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Invariance of the essential spectra of opera-
tor pencils

H. Gernandt, N. Moalla, F. Philipp, W. Selmi and C. Trunk

Abstract. The essential spectrum of operator pencils with bounded co-
efficients in a Hilbert space is studied. Sufficient conditions in terms
of the operator coefficients of two pencils are derived which guarantee
the same essential spectrum. This is done by exploiting a strong rela-
tion between an operator pencil and a specific linear subspace (linear
relation).
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1. Introduction

Its is a well-known fact that the essential spectrum of a linear operator is in-
variant under compact perturbations. Here we understand the essential spec-
trum as the complement of the (semi-) Fredholm domain. More precisely, we
investigate four kinds of essential spectra: the Fredholm essential spectrum,
the upper and the lower semi Fredholm essential spectrum and the semi Fred-
holm essential spectrum. For simplicity, we refer to those four kinds just as
the ”essential spectra”.

In many applications, e.g. in mathematical physics or in transport the-
ory, one is interested in the (essential) spectrum of operator pencils, see,
e.g., [8, 9] A linear operator pencil is a first order polynomial with bounded
operators as coefficients, that is, it is of the form

A1(λ) = λS1 − T1,

where λ ∈ C and S1 and T1 are bounded operators acting between two
normed spaces. By definition (see, e.g., [13, 15]) a complex number λ is in
the spectrum of the pencil A1 if zero is in the spectrum of the operator
λS1 − T1. In the same way the essential spectrum of A1 is defined as the set
of all λ ∈ C such that the operator λS1−T1 is no (semi-) Fredholm operator.
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We investigate the question which perturbations of the coefficients do
not change the essential spectrum. For this, consider a second operator pencil

A2(λ) = λS2 − T2,

where S2 and T2 are bounded operators acting between the same spaces as
S1 and T1. If S1−S2 and T1−T2 are two compact operators, then obviously
also the difference

A1(λ)−A2(λ) = λ(S1 − S2)− (T1 − T2)

is compact and, hence, the essential spectra of A1 and A2 coincide. But the
essential spectrum of two operator pencils may coincide even if the differ-
ence of the coefficients is substantial. For example, let M be a bounded and
boundedly invertible operator. Then obviously

A1(λ) = λI − T and A2(λ) = λM − TM = A1(λ)M

have the same essential spectrum.

Here we make use of the following simple observation: Let S, T : X → Y
be bounded linear operators between two Hilbert spaces X and Y such that
the upper semi Fredholm essential spectrum of the pencil A(λ) := λS − T is
not C. Then the essential spectra of A and TS−1 coincide (see Corollary 3.5
below). Note, that in general S is not invertible and here S−1 and TS−1 are
understood in the sense of linear relations (or, what is the same, multivalued
mappings, see [1, 5, 16]). That is, S−1 and TS−1 are subspaces of Y ×X and
Y × Y , respectively, given by

S−1 := {{Sx, x} : x ∈ X}, and

TS−1 :=
{
{x, z} : {x, y} ∈ S−1, {y, z} ∈ T, for some y ∈ X

}
= ran

[
S
T

]
.

Addition and multiplication of two subspaces are defined in analogy to the
addition and multiplication of two linear mappings. In particular, we have
for λ ∈ C

TS−1 − λ = {{Sx, Tx− λSx} : x ∈ X}
and the notion of (essential) spectrum and resolvent set for linear relations
are defined similarly as for linear operators, for details we refer to Section 2
below.

Therefore, the relationship of the essential spectra of two linear operator
pencilsA1 andA2 is the same as the relationship of the essential spectra of the
linear relations T1S

−1
1 and T2S

−1
2 . Now one can utilize known results for linear

relations (see, e.g., [2]): If the difference of the two orthogonal projections onto
the subspaces T1S

−1
1 and T2S

−1
2 is compact, then the essential spectra of the

two pencils coincide. This difference can be expressed with the (pseudo-)
inverse Zj of the operator S∗j Sj + T ∗j Tj , j = 1, 2, and it has the form[

S1Z1S
∗
1 − S2Z2S

∗
2 S1Z1T

∗
1 − S2Z2T

∗
2

T1Z1S
∗
1 − T2Z2S

∗
2 T1Z1T

∗
1 − T2Z2T

∗
2

]
. (1.1)
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The first main result (cf. Section 5 below) shows that if (1.1) is compact then
the essential spectra of A1 and A2 coincide.

