

A constrained depth-resolved artificial neural network model of marine phytoplankton primary production

Francesco Mattei, Michele Scardi University of Rome 'Tor Vergata' & CoNISMa

francesco.mattei90@yahoo.it

mscardi@mclink.it

Phytoplankton primary production

Primary production estimation

In situ estimates are expensive and time-consuming

Depth-resolution: from 2D predictors to 3D production profiles

Predictors	Units
CHL-a 0 m	mg C m3
PAR 0 m	E m2 day
SST	°C
LAT	degrees
sin(LON)	-
cos(LON)	-
sin(date)	-
cos(date)	-

Depth-resolution

Available data

Depth-resolved artificial neural network

Ecological Modelling 382 (2018) 51-62

Contents lists available at ScienceDirect

Ecological Modelling

A depth-resolved artificial neural network model of marine phytoplankton primary production

F. Mattei^{a,b,*}, S. Franceschini^{a,b}, M. Scardi^{a,b}

^a Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica, 00133, Rome, Italy

^b CoNISMa, Piazzale Flaminio, 9, 00196, Rome, Italy

Ecological knowledge

Ecologically sound model

Better estimates?

Constraint #1: only one peak

Selection after each training epoch

Constraint #2: depth-weighted error

Larger share of primary production is associated with the upper zone of the water column

Primary production between 0 and 10 m accounts for ~50% of the overall production

The constraint influences the deltas computation during the training phase

Constraint #3: variable learning rate & momentum

difference = Observed - Estimated

$$x = \frac{|difference| * 100}{Observed}$$

$$\frac{Learning}{rate} = \frac{1}{1 + e^{(-k * (x - x_0))}}$$

Momentum = 1 - Learning rate

Constraints performances

Constraint	Overall R ² gain	IPP R ² gain
Single peak (selection)	+2%	+3%
Depth (deltas)	+2%	+4%
IPP (learning rate & momentum)	+3%	+6%
Single peak + Depth	+1%	+3%
Single peak + IPP	+2%	+2%
Depth + IPP	+2%	+5%

Aim carefully!

- Machine learning algorithms are tools
- Customization for ecological modeling
- Enhanced estimates accuracy

Conclusions

- Enhanced exploitation of the available information
- 2D predictors converted in 3D profiles
- Ecologically and data driven training

