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Abstract. The essential spectrum of operator pencils with bounded co-
efficients in a Hilbert space is studied. Sufficient conditions in terms
of the operator coefficients of two pencils are derived which guarantee
the same essential spectrum. This is done by exploiting a strong rela-
tion between an operator pencil and a specific linear subspace (linear
relation).
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1. Introduction

Its is a well-known fact that the essential spectrum of a linear operator is in-
variant under compact perturbations. Here we understand the essential spec-
trum as the complement of the (semi-) Fredholm domain. More precisely, we
investigate four kinds of essential spectra: the Fredholm essential spectrum,
the upper and the lower semi Fredholm essential spectrum and the semi Fred-
holm essential spectrum. For simplicity, we refer to those four kinds just as
the ”essential spectra”.

In many applications, e.g. in mathematical physics or in transport the-
ory, one is interested in the (essential) spectrum of operator pencils, see,
e.g., [8, 9] A linear operator pencil is a first order polynomial with bounded
operators as coefficients, that is, it is of the form

A1(N) =S, — T,

where A € C and S; and 77 are bounded operators acting between two
normed spaces. By definition (see, e.g., [13, 15]) a complex number A is in
the spectrum of the pencil A; if zero is in the spectrum of the operator
AS7] — Ty. In the same way the essential spectrum of A; is defined as the set
of all A € C such that the operator AS; — T} is no (semi-) Fredholm operator.
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We investigate the question which perturbations of the coefficients do
not change the essential spectrum. For this, consider a second operator pencil

Aa(N) = A\Sy — T,

where Sy and T are bounded operators acting between the same spaces as
S1 and T7. If S; — S5 and Ty — T3 are two compact operators, then obviously
also the difference

A1 (AN) — Az(N) = A(S1 — S2) — (Th — T)

is compact and, hence, the essential spectra of A; and Ay coincide. But the
essential spectrum of two operator pencils may coincide even if the differ-
ence of the coefficients is substantial. For example, let M be a bounded and
boundedly invertible operator. Then obviously

A(A) =M =T and Ay(\) =AM —TM = A, (\)M

have the same essential spectrum.

Here we make use of the following simple observation: Let S, T : X — Y
be bounded linear operators between two Hilbert spaces X and Y such that
the upper semi Fredholm essential spectrum of the pencil A(\) := AS — T is
not C. Then the essential spectra of A and T'S™! coincide (see Corollary 3.5
below). Note, that in general S is not invertible and here S~! and TS~ are
understood in the sense of linear relations (or, what is the same, multivalued
mappings, see [1, 5, 16]). That is, S~ and T'S~! are subspaces of Y x X and
Y x Y, respectively, given by

S~ :={{Sx,x}:x € X}, and
TS = {{z,2} : {z,y} € 57", {y,2z} €T, for some y € X} =ran [g] .

Addition and multiplication of two subspaces are defined in analogy to the
addition and multiplication of two linear mappings. In particular, we have
for A\ e C

TS™' — X\ ={{Sz,Tx — \Sz} : x € X}

and the notion of (essential) spectrum and resolvent set for linear relations
are defined similarly as for linear operators, for details we refer to Section 2
below.

Therefore, the relationship of the essential spectra of two linear operator
pencils A; and A5 is the same as the relationship of the essential spectra of the
linear relations 775 * and 7S5 *. Now one can utilize known results for linear
relations (see, e.g., [2]): If the difference of the two orthogonal projections onto
the subspaces 1757 Land 1555 1is compact, then the essential spectra of the
two pencils coincide. This difference can be expressed with the (pseudo-)
inverse Z; of the operator S7S; +T;T;, j = 1,2, and it has the form

SV 2\ St — 857585 S Z\Ty — SaZoTy )
TV 2,8t — Ty 2585 TZhTy — ToZoTy | :
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The first main result (cf. Section 5 below) shows that if (1.1) is compact then
the essential spectra of A; and As coincide.

