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Abstract
Technische Universität Ilmenau

Department of Electrical Engineering and Information Technology
Electronic Measurement Engineering Group

Design, Implementation, and Test of a Tri-Mode Ethernet MAC on an FPGA

by Philipp Kerling

Ethernet is a mature communication technology with a sizable number of advantages for
sensor networks and many other use cases. Applications interact with a media access con-
trol (MAC) sublayer to get packets from and to the network. This thesis presents the design,
implementation, and test of an Ethernet MAC targeted at FPGAs in VHDL. It supports full-
duplex interfacingwith an Ethernet physical layer integrated circuit via the standardmedia-
independent interface (MII) variants MII and GMII at link speeds of 10, 100, and 1000 Mb/s.
In contrast to prior solutions, it is devised primarilywith simplicity inmind, both in external
usage and in internal operation. Users benefit from the straightforward FIFO interface of-
fered while nevertheless being able to send and receive at almost full Gigabit Ethernet speed.
The solution is designed for and verified on a Trenz Electronic GmbH GigaBee micromodule
with a Xilinx Spartan-6 family FPGA.

Ethernet ist eine ausgereifte Kommunikationstechnologie mit vielen Vorteilen für Sensornetzwerke
und einer Vielzahl anderer Einsatzbereiche. Anwendungen interagierenmit einer sogenanntenMedia-
Access-Control-(MAC)-Unterschicht, um Pakete vomNetzwerk zu empfangen und zu versenden. Diese
Arbeit stellt den Entwurf, die Implementierung und den Test einer in VHDL umgesetztenMAC-Schicht
für Ethernet auf FPGAs vor. Die Kommunikation mit einem integrierten Schaltkreis, der die Bitüber-
tragungsschicht von Ethernet umsetzt, erfolgt über das standardisierte Media-Independent Interface
(MII) in den Varianten MII und GMII. Dabei werden Verbindungsgeschwindigkeiten von 10, 100 und
1000 Mb/s im Vollduplex-Modus unterstützt. Im Gegensatz zu bisherigen Lösungen liegt der Schwer-
punkt des Entwurfs auf Einfachheit sowohl in der externen Benutzung als auch den internen Abläufen.
Benutzern kommt die unkomplizierte FIFO-Schnittstelle zugute, mit der sie gleichzeitig bei nahezu vol-
ler Gigabit-Ethernet-Geschwindigkeit senden und empfangen können. Die MAC-Schicht wurde für ein
GigaBee-Mikromodul der Trenz Electronic GmbH mit einem FPGA der Spartan-6-Familie von Xilinx
entworfen und ebenfalls damit geprüft.

i
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Chapter 1

Introduction

Modern electronic sensors are very sophisticated pieces of equipment that can, among other
things, improve the safety and security of human beings. The Electronic Measurement Engi-
neering Group at Technische Universität Ilmenau has been researching the use of a not yet
widely used radio sensor technology called ultra-wideband for a wide range of applications
such as breast cancer detection [1], buried weapon detection [2], or vitality monitoring of
senior citizens [3], with promising results.

In the latter use case described by Sachs and Herrmann, a network of ultra-wideband radar
sensors monitors apartments of elderly people and aims to automatically detect when they
e.g. fall over or exhibit anomalous breathing behavior. In contrast to previous solutions,
the system provides data continuously and can operate without interaction with the subject,
greatly improving practical usability in many dangerous situations.

The measurements from multiple sensors are fed into a central assistance system running
on a personal computer that combines and interprets the individual sensor values, necessi-
tating a feasible method of data exchange. The Electronic Measurement Engineering Group
currently uses universal serial bus (USB) version 2.0 technology for this purpose, but has en-
countered considerable limitations with this approach. Most importantly, the maximum ca-
ble length (without signal repeaters) of 5m [4] is impractical for devices distributed through-
out e.g. an apartment and even though the standard allows for a maximum of 127 devices
on one bus, performance problems were encountered when connecting several sensors.

It is desirable to replace USB with another standard connection technology that does not
exhibit these problems, scales better to a higher number of sensor devices, and, at the same
time, does not lower other factors such as the data rate below what is achievable with USB
2.0. The well-known Ethernet technologies for local area networks [5] provide for all of
that. To be specific, they allow for cable lengths of up to 100 m at a data rate of 1000 Mb/s,
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Chapter 1 - Introduction 2

even higher than the 480 Mb/s signaling rate of USB 2.0. Ethernet is also a very mature
technology, making related equipment available at low prices. As more than 95 percent of
all wired local area networks already use it [6], measuring devices can be easily integrated
there. The downside of this is that the implementation of standard protocols running on
top of Ethernet such as the Internet Protocol is quite complex. Contrary to USB where inte-
grated circuits providing thewhole protocol stack such as the popular FX2 family by Cypress
Semiconductor Corp. [7] exist, similar products for Ethernet are rare.

