xc,i and left-hand
side ∂Gi

∂Xo,i matrices are defined in sparsity format as given below.

∂Gi

∂Xc,i
=



(0, 0) = L̇0,0

(3, 0) = L̇1,0

(6, 0) = L̇2,0

(1, 1) = L̇0,0

(4, 1) = L̇1,0

(7, 1) = L̇2,0

(0, 2) = ∆t · (−(ui1 · (− sin((xc,i3,1 + (lr
lf+lr

· ui2))))))
(1, 2) = ∆t · (−(ui1 · cos((xc,i3,1 + (lr

lf+lr
· ui2)))))

(2, 2) = L̇0,0

(5, 2) = L̇1,0

(8, 2) = L̇2,0

(0, 3) = L̇0,1

(3, 3) = L̇1,1

(6, 3) = L̇2,1

(1, 4) = L̇0,1

(4, 4) = L̇1,1

(7, 4) = L̇2,1

(2, 5) = L̇0,1

(3, 5) = ∆t · (−(ui1 · (− sin((xc,i3,2 + (lr
lf+lr

· ui2))))))
(4, 5) = ∆t · (−(ui1 · cos((xc,i3,2 + (lr

lf+lr
· ui2)))))

(5, 5) = L̇1,1

(8, 5) = L̇2,1

(0, 6) = L̇0,2

(3, 6) = L̇1,2

(6, 6) = L̇2,2

(1, 7) = L̇0,2

(4, 7) = L̇1,2

(7, 7) = L̇2,2

(2, 8) = L̇0,2

(5, 8) = L̇1,2

(6, 8) = ∆t · (−(ui1 · (− sin((xc,i3,3 + (lr
lf+lr

· ui2))))))
(7, 8) = ∆t · (−(ui1 · cos((xc,i3,3 + (lr

lf+lr
· ui2)))))

(8, 8) = L̇2,2



, (9.30)

where indices in round brackets mean the position of element in the matrix. All other
elements in this matrix are essentially zeros.

105

∂Gi

∂Xo,i
=



(0, 0) = L̇0,3

(3, 0) = L̇1,3

(6, 0) = L̇2,3

(1, 1) = L̇0,3

(4, 1) = L̇1,3

(7, 1) = L̇2,3

(2, 2) = L̇0,3

(5, 2) = L̇1,3

(8, 2) = L̇2,3

(0, 3) = ∆t · (− cos((xc,i3,1 + (lr
lf+lr

· ui2))))
(1, 3) = ∆t · (− sin((xc,i3,1 + (lr

lf+lr
· ui2))))

(2, 3) = ∆t · (− 1
lf+lr

· tan (ui2))

(3, 3) = ∆t · (− cos((xc,i3,2 + (lr
lf+lr

· ui2))))
(4, 3) = ∆t · (− sin((xc,i3,2 + (lr

lf+lr
· ui2))))

(5, 3) = ∆t · (− 1
lf+lr

· tan (ui2))

(6, 3) = ∆t · (− cos((xc,i3,3 + (lr
lf+lr

· ui2))))
(7, 3) = ∆t · (− sin((xc,i3,3 + (lr

lf+lr
· ui2))))

(8, 3) = ∆t · (− 1
lf+lr

· tan (ui2))

(0, 4) = ∆t · (−(ui1 · (1
lr+lr
· (− sin((xc,i3,1 + (lr

lf+lr
· ui2)))))))

(1, 4) = ∆t · (−(ui1 · (1
lr+lr
· cos((xc,i3,1 + (lr

lf+lr
· ui2))))))

(2, 4) = ∆t · (−(
ui1

lf+lr
· 1
cos2(ui2)

))

(3, 4) = ∆t · (−(ui1 · (1
lf+lr

· (− sin((xc,i3,2 + (lr
lf+lr

· ui2)))))))
(4, 4) = ∆t · (−(ui1 · (1

lf+lr
· cos((xc,i3,2 + (lr

lf+lr
· ui2))))))

(5, 4) = ∆t · (−(
ui1

lf+lr
· 1
cos2(ui2)

))