The second main result of this paper (cf. Section 5 below) makes use
of the so-called singular sequences (cf. Section 2 below). If S; and S are
Fredholm, then the pseudo-inverses SI and Sg exist. If, in addition,

(T2 — T1)S§Sl, (T2 — Tl)SISQ, Tng(Sl — 52) and TQSI(Sl — SQ)

are compact, then the upper semi Fredholm essential spectra of A; and As
coincide. We prove similar results also for the lower semi Fredholm essential
spectrum.

2. Preliminaries on linear relations

Let X, Y and Z be Banach spaces. The set of all bounded linear operators
from X to Y is denoted by L£(X,Y). As usual, we set L(X) = L(X,X).
A linear relation L from X into Y is a subspace of X x Y and the set
of all linear relations from X into Y is denoted by LR(X,Y). Moreover,
CR(X,Y) is the set of all closed linear relations from X into Y. Also here,
we set LR(X) := LR(X,X) and CR(X) := CR(X,X). Each T € L(X,Y) is
identified with an element in CR(X,Y) via its graph.

Given a linear relation L € LR(X,Y), we introduce the following sets:

domL={ze X : {z,y} € L for some y € Y},
ker L = {x € X : {z,0} € L},
ranL ={y €Y : {z,y} € L for some = € X},
milL={yeY:{0,y} €L},

which are called the domain, the kernel, the range and the multivalued part
of L, respectively. The inverse of the linear relation L is given by

L' ={{y,z} €Y x X : {z,y} € L}. (2.1)
The linear relation aL with o € C is defined by
al = {{z,ay} € X xY : {z,y} € L}. (2.2)

The (operator-like) sum of two linear relations L, M € LR(X,Y) is defined
as

L+M:={{z,y+y}e X xY :{z,y} € L,{x,y'} € M}. (2.3)
If we assume that X =Y then in view of (2.2) and (2.3) we have
L-X=L-X={{z,y—z}:{z,y} € L}. (2.4)

The product of two linear relations L € LR(Y,Z) and M € LR(X,Y) is
defined by

LM ={{z,2} e X x Z : {z,y} € M, {y,z} € L for some y € Y}.

We recall some basic notions from Fredholm theory for linear relations, see
[5].
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Definition 2.1. Let L € LR(X,Y). The nullity and the deficiency of L are
defined as follows
nul L := dimker L, and

def L := codimran L := dim Y/ran L.

If either nul L < co or def L < oo, we define the indezx of a linear relation as
follows
indL :=nul L — def L,

where the value of the difference is taken to be ind L := oo if nul L is infinite
and ind L := —oo if def L is infinite.

Furthermore we define the set of upper (lower) semi Fredholm relations,
see e.g. [5],

P (X,Y):={LeCR(X,Y):nulL < oo and ran L is closed in Y},
®_(X,Y):={LeCR(X,Y):def L < oo and ranL is closed in Y},

and the set of Fredholm relations as
P(X,Y): =2, (X, Y)NP_(X,Y).

If X =Y, we write briefly ®,(X), ®_(X), and ®(X), respectively. The
following characterization of ®(X,Y) is based on [5, Theorem V.1.11].

Proposition 2.2. Let L € CR(X,Y) where X and Y are Hilbert spaces, then
the following are equivalent:
(i) L ¢ @, (X,Y).
(ii) There exists a sequence ({xn,yn}) C L such that ||zy|| =1 for alln € N,
z, — 0 and y, — 0.
(iii) There exists a sequence ({xn,yn}) C L such that ||z, | =1 for alln € N,
Zn — 0 and dist(y,, mul L) — 0.

