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Abstract 

Candida albicans is a polymorphic fungus that colonizes mucosal tissue, and is thus a 

frequent member of the human microbiome. While it is no threat to healthy individuals, C. 

albicans can become pathogenic in immunocompromised hosts, being one of the most common 

human fungal pathogens, and one of the leading causes of nosocomial infections. For many 

years, and especially due to the fact that patients with B cell or immunoglobulin deficiencies 

do not show any increased propensity to C. albicans infections, B cells and antibodies were 

considered not to play any role in defensive responses against this pathogen. However, several 

studies have contradicted this view so that nowadays, even though not considered as major 

players like neutrophils or TH17 cells, B cells are seen as helpers in mounting efficient anti-C. 

albicans protective responses. 

 To study the interplay between C. albicans and B cells, mouse splenic B cells were 

isolated and cultured in the presence of heat-killed C. albicans yeast, hyphae, or the 

Saccharomyces cerevisiae cell wall preparation zymosan. Cultures in unsupplemented medium 

or medium supplemented to mimic either T cell-independent or T-cell dependent B cell 

activation were analysed. The obtained results allowed to conclude that zymosan and heat-

killed C. albicans hyphae, but not yeast, are able to increase B cell activation in a MyD88-

dependent manner, and mostly via TLR2. This conclusion was drawn from the observed 

increase in AID induction and IgG1, IL-10 and IL-6 production. Dectin-1 and specific BCR 

recognition were not required for this effect. Furthermore, it was possible to observe that C. 

albicans-induced TLR signalling is able to cooperate with BCR signalling to increase B cell 

proliferation. 

 The results of this study lead to the hypothesis that in a physiological context, C. 

albicans-induced TLR activation of B cells might not only cooperate with BCR signalling to 

enhance the production of specific anti-C. albicans antibodies, but also enhance protective TH17 

responses through IL-6 production. The importance of pursuing such a hypothesis, and others 

related to the role of B cells in C. albicans infections, resides in the fact that despite the 

increasing effort made in recent years to diagnose and fight fungal infections, they still display 

a high mortality rate, making potential protective approaches urgently needed. 
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Zusammenfassung 

Candida albicans ist ein polymorpher Pilz, welcher Schleimhäute besiedelt und somit 

ein häufiges Mitglied des menschlichen Mikrobioms ist. C. albicans stellt zwar keine 

Bedrohung für gesunde Individuen dar, kann jedoch in immunsuppremierten Wirten pathogen 

werden. Er gilt als einer der verbreitetsten fungalen Krankheitserreger im Menschen und einer 

der Hauptverursacher von nosokomialen Infektionen. Viele Jahre lang, und vor allem aufgrund 

dessen, dass Patienten mit einer B-Zell- oder Immunglobulin-Defizienz keine erhöhte Tendenz 

zu C. albicans-Infektionen aufweisen, wurde angenommen, dass B-Zellen und Antikörper in 

der Abwehr dieses Pathogens keine Rolle spielen. Allerdings wurde dieser Ansicht durch 

mehrere Studien widersprochen, sodass B-Zellen, wenngleich sie nicht als Hauptspieler gelten, 

wie beispielsweise Neutrophile oder TH17-Zellen, mittlerweile als Helfer bei der Entwicklung 

von wirkungsvollen anti-C. albicans Abwehrreaktionen angesehen werden. 

 Um die Interaktion zwischen C. albicans und B-Zellen zu untersuchen, wurden 

B-Zellen aus der Milz von Mäusen isoliert. Die Kultivierung dieser Zellen wurde in Gegenwart 

von durch Hitze getöteten, C. albicans Hefen, Hyphen, oder der Saccharomyces cerevisiae-

Zellwand-Präparation Zymosan durchgeführt. Es wurden Kulturen in unbehandeltem Medium 

oder in Medium, das entweder eine T-Zell-unabhängige oder eine T-Zell-abhängige B-Zell-

Aktivierung nachahmt, analysiert. Die erhaltenen Ergebnisse ließen darauf schließen, dass 

sowohl Zymosan, als auch durch Hitze getötete C. albicans Hyphen, jedoch nicht Hefen, die 

B-Zell-Aktivierung erhöhen. Dies geschieht in Abhängigkeit von MyD88 und vor allem via 

TLR2. Diese Schlussfolgerung basiert darauf, dass ein Anstieg in der AID-Induktion und der 

Produktion von IgG1, IL-10 und IL-6 gemessen wurde. Eine Beteiligung von Dectin-1 und der 

spezifischen Erkennung durch den BCR an diesen Effekten konnte nicht nachgewiesen werden. 

Weiterhin konnte gezeigt werden, dass C. albicans-induzierte TLR-Signale in der Lage sind, 

zusammen mit BCR-Signalen die Proliferation der B-Zellen zu steigern. 

 Die Ergebnisse dieser Studie führten zu der Hypothese, dass C. albicans-induzierte 

TLR-Aktivierung der B-Zellen nicht nur mit BCR-Signalen kooperierten könnte, um die 

Produktion von spezifischen Antikörpern gegen C. albicans zu erhöhen, sondern auch die 

schützende TH17 Antwort durch IL-6-Produktion verstärken könnte. Trotz der in den letzten 

Jahren unternommenen Anstrengungen zur Diagnose und Bekämpfung von Pilzinfektionen ist 

die Sterblichkeitsrate in solchen Fällen hoch ist und potenzielle Schutzmaßnahmen werden 

dringend benötigt. Daher ist es wichtig, dass solche Hypothesen, wie auch andere, welche die 

Rolle der B-Zellen in C. albicans-Infektionen untersuchen, weiter erforscht werden.
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1. Introduction 

1.1 The immune system  

The human body is challenged by multiple infectious agents and harmful substances 

on a daily basis while being equipped with physical and chemical barriers to contain these 

threats. However, upon disruption of these barriers, it is up to the immune system to fight 

and clear the invading pathogens. To identify infectious agents, immune cells express on 

their surface pathogen recognition receptors (PRRs) that recognize pathogen-associated 

molecular patterns (PAMPs) present in several pathogens [1-6]. After recognition, the 

immune system is responsible for containing, and if possible, resolving the infection. To do 

so, the immune system is divided into innate and adaptive immunity, the first being a fast 

and broad response and the latter a slower but highly specific one. 

 

1.1.1 The innate immune system 

As mentioned above, the innate immune system delivers a fast first response in case 

of pathogenic infection. Major cellular players of the innate immune system are 

macrophages, dendritic cells (DCs), granulocytes (especially neutrophils), and natural killer 

cells, which possess a vast array of effector functions such as phagocytosis, cytokine 

production and cytotoxic capacity [1]. The fact that innate cells express several PRRs and 

exist in relatively abundant numbers in the circulation makes them able to target the invader 

in a matter of hours. The term PRR comprises different types of germline-encoded receptors, 

most being classified in different families depending on their domain homology [7]. The five 

PRR families are Toll-like receptors (TLRs), C-type lectin receptors (CLRs), NOD-like 

receptors (NLRs), RIG-I-like receptors (RLRs) and AIM2-like receptors. PRRs recognize 

conserved molecular motifs associated to pathogens – PAMPs, each PRR recognizing a 

defined type of molecule. Several types of molecules can serve as PAMPs, such as 

carbohydrates and peptides present in bacteria, viral nucleic acids and glucans and chitin 

from fungi [8]. As such, PRRs can recognize and initiate an immune response against Gram-

positive and –negative bacteria, viruses, fungi and protozoa [8]. Important to note is the fact 

that PRRs are also expressed by cells of the adaptive immune system [9, 10]. Besides 

PAMPs, PRRs also recognize damage-associated molecular patterns (DAMPs) released by 

damaged/stressed host cells [11]. 
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The innate immune system also includes a humoral component, the complement 

system. The complement system is composed of several proteins that react one to another, 

forming proteolytic cascades that lead to opsonization of pathogens (to increase 

phagocytosis), recruitment of other components of the immune system and pathogen 

membrane lysis [1]. Three different pathways can lead to complement activation, the 

classical pathway, the lectin pathway and the alternative pathway, each being activated by 

different molecules present on the surface of pathogens [1, 12]. 

 

1.1.2 The adaptive immune system 

In opposition to the innate immunity, the adaptive immunity comprises a slow but 

highly specific response. Two cell types originated from common lymphoid progenitors 

constitute the adaptive immune system, T lymphocytes and B lymphocytes, also called T 

and B cells. In the absence of infection, T and B cells are generally inactive – naïve cells. 

However, upon encountering their specific antigen, these cells become activated, proliferate 

and differentiate giving rise to specialized effector cells [1]. 

Although both cell types present an antigen-specific receptor on their surface, their receptor 

and effector functions are very different. T cells are usually activated upon T cell receptor 

(TCR) recognition of their cognate antigen, which is presented by major histocompatibility 

complex (MHC) molecules [1]. After activation, they can be categorized according to their 

effector function in helper (CD4+) and cytotoxic (CD8+) T cells [13]. While cytotoxic T cells 

kill infected or abnormal cells by releasing cytotoxic molecules, helper T cells provide help 

to effector cell types (including B cells) by expressing stimulatory molecules and cytokines. 

Different subtypes of helper T (TH) cells have been identified based on their cytokine 

secretion profile and transcription factor production, with TH1 cells producing interferon 

gamma (IFNγ), interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-α), TH2 cells 

producing IL-4, IL-5 and IL-13 and TH17 cells producing IL-17 [14]. A special type of CD4+ 

T cells are regulatory T cells, which have the ability to control immune responses by 

influencing several immune cell types [15]. 

B cells are mainly activated by recognition of their cognate antigen through their B 

cell receptor (BCR) [1]. Upon activation, they undergo several processes that influence the 

effector function and improve the affinity of the produced antibodies. Ultimately, B cells can 

differentiate into antibody secreting cells, thus becoming plasma cells [16]. Moreover, B 
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cells possess antigen-presenting cell (APC) capacity, presenting antigens through MHC 

class II molecules [1]. Some activated B and T cells can also mature to long-living memory 

B and T cells, thus providing the basis for a fast and highly specific response when re-

encountering a known pathogen [17, 18]. 

 Due to the topic of this dissertation, a more in depth introduction to B cell biology is 

provided in the next chapters. The importance of the innate and adaptive immunity in the 

context of Candida albicans infection will also be addressed. 

 

1.2. B cells 

 As mentioned before, B cells are part of the adaptive system and have the production 

of antibodies as their hallmark. However, before becoming antibody secreting cells, B cells 

need to undergo several development, activation and differentiation steps. Only a B cell that 

expresses a rearranged functional BCR and several other important proteins can leave the 

bone marrow, be activated by its cognate antigen, undergo processes to increase 

immunoglobulin affinity and finally differentiate into a plasma or memory cell [19]. The 

BCR is a Y-shaped protein, also known as immunoglobulin (Ig), composed of two identical 

heavy and two identical light polypeptide chains linked by disulphide bridges [20, 21]. Both 

heavy and light chains possess a constant and a variable region, where the latter is 

responsible for antigen binding. Although possessing no functional difference, two types of 

light chain can be found in immunoglobulins, a kappa (κ) light chain (which occurs more 

frequently), and lambda (λ) light chain [22, 23]. An antibody is the secreted form of the 

BCR. In mammals, five distinct immunoglobulin isotypes can be distinguished by their 

constant region, IgM, IgD, IgG, IgA and IgE, each possessing a distinct functional activity 

[24]. Finally, it is also important to note that B cell functions go beyond antibody secretion, 

as they also act as antigen-presenting cells and cytokine producers [25]. 

 

1.2.1 B cell development 

B cells arise from common lymphoid progenitors in the bone marrow, where they undergo 

several stages of development [26, 27]. Throughout these different stages ,the precursor cells 

migrate within the bone marrow until reaching the sinus of the marrow cavity [28]. Once 

cells are committed to the B cell lineage, they express the specific transcription factors E2A 
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and early B cell factor (EBF), thus becoming pro-B cells [29]. During this stage, B cells 

initiate the functional rearrangement of their immunoglobulin gene segments, allowing the 

generation of a broad B cell repertoire. The first rearrangements lead to the formation of the 

immunoglobulin heavy chain [26]. In this case, the diversity (D) gene segment and the 

joining (J) gene segment undergo rearrangement, a process followed by the rearrangement 

of an upstream region, the variable gene segment (V) [30, 31]. An effective VDJ 

rearrangement results in the formation of a µ chain [32]. The expression of the µ chain along 

with a surrogate light chain and signal transducing proteins allows the formation of a pre-

BCR, its surface expression marking the transition into the pre-B cell stage [33, 34]. During 

this stage, cells undergo proliferation followed by VJ rearrangement of the light chain [26]. 

To avoid the expression of more than one specific immunoglobulin, light chain 

rearrangement occurs first in the κ chain, occurring only in the λ chain in case of an 

unsuccessful κ chain rearrangement [35]. Once a successful light chain is formed, it pairs 

with the µ chain to form the BCR [36]. At this point cells become immature B cells and can 

leave the bone marrow, though still expressing only immunoglobulins of the IgM isotype 

[19]. 

After leaving the bone marrow, B cells migrate to secondary lymphoid organs, like 

the spleen or lymph nodes, where they can encounter their cognate antigen, be activated and 

further differentiate [19, 37]. However, before being considered mature, B cells go through 

two transient transitional stages: T1, before they acquire recirculation capacity and T2, when 

they acquire the ability to recirculate but still express markers of immaturity [38, 39].  

 

1.2.2 B cell lineage subsets 

B cells can be divided into 3 different main subsets: B1 and B2 cells, with B2 cells 

being further divided into follicular (FO) and marginal zone (MZ) B cells [40-42]. 

B1 cells arise early in embryonic development, originating from B1 progenitors 

derived from hematopoietic stem cells in the fetal liver [43]. These cells reside 

predominantly in the peritoneal and pleural cavities, presenting self-renewing capacity to 

maintain their population [44, 45]. A small contribution of bone marrow precursors to the 

B1 cell population in adulthood has also been verified [41, 45, 46]. B1 cells were first 

distinguished from other B cells through the expression of CD5 on their surface (B1a), 

although there are also cells with B1 characteristics that do not express this marker (B1b) 
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[41]. Regarding their effector function, B1 cells present a restricted immunoglobulin 

repertoire, predominantly producing IgM antibodies against antigens that do not require T 

cell help, these being mainly polysaccharides or phospholipids present in commensal 

bacteria [42, 47, 48]. The fact that these natural IgM antibodies recognize conserved 

microbial structures allows them to function as a first barrier against pathogen infection [49, 

50]. Moreover, since these antibodies are polyspecific, they also recognize self-antigens, 

being important for tissue homeostasis [51, 52]. B1 cells can also produce polyreactive IgA 

antibodies, contributing to mucosal immunity [53].  

 B2 cells originate from progenitors in the bone marrow and pass through several 

development stages until they become mature B cells. Most mature B2 cells migrate to B 

cell follicles in the secondary lymph nodes where they become FO B cells. Alternatively, 

mature B cells can migrate to the outer white pulp of the spleen, residing between the 

marginal sinus and the red pulp where they become MZ B cells [40, 54]. These two types of 

mature B cells can be distinguished by the expression of different surface markers, like 

CD21, which is highly expressed in MZ but not in FO B cells [55]. Moreover, due to their 

different localization, MZ and FO B cells present different effector functions. By localizing 

inside follicles in proximity to T cell zones, FO B cells mount good T cell-dependent (TD) 

responses [40]. Consequently, they are involved in the germinal center formation, where 

they undergo affinity maturation and can differentiate into plasma and memory cells, or in 

extrafollicular responses [56, 57]. On the other hand, MZ B cells, located at the interface 

between the circulation and a lymphocyte-rich zone, strongly respond to T cell-independent 

(TI) blood-borne pathogens, mounting fast but less specific responses [47, 58]. These cells 

can also differentiate into plasma cells, although secreting only IgM immunoglobulins [55]. 

Moreover, they present some memory-like properties such as a pre-activated phenotype, 

self-renewal capacity and the ability to live as long as the host [40]. 

 

1.2.3 B cell activation 

Mature B cells become activated upon recognition of antigens. Whether that happens 

via the recognition of their cognate antigen by their BCR with T cell help, i.e. via T cell-

dependent activation [59], or via recognition of conserved or repetitive antigens by their 

TLRs or BCR cross-linking, i.e. via T-cell independent activation [9], depends on the cell 

type, location and milieu. 
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1.2.3.1 T-cell independent activation 

Antigens that activate B cells without depending on T cell help are called T cell-

independent antigens. These are usually week antigens that do not trigger T cell responses 

but can be recognized by B cells in two different ways: 1) through TLR recognition, a so-

called T cell-independent type 1 antigen response (TI-1) and 2) through BCR cross-linking, 

leading to a T cell-independent type 2 antigen response (TI-2). Since TLRs are a family of 

transmembrane proteins that recognize distinct microbial molecular motifs, TI-1 antigens 

are mostly PAMPs [9]. A well-studied example is LPS, a component present on the outer 

membrane of gram-negative bacteria, known to be recognized by TLR4 and to induce 

proliferation [60]. On the other hand, TI-2 antigens are molecules bearing repetitive 

structures that have the ability to cross-link BCRs. An example of such structures are 

bacterial polysaccharides [61]. TI responses are mostly observed in B1 and MZ B cells, 

leading to the production of IgM against invading pathogens, and limiting their growth until 

a full specific response is mounted [47]. Several studies have also showed TI B cell responses 

leading to class switched antibodies. Examples include the presence of IgA against 

commensal bacteria in the intestinal mucosa [53] and IgG responses elicited by live virus 

infections [62]. Of note is the fact that all TI responses are largely influenced by the cytokine 

milieu at the site where B cell/antigen interaction takes place [9]. 

1.2.3.2 T-cell dependent activation 

Conversely, antigens that activate B cells depending on T cell help are called T cell-

dependent antigens. While migrating or recirculating between secondary lymphoid organs, 

a B cell can recognize its cognate antigen via its BCR, internalizing and processing it to be 

presented on its surface through MHC class II [63]. Consequently, antigen-presenting B cells 

get trapped in the T cell zone (near the T/B cell zone border) of secondary lymphoid tissue 

where they can be in contact with activated T cells that recognize the expressed antigen [64, 

65]. At this point, cells proliferate and generate long-lived B/T cell interactions [66]. From 

there, T cell-dependent activation of B cells can lead to two different fates, the differentiation 

into short-lived plasma cells in extrafollicular foci or the formation of a germinal center 

reaction to form long-lived plasma and memory cells [57, 67]. Crucial for both B and T cell 

growth and differentiation is also the interaction between the CD40 receptor expressed on 

the surface of B cells with its ligand, CD40L (CD154), expressed on the surface of activated 

T cells [68]. Both the expression of CD40L and the production of cytokines and chemokines 
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involved in T cell help are triggered by the binding of the T cell receptor (TCR) to its antigen 

presented by MHC class II molecules. Consequences of T cell help to B cells include 

increased survival, proliferation, differentiation, hypermutation, class switching, adhesion 

and attraction [59]. 

 

1.2.4 Antibody responses 

Regarding the production of antibodies, three different types of antibody-secreting 

cells with different differentiation and secreted antibody profiles can be distinguished: 1) B1 

cells that secrete natural antibodies [69], 2) short-lived plasma cells formed in extrafollicular 

responses [16, 57], and 3) long-lived plasma cells originated from germinal center reactions 

[16, 70]. These three types of cells differentiate at distinct time points and locations, 

generating antibodies with different degrees of affinity. Since the generation of natural 

antibodies was already described above, this section focuses on extrafollicular and germinal 

center reactions. 

1.2.4.1 Extrafollicular reaction 

 As the name indicates, extrafollicular reactions occur in foci outside B cell follicles. 

