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 Segmentations of habitat images 

 Quantitative Habitat interpretation

 Location for camera traps

 Assess biodiversity 

 Assess species distribution

 Shorten the time from data collection to data processing.

 Increase accuracy of data interpretation.

 Timely action for efficient forest management

No existing deep learning-segmentation model in ecology
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Overview: U-Net

 Encoder-decoder CNN

 Skip Connections

 Learns segmentation in an end to 

end setting

 Image in, Segmentation out

 Works well

 Very few annotations

 Grayscale images as input
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Habitat-Net
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Total 33 convolutions ~4 million parameters



Habitat-Net: Data Augmentation
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Habitat-Net: Batch Normalization
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• Same accuracy with fewer 

training steps.



Habitat-Net: Batch Normalization
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• Same accuracy with fewer 

training steps.

• Acts as a regularizer.



22

 Canopy closure: The upper layer formed by mature tree crowns.

Data Description

© Jennings 99
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 Canopy closure: The upper layer formed by mature tree crowns.

 Understory: Plant life growing beneath the forest canopy above the forest floor.

Data Description
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Validation set: 15% of training set



Results
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Quantitative Comparison

28

Using same network depth and hyper parameters 



Quantitative Comparison

29

Using same network depth and hyper parameters 

+11%
+5%



Qualitative analysis: Canopy
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Qualitative analysis: Understory

31

Actual Image

Ground Truth

Prediction Image



Habitat-Net code
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Implementation: Keras with Tensorflow backend

Trained Networks available

Beta Version: https://github.com/Kanvas89/Habitat-Net

https://github.com/Kanvas89/Habitat-Net


Summary
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Summary

 First of it’s kind 

 Deep learning to segment ecological images for habitation interpretation

 Habitat-Net: ~15 milli-sec/ image 

 Humans: ~45 sec/image

 Accurate: Quantitatively and Qualitatively

 Practical

 Code and trained network available

 Sample data will be available soon
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Conclusion

 Significantly shortens the time from data collection to data interpretation

 Faster policy intervention

 Efficient forest management

 Inter-site and inter-observer standardization 

 Batch Normalization and Data Augmentation

 Significantly boosts the performance.

 Innovative Deep-Learning toolkit for Ecology

 Need of the hour
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Thank You  Questions? 
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@anirbanakash

E-mail: anirban.mukhopadhyay@gris.tu-darmstadt.de

mailto:anirban.mukhopadhyay@gris.tu-darmstadt.de