Proof. For the proof of (i)=-(ii), assume first that dimker L = oo and choose
an infinite orthonormal system (z,,) in ker L. Then {x,,0} € L is a sequence
as required in (ii). Second, assume that ran L is not closed. Then there exist
a sequence (z,) C ranL and some z € Y\ran L such that z, — z. Choose
u, € (ker L)* such that {u,, z,} € L for each n € N. If (u,,) is bounded, then
(un,) has a subsequence (uy, ) such that w,, — u for some v € X. Then the
closedness of L and {up,, zn, } = {u,z} imply that {u, z} € L and thus z €
ran L, which is a contradiction. Hence, (u,,) is unbounded. It is no restriction
to assume that ||u,| — oo as n — co. We set z,, := uy,/||un|| € (ker L)+ and
Yn = zn/||tn]||. Then {zn,yn} € L, ||zn]| = 1 for all n € N and y,, — 0 as
n — oo. Then a subsequence of (x,,) converges weakly, hence we may assume
that x, — x for some = € (ker L)*. As {x,,,y,} — {z,0} and L is closed, it
follows that z = 0.

The implication (ii)=-(iii) is trivial. Thus, let us prove (iii)=(i). For
this, let ({zn,yn}) C L be a sequence as in (iii). Suppose that dimker L < oo
and that ran L is closed. Consider the linear relation

M :=LnN [(ker L)* x (mulL)*].
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Then M is obviously closed and (the graph of) an operator. Moreover, ker M =
{0} and ran M = ran L is closed. Hence M, considered as an operator from
dom M, equipped with the graph norm, is a bounded upper semi Fredholm
operator. Let x,, = u, +v,, and y,, = w,+2,, where u,, € ker L, v,, € (ker L),
w, € mulL, and z, € (mulL)*, n € N. Then x, — 0 and dimker L < 0o
imply uw, — 0 and |lv,|| — 1. Also, ||z,| = dist(y,, mulL) — 0. We have
{vn,2n} € M, that is, v,, € dom M and Mwv,, = z, — 0, which is a contra-
diction to the fact that M is an upper semi Fredholm operator (cf. [4, XI
Theorem 2.5]). O

In what follows, we introduce the adjoint of a linear relation. For this
we assume in addition that the spaces X and Y are Hilbert spaces equipped
with inner products (+,-)x and (-, )y, respectively. If no confusion arises, we
use for simplicity just the notion (+,-). The adjoint L* of L € LR(X,Y) is a
linear relation from Y to X, defined by

L*={{y,z} €Y x X : (y,v)y = (z,u)x for all {u,v} € L}.

Note that always L* € CR(Y, X). The following identities for L € LR(X,Y’)
are straightforward (see also [16, Section 14.1], [3, Proposition 2.4], and [12])

(L) = (@
(AL)* =XL*, X#£0,

ker L* = (ran L)%, (2.5)
(ran L*)* = ker L, (2.6)
L* = (LY~ (2.7)

The range of L is closed if and only if the range of L* is closed, see, e.g.
[3, Proposition 2.5]. This together with (2.5) and (2.6) implies that for all
LeCR(X,)Y)

Ledi(X,Y) ifandonlyif L* e &(Y,X). (2.8)

Next, we define the spectrum of a linear relation and introduce different types
of essential spectra as in [17], see also [6] for the operator case.

Definition 2.3. Let L € LR(X). The spectrum and the resolvent set of L are
defined by

o(L):={ eC:(L-)N"'eLX)} and p(L) :=C\ o(L),
respectively. The essential spectra of L are defined as

caa(L):={AeC : L-A¢ P (X)UD_(X)},
o5(L):={\eC : L-X\¢ dL(X)},
oe3(L):={Ae€C : L-X¢&d(X)}.



6 H. Gernandt, N. Moalla, F. Philipp, W. Selmi and C. Trunk

Note that L — A € ®4(X) requires L — A (and thus L) to be closed.
Hence, if L is not closed, we have o(L) = 001 (L) = 05(L) = o.3(L) = C.
Also, we obviously have

oe1(L) = 02‘2(];) No_y(L) and oe3(L) = JZ'Q(L) Uo,(L).

In particular,
o1 (L) C 05(L) C oes(L).