The second main result of this paper (cf. Section 5 below) makes use
of the so-called singular sequences (cf. Section 2 below). If S1 and S2 are

Fredholm, then the pseudo-inverses S†1 and S†2 exist. If, in addition,

(T2 − T1)S†2S1, (T2 − T1)S†1S2, T1S
†
2(S1 − S2) and T2S

†
1(S1 − S2)

are compact, then the upper semi Fredholm essential spectra of A1 and A2

coincide. We prove similar results also for the lower semi Fredholm essential
spectrum.

2. Preliminaries on linear relations

Let X, Y and Z be Banach spaces. The set of all bounded linear operators
from X to Y is denoted by L(X,Y ). As usual, we set L(X) := L(X,X).
A linear relation L from X into Y is a subspace of X × Y and the set
of all linear relations from X into Y is denoted by LR(X,Y ). Moreover,
CR(X,Y ) is the set of all closed linear relations from X into Y . Also here,
we set LR(X) := LR(X,X) and CR(X) := CR(X,X). Each T ∈ L(X,Y ) is
identified with an element in CR(X,Y ) via its graph.

Given a linear relation L ∈ LR(X,Y ), we introduce the following sets:

domL = {x ∈ X : {x, y} ∈ L for some y ∈ Y },
kerL = {x ∈ X : {x, 0} ∈ L},
ranL = {y ∈ Y : {x, y} ∈ L for some x ∈ X},
mulL = {y ∈ Y : {0, y} ∈ L},

which are called the domain, the kernel, the range and the multivalued part
of L, respectively. The inverse of the linear relation L is given by

L−1 := {{y, x} ∈ Y ×X : {x, y} ∈ L}. (2.1)

The linear relation αL with α ∈ C is defined by

αL := {{x, αy} ∈ X × Y : {x, y} ∈ L}. (2.2)

The (operator-like) sum of two linear relations L,M ∈ LR(X,Y ) is defined
as

L+M := {{x, y + y′} ∈ X × Y : {x, y} ∈ L, {x, y′} ∈M}. (2.3)

If we assume that X = Y then in view of (2.2) and (2.3) we have

L− λ = L− λI = {{x, y − λx} : {x, y} ∈ L}. (2.4)

The product of two linear relations L ∈ LR(Y,Z) and M ∈ LR(X,Y ) is
defined by

LM := {{x, z} ∈ X × Z : {x, y} ∈M, {y, z} ∈ L for some y ∈ Y }.
We recall some basic notions from Fredholm theory for linear relations, see
[5].
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Definition 2.1. Let L ∈ LR(X,Y ). The nullity and the deficiency of L are
defined as follows

nulL := dim kerL, and

def L := codim ranL := dimY/ranL.

If either nulL <∞ or def L <∞, we define the index of a linear relation as
follows

indL := nulL− def L,

where the value of the difference is taken to be indL :=∞ if nulL is infinite
and indL := −∞ if def L is infinite.

Furthermore we define the set of upper (lower) semi Fredholm relations,
see e.g. [5],

Φ+(X,Y ) := {L ∈ CR(X,Y ) : nulL <∞ and ranL is closed in Y },
Φ−(X,Y ) := {L ∈ CR(X,Y ) : def L <∞ and ranL is closed in Y },

and the set of Fredholm relations as

Φ(X,Y ) := Φ+(X,Y ) ∩ Φ−(X,Y ).

If X = Y , we write briefly Φ+(X), Φ−(X), and Φ(X), respectively. The
following characterization of Φ+(X,Y ) is based on [5, Theorem V.1.11].

Proposition 2.2. Let L ∈ CR(X,Y ) where X and Y are Hilbert spaces, then
the following are equivalent:

(i) L /∈ Φ+(X,Y ).
(ii) There exists a sequence ({xn, yn}) ⊂ L such that ‖xn‖ = 1 for all n ∈ N,

xn ⇀ 0 and yn → 0.
(iii) There exists a sequence ({xn, yn}) ⊂ L such that ‖xn‖ = 1 for all n ∈ N,

xn ⇀ 0 and dist(yn,mulL)→ 0.

Proof. For the proof of (i)⇒(ii), assume first that dim kerL =∞ and choose
an infinite orthonormal system (xn) in kerL. Then {xn, 0} ∈ L is a sequence
as required in (ii). Second, assume that ranL is not closed. Then there exist
a sequence (zn) ⊂ ranL and some z ∈ Y \ranL such that zn → z. Choose
un ∈ (kerL)⊥ such that {un, zn} ∈ L for each n ∈ N. If (un) is bounded, then
(un) has a subsequence (unk

) such that unk
⇀ u for some u ∈ X. Then the

closedness of L and {unk
, znk
} ⇀ {u, z} imply that {u, z} ∈ L and thus z ∈

ranL, which is a contradiction. Hence, (un) is unbounded. It is no restriction
to assume that ‖un‖ → ∞ as n→∞. We set xn := un/‖un‖ ∈ (kerL)⊥ and
yn := zn/‖un‖. Then {xn, yn} ∈ L, ‖xn‖ = 1 for all n ∈ N and yn → 0 as
n→∞. Then a subsequence of (xn) converges weakly, hence we may assume
that xn ⇀ x for some x ∈ (kerL)⊥. As {xn, yn}⇀ {x, 0} and L is closed, it
follows that x = 0.

