Extracting granular information on habitats and reproductive conditions of Dipterocarps through pattern-based literature analysis

Roselyn Gabud^{1, 2} and Riza Batista-Navarro^{2,3} ¹University of the Philippines Diliman, Philippines; ²University of the Philippines Los Baños, Philippines; ³The University of Manchester, UK

Roselyn S. Gabud

rsgabud@up.edu.ph

Department of Computer Science University of the Philippines Diliman, Los Baños 27 September 2018 ICEI2018 Jena, Germany

What are Dipterocarps?

- Dipterocarpaceae
- medium to large forest trees, skeletal backbone of lowland tropical forests
- ~65 species in 6 genera in the Philippines, more than 65% are endemic
- economically and ecologically important, e.g., timber value
 - A exploited and affected by decline in forest cover:

Challenge: Reproduction of Dipterocarps

- 1. Long-term (temporal)
- 2. Broad-scale (geographical)

Photo by: Edwino S. Fernando. 07 December 2006.

Aims and Objectives

- **Aim**: To develop literature mining methods to automatically extract information relevant to the distribution and reproductive cycle of dipterocarps
 - in order to help predict the likelihood of their regeneration, and
 - subsequently make informed decisions regarding species for reforestation.

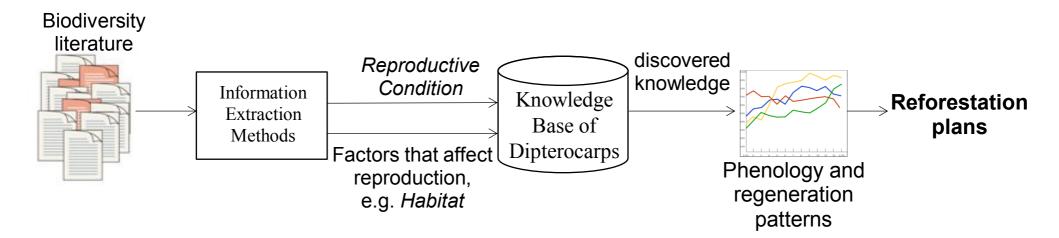


Figure 1. An overview of the research aims and objectives.

DipteroMine Corpus

Journals

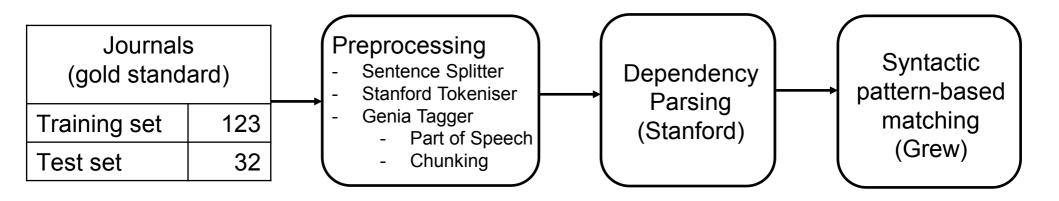
155 abstract length documents from:

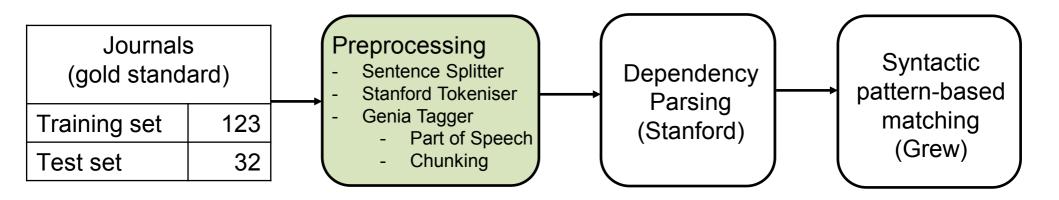
- Journal of Tropical Ecology
- Journal of Ecology
- Journal of Biosciences
- Forest Ecology and Management