The preprocessing of sensor data is currently performed by field-programmable gate arrays
(FPGAs), a special type of programmable circuits, on commercial off-the-shelf circuit boards.
To not incur any additional cost, the FPGAs should take care of as much of the Ethernet
communication process as possible. They can indeed handle at least part of it by addressing
nodes on the network and encapsulating data into transmission units (packets). The other
part consists of processing and generating the physical signals on the cable. Most FPGAs do
not have the capability to perform this function, but special integrated circuits exist for this
purpose. Communication with this circuit and the aforementioned packet encapsulation is
the responsibility of a media access control (MAC) layer.

The goal of the present thesis is to design, implement, and test an Ethernet MAC on an FPGA
that can then be used in ultra-wideband and other sensor devices to communicate with a
central data capture and processing entity. The TE0600 FPGA board manufactured by Trenz
Electronic GmbH [8] is used as primary target platform for implementation and verification
purposes. It already includes an Ethernet physical layer chip. To maximize the suitability
of the design for the UWB sensor network, it should:

• be easy to use, i.e. have a generic and familiar interface,

• be easy to understand and maintain (this also requires the source code to be readily
available),

• be available free of charge,

• support the most common Ethernet link speeds of 10, 100, and 1000 Mb/s,

• be able to receive and transmit data at a rate very close to the maximum allowed by
the Ethernet standard,

• communicate with a physical layer integrated circuit (IC) using the standard media-
independent interface, and

• work on the TE0600 board, but also be designed with low-effort portability to other
boards and FPGAs in mind.
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Within the goals outlined above, portability to other FPGAs is considered secondary.

In contrast, objectives that are not the focus of the present thesis include:

• minimizing the FPGA resources used,

• supporting all possible Ethernet features such as flow control, multicast reception,
and half-duplex connections, and

• implementing protocols on top of Ethernet.

For developing hardware structures for programmable logic devices, it needs to be possible
to describe the functionality of digital electronic circuits using a formalized language. Every
language that is primarily intended not for software development but this purpose is called
a hardware description language (HDL). The two main competitors in this field are Verilog-
HDL andVeryHigh Speed Integrated Circuits HardwareDescription Language (VHSICHDL or
VHDL) [9]. Only VHDL revision VHDL-931 as standardized in [10] will be considered for this
MAC implementation. An explanation of the language is outside the scope of this thesis, so
the reader is assumed to be familiar with at least the basic concepts of VHDL. A practically
oriented introduction to the language offers Kafig, for instance, in [11], while a thorough
discussion of all aspects can be found in “The Designer’s Guide to VHDL” [12] by Ashenden.

In the present thesis, Chapter 2 will first of all introduce the primary technologies required,
Ethernet and FPGAs, in more detail. We will then discuss prior implementations of Ether-
net MACs on FPGAs and study the target hardware in Chapter 3, concluding the preliminary
considerations. The next topic in Chapter 4 is the design of the MAC including an examina-
tion of the trade-offs that were made, followed by its implementation in Chapter 5. There,
attention is drawn to a few points of special relevance to the core and the goals of this thesis.
Chapter 6 shows how and with what results the functionality was tested before the presen-
tation of theMAC sublayer ends in Chapter 7 with a resume of what was achieved and where
to go from there.

1VHDL-93 will be used because tool support for the more modern VHDL-2008, which allows for simpler con-
structs in many cases and would in theory be preferable, is still very limited.



Chapter 2

Fundamentals

First, we take a look at the Ethernet technologies for use in local and metropolitan area net-
works (LANs andMANs). They form the very foundation of the work presented in this thesis.
The other building block is programmable hardware, introduced in the section directly fol-
lowing.

