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 Shorten the time from data collection to data processing.

 Increase accuracy of data interpretation.

 Timely action for efficient forest management

No existing deep learning-segmentation model in ecology
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Related work

 Mostly LiDAR based

 Super-expensive

 LiDAR vs photographs

 Photo for most people

 Cheap and Practical

 No segmentation

method 

 habitat photographs
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Overview: U-Net

 Encoder-decoder CNN

 Skip Connections

 Learns segmentation in an end to 

end setting

 Image in, Segmentation out

 Works well

 Very few annotations

 Grayscale images as input
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Habitat-Net
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Total 33 convolutions ~4 million parameters



Habitat-Net: Data Augmentation
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Habitat-Net: Batch Normalization
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• Same accuracy with fewer 

training steps.

• Acts as a regularizer.
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 Canopy closure: The upper layer formed by mature tree crowns.

 Understory: Plant life growing beneath the forest canopy above the forest floor.

Data Description
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Validation set: 15% of training set



Results
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Using same network depth and hyper parameters 

+11%
+5%



Qualitative analysis: Canopy
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Qualitative analysis: Understory
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Actual Image
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Habitat-Net code
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Implementation: Keras with Tensorflow backend

Trained Networks available

Beta Version: https://github.com/Kanvas89/Habitat-Net

https://github.com/Kanvas89/Habitat-Net
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Summary

 First of it’s kind 

 Deep learning to segment ecological images for habitation interpretation

 Habitat-Net: ~15 milli-sec/ image 

 Humans: ~45 sec/image

 Accurate: Quantitatively and Qualitatively

 Practical

 Code and trained network available

 Sample data will be available soon
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Conclusion

 Significantly shortens the time from data collection to data interpretation

 Faster policy intervention

 Efficient forest management

 Inter-site and inter-observer standardization 

 Batch Normalization and Data Augmentation

 Significantly boosts the performance.

 Innovative Deep-Learning toolkit for Ecology

 Need of the hour
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Thank You  Questions? 
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@anirbanakash

E-mail: anirban.mukhopadhyay@gris.tu-darmstadt.de

mailto:anirban.mukhopadhyay@gris.tu-darmstadt.de

