ROBUST AND ADAPTIVE QUERY PROCESSING IN HYBRID
TRANSACTIONAL/ANALYTICAL DATABASE SYSTEMS

=

Zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)
der

FAKULTAT FUR INFORMATIK
UND AUTOMATISIERUNG

der
TECHNISCHEN UNIVERSITAT ILMENAU

vorgelegte Dissertation von

Florian Wolf

geboren am 28.01.1990 in Weimar

TECHNISCHE UNIVERSITAT
ILMENAU

Tag der Einreichung: 27.09.2018

Erster Gutachter: Univ.-Prof. Dr.-Ing. habil. Kai-Uwe Sattler
Zweiter Gutachter: Univ.-Prof. Dr.-Ing. Wolfgang Lehner
Dritter Gutachter: Univ.-Prof. Dr. Thomas Neumann

Tag des offentlichen Teils der wissenschaftlichen Aussprache: 18.12.2018

urn:nbn:de:gbv:ilm1-2018000576

Florian Wolf: Robust and Adaptive Query Processing in Hybrid Transac-
tional/Analytical Database Systems, © September 2018

Dedicated to my family.

ABSTRACT

The quality of query execution plans in database systems determines
how fast a query can be processed. Conventional query optimiza-
tion may still select sub-optimal or even bad query execution plans,
due to errors in the cardinality estimation. In this work, we address
limitations and unsolved problems of Robust and Adaptive Query
Processing, with the goal of improving the detection and compensa-
tion of sub-optimal query execution plans. We demonstrate that exist-
ing heuristics cannot sufficiently characterize the intermediate result
cardinalities, for which a given query execution plan remains opti-
mal, and present an algorithm to calculate precise optimality ranges.
The compensation of sub-optimal query execution plans is a comple-
mentary problem. We describe metrics to quantify the robustness of
query execution plans with respect to cardinality estimations errors.
In queries with cardinality estimation errors, our corresponding ro-
bust plan selection strategy chooses query execution plans, which are
up to 3.49x faster, compared to the estimated cheapest plans. Further-
more, we present an adaptive query processor to compensate sub-
optimal query execution plans. It collects true cardinalities of inter-
mediate results at query execution time to re-optimize the currently
running query. We show that the overall effort for re-optimizations
and plan switches is similar to the initial optimization. Our adaptive
query processor can execute queries up to 5.19x faster, compared to
a conventional query processor.

ZUSAMMENFASSUNG

Die Qualitdt von Anfrageausfithrungspldnen in Datenbank Systemen
bestimmt, wie schnell eine Anfrage verarbeitet werden kann. Auf-
grund von Fehlern in der Kardinalitatsschiatzung kdnnen konventio-
nelle Anfrageoptimierer immer noch sub-optimale oder sogar schlech-
te Anfrageausfithrungspldanen auswahlen. In dieser Arbeit behandeln
wir Einschrankungen und ungeldste Probleme robuster und adap-
tiver Anfrageverarbeitung, um die Erkennung und den Ausgleich
sub-optimaler Anfrageausfithrungspldne zu verbessern. Wir zeigen,
dass bestehende Heuristiken nicht entscheiden konnen, fiir welche
Kardinalitdten ein Anfrageausfithrungsplan optimal ist, und stellen
einen Algorithmus vor, der prazise Optimalitatsbereiche berechnen
kann. Der Ausgleich von sub-optimalen Anfrageausfiihrungspldnen
ist ein ergdnzendes Problem. Wir beschreiben Metriken, welche die

Robustheit von Anfrageausfiihrungspldnen gegentiber Fehlern in der
Kardinalitatsschdtzung quantifizieren konnen. Unsere robuste Plan-
auswabhlstrategie, die auf Robustheitsmetriken aufbaut, kann Plane
finden, die bei Fehlern in der Kardinalitatsschdatzung bis zu 3.49x
schneller sind als die geschitzt giinstigsten Plane. Des Weiteren stel-
len wir einen adaptiven Anfrageverarbeiter vor, der sub-optimale An-
frageausfithrungsplane ausgleichen kann. Er erfasst die wahren Kar-
dinalititen von Zwischenergebnissen wihrend der Anfrageausfiih-
rung, um damit die aktuell laufende Anfrage zu re-optimieren. Wir
zeigen, dass der gesamte Aufwand fiir Re-Optimierungen und Plan-
danderungen einer initialen Optimierung entspricht. Unser adaptiver
Anfrageverarbeiter kann Anfragen bis zu 5.19x schneller ausfiihren
als ein konventioneller Anfrageverarbeiter.

Vi

PUBLICATIONS

[1]

Florian Wolf, Heiko Betz, Francis Gropengiefler, and Kai-Uwe
Sattler. “Hibernating in the Cloud — Implementation and Eval-
uation of Object-NoSQL-Mapping.” In: Datenbanksysteme fiir
Business, Technologie und Web (BTW), 15. Fachtagung des GI-Fach-
bereichs "Datenbanken und Informationssysteme” (DBIS). BTW "13.
Magdeburg, Germany: Gesellschaft fiir Informatik, 2013.

Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neu-
mann, Alexander Bohm, Anastasia Ailamaki, and Kai-Uwe
Sattler. “Scaling up Mixed Workloads: A Battle of Data Fresh-
ness, Flexibility, and Scheduling.” In: 6th TPC Technology Con-
ference on Performance Evaluation and Benchmarking. TPCTC "14.
Hangzhou, China: Springer International Publishing, 2014.

Florian Wolf, Iraklis Psaroudakis, Norman May, Anastasia Ail-
amaki, and Kai-Uwe Sattler. “Extending Database Task Sched-
ulers for Multi-threaded Application Code.” In: Proceedings of
the 27th International Conference on Scientific and Statistical Data-
base Management. SSDBM ’15. La Jolla, CA, USA: ACM, 2015.

Florian Wolf, Norman May, Paul R. Willems, and Kai-Uwe Sat-
tler. “On the Calculation of Optimality Ranges for Relational
Query Execution Plans.” In: Proceedings of the 2018 International
Conference on Management of Data. SIGMOD ’18. Houston, TX,
USA: ACM, 2018.

Florian Wolf, Michael Brendle, Norman May, Paul R. Willems,
Kai-Uwe Sattler, and Michael Grossniklaus. “Robustness Met-
rics for Relational Query Execution Plans.” In: Proceedings of
the VLDB Endowment 11.11. VLDB ’"18. Rio de Janeiro, Brazil:
VLDB Endowment, 2018.

vii

ACKNOWLEDGMENTS

First and foremost, I would like to thank Prof. Kai-Uwe Sattler for
being a great teacher at the TU Ilmenau, who supported me on my
journey from a bachelor and master student, to the final submission
of my dissertation. I am truly grateful for an excellent database edu-
cation, a bachelor thesis topic that resulted in my first paper, and the
support during my master studies. In the last three and a half years
as a PhD candidate, I always enjoyed our open and fair collaboration.

When Prof. Kai-Uwe Sattler introduced me at SAP, it was the be-
ginning of a great time in Walldorf. I would like to thank Dr. Nor-
man May for supervising me during my internship, my master thesis
project, and my PhD project in the SAP HANA group. I am certainly
thankful for his effort and commitment, and always appreciated the
open and honest discussions we had. In addition, I would like to
thank Dr. Paul R. Willems for co-supervising my PhD project at SAP.
His expertise and understanding of complex problems was always an
enrichment, and I acknowledge our professional collaboration.

Doing a PhD project in the SAP HANA group is a privilege, and
I would like to thank SAP and the SAP HANA group for the fund-
ing. In particular, I would like to thank Arne Schwarz as a great ma-
manger for his valuable support during my time as a student and a
PhD candidate at SAP. I furthermore want to express my thanks to
Dr. Iraklis Psaroudakis for being a role model and supervisor in my
first year at SAP. In addition, I would like to thank Prof. Wolfgang
Lehner, Dr. Alexander Bohm, Daniel Schneiss, and Franz Farber for
enabling the cutting-edge research in the SAP HANA group.

I was privileged to have great students that supported my research,
namely Michael Brendle and Prakriti Bhardwaj. I would like to thank
Michael Brendle for his effort and commitment during our work on
the robustness metrics, and I wish him all the best for his PhD project.

The TU Ilmenau is an outstanding place dedicated to research and
education. I am grateful for eight wonderful years. In particular, I
would like to thank my colleagues at the Database and Information
Systems group, Dr. Francis Gropengiefser, Stephan Baumann, Felix
Beier, Stefan Hagedorn, Philipp Gotze, and Constantin Pohl.

Furthermore, I want to thank my colleagues in the SAP HANA
campus, Dr. Iraklis Psaroudakis, Dr. David Kernert, Dr. Elena Vasi-
lyeva, Dr. Robert Brunel, Dr. Ingo Miiller, Dr. Marcus Paradies, Dr.
Ismail Oukid, Dr. Hannes Rauhe, Max Wildemann, Radwan Deeb,
Michael Rudolf, Stefan Noll, Lucas Lersch, Matthias Hauck, Georgios
Psaropoulos, Robin Rehrmann, Thomas Bach, and Frank Tetzel for
five fantastic years, and the constructive exchange on ideas and tech-

ix

nologies. It has been a great honor to me, to work with such gifted
people, who are blessed with intellect and perception.

Acknowledgments also go to the co-authors of my publications,
namely Prof. Kai-Uwe Sattler, Prof. Thomas Neumann, Prof. Anasta-
sia Ailamaki, Prof. Michael Grossniklaus, Dr. Norman May, Dr. Paul
R. Willems, Dr. Iraklis Psaroudakis, Dr. Alexander Bohm, and Dr.
Francis Gropengiefler.

Next to Prof. Kai-Uwe Sattler, I would also like to thank Prof. Wolf-
gang Lehner and Prof. Thomas Neumann for reviewing my disser-
tation. I would like to thank Prof. Thomas Neumann for his inspira-
tional talk on engineering high-performance database engines at the
VLDB 2014 in China. It is incredible at which pace and quality Prof.
Thomas Neumann and his group contribute to the database theory.
His publications are an essential foundation for my work.

I am grateful for an amazing and inspiring summer school on data
management in Dagstuhl in 2016, organized by Dr. Goetz Graefe. Fur-
thermore, I would like to thank the reviewers of our papers for their
valuable feedback, as well as the colleagues from Microsoft, Oracle,
Amazon, IBM, and Tableau for their interest in our research.

Finally, I would like to thank my family and friends for their great
support and backing. In particular, I would like to thank my parents
for fostering my creativity, and encouraging me to pursue my goals.
I owe you a lot. I would also like to thank my girlfriend for providing
me with power and strength.

CONTENTS

1 INTRODUCTION

1.1 Impact of Query Execution Plan Choice
1.2 Reasons for Sub-Optimal Plan Choice
1.3 Problem Statement
1.3.1 Detection of Sub-Optimal Plans
1.3.2 Awareness of Estimation Errors
1.3.3 Integration of Runtime Knowledge
1.4 Contributions
1.4.1 Precise Optimality Ranges
1.4.2 Robustness Metrics and Robust Plan Selection .
1.4.3 Mid-Query Re-Optimization Revisited
2 FOUNDATIONS
21 Notations.
22 Workloads
2.3 Memory Hierarchy
2.4 Storage Layouts
2.5 Query Execution Engines
251 JoinOperator
2.5.2 Pipelining
2.5.3 Parallelization,
2.6 Query Optimizers
2.6.1 Enumeration Algorithms
262 CostModels,
2.6.3 Cardinality Estimation
2.6.4 Parametric Cost Functions
2.7 Research Query Processor
2.7.1 Main-Memory Column Store
2.7.2 Pipelining
2.7.3 Experimental Verification
3 PRECISE OPTIMALITY RANGES
3.1 Introduction
3.2 Calculation of Precise Optimality Ranges
3.2.1 Plan Cost Intersection
3.2.2 Optimal Plans Container
3.2.3 Considered Plan Alternatives
3.2.4 Calculation Algorithm
3.2.5 Complexity Analysis
3.2.6 Relaxing the Assumptions.
3.3 Experimental Evaluation
331 TPC-HRanges
3.3.2 Enumerated Plans
3.4 Related Work

O O o Ul A B BB DN R R

=
o O

11

Xi

Xii

CONTENTS

3.4.1 Adaptive Query Processing
3.4.2 Parametric Query Optimization
3.4.3 Offline Plan Space Analysis
3.5 Applications in Query Processing
3.5.1 Execution Plan Caching
3.5.2 Parametric Queries
3.5.3 Plan Robustness
3.5.4 Mid-Query Re-Optimization
3.6 Conclusion
ROBUSTNESS METRICS AND ROBUST PLAN SELECTION
4.1 Introduction
4.2 Formal Problem Description.
4.3 RobustPlan Example
4.4 Robustness Metrics
4.4.1 Cardinality-Slope Robustness Metric
4.4.2 Selectivity-Slope Robustness Metric
4.4.3 Cardinality-Integral Robustness Metric
4.4.4 Robustness Metrics Overview
4.5 Robust Plan Candidates and Robust Plan Selection . .
4.6 Experimental Evaluation
4.6.1 Query Execution Time
4.6.2 Plan Robustness
4.6.3 Robust Plan Candidates
47 Related Work
4.7.1 Offline Analysis
4.7.2 Online Selection
48 Conclusion Lo
MID-QUERY RE-OPTIMIZATION REVISITED
51 Introduction 0 L.
5.2 Formal Problem Description.
5.3 Adaptive Plan Example
5.4 Adaptive Query Processor
5.4.1 Adaptive Execution Strategy
5.4.2 Adaptive and NUMA-aware CHT building . . .
5.4.3 Selective Re-Enumeration
5.4.4 Re-optimization Criteria
5.5 Experimental Evaluation
5.5.1 Improvement of True Cost
5.5.2 ExecutionTime
5.5.3 Re-Optimizations and Plan Switches
5.5.4 Adaption Effort 0 0L
5.6 Related Work
57 Conclusion L o
IMPLICATIONS ON QUERY PROCESSING
6.1 Detecting Sub-Optimal Query Execution Plans
6.2 Compensating Sub-Optimal Query Execution Plans . .

CONTENTS

7 FUTURE DIRECTIONS AND CONCLUSION

7.1 Future Directions
7.1.1 Optimality Ranges

7.1.2 Robustness Metrics and Robust Plan Selection .
7.1.3 Mid-Query Re-Optimization

7.2 Conclusion

BIBLIOGRAPHY

161
161
161
162
162
164

165

xiii

INTRODUCTION

Declarative query languages are a key success factor for multiple
kinds of database systems. Taking relational [1] or graph database
systems [51] as an example, the declarative query languages SQL [2]
and GCore [96] describe the result of a query instead of a procedure
to calculate it. On the one hand, declarative query languages hide the
complexity of finding the best procedure to calculate the query result.
On the other hand, they delegate the complexity of finding the best
procedure to the query optimizer of the database system.

Each query on a relational database is translated into logical rela-
tional algebra, which contains operators such as scans, projections,
filters, aggregations and joins. Since there can be multiple implemen-
tations for logical relational operators, there is furthermore the phys-
ical relational algebra with physical relational operators. The goal of
query optimization is to find a query execution plan in physical rela-
tional algebra, which achieves the minimal query execution time or re-
source consumption. To select a corresponding query execution plan,
the query optimizer enumerates a set of query execution plan alterna-
tives, which can grow exponentially with the number of joined tables.
Next to the operator implementation, the performance of query ex-
ecution plans depends on the execution order of operators. This is
because the output of an operator, which is a set of tuples, can be
the input of the next operator, and the performance of an operator
depends on the sizes of its inputs. Another, weaker goal of query op-
timization is preventing the selection of bad query execution plans.

1.1 IMPACT OF QUERY EXECUTION PLAN CHOICE

To demonstrate the impact of the query execution plan choice on the
query execution time, Figure 1.1 shows the results of an experiment
by Neumann [75]. In the experiment, randomly chosen query execu-
tion plans for the Query 5 of the TPC-H benchmark [89] are executed.
Although all plans create the same result, Figure 1.1 shows that some
query execution plans finish in a few milliseconds while other plans
reach the execution time limit of three seconds. This illustrates that
the choice of the query execution plan has a strong impact on execu-
tion time. In practice, query optimizers cannot guarantee to find fast
query execution plans and avoid bad query execution plans [94].

2

INTRODUCTION

3000 -

2500 -

2000 -

1500 -

1000 —

500 -

Execution Time in [ms]

0 -

Query Execution Plans

Figure 1.1: Experiment by Neumann [75] showing the query execution times
for randomly selected query execution plans for TPC-H Query 5.

1.2 REASONS FOR SUB-OPTIMAL PLAN CHOICE

The seminal work on query optimization by Selinger [4] described
a cost-based query optimizer. In essence, cost-based query optimiza-
tion works as follows: (1) Different query execution plans are enu-
merated based on some strategy. (2) Costs are assigned to each enu-
merated plan using statistics, estimations, and some cost functions.
(3) The query execution plan with the smallest estimated cost is se-
lected as optimal plan. According to Leis et al. [78, 93], the major
reason why query optimizers choose sub-optimal or even bad query
execution plans are cardinality estimation errors. Since the estimated
cardinalities, i.e., the number of tuples, of intermediate results are
central parameters in each cost model, incorrect cardinality estimates
create wrong cost estimates and thus can lead to a wrong query exe-
cution plan choice. While the performance impact of the cost function
is quantified by Lohman to at most 30% [73], cardinality estimation
errors are theoretically unbounded. Leis et al. [78, 93] have shown
cardinality estimation errors of up to six orders magnitude.

The root causes for cardinality estimation errors can be categorized
by assumptions on: (1) the distribution of values within a column,
(2) the correlation between columns, (3) the join relation, and (4) the
freshness of statistics, which do not always hold. Cardinality estima-
tors conventionally assume a uniform distribution of values within
a column, although the data is frequently skewed in practice. Fur-
thermore, cardinality estimators assume Attribute Value Independence
(AVI) for the correlation between columns within a table, which does
not hold in general [73]. The principle of inclusion [93] is another as-

1.2 REASONS FOR SUB-OPTIMAL PLAN CHOICE

sumptions, which only holds for foreign key joins. Finally, cardinality
estimators always assume to work on up-to-date statistics, although
statistics can be stale. In 1991, Ioannidis et al. [16] showed that the
cardinality estimation error can grow exponentially with the number
of performed joins. Despite the effort put into improving cardinality
estimation since then, cardinality estimation is still the major weak
spot in query optimization, as Leis et al. [78, 93] have recently shown.

In addition to the existing issues of cardinality estimation in join
queries, new challenges are introduced by a new kind of workload:
Hybrid Transactional/Analytical Processing (HTAP) [62, 76, 95] is com-
posed of two fundamentally different workloads: First, transactional
workload having many concurrent transactions that read, insert, up-
date and delete a small number of tuples in a table. Second, analytical
workload with complex and calculation-intensive queries that scan,
filter, join, and aggregate entire tables. While traditional database se-
tups are split into a transactional and an analytical database system,
HTAP database systems avoid the delay for loading data from one
system into the other, to enable data analytics on fresh data. For the
HTAP database systems that means to process the expensive analyti-
cal queries on the mission-critical transactional database. This intro-
duces a trade-off between the quality and freshness of statistics, and
the effort to calculate and maintain them.

Analytical database systems maintain comprehensive statistics on
columns and tables, such as histograms and top-k values, to do best
effort cardinality estimations in complex queries. Since analytical da-
tabase systems face a low number of updates, the effort to create and
maintain comprehensive and precise statistics amortizes. In contrast,
transactional database systems process less complex queries, face a
high number of updates, and focus on high throughput and fast
response times. Consequently, transactional database systems tend
to have less comprehensive statistics. For HTAP database systems,
there are the following three options for statistics: First, comprehen-
sive statistics that are updated with each transaction. This is good for
complex analytical queries, but can hurt the transactional through-
put and response time guarantees. Second, comprehensive statistics
that are created at query optimization time. This is good for the qual-
ity of query execution plans and the transactional performance, but
can introduce optimization time overheads in complex queries. Third,
simple and cheap statistics that can be maintained without hurting
the transactional performance. Although this may cause stronger car-
dinality estimation errors and worse execution plans for complex
queries, simple and cheap statistic are the consequent choice to guar-
antee the transactional performance in HTAP.

To sum it up, it has been shown [78, 93] that complex queries are
still a major challenge for conventional database systems, since they
can cause cardinality estimation errors during the query optimiza-

INTRODUCTION

tion. In addition, more sophisticated statistics, which may improve
the cardinality estimates in complex queries, are unsuitable for HTAP
systems with strong requirements for transactional throughput and
response time.

1.3 PROBLEM STATEMENT

According to Leis et al. [78, 93], cardinality estimation errors are evi-
dent. Improving the cardinality estimation in join queries with a rea-
sonable computation effort to a reasonable level of precision is hard to
achieve and requires efforts that are unsuitable for HTAP workloads.
We identified the following problems related to cardinality estimation
errors, which are only partially solved or yet unsolved. We argue that
the following problems should rather be addressed, than trying to
further improve the conventional estimation of cardinalities.

1.3.1 Detection of Sub-Optimal Plans

The first problem is the impact of cardinality estimation errors on
the optimality of query execution plans. It is trivial to detect a cardi-
nality estimation error by comparing the estimated cardinality of an
intermediate result and its true cardinality at query execution time.
In contrast, it is not trivial to decide if the cardinality estimation error
makes the query execution plan sub-optimal or if the plan remains
optimal. The trivial solution is the invocation of the optimizer to fig-
ure out if a cheaper plan exists, but the corresponding effort can grow
exponentially with the number of joined tables. Therefore the ques-
tion emerges: What is a more effective solution to decide if an optimal
plan remains optimal, and what is the complexity of such a solution?
We introduce our contribution in Section 1.4.1.

1.3.2 Awareness of Estimation Errors

Though cardinality estimation errors are evident [78, 93], they are
not considered in the conventional plan selection. Conventional query
optimizers still assume that the cardinality estimates are correct and
choose the estimated cheapest plan. We argue that estimation errors
should be considered during query optimization and introduce our
corresponding contribution in Section 1.4.2.

1.3.3 Integration of Runtime Knowledge

Superior to cardinality estimates are the true cardinalities of interme-
diate results, which can be taken at query execution time. The true
cardinalities taken at query execution time can be utilized to compen-

1.4 CONTRIBUTIONS

sate cardinality estimation errors and consequently improve query
execution plan quality. Although runtime feedback is superior to es-
timations, conventional query optimizers solely rely on estimations,
and disregard the potential quality improvements for query execu-
tion plans that can be achieved by runtime feedback. We introduce
our contribution to improve plan quality by considering runtime feed-
back in Section 1.4.3. It is an improvement on existing work.

1.4 CONTRIBUTIONS

This work makes contributions in Robust and Adaptive Query Pro-
cessing. We address unsolved problems and limitations of existing
work to detect and compensate sub-optimal query execution plans,
which were caused by cardinality estimation errors. According to
Lohman [94], “robust and adaptable query plans are superior to optimal
ones”. Relating to that quote, our major contributions can be summa-
rized as:

¢ An efficient algorithm to calculate the intermediate result cardi-
nalities, denoted as optimality ranges, for which a query execu-
tion plan is optimal,

¢ Three metrics to quantify the robustness of a query execution
plan towards cardinality estimation errors together with a cor-
responding robust plan selection strategy, and

* A revisit of Mid-Query Re-Optimization [31, 39, 41] including
a novel adaptive query processor that enables efficient query
re-optimizations and efficient query execution plan switches at
query execution time.

Before we explain our contributions in detail, we show the basic ar-
chitecture of query processors in Figure 1.2, to better see which com-
ponents of a query processor can be improved by the contributions
of this work. Each query processor consists of two major components,
which are highlighted in Figure 1.2:

1. The query optimizer, which gets a query and searches a query
execution plan corresponding to the optimization goal, e.g., min-
imal execution time or minimal resource consumption.

2. The execution engine with the implementations of all relational
operators such as scans, filters, joins, and aggregations, and a
mechanism to pass tuples from one operator to another opera-
tor. Each query execution plan is passed from the query opti-
mizer to the query execution engine. The query execution en-
gine calculates the query result and returns it.

We further discuss the foundations of query optimizers and query
execution engines in the Sections 2.5 and 2.6.

INTRODUCTION

e e : Result

Query Optimizer
A

Feedback Query Execution Plan

y

Query Execution Engine

Database

Figure 1.2: Basic architecture of query processors.

1.4.1 Precise Optimality Ranges

Optimality ranges for the cardinality of intermediate results enable to
efficiently detect if a query execution plan became sub-optimal due
to a cardinality estimation error. Optimality ranges reveal for which
cardinalities an ‘optimal plan” remains optimal. An optimality range
has a lower and an upper bound for the cardinality of an intermediate
result. Within this cardinality range, the plan is optimal. Optimality
ranges can be calculated for each intermediate result in the query
execution plan. To the best of our knowledge, the calculation of pre-
cise optimality ranges is an unsolved problem. Existing approaches
cannot characterize optimality ranges precisely, because they rely on
simple heuristics [31, 41], or consider only a subset of the required
plan alternatives [39].

OUR CONTRIBUTION: In Chapter 3, we present an algorithm to
calculate precise optimality ranges, which takes all necessary plan
alternatives into account. We also describe an effective pruning strat-
egy that keeps the number of enumerated plans during optimality
range calculation low. Further, we share a formal and experimental
analysis on the complexity of optimality range calculation. In addi-
tion, we present an experimental analysis on optimality ranges for
a TPC-H-like benchmark, showing the missing precision and limita-
tions of heuristic approaches to characterize optimality ranges. Op-
timality ranges can be calculated on optimal query execution plans
between query optimization and execution (see Figure 1.2). The algo-
rithm can be implemented as extension of the optimizer, and utilize
data structures and work that has been done during the initial op-
timization. It supports all kinds of queries, operators and tree struc-
tures of query execution plans. We explain the applications of opti-

1.4 CONTRIBUTIONS

mality ranges, such as execution plan caching and parametric queries
in Section 3.5. The calculation of optimality ranges is the foundation
for our contributions, which we introduce in Section 1.4.2 and 1.4.3.
We previously published parts and ideas of our work on optimality
ranges in Wolf et al. [100].

1.4.2 Robustness Metrics and Robust Plan Selection

To consider potential cardinality estimation errors during the query
optimization, we rely on Robust Query Processing [80], or more specifi-
cally Robust Plan Selection. The goal of Robust Plan Selection is to find
and execute query execution plans, which are less sensitive to estima-
tion errors of cost parameters, such as cardinality. A robust plan does
not significantly change its execution time or resource consumption
in case of estimation errors. Existing approaches for robustness plan
analysis and selection require considerable computation effort and
cannot be applied at optimization time [53, 71, 82]. The optimization
time approaches are limited to certain tree structures of query exe-
cution plans [77, 81], support only plans that are optimal for some
cardinalities [40, 41, 53, 82], or need to see alternative plans to quan-
tify the robustness of the considered plan [59, 77, 81].

OUR CONTRIBUTION: In Chapter 4, we present a robust plan se-
lection strategy based on new robustness metrics, which can be cal-
culated efficiently at optimization time. We give a formal problem de-
scription and consistency requirements for robustness metrics. Based
on that, we present three novel metrics to quantify the robustness of
query execution plans towards cardinality estimation errors. While
cost models assign estimated cost to each given plan, our robustness
metrics assign an estimated robustness value to each given plan. The
metrics do not need to see alternative plans to quantify the robust-
ness of the considered plan. Since the calculation of our robustness
values is cheap and can be done at optimization time, we use them
for our plan selection strategy. Our robust plan selection takes both,
estimated cost and estimated robustness into account, to find a plan
that is cheap and robust. The robustness metrics and robust plan se-
lection can be applied to any kind of query containing any kind of
operator, and supports all kinds of tree structures of query execution
plans. Further, we do not require the query execution plans to be opti-
mal somewhere. Integrating our contributions into a query processor
requires minimal modifications, because it affects only the query op-
timizer. The robust plan selection is still based on estimations, and
not on runtime feedback. Nevertheless, our experimental evaluation
shows that our robust plan selection achieves faster query execution
times in presence of cardinality estimation errors, compared to the
conventional plan selection that picks the estimated cheapest plan.

INTRODUCTION

We previously published parts and ideas of our work on robustness
metrics and robust plan selection in Wolf et al. [101]. The master thesis
of Brendle [97] is based on the initial submission of Wolf et al. [101].
While Brendle contributed the experiments, my contributions are the
consistency requirements for robustness metrics, the robustness met-
rics themselves, and the robust plan selection strategy. We ran the
experiments again with some considerable improvements for the cam-
era ready version of Wolf et al. [101] and this work.

1.4.3 Mid-Query Re-Optimization Revisited

Superior to estimations are the true statistics, taken from the calcu-
lated intermediate results at execution time. Unfortunately, they are
only available after the calculation of intermediate results. Adaptive
Query Processing [47, 80] is a subset of Robust Query Processing and
utilizes these true statistics to improve the query execution plan qual-
ity. One Adaptive Query Processing approach is called Mid-Query
Re-Optimization. It invokes the query optimizer at execution time
with runtime statistics to compensate potential estimation errors, and
switches to a better query execution plan. Existing Mid-Query Re-
Optimization approaches [31, 39, 41] try to keep query processor
modifications minimal, and focus on criteria for triggering re-opti-
mizations, because they can cause a considerable overhead.

OUR CONTRIBUTION: In Chapter 5, we present a novel Mid-Query
Re-Optimizer. In order to speedup re-optimizations, it contains a se-
lective re-enumeration algorithm that enables efficient query re-opti-
mizations at execution time. Furthermore, we describe an improved
Mid-Query Re-Optimization strategy, which takes the insights from
the experimental evaluation on optimality range calculation into ac-
count. We include these building blocks into an architecture of an
adaptive query processor. The key design aspect of the adaptive query
processor is a tight integration of optimizer and execution engine
that enables efficient plan switches at execution time. Consequently,
it requires significant changes to the query optimizer and the execu-
tion engine, including a feedback loop from the execution engine to
the optimizer (see Figure 1.2). Our adaptive query execution strategy
supports all kinds of queries, operators and tree structures of query
execution plans. It furthermore improves already the first execution
of a query, which includes ad-hoc queries, because it does not need
multiple query executions to learn from [36]. We demonstrate in the
experimental evaluation that our query processor with adaptive exe-
cution can outperform the conventional execution of a static plan.

FOUNDATIONS

This chapter gives an overview of the foundations of robust and adap-
tive query processing. We start with clarifying fundamental notations
in Section 2.1. We continue with explaining some essential concepts
of database systems, namely the different workloads in Section 2.2,
the impact of the memory hierarchy in Section 2.3, and the different
database storage layouts in Section 2.4. As we discussed in Section 1.4,
each query processor consists of two major components: Section 2.5
explains the query execution engine, which contains the implemen-
tations of all relational operators such as scans, filters, joins, and ag-
gregations, and a mechanism to pass tuples from one operator to an-
other operator. Section 2.6 explains query optimizer, which searches
query execution plans corresponding to the optimization goal. Our
focus in this work is on minimal query execution time. We summa-
rize the foundations in a query processor architecture presented in
Section 2.7, which we use to implement our approaches and do ex-
perimental evaluations.

2.1 NOTATIONS

Throughout this work, relations or tables are denoted by a single cap-
ital letter starting from R. Arbitrary relations or tables in proofs are
denoted by R and an additional subscript, such as R; or Rj. Rela-
tions and tables of benchmarks keep their specified name. The query
execution plans are denoted by P, having a subscript to further de-
scribe the plan, such as the optimal plan P,p¢. Each edge in a query
execution plan connects two operators, and therefore represents an
intermediate result. For variable quantities like the cardinalities of in-
termediate results f, the selectivities of operators s, and the costs of
plans or sub-plans ¢, we denote estimations as f s and ¢, and true
values as 13, s and ¢. Cardinalities have an additional subscript de-
scribing the edge or intermediate result. For example, the estimated
cardinality on the edge, which represents the result of joining R and
S is denoted by frus or frs. In proofs, the cardinality of an arbitrary
edge e is denoted by fe. Selectivities have a subscript that describes
the associated operator. Cost functions to calculate costs are denoted
by C, having a subscript to describe the cost function.

10

FOUNDATIONS

2.2 WORKLOADS

The traditional workload in database systems is Online Transaction Pro-
cessing (OLTP). It consists of a large number of mostly short running
transactions, which are sequences of read, insert, update, and delete
operations. Transactions touch only a small number of tuples in the
database. In conventional relational database systems, transactions
have the ACID-properties [6]: Atomicity, Consistency, Isolation, and
Durability. A transaction can consist of multiple statements. Atom-
icity guarantees that each transaction is an individable unit, which is
either completely committed or completely aborted. Consistency en-
sures that each transaction transfers the database from a consistent
state into another consistent state. Isolation guarantees that concur-
rent transactions are isolated from each other, and create the same
database state as a sequence of these transactions. Durability ensures
that successfully committed changes of a transactions are persistent.

With the increased popularity of analyzing data, Online Analytical
Processing (OLAP) extended the workload in database systems. On
the one hand, OLAP workloads are read-mostly, which requires less
synchronization compared to OLTP workloads. On the other hand, a
single OLAP query takes considerably more computation time com-
pared to a single OLTP transaction, because it can scan, filter, join,
and aggregate entire tables. OLAP systems are also called Data Ware-
houses or Decision Support Systems. In conventional database setups,
data is regularly extracted, transformed, and loaded from the mission-
critical OLTP database into the OLAP database to be analyzed.

The demand of business applications to get decision support in
real-time formed a composite workload of OLTP and OLAP, called
Hybrid Transactional/ Analytical Processing (HTAP). Compared to a set-
up consisting of OLTP and OLAP system, HTAP systems avoid the
delay for loading data from one system into the other. This enables
analyzing always the freshest data, and immediately detect issues in
a business process. As we have shown [76], HTAP workloads require
a sensitive scheduling between the large number of short-running
OLTP transactions, and the fewer but more expensive OLAP queries.

2.3 MEMORY HIERARCHY

The hierarchy of memory has a strong impact on the architecture of
database systems, and advances in memory technology periodically
open new research questions and opportunities to further increase
performance and capacity of database systems. Hennessy and Patter-
son [92] give a comprehensive overview of memory technologies and
the memory hierarchy. Memory is smaller, faster, and more expen-
sive the closer it is to the processors. The smallest, fastest and most
expensive pieces of memory are the processor caches, which share a

2.4 STORAGE LAYOUTS

wafer with the processor cores. The next major layer in the memory
hierarchy is the main-memory mostly based on DRAM technology,
followed by persistent hard disk drives or solid-state drives. Conven-
tional database systems store the database and intermediate results of
queries on disk, and utilize the main-memory as cache. Through the
advances in DRAM technology, modern database systems can pro-
cess queries mostly in-memory to avoid the storage of intermediate
results on disk. In addition, systems such as SAP HANA [95] can load
their working set of tables into main-memory to avoid reading from
disk. They use the disk for the primary database and the persistent
transaction log to achieve durability. A related research question for
in-memory systems is the strategy to offload data that is not needed,
i.e., cold data, from main memory to disk [86]. Since main-memory is
more expensive than disks, another research question considers the
size of the main-memory that is economically reasonable: According
to the Five Minute Rule [11], the size of the main-memory should en-
able to keep the working set of data for five minutes in main-memory:.
The Five Minute Rule was revisited every ten years to consider tech-
nological and economical advances [28, 48, 87].

To scale-up the main memory size and the number of processor
cores, modern scale-up systems are divided into Non-Uniform Mem-
ory Access (NUMA) nodes [92]. Each NUMA node has some cores
and one memory controller. NUMA architectures can limit the scal-
ability of data-intensive applications such as database system: Since
there is one global memory space, a process running on one NUMA
node can access the memory on another NUMA node. As a result, it
faces a different memory access latency compared to a memory ac-
cess on the local memory controller. Ignoring NUMA architecture in
the implementation of database systems can limit the scalability.

2.4 STORAGE LAYOUTS

Traditional database systems store data and index structures in pages,
whose size corresponds to the block size on disk. Some main-memory
systems, such as SAP HANA, do not completely rely on pages and
can directly allocate main-memory corresponding to the size of their
data structures. There are two major interpretations for the physical
storage of the relational model [1], i.e., the storage of database tables
in pages or main-memory: First, the row format, which stores a table
tuple by tuple. Second, the column format, i.e., the Decomposed Storage
Model [7], which stores a table column by column, and consequently
single attributes of a tuple not physically together.

For OLTP workloads, i.e., reading, inserting, updating, and delet-
ing only a few rows in a table, the row layout is superior, because
only a consecutive piece of memory and not different pages or non-
consecutive memory pieces have to be accessed to process a single

11

12

FOUNDATIONS

row. For OLAP workloads, i.e., scaning, joining and aggregating en-
tire tables, the row layout turned out to be unsuitable: OLAP queries
usually read only a subset of the columns in a table. Consequently,
the row layout results in reading columns from disk or main-memory
that are not needed. In the column layout, only the necessary columns
have to be read. Storing data in a column layout has further advan-
tages, because it enables more efficient table compression algorithms.
There are also hybrid layouts such as PAX by Ailamaki [35] or
HYRISE by Grund [61], which are more suitable for HTAP workloads.
PAX for instance stores multiple complete tuples together in a page
such as the row format does. Inside a page, the tuples are stored in
the column format. In this work, we use the column format, because
we focus on the processing of complex join queries. Furthermore, the
analytical workload dominates the resource consumption in HTAP
systems [76], and should be processed as efficient as possible.

2.5 QUERY EXECUTION ENGINES

Driven by the latest achievements in processor and memory archi-
tectures, the design and implementation of query execution engines
is an ongoing challenge. Query execution engines contain the imple-
mentation of operators, and the passing of data between operators in
the query execution plan.

2.5.1 Join Operator

Most research publications focus on equality-joins or equi-joins [63,
66, 70, 85, 88], which join tuples that have equal values on certain
columns. There are also other kinds of join predicates such as in-
equality. Join operators without a join predicate are denoted as cross-
products or cross-joins, because each tuple of one relation is joined with
all tuples of the other relation. Most joins-operators join two relations,
but there are also multi-way joins, joining more than two relations,
which can be split into multiple binary joins. Joining tables can con-
sume the majority of the query execution time. Consequently, there
is a large number of publications, which propose join algorithms that
are optimized for certain join predicates, number of joined relations,
data characteristics or special system architectures [85, 88].

In general, a query processor can have different implementations
for an operator, and the query optimizer has to choose the best. For
binary joins, there are three major categories of implementations [18]:
First, nested-loop joins, which iterate for each tuple in the outer relation
over all tuples in the inner relation, to identify tuples that can be
joined. An improvement of nested-loop joins are index-nested-loop joins
that use an index on the inner relation, to avoid a full scan of the
inner relation for each tuple in the outer relation. Second, hash joins

2.5 QUERY EXECUTION ENGINES

that build a hash-map on the smaller, inner relation, and do a hash
table lookup for each tuple in the outer relation. Hash joins support
only equality join predicates. Throughout this work, the build side of
hash joins is depicted on the right-hand side. Third, sort-merge joins
which take relations sorted on the join columns as input, and perform
a merge to figure out which tuples can be joined. Some sort-merge
join implementations accept unsorted inputs and and have efficient
implementations to sort the unsorted inputs [88].

For inner joins, a match between two tuples results in the creation
of an output tuple. Tuples without a join partner are not in the join
result. Next to inner joins there are also semi-, anti-, and outer joins.

It is an ongoing discussion which equi-join implementation is the
fastest [63, 66, 85]. In general sort-merge joins are better suited for
joining relations with similar cardinality, and hash-join for joining
relations with a considerable cardinality difference. Since the cardi-
nality estimation errors and other topics in this work are indepen-
dent of the join implementation, we use only one join operator imple-
mentation in this work. Since memory consumption is crucial for in-
memory systems, we took the state-of-the-art memory efficient hash
join, the Concise Hash Table (CHT) join [70], and further improved it.

2.5.1.1 Concise Hash Table Join

We extended the original CHT join [70] for multi-socket systems, and
query execution plan switches between build and probe phase. We ex-
plain the details of these extensions together with our adaptive join
processor in Chapter 5. The basic CHT [70] was designed on the fol-
lowing assumptions: The size of hash tables is over-provisioned to
decrease the number of hash collisions. Consequently, multiple buck-
ets in the hash table stay empty and memory is wasted as depicted in
Figure 2.1a. A CHT in contrast splits the hash table into a bitmap to
indicate if a bucket is filled, and a dense payload table that holds the
key and the payload. Figure 2.1b shows the bitmap on the upper side
and the payload table on the lower side. Since the bitmap just con-
sumes one bit per bucket, it can be over-provisioned without wasting
too much memory. The CHT is a linear probing hash table that probes
the actual bucket and the following bucket. Entries for which no free
bucket is found are stored in an overflow hash table. Compared to a
conventional hash table, filling a CHT requires two input scans.

The first scan fills the bitmap, which indicates if a bucket is filled
and enables an efficient calculation of the index in the payload table.
The index in the payload table is the number of filled buckets up
to the current bucket. To efficiently calculate this number without
scanning the entire bitmap, the CHT uses a prefix bitmap. The prefix
bitmap is an array of 64-bit words, as shown in the top of Figure 2.1b.
In each of 64-bit word, 32 bits are used for the actual bitmap, and 32
bits to store the number filled buckets until the 64-bit word, i.e., the

13

14

FOUNDATIONS

0 Prefix =0 1 1
1 Ko, Po Prefix =2 1 111
2 Prefix =5 1
3 K1, P1
4 K2, P2
> 0 Ko, Po Overflow
6 K3, P3 1 K1, P1 Hash
7 K, P4 2 K2, P2 Table
8 3 K3, P3
9 4 K4, P4
10 Ks, P5 5 Ks, P5
11 6
(a) Logical (b) Physical

Figure 2.1: Concise Hash Table [70].

prefix. Consequently, the index in the payload table is the index in
the current word plus its prefix. After filling the bitmap in the first
scan, the prefixes are calculated. Next, the data is scanned again, the
prefix bitmap is used to calculate the index, and key and payload are
inserted at the corresponding index in the payload table.

Probing into the CHT starts with a lookup into the prefix bitmap.
If the bucket is filled, the index in the payload table is calculated and
the key of the corresponding entry in the payload table is checked for
equality. If all linear probing buckets are filled but no key matches,
the overflow hash table has to be probed to check if an entry exists.
We discuss the parallelization of operators and the parallelization of
the CHT join in particular in Section 2.5.3.2.

2.5.2 Pipelining

Another performance-critical aspect next to the operator implementa-
tion is passing of intermediate results between operators. There are
two dimensions by which the passing of intermediate results can be
categorized: granularity and direction. The granularity describes the
number of tuples that are passed from one operator to another. It
distinguishes between passing a tuple-at-a-time [22], a batch of tuples
at a time, i.e., batch-at-a-time [42], or the entire intermediate result.
Tuple-at-a-time and batch-at-a-time are denoted as pipelining. The di-
rection, distinguishes between the pull [22] and the push model [34]. It
describes if tuples are recursively pulled from the top of the plan, or
pushed from the bottom of the plan. Next, we further explain these di-
mensions by discussing the seminal pipeline designs, and categorize
the designs by granularity and direction. The most trivial approach is
passing the entire intermediate result from one operator to another. It

2.5 QUERY EXECUTION ENGINES

means to materialize the entire intermediate result after every opera-
tor to disk or main-memory. Consequently, every operator has to read
from disk or main-memory and cannot utilize data cache locality.

Another option to pass data from one operator to another is pipelin-
ing [3]. Graefe [22] described a pipeline of operators, in which single
tuples are passed from one operator to another, i.e. tuple-at-a-time
granularity. Graefe implemented a recursive iterator pattern, where
tuples are requested from the final operator in the query execution
plan, i.e., the pull model. In the pull-model, a tuple request on an
operator causes a recursive request on its child or children. Pipelin-
ing is great for data cache locality and works for operators that are
no pipeline breakers such as filter operators. A filter operator for in-
stance requests single tuples from its child, until a tuple satisfies the
filter condition and can be returned. Other operators such as sorting
or aggregation are pipeline breakers, because they need the entire
input before returning an output tuple. A hash join has two chil-
dren, build side and probe side. The build side of the hash join, is
a pipeline breaker. Consequently, the first tuple request on such an
operator fetches all tuples from the build side to build the hash table.
Next, the join operator requests tuples from the probe side until a
tuple matches an entry in the hash table and can be returned, or the
probe side is completely processed. The probe procedure is repeated
for all following tuple requests on the hash join operator.

Boncz [42] observed that passing single tuples through a pipeline
causes a virtual function call every time a tuple is passed from one
operator to another, and consequently a substantial overhead and a
bad instruction cache locality. To address these shortcomings, Boncz
proposed to pass a batch of tuples at a time, i.e., batch-at-a-time or
vector-at-a-time, instead of a single tuple at a time. Essentially this
is a trade-off between no pipelining, i.e., materializing entire inter-
mediate results after each operator, which results in losing the data
cache locality, and passing a tuple at a time, which results in a vir-
tual function call overhead. Further, passing a batch at a time enables
data-level parallelism such as Single Instruction, Multiple Data (SIMD)
vectorization [92], to simultaneously process tuples within an operator.
The pipeline described by Boncz [42] implements the pull model.

Kemper and Neumann [62] showcased a more recent pipelining
approach that uses the push-model. In the push-model, tuples are
pushed from the bottom of the plan through the pipelines to a pipeline
breaker, e.g., a sort operator or the build side of a hash join. For query
execution plans with multiple pipeline breakers, the pull-model im-
plicitly handles the dependencies of pipelines. In the push-model, the
execution order of pipelines has to be orchestrated explicitly, which
creates opportunities for adaptive query processing [69]. Apart from
that, the push-model enables a more simplistic implementation of par-
allelism within a single pipeline. The base table at the beginning of

15

16

FOUNDATIONS

a pipeline can be split into partitions of arbitrary size, and they can
be pushed through a pipeline in parallel without any synchroniza-
tion. We further discuss intra-pipeline parallelism in Section 2.5.3.1.
The pipelining by Kemper and Neumann [62] utilizes just-in-time
compilation. For each pipeline and all its operators it creates a piece
of code that is compiled and executed at query execution time. On
the one hand, just-in-time compilation completely avoids virtual func-
tion calls, further improves instruction cache locality, and decreases
branching. On the other hand, it has a high implementation complex-
ity and introduces an additional compilation overhead. The initial ap-
proach by Kemper and Neumann uses the tuple-at-a-time approach
since virtual functions calls do not occur anymore. To address the
scalability issues on NUMA systems [72], and speedup the parallel ex-
ecution of pipelines with SIMD vectorization [98], they use the batch-
at-a-time approach. Just-in-time compilation of pipelines results in a
push-model, because each pipeline is a function that takes the input
relation and materializes the result in the pipeline breaker.

We use the batch-at-a-time pipelining in this work, because it is a
reasonable trade-off between performance and implementation com-
plexity. Further, we use the push-model, due to its advantages for
intra-pipeline parallelization that we further discuss in Section 2.5.3.1.

2.5.3 Parallelization

The parallelized execution of queries in database systems has a major
performance impact. Hennessy and Patterson [92] give a comprehen-
sive overview of parallelization techniques in computer architectures.
In modern scale-up systems, parallelization is achieved by task-level
parallelism such as parallel threads, by data-level parallelism such as
Single Instruction, Multiple Data (SIMD) vectorization, and of course
implicitly by instruction-level parallelism.

In database systems, different queries can be processed simultane-
ously, i.e., inter-query parallelism, which increases the query through-
put. In addition to that, parallelism can be also achieved within a sin-
gle query, i.e., intra-query parallelism, which improves the execution
times of single queries. One level of intra-query parallelism is the si-
multaneous execution of independent pipelines of a query execution
plan. It can be denoted as inter-pipeline parallelism. Inter-pipeline par-
allelism cannot utilize modern scale-up systems with multiple pro-
cessor sockets and hundreds of cores, when only a small number of
queries is processed simultaneously in the system.

2.5.3.1 Intra-Pipeline Parallelism

To increase the level of parallelism in modern scale-up systems, tuples
have to be pushed in parallel through a single pipeline. In theory,
every single tuple could be pushed in parallel through a pipeline,

2.6 QUERY OPTIMIZERS

e.g., by a thread, but in practice this creates a parallelization overhead.
Therefore, it is more reasonable to push batches of tuples [72].

To address the scalability issues in NUMA-systems, Leis, Boncz,
Kemper, and Neumann [72] created a NUMA-aware strategy to par-
allelize single pipelines. It splits tables into batches of tuples, denoted
as morsels. The morsels are allocated on a NUMA node, and pushed
by a thread that is bound to the NUMA node through the pipeline.
This concept is an extension of the batch-at-a-time approach [42], and
ensures that remote data accesses are reduced to a minimum. We
use the NUMA-allocated morsels and the NUMA-aware workload
scheduling [72] for intra-pipeline parallelism in this work.