(6, 4) = ∆t · (−(ui1 · (1
lf+lr

· (− sin((xc,i3,3 + (lr
lf+lr

· ui2)))))))
(7, 4) = ∆t · (−(ui1 · (1

lf+lr
· cos((xc,i3,3 + (lr

lf+lr
· ui2))))))

(8, 4) = ∆t · (−(
ui1

lf+lr
· 1
cos2(ui2)

))



. (9.31)

The next step is to formulate the constraints vector. Since an NLP problem is solved
in NMPC framework, the initial state values [x0,1, x0,2, x0,3]

T change from one to the
next NLP iteration. Therefore, initial continuity conditions BI should be formulated:

BI =

x0,1 − xp,00,1

x0,2 − xp,00,2

x0,3 − xp,00,3

 =

0
0
0

 . (9.32)

Moreover, according to the CMSC method the continuity condition between intervals
BCC must be stated to guarantee the continuity of the state trajectories and the state

106 Chapter 9. Appendix

values at collocation points must satisfy the variable bounds, where lower and upper
bounds of the constraints are defined as Bmin

CC and Bmax
CC , respectively.

BCC =



xc,11,1

xc,12,1

xc,13,1

xc,11,2

xc,12,2

xc,13,2

xc,11,3 − x
p,1
0,1

xc,12,3 − x
p,1
0,2

xc,13,3 − x
p,i
0,3

xc,21,1

xc,22,1

xc,23,1

xc,21,2

xc,22,2

xc,23,2

xc,21,3 − x
p,2
0,1

xc,22,3 − x
p,2
0,2

xc,23,3 − x
p,2
0,3

xc,31,1

xc,32,1

xc,33,1

xc,31,2

xc,32,2

xc,33,2

xc,31,3 − x
p,3
0,1

xc,32,3 − x
p,3
0,2

xc,33,3 − x
p,3
0,3



, Bmin
CC =



x1,min
x2,min
x3,min
x1,min
x2,min
x3,min

0
0
0

x1,min
x2,min
x3,min
x1,min
x2,min
x3,min

0
0
0

x1,min
x2,min
x3,min
x1,min
x2,min
x3,min

0
0
0



, Bmax
CC =



x1,max
x2,max
x3,max
x1,max
x2,max
x3,max

0
0
0

x1,max
x2,max
x3,max
x1,max
x2,max
x3,max

0
0
0

x1,max
x2,max
x3,max
x1,max
x2,max
x3,max

0
0
0



. (9.33)

The Jacobian matrix ∇BCC of the constraints vector is defined as follows:

∇BCC =


[−I]nx×nx[
∂Xc,1

∂Xo,1

]
q×w

[
−Ĩ
]
q×nx[

∂Xc,2

∂Xo,2

]
q×w

[
−Ĩ
]
q×nx[

∂Xc,3

∂Xo,3

]
q×w

[
−Ĩ
]
q×nx

 , (9.34)

where q = nx ·Nc, w = nx+nu; I and Ĩ are appropriate matrices which comes from the
derivatives with respect to parametrized initial and continuity conditions, respectively.
It should be noted that only nonzero elements should be defined in the IPOPT.

107

The objective function and its corresponding gradient supplied by the user and,
therefore, are not considered here. To facilitate the computational rate, it is worth to
use such objective function, that depends explicitly only on the optimization variables.
Thus, the computation of the gradients can be done in the straight-forward manner.

Bibliography

[1] A. H. Ahmed and K. Wright. Error estimation for collocation solution of linear
ordinary differential equations. Comp and Maths with Appls., 5/6(12B):1053–
1059, 1986.

[2] J. Åkesson. Optimica - an extension of Modelica supporting dynamic optimiza-
tion. Proceeding of the 6th international Modelica conference, pages 57–66, 2008.

[3] J. Åkesson, K. E. Årzén, M. Gåfvert, T. Bergdahl, and H. Tummescheit. Mod-
eling and optimization with optimica and jmodelica.org-languages and tools
for solving large-scale dynamic optimization problems. Comput. Chem. Eng.,
11(34):1737–1749, 2010.