3. Essential spectra of the operator pencil A\S — T and the
linear relation 7°S~!

Throughout this section let X and Y be Banach spaces. Given S,T € L(X,Y),
we will establish a relationship between the (essential) spectra of the operator
pencil A(A) = AS — T and the associated linear relation

TS € LR(Y).

Note that S~ is the inverse of the graph of S viewed as a linear relation.
Then it follows from (2.1) and (2.4) that

TS ' ={{y, 2} : {y,a} € S7', {z,2} € T for some z € X}
={{Sz, Tz} :z € X} (3.1)

~ ran m | (3.2)

From this it is immediate that
dom (TS™!) =ran S, ker(TS ') = SkerT,
ran (TS™') =ranT, mul(TS™ ') = TkerS.

The spectrum and the essential spectra for a linear operator pencil are
defined similarly as for linear relations.

Definition 3.1. For an operator pencil A(A\) = AS — T with S,T € L(X,Y)
the spectrum o(A) and the resolvent set p(A) are defined as

o(A):={AeC : AS —T is not boundedly invertible},
p(A) = C\ o(A).

The essential spectra of A are given by
O1(A):={AeC : NS-T¢o,(X,)Y)UDP_(X,Y)},
05(A) :={AeC : \S—T ¢ d.(X,Y)},
oe3(A):={Ae€C : AS-T ¢ ®(X,Y)}.

The next proposition shows how the spectra of .4 and T.S~! are related
to each other.

Proposition 3.2. Let A(X\) = AS—T be an operator pencil with S;T € L(X,Y)
and A € C then the following holds.
(a) ker(TS™! —\) = Sker A()).
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(b) ran (T'S™! — \) = ran A(\).
(c) We have

ker A(\)
ker S Nker T~

(d) If o/ (A) # C, then TS™! is closed, i.e., TS™' € CR(Y). This is in

particular the case if p(A) # 0.
(e) We have o(TS™Y) C o(A).
(f) If ker SNkerT = {0}, then
o(TS™) =o(A).
Proof. From (2.3) and (3.1) it is easy to see
TSt~ A= {{Sz,Txr — \Sx} :x € X}

dimker(T'S™! — \) = dim

ker(AS—T)

which implies (a) and (b). Observe that the map [z] — Sz from _~G—=

to Sker(AS — T) is bijective which proves (c).

In order to prove (d) set Ny := ker S NkerT and let A € C such that
A(N) € &, (X,Y). Then ker A()\) is finite dimensional and, hence, closed. It
has a complementary subspace and we have

ker A(A\) = Ny + N, and X =ker AN+ M

with closed subspaces Ny C ker A(A) and M C X. Let {y,, 2, } be a sequence
in T'S~! which converges to {y, z} € Y xY. Then, by (3.1), we find a sequence
(zy) in X with
Yn = Sz, and z, =Tx,.

We have to prove that there exists some z € X such that Sz, — Sz and
Tz, — Tx. To this end, we write z,, = u,, + v, + w,, with u,, € Ny, v, € N1
and w, € M. Since A(\) maps M bijectively onto its (closed) range and
AN w, = AN)xy, = ASxy, — T, — Ay — 2z, it follows that (w,) converges
to some w € M. Hence, (Sw,) and (Tw,) converge and therefore (Svy)
converges. Since ker(S|y,) = {0}, (v,) converges to some v € N; and we
obtain Sz, = S(v, + w,) = S+ w) and Ta, = T (v, + wy) = T(v + w).

For the proof of (e) let A € p(A). Then T'S~! is closed by (d) and
ker(T'S™! — \) = {0}, ran (T'S™! — \) = Y by (a) and (b). Hence,

mul (TS~ — A) 7! =ker(TS™! — \) = {0}

and (TS~! — X\)7! is a closed operator in Y with domain Y. By the closed
graph theorem, it is an element of £(Y"). This proves (e). For (f), assume that
A € p(T'S™1) and, in addition, that ker S Nker T = {0}. Then ran A(\) =Y
by (b) and ker A(X) = ker S NkerT = {0} by (c). O

Remark 3.3. Note that the condition ker SNker T' = {0} in (f) is necessary for
p(A) to be non-empty. In fact, if z € ker S Nker T, x # 0, then x € ker A(\)
for all A € C and thus p(A) = 0.