2.5.3.2 Intra-Operator Parallelism

Orthogonally to pushing tuples in parallel through a pipeline, there
are also strategies to parallelize pipeline-breaking operators such as
join, sort and aggregation. Schuh [85] gives a comprehensive overview
of parallel hash and sort-merge join algorithms including the CHT
join. One option for building a hash table in parallel is partitioning
the input by hash value, and build the partitions in parallel. Other
options are non-partitioning hash joins, which use synchronization
to build a single global hash table. The probe side of a hash join is no
pipeline breaker, and probing into a hash table can be done in paral-
lel without synchronization. There are hash join algorithms that also
partition the probe side to achieve cache efficiency [66]. In sort-merge
joins, all unsorted inputs are pipeline breakers, because they have to
be sorted before the merge. Sorting a single input can be done in par-
allel by partitioning the input, and sorting the partitions in parallel.
Aggregation operators can be also implemented using hashing or
sorting. Miiller [79] presented a cache efficient aggregation operator,
which operates at the optimal number of loaded cache-lines of sort-
and hash-based aggregation. It has been designed to run on modern
scale-up systems, and uses a recursive hash-based partitioning to en-
able the full parallelization of all phases of the aggregation algorithm.

2.6 QUERY OPTIMIZERS

The objective of query optimizers is to select a good query execution
plan from a set of plans that can grow exponentially with the number
of joined relations. We focus on cost-based query optimization, which
enumerates different plans based on some strategy, calculates the cost
for each plan using statistics, estimations and a cost function, and fi-
nally selects the plan with the cheapest estimated cost. Furthermore,
we consider enumeration algorithms that exhaustively enumerate the
plan space, and have no limitations to certain execution plan struc-
tures such as left-deep or linear trees.

17

18

FOUNDATIONS

2.6.1 Enumeration Algorithms

The initial publication on query optimization was a seminal work
by Selinger et al. [4] describing a dynamic programming based enu-
meration algorithm called DPsize. Dynamic programming is based
on Bellman’s principle of optimality [57] which says that an optimal
solution can always be constructed from optimal sub-solutions. In
practice, enumeration algorithms keep all plans that are not domi-
nated by another plan. A plan dominates another plan, when it is
cheaper and has at least the same properties. If there are two plans,
and one plan is cheaper, but the other plan has more properties, the
enumeration algorithm keeps both plans. There are logical properties
of a plan, such as the referenced tables. Plans with the same logical
properties form a plan class. Plans can also have physical properties
such as sorted columns. Physical properties can be utilized by the fol-
lowing operators. As a consequence enumeration algorithms do not
only keep the cheapest plan per plan class, but additional more ex-
pensive plans that have different physical properties. If an optimal
plan is constructed from sub-optimal plans with physical properties,
Bellman’s principle of optimality does not hold anymore.

Each dynamic programming enumerator has a dynamic program-
ming table, which has an entry for each plan class that contains at
least an optimal plan for this plan class. DPsize enumerates plans by
size, i.e., the number of joined tables, starting with plans of size one,
and continuing to the final solution size. To enumerate plans of a cer-
tain size, it combines the optimal plans of sub-plan classes. If cross
joins between two relations are not allowed, it checks if the plans are
feasible, i.e., if there is at least one join attribute that connects both
sub-plans. Finally, the optimal plan in the plan class that represents
the entire query is selected as optimal plan. Whether the identified
plan is the true optimal plan in practice depends on the quality of the
cost model, and the quality of the cardinality estimations as a core
component in the cost model.

To better analyze the behavior of query optimization algorithms,
queries are categorized by their topology: Figure 2.2 shows some typ-
ical topologies that are considered. Chain and Cycle queries are the
simplest topology, and usually require the least optimization effort.
The typical data warehouse queries have a star or snowflake topol-
ogy. They have a significantly larger number of plan alternatives com-
pared to chain or cycle queries that join the same number of relations,
and consequently need a higher optimization effort. Clique queries
do almost not occur in practice, but are theoretically the worst case in
terms of plan alternatives and optimization effort. When query exe-
cution plans with cross joins are enumerated, their enumeration com-
plexity is equal to a clique queries that reference the same number

2.6 QUERY OPTIMIZERS

NV

o N_/ /\

Chain Query Cycle Query Star Query

Y AR
T NV

Snowflake Query Clique Query

Figure 2.2: Overview of typical join query topologies.

of tables. In practice, queries can be a combination of the theoretical
topologies, containing chains, multiple cycles, and small stars.

Ono and Lohman [14] analyzed the complexity of DPsize join enu-
meration for queries with chain and star topologies. They showed
that the number of feasible plans, i.e., without cross products between
relations, grows polynomially for chain queries and exponentially for
star queries with respect to the number of joined relations.

Vance and Maier presented a dynamic programming algorithm
called DPsub [27], which is superior to DPsize for star and clique
topologies. It essentially iterates over all plan classes and very effi-
ciently enumerates all sub-plan combinations for each plan class.

Moerkotte and Neumann experimentally evaluated the complexity
of DPsize and DPsub, and proposed a new dynamic programming
algorithm that only enumerates the feasible plans or connected sub-
graph complement pairs, and called it DPccp [44]. DPccp is superior
to DPsize and DPsub for chain, cycle, star and clique queries, because
DPccp enumerates only feasible plans. DPsize and DPsub enumerate
a larger number of plans and check if they are feasible.

While DPsize, DPsub and DPccp enumerate plans bottom-up, De-
Haan et al. [46] proposed a top-down dynamic programming enu-
merator. Top-down enumeration uses memoization to save the opti-
mal plan for a visited plan class and avoid redundant searches. Com-
pared to bottom-up enumeration, top-down enumeration identifies a
complete plan and its cost much earlier. The cost of a complete plan
can be used to prune more expensive sub-plans during enumeration,
since the resulting plan cannot be cheaper. Top-down enumeration
enables further pruning. The cost of an optimized sub-plan can be
used to derive a cost limit for the complementary sub-plan.

For bottom-up enumeration, Moerkotte and Neumann published
an improved version of DPccp, which supports more complex join

19

20

FOUNDATIONS

predicates that involve more than two relations, i.e., queries that are
hyper-graphs, and called it DPhyp [54]. Finally, Fender and Moer-
kotte [67] extended top-down join enumeration for hyper-graphs.

Next to dynamic programming, there are other deterministic ap-
proaches, such as transformation-based [19, 29] or greedy [30, 57]
optimization, and probabilistic approaches such as genetic [12, 15] or
randomized [13, 21] optimization. There are also hybrid approaches
composed of different optimization algorithms to support very large
join queries [99]. Dynamic programming optimization performs an
exhaustive plan search, i.e.,, guarantees to find an optimal solution
with respect to the given inputs. Transformation-based optimization
can enumerate the same plan space as dynamic programming, if it
has corresponding transformation rules. The calculation algorithm
for optimality ranges in Chapter 3 requires deterministic decisions
during optimization, and consequently works with dynamic program-
ming and transformation-based optimization. The approaches in
Chapter 4 and 5 work with arbitrary optimization strategies. We use
dynamic programming optimization (DPsize) without cross products
in this work, since it supports general tree structures.

2.6.2 Cost Models

A core component of cost-based query optimization strategies is the
cost model. It assigns cost to a given plan, so that a better plan cor-
responding to the optimization goal, gets smaller cost compared to
another plan. To find a good plan for execution, the costs of enumer-
ated plans are calculated based on statistics and estimations, hence
they are denoted as estimated costs. To analyze the optimizer behavior
and the correlation between cost function and execution engine, costs
can also be calculated based on true statistics that are collected dur-
ing the query execution. Accordingly, they are denoted as true costs.
A major component in each cost function is the cardinality of interme-
diate results. Estimating the cardinality after a few number of joins to
even a moderate degree of accuracy is still an unsolved problem [78].
In this work, we use two cost functions. First, Cy,t [26] which sums
up the cardinalities of all intermediate results in the plan, and imple-
ments the intuition of minimizing intermediate result cardinalities:

[R] if P is a base table R
|P| + Cout(P1) + Cout(PZ) if P = P] > PZ

Cout(P) =

Cout has the ASI-property [26], but does not consider different op-
erator implementations and operator-specific decisions, such as the
build and probe side of hash joins. As second cost function we use
an extension of Coyt, called Cim [93]. It models the operator im-
plementation as well as the build/probe-side decision of hash joins,

2.6 QUERY OPTIMIZERS

and was created for main-memory systems. Such as Cyy,¢, it sums up
the cardinalities of intermediate results, but for each hash join opera-
tor, it also adds the cardinality of the build side. There are other cost
functions, e.g., for disk-based [10, 78] or distributed [9, 50] database
systems, which have different data access characteristics compared
to single node or main-memory database systems. Since we focus on
single node main-memory systems, we choose Cqy¢ and Cym. Fur-
thermore, Leis et al. [78, 93] have shown that simple cost functions
such as Coyt and Cyym can achieve strong correlations to the execu-
tion engine, and that cardinality estimation is the more severe issue
in query optimization. We verify that Coy¢ and Cym correlate with
our execution engine’s behavior in Section 2.7.

2.6.3 Cardinality Estimation

The estimation of the cardinality, i.e., the number of tuples, of an in-
termediate result is a central parameter in every cost function. On
the one hand, there are techniques that enable considerably precise
estimates, such as histograms for the output cardinality of filter opera-
tors. On the other hand, there are operators whose output cardinality
is hard to predict, especially in complex queries after many operators.
For join operators, Ioannidis et al. [16] have shown that the cardinal-
ity estimation error can grow exponentially with the number of per-
formed joins. Despite the effort for improving cardinality estimation
since then, Leis et al. [78, 93] have shown that cardinality estimation
for join operators is still the major problem in query optimization.
The basic textbook procedure to estimate cardinality is profile prop-
agation [74]. In profile propagation, each column of a table or at-
tribute A of a relation R has a profile by = A, 0, da, fr], with
1A, the estimated minimum value of A, 11, the estimated maximum
value of A, da, the estimated number of distinct values in A, and f,
the estimated cardinality of R. Profiles can have more statistics, e.g.,
the number of null values in a column. Furthermore, there is a set of
rules for different operators to modify or propagate a profile when it
was affected by an operator. An exact match filter on a unique column
such as A = x results in a propagated profile by = [/, 0h, d4, fR],
where 1/, = x, L =x, aj\ =1, ?}Iz =1, if A contains x. For an equality
join on the attributes A in relation R and B in relation S, the precondi-
tion is that T, = 1f, and U, = 1}, which can be achieved by applying
the corresponding propagation rules for filters [74]. Applying the pre-
condition filters will also create new estimates for cardinalities of both
relations, namely f & and f s, and new estimates for the distinct counts,
namely d/, and dj. Next the output cardinality frs can be calculated
using the minimum value f;\ = T{S, the maximum value 0, = 1,

21

22

FOUNDATIONS

both cardinalities 1?,’2 and f ¢, and both distinct counts aj\ and ag. For
the final equation, the distinct counts are not needed:

n=1y -4 +1 (2.1)
nooA A A, A ~ A
o L fL d’% d 1 £l
fRS = E AR 7/\5 —AZB == RS (2.2)
d. d. n n n
i=1 YA UB

In addition, the join creates new estimates for the distinct counts d /s
and dY [74]. Consequently, the profiles for the attributes A and B of
relation RS are b)y, = [}y, 1), d%, frsl, and bfy = [if;, 0f, df, frs).

In this work, we assume that the operator selectivity is indepen-
dent of the the position of the operator in the query execution plan.
Therefore, we calculate the selectivity of each operator on the base
table level using the minimal profiles described above. Consequently,
we are not propagating profiles through the query execution plan. We
show in Section 2.7 that the resulting cardinality estimations are com-
petitive to the cardinality estimations in open source and commercial
database systems. The selectivity of an operator is defined as the quo-
tient of its estimated output cardinality and its maximum possible
output cardinality. For join operators, we use the estimated output
cardinality from Equation 2.2 to calculate the selectivity:

SAB = == (23)

Consequently, when the corresponding operator joins two base tables
or intermediate results with estimated cardinality fr and fg, its esti-
mated output cardinality is:

frs = 8aB fr fs (2.4)

An example for the estimation of cardinalities for different intermedi-
ate results in a query execution plan is contained in Section 2.6.4. In
case multiple join conditions can join two base tables or intermediate
results, there are different assumptions to calculate the overall join
selectivity. One option is assuming independence of join conditions,
and consequently multiply the single join selectivities [74]. Another
option is that join attributes are not independent [20, 23—25], which
we assume in this work. Consequently, the number of tuples that re-
sult from the join is larger compared to independent join attributes. In
this case, the correlation of two join attributes has to be calculated to
derive the overall join selectivity, which requires additional statistics.
As a simple heuristic, we take the selectivity of the most selective join
condition as overall join selectivity, and show in Section 2.7 that this
results in competitive cardinality estimates. In general, it is sufficient
to estimate the cardinality only once per plan class.

2.6 QUERY OPTIMIZERS

f: 347,268
¢: 8,018,758

X
$: 0.00001000
Cl.cim_d x T.t.id
MK.mk m_id x T.tid
ClL.cim_id ® MC.mc_m_id
MK.mk_m_d x MC.mc_m_id

f: 705,030 f: 49,256
¢: 7,188,725 ¢: 482,765
X X

§: 0.00000024 §: 0.00000426
N.n_id x CLci_person_id CN.cn_id @ MC.mc_c_id

£ 4,167,491 f: 705,030 f: 234,997 f: 49,256
£ 4,167,491 (D& 2316204 &: 234,997 ¢: 198,512

: :
§: 0.00001000

$: 0.00001000
Cl.cim_id x MK.mk_m_id T.t.id x MC.mc_m_id

f: 1,374,410 f:51,297 {:100,000 f: 49,256
¢: 1,374,410 ¢: 236,764 ¢:100,000 ¢: 49,256

:
§: 0.00000745

Kk.id x MK.mk_keyword_id
f: 134,170 f: 51,297
¢: 134,170 ¢: 51,297

o —hy

Figure 2.3: Example query execution plan of Join Order Benchmark
Query 17, joining the tables KEYWORD (K), MOVIE_KEYWORD (MK),
CAST_INFO (CI), NAME (N), COMPANY_NAME (CN), TITLE (T), and
MOVIE_COMPANIES (MC).

2.6.4 Parametric Cost Functions

A foundational building block for the algorithms in the Chapters 3
and 4 are Parametric Cost Functions (PCF) [37, 39]:

Definition 2.1. A Parametric Cost Function (PCF) is the cost of a query
execution plan or sub-plan, modeled as a function of one or multiple cost
parameters.

We use PCFs with cardinality as parameter. Consequently, a PCF
shows the cost change of a query execution plan or sub-plan, when
the cardinality of a base table or intermediate result varies. This is
helpful to analyze the impact of cardinality estimation errors, i.e., a
difference between estimated and true cardinality.

Next, we give an example for the calculation of a PCF. We consider
a robust query execution plan P, for Query 17 of the Join Order
Benchmark [78]. Figure 2.3 shows the query execution plan together
with the estimated cardinalities f and estimated join selectivities §.
For the the given statistics in Figure 2.3 and Cyyt as cost function,

23

24

FOUNDATIONS

the entire plan has estimated cost ¢ of 8,018,758. In this example,
we create a PCF as a function of the cardinality on edge 1, which
could be used to analyze the cost behavior of the query execution
plan when cardinality on edge 1 varies. We denote the cardinality on
edge 1 as fcrxmk, since it is the cardinality after joining CAST_INFO
(CI), KEYWORD (K), and MOVIE_KEYWORD (MK). To create the PCF, we
calculate the Coy ¢ cost of Prop, but leave fcrx Mk as variable instead
of setting it to the estimated cardinality chK,MK =705, 030:

Cout (Prob, fark,mk)

= ferxMK + Nk MK + TN,CLK MK, CN T, MC
+ fx + fmx + fomx + for + i
+ fr+fme + fome + fon + fonpme

TN,C1LK, MK

= forMK - TN - SNsaCLK MK
= foxmk - 4,167,491 -0.00000024

= 1.00 - fcrx MK

TN,CIL,K,MK,CN,T,MC

= ‘FN,CI,K,MK : 1}:\CN,T,MC : §N,CI,K,MK,CN,T,MC
= 1.00- forx vk - 49,256 - 0.00001

= 049. fCI,K,MK

Cout (Prob, forkmx)

= faxmk + 1.00 - farx mx + 049 - forx Mx
+ 134,170+ 51,297 + 51,297 + 1,374,410
+ 4,167,491 + 100,000 + 49,256 + 49,256
+ 234,997 + 49,256

= 249 - ferxmk + 6,261,430

Except for selfjoins, Coy¢ always results in PCFs that are linear
functions, when modeled as a function of one cost parameter. Linear
PCFs simply some calculations we do in this work, such as the slope
analysis of PCFs, and the calculation of intersection points between
two PCFs. Cost functions other than Coq¢ do not necessarily result in
linear PCFs. In Chapter 3, we model the costs of different query exe-
cution plans as PCF and calculate the intersection point between two
PCFs, to identify the cardinality range in which a plan is optimal. In
Chapter 4, we also model the costs of different query execution plans
as PCF, but take the slope of a PCF as indicator for the robustness of
a query execution plan with respect to cardinality estimation errors.

2.7 RESEARCH QUERY PROCESSOR

Query Optimizer
* DPsize Enumerator
* Cout & Cyyn Cost Functions :
+ Simple Cardinality Estimator ; Result

A

Feedback Query Execution Plan

Query Execution Engine
+ Push Pipelining in Batches
* Morsel Parallelisation
» CHT Hash Join (extended)

Database
* Column Store * Main-Memory

Figure 2.4: Overview of our query processor combining the foundations.

2.7 RESEARCH QUERY PROCESSOR

To implement our approaches and do experimental evaluations, we
created a query processor that combines the foundations we discussed
in this chapter. Figure 2.4 gives an overview of the basic architecture
of our query processor. Our query processor focuses on join process-
ing, and is built on a main-memory column store. The query execu-
tion engine implements push-based pipelining in batches and has
an extended version of the CHT hash join, which we describe in
Section 5.4.2. To better understand the extension of the CHT hash
join, we further explain the main-memory column store and execu-
tion engine in the Sections 2.7.1 and 2.7.2. For the parallel execution
of pipelines, we use morsel-parallelism, including a NUMA-aware
task scheduler. On top of the query execution engine, we build a join
optimizer, which does dynamic programming enumeration, such as
DB2 [17] and Postgres [78]. As Postgres, our join optimizer exhaus-
tively searches the plan space and also enumerates bushy query exe-
cution plans. We choose DPsize [4] as dynamic programming enumer-
ation algorithm. Furthermore, our join optimizer uses the Coy¢ [26] Or
Cmm [93] cost function, and the simple join cardinality estimator of
Section 2.6.3. The query optimizer implementation is single-threaded.

25

26

FOUNDATIONS

NUMA-allocated
Table Partitions

Column Partitions

Figure 2.5: Schema showing the table format in our main-memory column
store, consisting of columns, NUMA-allocated table partitions
and column partitions, and tuple visibility information.

2.7.1 Main-Memory Column Store

Figure 2.5 shows the table format of our main-memory column store
(see Sections 2.3 and 2.4). Each Table is vertically partitioned into
columns, and horizontally partitioned into table partitions. Conse-
quently, the smallest granularity of main-memory that is allocated
is a column partition. All table partitions have a fixed size, i.e., a
fixed number of tuples. Furthermore, each table partition is allocated
on a NUMA-node (see Section 2.3). To consider the effects of paral-
lel inserts, updates, and deletes on the database, such as in HTAP,
we added the necessary data structures for Multi Version Concurrency
Control [5]. There are two additional columns in each table, to store
for each tuple the version when is starts being visible and the version
when it stops being visible.

2.7.2 Pipelining

Our query processor implements push-based pipelining in batches.
Figure 2.6 shows an example pipeline, which starts on a base table,
as explained in Section 2.7.1, and ends in a pipeline breaker. Pipeline
breakers are either the build side of a hash join or the final breaker
that materializes the query result. Each pipeline starts on a base table
with the creation of batches. Creating a batch works as follows:

We iterate over the table partitions in the table. For each table par-
tition we create a task, which is assigned to the same NUMA-node
on which the table partition is allocated. Next we submit the task to
our NUMA-aware task scheduler. Each NUMA-task creates a batch
based on the corresponding table partition. Since table partitions and
batches have the same size, i.e., the same number of tuples, and all
data structures are allocated in main-memory, we just add references

2.7 RESEARCH QUERY PROCESSOR

\ \ \ \ \ Hash Join
S E E E o\ rrow

Pipeline Breaker
+ Hash Table

. Operator
Hash Join glpetne
Probe Operator r:{a ;r
+ Has
Table
Push Batches |=
Tuple Visibility -« ’ : ,
Initial ,/"’ ,,-'"' x\\\
Projection [/ 7 [[}

Base Table

Figure 2.6: Schema of the pipelining in our query execution engine, showing
the creation of batches, join operators and pipeline breakers.

of the required column partitions of the table partition to the batch.
This avoids copying data from the database into the query processor.
Each batch has furthermore a bitset to indicate which of its tuples are
valid. For instance, not finding a partner in an equi-join can make a
tuple invalid. Initially the bitset is filled by evaluating the Multi Ver-
sion Concurrency Control information. Each query reads exactly one
version of the database, so we initially check which tuples are valid
in that version, and store this information in the bitset.

Next, each NUMA-task pushes its batch through the pipeline until
it has no tuples anymore, or reaches the pipeline breaker. Each time
a batch is pushed from one operator to another creates a virtual func-
tion call. This first operator could be the probe side of a hash join, as
in Figure 2.6. To figure out which tuples are still valid, each opera-
tor initially checks the tuple validity bitset, which is small enough to
reside in the processor cache. Each join operator can add temporary
column partitions to the batch to store the tuples of the joined table.
Since allocating and deallocating temporary column partitions can
introduce considerable overheads, we employ a corresponding pool
allocator. Joins can also be m:n joins, so that one tuple on the probe
side in an equi-join finds multiple join partners on the build side.
In this case the first join partner is materialized in the actual batch,
and all other join partners are materialized together with the original
probe-side tuple into an overflow batch. Tuples that do not find a join

27

28

FOUNDATIONS

partner are marked as invalid, so that they are not considered in the
the following operators in the pipeline. For each full overflow batch, a
new NUMA-task is created, which pushes the overflow batch through
the remaining operators in the pipeline to the pipeline breaker. In the
end, all batches that contain valid tuples are collected in the pipeline
breaker, and the NUMA -tasks finish.

2.7.3 Experimental Verification

To verify our query processor design, we repeated some experiments
from Leis et al. [78]. First, we show that the Cyt and C1y cost func-
tions correlate to the execution times in our query execution engine.
We executed different query execution plans for the queries of the
Join Order Benchmark [78]. The Figures 2.7 and 2.8 show the results
for Cout and Cim. The x-axis shows the costs based on true cardi-
nalities, and the y-axis the query execution times. Similar to the ex-
periments in Leis et al. [78], there is a strong correlation between the
true cost and the query execution time. Consequently, it is reasonable
to choose Coyt and Cym as cost functions for our query optimizer.

Figure 2.9 presents the results of the second experiment, which
shows the errors in the estimation of join cardinalities. The x-axis
shows the number of joins, and the y-axis the factor of estimation
error. Similar to the cardinality estimators, which were compared in
Leis et al. [78], our cardinality estimator underestimates the join cardi-
nalities. Also the numbers are similar to the results in Leis et al. [78]:
For six joins, our estimator has a median estimation error of two or-
ders of magnitude, and at most a four orders of magnitude.

Our experiments confirm the result of Leis et al. [78]. We see that
precise cardinality estimation is rather an issue than a good cost func-
tion. Furthermore, our experiments show that our cardinality estima-
tor and cost function have the same behavior for the Join Order Bench-
mark, as the state-of-the art systems compared in Leis et al. [78]. In
the end, the experiments verify the design of our query processor.

Our query processor was finalist in the ACM SIGMOD Program-
ming Contest 2018. Due to the dynamic programming enumeration
algorithm we choose, the bushy trees we enumerate, and the results
of the experiments in the Figures 2.7, 2.8, and 2.9, we argue that our
join optimizer’s choice of the estimated optimal plan is very similar
to the choice of popular commercial and free systems, for the con-
sidered benchmark. We use this query processor to implement our
approaches and do experiments. The optimality range calculation in
Chapter 3, and the robustness metrics and the robust plan selection
in Chapter 4 are implemented as extensions of the query optimizer.
For the adaptive query processor in Chapter 5, we extend both the
query optimizer and the query execution engine.

Query Execution Time
in [ms]

Figure 2.7:

Query Execution Time
in [ms]

Figure 2.8:

Estimation Error
over —

+ under

Figure 2.9:

2.7 RESEARCH QUERY PROCESSOR

104 —rr —rr e e

L1

103

102

'IO] Il L1 1111 ‘ 1 L1111l ‘ 1 L1111l ‘ 1 L1111l
10° 106 107 108 107
Cout Cost calculated with True Cardinalities

Experiment from Leis et al. [78] repeated for our query proces-
sor to show the correlation between the Cyqt cost function and
query execution times in our query execution engine.

104 T T 11717 T T TTTT T T 17117 T T T 11T

T T T T
L1

]Ol Lol Lol Ll R
106 107 108 107

Cmm Cost calculated with True Cardinalities

_
o
(52

Experiment from Leis et al. [78] repeated for our query proces-
sor to show the correlation between the Cq,,, cost function and
query execution times in our query execution engine.

10! |

100 + [r] T T S T . -
103 - 417 1 .

10° \ \ \ \ \ \
1 2 3 4 5 6

Number of Joins

Experiment from Leis et al. [78] repeated for our cardinality esti-
mator to show the estimation errors after some joins.

29

PRECISE OPTIMALITY RANGES

The first problem, we address in this work is the detection of sub-
optimal query execution plans, caused by cardinality estimation er-
rors. Our solution are precise optimality ranges, which cannot only
detect sub-optimal query execution plans, but have further applica-
tions in query processing.

3.1 INTRODUCTION

Intermediate result cardinalities are the central parameters of each
cost model, and consequently have a strong impact on the choice of
the optimal plan. In this chapter we look into the following problem:
A query optimizer selects a query execution plan that it considers to
be optimal. We assume that in the optimal plan, the cardinality of an
intermediate result I is not the estimated cardinality f] but variable,
denoted as f1. This covers situations in which the true cardinality fDI
is different to the estimated cardinality f1. It can occur because of
estimation errors, because it was a parametric query, or because of
database changes in the meantime as in HTAP. The emerging ques-
tion is: For which cardinalities does the selected optimal plan remain
optimal? It can be answered by an optimality range for cardinalities
= [f%; f?], so that 0 < f% < f1 < f? < oo. Optimality ranges can
be annotated on each edge in the query execution plan, i.e., for each
intermediate result. As soon as a part of the query or the entire query
was executed, the true cardinalities for the intermediate results are
available. If a true cardinality falls outside of its pre-calculated op-
timality range, we know there is another, cheaper plan. This simple
check is much more efficient than a full optimization.

Figure 3.1 shows a running example for this chapter: It is a query
and the its optimal query execution plan with annotated optimality
ranges. The query is a chain query joining five relations with esti-
mated cardinalities f and estimated join selectivities § as depicted
on the top of Figure 3.1. In the middle of Figure 3.1 we see the cost-
optimal plan P, with annotated optimality ranges r. Note that some
lower bounds are zero and some upper bounds are infinity. One rea-
son is that the number of alternative plans decreases the more sub-
plans get executed. Suppose the join of R and S in the cost optimal
plan P, was executed. The estimated cardinality of R > S, mes is
104, and the optimality range on the outgoing edge of R 1 S, Trys
indicates that the plan remains optimal when the cardinality fryqs is
between 103 and 10°. Note that optimality range bounds are of course

31

32 PRECISE OPTIMALITY RANGES

Query:
Selectivities &: 107 107 10° 10°
R S T U A%
Cardinalities f: 10 4 10 7 10 8 10 6 10 4
Plan Popt:

Figure 3.1: Example for an optimal query execution plan with optimality

ranges on its edges to indicate where the plan is optimal.

not always decimal powers. When the cardinality fryqs exceeds the
upper bound fTRms = 10°, the alternative plan Pq1¢2 becomes optimal.

Calculating precise optimality ranges is, to the best of our knowl-
edge, an unsolved problem. We present an algorithm to calculate pre-
cise optimality ranges, which relies on cost-based query optimization.
Our solution contains plan space and cost parameter considerations.
The algorithm can be a post-optimization step, and utilize the work

and data structures from the regular plan search.

Next to the algorithm to calculate precise optimality ranges, this
chapter has the following contributions: Together with the algorithm,
Section 3.2 presents the corresponding building blocks, the pruning
strategy, and a worst case analysis for the number of enumerated
plans to calculate precise optimality ranges. Additional contributions
are the experimental analysis on optimality ranges for a TPC-H-like
benchmark, and an experimental evaluation on the number of enu-
merated plans during optimality range calculation. Both are presented
in Section 3.3. We finish this chapter with discussing related work and

applications for optimality ranges in the Sections 3.4 and 3.5.

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

We describe the calculation of a precise optimality range for an edge
in an optimal query execution plan. Our optimality range calcula-
tion is based on the plan table, e.g. the MEMO structure or dynamic
programming table, which was created during the regular query opti-
mization. A plan table consists of groups or plan classes. Every group
or plan class represents a set of plans with the same logical proper-
ties, e.g. the same set of referenced tables. The objective of optimality
ranges is to indicate for which intermediate result cardinalities the
optimizer would not find a better plan. For that reason, the calcula-
tion takes the same inputs and makes the same assumptions as the
optimizer. Furthermore, this decision is consistent when the enumer-
ation for initial optimization and optimality range calculation is de-
terministic, i.e., the same plan space is enumerated. Optimality range
calculation works for optimization algorithms that guarantee to find
the cost-optimal plan, such as bottom-up [14, 54] and top-down [46,
67] dynamic programming, or transformation-based [19, 29] optimiza-
tion. It also works for optimization algorithms that enumerate a sub-
set of the necessary plan space, when the enumeration is determin-
istic. The meaning of optimality ranges for randomized and genetic
optimization algorithms is questionable: They could indicate a better
plan which is not found when the optimizer is invoked again.

In Section 3.2.3, we discuss the plan alternatives, which are the
feasible plans [14] or also denoted as connected-sub-graph comple-
ment pairs [44] enumerated by dynamic programming. Just as dy-
namic programming, our optimality range calculation algorithm (Sec-
tion 3.2.4) exploits Bellman’s principle of optimality [57]. We argue
that this is the most efficient way to calculate optimality ranges. We
also explain how optimality ranges are calculated with other enumer-
ation strategies. As a general procedure for optimality range calcula-
tion, we propose to search the optimal plan, keep the plan table, and
then calculate the optimality ranges for the optimal plan. For the next
subsections we make the following assumptions:

1. We assume query execution plans contain only scan and join
operators.

2. Plan classes keep only one optimal plan, and no further plans
with additional physical properties like sorted columns.

3. We assume a cost function that results in linear Parametric Cost
Functions (PCFs).

4. There are no estimation errors for parallel sub-plans in bushy
query execution plans.

Since these assumptions do not hold in reality, we discuss in Sec-
tion 3.2.6 how they can be relaxed.

33

34

PRECISE OPTIMALITY RANGES

3.2.1 Plan Cost Intersection

The first building block for optimality range calculation is the inter-
section of query execution plan costs [37, 39]. It starts with modeling
the cost of the optimal plan as PCF (see Section 2.6.4) of the cardinal-
ity of the edge on which the optimality range is calculated. This is
repeated for a corresponding alternative plan. Next, the intersection
point of the two PCFs is calculated to figure out at which cardinal-
ity the alternative plan becomes cheaper, i.e., the optimal plan stops
being optimal. The necessary plan alternatives, which have to be in-
tersected with the optimal plan to calculate a precise optimality range
are explained in Section 3.2.3.

We continue with an example for cost intersection. To simplify the
example calculations, we use the Cyq, ¢ cost function, but set the cost
of base table scans to zero, so that:

0 if P is a base table R
Cout(P) = (31)
|P| + Cout(P1) + Cout(PZ) it P= P] > PZ

The Coyt cost function is no strong limitation, and our approach
also works with cost functions other than C,+t. Let us consider the
example query in Figure 3.1 for the cost intersection again. For Coy+¢
and the given statistics, plan P,p¢ has costs of 1.21 x 10°, and plan
Pa1t2 has costs of 1.021 x 10°. Consequently, Po,+ was preferred over
plan Pq1t2. Now we assume cardinality changes on the R 1 S edge,
and derive the corresponding PCF for P,,¢. We calculate the cost of
Popt and assume that the output cardinality of R > S, frygs or fgs is
not the estimated cardinality fgs = 10* but an arbitrary value:

Cout(Popt, frs) = frs + frsT + fuv + frsTuv (3-2)
frsT = frs ¥ 108 %1077 = 10 % fgs (33)

v =10°%10" %107 =10* (3.4)
frsTuv = fRST * fuy *107¢ = 0.1 % fgs (3-5)
Cout (Popt, frs) = 11.1 % frs + 10%, (3.6)

We also derive the PCF for Pg412:

Cout(Pate2, frs) = fuv + fruv + frs + frstuv (3.7)
fuy =10°%10* %107 = 10* (3.8)
fruv =108 % fyy x 1076 = 10° (3.9)
frsTuv = frs * fruy #1077 = 0.1 % fgs (3.10)

)

Cout(Pattz, frs) = 1.1 % frs + 1.01 % 10°. (3.1

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

™

2x10° 1

15x10° 1

6 Cout (PaltZ ’ fRS)
1x10 "

Cost ¢

Cout (Popt s fRS)

05x10° -

1 1 1 -
Ll

50000 100000 150000 200000
Cardinality fRg

Figure 3.2: Example for the intersection of the cost of the optimal query
execution plan and an alternative query execution plan.

Due to the characteristics of Coy.¢, we get PCFs for Cout(Popt, frs)
and Cout(Part2, frs) that are linear functions, and consequently it is
trivial to calculate their intersection point:

Cout(Popt/ 1:RS) = COLLt(PCL].tZI 1:RS) (3'12)
11.7 % frs + 107 = 1.1 % frs + 1.01 % 10° (3.13)
frs = 10°. (3.14)

Comparing the slopes of Cout(Popt, frs) and Cout(Part2, frs) (see
Figure 3.2) shows that P,y is cheaper when frs is smaller than 102,
and Pqi12 otherwise. Two PCFs can also be parallel, i.e., no intersec-
tion point, or they intersect in the negative range. For cost functions
other than Cgy¢, there can be non-linear PCFs, which require more
effort to calculate one or potentially multiple intersection points be-
tween two PCFs [39]. In the end, modeling the costs of plans as PCF
and calculating the intersection point of two PCFs is the first building
block for the optimality range calculation algorithm.

We utilize this procedure in Narrow Range, which we describe in
Algorithm 3.1: Given the PCF of an optimal query execution plan
pcfopt, the PCF of another query execution plan pcfqi, and an op-
timality range, Algorithm 3.1 potentially returns an optimality range
with more narrow bounds. It starts by calculating the intersection
point of pcfopt with pcfqie (Line 3). If the intersection point is out
of the current optimality range (Line 4), then the optimality range
could not be narrowed and is returned unmodified (Line 5). If the
intersection point is in the current optimality range, we can narrow
the optimality range. In this case, we have to check if the intersection
point restricts the optimality range on the lower or upper end, i.e., it
is a new lower or upper bound (Line 7). In both cases, we return a
more narrow optimality range (Lines 8 and 10).

35

36

PRECISE OPTIMALITY RANGES

Algorithm 3.1 Narrow Range

1: function NARROWRANGE(PCF,ysp pcfopt, PCFayib pefare, Cardi-
nality 1, Cardinality fI)
declare Cardinality fintersect
fintersect o (pefope.b —pefqre.b)/(pefare.a — pefopt.a)
if f'}ntersect < f\IL or f}ntersect > f}\ then
return <f%, f?)
end if
if pcfopt.a < pcfqic.a then
return <f}ntersect/ f'IT>
else
return <f%’ f}ntersect>
11: end if
12: end function

=
Q

3.2.2 Optimal Plans Container

Another building block for the optimality range calculation is the
Optimal Plans Container (OPC):

Definition 3.1. An Optimal Plans Container (OPC) is a container for
PCFs, and has a lower and upper cardinality bound. The lower and upper
bound is initialized by the calculation algorithm with the current optimality
range. A PCF is only inserted into an OPC, when there is at least one point
between the lower and upper bound where the PCF is optimal. The insertion
of a PCF can cause the pruning of other PCFs in the container.

We now describe an OPC for PCFs that are linear functions. Fig-
ure 3.3 shows an example OPC for linear PCFs, with the cardinality
f1 of an intermediate result I denoted on the x-axis and the plan costs
c on the y-axis. The OPC has the lower bound f‘IL and the upper bound
f? and contains three PCFs that are piecewise optimal in the range.
Furthermore, Figure 3.3 shows the PCFy, which was in the OPC until
it got pruned during the insertion of PCFs3.

In Algorithm 3.2, we show how to insert a linear PCF pcfy ey into
an OPC opc. An OPC stores each PCF together with the cardinality
value from where its plan starts to be optimal. In Figure 3.3: PCF; is
optimal from f%, PCF3 from f{, and PCF; from f{’. An OPC is a list of
tuples, composed of a cardinality value and a PCF (Lines 2 and 3). The
list is sorted by the cardinality values. Furthermore, an OPC contains
variables for its lower and upper bound, f% and ﬁ (e.g. Line 26).

A PCF pcfpew is only inserted into pcfs when there is at least
one point between f% and f¥ where it is cheaper than all PCFs in pcfs.
Since we have linear PCFs, it is sufficient to only check the corners, i.e.,
the cardinality points f1. So initially we run over all ordered tuples
of cardinality values f; and PCF pcf in pcfs (Line 11). If there is one
PCF that is equal to pcfnew, we immediately return without inserting

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

Lo " t
f7 f f f
L. Cardinality f; I I

Figure 3.3: Example Optimal Plans Container (OPC) with its lower and up-
per bound, containing three PCFs.

pcfnew(Lines 12 to 14). If there is no such case, we store the first and
the last cardinality value f; where pcfnew(f1) is smaller than pcf(fy)
in fIirst and f19st (Lines 15 to 20). After the loop we determine if
(Line 22) and where to insert pcfnew (Lines 25 to 30), update the key
of the following entry in pcfs (Line 31), and potentially delete PCFs
that got sub-optimal because of pcfnew (Line 32). Finally, we insert
pcfnew with its key at the corresponding position in pcfs (Line 33).

The pruning of PCFs during the insertion into an OPC significantly
reduces the number of enumerated plans during optimality range cal-
culation. We further explain the impact of pruning in Section 3.2.4.2.
Pruning can also be disabled by just inserting PCFs into the container
(Lines 4 to 7). We show the significant difference between enabled
and disabled pruning in Section 3.3.2.

3.2.3 Considered Plan Alternatives

In this section we consider the plan space to decide which plans have
to be compared when calculating the optimality range for a given
edge in an optimal query execution plan. The central idea behind dy-
namic programming is Bellman’s principle of optimality [57], i.e., an
optimal solution can always be constructed from optimal sub solu-
tions. To find the optimal query execution plan, dynamic program-
ming query optimizers [4] usually do not keep only one optimal sub-
plan, but additional sub-plans that have certain properties such as
sorted columns. For now, we ignore physical properties to keep things
simple, and assume that only the optimal sub-plan is kept. Figure 3.4
shows the dynamic programming plan space for the example query
in Figure 3.1. The boxes denote different plan classes, which are a set
of alternative plans that represent the same intermediate result. The
plan class RST for instance contains the two alternative plans R, ST
and RS, T. All plan classes are stored in the dynamic programming

37

38 PRECISE OPTIMALITY RANGES

Algorithm 3.2 Optimal Plans Container Insertion

1: function INSERTINTOOPC(OPC opc, PCF pcfpew, bool pruning)

2: declare SortedList(Cardinality, PCF) pcfs
3: pcfs < opc.pcfs

4 if Ipruning then

5: pcfs.insert(0, pcfnew)

6: return

7 end if

8: // run over the entries, check where pcfy ¢y, is smaller
9 declare Cardinality ffi"st < oo

10: declare Cardinality f}¢st + oo

11 for each (Cardinality f;, PCF pcf) in pcfs do
12: if pcf = pcfhen then

13: return

14: end if

15: if pcfrnew(fr) < pef(fy) then

16: if fiiTst = oo then

17: f‘;”St «— f1

18: end if

19: f%aSt «— f

20: end if

21 end for

22 if f]ICiTSt = oo then
23: return

24: end if

25: declare Cardinality <Y

26: if ISt = opc.f} then

27: f]fey — opc.f%

28: else

29: Y < intersect(pcfpew, pefs.at(fiirst).prev())
30: end if

31: pefs.at(fiast).fy < intersect(pcfnew, pefs.at(fiost))
32: pcfs.eraselncludingBounds(ffirst, flast)

33 pefs.insert(fyY, pefnew)

34: opc.pcfs < pcfs
35: end function

table, together with their optimal. For cost functions other than Coy¢
there can be of course more plan alternatives. Asymmetric cost func-
tions such as Cym consider different build and probe side of hash
joins. Consequently more alternative plans can be enumerated. Couyt,
which we use as example, covers only different operator orders, i.e.,
the logical execution plan. Operator implementation, e.g. hash join
vs. sort merge join, and operator input order, i.e., build vs. probe side
are not covered by Cyy¢. The different plans in a plan class usually

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

(RSTUV RSTUV RS TOV RSTUV]

Figure 3.4: Dynamic programming plan space of the example in Figure 3.1
showing the plan classes with their plan alternatives. The opti-
mal plans are shown in bold font.

have different costs, so that only one is optimal (depicted in bold font).
In the plan class RST for instance, the plan RS, T is the optimal plan,
which is created out of the optimal plans of the plan classes RS and
T. We only store one optimal plan per plan class, and prune more
expensive plans (depicted in regular font). Figure 3.4 also shows the
plan P,y of Figure 3.1 in solid lines.

Definition 3.2. A Dependence Plan Class (DPC) is a plan class, and al-
ways part of the optimal plan. On its outgoing edge in the optimal plan, the
optimality range is calculated. Furthermore, its output cardinality is a pa-
rameter of the PCFs, which are created for the optimality range calculation.

Let us now assume we calculate the optimality range of P, (solid
lines) on the outgoing edge of R > S. We call R >a S or RS the DPC
(Definition 3.2). The relevant plan classes to consider are the ones that
are directly or indirectly referencing RS, i.e., the ones where a change
of freqs has an impact on the optimal plan choice. For Pyp¢ and RS
as DPC, those are the plan classes RS, RST, RSTU, and RSTUV. The
other plan classes are independent of frys, and have consequently
constant costs with respect to fryqs. In general, all plan classes that
are directly or indirectly referencing the DPC have to be considered.

To compare the costs of different plans, they have to represent the
same intermediate result. So comparing the costs can only be done
within the same plan class. Since conventional dynamic programming
optimization stores only one optimal plan per plan class, we have to
either modify it to store all enumerated alternatives, or re-enumerate
plans during the optimality range calculation. We re-enumerate the
plan alternatives, since not all plan classes are considered during the
optimality range calculation. Furthermore, storing all plan alterna-
tives for each plan class can increase the memory consumption and
initial optimization time. In the plan classes that directly or indirectly
reference the DPC, we distinguish three different types of plans:

39

40

PRECISE OPTIMALITY RANGES

1. The optimal plan, which by definition directly or indirectly ref-
erences the DPC. An example is the plan RST, U in the plan
class RSTU, considering P,p¢ (solid lines in Figure 3.4) with RS
as DPC.

2. Plans that are not optimal, and directly or indirectly reference
the DPC, such as the plan RS, TU in the plan class RSTU.

3. Plans that do not reference the DPC, such as the plan R, STU
in the plan class RSTU. For the latter type of plan, the costs are
constant and therefore the PCF parallel to the x-axis.

3.2.4 Calculation Algorithm

In this section we describe the algorithm to calculate the optimality
range for one edge in a given optimal plan. It is a recursive algo-
rithm, which outputs a sharp lower and upper bound for the opti-
mality of the plan. Initially, the lower and upper bound of the opti-
mality range are 0 and oo, respectively. The basic idea is to compare
sub-plans of the given optimal execution plan with its corresponding
alternatives and incrementally narrow the optimality range. By com-
paring sub-plans of the optimal plan with its alternatives, we utilize
Bellman’s principle of optimality. We argue that this is the most ef-
ficient way, since the ranges converge faster, which at the same time
enables more effective pruning. Nevertheless, optimality range calcu-
lation works with any deterministic enumeration strategy, because we
can also compare the entire optimal plan with corresponding plan al-
ternatives. For the correctness, it does not matter how we enumerate
the plans that are compared against the optimal plan. We start with
explaining optimality range calculation using the example query of
Figure 3.1 in Section 3.2.4.1, discuss the pruning in Section 3.2.4.2,
and present the final algorithm in Section 3.2.4.3.

3.2.4.1 Example

We use the example query and statistics of Figure 3.1 with the cor-
responding dynamic programming table in Figure 3.4. The optimal
plan for the example query is Popt, which is depicted in Figure 3.4
in solid lines. Furthermore, we choose the plan class RS as DPC, i.e,,
we want to calculate the optimality range on the outgoing edge of
R > S. So the first promising comparison is in the plan class RST,
where we start with re-enumerating all sub-optimal plan alternatives.
In the plan class RST, there is the plan RS, T as part of Pyp¢, and the
plan R,ST that does not reference RS. The question to answer now
is: For which values of fgyqs has R, ST smaller cost than RS, T? So we
model the costs of both plans as PCF with RS as DPC and calculate
the intersection point as described in Section 3.2.1. Remember that

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

the plan R, ST does not reference RS and therefore has constant cost.
The PCF of R, ST (see Section 3.2.1):

Cout (RS T, frs) = fras + ?RSIXJT = 1T * frpqs (3.15)

intersects with the PCF of RS, T:
Cout(Rx1 ST, frpgs) = 10,010,000 (3.16)

at freas = 9.1 % 10°. Since this point is inside our current optimal-
ity range rryqs = [0; 00], we get a new lower or upper bound. Algo-
rithm 3.1 reveals that the plan RS, T is cheaper until fryqs = 9.1 * 106,
and plan R, ST beyond this point. We just considered a sub-plan of the
optimal plan. Since Bellman’s principle of optimality holds, we know
that the optimal plan is not optimal anymore when fg.qs becomes
larger than 9.1 % 10°. Consequently, we narrow the optimality range
to TReas = [0;9.1 % 10°]. With the next comparisons, we are going to
further narrow the optimality range. Note that intersection points be-
yond our current optimality range are irrelevant, since they cannot
further narrow the optimality range.

The next interesting plan comparisons are in the final plan class
RSTUYV, for which we also re-enumerate all non-optimal plan alterna-
tives first. Next, we compare the plan RST, UV as part of Pypt with
its alternatives. The first alternative is the plan RS, TUV, which is not
part of the optimal plan but references the DPC. We model the costs
of RS, TUV as PCF:

Cout (RS TUV, frpgs) = 1.1 x frpas + 1,010,000 (3.17)
and the costs of our optimal plan RST, UV as PCF:
Cout (RSTa UV, frpgs) = 11.1 % frpgs + 10,000 (3.18)

to calculate their intersection point. As a result, we get a new up-
per bound and update our optimality range to Trss = [0;10°] (see
Algorithm 3.1). Another alternative plan is R, STUV, which does not
reference the DPC RS, and therefore has constant cost. We also model
the cost of plan R, STUV as PCF:

Cout (R34 STUV, freas) = 2,011,000 (3.19)

and calculate the intersection point with the PCF of our optimal plan
RST, UV (Equation 3.18). Since we get an intersection point that is
beyond our current upper bound, we ignore it (see Algorithm 3.1).
The most interesting plan to compare is RSTU, V, since there are
multiple alternatives for the plan class RSTU, and some plans directly
or indirectly reference the DPC RS: The first two alternatives are the
plans R, STU and RS, TU. Two additional alternatives result from the
plan RST, U, since the plan class RST also references the DPC RS. In

41

42

PRECISE OPTIMALITY RANGES

sum, there are four different plan alternatives for the plan RSTU, V
that have to be compared with the optimal plan RST, UV. Note that
dynamic programming would not enumerate all four alternatives be-
cause of Bellman’s principle of optimality. But in order to get the
exact optimality range, we have to consider these alternatives. Only
one of the four alternatives:

Cout(RSTU 1V, frpgs) = 21.1 % frpgs (3.20)

intersects with the PCF of Pyt (Equation 3.18) in the current op-
timality range rrys = [0; 10°], which gives us a new lower bound
fﬁms =103 (see Algorithm 3.1). Now that all the relevant plans were
considered, we have the final optimality range Tryqs = [1 03;10°] for
the outgoing edge of R 1 S in plan Py as depicted in Figure 3.1.

