BBN models as trade-off tools for ecosystem services

Marie Anne Eurie Forio, Gonzalo Villacox, Helena Ryckebusch, Wout Van Echelpoel, Peter Goethals

Introduction

Introduction

- Ecosystem services benefits humans obtain from ecosystem
 - Supporting services (nutrient recycling, soil formation)
 - Provisioning services (food, raw materials, energy)

- Regulating services (pollination, pest and disease control)
- Cultural services (ecotourism, therapeutic)

Introduction

- Application of ecosystem services in water management
- Problem:
 - exploitation of one ecosystem service may lead to the deterioration of another

Objectives

- To identify the link between water management options and ecosystem services
- Determine how the ecosystem services change when certain management actions are applied
- To develop a trade-off tool using Bayesian belief network

Materials and methods

Study area

Study area

Estimating ecosystem services through modeling

- Bayesian belief networks (BBNs)
 - Probabilistic graphical model
 - Presented as directed acyclic graph
 - Nodes represent discrete(ized) variables
 - Arrows indicate causal relations
 - Conditional probability table displays conditional probabilities of a single variable wrt others

BBNs in estimating ecosystem services (ESS)

- Advantages
 - Easy interpretation, visualization
 - Flexible with available data
 - Can be applied as a trade-off tool

- Disadvantages
 - Feedback loop not allowed
 - Discretization
 - needed
 - Incorporation of

detailed processes

Modelling

General layout of BBN for ESS

Landuyt et. al, 2013

Modelling ESS

Input data

Nodes	Input
Altitude	Data (shape files)
Precipitation	Data (shape files)
Soil texture	Data (shape files)
Land use	Data (shape files)
Flow velocity	Data (field work)
Fertilizer	Data & expert knowledge
Pesticide	Data & expert knowledge
Crop	Literature
Chemical water quality	Data (measured pesticide residue & chemical attributes of water)
Biological water quality	Data (field work)
Food production	Literature & expert knowledge
Water provision	Expert knowledge (rule-based)
Ecotourism/recreatio	Expert knowledge (rule-based)

Data collection

Physical-chemical variables (e.g. velocity, pesticide)

Biological data(macroinvertebrates)

Shape files (ministry)

Other information

(documents)

Literature

Model development

Sensitivity analysis

Water provision

Sensitivity analysis

Food production

Sensitivity analysis

Ecotourism/recreation

Management options

Management options

Conclusions

- A trade-off tool was developed using BBN
- The developed model was able to identify the link between water management options and ecosystem services
- The model facilitate the determination of changes of ecosystem services when certain management actions are applied

Further studies

- Incorporation of other crops (e.g. Banana and palm)
- Addition of other ecosystem service (e.g. energy production, wood production)
- Model validation
- Incorporation of other defining variables for pesticide and fertilizer (farm size, farming type)

Thank you for your attention

Questions?