The following proposition shows that also the essential spectra of the
pencil AS — T and the linear relation 7.S~! are intimately connected to each
other.
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Proposition 3.4. Let A(X\) = AS—T be an operator pencil with S,T € L(X,Y)
and A € C. Then we have

oL (TS™Y) Ccoly(A) and 05(TS™) Do, (A). (3.3)
If TS~ is closed, then

oo(TS™h) =0, (A). (3.4)
If dim(ker S NkerT') < oo, then
05(TS™h) =of(A). (3.5)

Hence, if TS~ is closed and dim(ker S NkerT) < oo, then
01 (TS™Y) =001 (A) and 0e3(TS™Y) = ge3(A).

Proof. From Proposition 3.2 (b) it follows that ran (T'S™! — X) is closed if
and only if ran A()\) is closed and def (TS~ — \) = def A(\). This proves
the second relation in (3.3). If A()\) € &, (X,Y) for some X € C, then T'S~1
is closed by Proposition 3.2 (d) and from Proposition 3.2 (a) we conclude
nul (7S~ — ) < nul (A(N)). Hence, TS~ — X € . (Y) and (3.3) is proved.

If TS~ is closed, then obviously A(\) € ®_(X,Y) implies TS~ -\ €
®_(Y), which shows (3.4). If dim(ker S NkerT) < oo, then TS~ — X\ €
¢ (Y) implies dimker A(\) < oo (see Proposition 3.2 (c)) and therefore
A\ € &4 (X,Y). O

The following corollary follows from Proposition 3.2 (d) and the fact
that A(A\) € ®,(X,Y) implies dim(ker S NkerT) < oo.
Corollary 3.5. If 05(A) # C (in particular, if p(A) # 0), then
0H(TST) =0h(A)  and  on(TST) = 055(A),
and therefore also

01 (TS = 0e1(A) and 0e3(TS™1) = o.3(A).

4. Essential spectrum of linear relations under perturbations

In this section we let X and Y be Hilbert spaces. We say that L,M &
CR(X,Y) are compact perturbations of each other if P, — Py is compact.
Here, P;, denotes the orthogonal projection onto the closed subspace L. If
p(L) N p(M) # 0, this is equivalent to (L — u)~1 — (M — p)~! being compact
for some (and hence for all) p € p(L) N p(M) (see [2]).

Lemma 4.1. Two linear relations L, M € CR(X,Y) in the Hilbert spaces
X, Y are compact perturbations of each other if and only if L* and M™* are
compact perturbations of each other.

Proof. Relation (2.7) and the unitary mapping U : X x Y — Y x X which
is given by
U(.’E,y) = (y7 —ZL’)
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yield L* = UL™*. Therefore
PL* —PM* :PULL _PUML :U(PLL —PML)U* :Uv(]DL—.P]\/[)Uq<

Hence, P+ — Py~ is compact if and only if P;, — Py is compact. O

Proposition 4.2. Let X,Y be Hilbert spaces and let LM € CR(X,Y) be
compact perturbations of each other. Then L € &4 (X,Y) if and only if M €
o, (X,Y). In particular,

oh(L) =05(M)  and  o,(L) =0n(M),
and therefore also
e1(L) = 01 (M) and Oe3(L) = 0e3(M).

