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Bat acoustic monitoring: principles

• Standardized recordings (=repeatable measurement)
– Same locations
– Same periods
– Same detectability

• Trigger sensitivity
• Microphone type

• Different methods depending on public and material

Car transects

Walk transects Whole-night recordings
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• Reduced costs => exponential data increase

• Complete manual checking impossible…
There is just no other way than auto id!
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Why using automatic id?

• Other less known good reasons:
1) Manual checking error rate is decreasing over time! but 

biasing trends estimates… Solution: machines can easily
re-analyse historic data and control observer bias

2) You can get very good data on non-targeted taxa such as 
bush-crickets: spatial and temporal patterns, trends!!

Jeliazkov et al. (2016) GECCO Newson et al. (2017) MEE
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• The example of Tadarida open software

Modular design = easy to combine with other tools

Code and install available there: github.com/YvesBas
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How using auto id?

• The example of Tadarida open software

End use available through a web portal: vigiechiro.herokuapp.com

Data collection Data 
processing
(Tadarida)

Online manual checking

Automatic secure storage 
(iRODS - IN2P3)

Online data 
transfer

Automatic feedback

https://github.com/Scille/vigiechiro-front
https://github.com/Scille/vigiechiro-api
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• Norfolk Bat Survey

Illustrations démarche

Newson et al. (2015) 
Biological Conservation

Low error rate for many species



Auto id:
Score reliability

Barré et al. (in prep)

Confidence score

• Correlate error
risk / confidence 
score
– identify

selection
thresholds

Confirmed id ~ 
software 

confidence
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How's automatic acoustic monitoring doing?

• Are errors biased / ecological patterns?

Error type False negative rate False positive rate
Causes Mostly influenced by 

sound quality
⇒ Distance to 

receiver
⇒ Alteration by 

vegetation density
(=> habitat-
dependent)

Mostly influenced by 
species relative 
abundance
⇒Strongly spatially

structured
⇒Pretty bad for rare 

species…

Biased? may be a little Often heavily!
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• A threshold to minimise bias?

How's automatic acoustic monitoring doing?

42% FP
2% FN

10% FP
15% FN

1% FP
40% FN

All thresholds will lead to 
potentially biased
measures but sources of 
bias differ

Solution: checking
consistency of ecological
inference with varying
thresholds (FP/FN rates)

Errors
due to 
other

species Errors due to 
sound quality
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• A study of the effect of 
distance to wind turbine on 
bats (Barré et al. 2018 Biol Cons)

• Estimates vary little!

Species
Threshold type

FP = FN FP << FN

Barbastella

barbastellus
0.237 ± 0.107 0.237 ± 0.107

Eptesicus

serotinus
0.132 ± 0.169 0.141 ± 0.179

Myotis

nattereri
0.132 ± 0.106 0.038 ± 0.044

Myotis spp. 0.260 ± 0.091 0.245 ± 0.096

Pipistrellus

kuhlii
-0.004 ± 0.100 -0.005 ± 0.103

Pipistrellus

pipistrellus
0.413 ± 0.100 0.413 ± 0.100

Plecotus spp. 0.309 ± 0.096 0.233 ± 0.102



Varying thresholds

• A study of the effect of 
distance to wind turbine on 
bats (Barré et al. 2018 Biol Cons)

• Estimates vary little!
⇒ Inferences are robust against

id errors!

Species
Threshold type

FP = FN FP << FN

Barbastella

barbastellus
0.237 ± 0.107 0.237 ± 0.107

Eptesicus

serotinus
0.132 ± 0.169 0.141 ± 0.179

Myotis

nattereri
0.132 ± 0.106 0.038 ± 0.044

Myotis spp. 0.260 ± 0.091 0.245 ± 0.096

Pipistrellus

kuhlii
-0.004 ± 0.100 -0.005 ± 0.103

Pipistrellus

pipistrellus
0.413 ± 0.100 0.413 ± 0.100

Plecotus spp. 0.309 ± 0.096 0.233 ± 0.102

Method replicated for artifical light (Pauwels et al. in review), motorways (Claireau et al. in review), etc



Accurate data: spatial

© Jan Svetlik

Southern Scotland Bat Survey

Raw data
Nyctalus noctula



Predicted
activity

Accurate data: spatial

© Mark Carmody

© Dennis Atherton

Newson et al. 2017 
Biological Conservation



Accurate data: phenology

Crepuscular activity Whole-night activity

Newson et al. (2015) 
Biological Conservation

Newson et al. (2017) Methods
in Ecology and Evolution



• Detecting seasonal phenological shifts

Accurate data: phenology
Bas et al. (in prep)

Date



And already some species trends
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Strongly declining in France

…declines not previously suspected…
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Conclusion

1) Large-scale ecoacoustic monitoring works!
- Citizen science + auto id + free web services = 

unprecedented data accuracy in space and time!
- Generic sound event detection = multi-taxonomic targets = 

sharing costs and benefits!

2) Prospects:
- Further investigating biases in acoustic data
- Improving auto id

• More reference data => collaborative work needed
• Adding contextual information in training (i.e. species relative 

abundance)

Thank you for your attention! And many thanks to participants of Vigie-Chiro, Norfolk Bat 
Survey and South Scotland Bat Survey!!
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But, is it dangerous??