This type of reaction is elicited by certain antigens and is not dependent on B cell types or 

forms of activation [57]. In fact, both FO and MZ B cells can undergo extrafollicular 

differentiation, in a T cell-dependent or -independent fashion, although MZ B cells seem to 

be faster and more efficiently recruited into this type of response [47, 57, 71]. In T cell-

dependent antibody responses, early high antibody affinity also appears to favour 

extrafollicular reactions [72]. In this case, after being activated, B cells proliferate and 

differentiate into plasmablasts, migrating to the red pulp in the spleen or to the medullary 

chords in lymph nodes to form the so-called extrafollicular foci [73] (Figure 1). There, 

plasmablasts associate with CD11chigh DCs for survival and further differentiation into 

plasma cells [74]. In this phase, no CD4 T cell-help is needed, although it has been shown 

that CD40 ligation can extend plasmablast growth and differentiation [75, 76]. Most plasma 

cells generated in extrafollicular responses are short-lived, surviving only for approximately 

3 days [57, 77]. However, it has been shown that this type of response is also able to generate 

long-lived plasma cells [78]. Commitment of B cells to the extrafollicular pathway is also 

associated with the expression of Blimp-1, the key transcription factor for plasma cell 
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differentiation, and the downregulation of Bcl-6, a transcriptional repressor that suppresses 

the program of plasma cell formation [79]. 

 

Figure 1. B cell activation in the spleen. Activation of both marginal zone and follicular B cells can 
occur independently or dependently of T cell help. Marginal zone B cells are mostly activated in a T 
cell-independent fashion, which can result in plasmablast differentiation and subsequent migration 
and formation of extrafollicular foci. There, B cells associate with CD11chigh DCs which allows for 
further differentiation, mostly to short-lived plasma cells. On the other hand, after being activated 
by their cognate antigen, B cells committed to a follicular fate get trapped close to the T/B cell 
border where they receive stimuli from T cells.  The most common fate of these cells is the 
formation of germinal centers, which are divided into two different microenvironments. In the dark 
zone, B cells undergo clonal expansion and somatic hypermutation, whereas after migration to the 
light zone, cells are subjected to selection and can undergo class switch recombination to modify 
their effector functions. Subsequently, B cells can either differentiate into memory or plasma cells 
and leave the germinal center, or re-circulate to the dark zone to accumulate more advantageous 
mutations. Similar to what occurs with marginal zone B cells, follicular B cells can also form 
extrafollicular foci, where they differentiate into short-lived plasma cells. However, in this case 
plasmablast differentiation and migration is usually dependent on T cell help. 

TD – T cell-dependent, TI – T cell-independent, CSR – class switch recombination, SHM – somatic 
hypermutation, MZ – marginal zone, DC – dendritic cell, FDC – follicular dendritic cell, MEM – 
memory cell, PC – plasma cell. 
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1.2.4.2 Germinal center reaction 

 Germinal center reactions are mostly triggered by T cell-dependent B cell activation 

(Figure 1). Interacting B and T cells commit to the GC program still outside the follicles, 

upregulating several GC-associated proteins and most decisively, the transcription factor 

Bcl-6 [80]. Only after commitment do cells migrate to the follicles, where as soon as 4 days 

after contact with the cognate antigen GC precursors can form early GCs [67]. At this point, 

B cells grow and differentiate into blasts, settling in the existing network of follicular 

dendritic cells (FDCs) in the centre of the follicle [81, 82]. IgM+ IgD+ B cells are displaced 

by the B cell blasts to form the mantle zone around the GC [70]. From days 5 to 7 the blasts 

continue their proliferation (clonal expansion) until a fully established GC with two defined 

microenvironments, the dark and the light zone, is formed [56, 83] (Figure 1). It is, however, 

important to note that different antigens trigger different GC kinetics and organization.  

The dark zone of the GC is highly populated by B cell blasts, also containing FDC. 

In this zone B cells proliferate and accumulate until they circulate to the light zone [67, 84]. 

Most importantly, while in this zone B cell undergo somatic hypermutation (SHM), the 

process during which mutated high affinity BCRs can be generated [85] (Figure 2). SHM 

occurs thanks to the action of the protein activation-induced cytidine deaminase (AID), 

which deaminates deoxycytidine residues into deoxyuridine (C:G into U:G), causing lesions 

in the rearranged immunoglobulin variable regions [86, 87]. These lesions are subsequently 

recognized and processed, introducing mutations that can increase antibody affinity. The 

type of DNA repair pathway used by the cell to resolve a particular lesion dictates the type 

of mutation introduced [87]. 

On the other hand, the light zone of the GC is populated not only by B cells and FDC 

but also by follicular helper T cells (TFH) and macrophages [80]. The presence of these cells 

is important for the process of positive selection occurring at this point [88]. Having reached 

the light zone, B cells move to the network of FDCs and macrophages where high amounts 

of antigen are available. Since B cells expressing higher affinity BCRs can better recognize 

their cognate antigen, these cells are also more successful in forming MHC complexes and 

in competing for TFH help, thus being positively selected to further differentiate [67, 84]. 

Cells not able to efficiently capture their antigen die by apoptosis [67, 88]. At this stage, B 

cells may undergo class switch recombination (CSR), the process that allows to change the 

effector function (isotype) of the already formed high affinity antibodies (Figure 2). CSR is 
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also dependent on AID activity. In this case, AID deaminates doxycytidines in the switch 

regions present in the heavy chain, causing DNA double-strand breaks [89]. These breaks 

are subsequently ligated, excising the intervening DNA and approximating the already 

mutated VDJ segment to a different downstream constant region. Since different constant 

regions code for different immunoglobulin isotypes, this process leads to switch from IgM 

to IgG, IgE or IgA isotypes. After being positively selected and undergoing CSR, B cells 

can either recirculate to the dark zone to acquire more favourable mutations [90], or 

differentiate into plasmablasts or memory B cell precursors [56]. Of note is the fact that B 

cells only reside in the light zone for some hours [56]. 

 

Figure 2. Somatic hypermutation (SHM) and class switch recombination (CSR). In germinal 
centers, B cells improve the effector function of the produced immunoglobulins by undergoing two 
processes of immunoglobulin diversification. SHM occurs in the dark zone of the GC and is 
characterized by the introduction of mutations, usually substitutions, that confer a greater 
diversification to the immunoglobulin variable region. On the other hand, CSR occurs in the light 
zone of the GC. In this process, double-strand breaks induced in the switch regions (S) upstream of 
the different constant regions (C) lead to the excision of the intervening DNA and approximation of 
the VDJ segment to a new constant region. This results in isotype switching, altering 
immunoglobulin effector function. AID is a key enzyme in both processes since it deaminates 
deoxycytidine into deoxyuracil inducing DNA lesions. It is the subsequent pathway of resolution of 
these DNA lesions that dictates the outcome of the diversification process. 

V – variable gene segment, D – diversity gene segment, J – joining gene segment, E/Ehn – enhancer, 
S – switch region, C – constant region. 

  

1.2.5 B cell signalling pathways 

As described in the previous chapters, BCR signalling is indispensable throughout 

the different stages of development and differentiation of B cells. However, other signalling 

pathways also play critical roles in B cell activation (Figure 3). In the case of T cell-

dependent activation, the activation of the CD40 receptor is crucial for processes like GC 

formation, selection and CSR [91]. Also necessary for GC formation and CSR is the 

presence of cytokines, here represented by IL-4 [92]. T cell-independent type 2 activation 
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relies on TLR signalling, which can also synergize with the BCR to promote CSR before T 

cell help is available [93]. 

 

Figure 3. B cell signalling pathways. B cells express several types of receptors on their surface, 
most importantly the B cell receptor (BCR), but also co-stimulatory receptors, cytokine receptors 
and receptors specialized in the recognition of pathogen-associated molecular patterns. To this 
latter category belong several toll-like receptors, and the c-type receptor dectin-1. The B cell 
receptor is indispensable for B cell survival, with its signalling also being responsible for proliferation 
and cellular activation. To that end, B cell signalling triggers the activation of several proteins 
converging into the activation of transcription factors such as NF-κB, NFAT and the MAP kinases 
Jnk, Erk and p38. Crucial for some B cell intrinsic functions, such as class switch recombination, is 
the presence of the co-stimulatory receptor CD40, which is activated by the T cell surface protein 
CD154, and the presence of cytokine receptors, here represented by the IL-4 receptor. The effector 
functions of these receptors are largely dependent on the JAK-STAT pathway and MAPK cascades, 
CD40 signalling also triggering NF-κB activation. TLR signalling, dependent on adaptor proteins such 
as MyD88 or TRIF, has been shown to synergize with BCR signalling by activation of the same 
transcription factors. Moreover, TLR activation induces the expression of type I IFN genes through 
the activation of IRF3. Dectin-1 is also able to induce NF-κB activation, both through a Syk-
dependent and Syk-independent pathway. Activation of NF-κB and other transcription factors 
facilitates their nuclear localization, leading to the transcription of several different genes. 

 

1.2.5.1 BCR signalling 

The BCR is composed by a transmembrane immunoglobulin noncovalently bound 

to two signalling transducing molecules, CD79a (Igα) and CD79b (Igβ) [94]. Upon binding 

of a cognate antigen to the BCR, Scr family protein kinases, especially Lyn, are recruited 

and phosphorylate the ITAM motives present on the cytoplasmic tails of CD79 molecules 
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[95]. This phosphorylation results in the recruitment of the signalosome (Figure 3), 

composed by other kinases as Syk and Btk, Vav proteins, adaptor proteins like Grb2 and 

BLNK and the signalling enzymes PLCγ2 and PI3K [96, 97]. As Syk becomes responsible 

for the phosphorylation of the CD79 proteins, Lyn provides signal amplification by 

continuous recruitment of kinases and formation of a complex with the co-receptor CD19 

and other molecules [98]. The formation of this complex allows the lowering of the threshold 

of B cell activation [99]. The continuous transduction of signal upon antigen recognition 

triggers BCR aggregation in clusters in plasma membrane domains termed lipid rafts [100]. 

Once the signalosome is formed, PLCγ2 is dually phosphorylated by the kinases Syk and 

Btk, producing the second messengers diacylglycerol (DAG) and inositol-1,4,5-triphosphate 

(IP3) [97]. While DAG is an activator of protein kinase C (PKC), IP3 leads to calcium influx 

from the endoplasmic reticulum [101]. 

Upon initial BCR activation and signal amplification, multiple downstream effectors 

are activated. As an example, calcium influx activates the transcription factor NFAT [102]. 

Another example is the activation of the mitogen-activated protein kinase (MAPK) pathway, 

where MAPKs like Erk, Jnk and p38 regulate transcription factors such as Elk1, c-Myc, c-

Jun and ATF2 [101, 103]. Last but not least, stimulation via PKC results in the 

phosphorylation and subsequent proteasomal degradation of IκB (Figure 3), facilitating NF-

κB translocation to the nucleus and inducing gene transcription [101, 104]. By activating all 

these different pathways, BCR signalling can provide survival, proliferation and activation 

signals to the cell. 

1.2.5.2 CD40 signalling 

The CD40 receptor is a member of the tumor necrosis factor receptor (TNFR) family 

of surface molecules, being expressed in a variety of cells like epithelial, endothelial cells 

and APCs [105]. In B cells, the engagement of CD40 by its ligand, CD40L or CD154, 

expressed by CD4+ T cells, leads to the association of the CD40 cytoplasmic domain with a 

set of proteins that belong to the family of TNFR-associated factors (TRAFs) [91, 106]. The 

association with different TRAFs (1, 2, 3, 5 and 6) leads to the activation of different 

signalling pathways among which are the canonical and non-canonical NF-κB pathways, the 

MAPKs Erk, Jnk and p38, and the JAK-STAT pathway (Figure 3) [91]. The activation of 

these pathways ultimately results in the transcriptional activation of several genes, among 

which are anti-apoptotic and cell cycle promoting genes  [107, 108]. Of note is the fact that 
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most pathways activated upon CD40 receptor engagement are also activated by BCR antigen 

recognition, allowing efficient synergy of signals initiated by these receptors. 

1.2.5.3 IL-4R signalling 

IL-4 signalling can be initiated by the binding of IL-4 to two different receptor 

complexes (Figure 3). Both complexes encompass the IL-4Rα chain (CD124), a 

transmembrane protein ubiquitously expressed in fairly low amounts, that heterodimerizes 

with the common gamma chain (γc) to form the type I receptor, or with the IL-13Rα1 chain 

to form the type II receptor [109]. The binding of IL-4 leads to the recruitment and activation 

of Janus-family kinases (JAKs), with JAK1 binding to the IL-4Rα chain, JAK3 to the γc 

chain and JAK2 to the IL-13Rα1 chain [109-111]. Also triggered by ligand binding is the 

tyrosine phosphorylation of the IL-4Rα chain itself [112], as well as the phosphorylation of 

IRS1/2 and STAT6 by JAKS [113, 114]. While IRS initiates a variety of signalling pathways 

such as the PI3K and MAPK pathways enhancing survival and proliferation [109], STAT6 

translocates to the nucleus where it has an important role in gene regulation [115]. As an 

example, STAT6 activation is responsible for enhancing the expression of germline 

immunoglobulin ε and γ1, showing a synergy with CD40 signalling in promoting CSR [116]. 

The combination of anti-CD40 antibodies or recombinant CD40 ligand with IL-4 is 

often used in in vitro B cell cultures, since it promotes increased B cell proliferation, survival 

and an activated phenotype, as well as CSR from IgM to IgG1 or IgE [117, 118]. 

1.2.5.4 TLR signalling 

 Until now, thirteen different TLRs have been reported (TLR1 to TLR13), each 

presenting specificity to one type of PAMPs [2]. While TLRs 1, 2, 4, 5, 6 and 10 are present 

at the cell surface, the remaining TLRs are found in endosomes. An exception being TLR4, 

which can be found both on the cell surface or intracellularly after being endocytosed [119]. 

TLR1, 6 and 10 form heterodimers with TLR2 [120-122]. Regarding TLR expression in B 

cells, several studies show that different human B cell subsets express different TLRs, with 

naïve B cells presenting lower expression levels than plasma or memory B cells [123-127]. 

In the case of murine B cells, a study from 2007 showed that except for TLR5, TLRs 1 to 9 

are expressed in splenic and mucosal B cell subsets [128]. Interestingly, due to the insertion 

of a stop codon, TLR10 is a non-functional pseudogene in mice [129]. 
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TLR signalling has been mainly studied in cells of the innate immune system, 

proving to be  similar among different TLRs and relying on TIR domain-containing adaptor 

proteins [130]. In most TLRs, the recognition of PAMPs activates a signalling cascade that 

involves the adaptor protein Myeloid differentiation primary response 88 (MyD88) [131] 

(Figure 3). As an exception, TLR3 and endosomal TLR4 signal through a different adaptor 

protein (TRIF) [132, 133]. In the MyD88-dependent pathway, MyD88 is recruited by 

another TIR domain-containing protein, TIRAP, which allows the assembly of signalling 

complexes at the TLR location [134]. Once engaged with the TLR, MyD88 forms a complex 

with the proteins IRAK4 and IRAK1, the Myddosome [135]. This complex can in turn 

trigger the activation and autopolyubiquitination of TRAF6, leading to the activation of two 

distinct pathways, the IKK complex/NF-κB pathway and MAPK cascades [136]. In B cells, 

the triggered translocation of NF-κB to the nucleus can influence several processes, such as 

cell proliferation and survival [137, 138], class switching [93, 139], plasma cell 

differentiation [140, 141], pro-inflammatory cytokine production [142-144] and induction 

of important B cell proteins such as AID [93]. The activation of MAPK members triggers 

the activation of transcription factors which are important for regulation of inflammatory 

responses [145]. As mentioned before, the TRIF-dependent pathway is used by TLR3 and 

endosomal TLR4. However, while TLR3 can directly interact with TRIF, TLR4 needs the 

bridging adaptor protein TRAM [119]. Differently from MyD88, TRIF triggers not only the 

activation of TRAF6 but also TRAF3 [130, 146]. In this case, TRAF3 recruits IKK related 

kinases to induce IRF3 phosphorylation and subsequent translocation to the nucleus, where 

it induces the expression of type I IFN genes. Other IRFs have also been shown to be 

involved in TLR signalling [147-150]. 

1.2.5.5 Dectin-1 signalling 

Dectin-1 is a PRR member of the C-type lectin receptor (CLR) family [151]. Since 

it is the most prominent receptor for β-glucans, a major constituent of the fungal cell wall, it 

plays an important role in the immune response against fungal pathogens [152, 153]. While 

dectin-1 is most prominently expressed in cells of the innate immunity, its expression on 

human B cells has been described [154]. Whether dectin-1 can also be expressed in mouse 

B cells remains inconclusive due to contradictory reports [155, 156]. 

Upon ligand recognition, dectin-1 signalling is initiated by the phosphorylation of 

the ITAM motif present in its intracellular tail. This results in recruitment and activation of 
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Syk, which phosphorylates PLCγ2 leading to subsequent activation of the CARD9-Bcl10-

Malt1 complex (Figure 3) [157-159]. Stimulation of PLCγ2 phosphorylation thus leads to 

the activation of the transcription factors NF-κB, NFAT and IRF1/5 as well as MAPK/Erk 

signalling. [158, 160-163]. NF-κB can also be activated via Raf-1, in a Syk-independent way 

[164]. 

A consequence of dectin-1 signalling is the inflammasome activation-mediated 

production of IL-1β [165]. Two different mechanisms for IL-1β processing have been shown 

to be triggered by dectin-1 activation, one dependent on the assembly of the canonical 

NLRP3 inflammasome and caspase-1 [165], and a second via a noncanonical caspase-8 

inflammasome [166]. While most studies concerning the involvement of dectin-1 in IL-1β 

production have been made using cells from the innate immune system, a recent study shows 

that also in human B cells dectin-1 activation can lead to IL-1β modulation via the NLRP3 

inflammasome [167].  

 

1.2.6 B cell effector functions 

Although the main function of a B cell is to produce antibodies with high affinity and 

a correct isotype for a determined function, B cells are also professional antigen-presenting 

cells which produce cytokines. Therefore, while several B cell functions are mediated by the 

binding of antibodies to its targets, there are a variety of antibody-independent functions 

which are mediated by B cell-produced cytokines or that rely on their APC capacity. 

1.2.6.1 Antibody-mediated functions 

After being secreted by B cells, differently diversified/class switched antibodies 

mediate different functions, being involved in immune responses against bacterial, fungal, 

viral and parasitic pathogens [168]. Important is the fact that antibodies do not only trigger 

responses via effector cells, but also by direct binding to the pathogen. 

One of these direct interactions is neutralization, which occurs when neutralizing 

antibodies bind to the pathogen, inhibiting or limiting the infection of susceptible cells [168]. 

This process can occur during different stages of infection (before, during or after 

attachment), causing diverse effects such as aggregation, immobilization, inhibition of 

attachment, inhibition of growth, or even death of the pathogen [168-174]. Antibodies can 

also neutralize pathogen-secreted toxins [175, 176]. 



Introduction 
________________________________________________________________________________ 

16 
 

Through pathogen-binding, some antibodies are also able to activate the classical 

complement pathway, leading to cell lysis or internalization by phagocytes [177-180]. 

Antibody binding to its specific antigen exposes a binding site for the complement molecule 

C1q (part of the C1 protein complex), which binds to Fc regions of immunoglobulin 

molecules, activating the complement cascade [180]. Consequently, complement activation 

can result in the formation of a membrane attack complex which creates transmembrane 

pores, therefore leading to cell lysis [168, 181]. Another result of antibody-mediated 

complement activation is the processing of C3b, which deposits on antigen/antibody 

complexes on the surface of pathogens, opsonizing them for phagocyte internalization [168, 

182]. Of interest is the fact that C1q can only bind to IgM or IgG immunoglobulins, IgM 

being the most potent complement activator, followed by IgG3, IgG1 and IgG2 [180]. 

