

Nutrient addition affects leaf N-P scaling relationship in *Arabidopsis thaliana*

Speaker: Zhengbing Yan

Institute of Ecology, Peking University, Beijing, China

Jena, Germany
Sep 25, 2018
Yan et al., 2018. Functional Ecology.

- Introduction
- Materials and Methods
- Results and Discussion
- **Conclusion**

- Introduction
- Materials and Methods
- Results and Discussion
- **Conclusion**

1. Introduction

Global nutrient changes

We fertilize the biosphere

Decoupling of plant N and P under global changes

Evidence of a general 2/3-power law of scaling leaf nitrogen to phosphorus among major plant groups and biomes

Peter B. Reich, Jacek Oleksyn, Ian J. Wright, Karl J. Niklas, Lars Hedin and James J. Elser

Revisiting the N~P scaling at the global scale

- Vary across functional groups, sites, latitudinal zones and ecoregions
- Tight association with leaf P content

My scientific question

How do the nutrient changes influence the leaf N-P scaling relationship???

- Introduction
- Materials and Methods
- Results and Discussion
- **Conclusion**

2. Materials and Method

A species in the family Brassicaceae

An annual life-history strategy

A model organism for plant biological studies

Growth conditions: 18-20 °C, 16 h light/8 h dark photoperiod

Growing substrate: sterilised vermiculite+Hogland nutrient solutions

- Introduction
- Materials and Methods
- Results and Discussion
- **Conclusion**

3. Results and Discussion

All data pooled together

Scaling exponent 0.681 [0.685, 0.730]

Approx. 2/3

Considering the effects of nutrient addition type

N addition (0.779) > P addition (0.570)

Compared with P addition, N addition increases the relative variability of leaf N content, and *vice versa*

> Considering the effects of nutrient addition levels

N addition decreases the scaling exponent;

P addition increases the scaling exponent

That is, the increasing level of N (or P) addition induced the diminished (or accelerated) variability of the leaf N relative to P concentration among plant individuals.

Further support

CV: coefficient of variation

N addition decreases the CV of leaf N but increases the CV of leaf P;

P addition increases the CV of leaf N but decreases the CV of leaf P

Nutrient Availability-Individual variability Hypothesis

High nutrient availability decreases the variability of its own concentration, but promotes the fluctuation in another tightly associated nutrient concentration in leaves among plant individuals

One population

- Introduction
- Materials and Methods
- Results and Discussion
- **Conclusion**

Conclusions

Proposing one novel hypothesis
Nutrient availability-Individual Varability Hypothesis

Nutrient type and level alter leaf N-P scaling relationship

General law may mask important information at fine scale

Future research interests

- Plant stoichiometry and its linkage with ecological functioning
- Nitrogen and phosphorus cycles in terrestrial and aquatic ecosystems under global change
- Biogeography and variability of plant functional traits at large scales

These Work from them....

Prof. Jingyun Fang

Prof. Wenxuan Han

Prof. Yalong Guo

Dr. Di Tian

Dr. Zhengbing Yan

Thanks for your attentions!!!

If you have any other questions or suggestions, please email me yanzhengbing@pku.edu.cn