2.1 Ethernet (IEEE Std 802.3)

The Ethernet family of technologies was standardized by the IEEE as IEEE Std 802.3™ for the
first time in 1983 [13] describing half-duplex communication over copper wire at a maxi-
mumdata rate of 10Mb/s. Since then, a lot of additional features have been added, including
full-duplex operation and higher data rates of first 100 Mb/s (referred to as Fast Ethernet),
then 1000 Mb/s (referred to as Gigabit Ethernet) and most recently up to 100 Gb/s, an as-
tounding increase by four orders of magnitude. This has allowed Ethernet to become the
dominant technology used in computer LANs worldwide: more than 95 percent of all wired
local area networks use it [6]. The latest revision as of the writing of this thesis is IEEE Std
802.3-2012 [5], published 2012-12-28. All further references to the standard pertain to this
revision.

2.1.1 Overview

A layered architecture is described in the document which, at a high level of abstraction, dif-
ferentiates between the physical layer (PHY) and the media access control (MAC) sublayer.
The main responsibility of the physical layer is to transmit arbitrary opaque data over a
physical medium while the media access control has to take care of encapsulating the pay-
load into valid Ethernet frames, addressing nodes on the network, and error detection. This

4



Chapter 2 - Fundamentals 5

is intentionally very similar to the lower layers of the ISO Open Systems Interconnection
model (OSI model, ISO/IEC 7498-1 [14]) which describes communication as interaction of ab-
stract layers with well-defined responsibilities as shown in Figure 2.1. Layers communicate
only with the layers directly above and below them. As long as the interfaces are compatible,
the implementation of a layer can be freely exchanged with another one. The Ethernet PHY
layer directly corresponds to the physical layer of the OSI model while the MAC sublayer
together with the logical link control (LLC) sublayer form the OSI data link layer. The LLC
sublayer (shown with dashed border in the figure) is not mandatory and not specified in
IEEE Std 802.3.

Within the context of the standard, the operation of the MAC sublayer is always identical
no matter what physical layer is used. Conceptually, it can only send and receive single bits,
which makes an additional reconciliation sublayer located between the MAC sublayer and
the physical layer necessary. Its only purpose is to translate this very generic interface to
the media-independent interface (MII) accepted by a given physical layer. It is called media-
independent because although it depends on the PHY implementation, usually all specified
PHY variants that support the same transmission speed use the same MII. The interface
between the physical layer and the physical medium is called media-dependent interface
(MDI) accordingly. Throughout this thesis, the acronym PHY will be used not only to refer
to the layer but also a device that implements Ethernet physical layer functionality.

Application

OSI reference model layers

Presentation

Session

Transport

Network

Data link

Physical Physical layer (PHY)

Reconciliation

Media-independent interface
(MII)

Media access control (MAC)

Logical link control (LLC) or other MAC client

Medium

Media-dependent interface
(MDI)

Higher layers
...

Ethernet layers

Figure 2.1: IEEE 802.3 simplified layer architecture in relation to the OSI reference model.
Adopted from [5, fig. 1-1].
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The higher layers are usually comprised ofmembers of the Internet protocol suite: the Inter-
net Protocol (IP) for the network layer, the Transmission Control Protocol (TCP) or the User
Datagram Protocol (UDP) for the transport layer, and arbitrary session, presentation, and
application layer protocols such as the Hypertext Transfer Protocol (HTTP). As this thesis
focuses on the data link layer, we will not discuss them further.

Of all physical layer technologies stated in IEEE Std 802.3, the ones most commonly used
today are 100BASE-TX with a data rate of 100 Mb/s and 1000BASE-T with a data rate of
1000 Mb/s on copper wires [6]. The 10 Mb/s transmission that has initially spawned the Eth-
ernet standardization is preserved under the name 10BASE-T but is not in wide usage any
more. Since 10BASE-T, 100BASE-TX, and 1000BASE-T all share a shielded twisted pair copper
wire as defined in the standard TIA/EIA-568-A as their physical medium, it is common for
network devices to support multiple standards. A backwards-compatible auto-negotiation
procedure is in place that ensures that link partners establish a connection at the fastest
possible mode.