Not depending on their variable region but on their Fc part, antibody immune 

complexes (ICs) can as well bind to Fc receptors. However, the outcome of this engagement 

varies depending on the Fc receptor-bearing cell, the form of the IC, the cytokine milieu and 

the presence of complement [168]. Two examples are the phagocytosis mediated by 

antibody-coated pathogens [183], and antibody-dependent cellular toxicity (ADCC). The 

latter occurs when antibodies form a bridge between an infected cell (or pathogen) and an 

Fc-bearing effector cell, causing cell lysis or apoptosis [168, 184, 185]. Moreover, Fc-Fc 

receptor binding can lead to host immune modulation, affecting different processes such as 

the generation, secretion and repression of pro- and anti-inflammatory substances, regulation 

of B cell activity and survival, and TLR signalling [186-191]. Of note is the fact that the 

same antibody can be involved in more than one type of response [177]. 

1.2.6.2 Antigen presentation 

Although B cells are professional APCs, internalizing some protein antigens and 

presenting them in MHC molecules to T cells, they differ from other APCs by being specific 

for their cognate antigen [63]. While this specialization was first regarded as a disadvantage 

- few B cells with specificity to a given antigen - two distinct aspects give B cells the ability 

to efficiently present antigens: their BCR and their location. 

APCs internalize antigen via three different mechanisms, phagocytosis, fluid-phase 

pinocytosis and receptor-mediated endocytosis [63]. Receptor-mediated endocytosis occurs 

through BCR recognition of the cognate antigen, allowing B cells to concentrate small 

amounts of antigen that can, as a result, be efficiently presented to T cells [192]. 
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Interestingly, the BCR affinity to a given antigen has been shown to be proportional to the 

capacity of B cells to present that antigen to CD4 T cells [193]. In addition, BCR signalling 

leads to changes that stimulate the traffic of antigen [194, 195] and the synthesis of MHC 

molecules [196], steps which are also necessary for efficient antigen presentation. 

Regarding their location, B cells find themselves in a privileged niche for B-T cell 

interactions - the secondary lymphoid organs. As such, while B cells rely on T cell help, they 

can also participate in T cell responses by presenting antigen. However, it is important to 

note that this APC function is dependent on the type and form of the antigen being presented 

[63, 197]. Advocating for the importance of T cell help in this context is the fact that both 

BCR crosslinking and CD40/CD154 engagement are necessary to activate the APC function 

of B cells. While BCR crosslinking provides growth, proliferation and survival signals, and 

increases CD86 expression [198], CD40/CD154 engagement contributes to CD86 

stabilization, CD80 induction and enhancement of antigen processing [199-201]. 

Conversely, it has been shown that the lack of APC function in B cells might lead in some 

cases to impaired T cell helper function and IL-4 production [202]. Also important to 

mention is the fact that B cells appear to be able to initiate T cell responses even in the 

absence of other APCs [203, 204], a function that is only possible due to the progressive 

interaction that occurs between B and T cells [63]. 

Studies using experimental animal models have also shown that antigen presentation 

by resting B cells is able to induce T cell tolerance [205-207]. 

1.2.6.3 Cytokine-mediated functions 

Even though the fact that B cells produce a vast array of cytokines has been known 

for a long time [208-210], the field of cytokine-mediated B cell effector functions is still 

understudied, with many observations made in single experimental models [25]. However, 

marked progress has been made recently. Three mains areas of the immune system where B 

cell-secreted cytokines show an important influence can be highlighted: CD4+ T cell 

responses, tissue development and repair, and dampening of inflammatory immune 

responses. 

The effect of B cell-produced cytokines on CD4+ T cell responses is mediated by a 

variety of cytokines. TNF, IFNγ and IL-6 have been shown to promote TH1 cell 

differentiation in different contexts, while IL-6 has also been shown to support TFH and TH17 

cell responses [25, 211-215]. Also involved in TH1 cell differentiation, although indirectly, 
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is the secretion of GM-CSF, which is suggested to increase IL-12 production by DCs [216]. 

B cells have also been suggested to affect TH2 cell responses in a context of infection, in this 

case via IL-2, which seems to be important for effector and memory T cell formation [217], 

and  lymphotoxin α1β2 (LTα1β2), which is indirectly involved in relocalization of TH2 cells 

against helminths [218]. Moreover, B cell-secreted cytokines can indirectly support CD4+ T 

cell responses by influencing cells from the innate immunity, with several studies showing 

stimulation of macrophage activation via IFNγ [219], and suggesting that IL-17-producing 

plasma cells can promote the accumulation of IL-10-producing neutrophils [220, 221]. 

  Regarding tissue development, it is in the lymphoid tissue where the effects of B cell-

secreted cytokines can best be seen [25]. These effects are mostly mediated by LTα1β2 and 

include development and localization of FDCs, T cells and the marginal zone in the spleen 

[222-224], lymph node remodelling during immune responses [225], maturation of isolated 

lymphoid follicles in the gut [226] and tertiary lymphoid tissue formation [227]. LTα1β2 

appears to be also involved in tissue repair, with studies showing its effects in prostate 

regeneration and tumor regrowth [228, 229]. Another B cell-produced cytokine involved in 

the development of lymphoid tissue is TNF, shown to be required for marginal zone 

formation in the spleen and FDC development in lymph nodes and Peyer’s patches [209, 

222, 230]. 

Through release of IL-10 and IL-35 B cells can also dampen inflammatory immune 

responses [25]. This effect has been shown both in vitro and in vivo in contexts of 

autoimmunity and infection such as chronic intestinal inflammatory condition or Salmonella 

infection [231-238]. Depending on the context, the effects of these B cell-secreted cytokines 

can be protective or deleterious [236, 239]. 

 

1.3. Candida albicans 

Candida albicans is a commensal fungus commonly found in gastrointestinal, oral 

and vaginal mucosal tissues of healthy individuals [240]. In fact, it is estimated that Candida 

species can be found in approximately 70% of the human population [241, 242]. However, 

this benign commensal can also cause severe infections in immunocompromised hosts, being 

one of the most common fungal pathogens of humans and one of the leading causes of 

nosocomial infections [243]. Despite increasing research efforts in recent years, compared 
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to other infections, fungal infections are still understudied and often misdiagnosed, leading 

to a high mortality rate [244]. 

 

1.3.1 Colonization versus invasion 

In an immunocompetent host, C. albicans colonizes mucosal surfaces without 

triggering any major response, since it is controlled by the present microbial flora, the 

epithelial barriers and the innate immune system [245]. However, in case of a disruption in 

these control mechanisms, C. albicans can become invasive and trigger an array of immune 

responses, therefore becoming pathogenic [246, 247]. One characteristic that plays a crucial 

role in commensal-to-pathogen differentiation is polymorphism, as C. albicans is able to 

switch between yeast, pseudo-hyphae or true hyphae forms [248]. While yeast cells present 

a simple ellipsoid shape, hyphae cells form long filaments that can penetrate through the 

physical barriers of the host. Moreover, this yeast-to-hyphae shift leads to the exposure of 

cell wall components, as well as to the expression of hyphae-associated proteins, both factors 

known to increase C. albicans virulence [249]. Once in hyphal form, C. albicans has the 

ability to damage the epithelial barrier through a process that occurs in three subsequent 

stages: (1) adhesion, mediated by cell surface adhesins, some predominantly expressed in 

hyphae, (2) invasion, which can occur via host-mediated induced endocytosis or hyphae-

mediated active penetration, and (3) damage, triggered by hyphae intraepithelial invasion 

and growth, and potentiated by virulence factors  [245, 250]. Once inside the host, it is the 

job of the immune system to fight the invasion. 

 

1.3.2 Anti-Candida albicans immune responses 

The immune response against C. albicans starts by the recognition of conserved 

PAMPs present on its cell wall by PRRs expressed by immune cells [247]. The cell wall of 

C. albicans can be generally differentiated into two lawyers, the outer layer, mainly 

composed of N- and O-linked mannans, and the inner layer, composed of β-glucans and 

chitin [251]. The outer layer also contains mannoproteins [252]. Several groups of PRRs are 

involved in the recognition of these cell wall components: Toll-like receptors (TLRs), C-

type lectin receptors (CLRs), NOD-like receptors (NLRs) and RIG-I-like receptors (RLRs). 
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Table 1 lists the PRRs currently known to be involved in C. albicans recognition, as well as 

their PAMPS, localization and attributed functions. 

Table 1. Pattern recognition receptors involved in Candida albicans recognition (table adapted 
from Naglik 2014 [240] and Netea 2015 [247]). 

Receptor 

family 
Receptor Recognizes Expressed in Functions Refs 

Toll-like 

receptors 

(TLRs) 

TLR2 
Phospholipo- 

mannan 

Most immune 

cells 

Pro-inflammatory 

cytokines 
[253] 

TLR4 O-mannan 
Pro-inflammatory 

cytokines 
[253] 

TLR3 RNA IFN-γ secretion [254] 

TLR7 RNA 
Pro-inflammatory 

cytokines 

[255, 

256] 

TLR9 DNA, chitin 
Anti-inflammatory 

cytokines 
[257] 

C-type lectin 

receptors 

(CLRs) 

Dectin-1 β-glucan 

Monocytes, 

macrophages and 

neutrophils 

Pro-inflammatory 

cytokines, TLR-signal 

amplification, NET 

formation 

[151, 

152, 

258-

262] 

Dectin-2/3 α-mannan 

DCs, 

macrophages and 

neutrophils 

TH17 modulation, ROS 

production, pro-

inflammatory cytokines 

[263, 

264] 

Mannose 

receptor 
N-mannan Macrophages 

Pro-inflammatory 

cytokines – IL-17 

[253, 

265] 

DC-SIGN N-mannan DCs 
TH activation and 

differentiation 
[266] 

MINCLE α-mannan 
Monocytes and 

neutrophils 
TNF secretion [267] 

Galectin-3 β-mannan Macrophages TNF secretion [268] 

MBL Mannan Soluble Complement activation [269] 

NOD-like 

receptors 

(NLRs) 

NOD2 Chitin 
Macrophages and 

neutrophils 
IL-10 production [257] 

RIG-I-like 

receptors 

(RLRs) 

MDA5 

(IFIH1) 
RNA? Macrophages IFN-β secretion [270] 

Complement 

receptors 
CR3 β-glucan Neutrophils 

Phagocytosis and 

killing of unopsonized 

Candida 

[271] 

Fc receptors FcγR IgG Neutrophils 
Killing of opsonized 

Candida 
[272] 

 

The PRR identified as possessing a major role in recognition of C. albicans is dectin-

1, as it recognizes a major constituent of the fungal cell wall - β-1,3 glucan [153]. However, 

several studies indicate that this type of glucan is masked by the outer layer of mannans, 

needing to be exposed for dectin-1 recognition [273]. Whether this exposure occurs only in 

budding yeast or also upon transition to the hyphal form seems to still be controversial [240, 

247, 274, 275]. This example is only one of several on how yeast and hyphae are 

differentially recognized by the immune system [245, 276, 277]. 
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As mentioned in a previous section, dectin-1 induces intracellular signals that lead to 

the activation of NF-κB and other transcription factors [158, 160]. A vast array of functions 

has been attributed to the binding of β-glucans to dectin-1, such as the stimulation of 

phagocytosis, secretion of pro-inflammatory cytokines, production of reactive oxygen 

species (ROS), mast cell activation and the prevention of excess release of neutrophil 

extracellular traps (NETs), protecting the host from immune response-associated tissue 

damage [258, 262, 278-280]. Moreover, dectin-1-induced secretion of cytokines was shown 

to influence DC maturation, and TH1 and TH17 differentiation [164, 281]. 

Further confirming the importance of dectin-1 in C. albicans immune defence is the 

fact that both mice and humans with impaired dectin-1 expression show increased 

susceptibility to C. albicans [279, 282]. When systemically infected, dectin-1 knockout mice 

displayed a higher mortality rate, which was proven to occur due to impaired cytokine 

production and poor neutrophil-mediated killing [282]. However, it is also of note, that a 

report from 2013 showed the requirement for dectin-1 to control systemic C. 

albicans infections in mice to be fungal strain-specific [283]. Patients carrying a mutation 

resulting in impaired dectin-1 expression and function are more susceptible to 

mucocutaneous candidiasis, which is also proven to be associated with a defect in cytokine 

production (such as TNFα, IL-6 and IL-17) [279]. Nevertheless, these patients presented no 

increased susceptibility to systemic candidiasis, probably due to normal phagocytosis and 

killing of C. albicans. Finally, dectin-1 activation has also been reported to amplify immune 

responses triggered by TLR2 and TLR4 engagement in monocytes and macrophages [260, 

261, 284]. 

Several TLRs have been shown to be involved in the recognition of C. albicans cell 

wall components (see Table 1). Moreover, studies in MyD88 knockout mice, where TLR 

signalling is impaired, showed increased susceptibility of these mice to C. albicans infection 

[285], consolidating the importance of TLRs in response to this pathogen. In humans, while 

most of the available data point to an important role of TLRs in defence against C. albicans, 

the specific contribution of individual TLRs has been difficult to pinpoint [240, 286]. The 

two most studied TLRs in this context are TLR4 and TLR2, since a study from 2002 

demonstrated their importance in the host defence against C. albicans [287]. In this study 

TLR4 knockout mice were more susceptible to C. albicans infection, which was shown to 

occur due to a decrease in chemokine secretion and neutrophil activation [287]. This 

increased susceptibility has since been both corroborated and contradicted [285, 288]. One 
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possible explanation for this divergence was published in 2010, indicating that TLR4 

recognition is variable among C. albicans strains [289]. Another protective function 

attributed to TLR4 was the production of pro-inflammatory cytokines such as IFN-γ and 

TNF-α [285, 290-292]. Regarding TLR2, its main attributed function in response to C. 

albicans infection is immune suppression, since it has been shown to mediate the production 

of regulatory cytokines such as TNF-α and IL-10, and to promote Treg survival [285, 287, 

291, 293]. Results of in vivo models of C. albicans infection of TLR2 knockout mice are as 

well contradictory. While it was shown that TLR2 knockout mice were more resistant to 

disseminated candidiasis due to better chemotaxis and enhanced killing capacity of its 

macrophages [293],  another study described a higher susceptibility of these mice due to a 

decrease in neutrophil recruitment caused by impaired chemokine production [294]. One can 

speculate that the discrepancy between these results might be a consequence of different 

infection models, since a third study has reported a comparable susceptibility to C. albicans 

primary infection between TLR2 knock and control mice, but a decrease survival in case of 

re-infection [285]. 

From the moment C. albicans overcomes the epithelial barrier and is first recognized, 

it is the job of the immune system to trigger a chain of effector mechanisms that lead to the 

clearance of the pathogen (Figure 4). The first response comes from the epithelial cells 

themselves, which produce not only cytokines to recruit phagocytic immune cells, but also 

β-defensins with anti-Candida activity [295, 296]. Also providing a fast response are the 

tissue-resident macrophages, which are able to phagocytose invading C. albicans cells and 

to produce cytokines involved in neutrophil recruitment [253, 297]. Neutrophils, recognized 

as the most potent C. albicans killers, are the key players in several anti-Candida 

mechanisms. These mechanisms include phagocytosis, production of ROS and anti-

microbial factors, and the release of neutrophil extracellular traps (NETs), which can trap C. 

albicans cells inhibiting their growth via antimicrobial proteins [298-302]. Moreover, 

studies showing that neutropenia is a major risk factor for candidiasis have confirmed the 

importance of neutrophils in this context [303, 304]. Other innate immune cells such as 

monocytes and natural killer cells have also been reported to contribute to the clearance of 

C. albicans upon infection [297, 305, 306]. 
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Figure 4. Immune response upon C. albicans invasion. The first line of defence against C. albicans 
is the epithelial barrier. More than forming a physical barrier, epithelial cells mount a first response 
by secreting defensins with anti-Candida activity, and cytokines that lead to the recruitment of 
phagocytic cells. Once in the tissue, C. albicans encounters tissue-resident macrophages, which 
provide a fast response through their phagocytic capacity and secretion of pro-inflammatory 
cytokines. The secretion of pro-inflammatory cytokines by both epithelial cells and macrophages 
leads to the recruitment of neutrophils, cells with a strong Candida-killing capacity. Not only are 
neutrophils capable of phagocytosis, they also secrete antimicrobial proteins and reactive oxygen 
species (ROS) which are deleterious for C. albicans. Moreover, neutrophils can release neutrophil 
extracellular traps (NETs) that capture and inhibit C. albicans growth. Upon fungal recognition, 
dendritic cells (DCs) migrate to secondary lymphoid organs where they contribute to adaptive 
immune responses. There, they act as antigen-presenting cells leading to the activation of T cells, 
also influencing T helper (TH) cell differentiation through the cytokine milieu they provide. In the 
context of C. albicans invasion, TH17 and to a smaller extent TH1 responses play an important role. 
While TH17 cells secrete IL-17 and IL-22 that participate in neutrophil recruitment and β–defensin 
production by epithelial cells, TH1 cells produce IFN-γ, a potent phagocytic cell activator cytokine. 
Upon activation, B cells produce anti-C. albicans antibodies which can either opsonize the fungal 
cells, targeting them for phagocytosis by neutrophils, or directly influence the cell wall, mediating 
processes that lead to decreased pathogenicity. Examples of such effects are the inhibition of 
growth and adhesion. 

 

The activation of the adaptive immune system upon C. albicans recognition is 

mediated by DCs, which migrate to secondary lymphoid organs to shape T helper responses 

via antigen presentation and cytokine secretion. The type of DC involved is of special 
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importance, since the nature of the triggered T cell response is determined by the cytokine 

milieu T cells encounter [240, 307]. TH17 responses are of special interest for C. albicans 

immunity, as IL-17 secretion has been shown to be a key event in protective responses [308-

310]. TH17 cells produce not only IL-17 but also IL-22, both proven to trigger neutrophil 

recruitment and activation, and to induce secretion of β-defensin in epithelial cells [308, 

311]. Also relevant are TH1 responses, since these cells produce IFNγ, a potent phagocytic 

cell activator [312-314]. Although performing less prominent roles, other immune cell types 

and humoral components such as B cells, ILCs and the complement system, have been 

shown to be involved in the host response to C. albicans [240, 247]. 

