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Introduction

Leaf Area Index (LAIl), Fraction of Intercepted Photosynthetically Active
Radiation (fIPAR) and forest Aboveground Biomass (AGB) are the regulatory

parameters for several canopy functions.

LAl is the interface for gaseous exchange and light absorption for
photosynthesis, fIPAR gives the amount of light intercepted by the forest
canopy while AGB is relates to the amount of carbon sequestered and

stocked.

An accurate information about spatial variability of these biophysical
variables is vital to capture the variability in estimates of gross primary

productivity, carbon exchange and microclimate in terrestrial ecosystems.



Objectives

To optimize spectral and texture variables for estimation of LAI, fIPAR and

AGB using random forest (RF) algorithm.

To map the spatial distribution of LAI, fIPAR and AGB.



Objectives

To optimize spectral and texture variables for estimation of LAI, fIPAR and

AGB using random forest (RF) regression algorithm.

To map the spatial distribution of LAI, fIPAR and AGB.

Study site

Barkot Reserve Forest (30°03'52"- "
30°10'43"N and 78°09'49”-78°17'09"E)

Forest type: Sal dominated Tropical T

Moist Deciduous Forest $5T8 T y
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LAI: Leaf area index

I,: Light intensity incident above canopy
I: Light intensity below canopy

dbh: Diameter at breast height

fIPAR: Fraction of intercepted photosynthetically active radiation

AGB: Aboveground biomass




Field Sampling

A pilot study was carried out by laying sample plots in different strata.

No. of plots, n, is given by (Chacko, 1965):

B CV?2 x t2
= g2

Optimum number of plots were calculated for LAI, fIPAR and AGB.

It was distributed to each stratum using probability proportional to size
(Pps)
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Field Sampling: LAl and PAR

Field observations of LAl and I, and | were
recorded using CI-110 Plant Canopy Imager. TH Y
The recorded LAI ranged from 0.28 to 1.72. o3 %X 4 4
fIPAR was calculated as: T
Lo
fIPAR = OI_ L Field sampling strategy
Y ) | 30m

@ Observations
where, I= Light intensity below canopy

I,=Light intensity incident above canopy

fIPAR ranged from 0.25 to 0.9.



Field Sampling: AGB

Field inventory for trees was carried in plots of 0.1 ha (31.5m X 31.5m)
cbh were recorded, dbh was calculated from cbh

By applying volume equations for the tree species the tree volumes

were calculated
woody biomass = tree volume X specific gravity
AGB = woody biomass X biomass expansion factor (Haripriya, 2000)

Biomass ranged from 118.70 Mg/ha in open mixed plantation to 580.98

Mg/ha in very dense sal forest



Spectral and Texture Variables

62 spectral variables were
extracted:

Band reflectance (blue, green,
red, red edge 1, red edge 2, red

edge 3, NIR, NIR  ;on» SWIR 1,

SWIR 2)

52 spectral indices
ARVI Cl Cl_RE1 DVI EVI
EVI_NIR_N1 EVI_NIR_N2 EVI_RE1 EVI RE2  GARI
GDVI GNDVI GRVI1 IPVI IRECI
MSAVI MSI MSR MSR_NIR_N1MSR_NIR_N2
MSR_RE1 MSR_RE2 NDII NDMI NDVI
NDVI705 NG NLI NLI_NIR_N1 NLI_NIR_N2
NLI_RE1 NLI_RE2 NR OSAVI PSRI
PSRI_NIR PSSR RDVI RE_NDWI  RSR
RSR_NIR_N1 RSR_NIR_N2 RSR_RE1  RSR_RE2 RVI
S2REP SARVI SAVI STVI TNDVI
TSAVI VARI_G

Grey level co-occurance matrices :

Mean

Variance
Homogeneity
Contrast
Dissimilarity
Entropy

Second moment
Correlation

80 texture variables
extracted.

were



Random Forest based modeling

To optimize the number of independent variables, Random Forest (RF)
algorithm was used.

Three models were tested for estimation of LAI, fIPAR and AGB.
Model 1: Spectral Variables (No. of independent variables= 62)
Model 2: Texture Variables (No. of independent variables= 80)

Model 3: Spectral and Texture Variables (No. of independent variables=
142)

The resulting models were compared to select the best predictor model.

Using random forest cross validation, the optimum number of variables
were selected.

Final models, with optimum number of independent variables were used to
map the spatial distribution of the said biophysical variables.



Random Forest
LAI, fIPAR and AGB

based

modelling for

LAI Model 1 Model 2 Model 3
R2 0.92 0.92 0.93
RMSE 0.117 0.121 0.114
%RMSE 11.45% 11.60% 10.85%
fIPAR Model 1 Model 2 Model 3
R2 0.91 0.92 0.94
RMSE (mol m-2 s-1) 0.073 0.067 0.065
%RMSE 11.19% 10.27% 10.01%
AGB Model 1 Model 2 Model 3
R2 0.91 0.92 0.94
RMSE (Mg ha1) 49.83 47.23 46.49
%RMSE 11.77% 11.15% 10.98%



RMSE

Random Forest based modelling for LAl

032

030

0.28

0.26 -

For LAI, model 3 with
spectral and texture
variables gave better

results.

Using cross validation, the
minimum RMSE was found

for 8 (4 spectral + 4

texture) variables.
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swirl, swir2, re2_sec, s2_mean, evi_rel,

rel _mean, rel con, and ndmi were the

top variables.




Random Forest based modelling for fIPAR

RMSE

For fIPAR, model 3 with spectral

and texture variables gave

better results.
Using cross validation, the
minimum RMSE was found for 15
(6

variables.

spectral + 9 texture)
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RMSE
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Random Forest based

For AGB, model 3 with spectral

and texture variables gave

better results.
Using cross validation, the
minimum RMSE was found for 8
(5 spectral + 3 texture)

variables.
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Spatial distribution of LAl

>

The spatial distribution was
mapped using the  best
predictor variables in Random

Forest (RF) algorithm.

Model validation (LAI):
R?=0.83
RMSE= 0.139

%RMSE= 13.25 %
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Spatial distribution fIPAR

Model validation (fIPAR):
R?=0.87
RMSE= 0.086 molm-s-t

%RMSE= 13.24 %
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Spatial distri

» Model validation (AGB):
R?=0.85
RMSE= 51.54 Mg ha!

%RMSE= 12.17 %

bution of AGB
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Conclusion and future directions

The developed models demonstrated that RF can be effectively
applied to predict the spatial distribution of forest biophysical
variables like LAI, fIPAR and AGB with adequate accuracy.

It also stressed the importance of SWIR, Red-edge and texture

variables in the estimation of forest biophysical variables.

Study will be replicated in different seasons to capture the

temporal variation of these biophysical parameters.

The estimates of uncertainty in the predictive models needs to be

carried out.



Thank you
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