The implication (ii)⇒(iii) is trivial. Thus, let us prove (iii)⇒(i). For
this, let ({xn, yn}) ⊂ L be a sequence as in (iii). Suppose that dim kerL <∞
and that ranL is closed. Consider the linear relation

M := L ∩
[
(kerL)⊥ × (mulL)⊥

]
.
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ThenM is obviously closed and (the graph of) an operator. Moreover, kerM =
{0} and ranM = ranL is closed. Hence M , considered as an operator from
domM , equipped with the graph norm, is a bounded upper semi Fredholm
operator. Let xn = un+vn and yn = wn+zn, where un ∈ kerL, vn ∈ (kerL)⊥,
wn ∈ mulL, and zn ∈ (mulL)⊥, n ∈ N. Then xn ⇀ 0 and dim kerL < ∞
imply un → 0 and ‖vn‖ → 1. Also, ‖zn‖ = dist(yn,mulL) → 0. We have
{vn, zn} ∈ M , that is, vn ∈ domM and Mvn = zn → 0, which is a contra-
diction to the fact that M is an upper semi Fredholm operator (cf. [4, XI
Theorem 2.5]). �

In what follows, we introduce the adjoint of a linear relation. For this
we assume in addition that the spaces X and Y are Hilbert spaces equipped
with inner products (·, ·)X and (·, ·)Y , respectively. If no confusion arises, we
use for simplicity just the notion (·, ·). The adjoint L∗ of L ∈ LR(X,Y ) is a
linear relation from Y to X, defined by

L∗ = {{y, x} ∈ Y ×X : (y, v)Y = (x, u)X for all {u, v} ∈ L}.

Note that always L∗ ∈ CR(Y,X). The following identities for L ∈ LR(X,Y )
are straightforward (see also [16, Section 14.1], [3, Proposition 2.4], and [12])

(L∗)−1 = (L−1)∗,

(λL)∗ = λL∗, λ 6= 0,

kerL∗ = (ranL)⊥, (2.5)

(ranL∗)⊥ = kerL, (2.6)

L∗ = −(L⊥)−1. (2.7)

The range of L is closed if and only if the range of L∗ is closed, see, e.g.
[3, Proposition 2.5]. This together with (2.5) and (2.6) implies that for all
L ∈ CR(X,Y )

L ∈ Φ±(X,Y ) if and only if L∗ ∈ Φ∓(Y,X). (2.8)

Next, we define the spectrum of a linear relation and introduce different types
of essential spectra as in [17], see also [6] for the operator case.

Definition 2.3. Let L ∈ LR(X). The spectrum and the resolvent set of L are
defined by

σ(L) := {λ ∈ C : (L− λ)−1 ∈ L(X)} and ρ(L) := C \ σ(L),

respectively. The essential spectra of L are defined as

σe1(L) := {λ ∈ C : L− λ /∈ Φ+(X) ∪ Φ−(X)},
σ±e2(L) := {λ ∈ C : L− λ /∈ Φ±(X)},
σe3(L) := {λ ∈ C : L− λ /∈ Φ(X)}.
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Note that L − λ ∈ Φ±(X) requires L − λ (and thus L) to be closed.
Hence, if L is not closed, we have σ(L) = σe1(L) = σ±e2(L) = σe3(L) = C.
Also, we obviously have

σe1(L) = σ+
e2(L) ∩ σ−e2(L) and σe3(L) = σ+

e2(L) ∪ σ−e2(L).

In particular,
σe1(L) ⊂ σ±e2(L) ⊂ σe3(L).

3. Essential spectra of the operator pencil λS − T and the
linear relation TS−1

Throughout this section let X and Y be Banach spaces. Given S, T ∈ L(X,Y ),
we will establish a relationship between the (essential) spectra of the operator
pencil A(λ) = λS − T and the associated linear relation

TS−1 ∈ LR(Y ).