[4] J. Andersson, J. Åkesson, and M. Diehl. CasADi: A symbolic package for au-
tomatic differentiation and optimal control. Lect. Notes Comput. Sci. Eng.,
(87):297–307, 2012.

[5] U. M. Ascher and L. R. Petzold. Projected implicit runge-kutta methods for
differential-algebraic equations. SIAM J. Numer. Anal., 4(28):1097–1120, 1990.

[6] W. Auzinger, O. Koch, and E. Weinmüller. Efficient collocation schemes for
singular-boundary value problems. Numerical Algorithms, (31):5–25, 2002.

[7] W. Auzinger, O. Koch, and E. Weinmüller. Efficient mesh selection for colloca-
tion methods applied to singular bvps. Journal of Computational and Applied
Mathematics, (180):213–227, 2005.

[8] B. Bachmann, L. Ochel, V. Ruge, M. Gebremedhin, P. Fritzson, V. Nezhadali,
L. Eriksson, and M. Sivertsson. Sundials: Suite of nonlinear and differen-
tial/algebraic equation solvers. Proceedings of the 9th international Modelica
conference, pages 659–668, 2012.

[9] E. Balsa-Canto, J. R. Banga, A. A. Alonso, and V. S. Vassiliadis. Dynamic
optimization of chemical and biochemical processes using restricted second-order
information. Comput. Chem. Eng., 4-6(25):539–546, 2001.

[10] E. Balsa-Canto, J. R. Banga, A. A. Alonso, and V. S. Vassiliadis. Dynamic
optimization of distributed parameter systems using second-order directional
derivatives. Ind. Eng. Chem. Res., 21(43):6756–6765, 2004.

[11] M. Bartl, P. Li, and L. T. Biegler. Improvement of state profile accuracy in
nonlinear dynamic optimization with the quasi-sequential approach. AlChE J.,
8(57):2185–2197, 2011.

110 Bibliography

[12] T. Barz, R. Klaus, L. Zhu, G. Wozny, and H. Arellano-Garcia. Generation
of discrete first- and second-order sensitivities for single shooting. AIChE J.,
10(58):3110–3122, 2012.

[13] T. Barz, S. Kuntsche, G. Wozny, and H. Arellano-Garcia. An efficient sparse
approach to sensitivity generation for large-scale dynamic optimization. Comput.
Chem. Eng., 10(35):2053–2065, 2010.

[14] C. E. Beal and J. C. Gerdes. Model predictive control for vehicle stabiliza-
tion at the limits of handling. IEEE transactions on control systems technlogy,
4(21):1258–1269, 2013.

[15] D. P. Bertsekas. Dynamic Programming and Optimal Control. 2017.

[16] L. T. Biegler. Efficient solution of dynamic optimization and nmpc problems.
Progress in Systems and Control Theory, (26):219–243, 2000.

[17] L. T. Biegler, A. M. Cervantes, and A. Wächter. Advances in simultaneous
strategies for dynamic process optimization. Chem. Eng. Sci., 4(57):575–593,
2002.

[18] T. Binder, A. Cruse, C. A. K. C. Villar, and W. Marquardt. Dynamic optimiza-
tion using a wavelet based adaptive control vector parameterization strategy.
Comp Chem Eng, 2-7(24):1201–1207, 2000.

[19] H. G. Bock and K. J. Plitt. A multiple shooting algorithm for direct solution
of optimal control problems. Proceedings of the 9th IFAC world congress, pages
242–246, 1984.

[20] F. Borrelli, P. Falcone, T. Keviczky, J. Asgari, and D. Hrovat. Mpc-based ap-
proach to active steering for autonomous vehicle systems. International journal
of vehicle autonomous systems, 2(3):265–291, 2005.

[21] S. P. Boyd and L. Vandenberghe. Berichte über verteilte Messysteme. 2004.

[22] X. Cai. On the efficient implementation of efficient numerical methods for dy-
namic optimization using GPU. 2017.

[23] S. D. Cairano, H. E. Tseng, D. Bernardini, and A. Bemporad. Steering vehicle
control by switched model predictive control. IFAC proceedings volumes, 7(43):1–
6, 2010.