Although half-duplex operation with multiple devices on a shared bus was the initially pre-
dominant formof Ethernet setups, full-duplex operationhas replaced it inmost installations.
It is safe to assume that Gigabit Ethernet is not practically used in half-duplexmode at all [6].
Using the same line for multiple nodes means that collisions are bound to occur when more
than one node tries to access the shared medium at the same point in time. A complicated
procedure called carrier sense multiple access with collision detection (CSMA/CD) is used
in Ethernet to resolve such situations by detecting that a collision has occurred and retry-
ing the transmission after a random amount of time [6]. In contrast, full-duplex Ethernet
mandates that all connections are point-to-point with exactly two devices on the link where
collisions are physically impossible. Central switches with multiple ports connect the nodes
to form a network and replace the outdated bus topology. Larger commercially available
switches usually have around 50 ports but can of course also be connected again to other
switches. The benefit of this architecture is vastly improved performance both between
two nodes and in the network as a whole. In full-duplex operation, almost the full 1000Mb/s
1000BASE-T transmission speed can be achieved in each direction between two nodes trans-
mitting to each other simultaneously. Using a single switch port per device also allows a
different physical layer and thus data rate to be used for each node [5]. This is crucial as not
all network participants may support the same and newest Ethernet technology.
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2.1.2 Media-independent interface

Since the goal of this thesis is to implement amedia access control sublayer for Ethernet, the
media-independent interface situated between the MAC and the physical layer is of special
importance. If the MAC is separate from the PHY, the latter is usually implemented as an
integrated circuit (IC) connected to the MAC unit via electrical wires on a printed circuit
board. The electrical, signal timing, and signal functional characteristics of this connection
are defined in the MII specifications.

A lot of different MII variants have been proposed both directly in IEEE Std 802.3 and by the
telecommunication industry. They differ in their required number of signal lines, supported
data rates, and interface clock speeds. An overview of the most important ones is provided
in Table 2.1. Link speeds refer to the supported data rates on the physical layer while clock
rate designates the maximum speed of the MII clock. Furthermore, double data rate (DDR)
indicates transmission of data on both clock edges [15], thereby doubling the interface data
rate but imposing stricter timing constraints on both sides. Using only one clock edge, in
contrast, is called single data rate (SDR). All MIIs that do not use DDR transmit data on the
rising clock edge only.

In order to support all common data rates of 10, 100, and 1000 Mb/s, either a single MII that
supports all speeds such as RGMII or SGMII can be used, or switching between different MIIs
that in sum can handle all cases such as MII plus GMII is necessary. The latter two interface
variants are explained below in more detail.

Media-independent interface (MII) (without any prefix) is the oldest of all mentioned vari-
ants andwas specified for the Fast Ethernet family (100Mb/s), but also supports operation at
10 Mb/s link speed. It offers full-duplex operation through completely separate data paths
for receiving and transmitting data. The data buses called TXD and RXD are 4 bit wide each
and synchronous to the rising edge of their respective clock TX_CLK and RX_CLK. The de-
tailed timing characteristics are given in clause 22.3 of [5]. Both the RX and TX path clock

Table 2.1: Comparison of MII specifications

Name # Pins Link speeds [Mb/s] Clock rate DDR Source
MII 16 10, 100 25 MHz No [5, clause 22]

RMII 8 10, 100 50 MHz No [16]
GMII 24 1000 125 MHz No [5, clause 35]

SGMII 4 10, 100, 1000 625 MHz Yes [17]
RGMII 12 10, 100, 1000 125 MHz Yes [18]

TBI 24 1000 125 MHz No [5, clause 36.3]

MII: Media-independent Interface, RMII: Reduced media-independent interface, GMII: Gigabit media-
independent interface, SGMII: Serial gigabit media-independent interface, RGMII: Reduced gigabit media-
independent interface, TBI: Ten-bit interface.
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is sourced by the PHY. It has a frequency of 25 MHz at 100 Mb/s operation and 2.5 MHz at
10 Mb/s operation. Additionally, there are control signals for transmission error (TX_ER,
RX_ER) and data validity indication (TX_EN, RX_DV) per direction as well as carrier sense and
collision detection signals needed for CSMA/CD in half-duplex linkmodes. Lastly, the out-of-
bandMII management interface (MIIM) is included for exchanging configuration and status
data with the PHY. It is a simple serial interface comprised of two wires with the clock signal
MDC always provided by theMAC and the data signal MDIO by either entity as needed. A basic
vendor-independent register set that every PHY that claims to supportMII has to implement
is given in Table 22-6 of the Ethernet standard [5]. It offers functionality for e.g. detecting
whether a link has been established, perform a reset, or manually configure the link param-
eters speed and duplexmode. The current auto-negotiated link speed can be read indirectly
by querying the capabilities of the link partner and choosing the fastest supported speed.