Note that S−1 is the inverse of the graph of S viewed as a linear relation.
Then it follows from (2.1) and (2.4) that

TS−1 =
{
{y, z} : {y, x} ∈ S−1, {x, z} ∈ T for some x ∈ X

}
= {{Sx, Tx} : x ∈ X} (3.1)

= ran

[
S
T

]
. (3.2)

From this it is immediate that

dom (TS−1) = ranS, ker(TS−1) = S kerT,

ran (TS−1) = ranT, mul (TS−1) = T kerS.

The spectrum and the essential spectra for a linear operator pencil are
defined similarly as for linear relations.

Definition 3.1. For an operator pencil A(λ) = λS − T with S, T ∈ L(X,Y )
the spectrum σ(A) and the resolvent set ρ(A) are defined as

σ(A) := {λ ∈ C : λS − T is not boundedly invertible},
ρ(A) := C \ σ(A).

The essential spectra of A are given by

σe1(A) := {λ ∈ C : λS − T /∈ Φ+(X,Y ) ∪ Φ−(X,Y )},
σ±e2(A) := {λ ∈ C : λS − T /∈ Φ±(X,Y )},
σe3(A) := {λ ∈ C : λS − T /∈ Φ(X,Y )}.

The next proposition shows how the spectra of A and TS−1 are related
to each other.

Proposition 3.2. Let A(λ) = λS−T be an operator pencil with S, T ∈ L(X,Y )
and λ ∈ C then the following holds.

(a) ker(TS−1 − λ) = S kerA(λ).
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(b) ran (TS−1 − λ) = ranA(λ).
(c) We have

dim ker(TS−1 − λ) = dim
kerA(λ)

kerS ∩ kerT
.

(d) If σ+
e2(A) 6= C, then TS−1 is closed, i.e., TS−1 ∈ CR(Y ). This is in

particular the case if ρ(A) 6= ∅.
(e) We have σ(TS−1) ⊂ σ(A).
(f) If kerS ∩ kerT = {0}, then

σ(TS−1) = σ(A).

Proof. From (2.3) and (3.1) it is easy to see

TS−1 − λ = {{Sx, Tx− λSx} : x ∈ X}

which implies (a) and (b). Observe that the map [x] 7→ Sx from ker(λS−T )
kerS∩kerT

to S ker(λS − T ) is bijective which proves (c).
In order to prove (d) set N0 := kerS ∩ kerT and let λ ∈ C such that

A(λ) ∈ Φ+(X,Y ). Then kerA(λ) is finite dimensional and, hence, closed. It
has a complementary subspace and we have

kerA(λ) = N0 uN1 and X = kerA(λ)uM

with closed subspaces N1 ⊂ kerA(λ) and M ⊂ X. Let {yn, zn} be a sequence
in TS−1 which converges to {y, z} ∈ Y ×Y . Then, by (3.1), we find a sequence
(xn) in X with

yn = Sxn and zn = Txn.

We have to prove that there exists some x ∈ X such that Sxn → Sx and
Txn → Tx. To this end, we write xn = un + vn +wn with un ∈ N0, vn ∈ N1

and wn ∈ M . Since A(λ) maps M bijectively onto its (closed) range and
A(λ)wn = A(λ)xn = λSxn − Txn → λy − z, it follows that (wn) converges
to some w ∈ M . Hence, (Swn) and (Twn) converge and therefore (Svn)
converges. Since ker(S|N1

) = {0}, (vn) converges to some v ∈ N1 and we
obtain Sxn = S(vn + wn)→ S(v + w) and Txn = T (vn + wn)→ T (v + w).

For the proof of (e) let λ ∈ ρ(A). Then TS−1 is closed by (d) and
ker(TS−1 − λ) = {0}, ran (TS−1 − λ) = Y by (a) and (b). Hence,

mul (TS−1 − λ)−1 = ker(TS−1 − λ) = {0}
and (TS−1 − λ)−1 is a closed operator in Y with domain Y . By the closed
graph theorem, it is an element of L(Y ). This proves (e). For (f), assume that
λ ∈ ρ(TS−1) and, in addition, that kerS ∩ kerT = {0}. Then ranA(λ) = Y
by (b) and kerA(λ) = kerS ∩ kerT = {0} by (c). �

Remark 3.3. Note that the condition kerS∩kerT = {0} in (f) is necessary for
ρ(A) to be non-empty. In fact, if x ∈ kerS ∩ kerT , x 6= 0, then x ∈ kerA(λ)
for all λ ∈ C and thus ρ(A) = ∅.