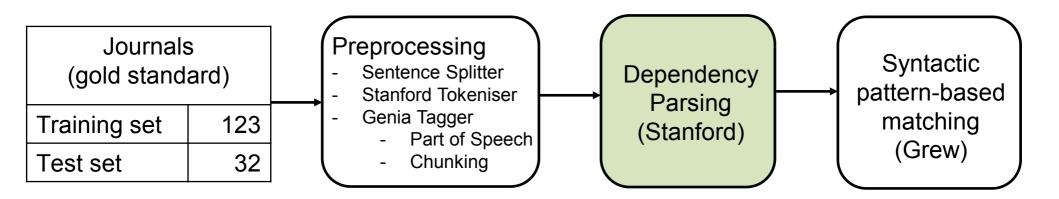
	Concept	Description	Example
1	Habitat	Environments in which organisms live.	In the [lowland mixed dipterocarp forests] of Borneo the Dipterocarpaceae can comprise roughly 107 of species
2	Geographical Location	Any identifiable point or area in the planet. (countries, major bodies of water, named landforms, etc).	The main observation site was conserved forest at [Dongmakhai] ([18deg20 ' 03 " N , 102deg30 ' 5 " E] , 190 m a.s.l.)
3	Reproductive Condition	Indicators of the specimens' reproductive condition.	There were two [<mark>flowerings</mark>] in March to May , and one in August during this period .
4	Temporal Expression	Spans of text pertaining to points in time.	Most fruit fall occurred from the [<mark>end of July</mark>] to [<mark>mid-August</mark>].

Gabud, R.S., et al. Understanding mass flowering of dipterocarps through semantic occurrence information extraction. TDWG 2016 Annual Conference.

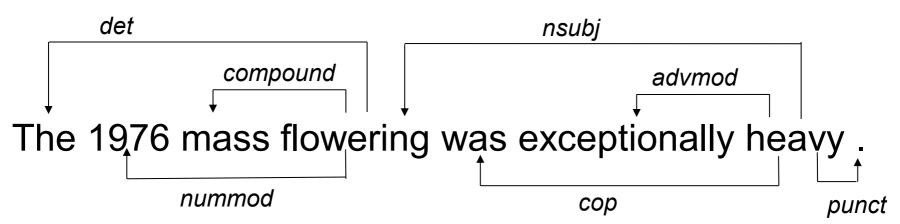
DipteroMine Corpus

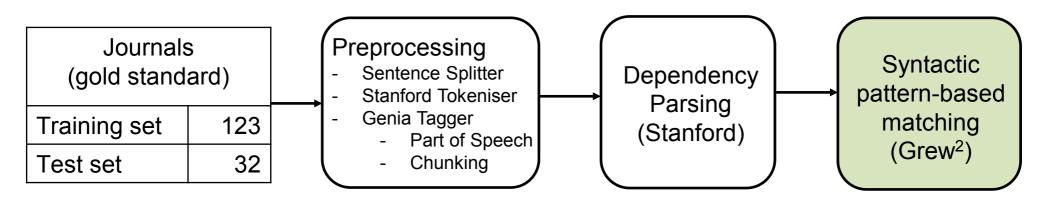



Double annotation: 79 Single annotation: 76


Inter-Annotator Agreement

	size	F score
Geographical Location	711	92%
Habitat	475	75%
Temporal Expression	787	91%
Reproductive Condition	539	64%