3.2.4.2 Pruning

When comparing plan alternatives with an optimal plan, it is in prac-
tice not necessary to enumerate all possible plans of a plan class, as
we did for the plan class RSTU in the example in Section 3.2.4.1.
To calculate correct optimality ranges, it is sufficient to enumerate
only plans that consist of sub-plans that are somewhere optimal,
due to Bellman’s principle of optimality. We can further limit that
to sub-plans that are optimal somewhere within the current optimal-
ity range, since we are not interested in intersection points beyond
the current optimality range. This gives us a powerful pruning strat-
egy, which significantly reduces the number of enumerated plans (see
Section 3.3.2). To explain the pruning, we consider the example in
Section 3.2.4.1. The pruning strategy removes three of the four alter-
natives for the plan RSTU, V.

We utilize the Optimal Plans Container (OPC) presented in Sec-
tion 3.2.2. The first OPC is created for the plan class RSTU when
the plan RSTU, V is supposed to be compared with the optimal plan
RST, UV. The OPC for RSTU is initialized with the current optimality
range Trys = [0; 10°], i.e., will only contain PCFs that are piecewise
optimal in the optimality range. Before the OPC is filled with the
PCFs of plans from the plan class RSTU, we recursively invoke this
procedure for the plan RST, U, i.e., the plan class RST. This recursion
towards the DPC RS stops once the DPC RS is reached. For the plan
class RST, we add both plan alternatives to the corresponding OPC
(see Algorithm 3.2), while only the plan RS, T is optimal within the
current optimality range. This is because the plan class RST is part of
the optimal plan, and is already considered in the current optimality
range. In the end, this removes the first of the four alternatives for
the plan RSTU, V. When the recursion returns from plan class RST to
plan class RSTU, we propagate all plans from the OPC of RST, i.e,,
only one plan, to RSTU, and insert it in the OPC for RSTU (Algo-
rithm 3.2). Furthermore, we add the plans RS, TU, and R, STU to the

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

Algorithm 3.3 Start Optimality Range Calculation

1: function STARTOPTIMALITYRANGECALC(PlanTable pt, DPC dpc)
2 // start the recursion on the final plan class

3 declare PlanClass finalPc + pt.finalPlanClass

4 declare Cardinality f%

5 declare Cardinality f?

6: declare PCF pcfopt

7 (f%, fT, pcfopt) < calculateOptimalityRange(finalPc, dpc)
8: return <f%, f?)

9: end function

OPC for RSTU. Since they are at no point optimal within the current
optimality range, they are ignored (see Algorithm 3.2). This prunes
another two of the four alternatives for the plan RSTU, V. In the end,
there is only one plan for RSTU, V that has to be compared with the
optimal plan RST, UV.

3.2.4.3 Formal Algorithm Description

We formalized the optimality range calculation in the Algorithms 3.3,
3.4, and 3.5. Algorithm 3.4 compares the optimal plan parts with
their alternatives to narrow the optimality range as described in Sec-
tion 3.2.4.1. Algorithm 3.5 searches all necessary plan alternatives and
implements the pruning strategy of Section 3.2.4.2. We expect a fully
optimized plan and the plan table still populated with one optimal
plan per plan class. As query execution plan format we assume plan
nodes that only know their children, so that a plan is just a pointer
to the top plan node. Optimality range calculation is a recursive al-
gorithm, which starts on the final plan class, and traverses the path
in the optimal plan to the DPC, which is the recursion base. In the
example in Figure 3.4, the recursion starts on the plan class RSTUYV,
continues on plan class RST, and ends in the DPC RS. Algorithm 3.3
only starts the recursion by invoking Algorithm 3.4 (Line 7) on the fi-
nal plan class (Line 3), and returns the final optimality range (Line 8).

Algorithm 3.4 is the main recursive function that is invoked for
every plan class on the path between the final plan class and the
DPC. Next to the considered plan class pc, it also takes the DPC
as parameter (Line 1). In the recursion base, i.e., pc being equal to
dpc, it returns the initial optimality range 0 to co and a PCF for the
DPC, which is an identity function plus the constant cost of the sub-
plans (Lines 3 to 5). In case we are not in the recursion base, we first
do a recursive invocation to the next plan class on the path to the
DPC (Lines 8 to 13). Returned is the current optimality range and
the PCF for the sub-plan of the optimal plan (Line 13), which is first
propagated to the current plan class (Line 15) and then used for a
comparison with other plan alternatives in this plan class. So in the

43

44 PRECISE OPTIMALITY RANGES

Algorithm 3.4 Calculate Optimality Range

1: function CALCULATEOPTIMALITYRANGE(PlanClass pc, DPC dpc)

2: // recursion base

3: if pc = dpc then

4 return (0, 0o, PCF(f1) = f1 + Cconst)

5: end if

6: // get next plan class towards the DPC

7 declare PlanClass nextPc

8: nextPc < getSubPlanToDpc(pc.optPlan, dpc)

9: // recursive invocation, traverse to nextPc

10: declare Cardinality f%

11: declare Cardinality ﬁ

12: declare PCF pcfopt

13: (f%, f?,pcfopo + calculateOptimalityRange(nextPc, dpc)
14: // propagate pcfopt to the plan class pc

15: pcfopt « propagatePcf(pcfopt, pc.optPlan, nextPc)
16: // re-enumerate alternative plans in the plan class
17: declare List(Plan) alternatives < pc.reEnumeratePlans()
18: // iterate over the alternative plans in the plan class
10: for each plan in alternatives do
20: if lisPlanReferencingDpc(plan, dpc) then

21: declare PCF pcfgiqt < (plan.costs)

22 <f%, fT) < narrowRange(pcfopt, pefstat, f%, f?)
23: continue
24: end if

25: declare PlanClass nextPc
26 nextPc «+ getSubPlanToDpc(plan, dpc)

27: // get all optimal plans of the sub-plan class

28: declare OPC tmpOpc

20: tmpOpc + findAllOptPlans(nextPc, dpc, f%, fI)
30: for each pcfqi¢ in tmpOpc do

31 // propagate pcfqi+ to the plan class pc

32: pcfaie < propagatePcf(pcfqit, plan, nextPc)
33: <f%, fb < narrowRange(pcfopt, pcfatt, f%, fI)
34: end for

35: end for

36: declare OPC cachingOpc(f%, fI)

37: insertIntoOpc(cachingOpc, pcfopy, true)
38: pc.cacheOpc(cachingOpc)

39: return <f%, f?,pcfopt)

40: end function

next step we re-enumerate all alternative plans for the plan class pc
(Line 17), and iterate over each alternative plan (Line 19). In case a
plan does not reference the DPC (Line 20), we create a constant cost

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

Algorithm 3.5 Find All Optimal Plans

1: function FINDALLOPTPLANS(PlanClass pc, DPC dpc, Cardinality

e T o T < S = S S S S S)
® 3 2 K RN R Q

=
2

20:
21:
22!
23:
24:
25:
26:
27
28:
20:
30:
31:
32:
33:
34

f%, Cardinality f?)

// check if there is a cached OPC for this plan class
declare OPC cachedOpc + pc.getCachedOpc()
if lcachedOpc.empty() then
cache dOpc.updateRanges(f%, f?)
return cachedOpc
end if
// create an OPC to return
declare OPC opc(f%, fi)
// recursion base
if pc = dpc then
insertIntoOpc(opc, PCF(f1) = f1 + cconst, true)
return opc
end if
// re-enumerate alternative plans in the plan class
declare List(Plan) alternatives « pc.reEnumeratePlans()
// iterate over all plans in the plan class
for each plan in alternatives Upc.optPlan do
if lisPlanReferencingDpc(plan, dpc) then
declare PCF pcfgiqt < (plan.costs)
insertIntoOpc(opc, pcfsiat, true)
continue
end if
declare PlanClass nextPc
nextPc « getSubPlanToDpc(plan, dpc)
declare OPC tmpOpc
tmpOpc + findAllOptPlans(nextPc, dpc, fi, f?)
for each pcfqyyr in tmpOpc do
pcfaie < propagatePcf(pcfqit, plan, nextPc)
insertIntoOpc(opc, pcfqrt, true)
end for
end for
pc.cacheOpc(opc)
return opc

35: end function

PCF (Line 21), and invoke Algorithm 3.1 to potentially narrow the
current optimality range (Line 22). In case a plan directly or indirectly
references the DPC, we determine the sub-plan, i.e., the plan class
that contains the DPC, and invoke Algorithm 3.5 on this plan class
(Line 29). Algorithm 3.5, which we further explain below, returns an
OPC with PCFs of relevant plans for the considered plan class to
Algorithm 3.4. Next, we iterate over each PCF in the OPC (Line 30),
propagate it to the current plan class (Line 32), and use Algorithm 3.1

45

46

PRECISE OPTIMALITY RANGES

to compare it with the PCF of the optimal plan to further narrow the
optimality range (Line 33).

While Algorithm 3.4 is only invoked for plan classes that are part
of the optimal plan, Algorithm 3.5 can be invoked for any plan class
that directly or indirectly references the DPC, such as RSTU in the ex-
ample in Figure 3.4. Algorithm 3.5 takes the plan class to consider, the
DPC, and the current lower and upper bound as parameters (Line 1).
It returns an OPC, i.e., a set of PCFs that are optimal within the given
range. Since Algorithm 3.5 can be invoked multiple times for a plan
class during one optimality range calculation, it is useful to cache the
OPC. So initially, we check if there is an OPC cached for this plan
class that can be returned (Lines 3 to 7). Like Algorithm 3.4, Algo-
rithm 3.5 also re-enumerates all plan alternatives for the considered
plan class (Line 16), and loops over each alternative plan (Line 18).
Plans which do not reference the DPC are immediately inserted as
constant cost PCF into the OPC (Lines 19 to 23). The insertion into
an OPC was described in Algorithm 3.2. For plans which directly
or indirectly reference the DPC, we determine the sub-plan, i.e., the
plan class that contains the DPC (Line 25), and recursively invoke
Algorithm 3.5 again (Line 27). This recursion ends when the DPC is
reached (Lines 11 to 14). When the recursive invocation for a plan
class returns an OPC (Line 27), we loop over each plan in the OPC
(Line 28), propagate it to the current plan class (Line 29), and insert it
into the OPC of the current plan class (Line 30). The current OPC is
cached in the plan class (Line 30) and returned (Line 34).

Algorithm 3.5 can be invoked on plan classes that were previously
considered by Algorithm 3.4, i.e., plan classes on the path between the
final plan class and the DPC. For that reason, Algorithm 3.4 caches
OPCs (Lines 36 to 38). In contrast to Algorithm 3.5, the OPC cached by
Algorithm 3.4 contains only pcfopt, because Algorithm 3.4 narrows
the current optimality range. Since ranges never become wider, no
PCFs except pcfopt can be optimal in the current range.

3.2.5 Complexity Analysis

We now derive theoretical worst case bounds for the number of enu-
merated plans required to compute the precise optimality range. We
consider bushy plans without cross products. Bushy plans are most
complex, and cover all other plan trees. Dynamic programming opti-
mizers for instance can find bushy plans. Linear plans are simpler and
covered by bushy plans. The number of enumerated plans first of all
depends on the query graph topology: We consider chain queries and
star queries. Chain queries are the most simple query graph topology.
Star queries are one instance of complex query graph topologies that
occur in practice, have far more plan alternatives than chain queries,
and are motivated by data warehouses. The number of enumerated

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

plans for the optimality range calculation also depends on the cho-
sen DPC: The deeper the DPC, the more plans are enumerated. We
consider the worst case for a DPC, which is always a base table plan
class. The number of enumerated plans is significantly reduced by
the OPC pruning strategy, presented in Section 3.2.2. Since we ana-
lyze the worst case, we do not consider pruning. In our experiments
in Section 3.3.2, we show that pruning significantly reduces the num-
ber of enumerated plans.

3.2.5.1 Chain Queries

The number of bushy trees without cross products enumerated by
dynamic programming optimization for a chain query with n input
relations is known to be [14]:

(n®—n)/6 (3.21)

For optimality range calculation, we consider only plan classes that
directly or indirectly reference the DPC. But in contrast to dynamic
programming, we have to enumerate all possible plans for a plan
class, not only those that consist of optimal sub-plans. Pruning may
reduce this number, as discussed above. The number of all bushy
trees without cross products for a chain query with n > 1 relations is
known to be [74]:

2 Te(n—1) (3.22)

where €(n) are the catalan numbers. The worst case for the number of
enumerated plans is always the DPC being a base table plan class. For
chain queries we distinguish two cases: (1) The DPC is the plan class
of a base table with only one neighbor in the chain query, as shown
in Figure 3.5a. (2) The DPC is the plan class of a base table with two
neighbors in the chain query, as shown in Figure 3.5b. Figure 3.5a
indicates how to derive the worst case bound for the first case. We
subtract the number of all possible plans for n — 1 relations from the
number of all possible plans for n relations. This gives us the worst
case bound for the number of bushy plans without cross products
enumerated by optimality range calculation for the first case:

2 1em—1)=2"2C(n—-2) (3.23)

The second case is the actual worst case for chain queries. Figure 3.5b
illustrates how we derive the worst case bound. We subtract the num-
ber of all possible plans for m and for k relations from the number of
all possible plans for n relations, where m and k are:

—1
m:{nZJ;k:n—1—m (3.24)

47

48

PRECISE OPTIMALITY RANGES

m

k
R S T S ¥
RS ST TU \E¥#

RST STU TUV

RSTU STUV
RSTUV RSTUV
(a) Special Case (b) General Case

Figure 3.5: Plan class diagrams indicating the theoretical worst case number
of enumerated plans for chain queries during optimality range
calculation.

Note that m and k are different numbers for even values of n. This
results in the following worst case bound for the number of bushy
plans without cross products, enumerated by optimality range calcu-
lation for chain queries:

2 e —1)—2mTe(m—1)« 2 Te(k—1) (3.25)

3.2.5.2 Star Queries

In star queries, every dimension table has to be joined with the fact
table, i.e., the center of the star. As a result, each plan class beyond
the base table level directly or indirectly references the fact table plan
class. So the worst case for the number of enumerated plans for star
queries, is that the DPC is the fact table plan class. In this case, all
plan classes except the other base table plan classes have to be enu-
merated. This gives us a theoretical worst case bound for enumerated
bushy (zig-zag) trees without cross products for star queries, which
is identical to the number of all possible plans [74]:

2 T m—1)! (3-26)

In Section 3.3.2, we experimentally show that the actual number of
enumerated bushy plans without cross products for chain and star
queries is significantly smaller than the worst case bounds.

3.2.6 Relaxing the Assumptions

At the beginning of Section 3.2, we made four assumptions to simplify
the calculation of optimality ranges: (1) We considered query execu-
tion plans containing only scan and join operators. (2) We assumed
that the dynamic programming optimizer only stores the cheapest
plan per plan class and no additional, more expensive plans with dif-
ferent physical properties. (3) We used a cost function, which creates

3.2 CALCULATION OF PRECISE OPTIMALITY RANGES

PCFs that are linear functions. (4) We assumed the absence of estima-
tion errors in parallel sub-plans. In this section, we discuss the effects
when these assumptions do not hold.

3.2.6.1 Operators other than Joins and Scans

Optimality range calculation is of course not limited to query execu-
tion plans with join and scan operators. The cost of a plan can be
modeled as a function of any intermediate result cardinality. We only
have to ensure that only plans with the same logical properties are
compared, when narrowing the optimality ranges. As additional op-
erators affect the complexity of enumeration algorithms [43, 68, 83,
90], they also affect the complexity of optimality range calculation.

3.2.6.2 Multiple Optimal Plans per Plan Class

At the end of the query optimization, there is only one optimal plan
for which we calculate the optimality ranges, the cheapest plan in
the final plan class. This optimal plan can consist of sub-plans that
have properties. So when Algorithm 3.4 reaches a plan class where a
plan with properties is selected, it narrows the optimality range (Algo-
rithm 3.1) only with plans that have the same property. Consequently,
when Algorithm 3.5 is invoked in such a context, it returns only plans
that have at least the corresponding properties: a plan B with at least
the same properties and lower cost dominates another plan A, and
thus A can be pruned. An example is a plan class RST that has a plan
where the ID column is sorted, and a plan class RSTU where a sort
merge join on the ID column is optimal. Within the plan class RST we
would only narrow the range with plans that have the same sorting
on column ID, or any additional property. On the plan class RSTU
in contrast, we consider all possible plans, especially all options for
the plan class RST. One alternative for the plan class RSTU could be
a hash join of the plan classes RST and U. In this case Algorithm 3.5
returns also plans without properties for the plan class RST.

3.2.6.3 Non-Linear PCFs

Whether PCFs are linear functions or not, only affects the calcula-
tion of plan cost intersections with the narrow range algorithm (Al-
gorithm 3.1), and the OPC design (see Algorithm 3.2). Calculating
the intersection point for two non-linear PCFs can be done numeri-
cally, for example using the Newton method [39], when we assume
monotonically increasing cost functions. Furthermore, narrowing the
current optimality range (Algorithm 3.1) could adjust both bounds of
the optimality range when there is more than one intersection point
within the current optimality range. The objective for OPCs stays the
same for non-linear PCFs: contain only PCFs that are piecewise opti-
mal in the current optimality range. During the insertion, it still has

49

50

PRECISE OPTIMALITY RANGES

4 T —Dbuild side breaker

Figure 3.6: Example plan with parallel subtrees.

to be checked if there is at least one point where the new PCF is opti-
mal, and which PCFs in the container became sub-optimal because of
the new PCF. This can be also done numerically. The plan space con-
siderations in Section 3.2.3 stay unaffected except that for other cost
functions that lead to non-linear PCFs, there might be more plan alter-
natives per plan class. The optimality range calculation, as described
in Section 3.2.4 and the Algorithms 3.3 to 3.5, is unaffected.

3.2.6.4 Estimations Errors in Parallel sub-plans

The objective of optimality ranges is to indicate when a query execu-
tion plan becomes sub-optimal. This can have multiple reasons, such
as transactions modifying the database, or estimation errors. Estima-
tion errors can also impact the correctness of the optimality ranges,
since optimality ranges are usually calculated based on estimations.
Let us assume a bushy query execution plan with two parallel sub
trees, where one sub tree was executed. The executed sub-plan can
have a cardinality other than the estimated one, e.g. it could be much
smaller, but still in the range. This has an impact on the correctness of
the other sub-plan’s optimality range, which was calculated based on
the statistics available before the execution. One option is to model
the cardinalities of parallel sub-plans as parameter in the optimality
range, so that the bounds are not just a value but a function. We use
Figure 3.6 to explain our solution.

Figure 3.6 shows a query execution plan that joins seven relations.
It is a pipelined plan using hash joins. The pipeline breakers are
highlighted. The relation subscripts represent the order in which the
pipelines are executed, starting with relation V. We calculate the op-
timality ranges r for the intermediate result of each breaker. In the
calculation of the optimality range rv, the PCFs have just one pa-
rameter, the cardinality fy. At runtime it can happen that fy is in
the range 1y but different than the estimated cardinality fy. This
has an impact on the correctness of the next range ry. To consider
the potential runtime error of fy, we leave it as additional parame-
ter in the calculation of ry. As a result, the PCFs have two instead
of one parameter (fy and fy), because there is one executed parallel

3.3 EXPERIMENTAL EVALUATION

A

& 5 One-Dimensional
2 2 5 Non-Linear PCFs
E — Multi-Dimensional
g $-4 Non-Linear PCFs
NG § One-Dimensional

3 Linear PCFs
'
Single Parameter Multiple Parameters
Dimensionality

Figure 3.7: Solution space for PCFs in optimality range calculation.

sub tree. For the next range ryvw the PCFs have only one parame-
ter (fuvw), because there are no executed parallel trees at this point.
For rs the PCFs have two parameters (fs and fyvw), as well as for
rsT (fsT and fuvw). In the range calculation for rx, the PCFs have
three parameters (fx, fst and fyvw). For the optimality range cal-
culation, this requires the PCFs to support more than one parameter,
and different implementations for plan cost intersection calculation
and OPCs. At execution time, the potential open parameters in opti-
mality ranges can be set with runtime cardinalities to get the precise
lower and upper bound cardinalities. There are also options to avoid
the multi-dimensional optimality range calculation. They depend on
the application in which the optimality ranges are used: One option
is to defer the optimality range calculation to runtime, and use the
latest statistics. Some applications, such as plan caching, just need a
binary decision if the plan is sub-optimal. Plan caching does not nec-
essarily need to know the edge where the plan becomes sub optimal
to evict it from the cache.

Figure 3.7 sums up the solution space for PCFs in optimality range
calculation. PCFs can have one or multiple parameters (x-axis), and
can be linear or non-linear (y-axis). In this work, we presented cost
intersection and the OPC implementation for the lower, left quadrant.
The basic principles of the optimality range calculation algorithm, i.e.,
the bottom up comparison of plan alternatives, can be applied for the
remaining quadrants.

3.3 EXPERIMENTAL EVALUATION

We implemented the optimality range calculation in our dynamic
programming join optimizer (see Section 2.7). Our join optimizer
uses DPSize [4] as dynamic programming enumeration algorithm,
Cout [26] as cost function, and the basic cardinality estimator (see Sec-
tion 2.6.3). We use this optimizer to find the initial optimal plan and
calculate the optimality ranges. To verify our experimental setup, we
show the performance of Coy ¢ and the cost estimator in Section 2.7.
The majority of numbers we report only depend on the considered

51

52

PRECISE OPTIMALITY RANGES

algorithm and not on the machine the experiments run on. Reported
execution times were taken on a two socket Intel Xeon E5-2660 v3
system with 128 GB of main memory, running a Linux with 3.12.74
kernel. Our dynamic programming optimizer and optimality range
calculation implementation are single threaded and compiled with
gcc version 6.3.0 and optimization option -O3.

3.3.1 TPC-H Ranges

In this section, we present optimality ranges for a benchmark similar
to TPC-H [89], to show the drawbacks of simple heuristics for opti-
mality ranges, which define an optimality range by just multiplying
a constant factor to the estimated cardinality [31, 41]. We further dis-
cuss the related work on optimality ranges in Section 3.4. We picked
the original schema of TPC-H with scale factor 10, and modified the
TPC-H queries to be pure join queries. Note that the optimality range
calculation algorithm is not limited to pure join queries. For each
query, we searched the optimal query execution plan with the dy-
namic programming join optimizer. After finding an optimal plan,
we kept the dynamic programming table, and calculated the optimal-
ity range for each edge in the optimal plan. We present the optimality
ranges for the TPC-H-like Queries 8 and 9 in Figure 3.8. We got simi-
lar results for all queries, but picked those two queries since they have
many joins, and cover all typical cases of optimality ranges we found.
The x-axis represents edges of the optimal query execution plan for
which we calculated the optimality ranges. The y-axis represents the
cardinality in logarithmic scale. We show the lower and upper bound
of the optimality range as a box plot, with the estimated cardinality
for the considered edge in the middle. In the implementation, the
maximum upper bound is limited to 2*4 — 1 (instead of o).

Multiple aspects are evident: First of all, the width of optimality
ranges can vary from very narrow, e.g. Figure 3.8a edge 1, to very
wide, e.g. Figure 3.8b edge 5. Additionally, the width of an optimality
range is independent of the estimated cardinality, i.e., there are very
narrow ranges for small cardinalities, e.g. Figure 3.8a edge 1, but also
very narrow ranges for large cardinalities, e.g. Figure 3.8a edge 9. So
the assumption that the optimality range grows with estimated car-
dinality value does not hold. More interesting is the position of the
estimated cardinality in the optimality range: There are estimated car-
dinalities, which are close to the lower bound of the optimality range,
e.g. Figure 3.8a edge 6, or close to the upper bound, e.g. Figure 3.8b
edge 4. Consequently, the optimality range bounds cannot be defined
by multiplying a constant factor to the estimated cardinality. Further-
more, the cases in which the estimated cardinality is close to a lower
or upper bound show that there are situations in query processing,
where even small estimation errors lead to a different optimal plan.

3.3 EXPERIMENTAL EVALUATION

1014
1012
1010

108
10° - =

T
Lo

L L
]
T |

T
Lo

Cardinality

104
102
100

T
Lo

T
Lo

L
o 1 2 3 4 5 6 7 8 9 10 11 12
Query Execution Plan Edge ID

(a) Query 8

1074
1012
1010

T
Lo

Ty
Lol

100
104
102
100

Cardinality

o U“Uu

1 2 3 4 5 6 7 8 9 10 11 12
Query Execution Plan Edge ID

(b) Query 9

UL B L L
vnd vod vd el

Figure 3.8: Optimality ranges and estimated cardinalities for the optimal
plans of two TPC-H-like queries.

3.3.2 Enumerated Plans

To experimentally evaluate the number of enumerated plans, we ran-
domly created chain and star queries. We picked chain queries, be-
cause they are the most simple query grapgh topology. Star queries
are one instance of complex query graph topologies that occur in
practice, have considerably more plan alternatives than chain queries,
and are motivated by data warehouse queries. For both topologies,
we experimented with query sizes, i.e., numbers of joined relations,
from 2 to 20. For each topology and query size, we created 100 ran-
dom databases. The base relation cardinalities are random numbers
between 10 and 10%. The join cardinalities between two relations are
random numbers between max(|Ri/, [Rj[) — 1000 and max(|R, [R;|) +
10 for two relations R; and R;. For each randomly generated database,
we searched the optimal plan for the corresponding query and calcu-
lated the optimality ranges on all edges of the optimal plan.

53

54

PRECISE OPTIMALITY RANGES

5k T 1T T T T T T T T T T T T T T T T
C—— Optimality Range Calculation
2 4k DP Enumeration —
S
i k
3 kT -
g
o 2k | —
g
=i r
S 1k |- I I I @ .
o ix¢4ﬁ%%%ﬁm@m@ﬂ
234567 8 9210111213141516171819 20
Query Size in [#Tables]
(a) Chain Query
10 77T T T T T T T T T T T T T T T T T3
107 £ &= Optimality Range Calculation T
2 6 [DP Enumeration T 1 3
g 10° T T
00 | Tk =
g 2 =
2 104 L T 5
g 183 3 - E
£ =
=} 2 C =]
sl
“o b =00
100 £ Ty T
234567 8 210111213141516171819 20

Query Size in [#Tables]
(b) Star Query

Figure 3.9: Enumerated plans during optimality range calculation for each
edge of 100 random queries.

We show the number of enumerated plans during the optimality
range calculation in Figure 3.9. Figure 3.9a shows the results for chain
queries, and Figure 3.9b for star queries. The x-axis is the query size
in number of relations, and the y-axis the number of enumerated
plans. The y-axis in Figure 3.9b has a logarithmic scale. We show the
number of enumerated plans for calculating the optimality ranges
as box plots. Each entry in a box plot is a single optimality range
calculation on one edge in one of the 100 optimal query execution
plans. The percentiles of the box plots are 0%, 25%, 50%, 75%, and
100%. As a baseline we show the number of enumerated plans by
dynamic programming query optimization. This number is the same
for queries with equal topology and size.

Figure 3.9 shows that the query size has the highest impact on
the number of enumerated plans during optimality range calculation.
The remaining spread is caused by the following three factors: (1) the
depth of the DPC, (2) the structure of the query execution plan, e.g. a
linear tree, a balanced bushy tree, or something in between, (3) the

3.3 EXPERIMENTAL EVALUATION

E 2.5k T T T T T T T T T T T T T T T T T 1
8 T
o 2k |
£

2 1.5k |- —
.8

% ik |- —
~

48]

O osk - l —
]

%D o LLL¥$:&:$¥;;;L 5
R~ 234567 8 921011121314151617 1819 20

Query Size in [#Tables]
(a) Chain Query

E 108 ET 1T 1T 1T T T T T T T T T T T T T T T T 3§
g 107 F -
g 10° F E
E 105 L 2
o 10
g 0t |
= 103 -
9 5 F 3
5o r %
0 g fT]
%o 100 B h % R R]
R~ 234567 8 9210111213141516171819 20

Query Size in [#Tables]
(b) Star Query

Figure 3.10: Optimality range calculation time for each edge of 100 random
queries.

pruning strategy. All three factors interact, and especially the prun-
ing makes it hard to do a decoupled analysis. We see a correlation
between the number of enumerated plans and the depth of the DPC.
Usually the deeper the DPC, the larger the number of enumerated
plans. The 100% percentiles in Figure 3.9 are usually optimality range
calculations where the DPC is one of the deepest edges in the query
execution plans. Nevertheless, there are cases in which the optimality
range converges after a few considered plan alternatives. This enables
an effective pruning in the low level plan classes, which is beneficial
for the eventually enumerated number of plans. In these cases it could
happen that the worst case number of enumerated plans is not for cal-
culating the optimality range on one of the deepest edges in the query
execution plan. Also, the structure of the query execution plans has
an impact on the number of enumerated plans because it affects the
maximum depth of an edge or DPC. The structure has mainly an im-
pact on chain queries, since they can result in anything from a linear,
e.g. left deep query execution plan to a balanced bushy tree. For star

55

56

PRECISE OPTIMALITY RANGES

queries, the structure has no impact, since star queries always result
in linear plans when cross products are ignored.

The experimental results in Figure 3.9a and 3.9a also show that
the median number of enumerated query execution plans for up to
20 joined relations is smaller than the number of plans enumerated
by dynamic programming optimization. The experimental worst case
can be larger than dynamic programming optimization, but is still
significantly smaller than the theoretical worst case boundaries de-
rived in Section 3.2.5. For chain queries, we enumerate at most four
times more query execution plans than dynamic programming opti-
mization. Note, that dynamic programming optimization, and hence
also the calculation of optimality ranges, enumerate only a polyno-
mial number of query execution plan alternatives with respect to the
number of input relations. This is significantly smaller than the theo-
retical worst case bound, which grows exponentially.

In addition to the number of enumerated plans, we show the opti-
mality range calculation times in Figure 3.10. The setup is the same
as in Figure 3.9 except that the y-axis shows the calculation time in
microseconds. The calculation times in Figure 3.10 show a strong cor-
relation to the number of enumerated plans in Figure 3.9. Calculating
an optimality range took at most 2.3 milliseconds for a chain query,
and 7.3 seconds for a star query with 20 relations.

The positive enumeration behavior of optimality range calculation
is due to its pruning strategy. Without pruning, all possible plan alter-
natives for a considered plan class would be enumerated. We further
investigate the impact of pruning in the next experiments: We choose
the same setup as for the experiments in Figure 3.9, i.e., 100 random
databases for chain and star queries and different query sizes, but
compare the number of enumerated plans with enabled and disabled
pruning. We present the worst case number of enumerated plans
in Figure 3.11a for chain queries and Figure 3.11b for star queries.
Note that the results for enabled pruning correspond to the 100% per-
centiles in Figure 3.9. The y-axis in both Figure 3.11a and 3.11b is
logarithmic, since the number of enumerated plans for chain queries
with disabled pruning is not polynomial anymore, but exponential.
We also set an execution time limit of two minutes. This means the
results for a random query were ignored whenever calculating the
optimality range for one of its edges took longer. This was the case in
all star query experiments without pruning and more than 13 tables.

The results in Figure 3.11 show the relevance of pruning. For chain
queries the number of enumerated plans without pruning is at most
220,565,946, while it is at most 4,908 with pruning. For star queries,
we consider query size 13, where 1,228,418,488 plans are enumerated
without pruning and 58,733 with pruning. The results show the im-
pact of our pruning strategy, which is one contribution of this work.

3.4 RELATED WORK

109 I I I I I I I I I I I I I I I I I
108 —— Pruning On

107 Pruning Off

106
10°
10%
103
102
107
100

Enumerated Plans
HHHH‘ HHHH‘ \HHH‘ L1 H\‘ HHHH‘ HHHH‘ HHHI‘ \HHH‘ Lo

Lo
7 8 9 10111213141516 17 18 19 20

N

W
N
& -
o -

Query Size in [#Tables]
(a) Chain Query

10 77T T T T T T T T T T
108 —— Pruning On
107 Pruning Off
108
10°
104
103
102
10!
100

Enumerated Plans
HHHH‘ HHHI‘ \HHH‘ \HHH‘ HHHH‘ HHHH‘ HHHI‘ HHH‘ L

[O O O R I B
3456 7 8 2101112131415161718 19 20

N

Query Size in [#Tables]
(b) Star Query

Figure 3.11: Worst case number of enumerated plans during optimality
range calculation with and without pruning.

3.4 RELATED WORK

Multiple topics in query processing are related to optimality ranges.
Therefore, we categorize related work on optimality ranges into the
following three fields: Adaptive Query Processing, Parametric Query Op-
timization, and Offline Plan Space Analysis.

3.4.1 Adaptive Query Processing

The question if a given query execution plan remains optimal in
the presence of cardinality estimation errors, is at the core of Mid-
Query Re-Optimization [31, 39, 41]. Mid-Query Re-Optimization uti-
lizes statistics that are taken at query execution time to compensate
sub-optimal query execution plans caused by cardinality estimation
errors. One common approach is to define bounds for intermediate
result cardinalities. If the true cardinality at query execution time is
out of its bounds, the query optimizer is invoked again to search

57

58

PRECISE OPTIMALITY RANGES

for a better plan. Markl et al. [39] called their bounds validity ranges.
Dynamic Re-Optimization by Kabra and DeWitt [31] and Proactive Re-
Optimization by Babu et al. [41] just define heuristically chosen op-
timality ranges: They assign an uncertainty value U to an estimate
E, and define the lower bound f% = E—(Ex0.1+xU) and the up-
per bound f¥ = E+ (Ex 0.2« U). Kabra and Dewitt [31] and Babu
et al. [41] furthermore present a set of rules to derive if the uncer-
tainty value U of an estimate is low, medium or high, but do not
specify actual values for U. Section 3.3.1 shows the limitations of this
approach. Progressive Optimization by Markl et al. [39] improves on
Dynamic Re-Optimization and Proactive Re-Optimization by taking
alternative plans into account. To calculate a validity range bound,
Progressive Optimization models the costs of the optimal plan and
the considered alternative plan as a function of one cost parameter,
i.e., as PCF. In the next step, Progressive Optimization calculates the
intersection point of the two PCFs using a numeric approach, i.e.,
a modified Newton-Raphson. This gives potentially a new validity
range bound (see Section 3.2.1). Progressive Optimization compares
only structurally equivalent plans, i.e., plans where only the operator
implementation and input order are different, and ignores plans with
alternative operator orders. In contrast to Progressive Optimization,
our work takes all necessary plan alternatives into account. Conse-
quently, our optimality ranges would trigger a re-optimization if and
only if a better plan alternative exists.

3.4.2 Parametric Query Optimization

Such as Progressive Optimization, our approach has similarities to
Parametric Query Optimization (PQO) by Hulgeri and Sudarshan [37,
38], which determines a set of query execution plans that are op-
timal for different values of one or multiple cost parameters. PQO
also models the costs of plans as PCF, and selects the optimal plans
for the ranges in the parameter space. The weak spot of PQO is the
combinatorial explosion of alternative plans. Compared to PQO, the
calculation of optimality ranges is only interested in the bounds of
the optimal plan. In order to find the exact optimality range, our
work in theory has to enumerate the same number of plans as PQO.
But since we are only interested in the optimality range, and not the
plans that are optimal beyond the range, we can effectively prune. Sec-
tion 3.3.2 shows the effectiveness of our pruning strategy, and proves
that it makes our approach applicable in practice. Progressive Paramet-
ric Query Optimization (PPQO) by Bizarro et al. [55] is a more practical
PQO approach, which caches the optimal plans for already executed
parameter combination. To decide whether a parametric query with
given parameters can be calculated by one of the cached plans, PPQO

3.5 APPLICATIONS IN QUERY PROCESSING

heuristically assign selectivity bounds to each cached query execution
plan that are similar to optimality ranges.

3.4.3 Offline Plan Space Analysis

Plan Diagrams by Haritsa et al. [45, 53] are a pictorial enumeration of
alternative query execution plans. A plan diagram indicates the selec-
tivities in which different query execution plans are optimal. Each of
the usually two dimensions in a plan diagram represents a predicate
selectivity, which is varied from zero to one. For each of the result-
ing selectivity points, the optimal plan is searched. Equal execution
plans for different selectivity points in the diagram are illustrated in
the same color, so that clusters of plans become visible. In the end,
each plan cluster indicates in which selectivity area a plan is optimal.
While Plan Diagrams consider all plans that are optimal within the
selectivity space, our work is focused on only one optimal plan at-
a-time. But our approach is not limited to two selectivities. We can
determine the optimality ranges for all operator selectivities in the
considered optimal plan. Furthermore, our approach is more analytic
using plan space and cost parameter considerations. Plan Diagrams
in contrast cannot be used at runtime of the query, since it is a brute
force approach, which searches the optimal plans for all selectivity
combinations. It is a tool to analyze properties of a query optimizer
in offline mode. Offline approaches similar to Plan Diagrams are Plan
Bougquets by Dutt and Haritsa [71] and Exact Cardinality Estimation by
Chaudhuri et al. [56].

3.5 APPLICATIONS IN QUERY PROCESSING

We consider our optimality range approach as an important building
block for query processing, which helps to improve applications such
as execution Plan Caching, Parametric Query Optimization, and Mid-
Query Re-Optimization, described below.

3.5.1 Execution Plan Caching

While a traditional data warehouse system may be able to cache plans
for all executions of a statement between data loading processes, this
strategy turns out to be unsuitable for HTAP. On the one hand, it is
improbable that a single row update, as they are typical for transac-
tional workloads, makes a plan sub-optimal. On the other hand, it
is almost certain that the constant change in the database makes a
plan at some point sub-optimal. This illustrates a new challenge that
arises especially in HTAP systems: Is a cached plan still optimal or
not? Optimality ranges can solve this problem, since they can be used
as caching strategy for reoccurring queries. We calculate the optimal-

59

60

PRECISE OPTIMALITY RANGES

ity ranges for an optimal plan, and add the plan with ranges to the
query cache. Each time a cached query is executed, the true cardinal-
ities for the edges, i.e., the intermediate results are available. Once a
cardinality is out of its optimality range, the cached plan is not opti-
mal anymore and evicted from the cache. It is also promising to use
Robust Query Processing techniques [80] such as LEO [36] to find a
good plan that is annotated and cached.

3.5.2 Parametric Queries

Progressive Parametric Query Optimization [55] describes an solu-
tion for Parametric Query Optimization that avoids searching opti-
mal plans for different parameter combinations at optimization time.
It caches optimal plans for already executed parameter combination,
called cost point. Cache hits can be either exact matches for a cost
point or in a heuristically defined distance to a cost point in the cache.
This approach can be improved with optimality ranges by storing a
range in which a plan is optimal instead of a cost point. It reduces
the number of stored plans, and enables a more precise plan choice.

3.5.3 Plan Robustness

Although it is not the primary objective of optimality ranges, they
can be used to evaluate the robustness of optimal query execution
plans. Criteria are the width of optimality ranges and the positions
of the estimated cardinalities in the ranges. A wide optimality range
and an estimated cardinality in the middle of the optimality range for
every edge in a query execution plan indicate a high robustness to-
wards estimation errors. A narrow optimality range, or an estimated
cardinality close to a bound of the optimality range indicate that al-
ready small estimation errors lead to a cheaper plan. In this case the
robustness towards cardinality estimation errors is low. In Chapter 4
we present a more general approach to evaluate the robustness of
query execution plans, which is not limited to optimal query execu-
tion plans. Its foundation is the plan cost intersection of optimality
range calculation, which we explained in this chapter.

3.5.4 Mid-Query Re-Optimization

The calculation of precise optimality ranges is a useful tool to validate
of Mid-Query Re-Optimization strategies. Section 3.3.1 demonstrates
the shortcomings of the existing Mid-Query Re-Optimization heuris-
tics: They fail to characterize optimality ranges, and consequently
miss the switch to cheaper plans. Our Experiments in Chapter 5 show
that the query execution time increases due to missing cheaper plans
can be significant. Unfortunately, the worst case complexity of an op-

3.6 CONCLUSION

timality range calculation is worse compared to a dynamic program-
ming optimization, and our experiments show that pruning can re-
duce the number of enumerated plans in optimality range calculation
only to the same order of magnitude as dynamic programming opti-
mization (see Section 3.3.2). This makes optimality ranges unsuitable
as Mid-Query Re-Optimization criterion for ad-hoc queries. Neverthe-
less, the insights gained from the experiments on optimality ranges
build the foundation for our improved Mid-Query Re-optimization
strategy presented in Chapter 5.

3.6 CONCLUSION

In this chapter, we study the formal and conceptual foundations for
the calculation of exact optimality ranges for intermediate result car-
dinalities in optimal query execution plans. Next to the formal algo-
rithm description, we derive worst case boundaries for the number
of enumerated plans during optimality range calculation for chain
and star queries. Our experimental evaluation shows that the actual
worst case number of enumerated plans for queries with up to 20 re-
lations is significantly smaller than the theoretical worst case bound-
aries. This is due to our pruning strategy. In our experiments, pruning
reduces the worst case number of enumerated plans for chain queries
with 20 relations from 220, 565, 946 to 4, 208. Our study on optimality
ranges for a TPC-H-like benchmark demonstrates the limitations of
simple heuristics. The width of optimality ranges is independent of
the estimated cardinality, and varies from narrow to wide. In addition,
the position of the estimated cardinality in the optimality range can
vary. It can be close to the optimality range boundaries, so that even
small estimation errors lead to cheaper plans. Compared to existing
approaches, our solution does not rely on simple heuristics, and takes
all necessary plan alternatives into account to calculate exact optimal-
ity ranges. Nevertheless, our experiments on enumerated plans and
calculation time have shown that it is applicable in practice.

This makes optimality ranges a valuable and generic building block
for query processing. Optimality ranges can be used as caching strat-
egy to decide when a query execution plan has to be evicted. They can
also improve existing approaches in parametric query optimization,
and determine the robustness of optimal query execution plans with
respect to cardinality estimation errors. Last but not least, optimality
ranges help to validate adaptive query processing approaches.

61

ROBUSTNESS METRICS AND ROBUST PLAN
SELECTION

Next, we address sub-optimal query execution plans that are caused
by cardinality estimation errors. Query optimizers commonly select
the cheapest query execution plan based on cardinality estimations.
If the cardinality estimations are wrong, the selected query execution
plan can have an undesirable behavior. In this chapter, we address
this issue with a new plan selection strategy, which takes potential
cardinality estimation errors into account.

4.1 INTRODUCTION

Although query optimization is a well-studied problem with numer-
ous approaches being proposed and developed since Selinger’s semi-
nal work [4], finding a good query execution plan is still a challenge,
even for mature commercial systems. Typically, two major problems
arise in this context:

1. A significant increase of query execution times, if the chosen
query execution plan turns out to be sub-optimal or even bad,
as the experiment in Section 1.1 shows.

2. An unpredictable query execution time behavior due to small
changes in the database, which can cause the selection of a fun-
damentally different query execution plan with a very different
query execution time.

Both are problems of robustness, which has become an important re-
search topic in query processing. It is discussed in multiple Dagstuhl
seminars on Robust Query Processing, organized by Graefe and col-
leagues [60, 65, 91]. Although robust query processing has several as-
pects ranging from query planning to execution and scheduling, both
problems share a common issue related to query robustness: errors
in cardinality estimation as a central parameter of a cost model.

Despite the issues of cardinality estimation are evident [78, 93], the
majority of query optimizers still chooses the estimated cheapest plan
based on the cost model as optimal plan. Potential cardinality estima-
tion errors are not taken into account when choosing a plan.

The major contributions of this chapter are three novel metrics for
the robustness of relational query execution plans with respect to car-
dinality estimation errors. They can assign a numeric value for the
robustness of a plan, which can be considered next to the estimated

63

64

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

cost in the selection of a plan. Our metrics support all kinds of op-
erators, operator implementations, query execution plan trees, and
monotonically increasing and differentiable cost functions. In contrast
to other approaches for robustness plan selection, we can evaluate the
plan robustness at query optimization time [53, 71, 82], and assign ro-
bustness values independent of other query execution plans [59, 81].
We are also not limited to certain tree structures of query execution
plans [77, 81], or consider only plans that are optimal for some cardi-
nalities [40, 41, 53, 82].

Next to the robustness metrics, which we present in Chapter 4.4,
there are further contributions: We show a formal problem descrip-
tion and consistency requirements for plan robustness metrics in Sec-
tion 4.2. Another contribution is the new plan selection strategy based
on our robustness metrics that we explain in Section 4.5. As final
contribution, we share our experimental evaluation for runtime and
robustness of our plan selection strategy, using a synthetic and a real-
world database benchmark in Section 4.6.

4.2 FORMAL PROBLEM DESCRIPTION

Due to cardinality estimation errors, the estimated optimal plan cho-
sen by conventional query optimizers frequently fails to be the fastest
plan. We argue that choosing a robust plan can result in faster query
execution times in the presence of cardinality estimation errors. We
formalize the problem of finding a query execution plan that is robust
with respect to cardinality estimation errors.

Definition 4.1. The cost error factor c., is the absolute quotient of esti-
mated cost ¢ and true cost ¢ of a plan.

c/e ifc=¢ ; A
Corr = fe> where ¢ >0 and € >0
&/c otherwise

A small cer can mean that there were no estimation errors in the
plan, because the estimated cost is close to the true cost. If we assume
that there are estimation errors in a plan, a small cerr means that the
plan is robust, because the cost of the plan did not change much in
the presence of estimation errors. Consequently we define:

Definition 4.2. The most robust plan is the plan with the smallest cost
error factor cerr within the set of robust plan candidates.

Since the true cost ¢ is unknown at optimization time, the cost error
factor cerr cannot be calculated. Therefore, we approximate it.

Definition 4.3. A robustness metric assigns a robustness value to each
robust plan candidate. Ideally, the robustness value is an approximation for
the upper bound of Ceyr.

4.2 FORMAL PROBLEM DESCRIPTION

4 @ estimated optimal plan
G most robust plan 'Y

E . oop ® o
& | ome other robust plan candidates

h "(>
: 3.5, 00,
k o) ..‘.. { .

» S » %o &
£ L °
=3 3 °‘ :‘o Re °
o . @.’.’.’4 ____________ PSR, SR
O 4 o

o

Robustness Value

Figure 4.1: Illustrations of consistency requirements for robustness metrics,
showing candidate plans with their assigned robustness value
and their cerr.

Figure 4.1 illustrates the behavior of an ideal robustness metric. The
robustness value assigned by the robustness metric is denoted on the
x-axis. The y-axis denotes the cost error factor cerr (see Definition 4.1).
Furthermore, Figure 4.1 shows all robust plan candidates with an as-
signed robustness value and their cost error factor cerr. The estimated
optimal plan is highlighted as @. The most robust plan according to
the robustness metric, i.e., the leftmost plan, is depicted as ®. We ar-
gue that an ideal robustness metric should fulfill the following three
consistency requirements.

Cost Error Factor Improvement: Compared to the estimated op-
timal plan, the most robust plan according to the robustness
metric should always achieve a smaller cost error factor cerr.

Cost Error Factor Dominance: The most robust plan accord-
ing to the robustness metric dominates all robust plan candi-
dates with respect to the cost error factor cerr. This means there
should be no plan with a smaller cost error factor cerr than the
most robust plan, e.g., the empty circle o plans in Figure 4.1.

Correlated Cost Error Factor Limit: A robustness metric should
give an upper bound for the cost error factor cerr of a plan.
Plans with a large robustness value can have a large cerr, and
plans with a small robustness value should have a small cerr.
Plans, such as the square m plan in Figure 4.1 indicate a subopti-
mal robustness metric, because the metric classified the plan to
be much more robust than it is. The upper bound of cerr should
be proportional to the robustness value, but ce,r itself does not
have to be proportional to the robustness value, because the es-
timations can be precise and result in a smaller cerr.

65

66

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

Figure 4.2: Query graph of Join Order Benchmark [78] Query 17, joining the
tables NAME (N), CAST_INFO (CI), TITLE (T), MOVIE_KEYWORD (MK),
KEYWORD (K), MOVIE_COMPANIES (MC), and COMPANY_NAME (CN).

In practice, there is a trade-off between plan robustness and exe-
cution time. On the one hand, a robust plan is less sensitive to es-
timation errors, but not necessarily fast. On the other hand, a fast
plan is not necessarily robust. In Section 4.5, we present a robust plan
selection strategy that balances plan robustness and execution time.

4.3 ROBUST PLAN EXAMPLE

Figure 4.2 shows the query graph of a real-world query, which we use
to illustrate the impact of cardinality estimation errors on the query
execution plan selection. We consider Q17 of the Join Order Bench-
mark (JOB) [78] as a pure join query with a filter on all movie_id
columns (see Section 4.6). Foreign key joins (1:n) are represented by
solid edges with the arrow pointing to the referenced key. Dotted
edges denote m:n joins. Of course, we support all kinds of operators
and operator implementations. In this example, we use the Coy¢ [26]
cost function (see Sections 2.6.2 and 2.7). Apart from Cgqy¢, Our ro-
bustness metrics support every kind of monotonically increasing and
differentiable cost function such as Cm [93], which we use for the
experimental evaluation.