The following proposition shows that also the essential spectra of the
pencil λS − T and the linear relation TS−1 are intimately connected to each
other.
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Proposition 3.4. Let A(λ) = λS−T be an operator pencil with S, T ∈ L(X,Y )
and λ ∈ C. Then we have

σ+
e2(TS−1) ⊂ σ+

e2(A) and σ−e2(TS−1) ⊃ σ−e2(A). (3.3)

If TS−1 is closed, then

σ−e2(TS−1) = σ−e2(A). (3.4)

If dim(kerS ∩ kerT ) <∞, then

σ+
e2(TS−1) = σ+

e2(A). (3.5)

Hence, if TS−1 is closed and dim(kerS ∩ kerT ) <∞, then

σe1(TS−1) = σe1(A) and σe3(TS−1) = σe3(A).

Proof. From Proposition 3.2 (b) it follows that ran (TS−1 − λ) is closed if
and only if ranA(λ) is closed and def (TS−1 − λ) = def A(λ). This proves
the second relation in (3.3). If A(λ) ∈ Φ+(X,Y ) for some λ ∈ C, then TS−1

is closed by Proposition 3.2 (d) and from Proposition 3.2 (a) we conclude
nul (TS−1− λ) ≤ nul (A(λ)). Hence, TS−1− λ ∈ Φ+(Y ) and (3.3) is proved.

If TS−1 is closed, then obviously A(λ) ∈ Φ−(X,Y ) implies TS−1−λ ∈
Φ−(Y ), which shows (3.4). If dim(kerS ∩ kerT ) < ∞, then TS−1 − λ ∈
Φ+(Y ) implies dim kerA(λ) < ∞ (see Proposition 3.2 (c)) and therefore
A(λ) ∈ Φ+(X,Y ). �

The following corollary follows from Proposition 3.2 (d) and the fact
that A(λ) ∈ Φ+(X,Y ) implies dim(kerS ∩ kerT ) <∞.

Corollary 3.5. If σ+
e2(A) 6= C (in particular, if ρ(A) 6= ∅), then

σ+
e2(TS−1) = σ+

e2(A) and σ−e2(TS−1) = σ−e2(A),

and therefore also

σe1(TS−1) = σe1(A) and σe3(TS−1) = σe3(A).

4. Essential spectrum of linear relations under perturbations

In this section we let X and Y be Hilbert spaces. We say that L,M ∈
CR(X,Y ) are compact perturbations of each other if PL − PM is compact.
Here, PL denotes the orthogonal projection onto the closed subspace L. If
ρ(L)∩ ρ(M) 6= ∅, this is equivalent to (L−µ)−1− (M −µ)−1 being compact
for some (and hence for all) µ ∈ ρ(L) ∩ ρ(M) (see [2]).

Lemma 4.1. Two linear relations L,M ∈ CR(X,Y ) in the Hilbert spaces
X,Y are compact perturbations of each other if and only if L∗ and M∗ are
compact perturbations of each other.

Proof. Relation (2.7) and the unitary mapping U : X × Y → Y ×X which
is given by

U(x, y) := (y,−x)
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yield L∗ = UL⊥. Therefore

PL∗ − PM∗ = PUL⊥ − PUM⊥ = U(PL⊥ − PM⊥)U∗ = U(PL − PM )U∗.

Hence, PL∗ − PM∗ is compact if and only if PL − PM is compact. �

Proposition 4.2. Let X,Y be Hilbert spaces and let L,M ∈ CR(X,Y ) be
compact perturbations of each other. Then L ∈ Φ±(X,Y ) if and only if M ∈
Φ±(X,Y ). In particular,

σ+
e2(L) = σ+

e2(M) and σ−e2(L) = σ−e2(M),

and therefore also

σe1(L) = σe1(M) and σe3(L) = σe3(M).

Proof. Let L /∈ Φ+(X,Y ). Due to Proposition 2.2 there exists a sequence
({xn, yn}) ⊂ L with ‖xn‖ = 1 for all n ∈ N, xn ⇀ 0, and yn → 0. Set
{x′n, y′n} := PM{xn, yn} ∈M , n ∈ N. Since {xn, yn}⇀ 0, we conclude from

{x′n, y′n} := (PM − PL){xn, yn}+ {xn, yn}

and the compactness of PM − PL that ‖x′n‖ → 1, y′n → 0 as n → ∞, and
x′n ⇀ 0. Setting x′′n := x′n/‖x′n‖ and y′′n := y′n/‖x′n‖, we obtain {x′′n, y′′n} ∈ L
with ‖x′′n‖ = 1 for all n ∈ N, x′′n ⇀ 0, and y′′n → 0. Hence, Proposition 2.2
implies that M /∈ Φ+(X,Y ). This shows that L ∈ Φ+(X,Y ) if and only
if M ∈ Φ+(X,Y ). Using this, Lemma 4.1, and (2.8), we obtain the same
statement with Φ+(X,Y ) replaced by Φ−(X,Y ).