• Well, it’s obviously not perfect, so you cannot neglect
error rates! You still NEED to:
1) Estimate error rates
2) Account for it in your analysis (w or w/o covariates)
=> That’s what we call « semi-automatic id »
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Also works for bush-crickets:
Dark Bush-cricket (42,132 recordings)

Norfolk Bat Survey
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Significant error
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Barré et al. (in prep)

Confidence score
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and  

COMMON
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Auto id:
Score reliability

Barré et al. (in prep)

• Correlate error
risk / confidence 
score
– identify

selection
thresholds

Confirmed id ~ 
software 

confidence

Ruspolia nitidula

Tettigonia viridissima



Auto id:
Score reliability

Barré et al. (in prep)

• Correlate error
risk / confidence 
score
– identify

selection
thresholds

Confirmed id ~ 
software 

confidence

Pholidoptera griseoaptera

Leptophyes punctatissima



Auto id:
Score reliability

Barré et al. (in prep)

• Correlate error
risk / confidence 
score
– identify

selection
thresholds

Confirmed id ~ 
software 

confidence

Platycleis albopunctata

Tessellana tessellata



Auto id:
Score reliability

Barré et al. (in prep)

• Correlate error
risk / confidence 
score
– identify

selection
thresholds

Confirmed id ~ 
software 

confidence

Ephippiger ephippiger

Phaneroptera nana



Varying thresholdsSpecies Environmental 
variables

Error risk tolerance

0.5 0.1

Barbastellus 
barbastella Open vs. edge habitat -2.91±0.23 *** -2.94±0.24 ***

Eptesicus serotinus Open vs. edge habitat -0.60±0.40 -0.52±0.42

Myotis nattereri Open vs. edge habitat -1.20±0.25 *** -1.08±0.33 ***

Myotis ssp. Open vs. edge habitat -1.64±0.20 *** -1.87±0.27 ***

Nyctalus leislerii Open vs. edge habitat -0.41±0.29 0.92±0.66

Nyctalus noctula Open vs. edge habitat 1.27±0.28 *** 1.27±0.50 *

Pipistrellus kuhlii Open vs. edge habitat -2.08±0.26 *** -2.17±0.27 ***

Pipistrellus nathusii Open vs. edge habitat 0.68±0.32 * /

Pipistrellus 
pipistrellus Open vs. edge habitat -2.93±0.19 *** -2.93±0.19 ***

Plecotus ssp. Open vs. edge habitat -0.89±0.19 *** -0.81±0.20 ***

Rhinolophus 
ferrumequinum Open vs. edge habitat 0.23±0.99 0.23±0.99

Rhinolophus 
hipposideros Open vs. edge habitat -3.01±0.72 *** -2.98±0.73 ***

• Hedgerow effect
(Barré et al. In prep)

⇒ Estimates vary little!
⇒ Inferences are 

robust against id 
errors!



Survey coverage

• 1,445 1-km squares surveyed (27% of Norfolk) 2013-2016
• 6,246 complete nights of recording
• > 1.4 million bat recordings



Predicted occurrence (left) and activity (right)

Newson, Evans & Gillings. Biological Conservation (2015)



Insight into seasonal movements

Newson, Evans & Gillings. Biological Conservation (2015)

Barbastelle - Barbastella barbastellus



Survey coverage
Red = Volunteers
Blue = BTO fieldworkers

• 715 1-km’s
• 1,537 nights of recording
• 399,242 bat recordings
• 275 volunteers  - 375 

squares
• Two BTO fieldworkers -

339 squares

Newson, Evans, Gillings, Jarrett & Wilson. In review



Nathusius’ pipistrelle (0.05% of recordings)



Predicted occurrence (left) and activity (right)

© John Dixon

© Sam Cents



Detectors recording over the day and night

Dark bush-cricket 

Speckled bush-cricket 

Newson et al. (2017). Methods in Ecology & Evolution



Detectors recording over the day and night

Short-winged Conehead

Roesel’s bush-cricket 

Newson et al. (2017). Methods in Ecology & Evolution
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>30% Nathusius means Nathusius
present

• Solution: looking at other « auto id » results on the same location
1) Rate of Nathusius’ positive id among « Kuhl’s + Nathusius’ »

10-30% Nathusius means
Nathusius probably present

Manually checked



Limits of the "auto id"

?

• Solution: looking at other « auto id » results on the same location
2) Maximum random forest score  among Nathusius’ positive id

Manually checked



Limits of the "auto id"

?

Little overlap but…

• Solution: looking at other « auto id » results on the same location
2) Maximum random forest score  among Nathusius’ positive id

Manually checked



Limits of the "auto id"

?

Little overlap but…

• Solution: looking at other « auto id » results on the same location
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Limits of the "auto id"

?

Little overlap but…

• Solution: looking at other « auto id » results on the same location
2) Maximum random forest score  among Nathusius’ positive id

25% sites where Nathusius’ 
Pipistrelle present but no good 
score…

Manually checked

More complex modelling in progress: integrating features measured at several
temporal scale (call sequence, minute, hour, night, etc) = 2nd layer of classification



Pipistrelle soprane : présence-absence

Nombreux faux positifs dans le Nord, 
mais la plupart peuvent être 
discriminés par un score faible



Noctule commune : présence-absence

La plupart des faux positifs peuvent 
être discriminés par un score faible



Petit Rhinolophe : présence-absence

La plupart des faux positifs peuvent 
être discriminés par un score faible

1ere mention à 
Paris depuis plus de 

100 ans !!



Data collection, analysis, feedback pipeline

Data collection
Data processing

Feedback

Data storage

Data 
transfer



Introduction

Auto Id: for what purpose?

Bas, Y. 16/05/2017
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