In addition to the estimated and true cardinality f and f, and the
estimated and true cost ¢ and ¢, we define the estimated selectivity §,
and the true selectivity s. We also define the absolute cardinality er-
ror Af, the absolute cost error Ac, and the g-error [58], i.e., the abso-
lute quotient of estimated and true cardinality:

Af f/f iff>f
A g-error =

C

Il
o —ho

|
o

f/ f otherwise

Figure 4.3 shows the estimated cheapest query execution plan for
JOB Query 17, identified by our query optimizer, which we describe
in Section 2.7. We argue that our join optimizer’s estimated optimal
plan choice is very similar to the choice of popular free and commer-
cial systems, due to its enumeration algorithm, the cardinality esti-

4.3 ROBUST PLAN EXAMPLE

f:347,793 / f: 7,050,333

@ Af: +6,702,540 / g-error: 20.27
¢: 6,908,427/ ¢: 20,929,987
Ac : +14,021,560 / Cery: 3.03

$:0.00000024 M s: 0.00000024
N.n_id » Cl.ci_person_id

| fi4167,491 \ f: 347,793 / f: 7,050,333
f: 4,167,491 " Af: +6,702,540 / g-error: 20.27
¢: 4,167,491 @ | ¢:2,393,143/ ¢ 9,712,163
C: 4,167,491 \Ac: 47,319,020 / Corr: 4.06
$:0.00001000 X §: 0.00002859
Cl.ci_movie_id x T.t_id

Cl.ci_movie_id x MC.mc_movie_id
N Cl.ci_movie id x MK.mk movie id

f: 25,305 / f: 179,425
Af: +154,120 / g-error: 7.09
@ ¢: 670,940/ c: 1,287,420
Ac: +616,480 / Cepr: 1.92

£: 1,374,410
f:1,374,410

& 1,374,410

& 1,374,410

$: 0.00000426 X s: 0.00000426
CI CN.cn id ® MC.mc_company _id

f: 25,305 / f: 179,425

f: 234,997
. Af: +154,120 / g-error: 7.09
1 234,997 y o
& 231: 997 ¢: 410,638 / ¢: 872,998
& 234,997 Ac: +462,360 / Cere: 2.12

$: 0.00001000 M $: 0.0000100
T.t.id x MK.mk movie_id

CN T.tiid » MC.mc_movie_id
. f:100,000 £:25,305 / f: 179,425
f+ 100,000 Af: +154,120 / g-error: 7.09
¢: 100,000 ¢: 285,333 / ¢: 593,573

¢: 100,000 Ac: +308,240 / cer: 2.08

$: 0.00000745 M $: 0.00000745
T Kk_id x MK.mk keyword_id

f:134,170 \ f:25,305 / f: 179,425
f. 134,170 \ Af:+154,120 / g-error: 7.09
2134170 @ \ 6:125,858 / & 279,978
& 134,170 . v Ac: +154,120 / cepr: 2.22
é:0.00001002 M §: 0.00007101
K R MK.mk_movie_id x MCA.mc,moviC,id
f: 51,297 f: 49,256
f:51,297 f: 49,256
&: 51,297 &: 49,256
¢: 51,297 ¢: 49,256
MK MC

Figure 4.3: Estimated cheapest plan for JOB Query 17, joining the ta-
bles NAME (N), CAST_INFO (CI), TITLE (T), MOVIE_KEYWORD (MK),
KEYWORD (K), MOVIE_COMPANIES (MC), and COMPANY_NAME (CN).

mation error it creates, and the correlation of its cost functions to the
query execution times in our engine (see Section 2.7). Every edge in
the query execution plan represents an intermediate result with esti-
mated and true statistics. The true statistics of the final edge 4 shows
that the true cardinality of the estimated optimal plan is underesti-
mated by a factor of 20.27 (g-error), and the true costs by a factor
of 3.03 (Cerr). In more detail, we see that the cardinality estimator un-
derestimates two edges in the query execution plan, i.e., the dashed
edges 1 and 3. The first join is a m:n join between MOVIE_KEYWORD and
MOVIE_COMPANIES. The estimated cardinality on the outgoing edge 1
of this join is 25,305. After executing this plan, it turns out that this

67

68 ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

| f:347,268 / f: 7,050,333
@5 Af: +6,702,065 / g-error: 20.30
! ¢: 8,018,758/ ¢: 16,605,629
Ac : +8,586,871 / Cepy: 2.07

$: 0.00001000 4 $: 0.00008691
Cl.ci.movie_id m T.t.id
MK.mk_movie_id x T.t_id
Cl.ci movie_id @ MC.mc_movie_id
MK.mk movie_id x MC.mc movie_id

£:705,030 / f: 1,646,933 f: 49,256

Af: +941,903 / g-error: 2.34 f:49,256
@

¢: 7,188,725 / ¢: 9,072,531 C: 482,765
Ac: 1,883,806 / corr: 1.26 C: 482,765

é: 0.00000024 M &: 0.00000024 $: 0.00000426 M §: 0.00000426
N.n_id x Cl.ci_person_id CN.cnid % MC.mc_company_id
f4167491 /7 705,030 / f: 1,646,933 f: 234,997 f: 49,256
114,167,491 . Af: 941903 / gerror: 234 f1 234997 f: 49,256
¢:4,167,491 @ \ 62,316,204 / & 3,258,107 ¢ 234,997 ¢: 198,512
C: 4,167,491 N Ac: 941,903 / o 141 C: 234,997 c: 198,512
$: 0.00001000 MM &: 0.00002336 $:0.00001000 XM $: 0.00001000
N Cl.ci_movie_id x MK.mk_movie_id CN T.tiid ¥ MC.mc_movie_id

f: 1,374,410
f: 1,374,410

f: 51,297 f: 100,000
f:51,297 f:100,000

f: 49,256
f: 49,256

¢:1,374,410 @ &: 236,764 &: 100,000 é: 49,256
¢: 1,374,410 ¢: 236,764 & 100,000 & 49,256
$: 0.00000745 M §: 0.00002336
CI K.K_id @ MK.mk_keyword_id T MC

f: 134,170 f: 51,297

f: 134,170 f:51,297

&:134,170 & 51,297
¢: 134,170 & 51,297

K MK

Figure 4.4: Estimated most robust plan for JOB Query 17, joining the ta-
bles NAME (N), CAST_INFO (CI), TITLE (T), MOVIE_KEYWORD (MK),
KEYWORD (K), MOVIE_COMPANIES (MC), and COMPANY_NAME (CN).

is an expanding join, and the cardinality was underestimated, due to
missing information about the data distribution. The true cardinality
is 179,425, which results in a g-error of 7.09 and in a cey Of 2.22. The
second underestimation occurs in the join between the CAST_INFO ta-
ble and the subtree of edge 2. Beside a foreign key join, there are
two m:n joins involved. Again, this is an expanding join, and the out-
put cardinality is underestimated: The estimated output cardinality
is 347,793, but the true cardinality is 7,050, 333. Accordingly, the g-
error is 20.27 and the cerr is 4.06. All other plan edges are estimated
correctly, since the g-error is not growing with respect to the child
edges. The reason is that all those joins have a foreign key relation,
for which the estimation is more precise.

Figure 4.4 shows the estimated most robust plan that our approach
selects for Query 17 of the Join Order Benchmark. While the esti-
mated optimal plan in Figure 4.3 has smaller estimated cost, 6, 908,427
compared to 8,018,758, the plan chosen by our approach has a lower
execution time in the presence of cardinality estimation errors. The
major difference between the estimated optimal plan in Figure 4.3

4.4 ROBUSTNESS METRICS

and the estimated most robust plan in Figure 4.4 is the deferred ex-
ecution of m:n joins. Therefore, the first cardinality estimation error
does not occur at the first join, as in the estimated optimal plan on
edge 1 in Figure 4.3. In contrast, there are no cardinality estimation er-
rors in the subtrees of the edges 8 and 5 in the estimated most robust
plan. Their foreign key joins are estimated correctly. The first under-
estimation occurs in the join of the CAST_INFO table and the subtree
of edge 5, i.e. on edge 6. While the estimated cardinality is 705, 030,
the true cardinality is 1,646, 933. Hence, the g-error is 2.34 and the cerr
is 1.41. The second underestimation occurs at the final join between
the subtrees of the edges 7 and 8, in which the last two m:n joins are
involved. As a result, the g-error is 20.30 and the ce¢,y is 2.07.

Comparing the two plans shows that the cerr of the estimated most
robust plan, 2.07, is smaller than the cer of the estimated optimal plan,
3.03. Also, the true cost of the estimated most robust plan, 16, 605, 629,
is considerably smaller than the true cost of the estimated optimal
plan, 20,929,987. As a result, the estimated most robust plan has a
query execution time of 475 ms, which is a speedup of factor two
compared to the estimated optimal plan with an execution time of
995 ms. In Section 4.6, we show more complex queries with larger
speedups in the presence of cardinality estimation errors.

4.4 ROBUSTNESS METRICS

In this section we answer the question: can we define metrics to quan-
tify the robustness of query execution plans before execution? After
execution, the robustness of a query execution plan or a sub-plan
can be quantified by the g-error or the cerr. In order to quantify the
robustness of a plan before execution, deriving Parametric Cost Func-
tions (PCFs) is the first building block. We explain the calculation of
PCFs in Section 2.6.4. PCFs are also an essential building block in the
calculation of optimality ranges (see Section 3.2.1).

Figure 4.5 shows PCFs modeled as a function of cardinality on a
single edge in the plan. There is a PCF for a volatile plan, PCF,,;, and
for a robust plan, PCF,y,. The x-axis denotes the cardinality of the
edge and the y-axis the costs of plans. It also shows the estimated
cardinality f and the true cardinality . Furthermore, it shows the es-
timated cost ¢ and the true cost ¢ for both plans. A robust plan does
not necessarily have the smallest cost at f. In this case the robust plan
is not the optimal plan, and the optimal plan not necessarily a robust
plan. In the presence of estimation errors, the true cost of a volatile
plan can rapidly increase or decrease. In contrast, the true costs for a
robust plan are close to the estimated costs in the presence of cardinal-
ity estimation errors, i.e., a more moderate slope of PCF,., compared
to PCFy,). Therefore, the slopes of PCFs around the estimated cardi-
nality indicate the sensitivity of a plan towards estimation errors. If

69

70

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

o
Cvol T

o
Crob

Cost ¢

érob'

évol'

N
—ho =T

Cardinality f

Figure 4.5: Cost behavior of a volatile and a robust query execution plan in
the presence of cardinality estimation errors.

the true cardinality f is underestimated, as in Figure 4.5, picking the
robust plan will also result in an execution time improvement.

Conventional query optimizers select the plan with the smallest
estimated cost, but they do not consider the cost behavior in the pres-
ence of estimation errors. Consequently, the estimated optimal plan
is not necessarily a robust plan. We argue that considering the cost
behavior, i.e., the slopes of a PCF in the plan selection, helps to iden-
tify more robust plans. Modeling the Cy.,¢ cost of a plan as a function
of one cost parameter for example, results in a linear PCF, i.e., a PCF
with the same slope at every cardinality. In contrast, using a cost
function other than Cyy¢ can result in a non-linear PCF. We support
non-linear PCFs that are monotonically increasing and differentiable,
i.e., have no jumps a slope value at each cardinality.

Next, we discuss examples for PCFs. We consider the estimated op-
timal plan P, and the estimated most robust plan P4y for Query 17
of the Join Order Benchmark. Figure 4.3 shows P, and Figure 4.4
Prob. For the Coyt cost function and the given statistics, Prop, has
estimated costs of 8,018,758. We assume that the output cardinality
of edge 6 in Figure 4.4 is not 705,030 but an arbitrary value. Let
us denote this variable as fcyx vk for the output cardinality of join-
ing CAST_INFO (CI), KEYWORD (K), and MOVIE_KEYWORD (MK). Now we
model the Coyt costs of Prop as a PCF on the variable fcrx vk, i-e.,
not set fcpx mx = 705,030 but leave it as parameter when calculating
the Coyt cost of Prop, as explained in Section 2.6.4:

Cout(Prob, faxmx) = 2.49 - forxmx + 6,261,430 (4.1)

For each additional output tuple on the fcyx Mk edge, the total cost
of Pyop increases by 2.49. The fcrx Mk edge is the deepest edge in
P.ob, which contains a m:n join. Figure 4.3 shows P,p¢, in which

4.4 ROBUSTNESS METRICS

edge 1 is the deepest edge with a m:n join. The cardinality of edge 1
is denoted as fmimc. To determine the sensitivity of Popt towards
cardinality estimation errors for fyx mc, we calculate the costs of Popt
as a PCF on the variable fyk mc:

Cout(Popt, fmcmk) = 31.49 - fmemk + 6, 111,621 (4-2)

Equation 4.2 shows that one additional tuple for fykmc increases
the total cost of Pyp¢ by 31.49. Therefore, the edge fykmc in Popt
has a steeper slope than the edge fcix Mk in Prob. Consequently, we
consider P, as a more robust plan, because cardinality deviations
have smaller impact on the cost, and thus the cerr would be smaller.

4.4.1 Cardinality-Slope Robustness Metric

To define a robustness metric that can be used at query optimization
time, we argue that the following design considerations have to be
taken into account:

1. The effort to calculate a robustness value.

2. The varying uncertainty of cardinality estimations for different
types of operators.

3. The potential propagation of cardinality estimation errors.

A low calculation effort is essential to use a metric at query optimiza-
tion time. The risk of cardinality estimation errors for different types
of operators has to be considered in the robustness metric, because it
has been shown that the precision of statistical models varies for dif-
ferent types of operators [33, 73, 78]. Finally, it has to be considered
that cardinality estimation errors on deep edges, i.e., greater depth in
the query execution plan tree [57], can be propagated to the cardinal-
ity estimations on higher edges, i.e., smaller depth in the plan tree.
Consequently, cardinality estimation errors on deep edges can have a
stronger impact on cey compared to higher edges.

To describe the cardinality-slope robustness metric, we denote a
query execution plan P = (Op, Ep), where Op is the set of operators
and Ep the set of edges. We take the PCFs for all edges in a query ex-
ecution plan into account. The next building block for the cardinality-
slope robustness metric is the definition of a cardinality-slope value for
an edge e € Ep based on a PCF of cardinality f on e.

Definition 4.4. The cardinality-slope value 8¢ for an edge e € Ep is
the slope of PCFy, at the estimated cardinality f, where PCFy, is the PCF
that models the cost of a plan P as a function of cardinality f on e.

In theory, estimation errors can occur on all edges in the query ex-
ecution plan. In practice, the precision of statistical models for cardi-
nality estimation varies for different types of operators. For example,

71

72

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

edges after foreign key joins can be estimated more precisely than
after m:n joins, due to the constraint on keys [33, 78]. Also, edges af-
ter base table scans can be estimated more precisely than edges after
filter predicates. To consider the different risks for estimation errors,
we define an edge weighting function ¢ as the next building block for
the cardinality-slope robustness metric.

Definition 4.5. An edge weighting function ¢ : Ep — [0.0, 1.0] assigns
each edge e € Ep an estimation-uncertainty value between 0.0 (not sensi-
tive) and 1.0 (very sensitive).

An edge after a m:n join should get a larger error-sensitivity value,
e.g., 1.0, compared to an edge after a foreign key join , e.g., 0.0. The
following definition combines the building blocks to a metric.

Definition 4.6. The robustness value vs, of the cardinality-slope robust-
ness metric for a plan P is defined as the sum over the products of d¢ ¢ and
¢(e) for each edge e € Ep:

s, (P)= > @le) dre

GEEP

Consequently, the plan is the more robust, the smaller the robust-
ness value is. In Section 4.6, we experimentally evaluate the cardinality-
slope robustness metric with respect to the consistency requirements
of Section 4.2. The cardinality-slope robustness metric also follows
our design considerations: Our experiments in Section 4.6 expose the
low calculation overhead for ts,. Potential cardinality estimation er-
rors for different types of operators are weighted by ¢. Finally, Def-
inition 4.6 implicitly considers the potential propagation of cardinal-
ity estimation errors. As Theorem 4.1 reveals, cardinality estimation
errors on deep edges in query execution plans can have a stronger
impact on the total cost and therefore the robustness value r5,, com-
pared to higher edges. This is not the case, when there is a very se-
lective operator between the deep and the higher edge: a very se-
lective operator can decrease the number of output tuples to almost
zero. Consequently, the cardinality estimation errors in the underly-
ing sub-plan have almost no impact on the total cost, and therefore
on the robustness value r5, anymore. We formalize and prove this
observation in Theorem 4.1.

Theorem 4.1. Assuming a deep plan edge i with estimated cardinality f;
and cardinality-slope value d¢:, and a higher plan edge j with estimated
cardinality f; and cardinality-slope value 8y ;. Then, for Covy it holds:

A

LR bk
i 1+38¢5 ’

—.

o1 = 0f5 & (4.3)

where S > 0 depends on the estimated cardinalities and selectivities between
the deep edge i and the higher edge j.

4.4 ROBUSTNESS METRICS

P= {l, , n} fll ‘ /ST\.* ’
f 0Pn_q — n—1
n V
s
£/ op: f;
i~ I~ §j—1
f,_1\0p - J 1
= = =1 Sit1
fi=]\ OPi11
S . —fi
11—
STnon . op s

Figure 4.6: Arbitrary path in a query execution plan.

Proof. Figure 4.6 shows an arbitrary path P from edge i over edge
j to the root edge m, in an arbitrary query execution plan. The ar-
bitrary execution plan can have arbitrary operators and an arbitrary
tree structure. The path contains unary and binary operators. We de-
note the cardinality of an edge e as f¢, and the selectivity of an oper-
ator op as sgp. It also shows non-path edges e’ ¢ P with an arbitrary
sub-tree T, and cardinality f.. The cardinality of an edge e € P\ {i} is
defined as fe = fe_1 - f éq - se—1. For a more convenient notation we
define for edge i that f; = f]_; - f{_, - s;_j. For unary operators such
as filters, there is only one input edge, and therefore we add with-
out loss of generality a second invisible input edge with cardinality
1 (see f{ ; in Figure 4.6). Therefore, we can rewrite the estimated
cardinality on an edge e € P:

fe= TI fi- TIT s (4-4)

We assume an edge j € P (see Figure 4.6) such thati < j, i.e., the
edge i is deeper than the edge j. To see the impact of the estimated
cardinality of the deeper edge f;, we rewrite the estimated cardinality
of the higher edge f; as:

j—1

[18x =fi-X (4.5)

A a I
2 = . , .
fy =1 TTfx
k=i k=i

Before using Equation 4.5, we use Equation 4.4 to rewrite the Coy¢
cost function. Cyq, ¢ is the sum over the estimated cardinalities of all

73

74

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

edges, i.e., all edges e € P, and all other edges e’ ¢ P including all
edges from their sub-tree Te.

n -1 1-1 n—1 _ n—1
Cout = Z H f],< ' H S | + Z f]/< + Z Cout(Tk) (46)
=i \k=i—2 k=i—1 =i =i-2
Next, we construct a PCF that models the C,t costs as a function
of fi, i.e., PCFy;. To do so, we factor out f; from Equation 4.6 and use

variable f; instead of the estimation f;.

n -1 n—1_ n—1
Cowr=te| £ (T o)+ Tir T ol G

1=1 \k=1i k=1

dependent on fi (8¢4) independent of f; (Coonst i)

We observe from Equation 4.7 that the costs dependent on f; are
the cardinality-slope value 0¢; for the edge i. Next, we construct the
PCFy for the higher edge j. We also separate the sum over the edges
of P from Equation 4.6 into edges higher and deeper than j.

n — 1-1 n—1 . n—1
Cout Z ka H + Zfl Z f + Z Cout Tk (4 8)
1=j \k=j k=j =i k=1— 2 k=1—-2
dependent dn f5 (8¢,) independent of fj (cconst,;)

Now, we reformulate the part of Equation 4.7 that depends on fj,
to quantify the impact of d¢; on &¢;. We separate the sums into one
running from i to j — 1 and another from j to n, and factor out X (see
Equation 4.5) from the latter sum.

j—1 1-1 n — 1-1
Ori=2_ (ka H5k>+ ka Hsk [Z(ka kl_[5k>] (4.9)

=i 1=j

S+X X 5.

We observe that the product, denoted as X, is the last term of S + X.
Let us presume 6¢; > d¢ ;:

4.9
o1 = b S sy x. (14+8¢5) > 8¢5 (4.10)
Ses — . -
£ —S (4.5) LIRS 8¢ —S
1+ 61‘,)' fi 1+ 6]6,]'

= X2 (4.11)

By inserting 6¢; into Equation 4.10, we factored out X. From Equa-
tion 4.10 to 4.11, we first subtracted S and second divided it by T+ 6+ ;.
Finally, Equation 4.5 is inserted. O

From Theorem 4.1, we observe that the right-hand side term of
Equation 4.3 is always less than 1, since cardinalities and selectivities

4.4 ROBUSTNESS METRICS

are non-negative. Therefore, if the estimated cardinality of the deep
edge is smaller or equal to the estimated cardinality of the higher
edge (f; /fi > 1), then the deep edge has a larger cardinality-slope
value (6¢; > O ;). In contrast, if there is a highly selective operator
between the deep and the higher edge (f; / fi < 1), then the right-
hand side term of Equation 4.3 is a tight bound for 8¢; > 08¢, ie,
for a highly selective operator 0¢; < 8¢, can hold. Furthermore, The-
orem 4.1 can be extended and proven for cost functions other than
Cout. The reason is that cost functions in general have dependencies
on cardinalities, and the cardinality of an edge is always a parameter
in the following cardinality estimations towards the root.

Let us again consider Query 17 of the Join Order Benchmark. Fig-
ure 4.7 shows the robustness value calculation of the cardinality-slope
robustness metric for the estimated optimal plan P,p¢ and the esti-
mated most robust plan Py, i.e., the plan with the minimum robust-
ness value 15, from the robust plan candidates. For simplicity, we use
an edge weighting function ¢ that assigns weight 1.0 to all m:n join
edges and weight 0.0 to all foreign key and base table scan edges. For
both plans, the dashed edges are the edges that include m:n joins,
i.e., the edges that are more sensitive to estimation errors. The corre-
sponding PCF, including the 6 value, is shown to the right of those
edges. For example, the cardinality-slope value 8¢ .. for edge er of
Prob is 2.49, i.e., the slope of PCF,, as calculated in Equation 4.1. As
a result, the robustness value 15, for Pyt = 33.49 and for P, = 3.49.
Therefore, P,,1, is more robust according to the cardinality-slope met-
ric than Py p¢. The true statistics in the Figures 4.3 and 4.4 result in a
smaller cerr for Prop than for Popt. Executing both plans on the real-
world database of the Join Order Benchmark shows a query execution
time speedup of factor two for P,,1, compared to Popt.

4.4.2 Selectivity-Slope Robustness Metric

The cardinality-slope value o¢ for an edge e € Ep expresses the im-
pact of one additional tuple on the total cost. Apart from the edge
weighting function ¢ for potential cardinality estimation errors for
different types of operators and the implicitly considered propaga-
tion of cardinality estimation errors, the edges in 75, are not further
weighted. In order to explain a derived robustness metric, we first
denote fiax as the estimated maximum output cardinality of an op-
erator. Taking a binary join as an example, fmax is the product of
its estimated input cardinalities (cross-product). We argue that edges
with a potentially larger absolute cardinality error Af, i.e., the abso-
lute difference between the estimated and the true cardinality, can
have a stronger impact on the final cer. Since Af cannot be calculated
before plan execution, the next robustness metric considers the risk
of a large Af, by taking fimax into account. The larger frnax is, the larger

75

76 ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

réf(Popt) = 3349 Téf(Prob) = 3.49

1
1

er' c
1

~_ [100

N~ ec, /\ .
/\ fec €4 249 “

\

CN P N N fe, CN \
NS T TN
S CI T MC
K~ €A /\
N\
MK MC K MK
(a) Estimated Optimal Plan (b) Estimated Robust Plan

Figure 4.7: Robustness values 75, assigned to robust plan candidates for JOB
Query 17.

is the potential impact on the final cerr. Next, we define the selectivity-
slope value &5 and the corresponding selectivity-slope robustness metric.

Definition 4.7. The selectivity-slope value 8, for an operator op €
Op is the slope of PCF; oy at the estimated selectivity §, where PCFs is the
PCF that models the cost for a plan P as a function of the selectivity s on op.

Definition 4.8. The robustness value vs_ of the selectivity-slope robust-
ness metric for a plan P is the sum over the products of 85 op and ¢ (op) for
each operator op € Op:

5. (P)= Y dlop)-8sp

opeOp

where ¢ : Op — [0.0,1.0] is a weighting function for operators, instead of
edges as @, to reflect the uncertainty of cardinality estimations.

After defining the selectivity-slope robustness metric, we show that
the metric implicitly weights the cardinality-slope value & for the
outgoing edge e € Ep of an operator op € Op by fiax.

Theorem 4.2. For Couyy, the selectivity-slope value &y of an operator
op € Op is the product of fyax and 8¢ . on the outgoing edge e € Ep of op.

Proof. Without loss of generality, we consider the edge i in Figure 4.6
with the cardinality f;. From Equation 4.7 in the proof of Theorem 4.1,
we see that the PCFy,; for edge i consists of costs independent of f;,
Ceonst,i, and costs dependent on fj, i.e., the cardinality-slope value o+ ;.

Cou,t - fi . 61‘,1 + Cconst,i (4-12)

4.4 ROBUSTNESS METRICS

As in Figure 4.6, we denote s;_1 as the selectivity of operator op;_;,
i.e., the operator before edge i. Furthermore, we denote f{_; and f/_,
as the input cardinalities of op, ;. The cardinality of edge i is the
product of both input cardinalities of op; ; and the selectivity s;_,
ie., fy =f{_;-f/_,-si_1. For unary operators, which have only one
input edge, such as filters, we added in Theorem 4.1 without loss of
generality a second invisible input edge with cardinality 1 (see f{_ ,
in Figure 4.6). Therefore, we rewrite Equation 4.12 as:

Cout = f{_1 : f{_z ©S8i-1- 6f,i =+ Ceonst,i (413)

To rewrite Equation 4.13 into a PCF with s;_1 as a single cost pa-
rameter (PCF,;_,), the cardinality variables for the input edges f/_,
and f{_, are set to the corresponding estimates ﬁ/_] and 13{_ 2

£ £/
Cout - fi,_1 . fi_z : 61‘,1 *Si—1 +Cconst,i - 53,171 *Si—1 +Cconst,i (414)

Since cgonst; is independent of fi, it has no cost depending on s;_1.
Therefore, 85 ;1 for the operator op;_; is the product of frax = ﬂ’f] .
f!_,, and the cardinality-slope value 8¢ ; of the outgoing edge i of the
operator op;_;. Note that unary operators have only one input edge,
so that f/_, or f/_, is set to 1, and therefore has no impact. O

In Section 4.6, we experimentally evaluate the selectivity-slope ro-
bustness metric with respect to the consistency requirements of Sec-
tion 4.2. The selectivity-slope robustness metric also follows our de-
sign considerations: the calculation effort is small, potential cardi-
nality estimation errors are weighted, and the propagation of car-
dinality estimation is considered. A proof for the latter can be con-
structed analogous to the proof of Theorem 4.1 by adding the ad-
ditional weight of fmax. In summary, the selectivity-slope robustness
metric additionally considers the risk of a large Af on all edges, com-
pared to the cardinality-slope robustness metric.

4.4.3 Cardinality-Integral Robustness Metric

The next robustness metric is a trade-off between plan robustness and
estimated costs. Both the cardinality-slope and the selectivity-slope
robustness metric use the slopes of PCFs as the robustness indicator.
However, a plan with a steep slope could still have smaller costs for
a significant range of cardinality values, compared to a plan with a
more moderate slope. Figure 4.8a shows PCF, and PCFg of two dif-
ferent plans as a function of cardinality on a single plan edge. The
cardinality of the edge is denoted on the x-axis and the cost on the y-
axis. Furthermore, it shows f, f 1, and ﬂ, where f 1 is the lower bound
for the estimated cardinality of an edge e € Ep, and f; is the up-
per bound for the estimated cardinality of e € Ep. We argue that
a lower and an upper bound for the estimated cardinality can make

77

78 ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

A
é.-‘,. PCFB E e
[S) || 4 //
- / a Ve
1) s
o N 99
U ////////////// //
CNCNONCNC NN NN W
929099999999 V4
NCNCNI NN NN NN W
KA AR AR AR AKX AKX KK
CNCNCNCN NN N N N W
f| f fi f) f f1
Cardinality f Cardinality f
(a) Considerable integral difference. (b) Marginal integral difference.

Figure 4.8: Conceptual comparison between slope and integral indicator.

the robustness metric more precise. In practice, histograms, sampling,
or bounds for cardinality estimation [58] can give estimations for f;
and ﬂ. In the evaluation in Section 4.6, we set f 1 to 0, and ﬂ t0 frmax-
Note that PCF, and PCFg have the same estimated costs ¢ at f. Since
PCFg has a more moderate slope than PCF,, the cardinality-slope ro-
bustness metric would assign PCFp a smaller robustness value than
PCF4. By considering the costs between | and f;, a metric that is
a trade-off between plan robustness and cost would assign PCF, a
better value compared to PCFp. The reason is that PCF, has signif-
icant less cost for a majority of cardinalities between f| and f4, i.e.,
PCF4 has significantly less cost between f; and f than PCFg, and
is competitive to PCFp between f and f;. To model plan robustness
and cost in a single value, we consider the integral of the PCF be-
tween f 1 and ﬂ. In Figure 4.8a, the integral of PCF, is smaller than
the integral of PCFg. Next, we define the cardinality-integral value ff
as a trade-off between plan robustness and cost, and afterwards the
cardinality-integral robustness metric.

Definition 4.9. The cardinality-integral value j'f’e for an edge e is:

i
JA PCFy,

f

Definition 4.10. The robustness value r I; of the cardinality-integral ro-

bustness metric for a plan P is defined as the sum over the products of fﬁe
and @(e) for each edge e € Ep:

T (P)= 2_ ole)-
If e%E J‘f' ¢
A second scenario in Figure 4.8b shows the impact of the lower
and upper bound f| and f;. In Figure 4.8b, the integral between f
and f; of PCF, is only slightly smaller, than the integral of PCFg. Con-
sequently, the cardinality-integral robustness metric assigns PCF, a

4.4 ROBUSTNESS METRICS

[5) PCF [5) ?CF [S) PCF
7 /,Af 7| _g——TAc %
8 I Af 8 | As 8 1
| - | - L s
f § 1 ff s
Cardinality f Selectivity s Cardinality f
(a) Cardinality-Slope (b) Selectivity-Slope (c) Cardinality-Integral

Figure 4.9: Overview of Cardinality-slope, selectivity-slope and cardinality-
integral robustness metric.

better value compared to PCFg, although PCFg has the more robust
cost behavior. Note that the cardinality-slope robustness metric as-
signs PCFp a better robustness value than PCF,, because of the more
moderate slope of PCFp. Both scenarios in Figure 4.8 show that the
choice of a lower and an upper bound, f| and f;, for the estimated
cardinality of an edge e € Ep has a considerable impact on the cardi-
nality integral robustness metric.

Calculating the integral makes the metric independent of f and the
slope at this point. In addition, we can support arbitrary PCF shapes,
because integrals can always be approximated numerically [8]. Sec-
tion 4.6 shows the experimental evaluation of the cardinality-integral
robustness metric with respect to the consistency requirements of
Section 4.2. The cardinality-integral metric follows two design con-
siderations: It has a low calculation effort, and potential cardinality
estimation errors are weighted. Since the cardinality-integral metric
calculates integrals to balance plan robustness and costs, it considers
high plan edges stronger than deeper plan edges. This is because plan
edges always contain the cost of their sub-plans. Consequently, the
integrals are larger on high plan edges compared to the deeper plan
edges, and therefore have a higher impact on the robustness value.

4.4.4 Robustness Metrics Overview

Figure 4.9 summarizes the three robustness metrics. The cardinality-
slope robustness metric (Figure 4.9a) reflects the expected difference
between estimated and true cost for cardinality estimation errors on
all edges in the query execution plan. Furthermore, it implicitly con-
siders the potential propagation of cardinality estimation errors, and
takes the potential cardinality estimation errors for different types of
operators into account. In addition, the selectivity-slope robustness
metric (Figure 4.9b) considers the risk of a large absolute cardinal-
ity error Af on all edges. Therefore, it models the PCFs as a func-

79

8o

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

tion of operator selectivity. In contrast to the cardinality-slope and
the selectivity-slope robustness metric, the cardinality-integral met-
ric (Figure 4.9c) does not purely focus on plan robustness, but takes
also costs into account. Furthermore, it can consider a more realistic
range for the cardinality of an edge. All three metrics support any
kind of operator, operator implementation and query execution plan
trees, because the cost of a plan can always be modeled as a PCF of
cardinality. In addition, the metrics can be extended to consider es-
timation errors in other cost parameters, such as consumed memory.
We also experimented with a fourth metric, namely selectivity-integral,
but found no substantial improvement over the cardinality-integral
metric.

4.5 ROBUST PLAN CANDIDATES AND ROBUST PLAN SELECTION

Our novel robust plan selection strategy has three phases: First, we
enumerate the set of robust plan candidates. Every robust plan candi-
date is a plan for the entire query, and not a sub-plan. Second, we
calculate the robustness value for each robust plan candidate by ap-
plying one of the three robustness metrics. Third, we select the esti-
mated most robust plan, i.e., the robust plan candidate with the small-
est robustness value for execution. Apart from robustness, selecting a
cheap query execution plan is still a major optimization goal. Conse-
quently, our first criterion for the robust plan candidates is that they
have to be the k-cheapest plans:

Definition 4.11. The k-cheapest plans are the k query execution plans
with the smallest estimated cost.

The k-cheapest plans significantly reduce the number of plan candi-
dates, and give a tight upper bound for the number of plans indepen-
dent of the plan space. In addition, the k-cheapest plans can be uti-
lized to apply additional constraints, such as memory consumption.
The experiments in Section 4.6 reveal that k = 500 results in a low op-
timization overhead. We further show that the estimated most robust
plan inside k = 500 is competitive with respect to an estimated most
robust plan with a larger k. Enumerating the k-cheapest plans is just a
small modification in the query execution plan enumerator. The triv-
ial approach in a dynamic programming enumerator is to keep the
k-cheapest plans in each plan class, instead of only the cheapest plan.
The k-cheapest plans of two plan classes can be combined to create
plans of another plan class. We show in Section 4.6 that enumerating
the k-cheapest plans has a reasonable overhead.

The k-cheapest plans can contain expensive plans for small queries.
Only the cardinality-integral robustness metric takes plan cost into
consideration. Therefore, we further limit the robust plan candidates,
after being completely enumerated, for the cardinality-slope and the
selectivity-slope robustness metric to near-optimal plans:

46 EXPERIMENTAL EVALUATION

Definition 4.12. The near-optimal plans are a sub-set of the plan space,
containing the query execution plans with estimated cost at most A-times
larger than the estimated cost of the estimated optimal plan.

The near-optimal plans guarantee that robust plan candidates are
competitive to the estimated optimal plan, i.e., the estimated cheapest
plan. Furthermore, A gives a theoretical upper bound for the increase
of estimated cost of the robust plan compared to the optimal plan. Ab-
hirama et al. [59] argue for A = 1.2, which we confirm in Section 4.6.

In sum, our plan selection strategy has very low risks: First, we
enumerate the k-cheapest plans. Second, we calculate the robustness
value for each robust plan candidate. Though it is a reasonable over-
head, it can be significant in very short running queries. It is not
significant in our real-world experiments in Section 4.6.1. In addition,
dynamic programming enumeration is no limitation, but shows that
our approach can be integrated into enterprise class optimizers.

46 EXPERIMENTAL EVALUATION

We implemented the three robustness metrics in our dynamic pro-
gramming join optimizer (see Section 2.7). We use the same opti-
mizer to determine the baseline plan for each query, i.e., the estimated
cheapest or optimal plan. Our join optimizer relies on dynamic pro-
gramming [4], such as DB2 [17] and Postgres [78]. As Postgres, it
exhaustively searches the plan space including bushy trees. We show
in Section 2.7 that its cardinality estimator is competitive. In addition,
we use the Cim [93] cost function, which is an extension of Cqy¢ [26]
that considers different operator types and operator implementations.
Cmm has a strong correlation to our main-memory execution engine,
as we show in Section 2.7. Taking everything together, we argue that
our join optimizer’s choice of the estimated optimal plan is very sim-
ilar to the choice of popular commercial and free systems, for the
considered join queries. We denote its estimated optimal plan choice
as conventional plan, and consider it as the baseline. We use our main-
memory execution engine to determine query execution times.

We experimentally evaluate the plan selection strategies with re-
spect to their end-to-end query execution times in Section 4.6.1, and
plan robustness in Section 4.6.2. The results in Section 4.6.2 do not
depend on the machine the experiments run on. Reported execution
times were taken on a two socket Intel Xeon E5-2660 v3 system with
128 GB of main memory, running a Linux 4.4.120 kernel. As we ex-
plain in Section 2.7, our main-memory query execution engine per-
forms join operators as hash joins. The query optimizer and metric
implementations are single-threaded. The entire system is compiled
with gcc version 7.2.0 and optimization option -O3.

Our first workload is based on the Join Order Benchmark (JOB) [78].
The JOB uses the real-world database from IMDb with skew, correla-

81

82

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

tions, and different join relationships that cause estimation errors. We
modified the original queries to be pure join queries, which results in
33 complex queries containing cycles and multiple join conditions be-
tween sub-plans. Since pure join queries without any filters on base
tables create large intermediate results, we use the movie_id column
as scale factor for the benchmark. We limit the movie_id column of
all tables to values less equal than 100, 000. In the end, the scale factor
enables to run 31 different queries. We argue that the scale factor does
not limit the validity of our results, because it creates a snapshot of
the database at the point when it contained only 100,000 movies.
Our second benchmark is synthetic with generated data and join
queries. The query topologies are: chain, cycle, star, and snowflake.
All topologies join 10 tables. The snowflake topology has a fact ta-
ble with three dimension tables. Each dimension table has again two
sub-dimensions. For each topology, we create one query and 100 dif-
ferent data sets. Furthermore, we generate 100 queries with a random
topology and a corresponding data set. The random topology creator
starts with a random connected query graph, and adds with a proba-
bility of 4% additional edges to create cycles. The random topologies
also join 10 tables. For all generated data sets, the base table cardinal-
ities are uniform random numbers between 10,000 and 100, 000. The
data sets contain skew and arbitrary correlations between columns
to generate expanding and selective joins. There are foreign key and
m:n join relationships. The join cardinalities between two base tables
R; and R; are uniform random numbers between max(|Ri|, [R;[) — 5000
and max(|Ri/, [R;|) +5000. We use exactly the same setup, i.e., system,
kernel, compiler, and benchmarks, for the experiments in Chapter 5.
Each experiment starts with enumerating the robust plan candi-
dates. For the cardinality-slope and the selectivity-slope metric, the
robust plan candidates are defined by the near-optimal plans (A=1.2)
and the k-cheapest plans (k=>500). For the cardinality-integral metric
it is only the k-cheapest plans (k=500). By definition, the k-cheapest
plans contain the estimated optimal plan, which is the baseline in our
experiments. To select the estimated most robust plan, each metric
assigns a robustness value to every robust plan candidate. Both work-
loads contain only join queries with at least one m:n join, and there
are no estimation errors for foreign key joins and base table scans in
our setup. Therefore, we define the weighting functions ¢ and ¢ to
be 1.0 for m:n joins, and 0.0 for foreign key joins and base table scans.
We compare our baseline, the estimated optimal plan (EO), with the
estimated most robust plan according to one of the metrics: cardinali-
ty-slope (FS), selectivity-slope (SS), and cardinality-integral metric (FI).
We also perform a best-case offline analysis to show the potential of
robust plan selection. We execute all robust plan candidates and de-
note the plan with the shortest execution time as the fastest plan (FA).

46 EXPERIMENTAL EVALUATION

10° g
:‘5) 10° - ©— optimization time == cardinality-slope (FS) 3
= E B estimated optimal (EO) B selectivity-slope (SS) E
- g 104 & == fastest plan (FA) = cardinality-integral (FI) -
S g E E
5 g 10° |" E
3] — E M 3
- ol i M e e M
% E E
&y EMLUHE 0 T DA 60 o, 60wt R v
] +2 n —
= W'l
f\ \(;3/ +1 o o —m o G O o e [l |-..... |-IT|
oF I
92}
& 8 2 -
o =
3
2 ~x 3E -
e Ol OO OlN Ol Ol OIN O Ol ONN O O RN O OlN O RN O OIN @)
N O N R B % &K 0 " K 328 83
a @ W w N © & U1 N © 5N S|

Figure 4.10: Typical results of experiment comparing the end-to-end query
execution times of the estimated optimal query execution plan
(EO) and fastest query execution plan (FA) with the estimated
most robust query execution plans according to one of the
three robustness metrics (FS, SS, and FI) on different Join Or-
der Benchmark queries.

4.6.1 Query Execution Time

In the initial experiment, we demonstrate that the estimated most ro-
bust query execution plans have on average a faster end-to-end query
execution time, compared to the estimated optimal or cheapest query
execution plans. Figure 4.10 shows some typical results of Join Order
Benchmark queries, plotted along the x-axis. The y-axis shows the
median end-to-end query execution time tp for a plan P in millisec-
onds over 101 executions in logarithmic scale. In addition, the y-axis
shows the resulting speedup (+tgo/tp) or regression (—tp/teo) of
robust plan selection with respect to conventional plan selection de-
noted as EO. We order the queries on the x-axis by the speedup of
robust plan selection compared to conventional plan selection. The
typical results we show include the queries with the best speedup,
e.g., Q2 and Qy, and the worst regression, e.g., Q25 and Q33. The
tigures in Section 4.6.2 show the same queries in the same order.

The best speedup is achieved for the cardinality-slope metric (FS) in
Q2 (1.47), and for selectivity-slope metric (SS) and cardinality-integral
metric (FI) in Q7 (1.83). In contrast, the worst regression for SS and
FIis 1.52 (Q33). For FS the worst regression is 2.98 (Qz25), but the sec-
ond worst regression is again 1.51 (Q33). By considering near-optimal
plans and the k-cheapest plans, the estimated most robust plan does
not necessarily have the smallest estimated cost and small regressions
for some queries can be the result. Comparing the results of Q2 and
Q7 to the fastest plan FA, which was found in a brute-force analysis,

83

84

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

10° g
g 105 F ——— optimization time == cardinality-slope (FS) 3
= E B estimated optimal (EO) === selectivity-slope (SS) 5
c g‘ 104 i == fastest plan (FA) T cardinality-integral (FI) -
] E 3
E = 108k E
g 8 E 3
¢ W ?
&5 E 3

10!

+4 F -
FU ~
T 43 _
T 2
] L] | e LD b b

2]

30 I N e
22 -2
N

00 0 0 00O 0
@ O W
NN W

90
<60
640
o1
YLy
Vide)
860
LED
v60)
€90
LS

Figure 4.11: Typical results of experiment comparing the end-to-end query
execution times of the estimated optimal query execution plan
(EO) and fastest query execution plan (FA) with the estimated
most robust query execution plans according to one of the three
robustness metrics (FS, SS, and FI) on synthetic benchmark
queries with random query topology.

shows that all robust plan selection strategies achieve similar query
execution times as FA. Consequently, the probability is high that the
robust plans are close to the true optimal plans in these cases.

Figure 4.11 shows some typical results for queries of the synthetic
benchmark with a random query topology. The results include Q37,
Qo4, and Q98 with the best speedup as well as Q81, Q83, and Qg1
with the worst regression. For all three metrics, the robust plan se-
lection achieves a better cumulative query execution time than con-
ventional plan selection, which executes the estimated optimal plan
EO. Furthermore, all three metrics achieve larger speedup than re-
gression factors. Comparing the results of Q37, Qg5, and Qg8 to the
fastest plan FA, shows that all robust plan selection strategies achieve
similar query execution times as FA. Therefore, the probability is high
that the robust plans are close to the true optimal plans in these cases.

Table 4.1 summarizes the results of all benchmarks, by cumulative
query execution time, best speedup, and worst regression with re-
spect to EO of all queries in the corresponding benchmark. Table 4.1
also reveals whether there is on average a regression or a speedup.
For queries with chain, cycle, and random topology, the three robust-
ness metrics achieve stronger speedups than regressions, and also
on average, there is a speedup compared to the estimated optimal
plans. For the Join Order Benchmark, star, and snowflake queries,
the robustness plan selection cannot improve the average query ex-
ecution times compared to the estimated optimal plans. In the JOB,
the cardinality-slope metric FS even causes an average regression of

46 EXPERIMENTAL EVALUATION

2 time best speedup worst regression average

EO 13892 ms - - -

. P 176%ms +1.47 % —298x —1.27x
© SS 14581 ms +1.83x —152x —1.05x
FI 14243 ms +1.83 % —1.52x —1.03x

FA 12483 ms +1.98% — +1.11x

EO 18798 ms - - -

= FS 16091 ms +3.31x —1.26x +1.17x
%‘ SS 17061 ms +1.79% ~1.36x +1.10x
FI 16865 ms +3.49x —1.13x +1.11x

FA 14562 ms +4.23 % - +1.29x

EO 41084 ms - - -

o FS 34587 ms +2.43x —121x +1.19x
5 SS 32279 ms 1+2.43x —1.27x +1.27x
FI 33193 ms +2.43% —1.25x +1.24x

FA 25539 ms +2.94% — +161x

EO 178520 ms - - -

. FS 182693 ms +1.14x —149x —1.02x
£ 85 177251 ms +1.23% —148x +1.01x
FI 188334 ms +1.21x —148x —1.05x

FA 161987 ms +1.47% — +1.10x

EO 53793 ms - - -

% FS 54437 ms +1.53x —2.07x —1.01x
E SS 51579 ms +1.91x —1.36x +1.04x
& FI 53327 ms +1.78x% ~1.38x +1.01x
FA 44843 ms +2.11x - +1.19x

EO 82001 ms - - -

g FS 75644 ms +2.14% —1.60x +1.08x
g SS 74951 ms +2.27% —1.22x +1.09x
M Bl 78922 ms +2.04x —1.33x +1.04x
FA 56273 ms +4.07 % — +146x%

Table 4.1: Summary of end-to-end query execution time comparisons be-
tween the estimated optimal plans (EO), the most robust plans
according to cardinality-slope (FS), selectivity-slope (SS), or
cardinality-integral metric (FI), and the fastest plans (FA) over all

queries of different real-world and synthetic benchmarks.

85

86

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

27%. As we illustrate in Figure 4.10, the reason is Qz25, for which the
cardinality-slope metric FS fails. We further discuss the reasons why
the cardinality-slope metric fails for Q25 in the following sections.
The root cause why the estimated most robust plans achieve in
some benchmarks on average better query execution times compared
to the estimated optimal plans are cardinality estimation errors. Con-
ventional plan selection assumes that there are no cardinality estima-
tion errors when selecting the estimated optimal, i.e., cheapest plan
for execution. Since there are cardinality estimation errors in some
of the queries, we consider this assumption does not hold and the
estimated most robust plans perform better. If there are almost no
estimation errors, selecting a robust plan cannot improve the query
execution time, and small regressions can occur. In sum, the execution
time experiments illustrate that all robustness metrics are effective.

4.6.2 Plan Robustness

After showing that our robust plan selection strategies achieve an
average improvement of end-to-end query execution time, we next
analyze some conceptual properties of our robustness metrics. In ev-
ery subsection, we evaluate one of the robustness metric consistency
requirements, we presented in Section 4.2.

4.6.2.1 Cost Error Factor Improvement

According to the first consistency requirement, the estimated most
robust plan should have a smaller cost error factor cer than the esti-
mated optimal plan (see Section 4.2). To measure the cost error factor
improvement, we calculate the difference between the cerr of the esti-
mated optimal plan (cerrro) and the cerr of another plan P (Cerrp):

Acemp = Cerr,EO — Cerr,P

Consequently, a positive A, , reveals the cerr improvement of plan
P compared to the estimated optimal plan EO. Figure 4.12 illustrates
some typical results for the Join Order Benchmark. The x-axis shows
the same queries in the same order as Figure 4.10. The A, , is de-
noted on the y-axis in logarithmic scale. The results include the queries
with the largest A, ., e.g., Q14, Q16, and Q17, and the smallest
Ac,.», €8, Q9 and Q25. Our robust plan selection strategy using
the cardinality-slope robustness metric FS achieves a positive Ac,,,,
in 29 of 31 queries. There is a negative A, , of 0.03 in Q23, which
is almost not visible in Figure 4.12, and a significant degradation of
Ac,,.» in Q25. The negative A, , of Q25 also explains the correspond-
ing end-to-end query execution time degradation in Figure 4.10. Our
robust plan selection strategy using the selectivity-slope robustness
metric SS and the cardinality-integral robustness metric FI has a neg-
ative A, for Qg, but achieves a positive A, , in 30 of the 31 queries.

46 EXPERIMENTAL EVALUATION

100 b === fastest plan (FA) |
+ r == cardinality-slope metric (FS) 3
== selectivity-slope metric (SS)]
% [&= cardinality-integral metric (FI)]
Su L i
Lo _wilull.
2

2 100 | =
é L i
S : :
—10" F 3

OO0 OO0 000000 000

N QO N R R 0 \O¥ B R R QO 1B R & 2 N = 33

a & W ow N o A 1 N © o N

Figure 4.12: Typical results of experiment showing the cerr improvement
with respect to the estimated optimal query execution plan, of
the fastest query execution plan (FA), and the estimated most
robust query execution plans according to one of the three met-
rics (FS, SS, and FI) on different Join Order Benchmark queries.