[24] M. Choi and S. B. Choi. Model predictive control for vehicle yaw stability with
practical concerns. IEEE Transactions on vehicular technology, 8(63):3539–3548,
2014.

[25] Y. Chu and J. Hahn. Parameter set selection for estimation of nonlinear dynamic
systems. AIChE J., 11(53):2858–2870, 2007.

Bibliography 111

[26] J. E. Cuthrell and L. T. Biegler. On the optimization of differential-algebraic
process systems. AlChE J., (33):1257–1270, 1987.

[27] J. E. Cuthrell and L. T. Biegler. Simultaneous optimization and solution methods
for batch reactor control profiles. Comput. Chem. Eng., 1-2(13):49–62, 1989.

[28] R. D’Ambrosio, M. Ferro, Z. Jackiewicz, and B. Paternoster. Two-step almost
collocation methods for ordinary differential equations. Numerical Algorithms,
2-3(53):195–217, 2010.

[29] C. L. Darby, W. W. Hager, and A. V. Rao. An hp-adaptive pseudospectral
method for solving optimal control problems. Optim. Control Appl. Meth.,
(32):476–502, 2011.

[30] C. DeBoor. Good approximation by splines with variable knots-ii. Lect Notes
Math, (363):12–20, 1974.

[31] C. DeBoor. Practical guide to splines. Applied Mathematical Sciences, 1978.

[32] C. DeBoor and R. Swartz. Collocation at gaussian points. SIAM J. Numer.
Ana., 4(10):582–606, 1973.

[33] M. Diehl. Real-time optimization for large scale nonlinear processes. Ph.D. thesis.
2001.

[34] E. Drozdova, S. Hopfgarten, E. Lazutkin, and P. Li. Autonomous driving of a
mobile robot using a combined multiple-shooting and collocation meethod. 9-th
IFAC symposium on intelligent autonomous vehicles, 15(49):193–198, 2016.

[35] G. F. Franklin, J. D. Powell, and M. L. Workman. Digital control of dynamic
systems, Third edition. 1998.

[36] J. V. Frasch, A. Gray, M. Zanon, H. J. Ferreau, S. Sager, F. Borrelli, and
M. Diehl. An auto-generated nonlinear mpc algorithm for real-time obstacle
avoidance of ground vehicles. European Control Conference, pages 4136–4141,
2013.

[37] P. Fritzson. Principles of object-oriented modeling and simulation with Modelica
3.3: A cyber-physical approach. 2014.

[38] Y. Gao, A. Gray, H. E. Tseng, and F. Borelli. A tube-based robust nonlinear
predictive control approach to semi-autonomous ground vehicles. Vehicle system
dynamics: international journal of vehicle mechanics and mobility, 6(52):802–
823, 2014.

[39] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat. Predictive control of
autonomous ground vehicles with obstacle avoidance on slippery roads. Dynamic
Systems and Control Conference, 2010.

112 Bibliography

[40] C. E. Garcia, D. M. Prett, and M. Morari. Model predictive control: theory and
practice. Automatica, 3(25):335–348, 1989.

[41] A. Geletu, M. Klöppel, A. Hoffmann, and P. Li. A tractable approximation
of non-convex chance constrained optimization with non-gaussian uncertainties.
Journal of Engineering Optimization, 4(47):495–520, 2015.

[42] L. Grüne and J. Pannek. Nonlinear model predictive control. Theory and algo-
rithms. 2011.

[43] B.-Y. Guo and Z.-Q. Wang. Legendre-gauss collocation methods for ordinary
differential equations. Adv Comput Math, (30):249–280, 2009.

[44] R. Haber and H. Unbehauen. Structure identification of nonlinear dynamic
systems - A survey on input/output approaches. Automatica, 4(26):651–677,
1990.

[45] A. Hartwich, C. Stockmann, C. Terboven, S. Feuerriegel, and W. Marquardt.
Parallel sensitivity analysis for efficient large-scale dynamic optimization. Optim.
Eng., 4(12):489–508, 2011.

[46] J. D. Hedengren. A nonlinear model library for dynamics and control. CACHE
news, 2008.