Gigabit media-independent interface (GMII) is the name of the MII variant for the Gigabit
Ethernet family and can be seen mostly as an extension to the original Fast Ethernet MII.
The data bus width is doubled to 8 bits and the clock rate quintupled to 125 MHz to account
for the tenfold increase in data rate from 100 Mb/s to 1000 Mb/s. This means that timing
margins are a lot smaller: the window during which data is guaranteed to be valid at the re-
ceiver is shortened from 20 ns with MII to 2 ns per clock cycle. For the TX path, the clock is
now called GTX_CLK and provided by the MAC instead of the PHY because wire propagation
and processing delays at the MAC would make it difficult to achieve correct timing other-
wise. This is called source-synchronous clocking [19]. The interface is otherwise function-
ally identical for normal data transfer and management. As can be seen in Figure 2.2 which
provides an overview of signal connections needed, many pins can be shared in devices sup-
porting both MII and GMII. There are three groups, from top to bottom: transmit direction

MAC PHY

TX_EN
TXD<3:0>
TXD<7:4>
TX_ER
TX_CLK
GTX_CLK

RX_DV
RXD<3:0>
RXD<7:4>
RX_ER
RX_CLK

MDC
MDIO

MII/GMII MII only GMII only

Figure 2.2: Signals used by MII and GMII in full-duplex operation. Adopted from [5, fig.
22-3] and [5, fig. 35-2].
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signals synchronous to TX_CLK (in 10/100 Mb/s mode) or GTX_CLK (in 1000 Mb/s mode), re-
ceive direction signals synchronous to RX_CLK, and the management signal synchronous to
MDC. Even when the TX data lines are shared between both variants, their differing clock
structure complicates the clock distribution and data output architecture in MACs.

2.1.3 Packet/frame structure

As we have already discussed, the same conceptual media access control sublayer is used for
all Ethernet variants. This also means that the Ethernet packet and MAC frame formats are
identical no matter which transmission technology or speed is used, greatly simplifying de-
vices that have to deal with more than one possible combination [6]. In the context of IEEE
Std 802.3, a MAC frame contains all control and data information and an Ethernet packet
“consists of a MAC frame [...] preceded by the Preamble and the Start Frame Delimiter” [5,
clause 1.4.299]. These two added header fields have a combined length of 8 byte in total and
their only purpose is synchronization at the physical layer [6]. When transmitting or receiv-
ing data, the full Ethernet packet is put on the media-independent interface sequentially.
In the following chapters of this thesis, the general term packet (as opposed to Ethernet
packet) will be used to denote MAC frames.

Besides the actual client data, the MAC frame contains the destination address, source ad-
dress, a 2-byte length/type field that contains either the length of the frame or a MAC client
protocol type indication exclusively, optional padding, and the 4-byte frame check sequence
(FCS). Every Ethernet network interface controller has its own globally unique address with
a length of 6 bytes. The FCS is a checksum calculated over the whole MAC frame minus the
FCS itself according to a standard algorithm called cyclic redundancy check (CRC) defined in
[5, clause 3.2.9]. Many common transmission errors at the physical layer like single flipped
bits or sequences of corrupted bits can be detected with this checksum [20]. A general ex-
planation of CRC calculation can be found e.g. from Halsall [21].

The achievable total performance of Ethernet is limited by the overhead introduced through
the preamble and the interpacket gap (IPG) which requires a minimum duration of 96 bit
times without activity after every packet transmitted. The maximum size of a normal Eth-
ernet frame is 1518 bytes, but shorter frames are permitted down to a minimum of 64 bytes.
When the payload is very short, the frame has to be padded to meet the requirement. As
the overhead occurs per packet, data rate is at maximum when a lot of client data is trans-
mitted in each one and at minimum when only short frames are sent. To illustrate the vast
difference, we compare the achievable user data rate at 1 Gb/s link speed for both extremes.
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The static amount of bytes added by headers and the FCS in every MAC frame nOverhead,frame

is

nOverhead,frame = 2nAddress + nLength/type + nFCS
= 2 · 6+ 2+ 4

= 18,

where nx is the number of bytes needed for header element x, respectively. The only dynamic
length field is the padding which has a byte length of

nPadding = max{0, nMin.framesize − nOverhead,frame − nData}

= max{0, 64− 18− nData}

= max{0, 46− nData}

depending on nData. Combined with the Ethernet packet preamble and the IPG they form the
total amount of overhead bytes per packet nOverhead as follows:

nOverhead = nPreamble + nSFD + nOverhead,frame + nPadding + nIPG
= 7+ 1+ 18+max{0, 46− nData}+ 12

= 38+max{0, 46− nData}.