Comparing the A, , of the fastest plans FA to the estimated most ro-
bust plans shows that the fastest plans are not necessarily as robust as
the estimated most robust plans, because there can be a considerable
difference between estimated and true cost for FA. Considering, e.g.,
Q12 and Q14, reveals that our robust plan selection using the FS, SS,
or FI robustness metrics results in a better A.,,,, compared to FA.

Figure 4.13 illustrates some typical results of the synthetic bench-
mark queries with a random query topology. The queries are the
same, and in the same order as in Figure 4.11. The query set includes
the cases with the largest A, ,, e.g., Q57 and Q74, and the small-
est Ac,.,, e.g., Q33, Q87, and Qg1. Our robust plan selection using
the cardinality-slope robustness metric FS achieves a positive A,
in 92 of 100 queries, the selectivity-slope robustness metric SS in 97
of 100 queries, and the cardinality-integral robustness metric FI in 88
of 100 queries. Comparing the A, , of the fastest plans FA to the
estimated most robust plans shows that FA achieves in most cases
the best A, .. Consequently, the fastest plans in this benchmark are
theoretically some of the most robust plans.

Table 4.2 summarizes the results of all benchmarks, by largest, smal-
lest, and average A.,,,, of all queries in the corresponding benchmark.
Table 4.2 also contains the number of queries with a positive A, ,. Ex-
cept for the cardinality-slope metric FS in the Join Order Benchmark,
all three robustness metrics achieve on average a positive A, ,. Com-
paring the largest A, with the smallest A, of FS, SS and FI reveals
that the maximum gains outweigh the maximum losses, except for
the cardinality-slope metric FS in the Join Order Benchmark due to

87

88

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

+10% .
F == fastest plan (FA) 7
— +103 e == cardinality-slope metric (FS) =
S F === selectivity-slope metric (SS) 3
< 4102 == cardinality-integral metric (FI) -
é +107 f f
g E 3
& +10° [=
Q.
E o LU il
TF]
< 2100 C .
—10' E
OO OOl Ol Ol Ol Ol Oy Ol Oy Ol Oy Oy Ol ORY ORy @)
O ® %0 X0 D NW ECEF BEITNE TS X
RoR W N RO 0w 0 o AN N K O

Figure 4.13: Typical results of experiment showing the cerr improvement
with respect to the estimated optimal query execution plan, of
the fastest query execution plan (FA), and the estimated most ro-
bust query execution plans according to one of the three robust-
ness metrics (FS, SS, and FI) on synthetic benchmark queries
with random query topology.

Q25. Considering FS and the random topology, shows the best A, ,
of a robustness metric with 89.02. This value results from Qs57, which
is illustrated in Figure 4.13. The comparison of FI to FS and SS in Ta-
ble 4.2 shows that FS and SS achieve in most cases better results. The
reason is that the cardinality-integral metric already balances plan
robustness and cost. In contrast, the cardinality-slope and selectivity-
slope metrics purely focus on plan robustness. The corresponding
robust plan selection strategy considers cost with the near-optimal
plans constraint. To sum it up, our experiments reveal that the robust
plan selection using the robustness metrics improves the average cost
error factor cerr Of query execution plans with respect to conventional
plan selection, which solely relies on estimated cost.

4.6.2.2 Cost Error Factor Dominance

According to the second consistency requirement, the estimated most
robust plan, chosen by robust plan selection, should dominate all ro-
bust plan candidates, denoted as RPC, with respect to their cerr (see
Section 4.2). In order to measure the cost error factor dominance, we
define pc,,, of a plan P:

. |{R|Cerr,P < Cerr,R/ R € RPC}‘
pCerr,P - RPC

A pc,,.» of 100% indicates that a plan has the smallest ce,; of all
robust plan candidates, i.e., is the most robust plan. In practice, a
Peerp Of 100% is not achieved for every query, because the robustness

46 EXPERIMENTAL EVALUATION

largest A, smallest A, average A.,, #posAc,,

FS +1.71 ~14.10 —0.11 29/31
=SS +1.34 —0.03 +0.29 30/31
= FI +2.15 —0.03 +0.36 30/31
FA 4212 0.00 +0.40 31/31
FS +19.19 0.00 +0.80 98,100
£ ss +15.43 0.00 +0.73 100/100
S m +17.98 —0.20 4055 96/100
FA +20.69 0.00 +0.85 99/100
FS 125.04 0.00 +451 100/100
%; ss +24.87 0.00 +4.72 100/100
O Fm +20.02 —0.25 +3.30 98,/100
FA 12571 0.00 +5.62 100/100
FS +55.11 —0.70 +1.21 92/100
5 SS +48.37 —0.06 +1.34 98,/100
R 5| +48.37 —6.96 +0.93 74/100
FA +67.70 —0.17 +1.79 96,100
y FS +18.07 —1.87 +1.28 93,100
= SS +37.13 —2.87 +1.48 96/100
§ FI +13.47 —4.90 +0.75 93,100
“ EaA 439.35 203 42,19 98,100
. FS +89.02 —5.25 +5.86 92/100
S ss +43.59 —0.81 +5.06 97/100
5w +41.64 2477 4212 88/100
FA +143.02 —0.096 +9.64 99/100

Table 4.2: Summary of cost error factor improvement comparisons be-
tween the most robust plans according to cardinality-slope (FS),
selectivity-slope (SS), or cardinality-integral metric (FI), and the
fastest plans (FA) relative to the estimated optimal plans (EO),
over all queries of different real-world and synthetic benchmarks.

value assigned by a robustness metric is an approximation for an
upper bound of cer. Furthermore, there are cases in which the cerr
values within RPC are close together, so that the expressiveness of
Pcenp 18 low. Therefore, we additionally define &, , as the difference
between the cer of a plan P and the cer 0of the most robust plan
R € RPC, i.e., the plan with the smallest cery:

6Cerr,P = min{cerr,R|R S RPC} — Cerr,P

89

90

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

100% F - =

75% |- i 5

gl i i
= I

L LTI

—10" estimated optimal plan (EO) === _|
fastest plan (FA) ==

2 cardinality-slope metric (FS) =
=10 = selectivity-slope metric (S5) ===
cardinality-integral metric (FI) =——

Cerr DOminance
lp ce,,}

=

Cerr DOminance
(3c...]

—103
DOOOOLOOLDOOLOLOOORLO0DOWR
N QWO N R K 0O R H R Q R R B R N R
Ul W W W N O &~ U1 N O (@) N

Figure 4.14: Typical results of experiment comparing the cost error factor
dominance of the estimated optimal query execution plan (EO),
the fastest query execution plan (FA), and the estimated most
robust query execution plans according to one of the three met-
rics (FS, SS, and FI) on different Join Order Benchmark queries.

Consequently, the closer o, , to 0 is, the better. A 6., close to 0
indicates that a query execution plan P has a similar cer as the query
execution plan with the smallest cer from the robust plan candidates,
i.e., the most robust plan. Cases with small p._,, and in addition a
S¢,,p Close to O still indicate an almost optimal behavior. The consid-
ered plans per query in this analysis are the robust plan candidates,
defined by the k-cheapest plans (k = 500) for all robust plan selection
strategies. For robust plan selection using the cardinality-slope met-
ric FS and selectivity-slope metric SS, the robust plan candidates are
further limited by the near-optimal plans (A = 1.2).

Figure 4.14 shows some typical results for the Join Order Bench-
mark queries. The queries are plotted along the x-axis in the same
order as in the Figures 4.10 and 4.12. The y-axis shows the pc, , in
percent and 6, , in log-scale. The query set contains the queries with
the best pc,,, and &, ,, 8., Q14 and Q23, and the worst pc,,, or
Scenps €8., Q16, Q23, Q25, and Q32. Overall, the robust plan selection
with the cardinality-slope metric FS and selectivity-slope metric SS
achieves a pc,,, of 100% for 13 of the 31 executed queries, i.e., the
robust plan selection chooses the most robust plan. A pc,, ., > 80% is
achieved for FS and SS in 25 of the 31 executed queries. In contrast,
conventional plan selection choosing the estimated optimal plan EO
achieves a pc,,, = 80% for only 12 of the 31 executed queries. The
average &, , over all 31 Join Order Benchmark queries is better for
SS (—0.11) and FI (—0.12) compared to EO (—0.50). Considering the
fastest plan FA, we again observe that it is not necessarily as robust as
the estimated most robust plans. The average p.,,, , over all 31 Join Or-

46 EXPERIMENTAL EVALUATION

100% Fp - — T —
75% - e

T 25% | i
0%

Cerr Dominance
p Cevr}
w1
N
I
\

e [TPUTN “

3 == estimated optimal plan (EO)

w, —10° |~ == fastest plan (FA) 7

—10% |- === cardinality-slope metric (FS) -
5 | E== selectivity-slope metric (SS)

—10° = cardinality-integral metric (FI)

Cerr Dominance
6 Cerr

106
ool ol Ol OOl Ol Ol Ol Ol Ol Ol ON OIY Ol Ol Oy ©)
O ©® X ® X NW H O N B NI N YO W O WU
RoR W NN W o O 0O AN 0N B~ W N

Figure 4.15: Typical results of experiment comparing the cost error factor
dominance of the estimated optimal query execution plan (EO),
the fastest query execution plan (FA), and the estimated most ro-
bust query execution plans according to one of the three robust-
ness metrics (FS, SS, and FI) on synthetic benchmark queries
with random query topology.

der Benchmark queries for the selectivity-slope metric SS (92.65%) is
larger compared to the average p,,,, of the fastest plans FA (89.37%).
Figure 4.15 plots some typical results of the synthetic benchmark
queries with a random topology. The queries are the same, and in the
same order as in the Figures 4.11 and 4.13. Included are Q46 and Qg5
with the best pc,,., and 0, as well as Q57 and Q62 with the worst
Peenp OF ¢, »- FOr Q79, the cardinality-slope metric FS and selectivity-
slope metric SS identify the most robust plan with p., , =100% and
Sconp = 0.0, whereas EO is a volatile plan with pc,,, = 12.20% and
Ocenp = —9.74. A pcg,p = 80% is achieved for FS in 75 of the 100
executed queries, and for SS in 68 of the 100 executed queries. In
contrast, EO achieves a pc,,,, > 80% for only 10 of the 100 executed
queries. The average 0., over all 100 benchmark queries is better
for FS (—4.38), SS (—5.16), and FI (—8.18) compared to EO (—10.32).
Table 4.3 summarizes the results of all benchmarks, by best, worst,
and average p,,,, and best, worst, and average &, , of all queries
in the corresponding benchmark. The robustness metrics FS and SS
achieve a significantly larger average pc,, , (79%-93%) compared to
estimated optimal plans EO (21%-69%) for all benchmarks. The worst
S¢,,p for EO is in most benchmarks substantially smaller compared to
the robust plans. A comparison of best, worst, and average pc,,,, and
S¢.,p Of FI, to FS and SS in Table 4.3 shows that FS and SS outperform
FI. Again, the reason is that FI balances robustness and cost. However,
best, worst, and average pc,,, and 8., , of FI reveal a substantially
better cerr dominance compared to estimated optimal plans EO.

91

92

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

TPcer ¥ Pcer PP TOcor 40ce Fcuy

EO 100.00% 10.71% 68.92% 0.00 —2.16 —0.50

o FS 100.00% 28.00% 88.95% 0.00 —14.68 —0.52
© SS 100.00% 30.00% 92.65% 0.00 —153 —0.11
FI 100.00% 10.71% 89.32% 0.00 —153 —0.12

FA 100.00% 35.71% 89.37% 0.00 —0.40 —0.08
EO 91.60% 040% 31.75% 0.00 —20.69 —0.94

= FS 100.00% 48.00% 93.09% 000 —282 0.1
5 SS 100.00% 25.20% 89.37% 0.00 —4.49 —0.18
FI 100.00% 640% 63.97% 0.00 —271 —0.38
FA 100.00% 18.80% 92.95% 0.00 —147 —0.07

EO 7820% 0.20% 20.63% —0.34 —2627 —6.04

o FS 100.00% 44.30% 91.53% 000 —7.81 —1.02
5 SS 100.00% 33.00% 90.50% 0.00 —6.05 —0.80
FI 100.00% 0.20% 63.21% 0.00 —13.60 —2.71

FA 100.00% 36.60% 95.13% 000 —542 —0.36
EO 91.60% 0.20% 3583% 0.00 —68.72 —2.01

. FS 100.00% 19.60% 78.84% 0.00 —13.61 —0.79
£ S5 100.00% 3.40% 87.87% 000 —2035 —0.66
FI 100.00% 0.20% 63.79% 0.00 —20.35 —1.08

FA 100.00% 13.60% 89.89% 0.00 —2.38 —0.20
EO 97.40% 0.20% 39.16% —0.02 —41.33 —251

% FS 100.00% 36.20% 86.50% 0.00 —30.62 —1.22
E SS 100.00% 6.60% 88.87% 0.00 —40.72 —1.01
& FI 100.00% 1.80% 74.26% 0.00 —40.72 —1.74
FA 100.00% 27.00% 9391% 0.00 —3.73 —0.30
EO 98.60% 0.60% 46.72% —0.10 —143.02 —10.32

& FS 10000% 6.60% 84.96% 0.00 —54.00 —4.38
% SS 100.00% 19.40% 83.71% 0.00 —108.07 —5.16
MR 100.00% 2.80% 66.66% 0.00 —143.02 —8.18
FA 100.00% 52.00% 97.46% 0.00 —13.61 —0.58

Table 4.3: Summary of cost error factor dominance comparisons between the
estimated optimal plans (EO), the most robust plans according to
cardinality-slope (FS), selectivity-slope (SS), or cardinality-integral
metric (FI), and the fastest plans (FA) over all queries of different
real-world and synthetic benchmarks.

46 EXPERIMENTAL EVALUATION

4.6.2.3 Correlated Cost Error Factor Limit

According to the third consistency requirement, a large cerr for a plan
with a small robustness value indicates a failure of the metric (see
Section 4.2). Since cardinality estimations can be precise and always
result in a small cost error factor cerr, even if a large robustness value
is assigned, the correlation between the robustness value and cer can-
not be used to evaluate the third requirement. To evaluate the require-
ment, we draw all robust plan candidates of a query into a single plot.
We do this analysis for the cardinality-slope and selectivity-slope ro-
bustness metrics, because they purely focus on plan robustness. The
cardinality-integral metric takes cost as additional dimension into ac-
count, which does not allow a decoupled analysis. Corresponding to
the previous experiments, the robust plan candidates are limited by
the k-cheapest plans and near-optimal plans. Figure 4.16 shows the
results for the cardinality-slope robustness metric FS, and Figure 4.17
for the selectivity-slope robustness metric SS. We show some typical
results of Join Order Benchmark queries, namely Qy, Q8, Q12, Q14,
Q19, and Q25. The robustness values 15, and 15, assigned by the ro-
bustness metrics are plotted on the x-axes in logarithmic scale, and
the cerr that was calculated after plan execution on the y-axes in log-
arithmic scale. Additionally, we highlight the estimated optimal plan,
the fastest plan and the estimated most robust plan according to the
corresponding robustness metric. The Figures 4.16 and 4.17 also show
the cost error factor improvement and cost error factor dominance,
which correspond to the results in the Figures 4.12 and 4.14.

The results of the cardinality-slope robustness metric in Figure 4.16,
reveal a strong correlation between 15, and cerr for Q8, Q12, and Q14.
Furthermore, there is no robust plan candidate with a small r5, and a
large cerr. The plots also confirm the results of Figure 4.14, where FS
achieves a cost error factor dominance of 100%, because there are
no plans with a smaller cer than the estimated most robust plan.
For Q7 and Q19, we see that the correlated cost error factor limit
requirement is fulfilled, even if there is no strong correlation between
T5, and cerr. For Q25, the cardinality-slope robustness metric fails,
which we also see in the previous experiments, i.e., the Figures 4.10,
4.12, and 4.14. The reason is that especially the m:n joins in Q25 re-
lated to the MOVIE_INFO table create stronger cardinality estimation er-
rors compared to other joins. The cardinality-slope robustness metric
does not consider the joins related to the MOVIE_INFO table to create
stronger estimation errors, and assigns a good robustness value to
plans where the corresponding joins are deep in the plan. The result
are strong estimation errors on deep plan edges that are propagated.
Consequently, the plans have larger true costs ¢ and a worse Cery.

Figure 4.17 shows that the selectivity-slope robustness metric per-
forms much better for Q25, because it assigns a good robustness
value only to the plans that have a small cerr. The reason is that

93

94 ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

% 5 T ‘ T ‘ E 2.1 [‘ \.\.>
: 4 é o g%fé robust 3 : 1.9 ‘.o'.f
9 E v est. optimal plan 9 L Ww®s
g 3cs fobst bian E g7 o
= . 0.' ° = | L 1
@) E . 'o‘ o.:. » E @]].5 — o°.: =
E 2 -...;.:;,....:,:-5.-.:'.. L’E‘ 14 + e s i
b7 F*f:f::‘Fw' t‘frlff— = 13Fe°---—----—-—-—-———- —
8 ¢ ovefe B 8 12 L
10 12 14 16 18 3 4 6 8 12
Robustness Value 15, Robustness Value 15,
(@) Q7 (b) Q8
£ 9 I T £ 15 e
Q - 0®® 1 Q L o -
§ 7+ .o“] § i .:o‘
5 [‘..] — e® —
g ° ' g 8 .:::l |
5 4 — ' s oV — &3 6 B R 4 i
+ L R + .3
) 3 I I B A R) 5 :.\J'w###*rr\—whfwy—u—qr
@) @)
10 15 20 25 30 8 10 20 30
Robustness Value 75, Robustness Value 75,
(c) Q12 (d) Q14
g 4.0 LI ‘ Jor T ‘: g 30 T LI LA \:
; 3-5 - . .'.‘ - :5) 25 o ’ 77777777777 t €
I3 r ¢ Lo S 20F B
ng 3.0 :7 ..‘;.“’... . *: é:s : ' 4 E
55 . ¥ X L S 15 o N
E 2.5 T . -] m;;: : :
- [’,.L,‘,‘,‘, *,,: ,,,,,, - : ' °
RPY) i TS 2 10 AT
10 15 20 25 60 80 100 150 200
Robustness Value 15, Robustness Value 15,
(e) Q19 (f) Qz5

Figure 4.16: Experiment showing the correlated cost error factor limit of the
cardinality-slope robustness metric for some typical results of
the Join Order Benchmark.

the selectivity-slope robustness metric considers the risk of a large
absolute cardinality error Af on all edges. Consequently, it assigns a
good robustness value only to the plans that perform the joins related
to the MOVIE_INFO table on high plan edges. Since Figure 4.17f shows
the same robust plan candidates as Figure 4.16f, the plans with strong
cardinality estimation errors on deep plan edges now form a cluster.
This is also a desirable behavior, because it reveals a strong correlation

46 EXPERIMENTAL EVALUATION

g 5 g 2-] [T TTT ‘.\.\ T \7
: 4 é . rortgfé robust é : 19 |- 4 o.‘.o.f
S : v fest;[O};tlrlr;lerill plan E 9 L 3."...

E 3 Fm r?)%tegt }P;lan f E 1.7 - . '.v'..'. N
= o 0 . = ; . ‘ '::. ;

TR IS B B SR
|83 ; v.. ..0. P .. o .’o. &5} . . . °
45;; Las o 4 :7 7.7!727.7777; 4(7) 13 B ¢ n
8 C hall . . 8 1.2 Lol PRI R

1-10"" 2.10"7 5.10"" 4.10"" 102 4.10"2 103
Robustness Value 15 Robustness Value 15
(@) Q7 (b) Q8

59 T £ 15 ¢ : S
Q r & Q n °® i
e ’r & 8 i &]
Q - ® | Q - o® |
LE 6 :..o LE 10 I :ﬁ;’ i
8 5 B -". | 8 8 B 03..]
t‘ 4 v | h o8
m 2t m v
- ,.l' 777777777777777 - 6 — i' .
7) :!

S 3 - S sl o
2-1010 4.10'0 8-1010 2-101° 4.1010 8-1010
Robustness Value 75, Robustness Value 75,
(c) Q12 (d) Q4

g 4.0 ‘. o g 30 o T B
o O 3 -~
§ 35 -:.o :O: 25 E E
Q C] @] ; 1
i 3.0 3 .o"."::: E i 20 - ¢ .

8 C ° o'...o“ T E‘ -]5 B N

H 2.5 o — H L p
= . o’ = i]
b o 1,7\33.,& ,,,,,, + L - - - _______ |
P\ S LT S

3-10'2 5.10'2 1.10"3 3-10M7 5.10'" 7.101
Robustness Value 75, Robustness Value r5,
(e) Q19 (f) Q25

Figure 4.17: Experiment showing the correlated cost error factor limit of the
selectivity-slope robustness metric some typical results of the
Join Order Benchmark.

between 15, and cerr. The estimated most robust plan, the estimated
optimal plan and the fastest plan have a small 5, and result in a
small cerr. A majority of other robust plan candidates have a large 75,
and result in a large cerr. Furthermore, there is no plan with a small
5, that results in a large cer for Q25. The results for Qy7, Q12, Q14,
and Q19 in Figure 4.17 are similar to results of the cardinality-slope
robustness metric in Figure 4.16. The selectivity-slope robustness met-

95

96

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

ric performs slightly worse for Q8 compared to the cardinality-slope
metric, but fulfills the correlated cost error factor limit requirement.

The plots for the other Join Order Benchmark queries look similar.
In sum, the experiments on plan robustness reveal that our robust-
ness metrics have the preferable behavior, which we describe in the
consistency requirements in Section 4.2.

4.6.3 Robust Plan Candidates

In this section, we evaluate the impact of the robust plan candidate
choice on the end-to-end query execution time and on the plan robust-
ness. For the cardinality-slope FS, selectivity-slope SS, and cardinality-
integral robustness metric FI, the robust plan candidates are the k-
cheapest plans (k = 500). For FS and SS, the robust plan candidates
are further limited to the near-optimal plans with A = 1.2, because
only FI considers cost. The query execution time experiments in Sec-
tion 4.6.1 illustrate that robust plan selection with FS and SS suffers
less from estimation errors compared to conventional plan selection
EO, which chooses the estimated optimal or cheapest plan.

Our robust plan selection can be done at query optimization time,
because each of our metrics has a low calculation effort, and we con-
sider at most the k-cheapest plans as robust plan candidates. Table 4.4
shows the query optimization time relative to end-to-end query exe-
cution time, i.e., optimization time divided by end-to-end query exe-
cution time, for conventional plan selection EO and the robust plan
selection using the FS, SS, or FI robustness metric. The query opti-
mization time of conventional plan selection EO contains the plan
enumeration, the cost calculations and the selection of the estimated
cheapest plan. The query optimization time of robust plan selection
contains the plan enumeration including the robust plan candidates,
the cost calculations, the robustness value calculation for each robust
plan candidate, and the selection of the estimated most robust plan.
The optimization time depends on the number of enumerated plans,
i.e., the query graph topology, and the number of robust plan can-
didates, which is at most k = 500 in all our experiments. We con-
sider the Join Order Benchmark and the different topologies of the
synthetic benchmark. The reported numbers are the average of all
queries in the corresponding query set. Since robust plan selection
introduces additional computational overhead, this ratio is better for
conventional plan selection EO compared to robust plan selection us-
ing the FS, SS, or FI metric. The percentage of optimization time for
star queries is smaller in comparison to all other query sets, which is
counter-intuitive. The reason is that the total query execution time of
the star queries is considerably larger, which we also illustrate in Ta-
ble 4.1. However, the optimization time of robust plan selection is in
any case small with respect to the end-to-end query execution time.

46 EXPERIMENTAL EVALUATION

JOB Chain Cycle Star Snowflake Random

EO 0.98% 0.14% 0.12% 0.12% 0.17% 0.13%
FS 3.94% 3.70% 3.10% 1.77% 3.06% 3.08%
SS 4.78% 3.51% 3.32% 1.82% 3.20% 3.10%
FI. 491% 3.68% 3.62% 1.71% 3.11% 2.96%

Table 4.4: Average query optimization time of conventional plan selection
(EO) and robust plan selection using the cardinality-slope (FS),
selectivity-slope (SS), or cardinality-integral robustness metric (FI),
relative to the average end-to-end query execution time of Join
Order Benchmark queries and synthetic benchmark queries.

Finally, we demonstrate that selecting the estimated most robust
plan from the k-cheapest plans with k = 500 is competitive with
respect to a robust plan that is selected form a larger set of candidates.
Since setting k = oo is infeasible, especially for the complex query
graph topologies of some Join Order Benchmark queries, we limit
k for this experiment to 10,000. We denote the difference between
the cost error factor cerr of the estimated most robust plan with k =
10,000 and the estimated most robust plan with k = 500 as yc,,.
A negative ., indicates that robust plan selection found a more
robust plan with a larger k. A vy, close to 0 indicates that robust plan
selection found no considerably more robust plan with a larger k.

Table 4.5 shows the average v, for robust plan selection with our
three robustness metrics for both, the Join Order Benchmark and the
synthetic benchmark. In the Join Order Benchmark, the average v,
is close to 0 for the selectivity-slope SS and cardinality-integral ro-
bustness metric FI, i.e., a larger k will not result in substantially more
robust plans. For the cardinality-slope robustness metric FS, the av-
erage Yc,, is even positive. The reason is that robust plan selection
with a larger k will choose a plan for Q15 and Q21 that results in
a significantly larger cer. In the synthetic benchmark, the average
Yeo, 15 close to O for all three robustness metrics on chain and cy-
cle queries. For star and snowflake queries, the average v, value is
smaller compared to chain and cycle queries due to the larger plan
space. Finally, for random queries, the average v.,, is close to 0 for
the cardinality-integral robustness metric FI. In contrast, robust plan
selection with the cardinality-slope robustness metric FS will lead to
a Yc,, smaller than —1 for 43 of the 100 generated queries, and with
the selectivity-slope robustness metric SS for 57 of the 100 generated
queries. Overall, k = 500 achieves a good trade-off between plan ro-
bustness and query execution time, because the vy, is close to 0 for
a large number of queries, and the optimization overhead is small.
Especially for complex queries, k = 10,000 can cause a significantly
larger optimization time with respect to the sheer plan execution time.

97

98

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

JOB Chain Cycle Star Snowflake Random

FS +586 —0.05 —0.39 -—1.39 —1.91 —3.04
ss —08 —-0.08 —0.18 —0.71 —1.75 —2.62
FI. —1.00 —0.04 0.00 —0.33 —0.48 —0.24

Table 4.5: Average Ve, of robust plan selection using the cardinality-slope
(FS), selectivity-slope (SS), or cardinality-integral robustness met-
ric (FI) and 500 robust plan candidates, relative to robust plan
selection with 10, 000 robust plan candidates for Join Order Bench-
mark queries and synthetic benchmark queries.

For Q25 of the Join Order Benchmark, the optimization takes a factor
of 60 longer compared to the execution, when k = 10, 000.

From our experiments we conclude that the selectivity-slope ro-
bustness metric has advantages over the cardinality-slope robustness
metric. There are queries for which the one or the other metric has
stronger speedups or stronger regressions, but the example of Join Or-
der Benchmark Q25 shows that the additional features of the selectivi-
ty-slope robustness metric can prevent significant outliers. Although
there are some queries for which the cardinality-integral robustness
metric achieves the best results, the overall performance of the cardi-
nality-slope and selectivity-slope robustness metrics is better. The ad-
vantage of the cardinality-integral metric is the support for arbitrary
PCF shapes, and it is independent of the estimated cardinality f. In
sum, we recommend the selectivity-slope robustness metric for linear
PCFs, and the cardinality-integral metric for non-linear PCFs.

4.7 RELATED WORK

Open research questions in robust query processing are regularly dis-
cussed in Dagstuhl seminars organized by Graefe and colleagues [60,
65, 91]. As classified by Yin et al. [80], one approach to robust query
processing is robust plan selection. The design space for robust plan
selection strategies has similarities to the design space of conventional
query optimizers. We argue that the design space of robust plan selec-
tion strategies has the following three dimensions, in which related
work can be categorized:

1. Online Selection vs. Offline Analysis: A robust plan can be either
selected at optimization time, i.e., online selection, or identified
in a more expensive offline analysis.

2. Robust Plan Candidates: The set of candidates for robust plans
can be limited, e.g., to plans that are only optimal for certain
cardinalities and selectivities [53, 82], plans that have costs close
to the estimated optimal plan [59], or plans with a certain query
execution plan structure, e.g., only left-deep trees [77, 81].

4.7 RELATED WORK

3. Selection of the Robust Plan: There are numerous approaches to se-
lect the most robust plan from the set of robust plan candidates.
Selected could be a plan that is optimal for multiple cardinal-
ity and selectivity combinations [41], or the most robust plan
according to a robustness metric [59, 77, 81].

4.7.1 Offline Analysis

Robust Plan Diagram Reduction [53] and Plan Bouquets [71] reduce para-
metric optimal sets of plans (POSP) [37]. Robust Plan Diagram Re-
duction is a graphical plan space analysis that identifies robust plan
clusters. Plan Bouquets iteratively explore different plans through ex-
ecution, give a formal upper bound for execution time compared to
the fastest plan, and do not rely on cardinality estimation. Enumer-
ating POSPs and identifying the Plan Diagram or the Plan Bouquets
causes a very high pre-calculation effort, so that it is not reasonable
for ad-hoc queries. Updates can require considerable effort. Our ro-
bust plan selection approach is based on estimations, and enables the
specification of an upper bound for cost with respect to the estimated
optimal plan through the near-optimal plans constraint. Due to the
small pre-calculation effort, it can be applied at optimization time,
and supports updates and ad-hoc queries.

Risk Score [82] is a metric for plan robustness, and indicates how
fragile a plan during different execution conditions is. Since different
execution times are necessary, a Risk Score cannot be predicted dur-
ing optimization time. The robust plan candidates set is also limited
to the POSP, i.e., plans that have to be optimal for some cardinalities.

4.7.2 Online Selection

Proactive Re-Optimization [41] searches the optimal plan for the esti-
mated and two heuristically chosen cardinalities for each cardinality
estimate. From the three plans, it tries to identify the optimal, a ro-
bust, or a switchable plan. If no such plan exists, it triggers a runtime
re-optimization. The two heuristically chosen cardinalities for each
cardinality estimate, are supposed to be an optimality range, which
we can be precisely calculated with our algorithm in Chapter 3.

Robust Cardinality Estimation [40] searches the optimal plan for worst
case cardinality estimates. It uses random sampling to generate a
probability density function for operator output cardinality. This ap-
proach is limited to operators that support sampling. Based on the
probability density function and a user defined risk level for the prob-
ability density function, it estimates the maximum output cardinality
of an operator, and searches the optimal plan for it.

Compared to Proactive Re-Optimization and Robust Cardinality
Estimation, our approach defines a robustness value so that two plans

99

100

ROBUSTNESS METRICS AND ROBUST PLAN SELECTION

can be compared with respect to their robustness. We also consider
non-optimal plans in the robust plan candidates set, since a robust
plan does not require optimality for certain cardinalities. Further-
more, the goal of our approach is robust cost behavior in case of
over- and under-estimations, i.e., a minimal cerr. Robust Cardinality
Estimation does not necessarily select a plan with minimal cerr.

Minmax Regret Rule [81] is similar to Proactive Re-Optimization, but
considers more plans and has a different robust plan selection crite-
rion. It compares the costs of the plans at different cardinalities. Se-
lected is the plan that has the smallest maximum cost difference to
the optimal plans, over all cardinalities. Due to the increased number
of plans, it is limited to left-deep trees. Since this limitation excludes
possible robust plans, we consider all plan trees in our work.

An extension to the Minmax Regret Rule are Cost-Stable Plans [59],
which choose the plan with the smallest average cost difference to
the estimated optimal plans, over all cardinalities. In addition, Cost-
Stable Plans limit the number of plans, e.g., by early pruning of out-
liers that have a large cost difference to the estimated optimal plan.

Due to its efficiency, our robust plan selection approach can be ap-
plied at optimization time, i.e., it does online selection. Compared to
other approaches, we are not limited to certain tree structures [81] or
plans that are optimal for some cardinalities [40, 41, 53, 82]. We limit
the number of robust plan candidates to the cheapest plans encoun-
tered during the initial query optimization. In contrast to competing
approaches [59, 81], we can assign robustness values independent of
other query execution plans. Finally, we define robustness metrics
that work with classical single point estimation and are not bound to
more expensive cardinality estimation techniques [40, 41, 59, 81].

4.8 CONCLUSION

The three novel robustness metrics we present in this chapter are
valuable building blocks for robust query processing. They efficiently
quantify the robustness of query execution plans at optimization time
and consider the impact of potential cardinality estimation errors dur-
ing the query execution plan selection. Compared to competitive ap-
proaches for robust plan selection, we do not limit the plan tree struc-
ture, can calculate a robustness value for a single plan independent of
other plans, and are not bound to expensive statistical models. While
optimality ranges, for which we present a calculation algorithm in
Chapter 3, can only evaluate the robustness of optimal query execu-
tion plans, the robustness metrics support non-optimal plans.
Despite the simplicity of all three robustness metrics, our experi-
mental evaluation demonstrates their effectiveness. Furthermore, we
observe that robust plans can outperform the estimated cheapest plans
in the presence of cardinality estimation errors. In our experiments,

4.8 CONCLUSION

the robustness plans can speedup queries on a real-world database
by up to 1.83x, and queries of a synthetic benchmark by up to 3.49x.
In scenarios with few cardinality estimation errors, the near optimal
plans requirement guarantees at most minor regressions of estimated
costs. Our experiments furthermore reveal that the overhead to enu-
merate the robust plan candidates and calculate the robustness val-
ues consumes on average a single-digit percentage of the end-to-end
query execution time. At the same time, we can improve the cost
error factor by up to 90, while its degradation is at most 25. We fur-
ther demonstrate that all robustness metrics can identify robust plans,
which dominate all robust plan candidates with respect to their cost
error factor. Depending on the benchmark, the most robust plan ac-
cording to the cardinality-slope or selectivity-slope robustness metric
reaches an average cost error factor dominance between 79% and 93%.
Finally, our formal problem specification and requirements build a
solid foundation for future research on robust metrics.

101

MID-QUERY RE-OPTIMIZATION REVISITED

The robustness metrics and robust plan selection in Chapter 4 work
with estimated cardinalities. In this chapter, we use true cardinalities,
collected at query execution time, to compensate sub-optimal query
execution plans, caused by cardinality estimation errors. We demon-
strate that true cardinalities are superior to estimations and can fur-
ther improve the query execution plan quality.

5.1 INTRODUCTION

In this chapter we revisit Mid-Query Re-Optimization [31, 39, 41], an
Adaptive Query Processing technique [47, 80], which collects true car-
dinalities of intermediate results at query execution time. It uses the
true cardinalities to re-optimize the query execution plan and com-
pensate cardinality estimation errors. Like a regular query processor,
a Mid-Query Re-Optimizer starts executing the estimated cheapest,
i.e., optimal plan, selected by the query optimizer. At certain points
in the plan, it collects the true cardinalities of intermediate results,
and invokes the query optimizer again with the true cardinalities to
search for a better query execution plan. If a better plan is identified,
the query execution engine switches to the better plan.

Like the majority of Adaptive Query Processing approaches [8o],
Mid-Query optimization requires modifications to the query proces-
sor, to collect cardinalities in the execution engine, insert cardinalities
back into the optimizer, and switch plans at query execution time.
Compared to other adaptive query processing approaches that need
to monitor multiple query executions [36], Mid-Query Re-Optimiza-
tion has the advantage that it can already improve the first execution
of a query. Consequently, it is applicable to ad-hoc queries.

Our goal is to improve the query execution plan quality, and thus
execution time, by exploiting the knowledge of true cardinalities. We
formalize this problem in Section 5.2. There are multiple aspects that
introduce a risk of end-to-end query execution time degradations.
Re-optimizations and plan switches can consume additional execu-
tion time. Furthermore, the calculation of redundant intermediate re-
sults, or modifications on the highly-optimized pipeline execution
can cause a degradation of end-to-end query execution time. Our ob-
jective is to keep the risk of query execution time degradations low.
The baseline in our experiments is the estimated optimal plan, exe-
cuted as fast as possible in a conventional query processor. In case the
estimated optimal plan is the true optimal plan, we only want to intro-

103

104

MID-QUERY RE-OPTIMIZATION REVISITED

duce a few additional optimizer calls, but no considerable overheads.
We identify three design choices within Mid-Query Re-Optimization,
that impact the risk of query execution time degradations:

RE-OPTIMIZATION POINT The first design choice is on the point
in the query execution plan where re-optimizations and plan switches
take place. Like Kabra and DeWitt [31], we only re-optimize and
switch plans at the end of pipelines, i.e., in the pipeline breakers.
As we further discuss in Section 5.4.1, in pipeline breakers the inter-
mediate results are completely materialized and all parallel tasks to
execute the pipeline are finished. Unlike related approaches, we never
introduce additional, artificial pipeline breakers [39, 69] because they
can increase the query execution time.

EAGER RE-OPTIMIZATION Complementary to the re-optimization
point is the choice whether an intermediate result has to be calculated
completely, before a re-optimization is triggered. To derive the true
cardinality, an intermediate result has to be complete. Re-optimizing
on incomplete intermediate results may cause wrong optimization
choices. Further, the partially calculated intermediate results may be
discarded. Unlike Avnur et al. [32] and Markl et al. [39], we re-opti-
mize only on complete intermediate results and true cardinalities.

RE-OPTIMIZATION SCOPE The second design choice is whether
the entire query is re-optimized or only those query parts that have
not yet been executed. Like Neumann and Galindo-Legaria [69], we
do the latter. We further explain in Section 5.4.1 that re-optimizing the
entire query introduces the risk of wasting already calculated interme-
diate results, and therefore query execution time. Consequently, we
limit the re-optimizations on the not-yet-executed query parts, and
always reuse the already calculated intermediate results.

Related approaches on Mid-Query Re-Optimization [31, 39, 49, 69]
were integrated into existing query processors, in which query opti-
mizer and query execution engine are strictly separated components.
The only connection is the query execution plan that is passed from
the optimizer to the execution engine for execution. Consequently, re-
optimizations and plan switches are costly: The query execution en-
gine aborts the current query execution and calculated intermediate
results are stored as materialized views. The optimizer is invoked for
the entire query, taking the materialized views into account to search
a new optimal query execution plan. This re-optimization enumerates
also plan classes that are not affected by the calculated intermediate
results. The new plan is passed to the execution engine to be sched-
uled for execution. Since this procedure is expensive, related work on
Mid-Query Re-Optimization focuses on the definition of heuristics

5.2 FORMAL PROBLEM DESCRIPTION

for optimality ranges, to decide when to trigger a re-optimization.
We observe a trade-off between the magnitude of modifications on
the query processor, and the execution time overhead of adaptions.
We argue that a better integration of query optimizer and query exe-
cution engine implies smaller execution time overheads of adaptions.

Our major contribution is an adaptive query processor, which in-
creases the efficiency of re-optimizations and plan switches, through
an improved interaction between query optimizer and query execu-
tion engine. We argue that more efficient re-optimizations and query
execution plan switches enable a larger number of re-optimizations,
and consequently a larger number of query execution plan switches,
which ideally improve the query execution plan quality and query
execution time. Like in the Chapters 3 and 4, we demonstrate our
concepts for join operators. Nevertheless, all concepts we present in
this chapter are applicable to other relational operators.

We provide a formal problem description in Section 5.2, and fur-
ther contributions form the building blocks of our adaptive query
processor. The initial building block is the adaptive execution strat-
egy, which we explain in Section 5.4.1. In Section 5.4.2, we explain
the extension of the CHT hash join [70] (see Section 2.5.1.1), which
makes it NUMA-aware and enables plan switches within the build
phase of the hash table. In Section 5.4.3 we explain the selective re-
enumeration algorithm, which is an extension of the DPsize enumera-
tion algorithm. It gives the execution engine an interface to inject run-
time cardinalities into the dynamic programming table and trigger a
re-enumeration of only the plan classes that are affected by the car-
dinality update. Section 5.4.4 eventually explains the re-optimization
criteria. Another contribution next to our adaptive query processor in
Section 5.4 is our experimental evaluation in Section 5.5, which shows
the speedup of query execution that the query processor achieves. Af-
ter discussing related work in Section 5.6, we conclude our findings
in Section 5.7.

5.2 FORMAL PROBLEM DESCRIPTION

We formalize the problem of improving the not-yet-executed query
parts, at query execution time, with true cardinalities. We denote
the procedure to decide whether there is a re-optimization, the re-
optimization itself, and the potential plan switch as potential adap-
tion Ai, where i € INT. Furthermore, we denote the initial query
execution plan as Py, and the query execution plans after a potential
adaption A; as P;. The true costs of plans P; are denoted as ¢;. A
potential adaption A; can cause a plan switch so that P; # P;_1. An
adaptive query processor starts executing the initially estimated opti-

105

106

MID-QUERY RE-OPTIMIZATION REVISITED

mal plan Py. In case P; # P;_j, the adaptive query processor should
only switch from Plan P;_; to Py, if:

¢ < Cit. (5.1)

Therefore a plan switch should never increase the true cost. This
criteria can be checked after both plans P; and P;_; are executed and
their true cost are calculated. Since all adaptive query execution plans
are based on an initial query execution plan, we denote the initial op-
timization time of all plans P; as topt. We next assume that query
execution plans P; can be executed entirely in the query execution
engine. We denote the execution time, which the query execution en-
gine needs to execute the entire plan P; as tieyec. It consists of the
time to execute all pipelines in the plan and negligible time to make
orchestration decisions. Furthermore, we denote the execution time
of a potential adaption A; as t; adapt- Since we assume to re-optimize
only the not-yet-executed query parts, the end-to-end query execu-
tion time of plan P; can be defined as the sum of initial optimization
time topt, the execution time of an entire plan P; in the execution
engine t; exec, and the time for all potential adaptions Aj;:

i
ti = topt + ti,exec + Z tj,adapt- (52)
j=1

Assuming an accurate cost model, an improvement in true cost
should always result in a faster execution time t; exec:

Ci <Ci—1 = ti,exec < ti—],exeo (53)

Furthermore, the effort of potential adaptions in an ideal adaptive
query processor should be small, so that:

Ci < Ci1 = ti <tig (5-4)

holds in practice. In case the adaptive query processor cannot iden-
tify a plan better than Py, i.e., there are no plan switches and P; = Py,
the end-to-end query execution execution time t; of P; is:

i
ti =to+ Z tj,adapt- (55)
=1

Consequently, the adaption effort should be small. We neverthe-
less argue that missing better plans wastes more query execution
time compared to re-optimizations that cannot identify a better plan.
Consequently, an adaptive query processor should only avoid a re-
optimization when it can guarantee that there are no better plans.

5.3 ADAPTIVE PLAN EXAMPLE

Selectivities §: 0.0049 0.0029 0.0013 0.0012 0.0027
R—S—T—U—V— W
Cardinalities f: 219 203 721 639 774 448

Figure 5.1: Motivating example: Chain query from the synthetic benchmark
joining six relations with estimated cardinalities and selectivities.

5.3 ADAPTIVE PLAN EXAMPLE

To illustrate the improvements of true cost and query execution time,
we present a motivating example of an adaptive query execution plan
identified by our adaptive query processor. We consider a query of
the synthetic benchmark we used to evaluate our calculation algo-
rithm for optimality ranges in Section 3.3.2. It is a chain query joining
six relations with estimated cardinalities and selectivities as shown
in Figure 5.1. Figure 5.2 shows the initial estimated optimal plan to-
gether with the estimated cardinalities f and true cardinalities f on
all edges. We explain how we estimate the cardinalities of interme-
diate results in Section 2.6.3, and demonstrate the competitiveness
our our cardinality estimator in Section 2.7. In Section 2.7, we further-
more explain why our query optimizer’s choice of the estimated opti-
mal plan is comparable to the choice in popular free and commercial
database systems. Although our cardinality estimator is competitive,
the query contains some expanding joins, which are significantly un-
derestimated. The cardinality of RS > T is underestimated by two
orders of magnitude. This estimation error is propagated to the next
join RST pa U. After that, the join RSTU > V is again expanding
and the cardinality significantly underestimated, so that the estima-
tion error reaches five orders of magnitude. In the end, the output
cardinality is 30,424,722 compared to the estimation of 484.

Remember that throughout this work, the build side of hash joins
is the input on the right-hand side. Particularly bad about the query
execution plan in Figure 5.2 is, that two build sides are on interme-
diate results with millions of tuples. In contrast, the corresponding
probe sides have only a few hundred tuples. This is an example of
a query execution plan that is reasonable for the estimated cardinali-
ties, but that shows a very unfortunate behavior in case of cardinality
estimation errors that are propagated through the plan.

Figure 5.3 shows the query execution plan that our adaptive query
processor eventually executes. Initially, it is the same query execution
plan as in Figure 5.2, in which the join between RS and T is signifi-
cantly underestimated. The join result RS > T is materialized in the
build side of the next join in Figure 5.2, i.e., RST x U. At this point,
our adaptive query processor invokes the optimizer again to search
for a better plan to join RST with U, V, and W. The result is the bushy

107

108

MID-QUERY RE-OPTIMIZATION REVISITED

o fr484
f: 30,424,722

f: 387
48 f: 19,790,228
f:774 f:393
f: 774 f: 31,464
f: 639 468
f: 639 f: 31,464
f f: 220
f: 7 f 220
f f: 203
f: 2 f: 203

Figure 5.2: Initial estimated optimal query execution plan for motivating ex-
ample query, showing estimated and true cardinalities.

—Hhorh>
.4;
Qo

query execution plan in Figure 5.3. It does not only have a different
operator order, but also adjusted build and probe sides. Since RST is
larger compared to the result of joining U, V, and W, it is now the
probe side. Although both plans create the same result, comparing
the true costs and end-to-end query execution times shows that the
adaptive plan in Figure 5.3 is significantly cheaper and faster. For
the Cyym cost function [93], the final adaptive plan has true cost of
30,463,486, and a query execution time of 0.16s, In contrast, the static
plan in Figure 5.2 has true cost of 70, 134, 681 and finishes in 10.2s. Ac-
cording to the Equations 5.2 and 5.4 in our formal problem descrip-
tion, the improvements of true cost and end-to-end query execution
time reveal a preferable behavior of an adaptive query processor.

5.4 ADAPTIVE QUERY PROCESSOR

The foundation of our adaptive query processor is the query proces-
sor that we explain in Section 2.7. While we use this query processor
in Chapter 3 and 4 with the extended hash join operator, we fur-
ther extend some central components, such as the plan enumerator,
and the plan executor, to enable efficient re-optimizations and plan
switches. We explain the building blocks top down, starting with the

5.4 ADAPTIVE QUERY PROCESSOR

132,570
f: 30,424,722
tias M
f: 468 \? 787
f: 31,464 f: 968

f: 721 £: 220 £ 6 f: 448
f: 721 £: 220 1? f 448
f f 203 f:774 f: 639
f: 2 f:203 f: 774 f: 639

Figure 5.3: At query execution time after two joins re-optimized and ad-
justed query execution plan for motivating example.

adaptive execution strategy, followed by the extension of the CHT
hash join, and finally the selective plan enumeration.

5.4.1 Adaptive Execution Strategy

In Section 5.1, we explain that the first design choice in Mid-Query Re-
Optimization is about the re-optimization points in the query execu-
tion plan, and that we decide to only re-optimize at existing pipeline
breakers. It is also possible to re-optimize after each operator. In a
pipelined query execution, this results in additional, artificial pipeline
breakers. Kabra and DeWitt [31], and Neumann and Galindo-Lega-
ria [69] argue that artificial pipeline breakers can introduce consider-
able execution time overheads, but do not reveal numbers. We experi-
mented with artificial pipeline breakers, and observed that arbitrarily
large performance degradations can be constructed, depending on
the size of the query and the number of artificial pipeline breakers.
Artificial pipeline breakers interrupt the parallel pipeline execution
and force the materialization of intermediate results, causing a loss
of data cache locality. Any additional effort like this has to be compen-
sated with a considerable query execution plan improvement, which
cannot always be guaranteed. Consequently, re-optimizing anywhere
else than at existing pipeline breakers significantly increases the risk
of wasting query execution time. Existing pipeline breakers are per-
fect to do a re-optimization, because the pipelines can be executed as
fast as possible, exploiting all optimizations we discuss in Section 2.5.