Proof. Let L ¢ ®,(X,Y). Due to Proposition 2.2 there exists a sequence
({zn,yn}) C L with ||z,]| = 1 for all n € N, z, — 0, and y,, — 0. Set
{z),,yh} == Py{xn,yn} € M, n € N. Since {z,,yn} — 0, we conclude from

{x;zay;} = (PM - PL){Q?»,L, yn} + {xna yn}

and the compactness of Py — Py, that ||a) || — 1, ¥, — 0 as n — oo, and
x), — 0. Setting =/ := z /||z, | and y.! := y.,/||=}, ||, we obtain {z!,y/'} € L
with [|z)/|| = 1 for all n € N, 2/ — 0, and y,, — 0. Hence, Proposition 2.2
implies that M ¢ ®,(X,Y). This shows that L € &, (X,Y) if and only
if M € ®,(X,Y). Using this, Lemma 4.1, and (2.8), we obtain the same
statement with @ (X,Y) replaced by ®_(X,Y).

The remaining statements on the essential spectra follow from Propo-
sition 4.3 in [2] which implies that L and M are compact perturbations of
each other if and only if L — X and M — X\ are compact perturbations of each
other. (]

5. Essential spectrum of operator pencils under perturbations

In this section we give sufficient conditions for the equality of the essential
spectra of two operator pencils A; and Ay

./41 ()\) = )\Sl — T1 and ./42()\) = ASQ — T2

in terms of their coefficients Sy, 52,71, T> € L(X,Y). In the proofs of our
main theorems we use the above-established concept of the relationship be-
tween operator pencils and linear relations.

The first statement is obvious and follows from the well-known fact that
L(X,Y)NP®L(X,Y) is invariant under compact perturbations.

Proposition 5.1. Assume that To — 11 and Sy — S1 are compact. Then
061(A1) = Uel(AQ), 032(./41) = 02:2(}12)7 and O’eg(Al) = 063(./42).
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Let A€ L(X,Y). It follows from ker A = ker A*A and the closed range
theorem that A has closed range if and only if the same is true for A*A.
In this case, X = ker A @ ran A*, Y = ker A* @ ran A and the restriction
Ao = Alyan a+ : ran A* — ran A is boundedly invertible. Recall that the
pseudo-inverse At of A is then defined by

Al = Ay ' Pran a.

For an overview of equivalent definitions of the pseudo-inverse of linear op-
erators we refer to [7, Chapter II]. It is immediate that

Prana = AAT (5.1)
and one can show, see e.g. [11, Theorem 4], that
(AT = (A" (5.2)
Moreover we have from [7, Theorem 2.1.5] that
AT = (A*A)TA* = A*(AA")T. (5.3)

Our first main theorem is the following.
Theorem 5.2. Let X,Y be Hilbert spaces and Si1,S2,T1,To € L(X,Y) with
corresponding pencils
Al ()\) = )\Sl - T1 and AQ()\) = )\Sg — TQ.
Assume that for both j = 1,2 the operator S;S; + T;T; € L(X) has closed
range and that the operator

81718t — 857585 S1Z0Ty — 8275T3
TV\Z,\SF — Tv 7583 TV Z\ T — TaZoTy

is compact, where

€LY xY) (5.4)

Zj = (S8 +T; ), j=1,2
Then
Oea(A1) = 05(Az).
If, in addition, S;S; +T;T; € ,(X) for j = 1,2, then
0l (A1) = 05(As).

Proof. Let j = 1,2 and set A; := [%] Then A7A; = S7S; + T;T; implies
that A; has closed range which means that the relation 735, Lis closed. As
discussed before, we find with (5.3) that

S S;Z;S;  S;ZiT;

TJ 2 155 17 = [TijS; T;2;T7

@@&mmm@&@@[
is the orthogonal projection onto ran A; = Tij*l. Hence, the operator in
(5.4) is the difference of the orthogonal projections onto the closed subspaces
TS and TS5 ! of Y XY, Also note that ker SjNker T; = ker A; = ker ATA;.
Now, the statements of Theorem 5.2 follow from Proposition 4.2 and Propo-

sition 3.4. O
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Ezample. (a) Let us consider the example from the introduction, where X =
Y and A1(A) = M — T and A2(X) = (M —T)M with T, M € £(X) and M
boundedly invertible. Clearly, all the essential spectra of A; and As coincide,
respectively. We have S; = 1,17y =T, S = M and 15 = TM. Then both
SIS+ T7Th =TI +T*T and S35 + T5Ty = M*(I +T*T)M are boundedly
invertible and the operator matrix in (5.4) is the zero matrix. Indeed, we
have

TQSQ_I =ran [T]\]{/f} =ran HJ = TlSl_l.

