Habitat-Net

Habitat interpretation using deep neural nets

Anand Vashishtha
 <u>Anirban Mukhopadhyay</u>
 TU Darmstadt

Jesse F. Abrams
Azlan Mohamed
Andreas Wilting
IZW Berlin

Segmentations of habitat images

Forestry and Ecology

- Segmentations of habitat images
 - Quantitative Habitat interpretation
 - Location for camera traps
 - Assess biodiversity
 - Assess species distribution

Forestry and Ecology

- Segmentations of habitat images
 - Quantitative Habitat interpretation
 - Location for camera traps
 - Assess biodiversity
 - Assess species distribution
- Shorten the time from data collection to data processing.
- Increase accuracy of data interpretation.

- Segmentations of habitat images
 - Quantitative Habitat interpretation
 - Location for camera traps
 - Assess biodiversity
 - Assess species distribution
- Shorten the time from data collection to data processing.
- Increase accuracy of data interpretation.
- Timely action for efficient forest management

- Segmentations of habitat images
 - Quantitative Habitat interpretation
 - Location for camera traps
 - Assess biodiversity
 - Assess species distribution
- Shorten the time from data collection to data processing.
- Increase accuracy of data interpretation.
- Timely action for efficient forest management

No existing deep learning-segmentation model in ecology

Related work

- Mostly LiDAR based
 - Super-expensive

Related work

- Mostly LiDAR based
 Super-expensive
- LiDAR vs photographs
 - Photo for most people
 - Cheap and Practical

Related work

- Mostly LiDAR based
 - Super-expensive
- LiDAR vs photographs
 - Photo for most people
 - Cheap and Practical
- No segmentation method
 - habitat photographs

Convolutional Neural Network (CNN) vs U-Net

- CNN
 - Image in, Recognition out

CNN vs U-Net

CNN

- Image in, Recognition out
- Ecology context
 - Camera Trap image in
 - Species Id out

or

Norouzzadeh, PNAS 2018

CNN vs U-Net

CNN

- Image in, Recognition out
- Ecology context
 - Camera Trap image in
 - Species Id out
- U-Net
 - Image in, Segmentation out
 - Grayscale bio-medical images

or

Norouzzadeh, PNAS 2018

CNN vs U-Net

CNN

- Image in, Recognition out
- Ecology context
 - Camera Trap image in
 - Species Id out

- Image in, Segmentation out
- Grayscale bio-medical images

or

Ronneberger, MICCAI 2015

Norouzzadeh, PNAS 2018

- Encoder-decoder CNN
 - Skip Connections

- Encoder-decoder CNN
 - Skip Connections
- Learns segmentation in an end to end setting
 - Image in, Segmentation out

Image in, Segmentation out

- Works well
 - Very few annotations

- Encoder-decoder CNN
 - Skip Connections
- Learns segmentation in an end to end setting

- Encoder-decoder CNN
 - Skip Connections
- Learns segmentation in an end to end setting
 - Image in, Segmentation out
- Works well
 - Very few annotations
 - Grayscale images as input

Habitat-Net

Total 33 convolutions

~4 million parameters

Habitat-Net: Data Augmentation

Habitat-Net: Batch Normalization

• Same accuracy with fewer training steps.

Habitat-Net: Batch Normalization

Canopy closure: The upper layer formed by mature tree crowns.

© Jennings 99

Canopy closure: The upper layer formed by mature tree crowns.

Understory: Plant life growing beneath the forest canopy above the forest floor.

- Canopy:
 - Total: 950
 - Resolution: 128×128

- Canopy:
 - Total: 950
 - Resolution: 128×128
- Understory:
 - Total: 870
 - Resolution:
 256×160

- Canopy:
 - Total: 950
 - Resolution: 128×128
- Understory:
 - Total: 870
 - Resolution: 256×160

Validation set: 15% of training set

Results

Quantitative Comparison

HABITAT-NET VS. U-NET

Using same network depth and hyper parameters

Quantitative Comparison

HABITAT-NET VS. U-NET

Using same network depth and hyper parameters

Qualitative analysis: Canopy

Qualitative analysis: Understory

Habitat-Net code

Implementation: Keras with Tensorflow backend Trained Networks available Beta Version: <u>https://github.com/Kanvas89/Habitat-Net</u>

- First of it's kind
 - Deep learning to segment ecological images for habitation interpretation

- First of it's kind
 - Deep learning to segment ecological images for habitation interpretation
- Habitat-Net: ~15 milli-sec/ image
 - Humans: ~45 sec/image

- First of it's kind
 - Deep learning to segment ecological images for habitation interpretation
- Habitat-Net: ~15 milli-sec/ image
 - Humans: ~45 sec/image
- Accurate: Quantitatively and Qualitatively

- First of it's kind
 - Deep learning to segment ecological images for habitation interpretation
- Habitat-Net: ~15 milli-sec/ image
 - Humans: ~45 sec/image
- Accurate: Quantitatively and Qualitatively
- Practical
 - Code and trained network available
 - Sample data will be available soon

Significantly shortens the time from data collection to data interpretation

- Significantly shortens the time from data collection to data interpretation
 - Faster policy intervention
 - Efficient forest management
 - Inter-site and inter-observer standardization

- Significantly shortens the time from data collection to data interpretation
 - Faster policy intervention
 - Efficient forest management
 - Inter-site and inter-observer standardization
- Batch Normalization and Data Augmentation
 - Significantly boosts the performance.

- Significantly shortens the time from data collection to data interpretation
 - Faster policy intervention
 - Efficient forest management
 - Inter-site and inter-observer standardization
- Batch Normalization and Data Augmentation
 - Significantly boosts the performance.
- Innovative Deep-Learning toolkit for Ecology
 - Need of the hour

Thank You [©] Questions?

E-mail: anirban.mukhopadhyay@gris.tu-darmstadt.de