The second design choice in Mid-Query Re-Optimization is about
eager re-optimizations. Eager re-optimizations are triggered on in-
complete intermediate results, to avoid sub-optimal query execution

109

110

MID-QUERY RE-OPTIMIZATION REVISITED

plans earlier. Since the derived cardinalities of incomplete intermedi-
ate results are not precise, eager re-optimizations can cause wrong
optimization choices. Furthermore, the incomplete intermediate re-
sults might be discarded after a plan switch. In a pipelined query
execution, eager re-optimizations can also result in synchronizations
within the pipeline, and therefore performance degradations. Unlike
Avnur et al. [32] and Markl et al. [39], we re-optimize only on com-
plete intermediate results that are materialized in pipeline breakers.
Re-optimizing on complete intermediate results in a pipeline breaker
has the advantage that all parallel tasks are joined. Furthermore, the
pipelines can be executed as fast as possible, and we avoid the redun-
dant calculation of incomplete intermediate results. Another advan-
tage is that the true cardinalities can be derived from the material-
ized intermediate results. Deriving the cardinality of an intermediate
result, which is materialized in a pipeline breaker, is almost for free
and does not add overheads in our adaptive query processor.

The third design choice in Mid-Query Re-Optimization is the re-
optimization scope, i.e., the parts of the query that are re-optimized.
We explain in Section 5.1 that we only re-optimize the not-yet-exe-
cuted query parts, like Neumann and Galindo-Legaria [69] do. We
argue that this re-optimization scope guarantees progress, and avoids
the calculation of redundant intermediate results. Consequently, there
is a small risk of execution time degradations with respect to the ini-
tial estimated optimal plan. Alternatively, the re-optimization scope
could span across the entire query, which could be beneficial if the
initial plan is far from the true optimum, because already the cardi-
nalities of the first operators are considerably mis-estimated. In this
case, searching for another plan, which could be completely differ-
ent and does not consider the already calculated intermediate result,
could be overall faster compared to continuing the initial plan. Nev-
ertheless, there is no guarantee that such a plan is found. Searching a
completely new plan can result in the calculation of multiple redun-
dant intermediate results, before the final plan is identified. Although
the redundant intermediate results can improve the re-optimizations,
they can also increase the query execution time. We demonstrate in
our experimental evaluation in Section 5.5 that re-optimizing only the
not-yet-executed query parts creates stronger query execution time
improvements than degradations, and also results in a significantly
faster average query execution time. Based on these considerations,
we present the following adaptive execution strategy.

Figure 5.4 illustrates the execution strategy of our adaptive exe-
cution engine. Each plan is executed pipeline by pipeline, and the
main loop in Figure 5.4 orchestrates the execution of pipelines, the re-
optimizations, and the plan switches. Figure 5.5 shows an example
query execution plan, containing hash join operators with the build
and probe sides as illustrated. It is the optimal execution plan of the

5.4 ADAPTIVE QUERY PROCESSOR

@ Search initial query execution plan

(1) Identify next pipeline to execute
(2) Instantiate pipeline with operators

(3) Execute pipeline

. . . no
(4) Re-optimization? \

yes
(5) Reference intermediate result in plan table

(6) Selective re-enumeration of not-yet-executed query parts

(7) Update current query execution plan

Figure 5.4: Execution strategy of our adaptive execution engine, orchestrat-
ing pipeline executions, re-optimizations, and plan switches.

query in Figure 3.1, which we use as running example to illustrate
the calculation algorithm for optimality ranges. It is also the running
example in this chapter. All query execution plans in our query pro-
cessor consist of physical operators, such as hash join operators or
base table scans. Each physical operator references its children, so
that a query execution plan is just a reference to the top operator.
Next, we explain the different steps of our adaptive execution strat-
egy illustrated in Figure 5.4:

STEP O — INITIAL OPTIMIZATION Initially, the query execution
engine invokes our query optimizer to search the optimal query exe-
cution plan based on estimated cardinalities. According to Section 2.7,
we exhaustively enumerate bushy plans using our DPsize enumera-
tor, with the Cy,,m cost function, and a basic cardinality estimator. The
adaptive execution engine keeps the plan table of the query optimizer
after the initial plan search to speed-up the re-optimizations.

STEP 1 — PIPELINE SELECTION The first step in the loop in Fig-
ure 5.4 is the identification of the next pipeline that is going to be exe-
cuted. To keep the opportunities for re-optimizations high, we always
execute only one pipeline of a query execution plan at a time. We ex-
plain in Section 2.7.2 that our query execution engine has a high level
of parallelism within a single pipeline. Therefore, executing just one
pipeline at a time is no considerable disadvantage. Since it is possible
to execute multiple pipelines at a time, we have to choose in Step 1
which pipeline is executed next. In the example in Figure 5.5, there is
one pipeline that is already executed, namely the pipeline that starts
at the base table R and ends in the build side of R > S. Since a pipeline
can only be executed as soon as all dependent pipelines are executed,
the only candidates for the next execution are the pipelines starting

111

112

MID-QUERY RE-OPTIMIZATION REVISITED

X
probe| build

X X
build [‘probe probe) build
b ldDq b
i robe
use (P T U Vv
R S — executed

Figure 5.5: Optimal query execution plan of Query in Figure 3.1 as running
example to illustrate the adaptive execution strategy.

on the base tables S and V. In our running example in Figure 5.5, the
pipeline starting on base table S is selected.

We experimented with multiple pipeline selection strategies. We
observed that a trivial traversal of the query execution plan tree can
cause a sub-optimal memory utilization, because pipelines could be
executed too early so that the pipeline breaker occupies memory
longer than actually necessary. In the example in Figure 5.5, execut-
ing the pipeline of V and then the pipeline of S would be inefficient.
The breaker at the end of the V pipeline containing an intermedi-
ate result would occupy memory for the entire execution time of the
S pipeline, although the V pipeline can also be executed after the
S pipeline. Consequently, we use a more memory-efficient pipeline
selection strategy, which avoids that pipelines are executed before
they are actually needed. For each new plan, we create a dependency
graph of pipelines, in which each edge is weighted with the num-
ber of directly or indirectly required pipelines. To identify the next
pipeline for execution, we perform a depth-first search for a not-yet-
executed pipeline in the dependency graph. During the depth-first
search we first traverse the edges, which have the highest weight, i.e.,
the largest number of directly or indirectly required pipelines.

Another option, similar to the work of Neumann and Galindo-
Legaria [69], is to prefer the pipeline, whose intermediate result cardi-
nality has the highest impact on the plan choice. Since Neumann and
Galindo-Legaria [69] restrict the join trees to linear trees, we prefer
the memory-efficient pipeline selection strategy.

STEP 2 — PIPELINE INSTANTIATION Step 2 in the loop in Fig-
ure 5.4 is the instantiation of the previously selected pipeline. The
instantiation contains the creation of a pipeline object, to which all
operators and the pipeline breaker are added. Our adaptive execution
strategy also supports other kinds of pipelines, such as just-in-time
compiled pipelines that we explain in Section 2.5.2.

5.4 ADAPTIVE QUERY PROCESSOR

STEP 3 — PIPELINE EXECUTION The third step in the loop is the
parallel execution of the pipeline, as we describe it in Section 2.7.2.
Each pipeline is executed without being affected by adaptivity fea-
tures. After the pipeline is executed, the pipeline breaker contains
a complete intermediate result and its true cardinality, so that re-
optimizations and plan switches are reasonable. We explain in Sec-
tion 5.4.2 that each pipeline breaker is based on a generic pipeline
breaker which just collects all the batches that are pushed to it. Since
we maintain the number of valid tuples in each batch, it is compara-
bly cheap to determine the true cardinality of an intermediate result.
We only determine the true cardinality because cardinality has the
strongest impact on the cost of query execution plans.

It is of course possible to collect further runtime statistics, such as
the true distinct count. The true distinct count could be beneficial to
update the selectivity estimates of joins that are related to the interme-
diate result, and therefore the cardinality estimates of the following
intermediate results. Nevertheless, deriving the true distinct count
is considerably more expensive compared to the true cardinality. In
contrast to cardinality, the distinct count can be different for different
columns, which adds another dimension of overhead, even if only
the interesting columns are considered. It remains open to analyze
whether the additional effort to collect runtime statistics other than
cardinality is reasonable, and whether it might be sufficient to derive
only improved estimates, such as sketches [64] for distinct count.

STEP 4 — RE-OPTIMIZATION CRITERIA Step 4 in the loop decides
whether there is a re-optimization. We illustrate the corresponding re-
optimization criteria in Section 5.4.4. In case there is no re-optimiza-
tion, we continue with the next loop iteration, i.e., identify, instantiate,
and execute the next pipeline. In case there is a re-optimization, we
continue with next step in the loop.

STEP 5 — INTERMEDIATE RESULT REFERENCING The fifth step in
the loop starts with wrapping the intermediate result into a special
physical operator, denoted as intermediate result operator. The interme-
diate result operator is referenced as optimal plan in the correspond-
ing plan class in the plan table, which the query execution engine
kept from the initial plan search. At the same time, the estimated car-
dinality of the plan class is replaced by its true cardinality, which is
derived from the calculated intermediate result. Referencing the in-
termediate result operator as optimal plan in the corresponding plan
class guarantees that the intermediate result is not lost, and that its
true cardinality is considered in the next step.

STEP 6 — SELECTIVE RE-ENUMERATION Step 6 in the loop is the
selective re-enumeration, which we illustrate in detail in Section 5.4.3.

113

114

MID-QUERY RE-OPTIMIZATION REVISITED

It enumerates only those plans which are affected by the updated
cardinality of the intermediate result in the pipeline breaker. The re-
sult of the selective re-enumeration can be a different query execution
plan, which in any case contains the already calculated intermediate
results as intermediate result operators.

STEP 7 — PLAN SWITCH The final step in the loop replaces the
current query execution plan in the adaptive query execution engine
with the query execution plan from the selective re-enumeration, so
that the next loop iteration can continue with identifying, instantiat-
ing, and executing the next pipeline.

The decision whether we continue with the current plan or switch
to a new plan can have some implications on the build side of the
hash joins, which are in most cases the pipeline breakers in our adap-
tive query execution engine. We further discuss these implications in
the design of our extended CHT hash join in Section 5.4.2.

5.4.2 Adaptive and NUMA-aware CHT building

To keep the risk of query execution time degradations low, our adap-
tive query execution strategy re-optimizes only in pipeline breakers,
such as the build side of a hash join. Plan switches between the build
and the probe phase of a hash join introduce the following trade-off:
Should the hash table be built, which could be wasted query execu-
tion time if the query execution plan changes, or should the build
of the hash table be deferred. Deferring the build means that the
pipeline breaker just collects the batches without building the actual
hash table. The disadvantage is the loss of cache locality. To build
the hash table, each batch has to be read again from main-memory,
which can be a considerable overhead. For a CHT, which has to see
the data twice, deferring the build procedure causes two entire reads
from main-memory. So on the one hand it could be reasonable to al-
ways build the hash table right when the batches are pushed to the
build side of the hash join. On the other hand, there are examples
like the one we explain in Section 5.3: Multiple build sides in the ini-
tial plan in Figure 5.2 are significantly larger than the corresponding
probe sides. A re-optimization as illustrated in Figure 5.3 switches
the build and probe sides, and discards the hash table.

To make a decision for the illustrated trade-off, we consider another
design dimension of parallel hash joins. We explain in Section 2.5.3.2
that building a hash table in parallel can be achieved by synchroniza-
tion or partitioning. Synchronization means that there is only one
hash table, and a synchronization mechanism, such as a mutex, which
ensures that only one task at a time inserts into the hash table. For
a large number of parallel tasks, the disadvantage is that a synchro-

5.4 ADAPTIVE QUERY PROCESSOR

nization mechanism such as a mutex introduces a bottleneck. Parti-
tioning the hash range and building a hash table for each partition
can avoid bottlenecks. But there can still be concurrent writes within
a partition that have to be synchronized. Especially if there are heavy
hitters within a partition, synchronization through mutexes can still
create bottlenecks. To avoid synchronization within a partition, the
build side of our CHT hash join is split. First, there is a dedicated
partitioning phase, where each task can add tuples to any partition
without any synchronization. Second, the actual build phase, where a
CHT hash table is built for each partition by reading all tuples of the
corresponding partition twice. We explain the standard CHT build
procedure in Section 2.5.1.1. In sum, we spend another memory pass
to avoid synchronization, and have to see the input three time: (1) to
partition the data, (2) to fill the prefix bitmap of the CHT, and (3) to
create the dense payload table of the CHT. At the same time, the ded-
icated partitioning phase provides us a nice re-optimization point.

In this section, we illustrate in detail how we improve the paral-
lelism in the build phase of the CHT hash join, and integrate NUMA-
awareness and a re-optimization point for adaptivity. We explain in
Section 2.7.2 that a pipeline can start on a base table, which is horizon-
tally partitioned into NUMA-allocated table partitions. As illustrated
in Figure 2.5, each table partition consists of column partitions, which
are also NUMA-allocated. Figure 2.6 illustrates the pipelining. At the
beginning of a pipeline, there is a task for each table partition. The
task creates a batch of tuples out of the table partition, by referencing
the required column partitions in the batch. The task furthermore de-
termines the tuple visibility. Next, the task pushes the batch through
the pipeline to the pipeline breaker, which could be the build side of
the CHT hash join. Like we illustrate it in Figure 2.6, the build side
of the CHT hash join consists of two components: a generic pipeline
breaker that just collects the batches, and the actual CHT that refer-
ences the tuples that are stored in the generic pipeline breaker. Con-
sequently, each batch that is pushed to the build side of our CHT
hash join is first of all added to the generic pipeline breaker, before
it is forwarded to the CHT build process. The entire build process is
illustrated in the Figures 5.6 and 5.7, and has three phases: (1) parti-
tioning, (2) adaption, (3) building. Figure 5.6 illustrates the end of the
pipeline i with the generic pipeline breaker, and our CHT partitioning
phase. Furthermore, Figure 5.6 shows the tasks Ty to T, which push
the batches By to B7 through pipeline i, and add the batches to the
generic pipeline breaker. The batches contain the column partitions of
column C, on which the CHT is built. Figure 5.6 also shows the two
NUMA-nodes Ny and N7 where the tasks run, and where the batches,
column partitions, and CHT partitions are allocated. There can be of
course more batches, tasks, and NUMA-nodes than illustrated.

115

116 MID-QUERY RE-OPTIMIZATION REVISITED

C
Bo[= = | To Wo W2 Wi We
wBE B B B1te .
5 — — P1
1= = | T1 P2
g E B B4 | w
No — A Tu A A A
B2|— —
T2 = E E = 1 2 7] -
B3|—= —]
T3 - = E E = B[
B4| =< = — T4
w2E B B Elue
Bs5| = = | Ts
w*E B E Blvo
N1 — — !
= — YYYVYYVY
W HE E 2 B o [
= = P5
= — T7 P6
T7---B—7§ E E = £ P7
— — W1 W3 W5 W7
| | |
I T 1
Generic Pipeline Breaker CHT Partitioning
|
1
Pipeline i

Figure 5.6: Illustration of NUMA-aware CHT partition procedure.

PARTITIONING PHASE In the partitioning phase of our CHT build,
each task of pipeline i iterates over the entries in their column parti-
tion of Column C. Each entry of a column partition is a key in the
CHT. The payload entries in the CHT are the identifiers of the tuples.
A tuple identifier consists of a reference to the batch in the generic
pipeline breaker, illustrated in Figure 5.6, and the row of the tuple in
the batch. As a first step, each task calculates the hash value of each
key, i.e., entry in its column partition, to determine its CHT partition.
In Figure 5.6 there are eight CHT partitions Py to P7. Next, the tasks
write the key/payload-pairs to a container that collects all the entries
of one CHT partition. Since multiple tasks can write key/payload-
pairs to one CHT partition container concurrently, the access has to
be synchronized. To avoid synchronization, each worker thread of our
NUMA-aware task scheduler has its own partition in each CHT par-
tition. Figure 5.6 shows partitions for eight worker threads Wy to W5.
For load balancing reasons in the third phase, the number of CHT par-
titions P should be a multiple of the number of worker threads W in
the NUMA-aware task scheduler. The partitioning phase is finished
when each task has processed every key in their column partition.

ADAPTION PHASE This is the perfect point for a re-optimization
and potentially a query execution plan switch. All parallel tasks that
execute the pipeline i are finished. In addition, the generic pipeline

5.4 ADAPTIVE QUERY PROCESSOR

C
E To Wo W2 W4 We TL@ =PreﬁxBitma -
= | ~[e %@ > P1
= Tt | P2laf [lA[[I1] TA] premmmmememees %ﬂlﬂ > P2
=) | e[LTI AT -eeeeeeee L] > P3
— A A A A A A
No E T Key Payload
(] > Po
E > P1
E Ta E‘ Key PavloadP4
—> Ps5
B 1 B g Ps
S ! rL
N1 F YYYYYVYYY Prefix Bitmap
= Te PalNT IO T T I T T Feeeneeeneeen -—|¥12 7 > P4
= Psl |V | Y- T_iiE! > P5
= Pel | | [V |V peeeeeeeee-- 1231 > Pe
E 17 o7 B B B M I B I SR e m@ > P7

1
CHT Partitioning Adaption CHT Build

Pipeline i Pipeline i+k

Figure 5.7: Illustration of adaptive and NUMA-aware CHT build procedure.

breaker on the left-hand side of Figure 5.6 contains a complete inter-
mediate result, and its true cardinality. Furthermore, there is a hash-
partitioned set of key/payload-pairs, illustrated on the right-hand
side of the Figure 5.6. As illustrated in Figure 5.7, our adaptive query
processor can perform a re-optimization. After a re-optimization there
are four cases:

1. There is no plan switch, so that the CHT partitioning phase in
pipeline i is followed by the CHT build phase in pipeline i+
k,k > 1. The CHT build phase is a preparation step of pipeline
i+k, k > 1, which contains the corresponding CHT probe side.

2. There is a new plan, which re-orders the operators, so that the
CHT partitioning phase is performed as preparation step in a
much later executed pipeline i +k, k > 1.

3. There is a new plan, which re-orders the operators, so that the
intermediate result in the generic pipeline breaker of pipeline i
is joined on a different column.

4. There is a new plan, and the intermediate result in the generic
pipeline breaker of pipeline i becomes a probe side.

In the two latter cases, the hash-partitioned set of key/payload-pairs
illustrated on the right-hand side of Figure 5.6 is discarded. Conse-
quently, the only additional overhead is the partitioning phase, which

117

118

MID-QUERY RE-OPTIMIZATION REVISITED

is considerably cheaper than a complete CHT build. When the plan
changes, and the join is performed on a different column, the CHT
partitioning has to be repeated. When a build side becomes a probe
side, a new pipeline is created together with new tasks, which push
the batches from the generic pipeline breaker, illustrated in Figure 5.6,
through the new pipeline. Although the partitioning effort is wasted
in the two latter cases, it can most probably be compensated through
the better query execution plans. In the first two cases, our adaptive
query execution engine continues at some point with the third phase
of our CHT build.

BUILD PHASE The third phase of our CHT build is executed as
a preparation step of pipeline i + k, which contains the correspond-
ing CHT probe side. As we explain in Section 5.4.1, query execution
plans are executed pipeline by pipeline, and the next pipeline to be
executed is determined just in time in the current plan. Before the
first batch is pushed through a pipeline, the query execution engine
checks if there are CHT hash join probe sides, and triggers the third
phase of the CHT build for the corresponding build sides.

The third phase of our CHT build is illustrated on the right-hand
side of Figure 5.7. It is the actual CHT build phase, in which a local
CHT is built for each CHT partition. The building of a local CHT
is identical to building a standard CHT, which we explain in Sec-
tion 2.5.1.1. To build the local CHTs, our adaptive query execution
engine creates one task per CHT partition. In Figure 5.7, those are the
tasks Tg to Ty5. In order to balance the load of the parallel tasks in this
phase, there should be more CHT partitions than worker threads in
the NUMA-aware task scheduler. To cover the case of uniform-sized
CHT partitions, the number of CHT partitions should be a multiple
of the number of worker threads in the NUMA-aware task scheduler.

To sum it up, the build side of our CHT hash join consists of a
generic pipeline breaker, which collects all batches that are pushed
to it. On top, we build our partitioned CHT, which references the
tuples in the generic pipeline breaker. The generic pipeline breaker
design has an additional advantage: There are situations caused by
plan switches, where phase three of the CHT build is not triggered
anymore, because the intermediate result becomes a probe side in the
adapted plan, or the next join of the intermediate result is on a dif-
ferent column. Since the generic pipeline breaker collects all batches
that are pushed to it, and does not modify them, we can also build
a new CHT on a different column. The generic pipeline breaker also
enables to continue the original pipeline by creating a task per batch,
which pushes the batch through the continued pipeline.

Such a situation is illustrated in the motivating example in Sec-
tion 5.3. The initial plan in Figure 5.2 is re-optimized after joining the

5.4 ADAPTIVE QUERY PROCESSOR

tables R,S, and T. The re-optimization takes place in the build side
of the join between RST and U. Consequently, the partitions for the
CHT on RST are already created. In the adapted plan in Figure 5.3,
RST becomes the probe side in the join with VUW, so that there is no
hash table build on RST because the pipeline was continued.

5.4.3 Selective Re-Enumeration

Next, we illustrate the selective re-enumeration algorithm, to speed-
up re-optimizations. The selective re-enumeration is Step 6 of our
adaptive query execution strategy in Figure 5.4. We start with a brief
recap of the running example of Figure 5.5. The Steps 1 to 3 of
our adaptive query execution strategy selected, instantiated, and exe-
cuted the pipeline starting on base table S. The pipeline ends in the
build side of RS > T. The generic pipeline breaker on the build side
contains the intermediate result RS. In Step 4, we assume the re-opti-
mization criterion, which we further explain in Section 5.4.4, decided
to re-optimize. According to Figure 5.4, Step 5 follows. In Step 5, the
CHT and the generic pipeline breaker, which contains the intermedi-
ate result RS, are wrapped into an intermediate result operator, and
referenced in the plan table as optimal plan of plan class RS. At the
same time, the estimated cardinality of plan class RS is replaced by its
true cardinality, which was derived from the generic pipeline breaker.
After the intermediate result is referenced in the plan table, and the
cardinality updated, Step 6, the selective re-enumeration can start.

5.4.3.1 Example

The selective re-enumeration is based on the DPsize enumeration al-
gorithm, which we explain in Section 2.6.1. Before we formalize the
selective re-enumeration in Algorithm 5.1, we discuss the running
example. Figure 5.8 shows the plan classes and plans, which the dy-
namic programming optimizer enumerates to identify the estimated
optimal query execution plan in Figure 5.5. For simplicity, Figure 5.8
contains only logical query execution plans. Furthermore, we assume
the optimizer keeps only one optimal plan per plan class and no ad-
ditional plans with different physical properties. This is no limitation,
because as conventional dynamic programming optimization, the se-
lective re-enumeration can of course support multiple plans per plan
class with different physical properties. In dynamic programming op-
timization, an optimal solution can always be constructed from opti-
mal sub-solutions. Figure 5.8 shows the optimal plan of each plan
class in bold font. The optimal plans are combined to create new
plans, as illustrated by dotted lines. Figure 5.8 also shows the optimal
query execution plan of Figure 5.5 in solid bold lines.

In order to guarantee a correct re-optimization result, all plans that
directly or indirectly reference the plan class, which was updated

119

120

MID-QUERY RE-OPTIMIZATION REVISITED

(RSTU, V RSTUV RS TOV R STOV)

Figure 5.8: Overview of the plan classes and logical query execution plans
that our dynamic programming optimizer enumerates to identify
the estimated optimal query execution plan in Figure 5.5.

by Step 5 of our adaptive query execution strategy in Figure 5.4,
have to be re-enumerated. Selective re-enumeration has similarities
to the optimality ranges calculation we present in Section 3.2. The op-
timality range calculation also considers all plans, which directly or
indirectly reference an intermediate result with varying cardinality.
Figure 5.9 categorizes the plan classes of the example in Figure 5.8.
There are first of all plan classes in which some of the plans have
to be re-enumerated, because they directly or indirectly reference the
plan class RS. In Figure 5.8, those are the plans in which RS is high-
lighted. Second, Figure 5.9 shows plan classes, which became obsolete
through the execution of RS. Plans and plan classes can become ob-
solete, because we only re-optimize the not-yet-executed query parts
to avoid wasting already calculated intermediate results. Executing
a plan of an obsolete plan class in any case results in wasting calcu-
lated intermediate results. Therefore, we do not consider these plan
classes in the selective re-enumeration. Since we assume that the plan
table is not needed after the query execution, we remove all obsolete
plan classes from the plan table before the selective re-enumeration.
In case the plan table has to be kept for future query executions, it
is of course possible to keep the plan table untouched. In this case,
the check whether a plan class is obsolete has to be performed dur-
ing the re-enumeration. Third, there are plan classes, which are com-
pletely unaffected by the cardinality update of RS. Re-enumerating
those plan class is redundant work. Consequently, our selective re-
enumeration does not re-enumerate the plans in the unaffected plan
classes. In contrast to our selective re-enumeration algorithm, a full
re-optimization enumerates plans of unaffected plan classes.

5.4.3.2 Formal Algorithm Description

Apart from the implementation of the enumeration algorithm, the
selective re-enumeration shares all implementations with a conven-

5.4 ADAPTIVE QUERY PROCESSOR

R S T U \Y
ST TU UV
sFY \TUV
Q
re-enumerate obsolete unaffected

Figure 5.9: Categorization of the plan classes of the example in Figure 5.8.

tional dynamic programming query optimizer. We formalize the se-
lective re-enumeration in Algorithm 5.1. The first input in Line 1 is
a reference to the original plan table, which is a container of plan
classes. Within the container, the plan classes are ordered by their size,
i.e., the number of base tables they reference. Our adaptive query exe-
cution engine keeps the original plan table after the initial plan search.
The second input are the join predicates, and the third input is the
identifier of the executed plan class. Our selective re-enumeration al-
gorithm is a modified DPsize enumeration algorithm, which works
on the original plan table. Other dynamic programming enumeration
algorithms, such as DPsub [27] or DPccp [44] can be also modified for
selective re-optimizations. Like in the example in Figure 5.9, the selec-
tive re-enumeration initially removes in Line 2 all plan classes from
the original plan table, which became obsolete through the executed
plan class. The first difference to a conventional DPsize is a tempo-
rary container tempPCs in Line 5, which collects the identifiers of
re-enumerated plan classes, categorized by size. The initial size that
is added to tempPCs is the size of the executed plan class in Line 6.
For the size of the executed plan class, Line 7 adds the identifier of
the executed plan class. Next, the entries in tempPCs are combined
with plan classes from the original plan table, to create new plans
that are in turn added to tempPCs.

The loop in Line g iterates over all plan class sizes, from the size
of the executed plan class to the size of the final plan class. The next
nested loop in Line 12 together with the instruction in Line 14 enu-
merates all plan class size combinations, which create plans of the
current size. Each combination consists of outer and inner plan class
size (Lines 12 and 14). The nested loops in the Lines 16 and 17 iter-
ate over all outer and inner plan classes with a corresponding size to
enumerate all possible combinations of corresponding outer and in-
ner plan classes. Compared to the conventional DPsize algorithm, the
outer plan class in Line 16 of the selective re-enumeration is always a
plan class from tempPCs. Consequently, the outer plan class directly
or indirectly references the executed plan class or is the executed plan
class. For the same reason, the loops in the Lines 9 and 12 start at the
executed plan class size plus 1 or executed plan class size. In the con-

121

122 MID-QUERY RE-OPTIMIZATION REVISITED

Algorithm 5.1 Selective Re-Enumeration

1:

L PN U B W N

[
Q

[
[

12
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:

function seLECTIVEREENUMERATE(Reference (PlanClassContainer)
planClasses, List(JoinInfo) joins, BitSet executedPlanClassId)
removeOblsoletePCs(planClasses, executedPlanClassld)
declare Int exSize + executedPlanClassId.countBits()
declare Int maxSize + planClasses.finalPcld().countBits()
declare PlanClassldsBySizeContainer tempPCs
tempPCs.addFirstSize(exSize)
tempPCs.withSize(exSize).add(executedPlanClassld)
// iterate over plan class sizes
for pcSize = exSize + 1; pcSize < maxSize; pcSize + + do
tempPCs.addNextSize()
// enumerate outer plan class sizes
for outSize = exSize; outSize < maxSize; outSize + + do
// derive inner plan class size
declare Int inSize < pcSize — outSize
// enumerate plans by combining plan classes
for each outPC in tempPCs.withSize(outSize) do
for each inPC in planClasses.withSize(inSize) do
// search for joins that connect plan classes
declare List(JoinInfo) foundJoins
foundJoins « findJoins(outPC, inPC, joins)
if [foundJoins.empty() then
// fetch plan class of identified plan
declare BitSet pcld = outPC.id or inPC.id
declare Reference(PlanClass) planClass
planClass < planClasses.find(pcld)
if tempPCs.lastSize().trylnsert(pcld) then
// first time re-enum touches plan class
planClass.clearOptimalPlan()
end if
planClass.add(outPC, inPC, found]Joins)
end if
end for
end for
end for
end for
end function

ventional DPsize algorithm, these loops start at size 1. The inner plan
class in Line 17 is always a plan class from the original plan table.

Since we do not allow cross products, Line 20 searches for each

enumerated combination of outer and inner plan class if there is at
least one join predicate, which connects the two plan classes. If one
or more join predicates are found, Line 23 continues with deriving
the plan class identifier of the enumerated plan. Next, Line 26 fetches

5.4 ADAPTIVE QUERY PROCESSOR

a reference to the plan class in the original plan table. In case the
current re-optimization touches the plan class of the enumerated plan
for the first time, Line 28 removes the old optimal plan from the plan
class. This is crucial to avoid the following issues: The re-optimized
plan of a plan class, which is based on up-to-date cardinalities, cannot
be compared to an old optimal plan of the same plan class. Plans
can become more expensive in the re-enumeration because the true
cardinality of an intermediate result was underestimated. If the old
optimal plan is not removed from the plan class, the old optimal plan
can be referenced in the re-optimized plan, so that the re-optimized
plan is not necessarily optimal with respect to the given inputs. In
addition, when the re-optimized plan references the old plan, already
calculated intermediate results are ignored and calculated again.

The check if a re-optimization touches a plan class for the first time
is realized through the insertion into tempPCs in Line 26. In any case,
the enumerated plan is specified by outer and inner plan class as well
as some join attributes that connect the plan classes. The enumerated
plan is proposed through a conventional DPsize procedure in Line 30
to the plan class. After the invoked procedure in Line 30 estimated
the cost of the enumerated plan, it might set it as optimal plan in the
plan class, if it is the first plan or cheaper than the existing plan.

After the selective re-enumeration finishes, the new optimal plan
is the cheapest plan of the final plan class in the original plan table.
From the logical point of view, the re-optimized plan could be the
same plan as the old plan or a different plan. Even if it logically is the
same plan, the re-optimized plan references the executed plan class as
intermediate result operator, containing the generic pipeline breaker
and a pre-partitioning for a CHT. Step 7 of our adaptive execution
strategy in Figure 5.4 sets the re-optimized plan as current optimal
plan in the query execution engine. In one of the next pipeline instan-
tiations, the intermediate result operator will be detected, so that the
intermediate result will be re-used, and not get lost.

5.4.4 Re-optimization Criteria

Left open in our adaptive query execution strategy in Figure 5.4 is
Step 4, the re-optimization criteria. As soon as a pipeline is executed,
and the pipeline breaker contains the intermediate result, a selective
re-optimization could be triggered to search for a better plan.

The cheapest, but also the least precise criterion are heuristically
defined optimality ranges based on the estimated cardinality [31, 41].
An uncertainty value U is assigned to an estimated cardinality f, so
that the lower bound of the optimality range f+ = E — (E+0.1%U) and
the upper bound fI = E4 (Ex0.2%U). Our experiments on precise
optimality ranges in Section 3.3.1 show that heuristics fail to charac-
terize optimality ranges. Optimality ranges are independent of the

123

124

MID-QUERY RE-OPTIMIZATION REVISITED

estimate. The estimates can be close to the lower or upper bound of
an optimality range, and also the width of optimality ranges is inde-
pendent of the estimate. Our experiments in Section 3.3.1 also show
that already small cardinality deviations can result in a cheaper plan.

We argue that missing a better query execution plan is consider-
ably worse compared to some redundant re-optimizations, in which
no better plan is found. Corresponding to our problem statement in
Section 5.2, we only avoid a re-optimization, when we can guarantee
that there is no better plan. According to our experiments on opti-
mality ranges in Section 3.3.1, already an estimation error of a few
tuples can result in a different optimal plan. We conclude that we
can only guarantee that there is no better plan, if there is no estima-
tion error. Consequently, we always trigger a selective re-enumeration
when an intermediate result in a pipeline breaker has an estimation
error of one or more tuples. The only limitation is that there have
to be two or more operators left in the query, because there are no
operator order alternatives if only one operator is left. Since we only
re-optimize in pipeline breakers, the number of re-optimizations is at
most the number of pipeline-breaking operators in the plan minus 2.
Furthermore, we demonstrate below that a selective re-enumeration
enumerates a considerably smaller number of plans compared to a
full re-optimization. Our experiments in Section 5.5 further reveal
that the additional re-optimization effort is low, and can be compen-
sated through faster plans. Another option for the re-optimization
criterion are precise optimality ranges, calculated by our algorithm
in Section 3.2. We experimentally show next that optimality range
calculation has to enumerate at least the number of plans, which a
selective re-enumeration has to enumerate to make the same deci-
sion. Since the selective re-enumeration also identifies the better plan,
other than an optimality range, the selective re-enumeration is the
superior re-optimization criterion for ad-hoc queries compared to op-
timality ranges. The complexity of optimality range calculation can
only amortize in multiple executions of the same query.

To illustrate the computational complexity of the three re-optimiza-
tion criteria full re-optimization, selective re-enumeration, and opti-
mality ranges we do the following experiment. We compare the num-
ber of enumerated plans, i.e., feasible plans or connected sub-graph
complement pairs, for the three re-optimization criteria. The experi-
mental setup is the same as in the experiment on the number of enu-
merated plans for optimality range calculation in Section 3.3.2, except
that we consider only one chain query, which joins 20 tables. As in
the experiment in Section 3.3.2, we randomly create 100 databases on
which the chain query runs. For each of the 100 random databases,
we search the optimal query execution plan for the chain query. In
the experiment, we assume we need a re-optimization decision on
the base table edges in the query execution plans. Base table edges

5.4 ADAPTIVE QUERY PROCESSOR 125

6000 \ \ \ \ \ \
L Full Re-Optimization i
5000 - @ Selective Re-Enumeration i
® Optimality Range Calculation
4000 : : : S
. . . . !
3000

Enumerated Plans

T
~

2000 - i / / /

1000 ; i A A

200 400 600 800 1000 1200 1400 1600 1800 2000
Query Execution Plan Edge IDs

Figure 5.10: Comparing re-optimization criteria on base table edges of 100
random chain queries with 20 Tables.

are the worst case in terms of enumeration effort. Since each of the
100 query execution plans joins 20 tables, there are 2000 base table
edges. For each of the edges, we compare the number of enumerated
plans of a full re-optimization, a selective re-enumeration, and an op-
timality range calculation. Figure 5.10 shows the results.

The 2000 query execution plan edges are plotted along the x-axis,
and the number of enumerated plans along the y-axis. The edges on
the x-axis are ordered by the number of enumerated plans of the full
optimization, followed by the selective re-enumeration and the opti-
mality range calcualtion. The number of enumerated plans of a full
re-optimization is constant over all base table edges. In our experi-
ments each full optimization in our dynamic programming optimizer
enumerates 1330 logical query execution plans including bushy trees.
This the same number, which Ono and Lohman [14] report for exactly
that case, i.e., feasible, logical, and bushy query execution plans with-
out cross products enumerated by dynamic programming for chain
queries joining 20 tables. The number of enumerated plans for the
described case can also be calculated through Equation 3.21.

The number of enumerated plans for the calculation of one optimal-
ity range varies. As we explain in Section 3.3.2, the variation comes
from the structure of the query execution plan, e.g., left-deep, bushy,
or something in between, and the effectiveness of our pruning strat-
egy. There are some edges where the optimality range calculation
enumerates less plans compared to a full re-optimization, but there
are also edges where a full re-optimization performs better.

The results of the selective re-enumeration also vary for different
query execution plan structures. The selective re-enumeration has to
enumerate more plans when a base table edge is deeper in the plan,

126

MID-QUERY RE-OPTIMIZATION REVISITED

compared to base table edges that are higher in the plan. In the ex-
periment, the selective re-enumeration always enumerates a smaller
number of plans compared to the full re-optimization. The experi-
ment also shows that the number of enumerated plans by selective
re-enumeration are a lower bound for the number of enumerated
plans by optimality range calculation. The selective re-enumeration
enumerates for each considered edge the smallest number of plans,
and is therefore the superior re-optimization criterion. Compared to
the optimality range calculation, the selective re-enumerations fur-
thermore returns the new plan. In case an optimality range decides
to re-optimize, there is the additional effort to search the new plan.

5.5 EXPERIMENTAL EVALUATION

To evaluate our adaptive query processor, we choose a similar experi-
mental setup as in the evaluation of the robustness metrics and robust
plan selection in Section 4.6. Identical are the considered benchmarks,
the baseline, the system, the kernel, and the compiler. Consequently,
all execution times are comparable to the results in Section 4.6.

The baseline in our experiments is again the estimated optimal
query execution plan, which is selected in the initial query optimiza-
tion solely based on estimations. We argue in Section 4.6 that our join
optimizer’s choice of the estimated optimal plan is very similar to
the choice of popular commercial and free database systems, for the
considered join queries. The reason is that our join optimizer relies
on dynamic programming [4], such as DBz [17] and Postgres [78].
As Postgres, it exhaustively searches the plan space including bushy
trees. Section 2.7 shows that its cardinality estimator is competitive.
Furthermore, we use the Cy,,iy [93] cost function, which has a strong
correlation to our main-memory execution engine, according to Sec-
tion 2.7. We denote the execution of the estimated optimal plan as
conventional execution. Accordingly, the query execution in our adap-
tive query processor is denoted as adaptive execution, and the corre-
sponding query execution plan as adaptive plan.

We furthermore compare the adaptive execution against another ex-
ecution strategy, whose re-optimization criterion is based on heuristi-
cally defined optimality ranges. According to Kabra and DeWitt [31]
and Babu et al. [41] an optimality range can be defined as follows:
Based on an uncertainty value U and an estimate E, the lower bound
of an optimality range for cardinality f* = E — (E 0.1 % U) and the
upper bound T = E + (E % 0.2 x U). Section 3.3.1 illustrates that this
heuristic fails to characterize optimality ranges. In the following ex-
periments the uncertainty value U is 500. We denote the query ex-
ecution using the heuristic re-optimization criterion as heuristic exe-
cution and the corresponding query execution plan as heuristic plan.
The heuristic execution strategy is similar to our adaptive execution

5.5 EXPERIMENTAL EVALUATION

strategy in Section 5.4.1, but more conservative. It only triggers a re-
optimization when the true cardinality is outside of the heuristically
defined optimality range. In contrast, our adaptive execution strategy
in Section 5.4.1 triggers re-optimizations on cardinality estimation er-
rors of one tuple. Since we implemented the heuristic execution strat-
egy in our adaptive query processor, it uses the extended CHT hash
join implementation, and the selective re-enumeration.

Next to the estimated optimal plan and the heuristic plan, we com-
pare each adaptive plan against the fastest plan. As in Section 4.6,
the fastest plan is identified in an offline analysis through the execu-
tion of the 500 estimated cheapest plans. Note that the fastest plan
is no competitive approach to the estimated optimal plan, the heuris-
tic plan, or the adaptive plan, because its calculation can take several
hours. Consequently, it is not applicable at query optimization time.
Searching the fastest plan reduces the impact of cardinality estima-
tion errors, and cost function inaccuracies. Nevertheless, there can be
an even faster plan, which is not in the 500 estimated cheapest plans.

Corresponding to the problem statement, Section 5.5.1 evaluates
the true cost improvements of the heuristic plans, adaptive plans,
and fastest plans with respect to the estimated optimal plans. Sec-
tion 5.5.2 illustrates the resulting end-to-end query execution times,
and speedups with respect to conventional plan execution. We com-
pare the number of re-optimizations and plan switches in Section 5.5.3,
and the resulting adaption effort in Section 5.5.4. The numbers we re-
port in Section 5.5.1 and 5.5.3 do not depend on the machine the
experiments run on. Reported execution times are comparable to the
query execution times in Section 4.6, because they were taken on the
same two socket Intel Xeon E5-2660 v3 system with 128 GB of main
memory, running the same Linux 4.4.120 kernel. As we explain in Sec-
tion 2.7, our main-memory query execution engine performs join op-
erators as hash joins. The query optimizer including the selective re-
optimization are single-threaded. Corresponding to the experiments
in Section 4.6, the entire query processor is compiled with gcc version
7.2.0 and optimization option -O3.

To enable a comparison with the experimental results on the robust-
ness metrics and robust plan selection, we choose exactly the same
benchmarks as in the experiments in Section 4.6. The first benchmark
is based on the Join Order Benchmark (JOB) [78]. The JOB uses the
real-world database from IMDb with skew, correlations, and differ-
ent join relationships that cause estimation errors. We modified the
original queries to be pure join queries, which results in 33 complex
queries containing cycles and multiple join conditions between sub-
plans. Since pure join queries without any filters on base tables create
large intermediate results, we use the movie_id column as scale factor
for the benchmark. We limit the movie_id column of all tables to val-
ues less equal than 100, 000. In the end, the scale factor enables to run

127

128

MID-QUERY RE-OPTIMIZATION REVISITED

31 different queries. We argue that the scale factor does not limit the
validity of our results, because it creates a snapshot of the database
at the point when it contained only 100, 000 movies.

As in Section 4.6, the second benchmark is synthetic with gener-
ated data and join queries. We consider again the query topologies:
chain, cycle, star, and snowflake. All topologies join 10 tables. The
snowflake topology has a fact table with three dimension tables. Each
dimension table has again two sub-dimensions. For each topology, we
create one query and 100 different data sets. Furthermore, we gener-
ate 100 queries with a random topology and a corresponding data set.
The random topology creator starts with a random connected query
graph, and adds with a probability of 4% additional edges to create
cycles. The random topologies also join 10 tables. For all generated
data sets, the base table cardinalities are uniform random numbers
between 10,000 and 100,000. The data sets contain skew and arbi-
trary correlations between columns to generate expanding and selec-
tive joins. There are foreign key and m:n join relationships. The join
cardinalities between two base tables R; and R; are uniform random
numbers between max(|Ry, |R;]) —5000 and max(|Ri], [R;|) + 5000.

Equivalent to Section 4.6, we denote the conventional execution of
the estimated optimal plan throughout the experiments as EO, and
the fastest plan as FA. Furthermore, we denote the heuristic execution
and plan as HE, and the adaptive execution and plan as AE.

5.5.1 Improvement of True Cost

Since true cardinalities are superior to estimated cardinalities, consid-
ering true cardinalities in the plan selection should result in better or
at least equally good query execution plans. According to the formal
problem description in Section 5.2, a precondition for query execution
time improvements is that the adaptive plan AE has smaller true cost
¢ compared to the initial or estimated optimal plan EO. To measure
the true cost improvement of an arbitrary plan P with respect to the
estimated optimal plan EO, we calculate the true cost improvement
factor Eimp between the true cost of the estimated optimal plan Cgo,
and the true cost of plan P, Cp:

o Ceo/Cp if Cpo = Cp o o
Cimp = - where cp>0 and c¢p >0

—Cp/Cro otherwise

Consequently, a positive &mp reveals the true cost improvement of
plan P with respect to the estimated optimal plan EO, and a negative
Cimp @ true cost degradation. Figure 5.11 shows some typical results
for the Join Order Benchmark. The typical results are the nine worst
queries and the nine best queries with respect to the speedup of end-
to-end query execution time of the adaptive plan AE relative to the

5.5 EXPERIMENTAL EVALUATION

+4x T T \ T T
m== heuristic plan (HE)
13X I~ == adaptive plan (AE)
.g 1+2x |- &= fastest plan (FA)
33

Sl D D e T

2% | | | | |

S TENRTNITRITTEY

ts?

Cimp €Xis

o

'onoNoNoNoNoNoNoNoNONONONONONONONONE
NN RN ARARNNSISFTINTITEFNNRINASE RS
SN %N W o ¥ »H O NG R g o0

Figure 5.11: Typical results of experiment comparing the true cost improve-
ment factor relative to the estimated optimal plan (EO) on Join
Order Benchmark queries.

estimated optimal plan EO. Throughout the experiments, we always
consider the same typical queries. The queries are plotted along the
x-axis, and ordered by increasing speedup of the end-to-end query ex-
ecution time. The y-axis shows the true cost improvement Eimp, and
whether there is a positive, negative or zero ¢imp value. For the Join
Order Benchmark queries in Figure 5.11, the heuristic plans HE and
the adaptive plans AE achieve the best Eimp with +2.29x in Q30. The
best éimp for the fastest plans FA is achieved in Q2 and Q17 with
+1.70x. In the Join Order Benchmark, there is no case for the heuris-
tic plans HE and adaptive plans AE with a negative Eimp. For the
fastest plans FA, only Q25 and Q30 have a slightly negative Ciyp. Fur-
thermore, the heuristic plans HE improve the true costs, i.e., have a
positive Cimp in 11 out of 31 queries, the adaptive plans AE in 16 out
of 31 queries, and the fastest plans FA in 19 out of 31 queries. The
adaptive plans dominate the average Cimp with +1.47x, compared to
the heuristic plans with +1.33x, and the fastest plans with +1.06x.
Figure 5.12 shows some typical results of the synthetic benchmark
queries with a random query topology. From the 100 queries in the
benchmark, we again picked the nine worst and the nine best queries
with respect to the speedup of end-to-end query execution time of the
adaptive plan AE relative to the estimated optimal plan EO. The adap-
tive plans AE dominate the best Eimp with +3.90x in Q62, compared
to the heuristic plans HE with 4+2.86x in Q10, and the fastest plans
FA with +2.73x in Q62. There is one query, Q64, where the adaptive
plan has a negative éimp of —1.01x. In this case, better knowledge, i.e.,
about true cardinalities, causes a worse plan quality. The root cause
is an estimation error during the re-optimization. Cases where better
knowledge results in a worse plan quality are infrequent, but can oc-

129

130

MID-QUERY RE-OPTIMIZATION REVISITED

+5x l \ I \ \
+4% |- === heuristic plan (HE)
=== adaptive plan (AE)
& +3X |~ == fastest plan (FA)

”ﬁz-_,ﬁjﬂﬂﬁ& ablglaold

2% | | | | | | | | |

ts?
[[
==
B
BE=S

Cimp exis

|
—

\

\

o

¥90
180
VA7e)
(99
6v0)
€80
12D
090
640
290
21D
990
001
177
6£0)
VATe)
ord
920

Figure 5.12: Typical results of experiment comparing the true cost improve-
ment factor relative to the estimated optimal plan (EO) on syn-
thetic benchmark queries with random topology.

cur. We explain in Section 7.1 how they can be further reduced. Nev-
ertheless, the adaptive plans AE achieve a positive Cimp in 99 out of
100 queries, and dominate the average Eimp with +1.56x. The heuris-
tic plans HE in contrast improve the plan quality in 40 out of 100
queries, and achieve an average Cimp of +1.26x. The fastest plans FA
perform worse compared to the heuristic and adaptive plans AE with
respect to &mp. They face a true cost degradation in 4 queries, and
have the strongest true cost degradation with —1.10x. Although the
fastest plans AE improve the true costs in 96 out of 100 queries, they
achieve the smallest average Eimp with +1.25x%.

Table 5.1 summarizes the results of all benchmarks through best,
worst, and average éimp, as well as the number of queries that achieved
positive and negative Ciynp values. Compared to the heuristic plans
HE and the fastest plans FA, the adaptive plans AE achieve in each
benchmark the largest true cost improvement Eimp. The best &mp over
all benchmarks is achieved by AE in the random query benchmark
with +3.90x. Furthermore, the adaptive plans AE improve in each
synthetic benchmark the largest number of queries, i.e., queries with
a positive co‘,imp value. In each synthetic benchmark, the adaptive plans
AE improve at least 95 out of the 100 queries. Queries where adaptive
plans AE create a worse plan quality, i.e., a negative Cimp, are infre-
quent. The peak number of queries with a negative Cimp is 4 out of 100
in the cycle benchmark. Compared to adaptive plans AE, the heuristic
plans HE are identified through a more conservative re-optimization
strategy. In our experiments, this conservative strategy always results
in a positive true cost improvement Cimp Or no true cost improvement
Cimp = 1.00x. Furthermore, the heuristic plans HE improve a smaller

5.5 EXPERIMENTAL EVALUATION

best Cimp Worst Cimp ~ average Cimp +Cimp —Cimp

. HE +229x 1.00% +133x 11/31 0/31
O AE 42.29x 1.00% +147%x 16/31 0/31
FA +1.70x 1.00% +1.06x 19/31 2/31

= HE +142x 1.00x +1.03x 1/100 0/100
5“ AE 4246x —1.05x +1.21x 95/100 2/100
FA +2.30x —1.11x +1.17%x 75/100 25/100

o HE +1.60x 1.00x +1.01x 4/100 0/100
5 AE +247x —1.12x +1.26x 95/100 4/100
FA +246x —1.03x +1.29% 95/100 5/100

_ HE +156x 1.00x +1.02x 8/100 0/100
S AE 41.77x 1.00x +1.04x 97/100 1/100
FA +1.62x —1.03x +1.03x 88/100 11/100

Y HE +277x 1.00% +1.07x 7/100 0/100
% AE +3.76x —1.02x +1.19% 99/100 1/100
& FA 42.56x —1.21x +1.09% 89/100 10/100
E HE +2386x 1.00% +1.26x 40/100 0/100
g AE +3.90x —1.01x +1.56x 99/100 1/100
P FA 42.73x —1.10x +1.25% 96/100 4/100

Table 5.1: Overview of experiments on the true cost improvement factor rel-
ative to the estimated optimal plan (EO) on different benchmarks,
comparing the adaptive plans (AE) against the heuristic plans
(HE), and fastest plans (FA).

number of queries, and in each benchmark they have a significantly
smaller average Cimp compared to the adaptive plans AE.