[47] D. Hellmann. The Python Standard Library by Example. 2011.

[48] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. Sundials: Suite of nonlinear and differen-
tial/algebraic equation solvers. ACM. T. Math. Software, 3(31):363–396, 2005.

[49] W. R. Hong, S. Q. Wang, P. Li, G. Wozny, and L. T. Biegler. A quasi-sequential
approach to large-scale dynamic optimization problems. AlChE J., 1(52):255–
268, 2006.

[50] B. Houska, H. J. Ferreau, and M. Diehl. An auto-generated real-time iteration
algorithm for nonlinear mpc in the microsecond range. Automatica, 10(47):2279–
2285, 2011.

[51] G. T. Huntington and A. V. Rao. Comparison of global and local collocation
methods for optimal control. J Guid Control Dyn, (31):432–436, 2008.

[52] J. L. Junkins and J. D. Turner. Optimal continuous torque attitude maneuvers.
J. Guid. Control, 3(3):210–217, 1980.

[53] J. Kang, Y. Cao, D. P. Word, and C. D. Laird. An interior-point method
for efficient solution of block-structured NLP problems using an implicit Schur-
complement decomposition. Comput. Chem. Eng., (71):563–573, 2014.

Bibliography 113

[54] N. Karmarkar. A new polynomial-time algorithm for linear programming. Pro-
ceedings of the Sixteenth Annual ACM Symposium on Theory of Computing,
pages 302–311, 1984.

[55] A. Katriniok, J. P. Maschuw, F. Christen, L. Eckstein, and D. Abel. Optimal ve-
hicle dynamics control for combined longitudinal and lateral autonomous vehicle
guidance. European Control Conference, pages 974–979, 2013.

[56] T. Keviczky, P. Falcone, F. Borelli, J. Asgari, and D. Hrovat. Predictive control
approach to autonomous vehicle steering. Proceedings of the american control
conference, 2006.

[57] K. D. Kim and P. R. Kumar. An mpc-based approach to provable system-
wide safey and liveness of autonomous ground traffic. IEEE Transactions on
automatic control, 12(59):3341–3356, 2014.

[58] C. Kirches, L. Wirsching, H. G. Bock, and J. P. Schlöder. Efficient direct multiple
shooting for nonlinear model predictive control on long horizons. J. Process
Control, 3(22):540–551, 2012.

[59] O. Koch. Asymptotically correct error estimation for collocation methods applied
to singular boundary value problems. J Sci Comput, (101):143–164, 2005.

[60] E. Lazutkin, A. Geletu, S. Hopfgarten, and P. Li. Modified multiple shoot-
ing combined with collocation method in JModelica.org with symbolic calcula-
tions. Proceedings of the 10th International Modelica Conference, pages 999–1006,
2014.

[61] E. Lazutkin, A. Geletu, S. Hopfgarten, and P. Li. An analytical hessian and
parallel-computing approach for efficient dynamic optimization based on control-
variable correlation analysis. Ind. Eng. Chem. Res., 48(54):12086–12095, 2015.

[62] E. Lazutkin, A. Geletu, and P. Li. An approach to determining the number of
time intervals for solving dynamic optimization problems. Ind. Eng. Chem. Res.,
12(57):4340–4350, 2018.

[63] E. Lazutkin, S. Hopfgarten, A. Geletu, and P. Li. A toolchain for solving dynamic
optimization problems using symbolic and parallel computing. Proceedings of the
11th International Modelica Conference, pages 311–320, 2015.

[64] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder. An efficient
multiple shooting based reduced SQP strategy for large-scale dynamic process
optimization-Part I: theoretical aspects. Comput. Chem. Eng., 2(27):157–166,
2003.

[65] D. B. Leineweber, I. Bauer, H. G. Bock, and J. P. Schlöder. An efficient
multiple shooting based reduced SQP strategy for large-scale dynamic process

114 Bibliography

optimization-Part II: software aspects and applications. Comput. Chem. Eng.,
2(27):167–174, 2003.

[66] P. Li and Q. D. Vu. Identification of parameter correlations for parameter esti-
mation in dynamic biological models. BMC Systems Biology, 7(91), 2013.