 

1.3.3 B cells in Candida albicans immunity 

For several years, clinical data and studies on patients with B cells or 

immunoglobulin deficiencies pointed to no major role of B cells in C. albicans infection 

[315, 316]. However, many studies are now changing this view by proposing that antibodies 

are involved in multiple protective mechanisms [317-332]. Among these studies, many have 

shown monoclonal antibodies which recognize cell wall components of C. albicans and 

whose binding leads to a decrease in pathogenic capacity. Examples of functions mediated 

by these antibodies are inhibition of growth, hyphae formation, adhesion, biofilm formation 

and metabolic processes [323, 326, 327, 329, 332-334]. The exact mechanisms through 

which these effects are achieved have not in all cases been identified, but are probably related 

to the disruption of the fungal cell wall [335]. Antibodies can also exert protective functions 

through Fc receptor-dependent ADCC or by priming other components of the immune 

system with anti-C. albicans action [336, 337]. By recognizing shared cell wall components 

or by influencing other immune cells, certain antibodies provide cross-protection against 

more than one fungal pathogen [326, 338]. However, it is important to keep in mind that the 

masking of cell wall components and polymorphism of C. albicans poses an additional 

difficulty in the production of high affinity antibodies. Even though antibodies against 

different cell wall glycans and glycoproteins have been identified, and mannoproteins 

recognized as the major component eliciting antibody responses [335, 339], a recent study 

has shown that the glucan epitopes are those which contribute the most to these responses 

[340]. 
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In a clinical setting, anti-C. albicans antibodies can be very valuable in two distinct 

scenarios, vaccination and diagnosis. Regarding vaccination, even though many efforts have 

been made in the recent years, few vaccines directed to C. albicans have successfully 

completed Phase I clinical trials [240]. One of such vaccines was the monoclonal antibody 

MycoGrab/efungmab, targeting the heat shock protein 90 (Hsp90) [341]. Although it 

progressed through to Phase III clinical evaluation against invasive systemic candidiasis, due 

to claimed production difficulties it was never commercialized [317]. Two vaccines 

currently in clinical evaluation against recurrent vulvovaginal candidiasis are PEV7, which 

is constituted by the C. albicans protein Sap2 and an influenza virosome [342], and NDV-3, 

which contains the N-terminal region of the hyphal protein Als3 and is formulated using 

alum adjuvant [337, 338, 343]. Since the diagnosis of C. albicans infections is often difficult 

and in many case still dependent on a blood culture test, new and non-invasive diagnostic 

tools are necessary. While the detection of (1-3)-β-D-glucan, mannan and/or anti-mannan 

antibodies is currently used as a tool to diagnose fungal infections [344, 345], the specificity 

and/or sensitivity of these methods, although high, still does not allow for an unequivocal 

positive diagnosis [346]. Therefore, the identification of novel Candida albicans-associated 

proteins whose presence could confirm the existence of an infection – for example, a specific 

antibody - would be advantageous. To that end, a recent study analysed the serologic profiles 

of systemic candidemia patients, identifying a set of 19 C. albicans-reactive IgGs with 

possible diagnosis value [340]. However, probably due to the fact that C. albicans is a 

commensal and a basal level of antibodies is present in most individuals, no unambiguous 

anti-C. albicans antibody pattern for a consistent diagnosis was found. Even though it can 

now be affirmed that B cells/antibodies play a role in the defence against C. albicans, many 

details of their involvement are still undiscovered. 
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1.4. Aim of the Project 

 Although many advances in the understanding the role of antibodies in the context 

of Candida albicans infection have recently been made, not much is known about the 

mechanisms through which B cells interact with this pathogen. Therefore, the first aim of 

this project was to investigate the impact of C. albicans on B cells, as well as to uncover the 

mechanism through which this pathogen is recognized. For that purpose, mouse splenic B 

cells were cultured ex vivo in the presence of both heat-killed C. albicans (HKCA) yeast and 

hyphae, and of the fungal cell wall preparation zymosan. The outcome of such interaction 

was measured using flow cytometry and ELISA techniques, which allow to determine B 

cell-related functions such as class switch recombination, and antibody and cytokine 

production. The use of a reporter mouse made it possible to assess AID activation, a measure 

of B cell activation due to its importance in processes crucial for high affinity antibody 

production. To identify the receptors responsible to recognize C. albicans, B cells from mice 

presenting impaired signalling in different receptors were analysed. Examples of the mice 

used were dectin-1 knockout, where the receptor dectin-1 was not functional, MyD88 

knockout, where the absence of the protein MyD88 abrogates TLR signalling and B1-8f, 

whose BCR is only capable of recognizing an irrelevant antigen. 

The second aim of this project was to go deeper into C. albicans-triggered B cell 

functions. To this end, and not forgetting the role of B cells as cytokine producers, the 

cytokine secretion profiles of B cells co-cultured with HKCA or zymosan were screened 

using a BioPlex assay and the prominent candidates further analysed by ELISA. 

This study hopes to open the door to a more in-depth analysis of how exactly B cells 

recognize C. albicans in a physiological context.
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2. Materials and Methods 

2.1 Materials 

2.1.1 Buffers, media and solutions 

Table 2. List of used buffers, media and solutions, and respective composition. 

Buffer/medium Application Composition 

1x PBS  
137mM NaCl, 2.7mM KCl, 10mM Na2HPO4, 1.76mM 

KH2PO4, in dH2O. pH7.4 

cRPMI medium 
Culture of mouse 

B cells 

RPMI1640, 10% FBS, 100U/mL penicillin/100µg/µL 

streptomycin, 100mM HEPES, 50µM β-mercaptoethanol 

YPD medium 
Candida albicans 

growth 

1% yeast extract, 1% peptone, 2% glucose, in dH2O 

For solid medium: add 2% agar 

YNB medium 
Candida albicans 

growth 
0.67% Yeast nitrogen base, 1% glucose, in dH2O 

YNBNP medium 
Candida albicans 

growth 

0.67% Yeast nitrogen base, 0.2% glucose, 5mM N-

acetylglucosamine, in 25mM potassium phosphate buffer 

pH7.0 

Carbonate-Bicarbonate 

buffer pH9.5 – ELISA 

coating buffer 

Immunoglobulin 

ELISA 
0.2M Na2CO3, 0.2M NaHCO3, in dH2O. pH adjusted to 9.5 

ELISA washing buffer 
Immunoglobulin 

ELISA 
1x PBS, 0.1% Tween-20 

ELISA buffer 
Immunoglobulin 

ELISA 
1x PBS, 0.1% Tween-20, 1% Milk Powder 

0.05M Phosphate-

Citrate buffer pH5.0 - 

ELISA substrate buffer 

Immunoglobulin 

ELISA 

0.2M Na2HPO4 x 7H2O, 0.1M Citric acid, dH2O-  

pH adjusted to 5.0 

ELISA substrate 

solution 

Immunoglobulin 

ELISA 

1 tablet OPD (o-phenylenediamine dihydrochloride, 10mg, 

Sigma) in 25 mL ELISA substrate buffer, add 10µL 30% 

H2O2 

Wash buffer 
ELISA Ready-

Set-Go! kit 
1x PBS, 0.05% Tween-20 

 

2.1.2 Cell culture stimulants 

Table 3. List of used cell culture stimulants 

Stimulant Company Catalog No. 

LPS Sigma L4391 

α-CD40 eBioscience 16-0402-86 

IL-4 eBioscience 14-8041-80 

Zymosan Wako 269-01493 
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2.1.3 Antibodies 

Table 4. List of used antibodies. 

Antibody Conjugated/Purified Application Company Catalog No. 

α-mouse B220 FITC Flow cytometry BD Biosciences 553088 

α-mouse B220 PE Flow cytometry BD Biosciences 553090 

α-mouse B220 APC Flow cytometry BioLegend 103212 

α-mouse B220 BV785 Flow cytometry BioLegend 103246 

α-mouse CD3ε PE Flow cytometry BD Biosciences 553064 

α-mouse CD21 FITC Flow cytometry BD Biosciences 561769 

α-mouse CD23 PE Flow cytometry BD Biosciences 561773 

α-mouse CD95 PE Flow cytometry BD Biosciences 55458 

α-mouse dectin-1 PE-Cy7 Flow cytometry eBioscience 25-5859-80 

α-mouse dectin-1 FITC Flow cytometry Thermo Fischer Scientific MA5-16480 

α-mouse IgG1 FITC Flow cytometry BD Biosciences 553443 

α-mouse IgG1 PE Flow cytometry BD Biosciences 550083 

α-mouse IgG1 Biotin ELISA BD Biosciences 553441 

α-mouse IgG1 Purified ELISA BD Biosciences 553445 

Mouse IgG1, κ Purified ELISA BD Biosciences 557273 

α-mouse IgM APC Flow cytometry BioLegend 406509 

PNA FITC Flow cytometry Vector FL-1071 
  

Antibodies used in IL-6 and IL10 ELISA were provided in ELISA Ready-Set-Go! 

kits from eBioscience (IL-6 cat. no. 88-7064-88, IL-10 cat. no. 88-7105-88). 

 

2.1.4 Mice 

 The AIDCreRosa26YFP line was generated by crossing AIDCre and Rosa26YFP mice. 

Rosa26YFP mice were obtained from Dr. Helen Morrison from the Leibniz Institute on 

Aging, Fritz Lipmann Institute. AIDCre mice were purchased from The Jackson 

Laboratories. 

 Dectin-1 knockout mice were obtained from Dr. med. Hortense Slevogt from the Host 

Septomics, Jena University Hospital. 

 B1-8f transgenic mice were obtained from Prof. Dr. Klaus Rajewsky from the Max 

Delbrück Center for Molecular Medicine. 

 MyD88 knockout mice were obtained from Prof. Dr. med. Thomas Kamradt from the 

Institute of Immunology, Jena University Hospital. 

These mouse lines were bred and housed under specific pathogen-free conditions in 

the “Serviceeinheit Experimentelle Biomedizin”, Friedrich Schiller University Jena. Mice 
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were bred heterozygously to obtain littermate knockouts and wildtype controls. All used 

mouse lines were on a C57BL7/6 background. 

 TLR2 knockout, TLR4 knockout and C57BL7/6 control mice were obtained from Prof. 

Dr. Marcus Fulde from the Institute of Microbiology and Epizootics, Freie Universität 

Berlin. Mice were housed by the research group Microbial Immunology, Leibniz 

Institute for Natural Product Research and Infection Biology, Hans Knöll Institute. 

 

2.2 Methods 

2.2.1 Preparation of heat-killed Candida albicans 

The Candida albicans strain SC5314 was obtained from Nicole Engert, Microbial 

Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans 

Knöll Institute. A single colony of C. albicans was inoculated overnight in YPD at 30°C, 

180rpm to obtain a starting culture. To differentiate between yeast and hyphae, cells from 

the initial culture were inoculated at 106 cells/mL in YNB or YNBNP for 24 hours. For yeast 

cells, the inoculation was done in YNB at 30°C, 180rpm. For hyphae cells, the inoculation 

was done in YNBNP at 37°C, 180rpm. Cultures were then washed and set to a density of 

108 yeast cells/mL in PBS. The same dilution factor was used for hyphal cells. Diluted cells 

were distributed into 1.5mL tubes and heat-killed by incubation at 80°C for 15min, 800rpm. 

Cells were stored at -20°C. To ensure cell death, cells were thawed and plated in YPD agar 

plates at 37°C. To prepare 100mg/mL working stocks, cells were centrifuged, weighed and 

resuspended in the appropriate volume of sterile PBS. To reduce cell clumping, hyphae cells 

were sonicated prior to usage. 

 

2.2.2 B cell isolation 

Primary B cells were isolated from spleens of 8- to 16-week-old mice. When 

comparing genotypes, littermate mice of the same sex were used. The same isolation and 

culture procedures were used for all analysed mouse lines. In between steps, cells were 

washed in PBS 2% FBS by centrifuging for 8min at 500g (before splenic cell suspensions) 

or 10min at 300g (splenic cell or B cell suspensions), 4°C. Spleens were harvested and 

pressed through a 70µM strainer in PBS 2% FBS to obtain homogeneous cell suspensions. 
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Erythrocytes were removed by incubation with Red Blood Cell Lysing Buffer (Sigma) for 5 

to 10 minutes. Erythrocyte debris was filtered using a 40µL strainer, and the strainer 

abundantly washed. For B cell isolation by negative selection, cell suspensions were 

incubated for 15min with 10µL anti-CD43 beads (Miltenyi Biotec) per 107 cells, and the 

unbound beads washed out. Cell suspensions were then resuspended at a density of 108 cells 

per 500µL of PBS 2% FBS, and passed through MACS columns in a magnetic separator 

(Miltenyi Biotec). Columns were rinsed with PBS 2% FBS. The unlabeled fraction, which 

was not retained in the column, contained the purified B cells. Cells were diluted in Trypan 

Blue and counted using a hemocytometer. 

The purity of the isolated cells was analysed by flow cytometry.  To that end, cell 

aliquots from before and after MACS were stained with α-B220-FITC and α-CD3-PE for 

30min at 4°C. After incubation, cells were washed for 5min at 3000rpm, 4°C, and 

resuspended in PBS 2% FBS for flow cytometry analysis. For dead cell exclusion, cells were 

stained with DAPI (Sigma) prior to analysis. In all experiments, flow cytometry was 

performed using a LSR Fortessa cytometer (BD Biosciences), and the results analysed using 

FlowJo software (FlowJo, LLC). 

 

2.2.3 B cell culture and stimulation 

Isolated B cells were seeded at a density of 5x105 cells/mL in cRPMI in 48-well 

plates. cRPMI was either further unsupplemented, or supplemented with 10µL/mL LPS and 

20ng/mL IL-4, or 1µg/mL α-CD40 and 20ng/mL IL-4. In some experiments cRPMI was 

instead supplemented with 1 or 10µg/mL α-IgM. After 3 to 4 hours of incubation at 37°C, 

zymosan, HKCA yeast or HKCA hyphae was added to the cells for a final concentration of 

30µg/mL zymosan or 500µg/mL HKCA. Cells were kept in culture in a final volume of 

1mL/well for 5 days at 37°C. At day 3 of culture, 500µL of cell suspension was recovered 

and replaced by 500µL of fresh medium containing the same stimulation conditions. The 

remaining cells were recovered at day 5 of culture. After recovery, cells were centrifuged at 

1200rpm for 5min, 4°C, and the supernatants collected and stored at -20°C and -80°C for 

posterior analysis. Cells were washed with PBS 2% FBS and prepared for flow cytometry 

analysis. 
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2.2.4 Flow cytometry analysis of culture B cells 

B cells recovered on days 3 and 5 of culture were analysed by flow cytometry to 

determine the percentage of IgG1-positive cells. Cells were stained with anti-B220-PE, anti-

IgG1-FITC and anti-IgM-APC in PBS 2% FBS for 30min at 4°C in the dark. Staining was 

stopped by the addition of PBS 2% FBS and cells washed by centrifugation at 1200rpm for 

5min, 4°C. Cells were subsequently resuspended in PBS 2% FBS, and DAPI (Sigma) was 

added to each sample prior to analysis. In experiments involving AIDCre-Rosa26YFP mice, 

cells were stained with anti-B220-APC and anti-IgG1-PE, and the percentage of YFP-

positive cells analysed in addition. Flow cytometry was performed using a LSR Fortessa 

cytometer with a coupled High Throughput Sampler (BD Biosciences) to allow automated 

sample acquisition from 96-well microtiter plates. The results were analysed using FlowJo 

software (FlowJo, LLC). 

 

2.2.5 ELISA analysis of immunoglobulin secretion in B cell culture supernatants 

 B cell culture supernatants recovered on days 3 and 5 of culture were analysed by 

ELISA to determine the concentration of IgG1. To that end, Nunc MaxiSorp ELISA 96-well 

plates were coated with 2µg/mL anti-IgG1 in ELISA coating buffer (50µL/well), and 

incubated overnight at 4°C. On the following day, the coating solution was discarded and 

the plates were washed three times with 200µL/well ELISA washing buffer. Unspecific 

binding was prevented by blocking with 200µL/well ELISA buffer for at least 30min at room 

temperature. ELISA buffer was discarded and the wells washed once. To prepare a standard 

curve, 8 different purified IgG1 concentrations were prepared by 1:2 serial dilutions in 

ELISA buffer. The standard curve started with 0.1µg/mL purified IgG1 and was prepared in 

duplicate. Supernatants were analysed undiluted and diluted in ELISA buffer, supernatants 

collected at day 3 of culture diluted 1:5 and 1:10, and supernatants collected at day 5 of 

culture diluted 1:10 and 1:100. Standard dilutions and supernatants were added to the plate 

and incubated for 1 hour at room temperature (50µL/well). After sample incubation, plates 

were washed three times. For IgG1 detection, plates were incubated with anti-IgG1-biotin 

(1:500 in ELISA buffer, 50µL/well) for 1 hour at room temperature, followed by three times 

washing, and incubation with streptavidin-HRP (BioLegend) (1:1000 in ELISA buffer, 

5µL/well) for another 1 hour at room temperature. Before addition of the substrate solution, 

plates were again washed three times. 100µL of ELISA substrate solution was added to each 
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well, and the plates incubated in the dark at room temperature. After 20min, the reaction was 

stopped with 3N HCl (25µL/well) and the absorbance measured at 492nm using a plate 

reader. Results were analysed using Microsoft Excel. 

 

2.2.6 B cell proliferation 

 Proliferation of freshly isolated B cells was measured by following CFSE dilution 

via cell division using flow cytometry. For this purpose, the Vybrant CFDA SE Cell Tracer 

Kit (Thermo Fischer Scientific) was used, as the non-fluorescent CFDA SE is highly cell 

permeable, being converted to CFSE once in the cytoplasm. After isolation, B cells were set 

to a density of 5x106 cells/mL in pre-warmed PBS and stained with 1µM CFDA SE for 

10min at 37°C. After staining, the stain was quenched by addition of 5 times cold cRPMI. 

Cells were then re-pelleted, resuspended in pre-warmed cRPMI and incubated for additional 

20min at 37°C to ensure complete modification of the dye. Following incubation, cells were 

re-pelleted and set in the appropriate conditions for culture and stimulation. CFSE dilution 

was analysed by flow cytometry daily between days 1 and 4 of culture. In addition, cells 

were stained with anti-B220-PE and DAPI (Sigma) for live/death exclusion as previously 

described. Flow cytometry was performed using a LSR Fortessa cytometer with a coupled 

High Throughput Sampler (BD Biosciences) to allow automated sample acquisition from 

96-well microtiter plates. The results were analysed using FlowJo software (FlowJo, LLC). 

The number of divisions during the analysed time period was calculated by 𝐿𝑜𝑔2(
𝑀𝐹𝐼𝑑1

𝑀𝐹𝐼𝑑4
) 

using Microsoft Excel. MFI, mean fluorescent intensity. 

 

2.2.7 Dectin-1 RT-PCR 

 The presence of dectin-1 mRNA in B cells was analysed by RT-PCR. RNA from 

mouse splenic cells, isolated B cells and the murine macrophage cell line RAW 264.7 was 

isolated using the Quick-RNA Miniprep kit (Zymo Research) accordingly to manufacturer’s 

instructions. RNA was stored at -80°C. RNA purification was confirmed by electrophoresis, 

by running the isolated RNA in a 1% agarose gel. cDNA synthesis was performed using the 

First Strand cDNA Synthesis Kit for RT-PCR (Roche) accordingly to manufacturer’s 

instructions. cDNA was stored at -20°C. To detect dectin-1, the following pair of intron 

spanning primers was designed: Dectin-1_fwd 5’-ACCACAAGCCCACAGAATCAT-3’ 
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and Dectin-1_rev 5’- GACTTGAAACGAGTTGGGGAAG-3’, amplifying a product of 347 

base pairs. Tables 5 and 6 show the used PCR reaction mix and PCR conditions, respectively. 

The primer pair β-Act1-fw 5’-ACCTTCAACACCCCAGCCATGTACG-3’ and β-Act2-re                                                                 

5’-CTAATCCACATCTGCTGGAAGATGG-3’ was used to detect β-actin as a loading 

control. These primers generated a product of 698 base pairs. 

 

Table 5. PCR reaction mix for dectin-1 RT-PCR 

 Per sample 

dH2O 11.2μL 

PCR Buffer (10x) 2μL 

MgCl2 (25 mM) 1.6μL 

dNTP´s (2 mM) 2μL 

Dectin-1_fwd (10 µM) 0.5μL 

Dectin-1_rev (10 µM) 0.5μL 

Taq Polymerase 0.2μL 

cDNA 2μL 

Total 20μL 

 

Table 6. PCR conditions for dectin-1 RT-PCR 

 Temperature Time Cycles 

Denaturation 94°C 5 min  

Denaturation 94°C 60 sec 

35 X Annealing 65°C 50 sec 

Elongation 72°C 60 sec 

Elongation 72°C 5 min  

 4°C ∞  

 

2.2.8 Dectin-1 expression analysis by flow cytometry 

 The expression of surface dectin-1 in mouse B cells was analysed by flow cytometry 

using two different anti-dectin-1 antibody clones. Splenic B cells were stained with anti-

B220-BV785 and anti-dectin-1-PE-Cy7 (clone bg1fpj) or dectin-1-FITC (clone 2A11) in 

PBS 2% FBS for 30min at 4°C in the dark. Staining was stopped by the addition of PBS 2% 

FBS and cells washed by centrifugation at 3000rpm for 5min, 4°C. Cells were then 

resuspended in PBS 2% FBS, and DAPI (Sigma) was added to each sample prior to analysis. 