To sum it up, our experimental results reveal that information from
the query execution, i.e., the true statistics can improve the average
plan quality, because the adaptive plans AE and heuristic plans HE
have mostly a positive true cost improvement Ciyp Or no true cost im-
provement ¢imp = 1.00x. Comparing our adaptive plans AE with the
heuristic plans HE shows that the adaptive plans improve the plan
quality stronger and in more queries. The reason is that our adaptive
execution strategy triggers more re-optimizations, so that more run-
time feedback is included in the plan choice. Furthermore, the per-
formance of the heuristic plans heavily depends on the uncertainty
value for the heuristically defined optimality ranges. Throughout the
experiment, we choose an uncertainly value of 500, which results in a
quite competitive performance to the adaptive plans in the Join Order
Benchmark. For the synthetic benchmark, the uncertainty value could

131

132

MID-QUERY RE-OPTIMIZATION REVISITED

be smaller to trigger more re-optimizations. With a small uncertainty
value, the heuristic strategy is close to our adaptive strategy, which
re-optimizes at estimation errors of one tuple. In our experiments,
our adaptive execution strategy is superior to the heuristic execution
strategy, because each re-optimization improves the plan choice with
true information. In almost all cases, this improves the plan quality. In
addition, our adaptive execution strategy is independent of constants,
such as the uncertainty value.

5.5.2 Execution Time

Section 5.5.1 reveals that our adaptive execution strategy identifies
plans with significantly improved true costs compared to the initial
or estimated optimal plans. Ideally, better true costs also result in
faster end-to-end query execution times. There are two additional
pre-conditions to achieve query execution time improvements. First,
the cost model has to be accurate so that better true costs result in
the faster execution of plans. This is in general essential for each
query optimizer. Second, the re-optimization and adaption effort has
to be small enough to not entirely consume the execution time gains
of the cheaper plan. Since our cost model is not entirely accurate,
there are cases in our experiments where we observe a degradation
of query execution time, although the true costs are improved and the
re-optimization effort is low. In the following experiments, we com-
pare the end-to-end query execution times of our adaptive execution
AE against the heuristic execution HE, the conventional execution of
the estimated optimal plan EO, and the fastest plans FA.

Figure 5.13 illustrates some typical results for the Join Order Bench-
mark. We choose the nine worst and the nine best queries with respect
to the speedup of end-to-end query execution time of the adaptive ex-
ecution AE relative to the conventional execution EO. We show the
same queries and in the same order as in Figure 5.11. The queries
are plotted along the x-axis, and ordered by increasing speedup of
the adaptive execution AE. On the y-axis, we show the median end-
to-end query execution time over 101 executions in logarithmic scale.
The end-to-end query execution time consists of the initial optimiza-
tion time, the actual plan execution time, and for AE and HE the
adaption effort. The adaption effort contains the Steps 4 to 7 of our
adaptive execution strategy in Figure 5.4. Since the logarithmic scale
aggravates a comparison between initial optimization time, adaption
effort and plan execution time, we do an additional comparison in
Section 5.5.4. The fastest plans have no optimization time because
they are identified in an offline analysis that executes the 500 esti-
mated cheapest plans, which can take several hours per query. There-
fore, we only illustrate the pure plan execution time of the fastest
plans FA. The fastest plans can help to identify whether further im-

5.5 EXPERIMENTAL EVALUATION

100 e 7T T T T T T T T T T T T T T T
=== convent. execution (EO) === fastest plan (FA)
104 mmm heuristic execution (HE) === adaption effort
=== adaptive execution (AE) T——= optimization time
103

Query Execution Time in [ms]

@

o€ E_—
1 \HHH‘ 1 \HHH‘ 1 \HHH‘ 1 \HHH‘ L

102

10! M

100
Q ool ol e)
N N N O
(o)) W O

Figure 5.13: Typical results of experiment comparing the end-to-end query
execution times on Join Order Benchmark queries.

="
§0
) —

Q
o

Q0 IO ONONONG
SN @ S O SR
¥ D NG A N o

provements are possible. For EO, HE and AE, the initial optimization
time of one query should be identical.

The results of the Join Order Benchmark in Figure 5.13 reveal that
the heuristic execution HE and the adaptive execution AE achieve in
some queries, such as Q22 and Q30 a similar improvement of end-
to-end query execution time. But there are some queries where the
adaptive execution AE achieves significantly better results compared
to the heuristic execution HE, e.g., Q19, Q17, and Q16. In particular
interesting is that the heuristic execution HE and adaptive execution
AE can be considerably faster compared to the fastest plans FA, e.g.,
in Q25, Q24, and Q30. The root cause is that each fastest plan is se-
lected from the 500 estimated cheapest plans, but there are even faster
plans beyond 500 estimated cheapest plans, which are identified by
HE and AE. The adaptive execution AE has its best speedup at Q30
with +3.88%, and worst regression at Q26 with —1.12x. Since the
adaptive execution AE has no true cost degradations in Table 5.1, the
query execution time degradations are caused by cost model inaccu-
racies and adaption effort. The heuristic execution HE has its best
speedup also at Q30 with +3.96x, and worst regression also at Q26
with —1.03x. Nevertheless, the adaptive execution AE outperforms
the heuristic execution HE with an average speedup relative to con-
ventional execution of +1.47x compared to +1.38x.

Figure 5.14 shows some typical results for the synthetic benchmark
queries with random topology. The queries, plotted along the x-axis
are the same and in the same order as in Figure 5.12. Included is
Q26, where the adaptive execution AE achieves its best speedup of
+5.19x compared to conventional execution EO, and Q64 where AE
has its worst regression of —1.39x. The root cause for the query exe-
cution time degradation in Q64 can be observed in Figure 5.12. In Fig-

133

134

MID-QUERY RE-OPTIMIZATION REVISITED

106 I I I I I I I I

T T T T T T T 1
=== convent. execution (EO) === fastest plan (FA)

o E 3
£ c]
= 10° ¢ == heuristic execution (HE) ©==3 adaption effort =
o F === adaptive execution (AE) C—— optimization time 3
g 10% ¢]
= E :
g0k E
E - ;
g 102 - 5
>< = =
2| c]
10" | -
Q E 3
=] o]
<100 —

DOOOOOLOOLOLOOLOOLLO000W0

N0~ U A O NN O R R N W Uuor N

S R U1 O W R O O NN O 8 A O N9 o o

Figure 5.14: Typical results of experiment comparing the end-to-end query
execution times on synthetic queries with random topology.

ure 5.12, Q64 has a true cost degradation, which is the consequence of
cardinality estimation error during the re-optimization. The remain-
ing degradations of the adaptive execution AE are caused by cost
model inaccuracies and adaption effort. The heuristic execution HE
achieves its best speedup at Q10 with +2.67x, and has only minor
regressions of at most —1.01x, which are measuring deviations. For
the majority of queries, the adaptive execution achieves considerably
better query execution times compared to conventional execution EO
and heuristic execution HE. There are again cases where the adap-
tive execution AE achieves significantly better query execution times
compared to the fastest plans FA, because AE executes plans, which
are beyond the 500 estimated cheapest plans. In the end, the average
speedup relative to the conventional execution EO is dominated by
the adaptive execution AE with +1.87x, compared to the heuristic
execution HE with +1.29x and the fastest plans FA with +1.46x.

In addition to the typical results, Figure 5.15 and 5.16 illustrate the
speedup of heuristic execution HE, adaptive execution AE, and the
fastest plans FA relative to conventional execution EO for all queries
in all benchmarks. Figure 5.15 illustrates the results for the Join Order
Benchmark, and the synthetic benchmark queries with chain and cy-
cle topology. Figure 5.16 contains the synthetic benchmark queries
with star, snowflake, and random topology. The queries are plot-
ted along the x-axes and ordered by the speedup of adaptive exe-
cution AE. The y-axes show the speedups of end-to-end query execu-
tion time. Throughout the benchmark, the adaptive execution AE cre-
ates more and stronger speedups than regressions. The Figures 5.15
and 5.16 also reveal that the adaptive execution AE clearly outper-
forms the heuristic execution HE, which has no improvement in the
majority of queries, especially in the synthetic benchmarks. Another

5.5 EXPERIMENTAL EVALUATION

.2 I e e
e heuristic execution (HE)
o X - adaptive execution (AE) 7
| e fastest plan (FA |
_;es) +3x% astest plan (FA)
8-1 +2X B o o L N
95) e
+Ix et o0 b oo 0o o 3.0.8 383 . 4
B T Y Y
Queries ordered by speedup of AE
(a) JOB
S Ee S I e B S B B S B ey A B B B B B B B R
e heuristic execution (HE)
o +ax - adaptive execution (AE) N
2 +3x | fastest plan (FA) -
]
g +2x -
)
:l:] x |— 88888600000000088050080580]
T I O O B
Queries ordered by speedup of AE
(b) Chain
HAX T T T T T T T T T T T T T T T T T T
e heuristic execution (HE)
o +3x adaptive execution (AE) —
5 fastest plan (FA)
T £2x i
()
(% L ° L]
+1x | oes esee 4
S T O

Queries ordered by speedup of AE
(c) Cycle

Figure 5.15: Comparison of end-to-end query execution time speedups of
heuristic execution (HE), adaptive execution (AE), and fastest
plans (FA), relative to the conventional execution of the esti-
mated optimal plan (EO), over all queries in the Join Order
Benchmark, and the synthetic chain and cycle benchmarks.

observation is that the adaptive execution outperforms the fastest
plans in the synthetic benchmarks with a complex query topology,
i.e., star, snowflake, and random. The reason is that complex query
topologies have a considerably larger plan space compared to simple
topologies, such as chain and cycle. Therefore, the probability that
the 500 estimated cheapest plans, which we execute to identify the
fastest plan FA, contain a truly fast plan is lower for the complex
query topologies compared to the simple query topologies.

We summarize our experimental results for all benchmarks in Ta-
ble 5.2, through the accumulated query execution time, the best speed-

135

136

MID-QUERY RE-OPTIMIZATION REVISITED

X T T T T T T T T L T T T T T T T T T T
e heuristic execution (HE)

o adaptive execution (AE) "
5 T2X [o fastest plan (FA) . 7
‘-8 L]
() .
(%-1 :l:] X |88 8a88p0808888380088588 o0 00 —

S T T

Queries ordered by speedup of AE
(a) Star
HX T T T T T T T T T T T T T T T T T T
e heuristic execution (HE) .

o T3X adaptive execution (AE) -
=] fastest plan (FA) .
T +2x b —
[
Q 3 8oy
DpIx e o308eef i —

T I O O O B

Queries ordered by speedup of AE
(b) Snowflake

+6X T T T T T T T T T T T T T T T T T T T

4+5% |- ® heuristic execution (HE) i
o adaptive execution (AE)
5 +4X 7 o fastest plan (FA) .
T +3x o
] 80! .
% +2X — . ot : . X b .. .- +

41X [—eestetele Pecess - SR TR O S SR L S S S P S B

S T Y

Queries ordered by speedup of AE

(c) Random

Figure 5.16: Comparison of end-to-end query execution time speedups of
heuristic execution (HE), adaptive execution (AE), and fastest
plans (FA), relative to the conventional execution of the esti-
mated optimal plan (EO), over all queries in the synthetic bench-
marks with star, snowflake, and random query topology.

up, the worst regression, and the average of speedups and regressions
over all queries in the corresponding benchmark. The adaptive exe-
cution AE achieves the best speedup in the star and random queries
with +2.25x and +5.19x, the heuristic execution HE in the Join Or-
der Benchmark and the snowflake queries with +3.96x and +3.39x,
and the fastest plans in the chain and cycle queries with +4.23x and
+2.94 x. Both, heuristic execution HE and adaptive execution AE have
a stronger best speedup than worst regression in all benchmarks. The
adaptive execution AE has in all benchmarks a stronger worst regres-
sion compared to the heuristic execution HE. Nevertheless, AE out-

5.5 EXPERIMENTAL EVALUATION

2 time best speedup worst regression average

EO 13941 ms - - -
= HE 10068 ms +3.96x —1.03x +1.38x
= AE 9494 ms +3.88x —1.12x +147x

FA 12483 ms +1.98 x - +1.12x

EO 18780 ms - - -
£ HE 17666 ms 12.70% “1.0Tx +1.06%
S AE 15539 ms +3.85x 101x 41.21x

FA 14562 ms +4.23% ~ +1.29x

EO 41072 ms - - -
é; HE 40373 ms +1.91x —1.01x +1.01x
O AE 31100 ms +2.64x —159%x +1.32x

FA 25539 ms +2.94% ~ +1.61x

EO 178116 ms - - -
5 HE 177231 ms +1.16x —1.08x +1.01x
P AE 174444 ms +2.25% —1.18x +1.02x

FA 161987 ms +1.47 % ~ +1.10x
v EO 53745 ms - - -
= HE 49442 ms +3.39x% —1.01x +1.08x
§ AE 43307 ms +3.04x “111x +1.24x
“ FA 44843 ms 1211 ~ 41.20x
. EO 81924ms - - -
< HE 63393 ms +2.67x —1.01x +1.29x
S AE 43739ms 45.19% —139% +1.87x

FA 56273 ms +4.07 x - +146x

Table 5.2: Overview of experiments on the end-to-end query execution times
on different benchmarks, comparing the adaptive execution (AE)
against the conventional execution (EO), the heuristic execution
(HE), and fastest plans (FA).

performs HE in all benchmarks with a better average speedup. The
adaptive execution AE has the overall best average speedup of +1.87
in the synthetic benchmark with a random query topology.

In the end, our experiments on query execution time reveal that our
adaptive execution strategy AE converts the true cost improvements
we observe in Section 5.5.1 into the best average end-to-end query
execution time improvements. Comparing the cases with execution
time degradations to the results of our true cost study in Section 5.5.1

137

138

MID-QUERY RE-OPTIMIZATION REVISITED

reveals that the root causes for query execution time degradations
are mostly cost model inaccuracies. In our experiments, we observe
that adaptions cause only minor degradations in case the initial or
estimated optimal plan EO could not be considerably improved.

5.5.3 Re-Optimizations and Plan Switches

Next, we study the number of re-optimizations and plan switches of
the heuristic execution strategy HE and our adaptive execution strat-
egy AE. Our goal is to reveal the peak number of plan switches and re-
optimizations, and demonstrate that the majority of re-optimizations
of our adaptive execution strategy AE result in improved plans. The
number of re-optimizations and plan switches is furthermore inter-
esting for our study on adaption effort in Section 5.5.4.

Figure 5.17 illustrates some typical results of the Join Order Bench-
mark. We show the same queries, and in the same order as in the
Figures 5.11, and 5.13. The queries are plotted along the x-axis, and or-
dered by increasing query execution time speedup of the adaptive ex-
ecution AE. On the y-axes, we denote the number of re-optimizations
and plan switches. Figure 5.17 shows the results of our adaptive exe-
cution strategy AE in the upper plot, and the results of the heuristic
execution strategy HE in the lower plot.

We observe from Figure 5.17 that in both execution strategies, the
majority of re-optimizations cause a plan switch, i.e., a theoretically
better plan. Comparing the results of adaptive execution AE with
heuristic execution HE reveals that AE has a considerably larger num-
ber of re-optimizations. Although the heuristic execution HE has a
smaller number of re-optimizations, not all re-optimizations find a
better plan. This confirms the limitations of heuristically defined op-
timality ranges, we reveal in Section 3.3.1. The adaptive execution AE
has its peak number of re-optimizations at Q33. All 7 re-optimizations
in Q33 find a better plan. The heuristic execution HE has its peak also
at Q33 with 2 re-optimizations and 2 plan switches. Comparing the
results of Figure 5.17 to the results of Figure 5.11 and Figure 5.13 re-
veals that a large number of plan switches does not necessarily result
in the strongest improvements of true cost and query execution time.

Figure 5.18 illustrates some typical results of the synthetic bench-
mark queries with a random topology. We show the same queries
and in the same order as in the Figures 5.12 and 5.14. The study in
Figure 5.18 confirms the results of Figure 5.17. For both strategies, the
majority of re-optimizations find a better plan, and the adaptive exe-
cution AE has significantly more re-optimizations and plan switches,
compared to the heuristic execution HE. In the synthetic benchmark
with random query topology, the adaptive execution AE has at most 7
re-optimizations and 7 plan switches. The heuristic execution HE has
at most 1 re-optimization and 1 plan switch. Comparing the number

5.5 EXPERIMENTAL EVALUATION 139

\ \ \ \ \ \ \
adaptive execution (AE) re-optimizations -
= adaptive execution (AE) plan switches -

—_—

ON PSRN ON ONPAEAANNXODN
I

T T T T T T T T T T T 1
— === heuristic execution (HE) re-optimizations -

| =3 heuristic execution (HE) plan switches -

—_—

Re-Optimizations & Plan Switches

7I‘I H’IH’I I \ \\m M mMm | M M
OOOOOOOOOOOOOOOOOO
N N N H N N O &~ W W R N NN R R W
AN N W O N LW O N U AN OO

Figure 5.17: Typical results for the number of re-optimizations and plan
switches of the adaptive execution (AE) and the heuristic ex-
ecution (HE) on the Join Order Benchmark.

\ \ \ \ \ \ \ \
— == adaptive execution (AE) re-optimizations —

| === adaptive execution (AE) plan switches _

—_—

— —
ON P ANANOCON ONAEAANNON

— T T T T T 1 _ T T T T T 1
— === heuristic execution (HE) re-optimizations -
| === heuristic execution (HE) plan switches |

Re-Optimizations & Plan Switches

| | | | | |
OO
U B
Ul O

o) H
920 B

M M m
Q0 0
S I G
+~ O 3

90
180
€80
L0 g
090
6D g
290 H
410 B

VA7e)
990 B
001D

Figure 5.18: Typical results for the number of re-optimizations and plan
switches of the adaptive execution (AE) and the heuristic ex-
ecution (HE) on the synthetic queries with random topology.

of plan switches in Figure 5.18 with the true cost improvements in Fig-
ure 5.12, and the query execution time improvements in Figure 5.14,
confirms that the number of plan switches does not necessarily corre-
late with the improvements of true cost and query execution time.
We summarize the study of re-optimizations and plan switches
for all benchmarks in the Figures 5.19 to 5.24. For each benchmark,
there is one heat-map for the adaptive execution strategy AE and
one for the heuristic execution strategy HE. In each heat-map, the

140 MID-QUERY RE-OPTIMIZATION REVISITED

Frequency

2 2
21 1
6 8 2

ol 3 1 16 3 1
01234567 01234567

Re-Optimizations Re-Optimizations
(a) AE (b) HE

4
3

Plan Switches
O = N WK Ul o
—_
Frequency
Plan Switches

O R N W ks O &N

Figure 5.19: Heat map illustrating the number of re-optimizations and plan
switches of adaptive execution (AE) and heuristic execution
(HE) for all queries in the Job Order Benchmark.

7 7
2 6 11 2 6
< 5 11 é\ < 5 (E\
'u§> 4 2 4 4 % c% 4 %
c 3 2111410 1 o c 3 o
© ©
= 2 3 4116 6 2| = 2 -

1 4 6 2 2 1 1

0 1 2 L 0 199 L

01234567 01234567
Re-Optimizations Re-Optimizations
(a) AE (b) HE

Figure 5.20: Heat map illustrating the number of re-optimizations and plan
switches of adaptive execution (AE) and heuristic execution
(HE) for all synthetic queries in with a chain topology.

number of re-optimizations are denoted on the x-axis, and the num-
ber of plan switches on the y-axis. The entries in the heat maps are
the number of queries, which have the corresponding number of re-
optimizations and plan switches. Figure 5.20a for instance reveals that
for the synthetic queries with a chain topology, the adaptive execution
AE has 11 queries where 4 re-optimizations cause 3 plan switches.
The heat maps also reveal the peak number of re-optimizations and
plan switches of both execution strategies in all benchmarks.

Ideally, all entries in the heat maps should be on a diagonal starting
from 0 re-optimizations and 0 plan switches. In case all entries would
be on that diagonal, we can conclude that all re-optimizations result
in a plan switch. To confirm that the majority of re-optimizations
cause a plan switch, it is sufficient that a large number of entries is

5.5 EXPERIMENTAL EVALUATION

7 2|} 7]
g 6 4 6 g 6
< 5 2 10 8 L:; < 5 ?
T 4 1 8 1110 g g 4 g
‘2 3 2 3112 4 g ‘g 3 g
] ©
m 2 2 6 5 o A 2 -

1 2 2 1 4

0 L] 0 196]

01234567 01234567
Re-Optimizations Re-Optimizations
(a) AE (b) HE

Figure 5.21: Heat map illustrating the number of re-optimizations and plan
switches of adaptive execution (AE) and heuristic execution
(HE) for all synthetic queries in with a cycle topology.

7 I 7 I
g © g ©
L5 gy £ 5 5
= 1 § = 4 g
2 3 2 3
‘2 3 12 3 g ‘2 3 é‘“
o]]
B2 24 12 2 = 2 -

1 13 8 2 1 8

0 2 L] 0 (92 L

01234567 01234567
Re-Optimizations Re-Optimizations
(a) AE (b) HE

Figure 5.22: Heat map illustrating the number of re-optimizations and plan
switches of adaptive execution (AE) and heuristic execution
(HE) for all synthetic queries in with a star topology.

close to the diagonal. The Figures 5.19b to 5.24b reveal that the heuris-
tic execution HE achieves this property in all benchmarks. The adap-
tive execution AE achieves the property in the Join Order Benchmark
in Figure 5.19a, and in the synthetic benchmarks with star, snowflake,
and random query topology in the Figures 5.22a, 5.23a, and 5.24a.

From our study on re-optimizations and plan switches, we con-
clude that our adaptive execution strategy AE triggers only a small
number of re-optimizations, which is in the same order of magnitude
as the number of operators. We furthermore observe that the majority
of re-optimizations find a better query execution plan. Although the
heuristic execution HE does considerably less re-optimizations, our
experiments reveal that the majority, but not all of these re-optimiza-
tions can find a better query execution plan.

141

142 MID-QUERY RE-OPTIMIZATION REVISITED

7] 7]
g O g ©
g 5 13 ? < 5 L:;
§ 4 36 41 g § 4 g
‘2 3 31619 4 1 g ‘2 3 &:;
5 5
B 2 4 6 9 511 - m 2 o

1 113325 1 7

0 L] 0 (93 L

01234567 01234567
Re-Optimizations Re-Optimizations
(a) AE (b) HE

Figure 5.23: Heat map illustrating the number of re-optimizations and plan
switches of adaptive execution (AE) and heuristic execution
(HE) for all synthetic queries in with a snowflake topology.

7 3] 7 I
o 0 4 3 n O
(7] 9]
< 5 7 7 3 e < 5 I
= £ = =
u% 4 3128 1 % c% 4 %
b 3 2 71111 1 3 b 3 g
]]
= 2 6 31 - 2 =

1 201 1B 1 1 40

0 | 0 (60 |

01234567 01234567
Re-Optimizations Re-Optimizations
(a) AE (b) HE

Figure 5.24: Heat map illustrating the number of re-optimizations and plan
switches of adaptive execution (AE) and heuristic execution
(HE) for all synthetic queries in with a random topology.

5.5.4 Adaption Effort

At the end of our experimental evaluation, we study the query exe-
cution time consumption of our adaptive execution strategy AE, and
compare it with the heuristic execution strategy HE. For both execu-
tion strategies, the adaption effort consists of the execution time for
the Steps 4 to 7 in Figure 5.4, accumulated over all pipelines in the
query execution plan. The execution time for the Steps 4, 5, and 7
are always below 1.00 ms, so that the adaption effort mostly quanti-
fies the effort for the selective re-enumerations. Figure 5.25 illustrates
some typical results for the Join Order Benchmark. We show the same
queries and in the same order as in the Figures 5.11, 5.13, and 5.17.
The queries are plotted along the x-axis and ordered by the end-to-

5.5 EXPERIMENTAL EVALUATION

)

convent. execution (EO) === adaption effort
heuristic execution (HE) C— initial optimization -
adaptive execution (AE)

[N N R N N B
OO OOLOLOLOLOLOLOLOLOLOLODL
N N N KB N O H~ LW N W B N N DN
SN ¥ AR VG NN

N
o N W O

40

30

10 |

Query Execution Time in [%]

|

21D
910
[%e)

Figure 5.25: Typical results for the adaption effort and initial optimization
time of our adaptive execution (AE) compared to conventional
execution (EO), and heuristic execution (HE) on queries of the
Join Order Benchmark.

end query execution time speedup of our adaptive execution AE. In
contrast to Figure 5.13, which shows the end-to-end query execution
times in logarithmic scale on the y-axis, Figure 5.25 shows the query
execution time percentages of initial optimization and adaption effort
on the y-axis. We compare our adaptive execution AE against heuris-
tic execution HE, and furthermore show the initial optimization time
of conventional execution EO. Since there is no logarithmic scale, the
bars of initial optimization time and adaption effort in Figure 5.25
can be directly compared. Note that the initial optimization times of
EO, HE and AE are identical in absolute numbers.

In the Join Order Benchmark, there are no queries where the adap-
tion effort of AE exceeds the initial optimization time. We observe
the peak adaption effort of AE in Q33: According to Figure 5.13, the
end-to-end query execution time of AE in Q33 is 195.43 ms. The 7 re-
optimizations, illustrated in Figure 5.17, result in an adaption effort
of 29.09 ms, i.e., 14,89%, compared to 29.27 ms, i.e., 15.00% for the
initial optimization time. Despite this considerable adaption effort,
the adaptive execution AE of Q33 results in a query execution time
speedup of +1.17x. According to Figure 5.13 the conventional exe-
cution EO takes 229.41 ms compared to 195.43 ms for the adaptive
execution AE. Like the initial optimization, the adaptive execution
AE is single threaded. Consequently, the adaptive execution AE does
not only improve the end-to-end query execution time, but also in-
creases the percentage of single threaded execution time, which has
an additional positive impact on the consumed CPU time.

Our experiments also reveal that the adaption effort mostly de-
pends on the size of the not-yet-executed query parts, and the query

143

144

MID-QUERY RE-OPTIMIZATION REVISITED

query graph topology. Comparing Q33 with Q24 in the Figures 5.17
and 5.25 reveals that the number of re-optimizations only has a minor
impact on the adaption effort of AE. While Q33 has 7 re-optimizations,
as illustrated in Figure 5.17, and the large adaption effort according
to Figure 5.25, Q24 has 4 re-optimizations and a marginal adaption
effort. Due to the design of our adaptive execution engine, there is no
execution time difference between a plan switch and no plan switch.
The overall adaption effort mostly results from the effort for selec-
tive re-enumerations. We observe that, although we perform multiple
selective re-enumerations during a query execution, the overall adap-
tion effort is in the same order of magnitude as an initial optimiza-
tion. The reason is that we only re-enumerate the not-yet-executed
query parts, and the enumeration effort can grow exponentially with
the query size, i.e.,, the number of referenced tables and intermedi-
ate results. Consequently, the smaller the query size, the smaller the
enumeration effort.

We also observe queries in the Join Order Benchmark, where the
adaptive execution AE introduces slight degradations of end-to-end
query execution time. In Q28 for instance, the adaptive execution AE
does 5 re-optimizations and 4 plan switches, according to Figure 5.17.
The plan switches reduce the pure plan execution time plus optimiza-
tion time to 266.43 ms. The conventional execution EO in contrast
needs 281.09 ms, as illustrated in Figure 5.13. Since the adaptive ex-
ecution AE introduces an effort of 39.79 ms, the end-to-end query
execution time of AE is 306.22 ms, which eventually is a degrada-
tion of —1.08x compared to EO. On average the adaptive execution
AE uses 1.27% of the query execution time for adaptions, and 1.91%
for initial optimizations. For the queries in Figure 5.25, the heuristic
execution HE has smaller adaption effort. On average, the heuristic
execution HE spends 0.36% of the query execution time for adap-
tions, and 1.80% for initial optimizations. According to Table 5.2, the
smaller adaption effort of the heuristic execution HE also results in a
smaller average improvement of end-to-end query execution time.

Figure 5.26 illustrates some typical results for the synthetic queries
with random topology. We show the same queries and in the same
order as in the Figures 5.12, 5.14, and 5.18. Figure 5.26 basically con-
firms the results of Figure 5.25. Compared to the Join Order Bench-
mark results, the peak optimization time and the adaption effort are
significantly smaller, because all synthetic queries join at most 10 ta-
bles. In the synthetic queries with random topology, there are 73 of
100 queries where the adaption effort exceeds the initial optimization
time. Nevertheless, we observe that there are no queries where the
adaption effort considerably exceeds the initial optimization time.

Figure 5.16c reveals that in 5 of the 100 queries with random topol-
ogy, the adaptive execution AE causes a degradation of end-to-end
query execution time. Only in Q49, the adaption effort is the root

5.5 EXPERIMENTAL EVALUATION

w

N
[
|

—
[
|

o

mmm convent. execution (EO)
- mmmm heuristic execution (HE)
=== adaptive execution (AE)

ool ol ol ol ol Ol Ol Ol Ol Ol Ol Ol Ol Ol O @)
N ® & EFE B3I XTI TFIFTITT G =
£ A Q © W HOWY BN &g E OO

C—=3 adaption effort
C— initial optimization -

Query Execution Time in [%]

92D

Figure 5.26: Typical results for the adaption effort and initial optimiza-
tion time of our adaptive execution (AE) compared to conven-
tional execution (EO), and heuristic execution (HE) on synthetic
benchmark queries with random topology.

cause for a degradation of end-to-end query execution time (—1.01x).
The adaption effort in the remaining 4 queries is below 1 ms. Accord-
ing to Figure 5.12, the degradation in Q64 results from increased true
cost of the adaptive plan AE compared to estimated optimal plan
EO. For Q81, Q47, and Qs5, Figure 5.12 shows improved true costs
of the adaptive plans AE compared to the estimated optimal plans
EO. Since the adaption effort in Q81, Q47, and Q55 is below 1 ms, we
conclude that the corresponding query execution time degradations
of at most —1.12x result from inaccuracies in the cost model.

We summarize the end-to-end query execution time percentages of
initial optimization and adaptions for all benchmarks in Table 5.3. We
denote the initial optimization time as t,, and summarize it by maxi-
mum, minimum, and average t, in percent. Similarly, we denote the
overall adaption time of a query as ty, and summarize it by maxi-
mum, minimum, and average t, in percent. Table 5.3 reveals that the
peak adaption effort for our adaptive execution AE is 14,89%. De-
spite the adaption time of 14,89%, the end-to-end query execution
time of the corresponding Join Order Benchmark query is improved
by 1.17x. According to Table 5.3, the average adaption time for our
adaptive execution AE is at most 1.27%. Furthermore, we observe that
the execution times of adaptions of AE are similar to the execution
time of the initial optimizations in all benchmarks. Table 5.3 further
reveals that the peak adaption percentage correlates with the peak
initial optimization percentage in all benchmarks. This confirms that
the adaption effort mostly depends on the query complexity, i.e., the
number of referenced tables and the query graph topology.

To conclude our findings, the adaptive execution AE spends only
a small amount of execution time for adaptions, which are in the

145

146 MID-QUERY RE-OPTIMIZATION REVISITED

maxt, mint, avgt, maxt, mint, avgtg

EO 21.34% 0.06% 1.30% - - -

m
© HE 2093% 006% 1.80% 551% 0.00% 0.36%
AE 19.64% 0.07% 191% 14.89% 0.00% 1.27%
= EO 031% 002% 0.17% - - -
%‘ HE 031% 0.05% 0.18% 0.03% 0.01% 0.02%
AE 033% 0.07% 022% 044% 0.07% 0.27%
» EO 055% 0.05% 0.16% - _ -
S HE 056% 005% 016% 004% 0.00% 001%
AE 057% 0.05% 021% 082% 0.06% 0.31%
_ EO 278% 003% 0.17% - _ -
& HE 272% 003% 0.17% 024% 0.00% 0.00%
AE 3.04% 0.03% 0.18% 153% 0.01% 0.08%
< EO 073% 001% 0.16% - - -
“g HE 071% 002% 0.17% 0.06% 0.00% 0.01%
E AE 081% 0.02% 021% 090% 0.01% 0.19%
g EO 150% 0.02% 0.17% - - -
T HE 214% 003% 022% 0.14% 0.00% 0.02%
~

AE 2.07% 0.04% 033% 1.77% 0.04% 0.28%

Table 5.3: Overview of adaption effort and initial optimization time of con-
ventional execution (EO), heuristic execution (HE), and adaptive
execution (AE).

same order of magnitude as the initial optimizations, and in multiple
queries even smaller. The reason is that the adaption effort mostly
depends on the overall re-enumeration effort, which becomes smaller
with each re-enumeration, because we re-optimize only the not-yet-
executed query parts. We observe that the heuristic execution HE has
even smaller adaption efforts, but also higher end-to-end query exe-
cution times, as illustrated in Table 5.2. The reason is that the heuristic
execution HE misses a majority of better plans, because of its conser-
vative re-optimization strategy. In our experiments, we only find a
marginal number of queries, where the effort of our adaptive execu-
tion strategy AE causes a degradation of query execution time, and
those degradations are negligible. Even if the end-to-end query execu-
tion time is not improved by our adaptive execution strategy AE, the
adaption effort is single threaded and therefore consumes less CPU
time compared to the multi-threaded pipeline execution.

5.6 RELATED WORK

5.6 RELATED WORK

A comprehensive overview of related work on Mid-Query Re-Opti-
mization, and robust and adaptive query processing can be found
in the surveys by Deshpande et al. [47] and Yin et al. [80]. To com-
pare the different robust and adaptive query processing approaches,
Yin et al. [80] describe a set of criteria, which are: (1) the addressed
estimation error source, e.g., non-uniform data distribution, missing
statistics, or data modifications, (2) the target query type, e.g., the cur-
rently running query, a future query, or a parametric query, (3) the tar-
get optimization decision, e.g., operator order, operator implementa-
tion, access method, or resource allocation, (4) the risk of performance
degradations, and (5) the engineering cost. The comparison by Yin et
al. [80] does not consider that some approaches that address para-
metric queries require considerable offline effort to analyze the plan
space before they can make a decision. Therefore, those approaches
are not applicable at query optimization time. We start discussing
related work on Mid-Query Re-Optimization, i.e., approaches to im-
prove the currently running query with runtime feedback.

With Dynamic Re-Optimization, Kabra and DeWitt [31] initially de-
scribed Mid-Query Re-Optimization. Dynamic Re-Optimization al-
ways re-optimizes in pipeline breakers on complete intermediate re-
sults, and never adds artificial pipeline breakers. This is identical to
our adaptive execution strategy. Kabra and DeWitt [31] present the
heuristically defined optimality ranges as re-optimization criterion,
which we discuss in Section 3.4. According to Kabra and Dewitt [31]
an optimality range can be defined as follows: Based on an uncer-
tainty value U and an estimate E, the lower bound of an optimal-
ity range for cardinality f* = E — (E 0.1 % U) and the upper bound
fT = E+ (E*0.2% U). Kabra and Dewitt [31] furthermore present a
set of rules to derive if the uncertainty value U of an estimate is low,
medium or high, but do not specify actual values for U. We illustrate
in Section 3.3.1 that heuristics cannot characterize optimality ranges
precisely. In the experiments in Section 5.5, we denote the approach
by Kabra and Dewitt [31] as heuristic execution HE. Section 5.5.3
reveals that the uncertainty value U is a weak point. To achieve com-
parable results to our adaptive query processor, the uncertainty value
U has to be adjusted for each workload. We do not rely on constants
at all, and re-optimize at an estimation error of one or more tuples,
which guarantees to not miss better plans.

Progressive Optimization by Markl et al. [39] is a valuable improve-
ment on Dynamic Re-Optimization with better optimality ranges and
additional re-optimization points. As we explain in Section 3.4, the
optimality ranges in Progressive Optimization are denoted as validity
ranges. Validity ranges are calculated through the comparison with
structurally equivalent plans, which have the same operator order

147

148

MID-QUERY RE-OPTIMIZATION REVISITED

but different operator implementations and different build and probe
sides of hash join operators. Consequently, only a subset of the nec-
essary plan alternatives is considered, and the validity ranges are not
precise. Nevertheless, a re-optimization triggered through a validity
range is always correct. In case a true cardinality is outside of the
validity range, there is a better plan. In contrast, it cannot be guar-
anteed that there is no better plan when the cardinality is inside of
the validity range. Therefore, switches to better plan alternatives can
be missed. In contrast to Progressive Optimization, our work does
not miss better plans, because it re-optimizes at cardinality estima-
tion errors of one or more tuples. Markl et al. [39] furthermore de-
scribe additional re-optimization points, denoted as checkpoints, and
where they can be placed in a query execution plan. The materializa-
tion checkpoint is an artificial pipeline breaker, which increases the re-
optimization opportunities but at the same time also the risk of query
execution time degradations. Eager checkpoints interrupt the pipeline
if an intermediate result exceeds the upper bound of a validity range,
and therefore cause incomplete intermediate results. The incomplete
intermediate results cannot be re-used, and are wasted. In addition,
re-optimizing on incomplete intermediate results, i.e., with wrong car-
dinalities, can cause a wrong plan choice.

Proactive Re-Optimization by Babu et al. [41] is built on Dynamic Re-
Optimization [31]. It uses the same heuristics to define an optimality
range around a cardinality estimate, and triggers a re-optimization
when a true cardinality is outside the heuristic optimality range. With-
in the heuristically defined optimality range, Proactive Re-Optimiza-
tion tries to identify either a single optimal plan, a switchable plan,
or a robust plan. Therefore, we discuss Proactive Re-Optimization
also in Section 4.7. Proactive Re-Optimization searches the optimal
plan for the estimated cardinality and the cardinality at the lower
and upper bound. In case all three plans are identical, there is a sin-
gle optimal plan. If one of the three plans has estimated cost, which
are at most a certain threshold larger than the corresponding op-
timal plan at that cardinality, Proactive Re-Optimization identifies
a robust plan. In case there is neither a single optimal plan, nor
a robust plan, Proactive Re-Optimization tries to identify a switch-
able plan, which requires that all three plan alternatives are struc-
turally equivalent, as in Progressive Optimization [39]. When nei-
ther a single optimal, nor robust, nor switchable plan can be iden-
tified, Proactive Re-Optimization choses the optimal plan at the esti-
mated cardinality, and assumes that it is optimal within the heuristi-
cally defined optimality range, although it could not identify a single
optimal plan. Proactive Re-Optimization is an improvement on Dy-
namic Re-Optimization, but it is still based on heuristically defined
optimality ranges. Furthermore, it considers at most, two additional
plan alternatives per re-optimization point and heuristic optimality

5.6 RELATED WORK

range, although the overall plan space can grow exponentially with
the number of referenced tables. At query execution time, Proactive
Re-Optimization monitors the cardinalities of incomplete intermedi-
ate results to make decisions on plan switches and re-optimizations,
which can lead to wrong optimization choices.

Incremental Execution by Neumann and Galindo-Legaria [69] is an
interesting orthogonal improvement on Mid-Query Re-Optimization.
Like the majority of Mid-Query Re-Optimization approaches, Incre-
mental Execution starts with the estimated optimal plan. The core of
Incremental Execution is an algorithm to identify sub-plans, whose
intermediate results have a strong impact on the overall plan choice.
Those crucial sub-plans are executed first. After each execution, the
optimizer is invoked again with the true cardinalities of the crucial
sub-plans. To be applicable in practice, the core algorithm of incre-
mental execution only considers linear join trees, and no bushy join
trees. In contrast to our work, Incremental Execution adds artificial
pipeline breakers as re-optimization points, which can considerably
increase the query execution time. As we do, Incremental Execution
re-optimizes only on complete intermediate results. We discuss in
Section 7.1.3 how the work by Neumann and Galindo-Legaria [69]
can improve the pipeline selection in our adaptive query processor.

Incremental Re-Optimization by Liu et al. [84] is another orthogo-
nal improvement on Mid-Query Re-Optimization. Incremental Re-
Optimization originates from stream databases, and has the goal to
speedup re-optimizations. The transformation based query optimizer
of Incremental Re-Optimization is implemented in datalog [52], and
has a state, which is consecutively updated. Because of the implemen-
tation in datalog, each cardinality update is propagated to all previ-
ously enumerated plans, so that their costs are updated, and a new
optimal plan may be identified. Liu et al. [84] furthermore describe
how previously pruned plans can be re-enumerated, to guarantee a
correct re-optimization result. Compared to Liu et al. [84], our join
optimizer and selective re-enumeration algorithm do dynamic pro-
gramming optimization and are implemented in C++. We also keep
the optimizer state, i.e., the plan table of the initial plan search. The
plan table of our query optimizer is a conventional data structure
allocated in memory. We can arbitrarily modify the plan table, e.g.,
to reference intermediate results as optimal plan of a plan class, or
set new optimal plans during a selective re-enumeration. Like Liu et
al. [84], we also re-enumerate all necessary plan alternatives, includ-
ing plans that were previously pruned. In contrast to Liu et al. [84],
we can describe the plan space of our selective re-enumeration.

There is a large variety of other Adaptive Query Processing ap-
proaches. Eddies by Avnur and Hellerstein [32] are tuple routing oper-
ators, which can, for instance, be used to improve the order of selec-
tion operators. An Eddie routes single tuples to different operators. It

149

150

MID-QUERY RE-OPTIMIZATION REVISITED

monitors the selectivity of the single operators, to process operators
with the highest selectivity first. Consequently, the different tuples in
the final result are calculated through different query execution plans.
Eddies require bookkeeping for each tuple, to decide which operators
are already executed. This is unsuitable for the highly optimized par-
allel pipelines we explain in Section 2.5.2. Furthermore, Eddies make
optimization choices based on incomplete intermediate results. Li et
al. [49] extend the idea of Eddies for join queries and pipelined execu-
tion in batches. They only consider linear join trees, and change the
probe order of batches, depending on the join selectivity.

Parametric Query Optimization [37, 38, 55], identifies query execution
plan alternatives before the execution starts, so that the plan choice
can be made at query execution time based on true statistics without
invoking the optimizer. Parametric Query Optimization requires ei-
ther a comprehensive and expensive analysis of the plan space [37,
38], or multiple query executions and the caching of the executed
query execution plans [55]. Related to Parametric Query Optimiza-
tion are Plan Diagrams [45, 53] and Plan Bouquets [71], which re-
quire considerable pre-calculation effort. True cardinalities, derived
at query execution time can also improve the quality of future query
execution plans. The Learning Optimizer (LEO) by Stillger et al. [36]
employs a monitoring component to derive statistics such as true
cardinalities, and predicate selectivities from executed queries. LEO
stores the gathered information in a feedback cache. The information
from the feedback cache, together with the database catalog can im-
prove cardinality estimates and therefore the plan quality.

5.7 CONCLUSION

In this chapter, we present an adaptive query processor to compen-
sate cardinality estimation errors and sub-optimal query execution
plans with true cardinalities retrieved from materialized intermedi-
ate results. Our adaptive query processor combines the findings of
the related work on Mid-Query Re-Optimization and our findings
of the work on optimality ranges in Chapter 3. To keep the risks for
query execution time degradations low, our adaptive query processor
re-optimizes only in existing pipeline breakers that contain complete
intermediate results. Our adaptive query processor furthermore re-
optimizes only the query parts, which have not yet been executed,
because this guarantees progress, and steadily reduces the size of the
optimization problem. Due to the tight integration of query execu-
tion engine and query optimizer, our adaptive query processor can
speedup re-optimizations and query execution plan switches. The
query execution engine can directly inject intermediate results with
true cardinalities into the plan table of the query optimizer. Further-
more, our selective re-enumeration algorithm enumerates only those

5.7 CONCLUSION

query execution plans, which are directly affected by cardinality up-
dates. Through the native support of adaptivity, the actual switch
from one query execution plan to another creates no overheads in the
query execution engine.

Our adaptive query processor has a re-optimization criterion, which
re-optimizes at cardinality estimation errors of one or more tuple.
Nevertheless, our experimental evaluation reveals that the overall ex-
ecution time for re-optimizations and adaptions is, in most queries,
similar or even smaller compared to the initial optimization time. The
main reason is that we only re-optimize the not-yet-executed query
parts, which consecutively decreases the re-enumeration effort. Our
experiments also reveal that the majority of re-optimizations iden-
tify a better query execution plan. Although competitive approaches
have a more conservative re-optimization strategy and do less re-
optimizations, we demonstrate that they cannot find better query ex-
ecution plans with each re-optimization. Our experiments reveal that
more re-optimizations, and therefore more true cardinalities cause
better end-to-end query execution times. In our experiments, our
adaptive query processor improves the query execution times on a
real-world database by up to 3.88x and on average by 1.47x. For
the synthetic benchmark, our adaptive query processor improves the
query execution times by up to 5.19x and on average by 1.87x. We
also observe degradations of end-to-end query execution time, but
they are smaller and less frequent compared to the improvements.

All in all, our work demonstrates that using true cardinalities to
efficiently improve query execution plans with Mid-Query Re-Opti-
mization has a considerable impact on the query processor architec-
ture. Nevertheless, our experiments reveal that true cardinalities are
superior to estimated cardinalities. True cardinalities can improve the
query execution plan of the currently running query, which can result
in significant improvements of end-to-end query execution time.

151

IMPLICATIONS ON QUERY PROCESSING

Our work addresses unsolved problems and limitations of existing
work to detect and compensate sub-optimal query execution plans,
caused by cardinality estimation errors. In this chapter, we discuss the
boundaries between our different contributions and the implications
on query processing.

6.1 DETECTING SUB-OPTIMAL QUERY EXECUTION PLANS

While it is trivial to detect cardinality estimation errors by compar-
ing the estimated cardinality with the true cardinality observed at
query execution time, it is not trivial to decide if the cardinality es-
timation error makes another plan optimal. To address this problem,
we present in Chapter 3 an algorithm to calculate precise optimality
ranges for the cardinality of intermediate results. A true cardinality
that is outside of the corresponding optimality range indicates that
the optimizer can find another, cheaper plan.

Our work on Mid-Query Re-Optimization in Chapter 5 reveals
that optimality range calculation has similarities to our selective re-
enumeration algorithm. Both consider a similar set of plans, namely
those plans that directly or indirectly reference a certain sub-plan.
While optimality range calculation assumes that the cardinality of
the referenced sub-plan is variable, selective re-enumeration has a
true cardinality value for the referenced sub-plan. According to the
experimental results in Figure 5.10, optimality range calculation enu-
merates at least the number of plans that selective re-enumeration
enumerates. Therefore, we conclude that the number of enumerated
plans by selective re-enumeration can be a lower bound for the num-
ber of enumerated plans by optimality range calculation. We further-
more make the following conclusions from the experimental results
in Figure 5.10: When the decision, whether a better query execution
plan for a certain cardinality can be found, has to be made once only,
such as in mid-query re-optimization, the selective re-enumeration is
superior to the calculation of optimality ranges. However, the com-
plexity of optimality ranges can amortize when the decision has to be
made multiple times, such as in parametric queries or plan caching.

6.2 COMPENSATING SUB-OPTIMAL QUERY EXECUTION PLANS

A complementary problem to the detection of sub-optimal query ex-
ecution plans is the compensation of sub-optimal query execution

153

154

IMPLICATIONS ON QUERY PROCESSING

plans, caused by cardinality estimation errors. Although cardinality
estimation errors are evident, conventional query optimizers still se-
lect the estimated cheapest query execution plan based on estimated
cardinalities. Therefore, we present in Chapter 4 metrics to quantify
the robustness of query execution plans with respect to cardinality
estimation errors, and a new robust plan selection strategy. In case of
cardinality estimation errors, robust plans can process a query faster
than the estimated cheapest plans. Another shortcoming of conven-
tional query optimizers is that they make decisions solely based on
estimated cardinalities. In Chapter 5, we present our improvements
on Mid-Query Re-Optimization. We demonstrate an adaptive query
processor that steadily improves the estimated cheapest plan with
true cardinalities, which are collected in the query execution engine.
Both, our robust plan selection strategy and our adaptive query
processor improve the currently running query. Like our calculation
algorithm for optimality ranges, our robust plan selection strategy
and the adaptive query processor support arbitrary relational opera-
tors and join trees, including bushy trees. Since both approaches share
the same goal of improving query execution plans, we compare them
with respect to their engineering cost, information source, risk of per-
formance degradation, and end-to-end query execution time.