[67] S. Li, L. Petzold, and W. Zhu. Sensitivity analysis of differential-algebraic equa-
tions: a comparison of methods on a special problem. Appl. Numer. Math.,
(32):161–174, 2000.

[68] L. Ljung. System identification - Theory for the user. 1999.

[69] J. S. Logsdon and L. T. Biegler. Accurate solution of differential-algebraic opti-
mization problems. Ind. Eng. Chem. Res., (28):1628–1639, 1989.

[70] L. H. Luo, H. Liu, P. Li, and H. Wang. Model predictive control for adap-
tive cruise control with multi-objectives: comfort, fuel-economy, safety and car-
following. Journal of Zhejiang University-Science A, 3(11):191–201, 2010.

[71] R. Luus. Application of dynamic programming to high-dimensional non-linear
optimal control problems. Inter. J. of Contr., 1(52):239–250, 1990.

[72] R. Luus, J. Dittrich, and F. J. Keil. Multiplicity of solutions in the optimization
of a bifunctional catalyst blend in a tubular reactor. The Canadian Journal of
Chemical Engineering, (70):780–785, 2006.

[73] F. J. MacWilliams and N. J. A. Sloane. Pseudo-random sequences and arrays.
Proceedings of the IEEE, 12(64):1715–1729, 1976.

[74] K. A. P. McLean and K. B. McAuley. Mathematical modelling of chemical
processesobtaining the best model predictions and parameter estimates using
identifiability and estimability procedures. Can. J. Chem. Eng., 2(90):351–366,
2012.

[75] S. Mehrotra. On the implementation of a primal-dual interior point method.
SIAM J. Optimization, 2(4):575–601, 1992.

[76] M. A. Mehrpouya, M. Shamsi, and M. Razzaghi. A combined adaptive control
parametrization and homotopy continuaton technique for the numerical solution
of bang-bang optimal control problems. ANZIAM J., 8(56):48–65, 2014.

[77] J. Nocedal and S. J. Wright. Numerical Optimization. 2006.

[78] D. B. Özyurt and P. I. Barton. Large-scale dynamic optimization with the
directional second order adjoint method. Ind. Eng. Chem. Res., 6(44):1804–
1811, 2005.

Bibliography 115

[79] L. T. Paiva and F. A. C. C. Fontes. Adaptive time-mesh refinement in optimal
control problems with state constraints. Discrete and Continuous Dynamical
Systems, pages 4553–4572, 2015.

[80] A. Propoi. Use of linear programming methods for synthesizing sampled-data
automatic systems. Automation and remote control, 7(24):837–844, 1963.

[81] J. K. Reid and I. S. Du. Ma27 - a set of fortran subroutines for solving sparse
symmentric sets of linear equations. Tech. rep. AERE R 10533, 1982.

[82] J. Richalet, A. Rault, J. L. Testud, and J. Papon. Model predictive heuristic
control: Applications to industrial processes. Automatica, 5(14):413–428, 1978.

[83] R. D. I. Robinett, D. G. Wilson, G. R. Eisler, and J. E. Hurtado. Applied
Dynamic Programming for Optimization of Dynamical Systems. Advances in
Design and Control. 2005.

[84] R. D. Russell and J. Christiansen. Adaptive mesh selection strategies for solving
boundary value problems. SIAM J Numer Anal., (15):59–80, 1978.

[85] D. V. Sarwate and M. B. Pursley. Crosscorrelation properties of pseudo-random
and related sequences. Proceedings of the IEEE, 5(68):593–619, 1980.

[86] A. Schäfer, P. Kühl, M. Diehl, J. Schlöder, and H. G. Bock. Fast reduced
multiple-shooting method for nonlinear model predictive control. Chem. Eng.
and Proc., 11(46):1200–1214, 2007.

[87] G. Schildbach and F. Borelli. Scenario model predictive control for lane change
assistance on highways. IEEE intelligent vehicle symposium, pages 611–616,
2015.

[88] M. Schlegel, K. Stockmann, T. Binder, and W. Marquardt. Dynamic opti-
mization using adaptive control vector parameterization. Comp Chem Eng,
8(29):1731–1751, 2005.