The remaining statements on the essential spectra follow from Propo-
sition 4.3 in [2] which implies that L and M are compact perturbations of
each other if and only if L−λ and M −λ are compact perturbations of each
other. �

5. Essential spectrum of operator pencils under perturbations

In this section we give sufficient conditions for the equality of the essential
spectra of two operator pencils A1 and A2

A1(λ) = λS1 − T1 and A2(λ) = λS2 − T2

in terms of their coefficients S1, S2, T1, T2 ∈ L(X,Y ). In the proofs of our
main theorems we use the above-established concept of the relationship be-
tween operator pencils and linear relations.

The first statement is obvious and follows from the well-known fact that
L(X,Y ) ∩ Φ±(X,Y ) is invariant under compact perturbations.

Proposition 5.1. Assume that T2 − T1 and S2 − S1 are compact. Then

σe1(A1) = σe1(A2), σ±e2(A1) = σ±e2(A2), and σe3(A1) = σe3(A2).
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Let A ∈ L(X,Y ). It follows from kerA = kerA∗A and the closed range
theorem that A has closed range if and only if the same is true for A∗A.
In this case, X = kerA ⊕ ranA∗, Y = kerA∗ ⊕ ranA and the restriction
A0 = A|ranA∗ : ranA∗ → ranA is boundedly invertible. Recall that the
pseudo-inverse A† of A is then defined by

A† := A−10 PranA.

For an overview of equivalent definitions of the pseudo-inverse of linear op-
erators we refer to [7, Chapter II]. It is immediate that

PranA = AA† (5.1)

and one can show, see e.g. [11, Theorem 4], that

(A†)∗ = (A∗)†. (5.2)

Moreover we have from [7, Theorem 2.1.5] that

A† = (A∗A)†A∗ = A∗(AA∗)†. (5.3)

Our first main theorem is the following.

Theorem 5.2. Let X,Y be Hilbert spaces and S1, S2, T1, T2 ∈ L(X,Y ) with
corresponding pencils

A1(λ) = λS1 − T1 and A2(λ) = λS2 − T2.
Assume that for both j = 1, 2 the operator S∗j Sj + T ∗j Tj ∈ L(X) has closed
range and that the operator[

S1Z1S
∗
1 − S2Z2S

∗
2 S1Z1T

∗
1 − S2Z2T

∗
2

T1Z1S
∗
1 − T2Z2S

∗
2 T1Z1T

∗
1 − T2Z2T

∗
2

]
∈ L(Y × Y ) (5.4)

is compact, where

Zj := (S∗j Sj + T ∗j Tj)
†, j = 1, 2.

Then

σ−e2(A1) = σ−e2(A2).

If, in addition, S∗j Sj + T ∗j Tj ∈ Φ+(X) for j = 1, 2, then

σ+
e2(A1) = σ+

e2(A2).

Proof. Let j = 1, 2 and set Aj :=
[ Sj

Tj

]
. Then A∗jAj = S∗j Sj + T ∗j Tj implies

that Aj has closed range which means that the relation TjS
−1
j is closed. As

discussed before, we find with (5.3) that

AjA
†
j = Aj(A

∗
jAj)

†A∗j = AjZjA
∗
j =

[
Sj
Tj

]
Zj
[
S∗j T

∗
j

]
=

[
SjZjS

∗
j SjZjT

∗
j

TjZjS
∗
j TjZjT

∗
j

]
is the orthogonal projection onto ranAj = TjS

−1
j . Hence, the operator in

(5.4) is the difference of the orthogonal projections onto the closed subspaces
T1S

−1
1 and T2S

−1
2 of Y×Y . Also note that kerSj∩kerTj = kerAj = kerA∗jAj .

Now, the statements of Theorem 5.2 follow from Proposition 4.2 and Propo-
sition 3.4. �
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Example. (a) Let us consider the example from the introduction, where X =
Y and A1(λ) = λI − T and A2(λ) = (λI − T )M with T,M ∈ L(X) and M
boundedly invertible. Clearly, all the essential spectra of A1 and A2 coincide,
respectively. We have S1 = I, T1 = T , S2 = M and T2 = TM . Then both
S∗1S1 + T ∗1 T1 = I + T ∗T and S∗2S2 + T ∗2 T2 = M∗(I + T ∗T )M are boundedly
invertible and the operator matrix in (5.4) is the zero matrix. Indeed, we
have

T2S
−1
2 = ran

[
M
TM

]
= ran

[
I
T

]
= T1S

−1
1 .