ENGINEERING cOsT To integrate our robust plan selection into an
existing query processor, only the query optimizer has to be modified.
The enumeration algorithm has to be extended to enumerate the k-
cheapest plans, so that the robust plan candidates can be derived.
Furthermore, at least one of our three robustness metrics has to be
implemented. In addition, there are some minor changes, such as
selecting the estimated most robust query execution plan instead of
the estimated cheapest query execution plan from the robust plan
candidates. The query execution engine is not modified.

Our adaptive query processor has more significant differences com-
pared to a conventional query processor. The execution engine has to
orchestrate the execution of pipelines and the invocations of the query
optimizer. Furthermore, the execution engine has to collect true cardi-
nalities, and be aware of constantly changing query execution plans.
Our query optimizer is extended to accept intermediate result injec-
tions into its plan table, and perform selective re-enumerations. To
conclude, the adaptive query processor requires considerably higher
engineering cost compared to our robust plan selection strategy.

INFORMATION SOURCE The robust plan selection is performed
at query optimization time and therefore solely based on cardinal-
ity estimates. Our adaptive query processor starts with the estimated
optimal query execution plan, based on estimated cardinalities, and
steadily improves the plan choice with true cardinalities. Both ap-

6.2 COMPENSATING SUB-OPTIMAL QUERY EXECUTION PLANS

proaches require that some cardinality estimates are close to their true
values, and not entirely arbitrary. Our experiments in Section 5.5 re-
veal that more runtime feedback, i.e., more true cardinalities, achieve
stronger improvements of true cost and end-to-end query execution
time. We compare the end-to-end query execution times of our robust
plan selection and our adaptive query processor below, and show that
our adaptive query processor achieves more and stronger improve-
ments compared to robust plan selection.

RISK OF PERFORMANCE DEGRADATION Our robust plan selec-
tion identifies a query execution plan from the robust plan candidates
that is less sensitive to cardinality estimation errors. The robust plan
candidates are based on the k-cheapest query execution plans. Fur-
thermore, our near-optimal plans requirement guarantees that each
robust plan candidate has at most A-times larger estimated cost, com-
pared to the estimated cheapest plan. Nevertheless, in case of correct
cardinality estimates, a robust plan can be slower compared to an es-
timated cheapest plan. Another risk of end-to-end query execution
time degradations can be the procedure to select a robust plan. In
our experiments, selecting a robust plan consumes only a small sin-
gle digit percentage of end-to-end query execution time. Neverthe-
less, the procedure to select a robust plan can introduce an additional
overhead compared to conventional plan selection.

The adaptive query processor can also introduce performance de-
gradations. In case of cardinality estimation errors, we cannot guaran-
tee that the re-optimizations find better query execution plans. In ad-
dition, we cannot guarantee that plan switches considerably improve
the plan quality. Consequently, our adaptive query processor can in-
troduce execution time overheads because of the re-optimization ef-
fort. Nevertheless, our experiments in Section 5.5 reveal that the over-
all re-optimization effort is similar to an initial optimization. We fur-
thermore observe that there is a small number of queries only, where
our adaptive execution strategy creates performance degradations.
The majority of those performance degradations are rather caused
by cost model inaccuracies than by the effort for re-optimizations.

Similar to the execution time consumption of conventional query
optimization, the additional effort for robust plan selection and adap-
tive execution may not amortize in short running queries. Robust plan
selection and adaptive execution can both suffer from cost model in-
accuracies, so that a theoretically cheaper or more robust plan does
not show the expected behavior in practice.

END-TO-END QUERY EXECUTION TIME Since we choose exactly
the same benchmarks and system for the experimental evaluation of
robust plan selection and adaptive execution, we can directly com-
pare the end-to-end execution times. To better compare the end-to-

155

156

IMPLICATIONS ON QUERY PROCESSING

end query execution times of robust plan selection and adaptive exe-
cution, we combine the Tables 4.1 and 5.2. We compare the results for
the Join Order Benchmark, and the synthetic benchmark queries with
chain and cycle topology in Table 6.1. Table 6.2 compares the results
for the synthetic benchmark queries with star, snowflake, and ran-
dom topology. We summarize the results of all benchmarks through
the accumulated end-to-end query execution time, the best speedup,
and the worst regression over all queries in the corresponding bench-
mark. We furthermore reveal the average of speedups and regressions.
Speedups and regressions are relative to end-to-end query execution
times of the estimated optimal plans EO. For each benchmark, we
show the estimated optimal plans EO as well as the fastest plans
FA, which we identify through the execution of the 500 estimated
cheapest plans for each query. The Tables 6.1 and 6.2 also show the
robust plan selection using either the cardinality-slope metric FS, the
selectivity-slope metric SS, or the cardinality-integral metric FI. For
Mid-Query Re-Optimization, we show the heuristic execution strat-
egy HE, and our adaptive execution strategy AE.

The Tables 6.1 and 6.2 reveal that our adaptive execution strategy
AE outperforms the robust plan selection strategies FS, SS, and FI
in all benchmarks with higher peak speedups and higher average
speedups. For the queries of the Join Order Benchmark, our adaptive
execution strategy AE achieves a peak speedup of 3.88%, and an av-
erage speedup of 1.47x, while the best robust plan selection using
the cardinality-integral metric FI achieves a peak speedup of 1.83x,
and on average a degradation of —1.03x. For the queries of the syn-
thetic benchmarks, our adaptive execution strategy AE achieves its
peak speedup of 5.19x and average speedup of 1.87x in the ran-
dom query benchmark. The robust plan selection achieves its peak
speedup of 3.49x with the cardinality-integral metric FI in the chain
query benchmark, while the adaptive execution strategy AE achieves
a peak speedup of 3.85x in the same benchmark. The Tables 6.1
and 6.2 also reveal that the adaptive execution strategy AE has less
severe degradations than the robust plan selection.

Although the adaptive execution strategy AE performs better than
the robust plan selection in the majority of queries, there are a few
queries, where the robust plan selection has advantages. Comparing
the results of JOB Q2 in Figure 4.10 with Figure 5.15 reveals that all
robust plan selection strategies achieve a speedup of approximately
1.47 x, while the adaptive execution strategy AE achieves a speedup
of 1.15x only. Another example is Q7, where the adaptive execution
strategy AE achieves no speedup. The robust plan selection in con-
trast achieves a speedup of 1.29x with the cardinality-slope metric
FS, 1.83x with the selectivity-slope metric SS, and 1.82x with the
cardinality-integral metric FI. The root cause for the dominance of
robust plan selection in these queries is, that the adaptive execution

6.2 COMPENSATING SUB-OPTIMAL QUERY EXECUTION PLANS 157

2 time best speedup worst regression average

EO 13892 ms - - -
FS 17696 ms +1.47 % —298x —1.27x
m SS 14581 ms +1.83x% —1.52x —1.05x
Q FI 14243 ms +1.83x% —152x —1.03x
HE 10068 ms +3.96x —1.03x +1.38x%
AE 9494 ms +3.88 % —1.12x +1.47x
FA 12483 ms +1.98x - +1.12x
EO 18798 ms - - -
FS 16091 ms +3.31x —1.26x +1.17x
.% SS 17061 ms +1.79x —1.36x +1.10x
6 FI 16865 ms +3.49% —1.13x +1.11x
HE 17666 ms +2.70x% —1.01x +1.06x
AE 15539 ms +3.85x% —1.11x +1.21x
FA 14562 ms +4.23 % - +1.29%
EO 41084 ms - - -
FS 34587 ms +2.43 % —1.2Tx +1.19x%
% SS 32279 ms +2.43% —1.27x +1.27x%
& FI 33193 ms 12.43% “1.25x +1.24x
HE 40373 ms +1.91x% —1.01x +1.01x
AE 31100 ms +2.64x —1.59%x +1.32x
FA 25539 ms +2.94 % - +1.61x

Table 6.1: Overview of experiments on the end-to-end query execution times
on the Join Order Benchmark, and the chain and cycle benchmark,
comparing the robust plans according to FS, SS, and FI, against the
heuristic and adaptive plans HE and AE, the estimated optimal
plans EO, and the fastest plans FA.

starts with the estimated optimal plan. In the estimated optimal plan,
the first operators can already cause severe cardinality estimation er-
rors, which cannot be compensated by future plan switches. The ro-
bustness metrics can detect such situations and assign a bad robust-
ness value to the corresponding plans. We discuss in Section 7.1.3 that
a combination of adaptive execution and robust plan selection could
be promising. The robustness values could be considered in the initial
plan search and all re-optimizations.

158 IMPLICATIONS ON QUERY PROCESSING

2 time best speedup worst regression average

EO 178520 ms - - -

FS 182693 ms +1.14% —149% —1.02x%x
£ S5 177251 ms +1.23x% —1.48x +1.01x
S FI 188334 ms +1.21x —148% —1.05x

HE 177231 ms +1.16x —1.08x +1.01x

AE 174444 ms +2.25% —1.18x +1.02x

FA 161987 ms +1.47% — +1.10x

EO 53793 ms - - -
o FS 54437 ms +1.53x —2.07x —1.01x
v
& SS 51579 ms +1.91x —136x +1.04x
§ FI 53327 ms +1.78x _138x +1.0Tx
wn

HE 49442 ms +3.39x —1.01x +1.08x

AE 43307 ms +3.04x —1.11x +1.24x%

FA 44843 ms +2.11x - +1.20x

EO 82001 ms - — -

FS 75644 ms +2.14 % —1.60x +1.08x
§ SS 74951 ms +2.27% —1.22x +1.09x
5 FI 78922 ms +2.04% —1.33x +1.04x

HE 63393 ms +2.67% —1.01x +1.29x%x

AE 43739 ms +5.19% —139% +1.87x

FA 56273 ms +4.07 % - +146x

Table 6.2: Overview of experiments on the end-to-end query execution times
on the star, snowflake and random benchmark, comparing the
robust plans according to FS, SS, and FI, against the heuristic and
adaptive plans HE and AE, the estimated optimal plans EO, and
the fastest plans FA.

From this comparison we conclude that adaptive execution is su-
perior to robust plan selection. The adaptive execution achieves more
and stronger speedups, as well as less severe degradations compared
to the robust plan selection. One root cause for the dominance of
adaptive execution is the utilization of true cardinalities, while the
robust plan selection is solely based on estimated cardinalities. Fur-
thermore, the adaptive execution tries to steadily improve the true
plan cost, and hence also the query execution time of the initially es-

6.2 COMPENSATING SUB-OPTIMAL QUERY EXECUTION PLANS

timated cheapest plan. In contrast, the robust plan selection tries to
identify a query execution plan, whose cost is less sensitive to cardi-
nality estimation errors. Consequently, the robust plan can be slower
at good cardinality estimates than the estimated optimal plan. Never-
theless, our experiments illustrate that robust plan selection can im-
prove plan robustness and end-to-end query execution time in case of
cardinality estimation errors. In case only the optimizer can be mod-
ified, we recommend our robust plan selection strategy using one of
the three robustness metrics of Chapter 4. If high engineering costs
are acceptable, we recommend the architecture and execution strat-
egy that we showcase in our adaptive query processor in Chapter 5.

159

FUTURE DIRECTIONS AND CONCLUSION

The contributions we make in this work address existing and future
challenges of query processing. Our approaches for the detection and
compensation of sub-optimal query execution plans, caused by car-
dinality estimation errors, creates a new momentum for robust and
adaptive query processing. In this chapter, we discuss the future di-
rections and the potential impact of our work.

7.1 FUTURE DIRECTIONS

Our formal and conceptual studies as well as the detailed experimen-
tal evaluations build a solid foundation for the future work on op-
timality ranges, robustness of query execution plans, and adaptive
query execution. For each of our contributions we see some promis-
ing future directions, which we discuss next.

7.1.1 Optimality Ranges

To calculate an optimality range for one variable cardinality, it is the-
oretically sufficient to consider only two alternative query execution
plans, i.e., the ones that intersect with the optimal query execution
plan at the lower bound and at the upper bound. To identify those
two plans, we have to enumerate a considerably larger amount of
query execution plans than just two. Enumerating a smaller number
of plans would increase the applicability of optimality ranges, e.g., as
re-optimization criterion for ad-hoc queries. From our point of view,
the most promising approach is to create further pruning strategies.

Some applications do not need precise optimality ranges. Another
but weaker achievement would be the calculation of almost precise
optimality ranges. Ideally, a considerably smaller number of query
execution plans has to be enumerated to derive the almost precise
optimality ranges. In an ideal solution, there should be furthermore
a configuration parameter for the precision of the almost precise opti-
mality ranges. Further variants of optimality ranges could state that a
plan is optimal in a smaller range than the actual optimality range, so
that it is guaranteed that there is no better plan in the smaller range.
Compared to precise optimality ranges, the plan could still be opti-
mal beyond the smaller range. The opposite of smaller ranges is also
promising. Larger ranges than the actual optimality range can state
that there is for sure a better plan beyond the larger range, although
there might be even better plans within the larger range.

161

162

FUTURE DIRECTIONS AND CONCLUSION

In Chapter 3 we describe optimality range calculation as post opti-
mization step. Another promising idea is to derive optimality ranges
during the initial plan search. Furthermore, future work can extended
optimality range calculation for multi-dimensional Parametric Cost
Functions, and non-linear Parametric Cost Functions.

7.1.2 Robustness Metrics and Robust Plan Selection

There is another approach for robust plan selection, which could di-
rectly utilize our calculation algorithm for optimality ranges. During
the initial plan enumeration, optimality ranges could be derived for
each sub-plan. To identify a robust plan, the plan table of the query
optimizer does not necessarily contain the estimated cheapest plan
for each plan class, but the plan with the largest optimality range.
Combining the sub-plans with the largest optimality ranges may re-
sult in an overall more robust plan. Ideally, such a robust plan can
give strong guarantees for robustness.

To keep the plan robustness analysis cheap, we consider only one
intermediate result cardinality at a time, i.e., create one-dimensional
Parametric Cost Functions. In the next step, we combine the informa-
tion we derive from all single intermediate result cardinalities. The
plan robustness analysis is actually a multi-dimensional problem. To
consider the impact of different cardinality estimation errors on each
other, it would be furthermore interesting to create multi-dimensional
Parametric Cost Functions, and analyze their slope behavior.

It is furthermore promising to add additional features to our ro-
bustness metrics, to consider further risks of rapid cost changes. A
different selection algorithm for the robust plan candidates may also
result in even more robust query execution plans. Our approach for
robustness metrics can be also extended for cost function parame-
ters other than cardinality, to consider the robustness with respect
to, e.g., resource consumption or distribution. Furthermore, an im-
proved support for arbitrary shapes of Parametric Cost Functions in
the cardinality-slope and selectivity-slope metric is useful.

7.1.3 Mid-Query Re-Optimization

In our adaptive query processor, we collect only the true cardinali-
ties of intermediate results. To further improve the end-to-end query
execution time of adaptive plans, it may amortize to collect more run-
time statistics, such as true distinct count, true maximum, or true
minimum of some interesting columns. The additional effort could
be compensated through further improvements of the plan quality.
It may be sufficient to just estimate those statistics at runtime, e.g.,
through sketches for distinct count [64], because the true value might
not be necessary. Further statistics can also help to reduce the num-

7.1 FUTURE DIRECTIONS

ber of true cost degradations we observe in Section 5.5.1, which are
caused by cardinality estimation errors during the re-optimizations.

Although our experiments in Section 5.5.4 reveal that the overall
effort for plan adaptions is similar to the effort for the initial plan
search, it is an improvement to further reduce the adaption effort.
The experiments in Section 5.5.3 reveal that there are re-optimizations,
which do not find a better plan. Avoiding those re-optimization, may-
be through cheaper optimality ranges, would be an improvement.

The most performance degradations we observe in our experiments
in Section 5.5.2 are a consequence of cost model inaccuracies. In our
experiments, the root causes for cost model inaccuracies are mostly
skewed input columns of the hash join build sides. A skewed input
column can increase the cost of a hash join build side, compared
to a similar input column with uniform value distribution. Since we
use the Cyym [93] cost function, which does not cover skew on the
input column of the hash join build side, there are adaptive plans that
should perform better than the estimated optimal plan according to
the true cost improvement, but perform worse with respect to query
execution time. One could argue that a better cost function, which
considers additional parameters could prevent such effects. We argue
that also the operators have to become more predictable for the query
optimizer. Ideally, the performance of operators should only depend
on some basic parameters such as input cardinality.

We explain in Section 5.4.1 that our adaptive query processor exe-
cutes only one pipeline of a query execution plan at a time. Theoret-
ically multiple pipelines could be executed at a time. Executing only
one pipeline at a time creates space for pipeline selection strategies.
Corresponding to the work of Neumann and Galindo-Legaria [69],
it can be promising to choose a pipeline, whose breaker contains an
intermediate result with a strong impact on the plan choice.

Additional future direction may combine adaptive execution with
other query processing approaches. Our experimental comparison of
robust plan selection and adaptive execution in Section 6.2 reveals
that robust plans can avoid early estimation errors, which cannot be
compensated through plan switches. Instead of starting with the esti-
mated cheapest query execution plan, our adaptive query processor
could also start with a more robust query execution plan. During the
re-optimizations, the adaptive query processor could consider the ro-
bustness values of the plan alternatives again. Adaptive execution
could be also combined with plan caching. Instead of caching the en-
tire plan, just the instantiated or compiled pipelines can be cached.
Our adaptive execution strategy could be also used for large join
queries [99]. A large join query could be re-optimized after a few
operators to improve the not-yet-executed query parts. Since only the
not-yet-executed query parts are considered, the optimization effort
decreases with each re-optimization.

163

164

FUTURE DIRECTIONS AND CONCLUSION

7.2 CONCLUSION

In this work, we make contributions in the field of Robust and Adap-
tive Query Processing. All our contributions are related to the detec-
tion and compensation of sub-optimal query execution plans, caused
by cardinality estimation errors. We argue in Chapter 1 that unsolved
problems and limitations of existing work to detect and compensate
sub-optimal plans should rather be addressed, instead of trying to
further improve cardinality estimation. We demonstrate that existing
heuristics cannot characterize the intermediate result cardinalities, for
which query execution plans are optimal, and present an algorithm
to calculate precise optimality ranges. Further valuable and generic
building blocks for Robust and Adaptive Query Processing are our
metrics to quantify the plan robustness. While the optimality ranges
improve the detection of sub-optimal query execution plans, our ro-
bustness metrics quantify the robustness of query execution plans
with respect to cardinality estimation errors. The corresponding ro-
bust plan selection strategy can improve the end-to-end query execu-
tion time of queries with cardinality estimation errors by up to 3.49x.

Our adaptive query processor combines the lessons learned from
existing work on Mid-Query Re-Optimization, and showcases that
runtime feedback considerably improves the query performance, in-
troducing only a negligible risk of performance degradations. Our
experiments reveal that true cardinalities are superior to estimated
cardinalities, and that the overall effort for plan adaptions is similar
to an initial optimization. In the end, our adaptive query processor
can improve the end-to-end query execution times by up to 5.19x.

Our work confirms the observation of Lohman [94] that “robust and
adaptable query plans are superior to optimal ones”. Like Leis et al. [78,
93] demonstrate that simple cost functions are sufficient for query
optimization, we demonstrate that basic statistics are sufficient for
cardinality estimation, when cardinality estimation errors are com-
pensated with true cardinalities collected at query execution time.

Since our work improves the query performance, it has an impact
on existing database systems, which have to process an ever-growing
amount of data, as well as queries with increasing complexity. The
impact of our work becomes more prominent, the more database sys-
tems support Hybrid Transactional/ Analytical Processing. While the
availability and freshness of statistics is limited in Hybrid Transac-
tional/Analytical Processing, the requirements on query execution
plan quality and performance are similar to conventional database
systems. In this work, we presents new promising approaches to im-
prove the processing of complex queries in setups where only basic
statistics exist. Our contributions are not limited to Hybrid Transac-
tional/Analytical Processing, and can also speedup queries in con-
ventional analytical database systems.

BIBLIOGRAPHY

[1]

[10]

[11]

E. F. Codd. “A Relational Model of Data for Large Shared Data
Banks.” In: Communications of the ACM 13.6 (June 1970).

Donald D. Chamberlin and Raymond F. Boyce. “SEQUEL: A
Structured English Query Language.” In: Proceedings of the 1974
ACM SIGFIDET (Now SIGMOD) Workshop on Data Description,
Access and Control. SIGFIDET "74. ACM, 1974.

Raymond A. Lorie. “XRM - An Extended (N-ary) Relational
Memory.” In: IBM Research Report G320-2096 (1974).

P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R.
A. Lorie, and T. G. Price. “Access Path Selection in a Rela-
tional Database Management System.” In: Proceedings of the
1979 ACM SIGMOD International Conference on Management of
Data. SIGMOD ’79. Boston, Massachusetts, USA: ACM, 1979.

Philip A. Bernstein and Nathan Goodman. “Multiversion Con-
currency Control — Theory and Algorithms.” In: ACM Transac-
tions on Database Systems 8.4 (Dec. 1983).

Theo Haerder and Andreas Reuter. “Principles of Transaction-
oriented Database Recovery.” In: ACM Computing Surveys 15.4
(Dec. 1983).

George P. Copeland and Setrag N. Khoshafian. “A Decomposi-
tion Storage Model.” In: Proceedings of the 1985 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’85.
ACM, 1985.

R. W Hamming. Numerical Methods for Scientists and Engineers.
Dover Publications, Inc., 1986.

Lothar F. Mackert and Guy M. Lohman. “R* Optimizer Vali-
dation and Performance Evaluation for Distributed Queries.”
In: Proceedings of the 12th International Conference on Very Large
Data Bases. VLDB "86. Morgan Kaufmann Publishers Inc., 1986.

Lothar F. Mackert and Guy M. Lohman. “R* Optimizer Valida-
tion and Performance Evaluation for Local Queries.” In: Pro-
ceedings of the 1986 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’86. ACM, 1986.

Jim Gray and Franco Putzolu. “The 5 Minute Rule for Trading
Memory for Disc Accesses and the 10 Byte Rule for Trading
Memory for CPU Time.” In: Proceedings of the 1987 ACM SIG-
MOD International Conference on Management of Data. SIGMOD
"'87. ACM, 1987.

166

BIBLIOGRAPHY

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

David E. Goldberg. Genetic Algorithms in Search, Optimization
and Machine Learning. 1st. Addison-Wesley Longman Publish-
ing Co., Inc., 1989.

Y. E. Ioannidis and Younkyung Kang. “Randomized Algori-
thms for Optimizing Large Join Queries.” In: Proceedings of the
1990 ACM SIGMOD International Conference on Management of
Data. SIGMOD “go. ACM, 1990.

Kiyoshi Ono and Guy M. Lohman. “Measuring the Complex-
ity of Join Enumeration in Query Optimization.” In: Proceed-
ings of the 16th International Conference on Very Large Data Bases.
VLDB “90. Morgan Kaufmann Publishers Inc., 1990.

Kristin Bennett, Michael C. Ferris, and Yannis E. Ioannidis. “A
Genetic Algorithm for Database Query Optimization.” In: In
Proceedings of the fourth International Conference on Genetic Algo-
rithms. Morgan Kaufmann Publishers, 1991.

Yannis E. Ioannidis and Stavros Christodoulakis. “On the Prop-
agation of Errors in the Size of Join Results.” In: Proceedings of
the 1991 ACM SIGMOD International Conference on Management
of Data. SIGMOD "91. ACM, 1991.

Peter Gassner, Guy M. Lohman, K. Bernhard Schiefer, and
Yun Wang. “Query Optimization in the IBM DB2 Family.” In:
IEEE Data Engineering Bulletin 16 (1993).

Goetz Graefe. “Query Evaluation Techniques for Large Data-
bases.” In: ACM Computing Surveys 25.2 (June 1993).

Goetz Graefe and William J. McKenna. “The Volcano Opti-
mizer Generator: Extensibility and Efficient Search.” In: Pro-
ceedings of the Ninth International Conference on Data Engineering.
IEEE Computer Society, 1993.

Allen Van Gelder. “Multiple Join Size Estimation by Virtual
Domains (Extended Abstract).” In: Proceedings of the Twelfth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Da-
tabase Systems. PODS "93. ACM, 1993.

César A. Galindo-Legaria, Arjan Pellenkoft, and Martin L. Ker-
sten. “Fast, Randomized Join-Order Selection - Why Use Trans-
formations?” In: Proceedings of the 2oth International Conference
on Very Large Data Bases. VLDB “94. Morgan Kaufmann Pub-
lishers Inc., 1994.

Goetz Graefe. “Volcano - An Extensible and Parallel Query
Evaluation System.” In: IEEE Transactions on Knowledge and
Data Engineering 6.1 (Feb. 1994).

Alon Y. Levy, Inderpal Singh Mumick, and Yehoshua Sagiv.
“Query Optimization by Predicate Move-Around.” In: Proceed-
ings of the 20th International Conference on Very Large Data Bases.
VLDB “94. Morgan Kaufmann Publishers Inc., 1994.

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

BIBLIOGRAPHY

Arun Swami and K. Bernhard Schiefer. “On the Estimation of
Join Result Sizes.” In: Proceedings of the 4th International Con-
ference on Extending Database Technology: Advances in Database
Technology. EDBT “94. Springer-Verlag New York, Inc., 1994.

Weipeng P. Yan and Per-Ake Larson. “Performing Group-By
Before Join.” In: Proceedings of the Tenth International Conference
on Data Engineering. IEEE Computer Society, 1994.

Sophie Cluet and Guido Moerkotte. “On the Complexity of
Generating Optimal Left-Deep Processing Trees with Cross
Products.” In: Proceedings of the 5th International Conference on
Database Theory. ICDT “95. Springer-Verlag, 1995.

Bennet Vance and David Maier. “Rapid Bushy Join-order Op-
timization with Cartesian Products.” In: Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data.
SIGMOD ’g96. ACM, 1996.

Jim Gray and Goetz Graefe. “The Five-minute Rule Ten Years
Later, and Other Computer Storage Rules of Thumb.” In: SIG-
MOD Record 26.4 (Dec. 1997).

Arjan Pellenkoft, César A. Galindo-Legaria, and Martin L. Ker-
sten. “The Complexity of Transformation-Based Join Enumera-
tion.” In: Proceedings of the 23rd International Conference on Very
Large Data Bases. VLDB "g97. Morgan Kaufmann Publishers Inc.,
1997.

Leonidas Fegaras. “A New Heuristic for Optimizing Large
Queries.” In: Proceedings of the gth International Conference on
Database and Expert Systems Applications. DEXA ’98. Springer-
Verlag, 1998.

Navin Kabra and David J. DeWitt. “Efficient Mid-query Re-
optimization of Sub-optimal Query Execution Plans.” In: Pro-
ceedings of the 1998 ACM SIGMOD International Conference on
Management of Data. SIGMOD ’98. Seattle, Washington, USA:
ACM, 1998.

Ron Avnur and Joseph M. Hellerstein. “Eddies: Continuously
Adaptive Query Processing.” In: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data. SIG-
MOD ‘00. ACM, 2000.

Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vi-
vek Narasayya. “Towards Estimation Error Guarantees for Dis-
tinct Values.” In: Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems.
PODS ‘00. ACM, 2000.

Donald Kossmann. “The State of the Art in Distributed Query
Processing.” In: ACM Computing Surveys 32.4 (Dec. 2000).

167

168

BIBLIOGRAPHY

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Anastassia Ailamaki, David J. DeWitt, Mark D. Hill, and Mar-
ios Skounakis. “Weaving Relations for Cache Performance.”
In: Proceedings of the 27th International Conference on Very Large
Data Bases. VLDB “01. Morgan Kaufmann Publishers Inc., 2001.

Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar
Kandil. “LEO - DB2’s LEarning Optimizer.” In: Proceedings of
the 27th International Conference on Very Large Data Bases. VLDB
‘01. Morgan Kaufmann Publishers Inc., 2001.

Arvind Hulgeri and S. Sudarshan. “Parametric Query Opti-
mization for Linear and Piecewise Linear Cost Functions.” In:
Proceedings of the 28th International Conference on Very Large Data
Bases. VLDB “02. VLDB Endowment, 2002.

Arvind Hulgeri and S. Sudarshan. “AniPQO: Almost Non-
intrusive Parametric Query Optimization for Nonlinear Cost
Functions.” In: Proceedings of the 29th International Conference on
Very Large Data Bases. VLDB “03. VLDB Endowment, 2003.

Volker Markl, Vijayshankar Raman, David Simmen, Guy Loh-
man, Hamid Pirahesh, and Miso Cilimdzic. “Robust Query
Processing Through Progressive Optimization.” In: Proceedings
of the 2004 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’o4. Paris, France, 2004.

Brian Babcock and Surajit Chaudhuri. “Towards a Robust Que-
ry Optimizer: A Principled and Practical Approach.” In: Pro-
ceedings of the 2005 ACM SIGMOD International Conference on
Management of Data. SIGMOD ‘o5. ACM, 2005.

Shivnath Babu, Pedro Bizarro, and David DeWitt. “Proactive
Re-optimization.” In: Proceedings of the 2005 ACM SIGMOD In-
ternational Conference on Management of Data. SIGMOD ’o5. Bal-
timore, Maryland, USA: ACM, 2005.

Peter A. Boncz, Marcin Zukowski, and Niels Nes. “MonetD-
B/X100: Hyper-Pipelining Query Execution.” In: Second Bien-
nial Conference on Innovative Data Systems Research. CIDR ’o5.
2005.

Thomas Neumann, Sven Helmer, and Guido Moerkotte. “On
the Optimal Ordering of Maps and Selections Under Factor-
ization.” In: Proceedings of the 21st International Conference on
Data Engineering. ICDE “o5. IEEE Computer Society, 2005.

Guido Moerkotte and Thomas Neumann. “Analysis of Two
Existing and One New Dynamic Programming Algorithm for
the Generation of Optimal Bushy Join Trees Without Cross
Products.” In: Proceedings of the 32nd International Conference on
Very Large Data Bases. VLDB “06. VLDB Endowment, 2006.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

BIBLIOGRAPHY

Harish D, Pooja N. Darera, and Jayant R. Haritsa. “On the
Production of Anorexic Plan Diagrams.” In: Proceedings of the
33rd International Conference on Very Large Data Bases. VLDB “o7.
VLDB Endowment, 2007.

David DeHaan and Frank Wm. Tompa. “Optimal Top-down
Join Enumeration.” In: Proceedings of the 2007 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’o7.
ACM, 2007.

Amol Deshpande, Zachary Ives, and Vijayshankar Raman. “A-
daptive Query Processing.” In: Foundations and Trends in Data-
bases 1.1 (Jan. 2007).

Goetz Graefe. “The Five-minute Rule Twenty Years Later, and
How Flash Memory Changes the Rules.” In: Proceedings of the
3rd International Workshop on Data Management on New Hard-
ware. DaMoN “o7. ACM, 2007.

Q. Li, M. Shao, V. Markl, K. Beyer, L. Colby, and G. Lohman.
“Adaptively Reordering Joins during Query Execution.” In:
2007 IEEE 23rd International Conference on Data Engineering. IC-
DE’o7. IEEE Computer Society, 2007.

M. Tamer Ozsu. Principles of Distributed Database Systems. 3rd.
Prentice Hall Press, 2007.

Renzo Angles and Claudio Gutierrez. “Survey of Graph Data-
base Models.” In: ACM Computing Surveys 40.1 (Feb. 2008).

Tyson Condie, David Chu, Joseph M. Hellerstein, and Petros
Maniatis. “Evita Raced: Metacompilation for Declarative Net-
works.” In: Proceedings of the VLDB Endowment 1.1 (Aug. 2008).

Harish D., Pooja N. Darera, and Jayant R. Haritsa. “Identifying
Robust Plans Through Plan Diagram Reduction.” In: Proceed-
ings of the VLDB Endowment 1.1 (Aug. 2008).

Guido Moerkotte and Thomas Neumann. “Dynamic Program-
ming Strikes Back.” In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data. SIGMOD ’08.
ACM, 2008.

Pedro Bizarro, Nicolas Bruno, and David J. DeWitt. “Progres-
sive Parametric Query Optimization.” In: IEEE Transactions on
Knowledge and Data Engineering 21.4 (Apr. 2009).

Surajit Chaudhuri, Vivek Narasayya, and Ravi Ramamurthy.
“Exact Cardinality Query Optimization for Optimizer Testing.”
In: Proceedings of the VLDB Endowment 2.1 (Aug. 2009).

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein. Introduction to Algorithms, Third Edition. 3rd.
The MIT Press, 2009.

169

170

BIBLIOGRAPHY

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

Guido Moerkotte, Thomas Neumann, and Gabriele Steidl. “Pre-
venting Bad Plans by Bounding the Impact of Cardinality Es-

timation Errors.” In: Proceedings of the VLDB Endowment 2.1

(Aug. 20009).

M. Abhirama, Sourjya Bhaumik, Atreyee Dey, Harsh Shrimal,
and Jayant R. Haritsa. “On the Stability of Plan Costs and the
Costs of Plan Stability.” In: Proceedings of the VLDB Endowment
3.1-2 (Sept. 2010).

Goetz Graefe, Arnd Christian Kénig, Harumi A. Kuno, Volker
Markl, and Kai-Uwe Sattler, eds. Robust Query Processing (Dag-
stuhl Seminar 10381). Dagstuhl Seminar Proceedings. Leibniz-
Zentrum fiir Informatik, Germany: Schloss Dagstuhl, 2010.

Martin Grund, Jens Kriiger, Hasso Plattner, Alexander Zeier,
Philippe Cudre-Mauroux, and Samuel Madden. “HYRISE: A
Main Memory Hybrid Storage Engine.” In: Proceedings of the
VLDB Endowment 4.2 (Nov. 2010).

Alfons Kemper and Thomas Neumann. “HyPer: A Hybrid
OLTP & OLAP Main Memory Database System Based on Vir-
tual Memory Snapshots.” In: Proceedings of the 2011 IEEE 27th
International Conference on Data Engineering. ICDE “11. IEEE
Computer Society, 2011.

Martina-Cezara Albutiu, Alfons Kemper, and Thomas Neu-
mann. “Massively Parallel Sort-merge Joins in Main Memory
Multi-core Database Systems.” In: Proceedings of the VLDB En-
dowment 5.10 (June 2012).

Graham Cormode, Minos Garofalakis, Peter J. Haas, and Chris
Jermaine. “Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches.” In: Foundations and Trends in Databases 4.1—
3 (Jan. 2012).

Goetz Graefe, Wey Guy, Harumi A. Kuno, and Glenn N. Paul-
ley. “Robust Query Processing (Dagstuhl Seminar 12321).” In:
Dagstuhl Reports 2.8 (2012).

Cagri Balkesen, Gustavo Alonso, Jens Teubner, and M. Tamer
Ozsu. “Multi-core, Main-memory Joins: Sort vs. Hash Revis-
ited.” In: Proceedings of the VLDB Endowment 7.1 (Sept. 2013).

Pit Fender and Guido Moerkotte. “Counter Strike: Generic
Top-down Join Enumeration for Hypergraphs.” In: Proceedings
of the VLDB Endowment 6.14 (Sept. 2013).

Guido Moerkotte, Pit Fender, and Marius Eich. “On the Cor-
rect and Complete Enumeration of the Core Search Space.” In:
Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. SIGMOD ’"13. ACM, 2013.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

BIBLIOGRAPHY

Thomas Neumann and César A. Galindo-Legaria. “Taking the
Edge off Cardinality Estimation Errors using Incremental Exe-
cution.” In: Datenbanksysteme fiir Business, Technologie und Web.
BTW "13. 2013.

R. Barber, G. Lohman, I. Pandis, V. Raman, R. Sidle, G. Attaluri,
N. Chainani, S. Lightstone, and D. Sharpe. “Memory-efficient
Hash Joins.” In: Proc. VLDB Endow. 8.4 (Dec. 2014).

Anshuman Dutt and Jayant R. Haritsa. “Plan Bouquets: Query
Processing Without Selectivity Estimation.” In: Proceedings of
the 2014 ACM SIGMOD International Conference on Management
of Data. SIGMOD "14. ACM, 2014.

Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neu-
mann. “Morsel-driven Parallelism: A NUMA-aware Query E-
valuation Framework for the Many-core Age.” In: Proceedings
of the 2014 ACM SIGMOD International Conference on Manage-
ment of Data. SIGMOD ’"14. ACM, 2014.

Guy M Lohman. “Is query optimization a “solved” problem.”
In: Proceedings of the Workshop on Database Query Optimization.
Oregon Graduate Center Comp. Sci. Tech. Rep. 2014.

Guido Moerkotte. Building Query Compilers. unpublished. http:

//pi3.informatik.uni-mannheim.de/~moer/querycompiler.
pdf, 2014.

Thomas Neumann. “Engineering High-performance Database
Engines.” In: Proc. VLDB Endow. 7.13 (Aug. 2014).

Iraklis Psaroudakis, Florian Wolf, Norman May, Thomas Neu-
mann, Alexander Bohm, Anastasia Ailamaki, and Kai-Uwe
Sattler. “Scaling up Mixed Workloads: A Battle of Data Fresh-
ness, Flexibility, and Scheduling.” In: 6th TPC Technology Con-
ference on Performance Evaluation and Benchmarking. TPCTC "14.
Hangzhou, China: Springer International Publishing, 2014.

Khaled H Alyoubi, Sven Helmer, and Peter T Wood. “Order-
ing selection operators using the minmax regret rule.” In: arXiv
preprint arXiv:1507.08257 (2015).

Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz,
Alfons Kemper, and Thomas Neumann. “How Good Are Que-
ry Optimizers, Really?” In: Proceedings of the VLDB Endowment
9.3 (Now. 2015).

Ingo Miiller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner,
and Franz Farber. “Cache-Efficient Aggregation: Hashing Is
Sorting.” In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’15. ACM, 2015.

Shaoyi Yin, Abdelkader Hameurlain, and Franck Morvan. “Ro-
bust Query Optimization Methods With Respect to Estimation
Errors: A Survey.” In: SIGMOD Record 44.3 (Dec. 2015).

171

http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf
http://pi3.informatik.uni-mannheim.de/~moer/querycompiler.pdf

172

BIBLIOGRAPHY

[81]

[82]

[83]

[84]

[85]

[86]

(871

[88]

[89]

[90]

[91]

[92]

Khaled Hamed Alyoubi. “Database query optimisation based
on measures of regret.” PhD thesis. Birkbeck, University of
London, 2016.

Fabian Hiiske. “Specification and optimization of analytical
data flows.” PhD thesis. TU Berlin, 2016.

Fisnik Kastrati and Guido Moerkotte. “Optimization of Con-
junctive Predicates for Main Memory Column Stores.” In: Pro-
ceedings of the VLDB Endowment 9.12 (Aug. 2016).

Mengmeng Liu, Zachary G. Ives, and Boon Thau Loo. “En-
abling Incremental Query Re-Optimization.” In: Proceedings of
the 2016 International Conference on Management of Data. SIG-
MOD "16. ACM, 2016.

Stefan Schuh, Xiao Chen, and Jens Dittrich. “An Experimental
Comparison of Thirteen Relational Equi-Joins in Main Mem-

ory.” In: Proceedings of the 2016 International Conference on Man-
agement of Data. SIGMOD ’16. ACM, 2016.

Reza Sherkat et al. “Page As You Go: Piecewise Columnar Ac-
cess In SAP HANA.” In: Proceedings of the 2016 International
Conference on Management of Data. SIGMOD "16. ACM, 2016.

Raja Appuswamy, Renata Borovica-Gajic, Goetz Graefe, and
Anastasia Ailamaki. “The Five-minute Rule Thirty Years Later
and its Impact on the Storage Hierarchy.” In: International Work-
shop on Accelerating Analytics and Data Management Systems Us-
ing Modern Processor and Storage Architectures 2017. ADMS ’17.
2017.

Claude Barthels, Ingo Miiller, Timo Schneider, Gustavo Alonso,
and Torsten Hoefler. “Distributed Join Algorithms on Thou-
sands of Cores.” In: Proceedings of the VLDB Endowment 10.5
(Jan. 2017).

Transaction Processing Performance Council. TPC Benchmark
H (Decision Support) Standard Specification Revision 2.17.2. http:
//www.tpc.org. 2017.

Marius Eich, Pit Fender, and Guido Moerkotte. “Efficient gen-
eration of query plans containing group-by, join, and group-
join.” In: The VLDB Journal (Aug. 2017).

Goetz Graefe, Renata Borovica-Gajic, and Allison Lee. “Robust
Performance in Database Query Processing (Dagstuhl Semi-
nar 17222).” In: Dagstuhl Reports 7.5 (2017).

John L. Hennessy and David A. Patterson. Computer Architec-
ture, Sixth Edition: A Quantitative Approach. 6th. Morgan Kauf-
mann Publishers Inc., 2017.

http://www.tpc.org
http://www.tpc.org

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

BIBLIOGRAPHY

Viktor Leis, Bernhard Radke, Andrey Gubichev, Atanas Mir-
chev, Peter Boncz, Alfons Kemper, and Thomas Neumann.
“Query optimization through the looking glass, and what we
found running the Join Order Benchmark.” In: The VLDB Jour-
nal (Sept. 2017).

Guy Lohman. “Query Optimization—-Are We There Yet?” In:
Datenbanksysteme fiir Business, Technologie und Web. BTW ’17.
Gesellschaft fiir Informatik, Bonn, 2017.

Norman May, Alexander Bohm, and Wolfgang Lehner. “SAP
HANA - The Evolution of an In-Memory DBMS from Pure
OLAP Processing Towards Mixed Workloads.” In: Datenbank-
systeme fiir Business, Technologie und Web. BTW "17. Gesellschaft
fiir Informatik, Bonn, 2017.

Renzo Angles et al. “G-CORE: A Core for Future Graph Query
Languages.” In: Proceedings of the 2018 International Conference
on Management of Data. SIGMOD ’"18. ACM, 2018.

Michael Brendle. “A Robustness Metric for Relational Query
Execution Plans.” MA thesis. University of Konstanz, 2018.

Harald Lang, Andreas Kipf, Linnea Passing, Peter Boncz, Tho-
mas Neumann, and Alfons Kemper. “Make the Most out of
Your SIMD Investments: Counter Control Flow Divergence in
Compiled Query Pipelines.” In: Proceedings of the 14th Inter-
national Workshop on Data Management on New Hardware. DA-
MON ’18. ACM, 2018.

Thomas Neumann and Bernhard Radke. “Adaptive Optimiza-
tion of Very Large Join Queries.” In: Proceedings of the 2018
International Conference on Management of Data. SIGMOD ’18.
ACM, 2018.

Florian Wolf, Norman May, Paul R. Willems, and Kai-Uwe Sat-
tler. “On the Calculation of Optimality Ranges for Relational
Query Execution Plans.” In: Proceedings of the 2018 International
Conference on Management of Data. SIGMOD ’18. Houston, TX,
USA: ACM, 2018.

Florian Wolf, Michael Brendle, Norman May, Paul R. Willems,
Kai-Uwe Sattler, and Michael Grossniklaus. “Robustness Met-
rics for Relational Query Execution Plans.” In: Proceedings of
the VLDB Endowment 11.11. VLDB “18. Rio de Janeiro, Brazil:
VLDB Endowment, 2018.

173

ERKLARUNG

Ich versichere, dass ich die vorliegende Arbeit ohne unzuldssige Hil-
fe Dritter und ohne Benutzung anderer als der angegebenen Hilfs-
mittel angefertigt habe. Die aus anderen Quellen direkt oder indirekt
tibernommenen Daten und Konzepte sind unter Angabe der Quelle
gekennzeichnet.

Bei der Auswahl und Auswertung folgenden Materials haben mir
die nachstehend aufgefiihrten Personen in der jeweils beschriebenen
Weise unentgeltlich geholfen:

1. Dr. Norman May, Ko-Autor von [100, 101], Ansprechpartner bei
SAP

2. Dr. Paul R. Willems, Ko-Autor von [100, 101], Ansprechpartner
bei SAP

3. Michael Brendle, Ko-Autor von [101], Studentische Hilfskraft

4. Prakriti Bhardwaj, Studentische Hilfskraft

Weitere Personen waren an der inhaltlich-materiellen Erstellung
der vorliegenden Arbeit nicht beteiligt. Insbesondere habe ich hierfiir
nicht die entgeltliche Hilfe von Vermittlungs- bzw. Beratungsdiensten
(Promotionsberater oder anderer Personen) in Anspruch genommen.
Niemand hat von mir unmittelbar oder mittelbar geldwerte Leistun-
gen fiir Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der
vorgelegten Dissertation stehen.

Die Arbeit wurde bisher weder im In- noch im Ausland in gleicher
oder dhnlicher Form einer Priifungsbehorde vorgelegt.

Ich bin darauf hingewiesen worden, dass die Unrichtigkeit der vor-
stehenden Erkldarung als Tduschungsversuch bewertet wird und ge-
maf3 § 7 Abs. 10 der Promotionsordnung den Abbruch des Promoti-
onsverfahrens zur Folge hat.

Heidelberg, September 2018

Florian Wolf

	Title
	Dedication
	Abstract
	Zusammenfassung
	Publications
	Acknowledgments
	Contents
	1 Introduction
	1.1 Impact of Query Execution Plan Choice
	1.2 Reasons for Sub-Optimal Plan Choice
	1.3 Problem Statement
	1.3.1 Detection of Sub-Optimal Plans
	1.3.2 Awareness of Estimation Errors
	1.3.3 Integration of Runtime Knowledge

	1.4 Contributions
	1.4.1 Precise Optimality Ranges
	1.4.2 Robustness Metrics and Robust Plan Selection
	1.4.3 Mid-Query Re-Optimization Revisited

	2 Foundations
	2.1 Notations
	2.2 Workloads
	2.3 Memory Hierarchy
	2.4 Storage Layouts
	2.5 Query Execution Engines
	2.5.1 Join Operator
	2.5.2 Pipelining
	2.5.3 Parallelization

	2.6 Query Optimizers
	2.6.1 Enumeration Algorithms
	2.6.2 Cost Models
	2.6.3 Cardinality Estimation
	2.6.4 Parametric Cost Functions

	2.7 Research Query Processor
	2.7.1 Main-Memory Column Store
	2.7.2 Pipelining
	2.7.3 Experimental Verification

	3 Precise Optimality Ranges
	3.1 Introduction
	3.2 Calculation of Precise Optimality Ranges
	3.2.1 Plan Cost Intersection
	3.2.2 Optimal Plans Container
	3.2.3 Considered Plan Alternatives
	3.2.4 Calculation Algorithm
	3.2.5 Complexity Analysis
	3.2.6 Relaxing the Assumptions

	3.3 Experimental Evaluation
	3.3.1 TPC-H Ranges
	3.3.2 Enumerated Plans

	3.4 Related Work
	3.4.1 Adaptive Query Processing
	3.4.2 Parametric Query Optimization
	3.4.3 Offline Plan Space Analysis

	3.5 Applications in Query Processing
	3.5.1 Execution Plan Caching
	3.5.2 Parametric Queries
	3.5.3 Plan Robustness
	3.5.4 Mid-Query Re-Optimization

	3.6 Conclusion

	4 Robustness Metrics and Robust Plan Selection
	4.1 Introduction
	4.2 Formal Problem Description
	4.3 Robust Plan Example
	4.4 Robustness Metrics
	4.4.1 Cardinality-Slope Robustness Metric
	4.4.2 Selectivity-Slope Robustness Metric
	4.4.3 Cardinality-Integral Robustness Metric
	4.4.4 Robustness Metrics Overview

	4.5 Robust Plan Candidates and Robust Plan Selection
	4.6 Experimental Evaluation
	4.6.1 Query Execution Time
	4.6.2 Plan Robustness
	4.6.3 Robust Plan Candidates

	4.7 Related Work
	4.7.1 Offline Analysis
	4.7.2 Online Selection

	4.8 Conclusion

	5 Mid-Query Re-Optimization Revisited
	5.1 Introduction
	5.2 Formal Problem Description
	5.3 Adaptive Plan Example
	5.4 Adaptive Query Processor
	5.4.1 Adaptive Execution Strategy
	5.4.2 Adaptive and NUMA-aware CHT building
	5.4.3 Selective Re-Enumeration
	5.4.4 Re-optimization Criteria

	5.5 Experimental Evaluation
	5.5.1 Improvement of True Cost
	5.5.2 Execution Time
	5.5.3 Re-Optimizations and Plan Switches
	5.5.4 Adaption Effort

	5.6 Related Work
	5.7 Conclusion

	6 Implications on Query Processing
	6.1 Detecting Sub-Optimal Query Execution Plans
	6.2 Compensating Sub-Optimal Query Execution Plans

	7 Future Directions and Conclusion
	7.1 Future Directions
	7.1.1 Optimality Ranges
	7.1.2 Robustness Metrics and Robust Plan Selection
	7.1.3 Mid-Query Re-Optimization

	7.2 Conclusion

	Bibliography
	Erklärung

