

The University of Manchester

Towards the Automatic Extraction of Plant Traits from Textual Descriptions

Onatkut Dagtekin, University of Manchester William Ulate, Missouri Botanical Garden Riza Batista-Navarro, University of Manchester

Motivation

- Aid in answering ecological questions
 - Plant to plant interactions
 - Finding suitable species for restoration
- World Flora Online wants to catalogue plant traits
- Human error
- Domain knowledge needed
- Characteristics of descriptions

Characteristics of descriptions

- Different lengths
 - Morphological: ...Leaves usually densely covered with small scales below,...
 - Habitat: Grassland.
 - Distribution: Tanqua Karoo to Prince Albert.

Characteristics of descriptions

- Specific locations
 - Richtersveld, northern Namaqualand to Bitterfontein.
- High number of adjectives & domain vocabulary
 - …Leaves pinnately 3-foliolate, leaflets narrowly lanceolate, shortly stalked, tomentose below…

Proposed Solution: Machine Learning

- Automate the segmentation/classification process
 - Remove human error
 - No domain knowledge needed
- Segment into pieces and label each as:
 - Morpohological
 - Habitat
 - Distribution

Methodology

- Naïve Bayes (NB)
- Conditional Random Fields (CRF)
- Neural Networks (LSTM)
- Principal Component Analysis for feature extraction

Experiments

- NB
 - Type of NB = Gaussian, Bernoulli
- CRF
 - # of iterations = [100,..., 6000]
 - c value = [0.1,...,6]
- LSTM
 - # of hidden layers = [1, 2]
 - # of nodes per layer = [5], [20, 15]

Evaluation

- 10-fold Cross-validation used for CRF & NB
- Training/test split for LSTM

Metrics

- F-score
- ROC analysis

Features

- Named Entities: LOC & GPE + List
 - Cedarberg, Humansdorp...
- Part of Speech Tags
- Ontology Matches: Habitat
 - Only with PoS tags: NN, NNP, NNPS, NNS
 - Swamp, forest, grassland...

Features

- Regular expressions: numbers, number ranges, punctuation
 (0-9)*-(0-9)*, string.punctuation,...
- Lists: directions, measurements, continents & oceans
 - [NE,SW,S,W,...], [mm,μm,...],...

Results

ROC Analysis

Extrinsic Testing

- Best algorithm: CRF
 - Chosen by: mean & variance of f-score

Behaviour of Models

Token	NB	CRF	LSTM	True Label
(Morphological	Habitat	Distribution	Habitat
Rocky	Distribution	Habitat	Distribution	Habitat
)	Morphological	Habitat	Distribution	Habitat
Grassland	Habitat	Habitat	Distribution	Habitat
Or	Distribution	Habitat	Distribution	Habitat
Open	Distribution	Habitat	Distribution	Habitat
woodland	Habitat	Habitat	Distribution	Habitat
	Habitat	Habitat	Distribution	Habitat

Table 1: Sample of tokens and the labels for each of the models

Behaviour of Models

• Gaussian NB:

$$P(x|y) = \frac{1}{\sqrt{2\pi\sigma_y^2}} exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma_y^2}\right)$$

• Bernoulli NB:

$$P(x_i|y) = P(i|y)x_i + (1 - P(i|y))(1 - x_i)$$

Behaviour of Models

- CRF: linear chain
- LSTM:
 - Last 1% of samples:
 - 126 Morphological
 - 190 Habitat
 - 1980 Distribution

PCA Results

- Harms classifiers
- Non-linear
- Variance not important

Limitations

- Dataset limited to Southern Africa
 - Cascading errors
- Implementation of algorithms
 - word n-grams, character n-grams

Conclusion

- Best model: CRF
- PCA is not beneficial

Future Work

- Multilabel Format
- Segmentation Format
- Bidirectional LSTM, Semi-CRF
- Feature extraction/selection