Flow cytometry was performed using a LSR Fortessa cytometer (BD Biosciences) and the 

results analysed using FlowJo software (FlowJo, LLC). 
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2.2.9 B cell subset analysis by flow cytometry 

 Splenic B cells were analysed to determine percentages of follicular versus marginal 

zone B cells, and of germinal center B cells. To label follicular and marginal zone B cells, 

isolated cells were stained with anti-B220-APC, anti-CD21-FITC and anti-CD23-PE. To 

label germinal center B cells, isolated cells were stained with anti-B220-APC, anti-CD95-

PE and PNA-FITC. Staining was performed in PBS 2% FBS for 30min at 4°C in the dark, 

and stopped by further addition of PBS 2% FBS and centrifugation at 3000rpm for 5min, 

4°C. Cells were then resuspended in PBS 2% FBS, and DAPI (Sigma) was added to each 

sample prior to analysis. Flow cytometry was performed using a LSR Fortessa cytometer 

(BD Biosciences) and the results analysed using FlowJo software (FlowJo, LLC). 

 

2.2.10 Cytokine screening using LEGENDplex™ 

 B cell culture supernatants were analysed for the presence of the cytokines TNF-α, 

IFN-γ, IL-2, IL-5, IL-4, IL-6, IL-10 and IL-13 using the bead-based immunoassay 

LEGENDplex™ (BioLegend). The assay was conducted accordingly to manufacturer’s 

instructions. Flow cytometry was performed using a LSR Fortessa cytometer (BD 

Biosciences) and the results analysed using the LEGENDplex™ Data Analysis Software 

(BioLegend) and Microsoft Excel. 

 

2.2.11 ELISA analysis of IL-10 and IL-6 presence in B cell culture supernatants 

 B cell culture supernatants recovered at day 5 of culture were analysed for the 

presence of IL-10 and IL-6 by ELISA using Ready-Set-Go! ELISA kits (eBioscience). The 

assay was conducted accordingly to manufacturer’s instructions. Results were analysed 

using Microsoft Excel. 

  

2.2.12 Statistical analysis 

 Statistical significance was determined using the two-tailed unpaired Student’s t-test. 

Statistical analysis was performed using Microsoft Excel. p values under 0.05 were 

considered significant (*p<0.05, **p<0.01, ***p<0.001).
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3. Results 

3.1. How do B cells respond to Candida albicans? – Experimental setup 

The first aim of this study was to investigate how B cells respond to the presence of 

both the yeast and hyphal forms of Candida albicans. For that purpose, conditions under 

which B cells could be exposed to both isolated forms of C. albicans needed to be 

established. Co-cultures using live C. albicans were not possible, since these resulted in non-

viable B cells. Therefore, a protocol for growth and heat-killing of both yeast-only and 

hyphae-only cells was established and heat-killed C. albicans (HKCA) stocks were 

generated (see Materials and Methods). To study the effect of C. albicans on B cell 

activation, mouse splenic B cells were isolated using MACS and cultured in the presence or 

absence of HKCA yeast or hyphae. As control, B cells were also cultured in the presence of 

zymosan, a cell wall preparation from Saccharomyces cerevisiae, which is widely used as a 

model for fungus-induced immune stimulation [261, 347]. Considering that optimal culture 

conditions for fungal recognition by B cells were not established, three different culture 

media were tested: 1) unsuplemented medium (unstimulated), 2) medium supplemented with 

LPS and IL-4, mimicking a T cell-independent activation of B cells, and 3) medium 

supplemented with α-CD40 and IL-4, mimicking a T cell-dependent activation of B cells. 

After 3 and 5 days of culture, B cells were analysed by flow cytometry and the culture 

supernatants stored to be further analysed by ELISA. Figure 5 shows the general workflow 

used for the experiments. In all experiments, the purity of isolated cells was confirmed by 

flow cytometry, being generally above 95% (Figure 6). 

 

Figure 5. Workflow of B cell isolation, culture and analysis. Splenic mouse B cells were isolated by 
MACS and cultured (5x105 cells/mL) for 5 days, either unstimulated or stimulated with LPS+IL-4 or 
anti-CD40+IL-4 in the presence of Zymosan, HKCA yeast or HKCA hyphae. On day 3 and 5 of culture, 
the cells and supernatants were recovered and analysed by flow cytometry and ELISA, respectively. 
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Figure 6. Gating strategy to confirm purity of isolated B cells. Splenic mouse B cells were isolated 
by MACS with anti-CD43 beads (negative selection). Splenic cells and cells obtained after B cell 
isolation were analysed by flow cytometry. Cells were gated to exclude debris, dead cells and 
doublets. Dead cells were excluded by positive DAPI staining. B cells (B220+) and T cells (CD3+) were 
gated within the single cell gate. Representative plots are shown. 

 

3.2. Candida albicans hyphae increase IgG1 production in B cells 

The first parameter analysed to assess B cell activation upon culture with HKCA and 

zymosan was class switch recombination. The presence of IL-4 in the culture medium leads 

to in vitro IgG1 class switching, making it possible to measure the percentage of IgG1-

positive cells in the culture by flow cytometry (gating strategy shown in Figure 7). Figure 

8A shows that only cells harvested on day 3 and cultured in unsupplemented medium display 

a slight increase in class switching upon contact with zymosan and HKCA hyphae. On the 

other hand, HKCA yeast lead to a decrease in the percentage of IgG1-positive cells in 

supplemented medium. Therefore, the data show that, in general, the presence of HKCA 

hyphae or zymosan do not increase class switch recombination in B cells. 

Considering that class switching does occur (Figure 8A), it would be possible that 

HKCA could modulate IgG1 secretion. As such, the second analysed parameter was the 

concentration of IgG1 in the culture supernatants, which was determined by ELISA. Figure 

8B shows that both zymosan and HKCA hyphae trigger an increase in IgG1 production when 

compared to medium only. This effect is significant for both T cell-dependent and 

unstimulated conditions, and also seen as a trend in T cell-independent stimulation 
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conditions. In opposition, the presence of HKCA yeast seems to cause a decrease in IgG1 

production, especially in T cell-independent stimulation conditions. The low class switching 

and IgG1 production observed in cells cultured in unsupplemented media is likely linked to 

the reduced cell numbers obtained after 3 and 5 days of culture (data not shown). This leads 

to the conclusion that additional survival/proliferation signals are indispensable to maintain 

B cells in culture, even in the presence of zymosan or HKCA. 

 

 

Figure 7. Gating strategy for IgG1 class switch recombination analysis. Splenic mouse B cells were 
isolated by MACS and cultured (5x105 cells/mL) for 5 days, either unstimulated or stimulated with 
LPS+IL-4 or anti-CD40+IL-4 in the presence of Zymosan, HKCA yeast or HKCA hyphae. On day 3 and 
5 of culture, the cells were analysed by flow cytometry to determine the percentage of IgG1-
positive cells. B cells were first gated to exclude debris and other cells or particles (B220+). Dead 
cells were excluded by positive DAPI staining. Cells were subsequently gated for single cells and the 
percentage of IgG1+ cells was obtained within this gate. Representative plots show cells stimulated 
with anti-CD40+IL-4 in the presence of HKCA hyphae recovered after 5 days in culture. 

 

To determine if the enhanced response induced by zymosan and HKCA was caused 

by an increase in proliferation, B cells were labelled with carboxyfluorescein succinimidyl 

ester (CFSE) and its dilution via cell division was measured by flow cytometry for 4 days. 

The resulting histograms, depicted in Figure 9, show that in the case of cells cultured in 

unsupplemented medium, the presence of zymosan or HKCA hyphae (and not yeast) leads 

to a significant increase in proliferation. However, likely due to substantial proliferation of 

cells in basal stimulation conditions, that increase is not as pronounced in cells cultured 

either in the presence of LPS+IL-4 or α-CD40+IL-4. It can be thus concluded that 

proliferation is not the cause for the observed increase in IgG1 production. 
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Figure 8. B cell stimulation with Zymosan and HKCA hyphae leads to an increase in antibody 
production. Splenic mouse B cells were isolated by MACS and cultured (5x105 cells/mL) for 5 days, 
either unstimulated or stimulated with LPS+IL-4 or anti-CD40+IL-4 in the presence of Zymosan, 
HKCA yeast or HKCA hyphae. (A) IgG1 class switching. Percentage of IgG1-positive cells within live 
B cells was measured by flow cytometry after 3 and 5 days of culture. (B) IgG1 production. 
Concentration of secreted IgG1 in cell culture supernatants after 3 and 5 days of culture was 
measured by ELISA. Data represent mean ± SEM of 10 mice, with triplicate measurements 
performed for each mouse. *p<0.05, **p<0.005, ***p<0.001 

 

With proliferation ruled out, the next step was to determine if the increased IgG1 

production was a result of increased B cell activation. A good readout for this question is the 

presence of AID, a key enzyme for class switch recombination, whose expression in B cells 

is expected to correlate with B cell activation. AIDCre-Rosa26YFP are mice where exon 1 

of AID is substituted by Cre recombinase, while also carrying at the Rosa26 locus a loxP-

flanked cassette which contains a stop sequence and is linked to a YFP gene (Figure 10A) 

[348, 349]. As such, triggering AID expression leads to the expression of Cre recombinase 

which excises the loxP-flanked cassette, enabling YFP expression (Figure 10A). To analyse 

AID activation, B cells from AIDCre-Rosa26YFPcre/+ fl/+ and AIDCre-Rosa26YFPcre/+ +/+ 

mice were cultured in the presence of HKCA yeast, hyphae and zymosan, and the percentage 

of YPF-positive cells was measured by flow cytometry. These experiments were performed 
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in cooperation with Sally Böde. As confirmed in Figure 10B, only cells containing the 

flanked cassette (fl/+) are able to express YFP. Analysis of the results show that in 

unstimulating conditions the presence of zymosan and HKCA hyphae lead to an increase in 

the percentage of AID-positive cells (Figure 10B). The same effect was observed in cells 

stimulated with α-CD40 and IL-4, although the difference caused by the presence of 

zymosan was not statistically significant. Interestingly, in this stimulating condition the 

presence of HKCA yeast seems to decrease the percentage of AID-positive B cells in culture. 

In cells stimulated with LPS and IL-4 neither the presence of zymosan or HKCA lead to a 

significant difference. These results follow the same pattern observed in Figure 8B, 

indicating that the increase in IgG1 production in the presence of zymosan and HKCA 

hyphae occurs due to an increase in B cell activation. 

 

 

Figure 9. Increase in IgG1 production in the presence of zymosan and HKCA hyphae is not due to 
proliferation. Splenic mouse B cells were isolated by MACS and cultured (5x105 cells/mL) for 4 days, 
either unstimulated or stimulated with LPS+IL-4 or anti-CD40+IL-4 in the presence of Zymosan, 
HKCA yeast or HKCA hyphae. Cells were stained with CFSE before culture and B cell proliferation 
was measured by flow cytometry based on the CFSE dilution. Representative plots from day 4 are 
shown. Tables show number of cell divisions in 4 days. Data represent mean ± SEM of 3 mice, , with 
triplicate measurements performed for each mouse. *p<0.05, **p<0.005, ***p<0.001 

 

Taken together, these results lead to the conclusion that C. albicans hyphae, not 

yeast, enhance the B cell response through cell activation and not via proliferation, as seen 

by an increased antibody production and AID activation. The finding that the same effect is 

observed with the fungal cell wall preparation zymosan indicates a scenario in which B cells 

can recognise exposed fungal cell wall components directly. 
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Figure 10. B cell stimulation with HKCA hyphae leads to an increased AID activation. (A) Schematic 
representation of the modified loci in AIDCre-Rosa26YFP mice before and after AID activation. (B) 
Splenic B cells from AIDCre-Rosa26YFPcre/+ fl/+ and AIDCre-Rosa26YFPcre/+ +/+ mice were isolated by 
MACS and cultured (5x105 cells/mL) for 5 days, either unstimulated or stimulated with LPS+IL-4 or 
anti-CD40+IL-4 in the presence of Zymosan, HKCA yeast or HKCA hyphae. The percentage of YFP-
positive cells within single live B cells was measured by flow cytometry after 5 days of culture. 
Representative plots show B cells stimulated with anti-CD40+IL-4 5 days after culture. Data 
represent mean ± SEM of 3 mice per genotype, with triplicate measurements performed for each 
mouse. *p<0.05, **p<0.005, ***p<0.001 
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3.3. The enhanced IgG1 production triggered by HKCA is not dependent on 

Dectin-1 

The next step in this study was to investigate which receptors were responsible for 

recognising fungi and trigger the observed increase in IgG1 production. Since one of the 

most abundant components of the C. albicans cell wall is β-glucan, the first candidate 

receptor to be studied was dectin-1. Dectin-1 is a C-type lectin receptor that recognizes β-

glucans, and is required for the control of C. albicans infections in mice [282]. Moreover, 

zymosan, mainly constituted of β-glucans, is also known to be recognized by dectin-1 in 

innate immune cells [261]. Therefore, a mouse in which the first three exons of dectin-1 

were replaced with an neomycin resistance cassette (Dectin-1-/-) was used to investigate 

whether the observed enhanced B cell response was dependent on C. albicans recognition 

via dectin-1 [282]. 

Since in the literature the expression of dectin-1 in mouse B cells is a controversial 

topic [155, 350, 351], the expression of dectin-1 in splenic B cells was first assessed by RT-

PCR (Figure 11A) and flow cytometry (Figure 11B). RT-PCR results show that dectin-1 

mRNA, although at low levels, can indeed be expressed in mouse B cells. Surface expression 

of dectin-1 was analysed by flow cytometry using two distinct anti-dectin-1 antibody clones, 

2A11 and bg1fpj, both previously used in other studies [259, 352]. While a distinct dectin-1 

positive population could be seen in splenic non-B cells of Dectin-1+/+ mice, which was not 

present in non-B cells of Dectin-1-/- mice (Figure 11B), a positive smear was observed in B 

cells from mice of both genotypes. As the knockout of dectin-1 can be confirmed by the 

absence of dectin-1 mRNA (Figure 11A), the positive signal observed in B cells is probably 

the result of unspecific binding of the anti-dectin-1 antibodies. Consequently, despite 

confirming the existence of dectin-1 mRNA in mouse B cells, it was not possible to confirm 

the expression of dectin-1 on their surface. 

To assess the influence of dectin-1 in B cell activation, B cells from Dectin-1-/- and 

Dectin-1+/+ mice were isolated and cultured in the presence of zymosan, HKCA yeast and 

HKCA hyphae. As a readout, class switching to IgG1 and IgG1 production were measured 

as above. Both Figures 12A and 12B show no differences between Dectin-1-/- and Dectin-

1+/+ mice for class switching or IgG1 production upon addition of HKCA hyphae and 

zymosan to the culture. Therefore, it can be concluded that dectin-1 is not necessary for the 

observed enhancement of the B cell response induced by zymosan or HKCA hyphae. 
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Figure 11. Mouse splenic B cells express dectin-1 mRNA. (A) The presence of dectin-1 mRNA was 
analysed by RT-PCR in splenic and B cells from Dectin-1-/- and Dectin-1+/+ mice, the macrophage cell 
line RAW 264.7 and bone marrow-derived macrophages. β-actin was used as a loading control. For 
a more accurate visualisation of the loading control, all samples were further diluted 1:10. Bone 
marrow-derived macrophages cDNA was kindly provided by René Winkler. (B) Splenic cells from 
Dectin-1-/- and Dectin-1+/+ mice were stained with anti-dectin-1 antibody and analysed by flow 
cytometry. Two different antibody clones were tested, bg1fpj (PE-Cy7) and 2A11 (FITC). The 
populations of interest were gated after exclusion of debris, dead cells and doublets. The dectin-1 
gating strategy was chosen based on the population of dectin-1-positive cells (non-B cells) stained 
with the anti-dectin-1 antibody clone 2A11. Representative dot plots are shown. Data represent 
mean ± SD of 3 mice per genotype. 

Sp – splenic cells, B – B cells, RAW – RAW 264.7 macrophages, BM – bone marrow-derived 
macrophages 
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Figure 12. Increased antibody production upon stimulation with Zymosan or HKCA hyphae is not 
dependent on dectin-1. Splenic B cells from Dectin-1-/- and Dectin-1+/+ mice were isolated by MACS 
and cultured (5x105 cells/mL) for 5 days, either unstimulated or stimulated with LPS+IL-4 or anti-
CD40+IL-4 in the presence of Zymosan, HKCA yeast or HKCA hyphae. (A) IgG1 class switching. 
Percentage of IgG1-positive cells within live B cells was measured by flow cytometry after 3 and 5 
days of culture. (B) IgG1 production. Concentration of secreted IgG1 in cell culture supernatants 
after 3 and 5 days of culture was measured by ELISA. Data represent mean ± SEM of 3 mice per 
genotype, with triplicate measurements performed for each mouse. *p<0.05, **p<0.005, 
***p<0.001 

 

3.4. The enhanced IgG1 production triggered by HKCA is not dependent on 

recognition by a specific B cell receptor 

A second receptor which might recognize C. albicans in B cells is their B cell 

receptor. Differently from PRRs, the BCR does not recognize molecular patterns, being 

instead activated by its own specific cognate antigen. BCR activation leads in turn to NF-κB 

activation and AID expression, which is needed for class switch recombination. Therefore, 

BCR recognition of HKCA hyphae and zymosan would be in line with the observed increase 

in IgG1 production. Since BCR deletion is lethal for B cells, to test this hypothesis a mouse 

bearing a transgenic BCR that only recognises an irrelevant antigen (4-hydroxy-3-
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nitrophenylacetyl) – the B1-8f mouse (B1-8ftg/tg) - was used [353]. To confirm that B1-8f 

mice do not show B cell population abnormalities in the spleen, the percentage of follicular, 

marginal zone and germinal center B cells of B1-8ftg/tg and B1-8f+/+ mice were analysed by 

flow cytometry. As can be seen in Figure 13, there are no significant differences between 

splenic B cell populations from mice of both genotypes. 

 

 

Figure 13. B1-8f mice do not display alterations in the major splenic B cell populations. Splenic B 
cells from B1-8ftg/tg and B1-8f+/+ mice were isolated by MACS and different B cell subsets were 
analysed by flow cytometry. Populations of interest were gated among B cells (B220+) after debris, 
dead cells and doublets exclusion. MZ, marginal zone B cells (CD21hiCD23-). FO, follicular B cells 
(CD21-CD23+). GC, germinal center cells (PNAhiCD95+). Representative dot plots are shown. Data 
represent mean ± SD of 4 mice per genotype. 

 

B cells from B1-8ftg/tg and B1-8f+/+ mice were thus isolated and cultured in the 

presence of zymosan, HKCA yeast and HKCA hyphae, and as a readout, class switching to 

IgG1 and IgG1 production were measured as above. Curiously, when observing Figure 14A 

it is of note that when cultured in T cell-independent stimulation conditions, B cells from 

B1-8ftg/tg mice present a higher basal class switching to IgG1 than cells from B1-8f+/+ mice. 

This difference was not seen in other culture conditions. Regarding IgG1 production, Figure 

14B shows no difference between B1-8ftg/tg and B1-8f+/+ mice, with exception of 

unstimulated cells in presence of HKCA hyphae and cells cultured in T cell-independent 
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stimulation conditions in presence of zymosan. Taken together, these results show that the 

incapability of recognizing C. albicans-specific antigens does not affect the ability of HKCA 

hyphae and zymosan to increase IgG1 production, leading to the conclusion that the 

enhancement of the B cell response displayed upon contact with zymosan or HKCA hyphae 

is not dependent on antigen-specific sensing by the BCR. 

 

 

Figure 14. Increased antibody production upon stimulation with Zymosan or HKCA hyphae is not 
dependent on specific B cell receptor recognition. Splenic B cells from B1-8ftg/tg and B1-8f+/+ mice 
were isolated by MACS and cultured (5x105 cells/mL) for 5 days, either unstimulated or stimulated 
with LPS+IL-4 or anti-CD40+IL-4 in the presence of Zymosan, HKCA yeast or HKCA hyphae. (A) IgG1 
class switching. Percentage of IgG1-positive cells within live B cells was measured by flow cytometry 
after 3 and 5 days of culture. (B) IgG1 production. Concentration of secreted IgG1 in cell culture 
supernatants after 3 and 5 days of culture was measured by ELISA. Data represent mean ± SEM of 
3 mice per genotype, with triplicate measurements performed for each mouse. *p<0.05, 
**p<0.005, ***p<0.001 
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3.5. MyD88 signalling is mostly responsible for the enhanced IgG1 

production triggered by HKCA hyphae and zymosan 

Another major inducer of B cell activation that may also sense C. albicans is the 

TLR. TLRs are widely expressed in both human and mouse immune cells and can recognize 

not only fungi but also bacteria, protozoa and virus. Regarding B cells, one particular study 

has comprehensively demonstrated that multiple TLRs are expressed in different mouse B 

cell subsets, being able to be activated to trigger proliferation and antibody secretion [128]. 

