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Integrated pest management (IPM) combines chemical, biological, and 
agronomic control to provide targeted and efficient pest management 
solutions

IPM is now mandatory in all the member states of the EU

Insecticides are designed to be extremely effective at killing targeted
pests but also have the potential to adversely affect non-target natural
enemies

For many years natural enemies and insecticides were considered
incompatible.
This is likely to be true for broad-spectrum insecticides such as
organophosphates and carbamates this is not the case for newer
insecticides that have higher selectivity and more desirable
ecotoxicological profile



LAMINARIN                   β-1,3-glucan derived from the brown
algae Laminaria digitata

Chemical plant elicitor induces

• production of phenolic compounds
• accumulation of phytoalexins
• expression of a set of pathogenesis-related proteins

In grapevine leaves induce a significant protection against

• Gray mould Botrytis cinerea
• Downy mildew Plasmopara viticola

Natural and synthetic compounds called elicitors that induce similar
defense responses in plants as induced by the pathogen infection

Field trials gave indications about laminarin efficacy against
aphids on apple orchards



o How to study and caracterize/quantify possible effects on Green Peach Aphid 
(GPA) Myzus persicae in the laboratory or better with so called in-planta trials 
since, to be effective, inductors require the response of the plant?  

Not with DL50 or classical insecticide efficacy trials
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Using demographic toxicological analysis that estimates the total effect of a 
compound at population level



Life cycle graph of the Green Peach Aphid (GPA) Myzus persicae

The number in the nodes correspond to stages

(1) = small (N1 + N2) nymphs (2) = big (N3 + N4) nymphs (3) = adults

G1, survival of small nymph stages into big nymph stages
G2, survival of big nymph stages into adult stage
P1, survival of small nymph stages within small nymph stages
P2, survival of big nymph stages within big nymph stages
P3, survival of adult within adult stage; 
F3, fecundity of adults.
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The model

The relative stage/size-classified population projection matrix is

and the vectors n(t) and n(t + 1) give the state of the population, i.e. the number of individuals in each 
of the three stages, at time t and t + 1
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Potted peach plants were 
inoculated with GPA 
(nymphs of mixed ages 
and adults) and after a 
week treated with 
laminarin
• 50 ml/hl
• 100 ml/hl
• Control          water only

Bioassay carried out in a greenhouse to assess the population-level responses of two different 
concentrations of laminarin against the GPA on peach plants

• After 2 days and on five subsequent intervals, a group 
of plants was sampled

• For the sampling of aphids on peach plants, a brushing 
machine was used (Leaf Brushing Machine)

• The number of specimens of each GPA stage present 
was counted 

Data consisting of population time series were used to generate a stage-classified projection matrix



The relationship between the observed data and the values of the 
parameters that produced the series involves an estimation process 
called inverse problem

The set of parameters that minimize the residual between the 
collected data and the model output was firstly estimated using the 
quadratic programming method

Inverse methods for time series

Quadratic programming → routine qp on GNU Octave

Constraints: Pi ≥ 0; Gi ≥ 0; Pi + Gi ≤ 1; Pi ≤ 1; Fi ≥ 0 

Most of the methods utilized for estimating the parameters of age or stage-
classified models rely on following cohorts of identified individuals

However in semi-field, in-planta or field studies the observed data typically 
consisted of a time-series of population vectors n(t) for t = T1, T2, ..., Tn, 
where individuals are not distinguished

Population matrix parameter estimation by QP
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The dominant eigenvalue (λ1) of the population matrix is equal to the finite rate of 
increase (λ) of a population with a stable age distribution

λ represent the population multiplication rate → the number of times the population 
increases per unit of time

DEMOGRAPHIC PARAMETERS

The net reproductive rate (R0) is the mean number of offspring by which an
individual will be replaced by the end of its life, and thus the rate by which the
population increases form one generation to the next

< 1, the population is diminishing

= 1, the population is stationary

> 1, the population is increasing

 All the results rely on how much the estimated parameters of  the 
matrix are able to represent the observed population dynamic

 Matrix Population Models are a powerful tool for assessing the effects
of a toxicant on arthropods both in laboratory and semifield conditions



Genetic algorithms (GA)s
• GA is a method for solving optimization problems, 

constrained or unconstrained, based of natural selection
• GA evolves a population of individual solutions through a 

number of generations 
– At each generation, the population is subject to genetic 

operators of selection, crossover and mutation which combine 
the parent individuals to create new individuals for the next 
generation

– Over successive generations, the population moves (evolve) 
toward an optimal solution. 

– The selection of individuals for reproduction is made on the 
basis of their goodness w.r.t. a criterion, named fitness (the 
function one wants to optimize)



• Individual: real number coding
• Population size: 300
• Max generations: 600
• Selection: roulette wheel 
• Crossover: scattered (creates a random binary 

vector and selects the genes where the vector is a 
1 from the first parent, and the genes where the 
vector is a 0 from the second parent, and combines 
the genes to form the child)

• Elite count: 0.05*Population Size
• Crossover Rate: 0.8
• Mutation: uniform 
• Mutation rate: 0.01

• Fitness function: 

Population matrix parameter estimation by GA
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= 74.7 Fitness = 32.7 Fitness = 18.3

Fitness = 37.3 Fitness = 13.8 Fitness = 42.9

We took n(1) as known and used the estimated
matrix to project the population to t = 6
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Observed values are means over 3 replicates
qp are predictions based on matrix estimated by quadratic programming
GA are predictions based on matrix estimated by Genetic Algoritms

Control
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= 35.6

Fitness = 8.0 Fitness = 6.5Fitness = 9.5

Fitness = 13.1 Fitness = 4.8

Observed values are means over 3 replicates
qp are predictions based on matrix estimated by quadratic programming
GA are predictions based on matrix estimated by Genetic Algoritms

We took n(1) as known and used the estimated
matrix to project the population to t = 6
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Laminarin 50 ml/hl
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= 19.7 Fitness = 6.4 Fitness = 3.0

Fitness = 6.6 Fitness = 2.5 Fitness = 1.5

We took n(1) as known and used the estimated
matrix to project the population to t = 6
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Finite rate of increase (λ)

λ represent the population multiplication rate → the number of times the 
population increases per unit of time

Kruskal-Wallis test: H ( 2, N= 9) = 5.422 p = 0.0665
Median Test: χ2 = 6.300 df = 2 p = 0.0429

matrix estimated by quadratic programming matrix estimated by Genetic Algorithms



matrix estimated by quadratic programming matrix estimated by Genetic Algorithms
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Projection: the simplest form of analysis
Projection of a population of M. persicae starting from a vector n(0) of 
100 specimens in a stable stage distribution



TAKE HOME MESSAGE

 The new EU directive on IPM are asking for effective pest control strategies
and agrochemicals preferentially with reduced negative impact on the 
environment and optimal protection and utilization of existing biodiversiry

 Population-level approaches estimating the total effect of insecticides on 
populations is increasingly important when choosing new pesticides for IPM

 MPMs are essential tools for this topic but accurate estimation of matrix
parameters can be difficult

 GA optimization have proved to be an effective method for inverse estimation
of MPM parameters

 Laminarin seems to be a promising tool for ecologically sound control of GPA 
for IPM programs


	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Genetic algorithms (GA)s
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