(b) Let X,Y be Hilbert spaces and let M1,M2 ∈ L(X,Y ) be boundedly
invertible. Let KS ,KT ∈ L(Y ) be compact such that −1 /∈ σ(KS) ∩ σ(KT ).
Then the operator R := (I+KS)∗(I+KS)+(I+KT )∗(I+KT ) is boundedly
invertible. Indeed, R is a compact perturbation of 2I and therefore Fredholm
with index zero and the condition −1 /∈ σ(KS) ∩ σ(KT ) guarantees that
kerR = {0}. Consider

S1 = T1 = M1, and S2 = (I +KS)M2, T2 = (I +KT )M2.

Using the invertibility of M1,M2, we note

T1S
−1
1 = ran

[
S1

T1

]
= ran

[
M1

M1

]
= ran

[
I
I

]
and

T2S
−1
2 = ran

[
S2

T2

]
= ran

[
(I +KS)M2

(I +KT )M2

]
= ran

[
I +KS

I +KT

]
.

Set Z2 := ((I +KS)∗(I +KS) + (I +KT )∗(I +KT ))
−1

. In this case, the
operator in (5.4) reads as[

1
2I − (I +KS)Z2(I +KS)∗ 1

2I − (I +KS)Z2(I +KT )∗

1
2I − (I +KT )Z2(I +KS)∗ 1

2I − (I +KT )Z2(I +KT )∗

]
.

Obviously, this operator is compact as

1

2
I − Z2

is compact. Hence, the conditions in Theorem 5.2 are satisfied and all essential
spectra of the two pencils

A1(λ) = λS1 − T1 and A2(λ) = λS2 − T2

coincide.

Lemma 5.3. Let X,Y be Hilbert spaces, S, T ∈ L(X,Y ), S ∈ Φ+(X,Y ),
and λ ∈ C. Assume furthermore that TS−1 is closed. Then we have λ ∈
σ+
e2(TS−1) if and only if there exists a sequence (yn) ⊂ (kerS)⊥ such that
‖Syn‖ → 1, yn ⇀ 0, and (λS − T )yn → 0 as n→∞.



12 H. Gernandt, N. Moalla, F. Philipp, W. Selmi and C. Trunk

Proof. Assume that TS−1 − λ /∈ Φ+(X,Y ). By Proposition 2.2 there exists
a sequence {xn, zn} ∈ TS−1 − λ with ‖xn‖ = 1 for all n ∈ N, xn ⇀ 0, and
zn → 0 as n→∞. As TS−1 − λ = {{Sx, Tx− λSx} : x ∈ X} (see (2.3) and
(3.1)), there exists a sequence (vn) ⊂ X such that ‖Svn‖ = 1 for all n ∈ N,
Svn ⇀ 0, and Tvn − λSvn → 0 as n→∞. For n ∈ N let vn = un + yn with
un ∈ kerS and yn ∈ (kerS)⊥. Then ‖Syn‖ = 1 and Syn ⇀ 0. Since S maps
(kerS)⊥ bijectively onto the closed subspace ran S, it follows that yn ⇀ 0.
Hence, Tyn − λSyn ⇀ 0 so that Tvn − λSvn → 0 implies that Tun ⇀ 0.
But (Tun) is contained in the finite-dimensional subspace T kerS and thus
Tun → 0 as n→∞, which implies (λS − T )yn → 0.

Conversely, let (yn) ⊂ (kerS)⊥ be a sequence as in the lemma. Set
y′n := ‖Syn‖−1yn and xn := Sy′n as well as zn := λSy′n−Ty′n. Then {xn, zn} ∈
TS−1 − λ, ‖xn‖ = 1 for all n ∈ N, xn ⇀ 0, and zn → 0 as n → ∞. Hence,
TS−1 − λ /∈ Φ+(X,Y ) by Proposition 2.2. �

The following proposition is the second main result of this paper.

Proposition 5.4. Let X,Y be Hilbert spaces and S1, S2, T1, T2 ∈ L(X,Y ).
Assume that the following assumptions are satisfied.

1. S1 ∈ Φ+(X,Y ).
2. S2 ∈ Φ(X,Y ).

3. (T2 − T1)S†2S1 is a compact operator.

4. T1S
†
2(S1 − S2) is a compact operator.

Then T1S
−1
1 and T2S

−1
2 both are closed and

σ+
e2(T1S

−1
1 ) ⊂ σ+

e2(T2S
−1
2 ).