TLRs are also known to synergize with the BCR, enhancing B cell activation [93]. So far 12 

TLRs have been described in mouse (TLR 1-13, except 10), most of them depending on the 

adaptor protein MyD88 for signal transduction [119]. Therefore, a mouse where the c-

terminal cytoplasmic domain of MyD88 gene was replaced with a neomycin cassette 

(MyD88-/-) [354] was used to test if TLRs are the PRRs that lead to an enhancement in IgG1 

production upon recognition of HKCA hyphae. Splenic B cells from MyD88-/- and 

MyD88+/+ mice were thus cultured in the presence of zymosan, HKCA yeast and HKCA 

hyphae, and IgG1 class switching and production were measured as before. These 

experiments were performed in collaboration with Melissa Wich. Since LPS is recognized 

by TLR4, the absence of MyD88 abrogates the transduction of survival/proliferation signals 

given by LPS, thus explaining the reduced class switching and antibody production in 

MyD88-/- B cells cultured in the presence of LPS+IL-4 (Figure 15). Regarding class switch 

recombination of cells either unstimulated or stimulated with α-CD40+IL-4, no differences 

were registered between MyD88+/+ and MyD88-/- mice (Figure 15A). However, in the case 

of IgG1 production, the observed increase occurring in B cells cultured in T cell-dependent 

activation conditions upon addition of zymosan or HKCA hyphae was impaired in MyD88-/- 

mice (Figure 15B). While the effect caused by the presence of zymosan was totally 

abrogated, the increase in IgG1 production caused by the presence of HKCA hyphae was 

only strongly reduced. In conclusion, the data show that the enhancement of the B cell 

response upon culture in presence of zymosan and HKCA hyphae is largely dependent on 

MyD88 signalling, pointing towards a scenario where B cells recognise C. albicans via 

TLRs. 
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Figure 15. Increased antibody production upon stimulation with Zymosan or HKCA hyphae is 
mostly dependent on MyD88. Splenic B cells from MyD88-/- and MyD88+/+ mice were isolated by 
MACS and cultured (5x105 cells/mL) for 5 days, either unstimulated or stimulated with LPS+IL-4 or 
anti-CD40+IL-4 in the presence of Zymosan, HKCA yeast or HKCA hyphae. (A) IgG1 class switching. 
Percentage of IgG1-positive cells within live B cells was measured by flow cytometry after 3 and 5 
days of culture. (B) IgG1 production. Concentration of secreted IgG1 in cell culture supernatants 
after 3 and 5 days of culture was measured by ELISA. Data represent mean ± SEM of 4 mice per 
genotype, with triplicate measurements performed for each mouse. Since cells lacking MyD88 
cannot transduce signals triggered by LPS, in cells stimulated with LPS+IL-4 the difference between 
MyD88-/- and MyD88+/+ cells is statistically significant for all samples. *p<0.05, **p<0.005, 
***p<0.001 
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3.6. TLR2 recognition of HKCA hyphae and zymosan results in enhanced IgG1 

production 

Several TLRs are known to be in involved in C. albicans recognition in innate 

immune cells [355]. Two of these are TLR2 and TLR4, respectively known to mostly 

recognize mannans and phospholipomannans present in the cell wall [292]. Therefore, to 

further confirm TLR involvement in fungal cell wall recognition by B cells, mice without 

TLR2 or TLR4 expression were analysed. The TLR2 knockout mouse (TLR2-/-) was created 

by insertion of a neo cassette that disrupted the sequence encoding the extracellular region 

and part of the transmembrane domain of TLR2 [356]. The TLR4 knockout mouse (TLR4-/-

) resulted from a spontaneous mutation where a 74723bp deletion completely removed 

the Tlr4 coding sequence [357, 358]. As before, B cells from TLR knockout mice and 

wildtype controls were isolated and cultured in the presence of zymosan and HKCA yeast 

and hyphae, and IgG1 class switching and production were measured to assess B cell 

responses. Since LPS is recognized by TLR4, the absence of TLR4 signalling leads to a low 

survival/proliferation of cells cultured in LPS+IL-4. Figure 16A shows that the absence of 

TLR2 or TLR4 does not alter the percentage of IgG1 class switched cells in any of the 

studied conditions. However, as seen in Figure 16B, the absence of TLR2 reduces the 

increase in IgG1 production caused by zymosan or HKCA hyphae in cells cultured in T cell-

dependent activation conditions. The effects of the absence of TLR4 are less easy to 

interpret. Though not statistically significant, there appears to be a trend also pointing to a 

reduced increase in IgG1 production in TLR4-/- cells cultured in T cell-dependent activation 

conditions. 

In summary, the data show that B cells can recognise zymosan and HKCA hyphae 

but not yeast via TLR2 and maybe to a lower extent via TLR4, leading to an increase in 

antibody production. These data do not exclude a minor involvement of other TLRs or even 

other receptors, since the absence of TLR2, TLR4 and MyD88 signalling does not 

completely abrogate the increase in IgG1 production in presence of HKCA hyphae. 

After showing that C. albicans can trigger TLR stimulation in B cells, the question 

remains as to the outcome of this increased stimulation. Are these activated B cells more 

prone to produce cytokines and with it influence the immune response? And can this TLR 

stimulation cooperate with other signals? 
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Figure 16. Increased antibody production upon stimulation with Zymosan or HKCA hyphae is 
mediated via TLR2 recognition. Splenic B cells from TLR2-/-, TLR4-/- and wildtype (WT) control mice 
were isolated by MACS and cultured (5x105 cells/mL) for 5 days, either unstimulated or stimulated 
with LPS+IL-4 or anti-CD40+IL-4 in the presence of Zymosan, HKCA yeast or HKCA hyphae. (A) IgG1 
class switching. Percentage of IgG1-positive cells within live B cells was measured by flow cytometry 
after 5 days of culture. (B) IgG1 production. Concentration of secreted IgG1 in cell culture 
supernatants after 5 days of culture was measured by ELISA. Data represent mean ± SEM of 4 mice 
per genotype, with triplicate measurements performed for each mouse. Since cells lacking TLR4 
expression cannot recognise LPS, in cells stimulated with LPS+IL-4 the difference between TLR4-/- 
and WT cells is statistically significant for all samples. *p<0.05, **p<0.005, ***p<0.001 

 

3.7. TLR recognition of HKCA cooperates with BCR signalling to increase 

proliferation 

 Synergy between TLR and BCR activation has been proposed by several different 

studies [93, 359, 360]. To investigate if that also occurs for TLR activation triggered by C. 

albicans, B cells from wildtype mice were isolated and cultured in medium supplemented 

with anti-IgM in the absence or presence of zymosan, HKCA yeast and HKCA hyphae. 

Figure 17 shows that in fact, the presence of HKCA hyphae, and to a lesser extent Zymosan, 

leads to an increase in the α-IgM-triggered proliferation. Consequently, this data indicates 
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that in an in vivo scenario it would be beneficial for Candida-specific B cells to be further 

activated by TLR recognition. 

 

 

Figure 17. TLR recognition of zymosan and HKCA hyphae synergizes with BCR activation 
enhancing B cell proliferation. Splenic mouse B cells were isolated by MACS and cultured (5x105 
cells/mL) for 3 days, either unstimulated or stimulated with 1 or 10µg/mL anti-IgM in the presence 
of Zymosan, HKCA yeast or HKCA hyphae. Cells were stained with CFSE before culture and B cell 
proliferation was measured by flow cytometry based on the CFSE dilution. Representative plots 
from day 3 are shown. 

 

3.8. HKCA hyphae and zymosan recognition by B cells leads to IL-6 

production 

 One feature of activated B cells, in particular the ones activated via TLR, is the ability 

to produce cytokines. Thus, using a bead-based immunoassay that can quantify multiple 

soluble analytes at the same time, it was possible to screen cytokine production by B cells in 

different culture conditions. For this purpose, wildtype mouse B cells were cultured in both 

T cell-independent and T cell-dependent activation conditions in the absence or presence of 

zymosan, HKCA yeast and HKCA hyphae. After 5 days of culture, supernatants were 

recovered for analysis. Among the analysed cytokines - TNF-α, IFN-γ, IL-2, IL-5, IL-4, IL-

6, IL-10 and IL-13 - only IL-10 and IL-6 production increased in the presence of zymosan 

or HKCA hyphae (Figure 18). Interestingly, while IL-10 production was only detected on 

cells cultured in the presence of LPS and IL-4, the increase in IL-6 production was only 

visible in cells cultured in the presence of α-CD40 and IL-4. No increase in cytokine 

production was registered in the presence of HKCA yeast. 
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Figure 18. Cytokine production screening. Splenic B cells from wildtype mice were isolated by 
MACS and cultured (5x105 cells/mL) for 5 days, either stimulated with LPS+IL-4 or anti-CD40+IL-4 in 
the presence of Zymosan, HKCA yeast or HKCA hyphae. Supernatants recovered after 5 days of 
culture were screened for differences in secreted cytokines using the bead-based immunoassay 
LEGENDplex™. Among the tested cytokines, TNF-α, IFN-γ, IL-2, IL-5, IL-4, IL-6, IL-10 and IL-13, no IL-
2, 5 or 13 was detected. Data represent mean ± SEM of 3 mice, with duplicate measurements 
performed for each mouse. 

 

 To further investigate the relation between IL-10 and IL-6 production and 

recognition of C. albicans by B cells, supernatants from both MyD88-/- and MyD88+/+ B cell 

cultures were analysed by ELISA. The obtained results show that culture conditions 

mimicking T cell-dependent B cell activation could only trigger a very low production of 

IL-10 and that the presence of zymosan or HKCA hyphae did not lead to a significant 

increase in IL-10 concentration (Figure 19A). However, in conditions mimicking T cell-

independent B cell activation, where a basal IL-10 production is already seen, the presence 

of HKCA hyphae lead to an almost two-fold increase in IL-10 secretion. Strikingly, while 

supernatants from cells cultured in unsupplemented medium have no detectable IL-10, the 

presence of HKCA hyphae triggers a high production. Additionally, the fact that the B cells 

from MyD88-/- mice do not show this high IL-10 production leads to the conclusion that it 

occurs in a TLR-dependent fashion. 
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Figure 19. Increased IL-10 and IL-6 production upon stimulation with Zymosan or HKCA hyphae is 
dependent on MyD88 activation. Splenic B cells from MyD88-/- and MyD88+/+ mice were isolated 
by MACS and cultured (5x105 cells/mL) for 5 days, either unstimulated or stimulated with LPS+IL-4 
or anti-CD40+IL-4 in the presence of Zymosan, HKCA yeast or HKCA hyphae. Concentration of 
secreted IL-10 and IL-6 in cell culture supernatants after 5 days of culture was measured by ELISA. 
Data represent mean ± SEM of 4 mice per genotype, with triplicate measurements performed for 
each mouse. *p<0.05, **p<0.005, ***p<0.001 

 

 Regarding IL-6, culture conditions mimicking T cell-dependent B cell activation did 

not lead to significant IL-6 production (Figure 19B). However, the addition of zymosan or 

HKCA hyphae increases IL-6 secretion, in line with the increased B cell response observed 

before. This effect is also MyD88-dependent, since B cells deficient in MyD88 do not 

upregulate IL-6 production in the presence of zymosan or HKCA hyphae. Similarly to what 

was seen for IL-10, B cells cultured in unsupplemented medium do not secrete IL-6, 

producing it only in the presence of HKCA hyphae (not statistically significant). In the case 

of B cells cultured in T cell-independent activation conditions, while the basal activation 

already leads to high IL-6 secretion, the presence of zymosan or HKCA hyphae does not 

significantly increase the amount of secreted IL-6. HCKA yeast do not increase IL-6 or IL-

10 production in any of the studied conditions. 
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 As a whole, these results show that C. albicans-induced B cell activation leads to an 

increased secretion of cytokines, which can contribute to the shaping of an immune response. 

 

To conclude, the presented data indicates a scenario where B cells recognize C. 

albicans hyphae via their TLRs, especially TLR2, leading to an increased B cell response as 

seen by increased antibody production, AID upregulation and cytokine secretion, as well as 

increased proliferation upon additional BCR stimulation.
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4. Discussion 

This study shows that the co-culture of B cells with heat-killed C. albicans hyphae 

and the yeast cell wall preparation zymosan results in an increase in B cell activation, which 

leads to enhanced IgG1 and IL-6 secretion. Heat-killed C. albicans yeast cells did not trigger 

the same effect. Moreover, it was possible to show that C. albicans hyphae and zymosan 

recognition by B cells occurs mainly in an MyD88-dependent manner, being significantly 

mediated through TLR2. The contribution of dectin-1 or specific B cell receptor-mediated 

recognition to this effect was ruled out. Hyphae and zymosan-induced TLR signalling is also 

able to cooperate with BCR activation to enhance B cell proliferation. 

The relevance of this study relies on the fact that recent data have highlighted the 

importance of B cells and antibodies in defence against C. albicans, with some monoclonal 

antibody vaccines reaching clinical trial phase [337, 341-343]. Several studies have shown 

that antibodies can not only opsonize fungal cells, but also directly influence the cell wall, 

resulting in deleterious outcomes for C. albicans like inhibition of growth, adhesion or 

biofilm formation, and disruption of metabolic processes [323, 326, 329, 332-334, 361]. 

Since the protective antibodies are rare among many non-protective ones, their effect is 

conditioned by their titer and/or isotype. Protective effects of antibodies also depend on the 

infection type and location, especially in the case of cell-mediated effects, as not all cell 

types are involved in responding to the different forms of infection [317]. While the 

importance of antibodies on anti-C. albicans responses has recently drawn attention of 

several researchers, fewer studies focus on the physical interaction between C. albicans (or 

its components) and B cells [156, 165, 215, 362]. An in-depth understanding of B cell 

activation mechanisms in the context of Candida albicans invasion would allow for an 

effective usage of B cells/antibodies in the defence against this pathogen. 

 

4.1.  B cell activation by fungal cell wall components 

As the primary objective of this study was to investigate the interaction between B 

cells and C. albicans, mouse B cells were co-cultured with the Saccharomyces cerevisiae 

cell wall preparation zymosan, HKCA yeast or HKCA hyphae in different B cell-activating 

culture conditions. These different conditions not only allow to assess the strength of C. 
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albicans-triggered signals, but also to mimic (as accurately as possible) the different in vivo 

B cell activation conditions/locations.  

The first condition consisted in medium without addition of further stimulants 

(unstimulated). This allows the assessment of the influence of C. albicans not only in B cell 

activation, but also in survival and proliferation since B cells need external 

survival/proliferation signals to survive ex vivo. Moreover, it could show an ability of C. 

albicans to trigger a T cell-independent B cell activation. Similarly to unstimulated B cells, 

most B cells co-cultured with HKCA yeast did not survive. Co-culture with zymosan or 

HKCA hyphae, even though resulting in some B cell proliferation (Figure 9), still presented 

a low number of surviving cells. These results lead to the conclusion that zymosan and 

HKCA hyphae do activate B cells but cannot provide enough survival and/or proliferation 

signals to alone maintain them in culture. 

The second tested culture condition also aimed to mimic a T cell-independent B cell 

activation (TI), which in vivo occurs mostly outside of B cell follicles. To that end, cells 

were cultured in medium supplemented with LPS and IL-4, as LPS is known to activate 

mouse B cells in culture by providing survival signals and strongly inducing proliferation 

via TLR engagement [89, 363]. Moreover, since LPS is a component of the outer membrane 

of Gram-negative bacteria, in the presence of C. albicans, this culture condition also 

resembles the co-stimulation by bacterial and fungal components that occurs in the gut. This 

setting is of special interest when considering that the gut is the major reservoir of C. 

albicans, and contains a high amount of B cells [364, 365]. 

The third tested condition was the supplementation of medium with α-CD40 and IL-

4. Since the CD40 receptor is activated through binding of a ligand present on T cells, and 

this binding is important for survival, proliferation and CSR, the activation of CD40 by an 

α-CD40 antibody intends to mimic a T cell-dependent B cell activation (TD) [68, 89]. In 

vivo, B-T cell interaction occurs next to B cell follicles, leading to germinal center formation, 

a process that allows for specific antibody generation (see Figure 1). Although GC formation 

does not occur in vitro, CSR can be triggered by α-CD40 in the presence of certain cytokines. 

The most frequently used cytokine in CSR studies is IL-4, its addition allowing class 

switching to IgG1. The addition of other cytokines or cytokine combinations triggers class 

switching to different isotypes. 
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Two common assays to study B cell responses are the analysis of CSR and the 

quantification of secreted antibodies. Measuring the percentage of IgG1-positive B cells, it 

was observed that the presence of zymosan or HKCA have little to no influence on CSR 

(Figure 8A). An exception is the fact that in conditions mimicking TD activation, HKCA 

yeast leads to a decrease in the percentage of IgG1 switched cells. While no difference was 

observed in class switching to IgG1, the same was not true regarding the production of IgG1 

antibodies. In T cell-dependently activated B cells, the presence of both zymosan and HKCA 

hyphae lead to an increase in antibody secretion (Figure 8B), indicating that B cells do 

respond to fungal cell wall components. In the case of TI culture conditions, while the 

differences between co-cultured B cells and controls are small and not statistically 

significant, they show a trend that points to the same result as obtained in TD conditions. 

HKCA yeast cells do not have the same influence in antibody secretion. Contrary to hyphae, 

they appear to lead to a decrease in IgG1 production, although only significant in cells 

stimulated with LPS and IL-4 for 5 days. It is important to note that since this primary in 

vitro B cell culture does not mimic a germinal center reaction, the results do not indicate the 

production of specific anti-fungal antibodies, but a more innate-like response where an 

increased production of antibodies is an indicator of an increased B cell activation. 

Regarding unstimulated cells, despite the aforementioned lack of survival of B cells 

cultured without further stimulation, it is undeniable that the presence of zymosan or HKCA 

hyphae leads not only to some proliferation (Figure 9), but also to the activation of the few 

remaining live B cells (Figure 8B). The contrast between the significant increase in the 

percentage of IgG1-positive cells in the presence of zymosan or HKCA hyphae at day 3 and 

the variable results observed at day 5 (Figure 8A) is probably equally related to the low 

numbers of surviving B cells in culture. 

The analysis of B cell proliferation in TI or TD B cell activating conditions showed 

that both conditions lead to B cell proliferation, with the addition of zymosan or HKCA not 

significantly influencing the number of cell divisions occurring during the culture period 

(Figure 9). The only exception was observed in B cells co-cultured with HKCA hyphae in 

the presence of α-CD40+IL-4, which divided on average 1.17 times more than B cells 

cultured alone. However, in a biological context this increase leads only to a small increase 

in cell number, thus not being responsible for the observed augmented antibody production. 

This observation adds to the conclusion that B cells are directly activated by zymosan and 

HKCA hyphae, and reach an overall higher activation state than just proliferating more. 
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This hypothesis was further confirmed by the analysis of AID, a key enzyme for 

SHM and CSR expressed during B cell activation [86, 366], as T cell dependently-activated 

B cells showed increased AID activation in the presence of zymosan or HKCA hyphae 

(Figure 10B). Actually, both TI and TD B cell activation (via LPS or α-CD40) have been 

shown to lead to AID induction, this occurring via NF-κB activation (see Figure 3) [367, 

368]. However, similarly to what was observed for antibody secretion, in case of LPS + IL-

4 stimulated B cells, the addition of zymosan or HKCA hyphae did not influence AID 

activation (Figures 8B and 10B). A conceivable explanation for this result relies on the fact 

that LPS itself is known to be a potent immune stimulator. It is possible that the stimulation 

provided by LPS is strong enough to saturate the B cell signalling machinery, preventing a 

further enhancement of the response. The requirement for α-CD40 co-stimulation is ruled 

out, as the cells cultured in non-activating conditions (unstimulated) also show the capacity 

to respond to the presence of zymosan or HKCA hyphae (Figures 8, 9 and 10). The 

involvement of NF-κB activation in the HKCA hyphae or zymosan-induced increase in B 

cell activation is currently being investigated in our laboratory by Sally Böde. To that end, 

B cells from NF-κB eGFP reporter mice are isolated, cultured and stimulated in the same 

conditions described in this study, and the GFP signal measured through time by flow 

cytometry. 