(b) Let X,Y be Hilbert spaces and let My, My € L(X,Y) be boundedly
invertible. Let Kg, Kr € L(Y) be compact such that —1 ¢ o(Kg) No(K7).
Then the operator R := (I + Kg)*(I+ Kg)+ (I + Kr)*(I + Kr) is boundedly
invertible. Indeed, R is a compact perturbation of 27 and therefore Fredholm
with index zero and the condition —1 ¢ o(Kg) N o(Kr) guarantees that
ker R = {0}. Consider

S1=Ty=M;, and S5 = (IJrKs)MQ, T = (I+KT)M2.

Using the invertibility of M7, M5, we note

TS =ran Eﬂ =ran {%ﬂ =ran ﬁ]

and

TS5; ' = ran [SQ] = ran {(I N KS)MQ] = ran {I—F KS} .

T (I + K1) M, I+ Kr

Set Zy = (I +Ks)*(I+ Ks)+ (I + Kr)*(I +Kr))~'. In this case, the
operator in (5.4) reads as

AT —(I+Kg)Zo(I+Ks)* 21— (I+Kg)Zo(I+ Kp)*
I — (I + Kp)Zo(I + Kg)* 31— (I + K7)Zo(I + Kp)*|
Obviously, this operator is compact as
1
P A
3 2

is compact. Hence, the conditions in Theorem 5.2 are satisfied and all essential
spectra of the two pencils

Al()\) = )\Sl - T1 and AQ()\) = )\Sg — T2
coincide.

Lemma 5.3. Let X,Y be Hilbert spaces, S,T € L(X,Y), S € &,(X,Y),
and A € C. Assume furthermore that TS™' is closed. Then we have \ €
ol (TS™Y) if and only if there exists a sequence (y,) C (ker S)* such that
Synll = 1, yn — 0, and (AS — T)y, — 0 as n — oco.
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Proof. Assume that TS™! — X\ ¢ ®,(X,Y). By Proposition 2.2 there exists
a sequence {x,,z,} € TS~ — X\ with ||x,|| = 1 for all n € N, z,, — 0, and
2n —0asn—o00. As TSt — X\ = {{Sz,Tx — \Sz} : x € X} (see (2.3) and
(3.1)), there exists a sequence (v,) C X such that ||Sv,|| =1 for all n € N,
Sv, — 0, and Tv,, — ASv,, = 0 as n — oco. For n € N let v,, = u,, + y, with
u, € ker S and y, € (ker S)*. Then | Sy,| = 1 and Sy, — 0. Since S maps
(ker S)* bijectively onto the closed subspace ran S, it follows that y, — 0.
Hence, Ty, — ASy, — 0 so that Twv, — ASv,, — 0 implies that Tu, — 0.
But (Tu,) is contained in the finite-dimensional subspace T ker S and thus
Tu, — 0 as n — oo, which implies (AS — Ty, — 0.

Conversely, let (y,) C (ker S)* be a sequence as in the lemma. Set
vl = ||Synltyn and z,, := Sy, as well as z,, := ASy,,—Ty,,. Then {z,, 2, } €
TSt — X\, ||lzn|| =1 for all n € N, z,, — 0, and z, — 0 as n — oo. Hence,
TS~ —\¢ &, (X,Y) by Proposition 2.2. O

The following proposition is the second main result of this paper.

Proposition 5.4. Let X,Y be Hilbert spaces and S1,52,T1,T> € L(X,Y).
Assume that the following assumptions are satisfied.

