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Sampling of species interaction networks:



FLORABEILLES POLLINATION DATASET
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Large pollination network containing 305 pollinator species (bees) 
and 452 plant species.

Density: 1.10%
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A PAIRWISE MODEL
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‘Learn’ a pairwise function based on observed data:

such that a high score indicates two species 
will interact.
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‘Learn’ a pairwise function based on observed data:

such that a high score indicates two species 
will interact.

How to describe the species?



DESCRIBING THE BEES

�6

Phylogeny

based on Cytochrome c oxidase

Traits

flight times

nesting times



DESCRIBING THE PLANTS

�7

Traits

Phylogeny based on the rcbL gene.
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Kernel matrix 
describes similarity 
between species i 
and j.

numerical or structured 
description of species
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Let u and v denote the bees and plants, respectively. 

We learn a pairwise function of the form

f(u, v) = ∑
i, j

Wijk(u, ui)g(v, vj) .
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Let u and v denote the bees and plants, respectively. 

We learn a pairwise function of the form

f(u, v) = ∑
i, j

Wijk(u, ui)g(v, vj) .
kernel over bees

kernel over plantsweights

The weights can be found by computing:

W = (K + λu𝕀)−1Y(G + λv𝕀)−1 .

= ≈K W G F Y



FROM OBSERVATIONS TO PREDICTIONS
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Applying 
the model

Observed 
interactions

Rescored 
interactions

be
es

plants

observed interaction 

no interaction
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potential false negatives?
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i

j

withheld for testing

discarded

Setting I: leave out individual pairs

Setting R: leave out rows

Setting C: leave out columns

Setting B: leave out each pair, 
discard other pairs in row and 
column

Exact and efficient formulas 
for computing the leave-

one-out values!
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prediction based on kernels. 

2. Two-step kernel ridge 
regression: a simple though 
powerful method. 

3. Different prediction settings: 
use structured cross-
validation methods!
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use structured cross-
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X N

E T

xnet: an R-package 
for pairwise 
learning and cross-
validation
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