The fact that the same effect, although with different strengths, is observed in the 

presence of both zymosan, a yeast fungal cell wall preparation, and hyphae from C. albicans, 

implies that B cells can recognize fungal cell wall components. Moreover, since C. albicans 

is killed and extensively washed before contact with B cells, and no other cell type is added 

to the culture, it indicates that the interaction is direct and not dependent on secreted factors. 

The different or even absent recognition of C. albicans yeast might result from a different 

composition or exposure of its cell wall components, since it has been shown that C. albicans 

yeast and hyphae present differences in both cell wall composition and exposure [245, 275, 

369]. Several cell types have been shown to differentially recognize yeast and hyphae [262, 

274, 291], with some reports showing preferential hyphal-induced activation in cells like 

macrophages or epithelial cells [370-373], and a recent one showing higher PBMC activation 

triggered by yeast cells [374]. Also interesting is the fact that some C. albicans-induced 

epithelial cell responses appear to be independent of the classical PRRs [372]. 

The difference in response strength triggered by zymosan or HKCA hyphae may also 

rely on differences in component composition and/or exposure. Although zymosan’s main 
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constituents are glucans and mannans, thus being known as a dectin-1/TLR2 agonist, it also 

contains proteins, chitins and glycolipids [261, 347]. It is also important to consider that the 

process of killing C. albicans by heat alters cell wall exposure when compared to the living 

fungus [375]. It was however a necessary procedure, since co-culture of B cells with living 

C. albicans led to B cell death, and fungal killing by UV or thimerosal was respectively 

unreliable for hyphal killing or toxic for B cells even upon extensive washing (data not 

shown). Despite this alteration in cell wall exposure, a recent study using different strains of 

C. albicans showed that both live and heat-killed hyphae cells induce similar cytokine 

responses in human PBMCs, although an increased response is triggered by heat-killed yeast 

cells [374]. The same study controlled the effect of sonication, here necessary to allow 

hyphal clump dissociation and posterior pipetting, proving that sonication does not lead to 

any difference in response when compared to non-sonicated cells. Many other studies rely 

on heat-killing of C. albicans to assess its influence on the immune system [156, 274, 287, 

291, 374, 375]. 

After concluding that B cells are able to directly recognize fungal cell wall 

components, namely the ones exposed in zymosan or HKCA hyphae, the question arising is 

through which receptor B cells recognize these components. 

 

4.2.  Dectin-1 does not play a role in B cell activation by Candida albicans 

Among a variety of receptors expressed by B cells the decision to study dectin-1 as 

the possible PRR responsible for zymosan and C. albicans hyphae recognition was supported 

by two distinct lines of thought. First, the fact that dectin-1 is one of the most investigated 

PRRs in C. albicans recognition, possessing an important role both in macrophage and 

neutrophil responses against this pathogen [260-262, 375]. And second, a study by Seo et al. 

[156], which not only showed that mouse B cells express dectin-1, but also claimed that its 

activation was able to reinforce LPS-driven IgG1 production. Until this study, dectin-1 

expression was never detected in mouse B cells [155], although it was shown to be present 

in human B cells [154]. The observed results are thus in line with the conclusion that B cells 

can be directly activated by fungal cell wall components, pointing towards a scenario where 

dectin-1 would be the PRR sensing zymosan and HKCA hyphae. Further corroborating this 

hypothesis is a previous publication which shows that the dectin-1 agonist curdlan directly 

influences B cell activation [165]. 



Discussion 
________________________________________________________________________________ 

59 
 

Due to the discrepancies between published studies, the expression of dectin-1 in 

mouse B cells was again assessed both by RT-PCR and flow cytometry. While the presence 

of dectin-1 mRNA could be confirmed, unspecific binding of anti-mouse dectin-1 antibodies 

did not allow for a surface expression assessment (Figure 11). The unspecific binding of the 

tested antibody clones was stressed by the fact that only the B cells but not the splenic non-

B cells from dectin-1 knockout mice showed a positive signal for dectin-1 staining (Figure 

11B). The absence of dectin-1 surface expression in neutrophils and monocytes of these 

knockout mice had been previously confirmed by flow cytometry [282]. 

When analysed, however, B cells from dectin-1 knockout mice showed the same 

enhanced antibody response to the presence of both zymosan and HKCA hyphae as seen in 

wildtype mice (Figure 12). This observation excludes dectin-1 from being the PRR 

enhancing B cell activation.  Although these results do not support the observations made 

by Seo et al. [156], due to the different experimental procedures used, they can also not 

contradict them. Seo et al. studied the influence of dectin-1 agonists in LPS-activated B cells, 

showing that both HKCA and depleted zymosan (zymosan treated with hot alkali to remove 

TLR-stimulating properties [261]) could enhance IgG1 production. The first and most 

notorious difference between this and our study is the absence of IL-4, as LPS alone (without 

IL-4) is a weak inducer of IgG1 production [376]. Additionally, Seo et al. used an LPS 

concentration 10 times lower than the one used in the experiments of this study. As such, a 

possible explanation for the discrepancy in the observed results might be a scenario where 

in weak B cell activating conditions (low LPS amounts and absence of IL-4), dectin-1 is able 

to boost antibody production by cooperating with LPS-induced TLR4 signalling. On the 

other hand, and as aforementioned, in strong LPS stimulating conditions HKCA does not 

seem to increase IgG1 secretion. A second important difference between these two studies 

is the HKCA used. While in this study both HKCA yeast and hyphae were differentially 

prepared using the C. albicans strain SC5314, in the publication from Seo et al, the HKCA 

was commercially acquired and no discrimination between yeast or hyphae or C. albicans 

strain is mentioned. Information obtained on the website of the HKCA vendor states that the 

used strain is ATCC 10231 in the yeast form. This difference may also be important, as 

several studies have stressed out differences in recognition between yeast, hyphae and 

different C. albicans and mouse strains [262, 274, 275, 283, 289, 291].  

Once extracted, and despite their differences, glucans from both yeast and hyphae 

can be recognized by dectin-1 [275]. However, in intact cells, it has been published that 
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dectin-1 is not able to recognize C. albicans hyphae due to the masking of the β-glucan 

content by outer cell wall components [274]. More recent publications have contradicted 

this, although it is still accepted that hyphae recognition by dectin-1 might not be as efficient 

as for yeast [240, 247, 273, 283, 377]. These data might provide an alternative explanation 

to why dectin-1 from mouse B cells does not seem to play any role in the HKCA hyphae-

induced antibody production. A second possibility is a low surface expression of dectin-1 in 

mouse B cells. That would explain why previous publications did not observe dectin-1 

expression in these cells [155], and also the absence of difference in zymosan-induced 

enhancement of B cell activation between wildtype and dectin-1 knockout mice. 

Despite the many differences, there is one point in which our study and the one from 

Seo et al. both agree, HKCA alone is able to trigger B cell proliferation (although in Seo et 

al. this observation is made in a total splenic cell culture and not isolated B cells). On the 

other hand, depleted zymosan was not able to induce B cell proliferation (in isolated B cells). 

Comparing the effects of zymosan and depleted zymosan in the two studies, the observed 

results point to a scenario where zymosan induces B cell proliferation through TLR 

engagement. A follow up article from Seo et al. [351] shows that dectin-1 engagement 

selectively induces IgG1 class switching in LPS-activated mouse B cells, although no C. 

albicans was used in this study. 

The results obtained in our study do not exclude a more prominent role of dectin-1-

mediated pathogen recognition in human B cells. In fact, a recent study shows that upon β-

glucan recognition by dectin-1, human B cells upregulate the secretion of the pro-

inflammatory cytokines TNF-α, IL-6 and IL-8, and that the medium from β-glucan-

stimulated B cells is able to elicit neutrophil chemotaxis [378]. Interestingly, β-glucan did 

not induce B cell proliferation or IgM secretion. 

 

4.3.  Candida albicans-induced enhancement of B cell activation is not 

dependent on BCR specific recognition 

Other than PRRs, B cells express a specific B cell receptor which is indispensable 

for B cell survival and known to influence antibody production upon recognition of cognate 

antigens. As C. albicans is a common commensal of humans, anti-Candida antibodies can 

be frequently found in healthy individuals, implying the presence of B cells bearing BCRs 
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that recognize C. albicans antigens [340, 379]. In mice, however, C. albicans is not part of 

the microbiota, which may decrease the probability of Candida-specific B cells in non-

infected mice [380]. Nevertheless, the presence of B cells with a BCR which recognizes a 

conserved molecular pattern in both C. albicans and zymosan is possible, hypothesising that 

the BCR could be involved in the observed increase in B cell activation. This hypothesis 

was, however, excluded by the analysis of B cells from B1-8f mice (Figure 14). Since B1-

8f mice possess a transgenic BCR only able to recognize the antigen 4-hydroxy-3-

nitrophenylacetyl (NP) [353], the fact that their B cells still showed an increased activation 

upon co-culture with zymosan or C. albicans hyphae proved other receptor present in B cells 

to be responsible for fungal cell wall recognition. This result reiterates the observed increase 

in antibody production as an innate-like response and mostly an indicator of general rather 

than antigen-specific B cell activation. Importantly, this study does not exclude the 

occurrence of Candida-specific B cells in in vivo mouse models of colonization or invasion, 

but shows an alternative, and possibly parallel, innate-like activation. 

 

4.4.  B cells recognize Candida albicans via toll-like receptors, especially via 

TLR2 

 Excluded dectin-1 and the BCR, TLRs pose as the most likely receptors to recognize 

fungal cell wall components and to influence B cell activation. Three different aspects 

support this hypothesis: 1) TLR activation is a key event in T cell-independent B cell 

activation, as TLR signalling synergizes with BCR signalling to trigger AID expression and 

CSR [93]; 2) TLR agonists have been shown to synergize with CD40L to induce activation, 

proliferation and plasma cell differentiation in mouse B cells [381, 382]; 3) Several TLRs 

have been shown to recognise C. albicans [253-257]. Analysing B cells from mice deficient 

in the adaptor protein MyD88, required for signalling in most TLRs, it was possible to 

confirm that the increase in B cell activation triggered by cell wall components was highly 

dependent on TLR signalling (Figure 15). The absence of MyD88 abrogated the increase in 

IgG1 production triggered by zymosan in B cells cultured in the presence of α-CD40+IL-4, 

and significantly impaired the same effect triggered by HKCA hyphae. Due to the absence 

of TLR4 signalling transduction in these mice, the activation of B cells by LPS is impaired, 

leading to cell death by lack of survival and proliferation signals [383]. 
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As zymosan is known to be recognized by dectin-1 and TLR2 [261], and no alteration 

in its effect was visible in the absence of dectin-1 (Figure 12), it was already expected that 

an impairment in TLR signal transduction would abrogate the enhancement in B cell 

activation. The fact that C. albicans can be recognized by several receptors (see Table 1) 

might explain why HKCA hyphae are able to slightly increase IgG1 secretion even in the 

absence of MyD88/TLR signalling. On this topic, it is also important to consider that not all 

TLRs rely on the MyD88 for signal transduction. Instead of MyD88, endosomal TLR4 and 

TLR3 recruit the adaptor protein TRIF, potentially being able to recognize C. albicans and 

transduce signal even in the absence of MyD88. Apart from TLRs, other receptors known to 

recognize C. albicans have been shown to be expressed in B cells [154, 384-388]. 

Interestingly, some of these receptors, such as galactin-3 or NOD2, are only expressed and/or 

modulated upon B cell activation [387, 388]. 

 Once TLR signalling was identified as the major responsible trigger for the C. 

albicans-induced increase in B cell activation, it was important to pinpoint the specific TLR 

or TLRs involved in this effect. Strong candidates were TLR2 and TLR4, the most prominent 

TLRs in C. albicans responses of innate immune cells [253]. While TLR2 has been shown 

to recognize C. albicans phospholipomannan, triggering the production of different 

cytokines, TLR4 recognizes the O-linked mannan present in C. albicans, inducing the 

secretion of pro-inflammatory cytokines [285, 287, 290-293, 389]. Also important for this 

study is the fact that both TLRs have been shown to respond to both live and heat-killed C. 

albicans [287, 390]. 

The analysis of B cells from TLR2 knockout mice cultured in TD conditions showed 

that in the absence of TLR2, the increase in IgG1 production triggered by HKCA hyphae 

was significantly smaller than in the control (Figure 16). These results are thus in line with 

what was observed in MyD88 knockout mice, proving that B cells recognize C. albicans 

hyphae (and probably cell wall components) via TLR2. As expected, in the absence of TLR2 

signalling zymosan was unable to increase IgG1 production. 

Corroborating the presented results are the in vitro studies by Jain et al. [381] and 

Boeglin et al. [382], which claim that TLR2 can synergize with CD40 signalling to favour 

B cell activation. In both studies the stimulation of mouse B cells with α-CD40 and a TLR2 

agonist (not derived from fungi) resulted in increased AID induction and antibody 

production. Jain et al. shows that further CD40 stimulation of TLR2-stimulated resting B 
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cells augments proliferation and activation, accompanied by enhanced expression of several 

activation markers such as CD40, CD86, CD80, TLR2, MHC and IgM, and increased Erk 

and Akt phosphorylation. Furthermore, other B cell functions such as antigen uptake, T cell 

help and differentiation of marginal zone precursors, also appear to be enhanced in these 

stimulating conditions. Boeglin et al. focus on the fact that TLR2 and CD40 synergy 

increases antibody-secreting cell differentiation, which is shown not only by increased 

antibody secretion but also by enhanced Blimp-1 and AID expression. 

As in wildtype mice, B cells from TLR2 knockouts cultured in TI conditions do not 

show a statistically significant increase in IgG1 production in the presence of either zymosan 

or HKCA hyphae (Figure 16). Since LPS is recognized by TLR4, and both TLRs share the 

same signalling pathway [119], these results support the aforementioned scenario where LPS 

might saturate TLR signalling, preventing TLR2-induced increase in B cell activation. This 

hypothesis can be further supported by evidence showing that some LPS-induced B 

functions are dose-dependent, reaching a plateau after a certain LPS concentration [391-

395]. 

The curious fact that, even though C. albicans is able to trigger B cell activation and 

AID expression, no enhanced CSR is observed, might be explained by a study from Pone et 

al. [93]. In this publication, the ability of TLR2 agonists to influence CSR is shown to be 

dependent on BCR crosslinking, which is not present in any of the tested culture conditions. 

However, these data might indicate that in an in vivo setting, B cells which have their BCR 

crosslinked through the recognition of their cognate antigen, could have their CSR capacity 

enhanced by the presence of C. albicans hyphae. 

TLR4 appears not to be important for fungal cell wall-dependent enhancement of B 

cell activation, since compared to wildtype, B cells from TLR4 knockout mice show no 

significant change in IgG1 production when in co-culture with zymosan or HKCA hyphae 

(Figure 16). While this result was expected for zymosan stimulation, since it is a preparation 

known to induce TLR2 and not TLR4 signalling [396], it was more intriguing for C. albicans 

hyphae. It might, however, be explained by studies advocating that TLR4 has reduced 

capacity for hyphae recognition, most probably due to the reduced cell wall mannan 

expression in comparison with C. albicans yeast [291, 374]. Variable TLR4 recognition of 

different C. albicans strains has also been observed [289]. 
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In conclusion, even though the involvement of other PRRs is likely, the presented 

data show that TLR2 is the major contributor to the observed C. albicans-triggered increase 

in B cell activation. Further supporting this conclusion are studies on the interplay between 

B cells and different bacteria/bacterial surface proteins, which show a TLR/TLR2 

dependence for pathogen-mediated B cell activation [212, 397-399]. Observed effects of this 

activation are increased proliferation, formation of antibody-secreting cells (IgM and IgG), 

cytokine secretion (IFNγ, IL6 and IL-10), and upregulation of co-stimulatory molecules such 

as MHC class II, CD80 and CD86. Some studies further describe the involvement of protein 

tyrosine kinases, NF-κB and Erk signalling in these TLR-mediated B cell effector functions 

[398, 399]. Interestingly, along with the major involvement of TLR2, Alugupalli et al. [397] 

also reported a minor role for TLR4 in Borrelia hermsii-induced B cell responses, 

concluding that multiple TLRs might redundantly contribute to B cell activation by 

pathogens. 

 

4.5.  Candida albicans-induced TLR activation cooperates with B cell receptor 

signalling 

Several studies have reported a synergistic effect during TLR and BCR activation, 

leading to increased AID induction and class switch recombination [93, 360, 400]. Since no 

appreciable CSR is induced in the absence of cytokines, B cell proliferation was chosen as 

a parameter to evaluate cooperation between TLR and BCR signalling upon C. albicans 

recognition by B cells. 

As observed before, B cells cultured without anti-IgM stimulation remained mostly 

non-proliferative, although the presence of HKCA hyphae or zymosan was able to trigger 

proliferation in some cells (Figures 9 and 17). The presence of HKCA yeast did not induce 

any substantial proliferation. On the contrary, stimulation with anti-IgM led to B cell 

proliferation, which was increased by the presence of both zymosan and HKCA hyphae 

(Figure 17). Corroborating previous results, HKCA hyphae seems to have a slightly stronger 

stimulation capacity than zymosan. Comparing the two different anti-IgM concentrations, 

stimulation with a 10μg/mL of anti-IgM triggers a higher effect than 1μg/mL. Preliminary 

data suggest that the increase in B cell proliferation triggered by the combined stimulation 

with anti-IgM and HKCA hyphae or zymosan is not as pronounced in the absence of TLR2. 
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Taken together, these data show that in B cells, C. albicans-mediated TLR engagement can 

cooperate with BCR signalling, increasing B cell proliferation. 

The fact that anti-C. albicans antibodies are found in both healthy colonized 

individuals and infected patients [340, 379], associated with the importance of TLR 

signalling for optimal antibody responses in a context of infection [139, 401-403], indicates 

that the dual TLR2/BCR cooperation observed upon C. albicans recognition should also 

occur in vivo. However, to answer this question, factors such as B cell subsets, location and 

type of infection need to be carefully addressed. A first insight into this topic is currently 

being addressed in our laboratory by Sally Böde, who aims to trace B cell responses upon 

C. albicans colonization using the aforementioned AIDCre-Rosa26YFP mice. For 

TLR/BCR cooperation to occur, B cells need not only to be in contact and recognize the 

pathogen via their TLRs, but also to be able to recognize their cognate antigen via their BCR 

[93]. Two different scenarios for this dual engagement have been reviewed by Pone et al. 

[139]: 1) Simultaneous TLR engagement and BCR crosslinking leading to the generation of 

moderate affinity antibodies (CSR can occur but no SHM); 2) Recognition of 

PAMPs/antigens by both TLR and BCR engagement prime B cells to undergo a GC reaction 

(CSR and SHM occur). This latter scenario involves T cell help and leads to the generation 

of high affinity antibodies. Regarding cell subsets, while the first scenario is more frequent 

in MZ B cells, the second occurs mostly in recirculating follicular B cells [139, 403]. 