The achievable user data rate r(nData) in the case of a continuous Gigabit Ethernet transmis-
sion of packets with nData bytes of payload is then

r(nData) =
nData

nData + nOverhead
· 1 Gb/s = nData

nData + 38+max{0, 46− nData}
· 1 Gb/s.

Substituting one as the minimum number of bytes for nData, we get

r(1) = 1
1+ 38+ 45 Gb/s = 1

84 Gb/s ≈ 11.9Mb/s.

In contrast, themaximumnumber of payload bytes is themaximum frame size of 1518 bytes
minus nOverhead,frame, resulting in 1500 bytes. The user data rate is then

r(1500) = 1500
1500+ 38 Gb/s = 1500

1538 Gb/s ≈ 975.3Mb/s.

The difference is thus about two orders of magnitude, but the maximum rate achievable by
using big packets is near the physical layer rate of 1000 Mb/s.
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2.2 Hardware design with FPGAs

After introducing the networking technology that has to be supported, we can now continue
with a look at the general type of hardware onwhich the implementation takes place. A field
programmable gate array (FPGA) is the most complex variant of a programmable logic de-
vice (PLD) and “contain[s] digital logic cells and programmable interconnect” [9]. The logic
elements can be connected together to form a circuit that realizes arbitrary functions when
programmed accordingly. This is conceptually similar to a microprocessor which can also
perform awide range of functionality but is limited to sequential execution of a piece of soft-
ware and a specific set of instructions that can be processed. In contrast, an FPGA operates
at a much lower abstraction level with inherent parallelism, leading to better performance.
This also means that developing designs is vastly different from software programming and
in many cases more complicated. In fact, microprocessors themselves can be implemented
on FPGAs and it is common to do so in order to combine the benefits of both concepts [22].
The general components of an FPGA are outlined below, but if more information about the
general design process is desired, [23] will offer a practical introduction.

2.2.1 Components

The basic programmable logic functionality of FPGAs is realized not by simple boolean logic
gates, but by a number of look-up tables (LUTs) and flip-flops contained in an array of slices.
LUTs have multiple inputs and outputs and are dynamically programmed with the output
values for every possible combination of input signal levels. Flip-flops are used as syn-
chronous registers for intermediate storage of values. While the general idea is the same,
the exact number and type of components in a slice varies between vendors [9]. Maxfield
discusses logic slices and their internal operation in more detail in [22].

Interaction with the environment is required in any meaningful design, and an area that
FPGAs excel in when compared to simpler PLDs. Larger devices provide a great number of
package pins backed up by input/output (I/O) elements. They support different I/O stan-
dards and accommodate for high-speed buses with tight timing requirements by e.g. includ-
ing flip-flops located very closely to the pins or providing special I/O clocking resources. A
closer look at the I/O elements of the target device family of this thesis follows in Section 3.2.

As in most digital circuits, processing is done synchronously to a clock in many components
of an FPGA. There is usually at least one system clock fed to the device that is used for general
operation of the circuit and as a reference for synthesizing other frequencies if needed [9].
Additionally, I/O interfaces may require separate clocks if they do not use the same system
clock as the FPGA does. Every clock signal spans a clock domain that encompasses all logic
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elements that use it as their clock [19]. Those signals can usually only be routed on special
clocking interconnect that is separate from the connections used for standard logic. It offers
fast signal propagation with very low skew throughout the whole device or parts of it, but
only reaches dedicated clock pins such as the clock inputs of D-type flip-flops.

To filter clocks that may contain jitter and derive new clocks with selectable phase shifts
and frequency ratios, FPGAs include special digital and analog clocking components. A very
common structure for analog frequency synthesis is the phase-locked loop (PLL) that can
generate a wide range of output frequencies with defined phase relationships from a single
clock input. The digital clocking resources, which fulfill a function similar to the PLLs, vary
in their implementation, the FPGA vendor Xilinx for instance calls their equivalent digital
clock managers (DCMs) in the Spartan device family [24].

FPGAs usually also include blocks of RAM to store larger amounts of data efficiently with-
out using flip-flops. Additionally, digital signal processing blocks, memory controllers, and
other circuitry realizing complex functions may be available [9].

A single aspect that typically does not warrantmuch attention when programming software
but is of special importance in FPGA designs that perform high-speed interaction with ex-
ternal entities is the correct use of clock signals, which we will discuss next.

