

SPECIES INTERACTION NETWORKS

Networks in ecology:

food webs

parasitism

pollination

SPECIES INTERACTION NETWORKS

Networks in ecology:

food webs

parasitism

pollination

Sampling of species interaction networks:

FLORABEILLES POLLINATION DATASET

Large pollination network containing 305 pollinator species (bees) and 452 plant species.

Density: 1.10%

.

.

1	1	0	0	0	0	1	0
1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	1
1	0	1	0	1	0	0	0
1	1	1	0	0	1	1	1
0	0	0	1	1	0	0	0
0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0
1	1	1	0	1	0	0	1
1	1	1	1	0	1	0	0

. .

1	1	0	0	0	0	1	0
1	0	0	1	0	0	1	1
1	1	1	0	0	0	0	0
0	0	0	0	0	0	0	1
1	0	1	0	1	0	0	0
1	1	1	0	0	1	1	1
0	0	0	1	1	0	0	0
0	0	0	0	0	1	0	0
1	1	1	0	0	0	0	0
1	1	1	0	1	0	0	1
1	1	1	1	0	1	0	0

 \mathcal{N}

	1	1	0	0	0	0	1	0
	1	0	0	1	0	0	1	1
	1	1	1	0	0	0	0	0
	0	0	0	0	0	0	0	1
	1	0	1	0	1	0	0	0
	1	1	1	0	0	1	1	1
	0	0	0	1	1	0	0	0
	0	0	0	0	0	1	0	0
	1	1	1	0	0	0	0	0
	1	1	1	0	1	0	0	1
V	1	1	1	1	0	1	0	0

A PAIRWISE MODEL

'Learn' a pairwise function based on observed data:

such that a high score indicates two species will interact.

A PAIRWISE MODEL

'Learn' a pairwise function based on observed data:

such that a high score indicates two species will interact.

How to describe the species?

DESCRIBING THE BEES

Phylogeny

based on Cytochrome c oxidase

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

flight times

DESCRIBING THE PLANTS

.

Traits

Growth habit	Categorical	Shrub
Minimum height (cm)	Numerical	50
Maximum height (cm)	Numerical	200
Mean height (cm)	Numerical	125
Blooming period	Dummy variables	[0,0,0,0,0,1,1,0,0,0,0,0]
Duration	Categorical	Perennial
Category	Categorical	Dicot
Flower colour	Dummy variables	[1,0,0,0,0,0,0,0]
Phyllotaxis	Categorical	Opposite decussated
Flower symmetry	Categorical	Versatile symmetrical
Position ovary	Categorical	Superior
Number of styles	Numerical	1
Number of stamens	Numerical	2

Phylogeny based on the *rcbL* gene.

THE KERNEL TRICK

Kernels represent species by implied products in highdimensional space.

THE KERNEL TRICK

Kernels represent species by implied products in highdimensional space.

numerical or structured description of species

Kernel matrix describes similarity between species *i* and *j*.

TWO-STEP KERNEL RIDGE REGRESSION

Let *u* and *v* denote the bees and plants, respectively.

We learn a pairwise function of the form

$$f(u, v) = \sum_{i,j} W_{ij}k(u, u_i)g(v, v_j).$$

.

TWO-STEP KERNEL RIDGE REGRESSION

Let *u* and *v* denote the bees and plants, respectively.

We learn a pairwise function of the form

kernel over bees

$$f(u, v) = \sum_{i,j} W_{ij}k(u, u_i)g(v, v_j).$$

weights kernel over plants

K W G = **F**
$$\approx$$
 Y

TWO-STEP KERNEL RIDGE REGRESSION

Let u and v denote the bees and plants, respectively.

We learn a pairwise function of the form

kernel over bees

$$f(u, v) = \sum_{i,j} W_{ij}k(u, u_i)g(v, v_j).$$

weights kernel over plants

K W G = **F**
$$\approx$$
 Y

The weights can be found by computing:

$$\mathbf{W} = (K + \lambda_u \mathbb{I})^{-1} \mathbf{Y} (G + \lambda_v \mathbb{I})^{-1} \,.$$

FROM OBSERVATIONS TO PREDICTIONS

Observed interactions

- observed interaction
- no interaction

Rescored interactions

USING THE SCORED INTERACTIONS

score

11

USING THE SCORED INTERACTIONS

Setting I: same bees, same plants

Setting R: new bees, same plants

Setting I: same bees, same plants

Setting R: new bees, same plants

Setting C: same bees, new plants

Setting I: same bees, same plantsSetting R: new bees, same plantsSetting C: same bees, new plantsSetting B: new bees, new plants

Setting I: leave out individual pairs Setting R: leave out rows

Setting I: leave out individual pairsSetting R: leave out rowsSetting C: leave out columns

Setting I: leave out individual pairs
Setting R: leave out rows
Setting C: leave out columns
Setting B: leave out each pair,
discard other pairs in row and
column

Setting I: leave out individual pairs
Setting R: leave out rows
Setting C: leave out columns
Setting B: leave out each pair, discard other pairs in row and column

> Exact and efficient formulas for computing the leaveone-out values!

PERFORMANCE PREDICTING THE INTERACTIONS

CONCLUSIONS

- Supervised network prediction based on kernels.
- Two-step kernel ridge regression: a simple though powerful method.
- Different prediction settings: use structured crossvalidation methods!

CONCLUSIONS

- Supervised network prediction based on kernels.
- Two-step kernel ridge regression: a simple though powerful method.
- Different prediction settings: use structured crossvalidation methods!
- xnet: an R-package
 for pairwise
 learning and crossvalidation

ACKNOWLEDGEMENTS AND REFERENCES

.

pairwise learning pollination case study

.

xnet

Bernard Sarah Vanbesien De Baets

Niels	Guy		
Piot	Smagghe		

Joris Meys

ACKNOWLEDGEMENTS AND REFERENCES

pairwise learning

pollination case study

xnet

SarahBernardNielsGuyJorisVanbesienDe BaetsPiotSmaggheMeys

- M. Stock, T. Poisot, W. Waegeman and B. De Baets, Linear filtering reveals false negatives in species interaction data, Scientific Reports 7 (2017), 45908.
- M. Stock, T. Pahikkala, A. Airola, B. De Baets and W. Waegeman, A comparative study of pairwise learning methods based on Kernel Ridge Regression, Neural Computation 30 (2018), 2245-2283.
- M. Stock, T. Pahikkala, A. Airola, W. Waegeman and B. De Baets, Algebraic shortcuts for leave-one-out cross-validation in supervised network inference, Briefings in Bioinformatics, accepted Sep 2018.