Moreover, evidence shows that while during an initial absence of T cell help, TLR/BCR dual 

engagement can lead to early CSR and production of low affinity antibodies, in a later phase, 

these switched cells can be primed to enter a GC reaction and increase the affinity of their 

antibodies [139, 404]. In this case, the GC reaction is potentiated by the known TLR-

mediated upregulation of the costimulatory molecules MHC class II, CD40, CD80 and 

CD86, which favours T cell help [405, 406]. Finally, it is necessary to keep in mind that 

different types of infection lead to different types of antibody response [337]. Further in vivo 

studies can determine the impact of C. albicans recognition by B cells via TLR2 in the 

production of anti-fungal antibodies. 
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4.6.  Candida albicans recognition by B cells leads to IL-6 (and IL-10) 

production 

Another hallmark of B cell activation is cytokine production. Stimulated B cells have 

been shown to produce cytokines such as TNF, IL-6, IL-10 and IFN-γ, influencing other 

components of the immune system in an antibody-independent manner [25]. As such, and 

since C. albicans and phospholipomannan-induced TLR2 activation have also been shown 

to trigger cytokine responses in different cells types [260, 292, 389, 407], it is reasonable to 

suspect that a similar effect can be observed in B cells. To investigate this hypothesis, culture 

supernatants were screened for cytokine presence, leading to the identification of IL-6 and 

IL-10 production as being influenced by zymosan and HKCA hyphae (Figure 18). 

A more in-depth analysis of IL-10 production by ELISA showed that contrary to 

what has been described so far, a significant difference is observed in cells cultured in 

LPS+IL-4 supplemented medium (Figure 19A). In this case, the presence of HKCA hyphae 

results in an enhanced IL-10 secretion. Of note is the fact that LPS is per se a known IL-10 

inducing factor for B cells [391]. The same effect is visible in cells only stimulated with 

HKCA hyphae, meaning that either the few cells able to survive in this culture condition 

secrete high amounts of IL-10, or that IL-10 secretion is an early response. Surprisingly, no 

substantial IL-10 production is observed in cells cultured in α-CD40+IL-4 supplemented 

medium, which seems to indicate that this culture condition impairs IL-10 secretion. 

Supporting this hypothesis, a study on human B cells has shown that IL-4 downregulates IL-

10 production in a dose-dependent manner [208, 408]. The fact that despite the presence of 

IL-4, IL-10 production is still detectable in B cells cultured with LPS, might be related to 

LPS being a stronger IL-10 inducer than α-CD40 [409]. 

Although LPS stimulation is abrogated in MyD88 deficient mice, impeding a clear 

assessment of TLR involvement, the fact that unstimulated B cells from these mice do not 

respond to HKCA hyphae like their wildtype littermates, indicates that the increase in IL-10 

production is a TLR-dependent effect. These results give strength to the observed trend that 

HKCA hyphae can also increase B cell activation in the absence of T cell help. 

 C. albicans has been shown to trigger IL-10 production via TLR2 signalling in DCs 

and macrophages, a fact that contributed to TLR2 activation being regarded as anti-

inflammatory [285, 291, 293]. A study describing TLR2 knockout mice as more resistant to 

disseminated candidiasis also contributed to this vision [293]. However, despite IL-10 
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production, TLR2 signalling has also been implicated in the production of pro-inflammatory 

cytokines such as TNF and IL-6 [287, 291, 292, 407]. These observations combined with a 

study where TLR2 knockout mice show increased susceptibility to C. albicans infection due 

to a decreased neutrophil recruitment [294], make the designation of anti-inflammatory 

receptor attributed to TLR2 arguable. 

 In B cells, IL-10 has been shown to contribute to plasma cell differentiation and 

antibody secretion in both an autocrine and paracrine way [408, 410]. As such, an increase 

in IL-10 secretion leads to an increase in the number of plasma cells, which can increase 

even further the amount of IL-10 produced. Such effects can be deleterious for the host in a 

context of infection, since an excess of IL-10 production by plasma cells/plasmablasts does 

not only limit inflammatory T cell responses, but has also been shown to inhibit neutrophil 

migration  [411-413]. Altogether these data point to a scenario where invading pathogens 

can exploit an overactivation of B cells to decrease the triggered immune response. 

Corroborating this hypothesis are studies which found plasmacytosis during severe viral 

infections, and studies claiming that in a model of systemic Salmonella typhimurium 

infection, plasma cells express IL-10 in a MyD88-dependent manner, impairing 

inflammatory T cell, neutrophil and NK cell activity [235, 237, 414, 415]. 

 In conclusion, even though the presented data appear to support the ability of C. 

albicans to induce IL-10 secretion via TLR-recognition in B cells, due to the discrepancies 

in B cell activation conditions in which IL-10 and other signals of B cell activation occur, 

further investigation is necessary. Contributing to this discrepancy is probably the presence 

of IL-4. If proven true, C. albicans would be able to exploit B cell activation and 

differentiation into plasma cells to, through increased secretion of IL-10, dampen the host 

immune responses. 

Regarding IL-6 production, results obtained by ELISA confirmed that IL-6 secretion 

by B cells cultured in T cell-dependent activation conditions was enhanced in the presence 

of both zymosan or HKCA hyphae (Figure 19B). Furthermore, and similar to what was 

observed for IgG1 production and AID induction, this effect was proven to be MyD88-

dependent. Once again, although the response caused by zymosan or HKCA hyphae in 

LPS+IL-4 activated B cells is not statistically significant, it does display a clear trend. These 

results further support the scenario where C. albicans enhances B cell activation mostly via 

TLR2, being in agreement with three important aspects: 1) IL-6 has since long been known 
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to be expressed in activated B cells and to possess an important role in immunoglobulin 

production [416-418]. 2) Both in vitro TI and TD B cell activation conditions (LPS, CD40 

ligand and IL-4) stimulate IL-6 production [208, 419, 420]. 3) TLR2 stimulation is able to 

trigger IL-6 secretion in different cells types [215, 292, 407, 421-423]. 

 The importance of IL-6 in the immune defence against pathogens goes beyond its 

role in plasma cell differentiation. In this context, IL-6 is produced by a variety of cell types, 

mainly upon TLR-mediated recognition of PAMPs, and its secretion influences mostly T 

cells but also other cells such as neutrophils and monocytes [424, 425]. While previous 

reports simply stated that IL-6 blocks neutrophil accumulation at sites of infection or 

inflammation [426-428], subsequent studies show that in fact, IL-6 exerts a regulatory effect 

on the transition between distinct phases of the immune response [429-431]. In a first phase, 

upon pathogen recognition epithelial and endothelial cells recruit neutrophils to the site of 

infection. However, this neutrophil accumulation leads to an increase in IL-6 signalling in 

tissue resident cells, triggering a change in the chemokine responses that favours the 

recruitment of monocytes and T cells instead of neutrophils [432]. IL-6 signalling further 

regulates this transition by increasing the expression of the adhesion molecule CD62 in T 

cells [433], and by promoting pro-apoptotic signals in neutrophils while supplying anti-

apoptotic signals in T cells [430, 434, 435].  As such, it can be said that IL-6 acts in the 

transition from innate to adaptive immunity. 

Despite its important role in regulating immune cell recruitment, in the context of 

defence against invading pathogens, IL-6 is better known for its role in shaping T cell 

responses. Upon sensing of PAMPs, antigen-presenting cells such as macrophages, dendritic 

cells and B cells have been shown to upregulate their IL-6 production, contributing to the 

cytokine milieu that dictates specific T cell differentiation [212, 214, 436, 437]. 

Consequently, and along with TGF-β, the presence of IL-6 is able to trigger the 

differentiation of naïve T cells into TH17 cells, repressing TGF-β-induced differentiation of 

regulatory T cells, and thus skewing the T cell response into a pro-inflammatory type [438, 

439]. In combination with IL-21, IL-6 also influences TFH differentiation, further helping the 

production of high affinity antibodies [440, 441]. Moreover, IL-6 is also involved in CD8+ 

T cell responses [442]. 

 Regarding mechanisms of defence against C. albicans, both neutrophils and TH17 

cells are known to be major players, making IL-6 an indispensable cytokine for an effective 
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response [247, 443, 444]. In fact, mice lacking IL-6 have been shown to be more susceptible 

in a systemic infection model of C. albicans [445]. As such, and since B cells are a major 

source of IL-6 that can stimulate T cells in secondary lymphoid organs, and B cell-specific 

IL-6 knockout exhibit impaired TH17 responses, the role of B cells as IL-6 producers may 

certainly be of relevance in a context of anti-fungal defence [212, 214, 446]. Supporting the 

importance of B cell-derived IL-6 in a context of C. albicans invasion, a recent study from 

Li et al. [215] shows that anti-C. albicans TH17 responses can be induced by IL-6-secreting 

human B cells. Although not as prominently, C. albicans-activated B cells also seem to 

induce TH1 differentiation. Apart from IL-6, the observed B cell-induced T helper cell 

stimulation is also dependent on the MHC class II and the co-stimulatory molecules CD80 

and CD86. Of note is the fact that HKCA protein extracts and not intact cells were used for 

in vitro B and T cell stimulation. Finally, Li et al. show decreased proliferation and IL-17 

production in response to C. albicans in T cells from patients undergoing B cell depleting 

treatment, thus concluding that IL-6 from B cells is important for anti-fungal TH17 

responses. 

Barr et al. [212] reached a similar conclusion regarding the importance of B cells in 

anti-bacterial responses. In this study, B cells respond to Salmonella enterica by producing 

IL-6 in an MyD88-dependent manner, which influences IL-17 secretion by T cells. 

Interestingly, this study distinguished between two phases of B cell contribution to T cell 

differentiation. The first early phase is almost exclusively dependent on MyD88 signalling, 

and elicits TH1 and TH17 responses by B cell-secreted cytokines. In a second phase, B cell 

antigen recognition and uptake by the BCR and subsequent presentation on MCH class II 

molecules allows for generation of memory T cell responses. 

Considering the results from these two studies, and our observation that mouse B 

cells produce IL-6 in response to C. albicans hyphae in a TLR-dependent manner, it would 

be interesting to evaluate the involvement of TLR-mediated C. albicans recognition in B 

cell induction of anti-C. albicans TH17 responses. If proven important, modulation of TLR 

activation in B cells might be beneficial for immunocompromised patients, as it could, for 

example, improve TH17-mediated neutrophil recruitment in individuals where other 

mechanisms of neutrophil recruitment are impaired. Experiments addressing the impact of 

HKCA-activated mouse B cells/IL-6 production in T cell polarization are currently being 

conducted in our laboratory by Melissa Wich. 
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Even though the observed induction of both IL-10 (anti-inflammatory) and IL-6 (pro-

inflammatory) in B cells seems counterproductive, it has also been observed by others in a 

context of TLR-dependent recognition of bacterial components [212, 399]. As discussed 

above, the production of IL-10 might be triggered by the pathogen as a way of counteracting 

the inflammatory milieu created by IL-6 production, leading to impaired T cell and 

neutrophil responses [237, 413]. However, it is important to remember that IL-10 also 

contributes to plasma cell differentiation and antibody production, and most importantly, it 

protects the host from damage during the acute phase of an inflammatory response [408, 

410, 447, 448]. As such, and as reviewed before [449], while the absence of IL-10 is 

beneficial in early stages of infection,  prolonged IL-10 deficiency can lead to conditions as 

severe as septic shock. In line with this argument, IL-10 knockout mice have been shown to 

display an early resistance to acute systemic candidiasis [450]. Additional information about 

the spatial and temporal elements of the observed cytokine responses is thus crucial to further 

interpret the obtained results. 

 

4.7.  Conclusion 

The present study proposes a model in which mouse B cells recognize C. albicans 

hyphae in an MyD88-dependent manner, mostly via TLR2, which leads to an increased B 

cell activation characterized by augmented AID induction and antibody and cytokine 

production (Figure 20). The same effect, although more modest, can also be triggered by the 

fungal cell wall preparation zymosan, indicating that the TLR2 recognition occurs most 

probably via cell wall components. Intriguingly, C. albicans yeast did not trigger any B cell 

response. Moreover, C. albicans-inducted TLR signalling is able to cooperate with BCR 

activation to increase B cell proliferation. 

Even though there are many differences between mouse and human immunology 

[451], with the exception of TLR4, which is not widely expressed in human B cells, the B 

cell receptors, pathways and functions addressed here are known to occur in both species 

[119, 127, 139, 215]. Most importantly, the Master’s project from Melissa Wich conducted 

in parallel with this study shows that zymosan and HKCA hyphae but not yeast also activate 

B cells isolated from human blood. These results thus strengthen the believe in a parallelism 

between the obtained results using a mouse model and what can be observed in humans. 
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Since specific anti-C. albicans antibodies, protective and not, can be found in C. 

albicans-infected patients and also in colonized healthy individuals, it is no novelty that B 

cells can recognize C. albicans antigens [340, 379]. In that direction, a vaccine exploiting B 

cell responses for treatment of recurrent vulvovaginal candidiasis is currently in Phase II 

clinical development [337, 452].  However, details on B cells and C. albicans interplay have 

been scarcely addressed. This study thus aimed to overcome that bridge, unveiling some 

mechanisms through which B cells might be involved in not only antibody-dependent, but 

also cytokine-dependent anti-C. albicans responses. Better understanding of such 

mechanisms helps in the search for new methods to increase the efficiency of anti-C. 

albicans responses in immunocompromised hosts, where fungal infections can even become 

life-threatening. 

 

 

Figure 20. Proposed model of Candida albicans hyphae recognition by murine B cells. B cell 
recognise C. albicans hyphae via TLR, mostly via TLR2, and therefore in a MyD88-dependent fashion, 
leading to an increase in AID activation and IgG1, IL-6 and IL-10 production.
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5. Outlook 

Despite the accumulated evidences showing that C. albicans recognition by TLR 

leads to B cell activation, further experiments would add information to the proposed model. 

Since production of AID, antibodies and cytokines is associated with NF-κB activation, 

which is known to be also induced by TLR signalling, increased NF-κB activation upon co-

culture of B cells with HKCA would provide a link among all observed effects [139]. One 

possibility to address this question is the aforementioned isolation and culture of B cells 

from NF-κB reporter mice. Further phenotypic characterization of the analysed B cells 

would also add to the collected information, as B cell activation accompanied by antibody 

production is usually associated with an increased expression of co-stimulatory molecules, 

such as MHC class II, CD80 and CD86, and plasma cell differentiation. Finally, and since 

TLR2 usually heterodimerizes with TLR1 or TLR6, it would be interesting to investigate the 

roles of TLR1 and TLR6 in C. albicans recognition by B cells [119]. 

To gather more information about the influence that C. albicans-mediated B cell 

activation exerts in a physiological context, in vivo experiments are also necessary. A good 

model to analyse B cell responses to C. albicans in vivo is to subject AIDCre-Rosa26YFP 

mice to C. albicans colonization and subsequent dissemination. That fact that cells in which 

AID is induced (activated cells) become yellow, allows for tracking of activated B cells 

within the mouse. With this tool, information regarding activated subsets and preferable 

localization of these cells in the different contexts of colonization versus dissemination can 

be collected. Of note is the fact that this route of infection (starting from colonization) is 

advantageous over the commonly used intravenous administration, as it mimics the route of 

infection that most commonly occur in humans. 

According to the literature [19, 139], and supported by the observed results, TLR 

signalling in B cells can act in two distinct contexts: 1) Antibody production, which can 

occur in a T cell-independent way, with or without BCR involvement, and lead to the 

generation of low to medium affinity antibodies, or in a T cell-dependent way, involving 

germinal center reactions and resulting in the generation of high affinity antibodies; 2) 

Cytokine production, which triggers a change in the cytokine milieu influencing other cell 

types, especially T cells. 
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To address the involvement of C. albicans recognition by B cell TLRs in antibody 

production in vivo, the antibody response of mice with a B cell-specific TLR signalling 

impairment could be studied upon the same aforementioned C. albicans colonization and 

dissemination model. Followed by measurement of specific and non-specific antibody titers 

and analysis of B cell subsets, this model could give information about which type of 

antibody activation is affected by lack of C. albicans-triggered TLR signalling. This B cell-

specific model is especially advantageous as DCs, necessary for appropriate antibody 

responses, also express TLRs, complicating the distinction between direct and indirect TLR 

effects on antibody production. It is, however, important to keep in mind that a clear-cut 

distinction between T cell-dependent and T cell-independent B cell responses is unlikely, as 

in a context of microbial infection PAMPs eliciting TLR recognition are in close contact 

with protein antigens. 

Regarding cytokine production, it has been previously shown that IL-6 secreted by 

human B cells upon C. albicans recognition leads to the differentiation of TH17 cells [215]. 

Still uncharacterized is the involvement of TLR signalling in this process. To address that 

question, B cells from MyD88 knockout mice can be co-cultured with wildtype T cells in 

the presence of HKCA hyphae, the analysis of T cells revealing if the absence of TLR 

signalling can in fact impair TH17 differentiation. Confirmation of this hypothesis in vivo 

would be advantageous, once again requiring B cell-specific MyD88 knockout mice and the 

measurement of IL-6 and TH17 responses. 

To conclude, as a long-term objective this project aims to contribute to the 

knowledge that allows for novel anti-C. albicans therapies. The presented hypotheses proven 

true, the modulation of B cell TLRs might trigger a boost in both protective antibody and 

TH17 responses, presenting an optional therapy for patients suffering from Candida 

infections. 
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6. List of Abbreviations 

ADCC Antibody-dependent cellular toxicity 

AID Activation-induced cytidine deaminase 

APC Antigen-presenting cell 

BCR B cell receptor 

CD Cluster of differentiation 

cDNA Complementary deoxyribonucleic acid 

CFSE Carboxyfluorescein succinimidyl ester 

CR Complement receptor 

CSR Class switch recombination 

DAPI 4',6-diamidino-2-phenylindole 

DC Dendritic cell 

DC-SIGN Dendritic cell-specific ICAM-grabbing non-integrin 

DNA Deoxyribonucleic acid 

ELISA Enzyme-linked immunosorbent assay 

Erk Extracellular signal–regulated kinase 

FBS Fetal bovine serum 

FDC Follicular dendritic cell 

FO Follicular 

GC Germinal center 

GM-CSF Granulocyte-macrophage colony-stimulating factor 

HKCA Heat-killed Candida albicans 

HRP Horseradish peroxidase 

IFN Interferon 

Ig Immunoglobulin 

IL Interleukin 

ILC Innate lymphoid cell 

IRF Interferon regulatory factor 

JAK Janus kinase 

Jnk c-Jun N-terminal kinase 

LPS Lipopolysaccharide 

LTα1β2 Lymphotoxin α1β2 

MACS Magnetic-activated cell sorting 

MAPK Mitogen-activated protein kinase 

MBL Mannose-binding lectin 

MDA5 Melanoma Differentiation-Associated protein 5 

MHC Major histocompatibility complex 

MINCLE Macrophage inducible Ca2+-dependent lectin receptor 
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mRNA Messenger ribonucleic acid 

MyD88 Myeloid differentiation primary response 88 

MZ Marginal zone 

NET Neutrophil extracellular trap 

NFAT Nuclear factor of activated T-cell 

NF-κB Nuclear factor kappa-light-chain-enhancer of activated B cells 

NLR Nod-like receptor 

NOD2 Nucleotide-binding oligomerization domain containing 2 

NP 4-hydroxy-3-nitrophenylacetyl 

PAMP Pathogen-associated molecular pattern 

PBMC Peripheral blood mononuclear cell 

PCR Polymerase chain reaction 

PNA Peanut agglutinin 

PRR Pathogen recognition receptor 

RAG Recombination-activating gene 

RLR RIG-I-like receptor 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RT-PCR Reverse transcription polymerase chain reaction 

SHM Somatic hypermutation 

STAT Signal transducer and activator of transcription 

TCR T cell receptor 

TD T cell-dependent 

TD T cell-dependent 

TFH T follicular helper cell 

TGF-β Transforming growth factor β 

TH T helper cell 

TI T cell-independent 

TI T cell-independent 

TLR Toll-like receptor 

TNF Tumor necrosis factor 

TRIF TIR-domain-containing adapter-inducing interferon-β 

WT Wildtype 

YFP Yellow fluorescent protein 

DAMP Damage-associated molecular pattern 
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