2.2.2 Clocking and metastability

When using multiple clocks, passing signals between logic of different clock domains is a
very complicated matter because if it is done wrong, non-repeatable failure conditions can
occur that are very difficult to debug.

The root of this kind of problems lies in metastability, a physical phenomenon exhibited by
a great number of digital devices. The D-type flip-flop for example samples its input pin D

every time a rising edge is detected on the clock input CLK and then puts the value on its
output pin Q. For correct behavior, it is essential that the D input stays stable for a minimum
amount of time before the clock edge arrives (the setup time Tsetup) and after the clock edge
has arrived (the hold time Thold) [25]. If these timing constraints are violated as shown in

Tsetup Thold Tsetup + Thold

timing violation

CLK

D

Q

Figure 2.3: Metastability in a D-type flip-flop. General idea adopted from [25, fig. 16.8].
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Figure 2.3, the flip-flop may enter a metastable state, which means that the output lingers
somewhere in between the voltage levels of a valid digital 0 and a valid digital 1 or even
oscillates as discussed by Kleeman and Cantoni [26].

Chu claims in [25] that other gates and components that use the flip-flop output in someway
can then interpret the output as either a logic 0 or 1 independently fromeach other, bringing
the system to an invalid state fromwhich it may not be able to recover. Themetastable state
can continue theoretically indefinitely, but it has been shown that the probability of the flip-
flop resolving to a stable state increases exponentially over time. If there is no defined phase
relation between clocks of different clock domains, it is impossible to correctly sample a
signal from another domain without possibly violating the setup or hold time requirements
of the D-FF in the target domain. Or as Kleeman et al. put it: “it is generally accepted that a
perfect synchronizer cannot be physically realized.” [26]

As the phenomenon cannot be prevented from occurring and will resolve by itself over time,
the only direct solution is to give the FF enough time so that the probability of failure be-
comes small enough. The common way to do this is to add two (or more) chained flip-flops
clocked in the target domain with the input of the first one connected to the signal to syn-
chronize and the output of the last one used as synchronized signal. This structure protects
the following combinatorial logic from intermittent invalid output states and gives the first
flip-flop sufficient time to resolve to a valid state should timing requirements be violated.
This simple approach introduces a delay of at least two clock cycles and can only be used
for single independent signals as it can not be guaranteed that all individually synchronized
signals become valid in the same clock cycle.

2.2.3 First-in-first-out buffers

To effectively transfer data across clock boundaries, more sophisticated schemes have to be
employed. A very straightforward and efficient option is to use an asynchronous first-in-
first-out (FIFO) buffer. Data can be written into a FIFO and then read out only in the exact
order it was written [25]. Being asynchronous means that there is a read and and a write
side and that they can be used independently, concurrently, and have individual clocks. This
makes the FIFO buffer an ideal candidate for cross-domain data transfer. Buffer empty and
full indications can be provided for flow control.

Implementing this behavior correctly on hardware is rather complicated as can be seen in
an exemplary design by Chu [25, pp. 652–660], but it is rarely necessary to do so. FPGA
vendors provide automated generators tailored to their products with their design suites,
usually free of charge. Xilinx for instance provides the “LogiCORE IP FIFO Generator” [27]
that can generate FIFOs of almost arbitrary size and data bus width with or without separate



Chapter 2 - Fundamentals 14

clock domains for reading and writing. Optionally, counters that indicate the amount of
data available for reading or writing can also be included. When both sides of the FIFO are
clocked with the same clock speed and a continuous stream of data is written into it, the
buffer can also be read continuously and at full speed after an initial delay of a few clock
cycles depending on the implementation. A common variant called first-word fall-through
(FWFT) or show-ahead [28]mode allows looking ahead to thenext available data unitwithout
explicitly reading it: the data, so to speak, “falls through” from the write to the read side.



Chapter 3

State of the Art

We have seen the fundamental technologies used in this thesis and what we must consider
when using them. Next, it is essential to introduce existing solutions to our problem and
how they relate to our goals. After that, studying the target platform and its specific FPGA
will help in understanding the following chapters.

3.1 Existing Ethernet MAC intellectual property cores

As the Ethernet technology is more than 20 years old, it is no surprise that a lot of MAC
sublayers are already implemented in a wide range of technologies including FPGAs. When
such a design is generic enough to be useful to a number of people, it is called an intellectual
property core (IP core) that can be shared or sold. As many companies feel uncomfortable
distributing the HDL code which shows off all their raw engineering ingenuity to potential
competitors, a functionally equivalent but opaque (to humans, at the very least) list of gates
and their connections can be offered instead.