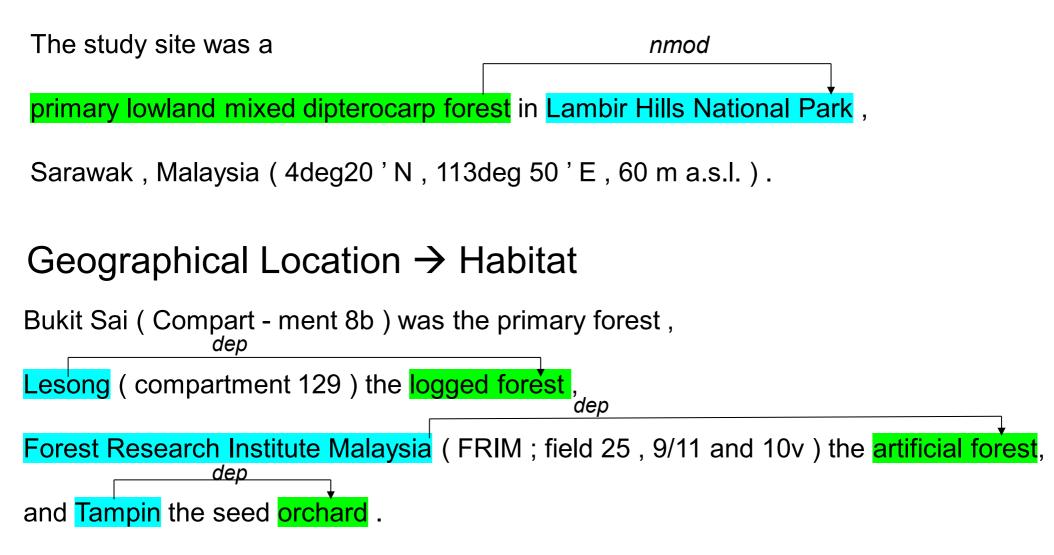

Gabud, R.S., et al. Understanding mass flowering of dipterocarps through semantic occurrence information extraction. TDWG 2016 Annual Conference.



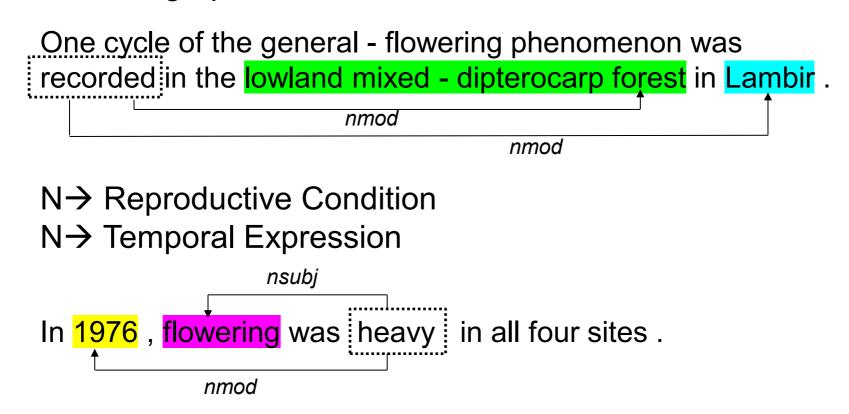
<u>Stanford dependencies</u>¹ provides a representation of grammatical relations between words in a sentence.

1. https://nlp.stanford.edu/software/stanford-dependencies.shtml

Grew


- is a Graph Rewriting tool dedicated to applications in Natural Language Processing (NLP).
- lets the user search for a given pattern in a corpus of syntactic structures.

1. Direct relationship between entities.


Reproductive Condition \rightarrow Temporal Expression

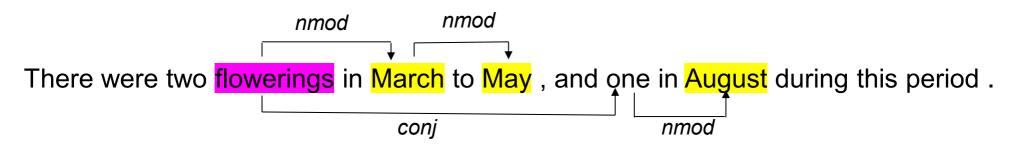
nmod Generally, large individuals in these populations fruited in 1986.

Habitat → Geographical Location

- 2. Entities have a common root.
 - $N \rightarrow$ Habitat $N \rightarrow$ Geographical Location