Proof. Let j ∈ {1, 2}. For λ ∈ C we haveAj(λ) = λSj−Tj = λ(Sj− Tj

λ ). Since
Sj ∈ Φ+(X,Y ), for |λ| sufficiently large we have that Aj(λ) ∈ Φ+(X,Y ) (see

[10, Theorem IV-5.31]). Therefore, TjS
−1
j is closed by Proposition 3.2 (d).

Assume that λ ∈ σ+
e2(T1S

−1
1 ). Then by Lemma 5.3 there exists yn ∈

(kerS1)⊥ such that ‖S1yn‖ → 1, yn ⇀ 0, and (λS1 − T1)yn → 0 as n → ∞.

We set y′n := S†2S1yn ∈ ranS∗2 = (kerS2)⊥, n ∈ N. Obviously, y′n ⇀ 0. Since
dim kerS∗2 <∞ and yn ⇀ 0, it follows from (5.1)

‖S2y
′
n‖ = ‖PranS2

S1yn‖ = ‖S1yn − PkerS∗2
S1yn‖ → 1

as n→∞. Also, setting K := T2 − T1,

T2y
′
n − λS2y

′
n = T2S

†
2S1yn − λ(S1yn − PkerS∗2

S1yn)

= KS†2S1yn + T1S
†
2S1yn − λS1yn + λPkerS∗2

S1yn

= KS†2S1yn + T1(S†2S1 − I)yn + λPkerS∗2
S1yn − (λS1 − T1)yn.

Now, the claim follows from Lemma 5.3, the compactness of K and PkerS∗2

and the fact that S†2S1 − I = S†2(S1 − S2)− PkerS2S
∗
2 . �

Theorem 5.5. Let X,Y be Hilbert spaces and S1, S2, T1, T2 ∈ L(X,Y )and let
S1, S2 ∈ Φ(X,Y ).
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(i) If (T2−T1)S†2S1, (T2−T1)S†1S2, T1S
†
2(S1−S2), and T2S

†
1(S1−S2) are

compact, then
σ+
e2(A1) = σ+

e2(A2). (5.5)

(ii) If S1S
†
2(T2 − T1), S2S

†
1(T2 − T1), (S1 − S2)S†2T1 and (S1 − S2)S†1T2 are

compact, then
σ−e2(A1) = σ−e2(A2). (5.6)

Proof. From Proposition 5.4 we obtain σ+
e2(T1S

−1
1 ) = σ+

e2(T2S
−1
2 ) and (5.5)

is a consequence of Proposition 3.4.
By assumption (cf. (2.8)) we have S∗1 , S

∗
2 ∈ Φ(Y,X) and T ∗2 − T ∗1

is compact. The assumptions in (ii) and (5.2) imply the compactness of
T ∗1 (S∗2 )†(S∗1 − S∗2 ) and of T ∗2 (S∗1 )†(S∗1 − S∗2 ). Proposition 5.4 yields

σ+
e2(T ∗1 (S∗1 )−1) = σ+

e2(T ∗2 (S∗2 )−1).

Hence we have together with Corollary 3.5 that

σ+
e2(A∗1) = σ+

e2(T ∗1 (S∗1 )−1) = σ+
e2(T ∗2 (S∗2 )−1) = σ+

e2(A∗2)

with A∗i (λ) := λS∗i − T ∗i for i = 1, 2. Therefore, λ ∈ σ+
e2(A∗1) if and only if

λ ∈ σ+
e2(A∗2). Now, (5.6) follows from (2.8) applied to the operators A∗1(λ)

and A∗2(λ). �

Remark 5.6. Let S ∈ L(X,Y ) and let T be a densely defined closed linear
operator in X. Set A(λ) := λS − T . Assume that µ ∈ ρ(A). Then we have
by definition

(TS−1−µ)−1 = {{Tx−µSx, Sx} : x ∈ domT} = {{y, S(T−µS)−1y} : y ∈ X}.
Using compactness of the perturbation of the corresponding linear relations
we obtain the following result: For i = 1, 2 let Ai(λ) = λSi − Ti with Si ∈
L(X,Y ) bounded and Ti closed and densely defined from X to Y and let
µ ∈ ρ(A1) ∩ ρ(A2) with

S1(T1 − µS1)−1 − S2(T2 − µS2)−1 compact

then σ±e2(A1) = σ±e2(A2) (cf. Proposition 3.4 and Proposition 4.2). Note that
the compactness of the resolvent difference does not depend on the choice of
µ. Furthermore, we have no inclusion assumption on the multivalued parts
as in [17].
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