[89] P. Seferlis and A. N. Hrymak. Adaptive collocation on finite elements models for
the optimization of multistage distillation units. Chemical Engineering Science,
9(49):1369–1382, 1994.

[90] S. W. Smith. The scientist and engineer’s guide to digital signal processing,
Second edition. 1999.

[91] H. J. Stetter. The defect correction principle and discretization methods. Numer.
Math., (29):425–443, 1978.

[92] J. Tamimi and P. Li. A combined approach to nonlinear model predictive control
of fast systems. J. Process Control, 9(20):1092–1102, 2010.

116 Bibliography

[93] P. Tanartkit and L. T. Biegler. A nested, simultaneous approach for dynamic
optimization problems-i. Comput Chem Eng, (21):735–741, 1996.

[94] P. Tanartkit and L. T. Biegler. A nested, simultaneous approach for dynamic
optimization problems-ii: the outer problem. Comput Chem Eng, (21):1365–
1388, 1997.

[95] A. L. Tits, A. Wächter, S. Bakhtiari, T. J. Urban, and C. T. Lawrence. A
primal-dual interior-point method for nonlinear programming with strong global
and local convergence properties. SIAM J. Optim., 1(14):173–199, 2003.

[96] S. Vasantharajan and L. T. Biegler. Simultaneous strategies for optimization of
differential-algebraic systems with enforcement of error criteria. Comput Chem
Eng, (14):1083–1100, 1990.

[97] V. S. Vassiliadis, E. Balsa-Canto, and J. R. Banga. Second-order sensitivities of
general dynamic systems with application to optimal control problems. Chem.
Eng. Sci., 17(54):3851–3860, 1999.

[98] V. S. Vassiliadis, R. W. H. Sargent, and C. C. Pantelides. Solution of a class
of multistage dynamic optimization problems. 1. problems without path con-
straints. Ind. Eng. Chem. Res., 9(33):2111–2122, 1994.

[99] V. S. Vassiliadis, R. W. H. Sargent, and C. C. Pantelides. Solution of a class of
multistage dynamic optimization problems. 2. problems with path constraints.
Ind. Eng. Chem. Res., 9(33):2123–2133, 1994.

[100] A. Wächter and L. T. Biegler. On the implementation of a primal-dual interior
point filter line search algorithm for large-scale nonlinear programming. Math.
Prog., 1(106):25–57, 2006.

[101] Y. Wang and S. Boyd. Fast model predictive control using online optimization.
IEEE Trans. Contr. Syst. Tech., 2(18):267–278, 2010.

[102] Z.-Q. Wang and B.-Y. Guo. Legendre-gauss-radau collocation method for solving
initial value problems of first order ordinary differential equations. J Sci Comput,
(52):226–255, 2012.

[103] I. D. Washington and C. L. E. Swartz. Design under uncertainty using parallel
multiperiod dynamic optimization. AlChE J., 9(60):3151–3168, 2014.

[104] D. P. Word, J. Kang, J. Åkesson, and C. D. Laird. Efficient parallel solution
of large-scale nonlinear dynamic optimization problems. Comput. Optim. Appl.,
3(59):667–688, 2014.

[105] K. Wright. Adaptive methods for piecewise polynomial collocation for ordinary
differential equations. BIT Numerical Mathematics, (47):197–212, 2007.

Bibliography 117

[106] K. Wright, A. H. Ahmed, and A. H. Seleman. Mesh selection in collocation for
boundary value problems. IMA Journal of Numerical Analysis, (11):7–20, 1991.

[107] H. Yu, J. Duan, S. Taheri, H. Cheng, and Z. Qi. A model predictive control
approach combined unscented kalman filter vehicle state estimation in intelli-
gent vehicle trajectory tracking. Advances in mechanical engineering, 5(7):1–14,
2015.

[108] P. E. Zadunaisky. On the estimation of errors propagated in the numerical
integration of odes. Numer. Math., (27):21–39, 1976.

