

Catucci E., Scardi M.

University of Rome 'Tor Vergata', Italy CoNISMa

<u>catucci.elena@gmail.com</u> – <u>mscardi@mclink.it</u>

10th International Conference on Ecological Informatics

September, 24-28, Jena – Germany

Posidonia oceanica

- endemic Mediterranean seagrass
- habitat-forming species
- one of the most productive ecosystems on Earth
- biodiversity hotspot
- **-** ...

Posidonia oceanica: matte

...perturbations

Living meadows

Regressed meadows

Dead matte to identify areas in which the► environmental conditions no longer allow the presence of living meadows

Crucial in habitat suitability modeling!

State of the art on P. oceanica: Italian vs. Mediterranean

Italian seas

- ✓ spatial distribution entirely known
- ✓ meadows status: living meadows vs. regressed meadows
- ✓ P. oceanica regression: ~25%

From Scardi et al., 2013 I analyzed...

RF output not independent to the meadows status

HSM aimed at assessing the vulnerability of meadows in the Italian seas

Mediterranean basin

- ✓ P. oceanica distribution known in the North and West of the basin
- x No data for the South and East
- ✓ P. oceanica regression: ~15%

Scardi et al., 2013

SDM using RF to define the potential spatial distribution

Italian seas

Aim:

to assess habitat suitability for P. oceanica meadows

entire data set used for the RF training

data preprocessing:

conservative rasterization

Mediterranean basin

Aim:

to predict spatial distribution of P. oceanica meadows

data set splitted into training set and test set

Data preprocessessing

Shapefile

Raster

Conservative rasterization

any pixel that intersect a
P. oceanica polygon
is turned on

3 meadows status

Random forest: tuning parameters

Italian data set

→ <u>266,634 records</u> (87.5% absence – 12.5% presence)

→ 35 predictors

tradeoff between overfitting and accuracy

HSM → nodesize 1000 and mtry 4

HSM: ROC CURVE & KAPPA STATISTIC

Data set \rightarrow 87.5% absence vs. 12.5% presence

observed vs. predicted

Vulnerability assessment

Therefore...

- ➤ **Dead matte** is found where environmental conditions no longer allow the existence of living meadows
- > RF aims at assessing the habitat suitability for P. oceanica meadows

Areas within which...

HSM provided low values of probability of presence

...are the **most vulnerable** ones!

Main conclusions

- ✓ HSM with good level of accuracy
- ✓ relationship between predicted and observed data:

 HSM provides quantitative estimates of meadows status

to identify the areas which are currently marginally suitable for the living meadows

TAKE AT HOME

HSM as a supporting tool to assess the vulnerability of *P. oceanica* meadows

HSM to identify

potential

regression risk

Thank you for the attention!

Catucci E., Scardi M.

<u>catucci.elena@gmail.com</u> – <u>mscardi@mclink.it</u>

RF: predictors relative importance

Permutation importance -- OOB records

- → handle high-order relationships between predictors and *P. oceanica*
- resemblance between the spatial distribution of predictors and *P. oceanica* meadows

Random forest: tuning parameters

Italian data set

- → 266,634 records (87.5% absence 12.5% presence)
- → 35 predictors

tradeoff between overfitting and accuracy