1. S € &, (X,Y).

2. S, € d(X,Y).

3. (Tr — Tl)S;Sl 18 a compact operator.

4. Tlsg(Sl — S2) is a compact operator.
Then T1S7 " and TySy ' both are closed and

O';E(Tlsfl) C 0':2(T25271).
Proof. Let j € {1,2}. For A € C we have A;(\) = \S;—T; = )\(Sj—%). Since
S; € @ (X,Y), for |A| sufficiently large we have that A;(\) € . (X,Y) (see
[10, Theorem IV-5.31]). Therefore, Tijl is closed by Proposition 3.2 (d).
Assume that A\ € o/5(7T15;"). Then by Lemma 5.3 there exists y, €

(ker S1)* such that ||S1yn| — 1, yn — 0, and (AS; — T1)y, — 0 as n — oc.
We set g, := S1S1yn € ran S35 = (ker S2)*, n € N. Obviously, y/, — 0. Since
dimker S5 < oo and y,, — 0, it follows from (5.1)

15295 || = || Pran 55519nll = 15190 — Peer s3S1ynll — 1
as n — oo. Also, setting K := T, — 17,
Toyl, — AS2yl, = T285S1yn — A(S1yn — Prer 53.519n)
= KS}S1yn + T1S3S15n — AS19n + MPuer 55 S19n
= KS}S1yn + T1(S381 — 1)y + MPrer 53 519n — (AS1 — T1)Yn.
Now, the claim follows from Lemma 5.3, the compactness of K and Per s;
and the fact that S35, — I = S;(Sl —59) — Pier 8,55 O

Theorem 5.5. Let X,Y be Hilbert spaces and S1,S2,T1,To € L(X,Y)and let
S1,52 € ¢(X,Y).
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(i) If (Ty —T1)S181, (T —T1)S1 Sy, Ty SY(Sy — S,), and TyS](Sy — S5) are
compact, then

o h(A1) = 055 (As). (5.5)

(i) If S1.53(T — 1), S28](To —Ty), (Sy — S2)SITy and (Sy — S2)SiTy are
compact, then

09(A1) = 05(Az). (5.6)

Proof. From Proposition 5.4 we obtain o5 (T1S7!) = 05(T2S5 ") and (5.5)
is a consequence of Proposition 3.4.

By assumption (cf. (2.8)) we have S7,5; € ®(Y,X) and Ty — T
is compact. The assumptions in (ii) and (5.2) imply the compactness of
Ty (S35)T(Sy — S%) and of Ty (S7)T (S — S3). Proposition 5.4 yields

oo (T7 (7)) = o (T3 (S5) 7).
Hence we have together with Corollary 3.5 that
0hH(A}) = 0L (T7 (S)71) = 05 (T5(S3) ™) = 05 (A3)
with A% ()\) := AS} — T} for i = 1,2. Therefore, A\ € 05(A}) if and only if

A € ol (A5). Now, (5.6) follows from (2.8) applied to the operators Aj(\)
and A5()). O

Remark 5.6. Let S € £L(X,Y) and let T be a densely defined closed linear
operator in X. Set A(X\) := AS — T. Assume that p € p(A). Then we have
by definition

(TS™'—p)™t = {{Te—pSz, Sz} : 2 € dom T} = {{y, S(T—puS) 'y} :y € X}.
Using compactness of the perturbation of the corresponding linear relations
we obtain the following result: For i = 1,2 let A;(A\) = AS; — T; with S; €
L(X,Y) bounded and T; closed and densely defined from X to Y and let
w € p(A1) N p(Az) with

S1(Ty — pS1) ™" — So(To — pS2)™"  compact
then 05( A1) = 05(As) (cf. Proposition 3.4 and Proposition 4.2). Note that

the compactness of the resolvent difference does not depend on the choice of

. Furthermore, we have no inclusion assumption on the multivalued parts
as in [17].
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