[109] V. M. Zavala, C. D. Laird, and L. T. Biegler. Interior-point decomposition
approaches for parallel solution of large-scale nonlinear parameter estimation
problems. Chem. Eng. Sci., 19(63):4834–4845, 2008.

[110] Y. Zhao and P. Tsiotras. Density functions for mesh refinement in numerical
optimal control. J Guid Control Dyn, 1(34):271–277, 2011.

Index

Approximation error, 58
Approximation of absolute operator, 65
Armijo-rule, 47
Autonomous driving, 23

Bézier curve, 91
Bernstein polynomials, 92
Bicycle vehicle model, 81
Bilevel approach, 60

Challenges of the NMPC scheme for au-
tonomous driving, 77

Collinearity angle, 51
Combined multiple-shooting with colloca-

tion method, CMSC, 41
Correlation analysis, 49
Covariance matrices, 80

Dynamic optimization problem, 37

Equidistant discretization, 58
Error estimation at noncollocation point,

63
Error maximization problem, 58
Extended Kalman filter, 78

First-order sensitivities, 43

Hessian matrix of Lagrangian function, 47

Ill-conditioned matrix, 52
Important hardware, 26
Inner loop problem, 61
Interior-point method, 45
Interior-point optimizer, 46

Kalman filter, 77
Kalman gain, 80
Karush-Kuhn-Tucker optimality conditions,

46

Kinematic vehicle model, 90

Lagrange polynomials, 57
Lane-keeping assistant system, 93
Levels of automation, 23
Linear equation system, 43

Mangasarian-Fromovitz constraint qualifi-
cation, 51

Mixed-integer nonlinear program, 59
Model predictive control, 38
Multiple-shooting discretization, 42
Multiprocessing, 74

Neural network for steering angle correc-
tion, 84

Noncollocation point, 58
Nonlinear programming problem, 42
Nonsmooth problem, 64
Number of collocation points, 58
Number of time intervals, 60
Nyquist-Shannon theorem, 101

Object-oriented modeling, 71
Observability, 78
Obstacle avoidance, 87
Obstacle description, 83
Outer loop problem, 61

Parallel processing, 74
Parameterized nonlinear euqation system,

42
Path constraints, 44
PI controller, 90
Pseudorandom binary sequence, 51
Python script language, 72

Quasi-analytical state values, 63

Radau collocation, 58

120 Index

Reduced interval length, 63
Relationships between approximation er-

ror and constraints, 69
Relationships between tolerances in bilevel

approach, 66

Second-order sensitivities, 44
Sensitivities at noncollocation points, 64
Sequential processing, 73
Softmax function, 64
Sparsity, 43
Structural and practical correlations, 50
Structure of the combined approach, 72
Symbolic computations, 73
Symbolic function, 73

Terminal constraints, 45
Trajectory planning, 91

Variation of the initial state values, 62

Index 121

	Acknowledgements
	Abstract
	Zusammenfassung
	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	List of Publications
	Introduction
	Motivation
	Objectives and contributions
	Outline of the thesis

	State-of-the-art
	Problem formulation and solution approach
	Problem statement
	Nonlinear model predictive control
	Combined multiple-shooting with collocation
	Transformation to an NLP problem
	Computation of first-order sensitivities
	Computation of second-order sensitivities
	Handling of path and terminal constraints

	Primal-dual interior-point method

	Correlation analysis of control variables
	Idea of the correlation analysis
	Demonstration examples

	An approach to determining the number of time intervals
	Error estimation problem
	Bilevel problem formulation
	The outer loop
	The inner loop

	Implementation details
	Illustrative examples

	Numerical implementation issues
	Component description
	Algorithm implementation
	Experiment: optimal control of the large-scale nonlinear system

	Nonlinear model predictive control for autonomous driving
	Kalman filter
	Obstacle detection and avoidance
	Mobile robot and mathematical model
	Obstacle description
	Pre-commissioning activities
	Experimental results using mobile robot

	City driving scenario
	Vehicle description and control framework design
	Preliminary analysis
	Experimental results using vehicle model

	Conclusions and future research
	Summary of contributions
	Further research directions

	Appendix
	Bibliography
	Index