3. Entities are linked by 1 or more tokens (words).

```
Habitat \rightarrow N \rightarrow Geographical Location
```


Appanah and Rasol (1990) reported that mean dbh of fruiting dipterocarp trees was 70.2 cm

compound

in undisturbed forest in Pasoh, Malaysia

nmod

Reproductive Condition $\rightarrow N \rightarrow$ Temporal Expression

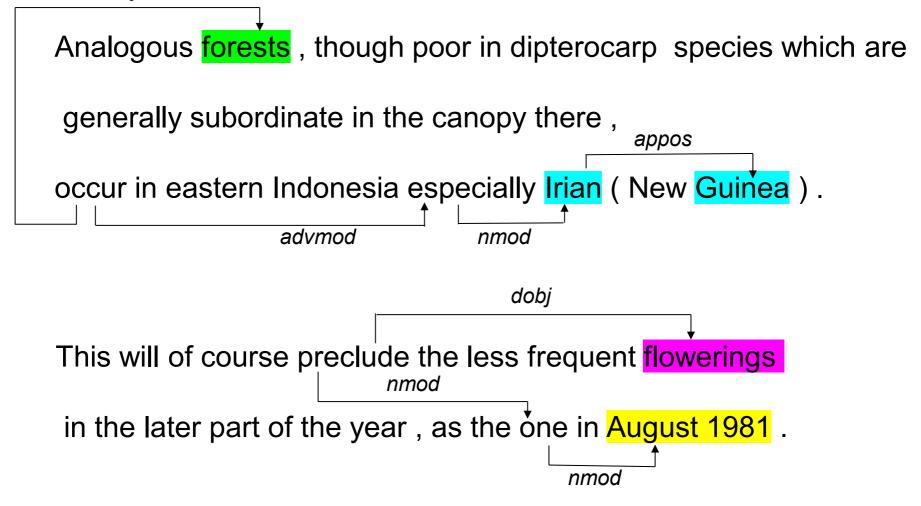
Sample relations extracted

Habitat	Geographical Location
lowland dipterocarp forest	Sarawak
swamps	northwest Borneo
tropical forests	southeast Asia
lowland dipterocarp forest	Lambir Hills National Park
logged forest	Lesong
fresh water swamps	Sabah

Reproductive Condition	Temporal Expression
flowering	end of November 2001
flowering	end of August 2001
mast fruiting	Aug-96
mass flowering	1976
mass flowering	1955
flowered	Jul-66

Evaluation

Relation Type	Method	Relevant relations	ТР	FP
Habitat – Geographical	Co-occurrence	47	47	26
Location	Relation extraction	47	38	2
eproductive Condition –	Co-occurrence	139	139	144
Temporal Expression	Relation extraction	139	90	11


Relation Type	Method	Precision	Recall	F-score
Habitat – Geographical	Co-occurrence	64.38%	100.00%	78.33%
Location	Relation extraction	95.00%	80.85%	87.36%
eproductive Condition –	Co-occurrence	49.12%	100.00%	65.88%
Temporal Expression	Relation extraction	89.11%	64.75%	75.00%

$$F = \frac{2 * pre * recall}{pro + rocoll}$$

pre + recall

Examples of missed relations

nsubj

Ongoing Work

- Consider the presence of modifiers between a common root of entities.
- Curate a database of dipterocarp occurrences using relation extraction based on syntactic pattern matching, i.e. integration of text-mined information (e.g., Habitat – Geographical Location and Reproductive Condition – Temporal Expression relationships) with primary data (e.g., occurrence data from GBIF).

Acknowledgements

PhD Supervisors

Riza Batista-Navarro, PhD

National Center for Text Mining University of Manchester Institute of Computer Science University of the Philippines Los Baños

Vladimir Mariano, PhD

Centre of Technology RMIT University, Vietnam

Eduardo Mendoza, PhD

Max Planck Institute of Biochemistry Martinsried, Germany

Portia Lapitan, PhD Nelson Pampolina, PhD

College of Forestry and Natural Resource University of the Philippines Los Baños

Corpus funding source: COPIOUS

British Council under the Newton Fund

Prof. Sophia Ananiadou

National Center for Text Mining University of Manchester

Collaborators:

Nhung Nguyen, PhD

National Center for Text Mining University of Manchester

Sandra Yap, PhD

Fareastern University Manila

Research Assistants:

John Marc Cho Santos

Thank you!

Questions?

Roselyn S. Gabud

<u>rsgabud@up.edu.ph</u>

Department of Computer Science University of the Philippines Diliman, Los Baños