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Phytoplankton primary production
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Primary production estimation

In situ estimates are expensive and time-consuming

Modelling approach
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Depth-resolution: from 2D predictors to 3D
production profiles
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Available data
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Depth-resolved artificial neural network
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Ecological knowledge

Ecologically sound model

Better estimates?
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Constraint #2:

Larger share of
primary production Is
associated with the
upper zone of the
water column

Primary production
between O and 10 m
accounts for ~50% of
the overall production

depth-weighted error
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The constraint influences the deltas computation
during the training phase



Depth (m)

Constraint #3: variable learning rate &

momentum
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Constraints performances

Constraint Overall R? |IPP R?2
gain gain

Single peak (selection) +2% +3%
Depth (deltas) +2% +4%
IPP (learning rate & momentum) +3% +6%
Single peak + Depth +1% +3%
Single peak + IPP +2% +2%

Depth + IPP +2% +5%



Aim carefully!

* Machine learning algorithms are tools
_*+ Customization for ecological modeling

 Enhanced estimates accuracy
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Conclusions

« Enhanced exploitation of the available information
2D predictors converted in 3D profiles

« Ecologically and data driven training



‘_"_‘_‘_ ~
T

Thank you for the attention!
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