Commercial Ethernet cores are available either directly from FPGA vendors such as Xil-
inx [29] and Altera [30] or third-party IP vendors such as Synopsys [31], mobiveil [32], and
morethanIP [33]. They are available at least in a variant supporting 10/100/1000 speed op-
eration, very feature-rich, and verified in tests and practice. However, they each come with
one or more of the following downsides:

• The HDL source code is not available for inspection and modification, only an opaque
netlist.

• Although the actual prices are usually not made public, high costs pose a problem es-
pecially for small or non-commercial projects including usage in research institutions.

15
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• The interface offered to the application is tailored for integration into larger on-chip
buses or microprocessors which makes it unnecessarily complex for simple applica-
tions.

• More features than needed are provided, increasing the complexity and resource us-
age of the FPGA design.

• Code that is specific to an FPGA family such as MII input/output meeting the timing
required by the Ethernet standard and clocking is not included and would need to be
developed by the user.

• A function to determine the current link speed automatically by reading MII manage-
ment registers is missing.

At least the cost and intransparency arguments do not apply to cores from the Internet
community platform OpenCores which aims to provide IP cores with full source code under
open-source licenses. There are a few MAC implementations available, but only one that
supports flexible operation at 10, 100, and 1000 Mb/s speed called ethernet_tri_mode [34].
It is written in Verilog and as a consequence may not be ideal for integrating into VHDL-
based designs. Although it is possible to interface Verilog with VHDL code and vice-versa,
keeping all components in the same language makes the source more consistent and thus
easier to understand.

As can be seen in the official documentation [35], the user interface is documented only
by two vague timing diagrams, one for transmission and one for reception, without any
explanation of the signals involved. The fact that the user must resort to guesswork makes
the core difficult to use. The RX part is included here without modification in Figure 3.1,

Clk_user

Rx_mac_ra

Rx_mac_rd

Rx_mac_pa

Rx_mac_sop

Rx_mac_eop

Rx_mac_data

Rx_mac_BE  

Figure 3.1: Timing diagram of the OpenCores ethernet_tri_mode IP core RX user interface.
Source: [35]
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the TX case is similar. The data bus Rx_mac_data is 32 bits wide. It is difficult to ascertain
the meaning of the signals, but Rx_mac_sop is assumed to be the start of packet indicator
while Rx_mac_eop looks like the end of packet indicator. They provide the actual length of
the data only indirectly; the user needs to count how many bytes were transferred between
assertion of the indicators if the size information is needed for further processing, which is
very often the case. A look into the source code reveals that Rx_mac_BE serves as indicator
for byte validity in the last 4-byte unit of packet data. As packets can have lengths that are
not multiples of 4 bytes, the user has to put some effort into special handling of the last data
unit. These considerations already show that the interface is more complex than it needs to
be for general-purpose applications.

Another MAC implementation in the recent journal article “Design and Implementation of
an Ethernet MAC IP Core for Embedded Applications” [36] has a similar aim of providing a
flexible core for various applications. Because the full text could not be procured, only the
abstract is considered here. It shows that the primary goal was to reduce FPGA resource
usage and power consumption, which is deliberately not the case in the present thesis. The
focus on ease of use and understanding here is a clear distinction from the work demon-
strated in the article.

In summary, a sizable number of prior implementations exist but we have seen none that
meet the goals of this thesis, especially being easy to use and understand and having the
source code available free of charge.

3.2 Hardware platform

Section 2.2 provided a general introduction to field-programmable gate arrays that is now
expanded upon by introducing the specific device and environment used during develop-
ment of the MAC sublayer implementation presented in this thesis. The primary target
platform is a GigaBee XC6SLX series industrial-grade FPGA micromodule manufactured by
Trenz Electronic GmbH [8]. It includes a Xilinx Spartan-6 LX family FPGA at a system clock
rate of 125 MHz and a 10/100/1000 tri-speed ethernet PHY chip Marvell Alaska 88E1111 [38]
which supports a very wide range of interfaces: MII/GMII, RGMII, TBI, reduced pin count
TBI (RTBI), and SGMII [39]. Which of those is used can be configured through the MII man-
agement interface. The smallest variant which is also the one used during development
has a Xilinx XC6SLX45-2 FPGA and two 128 MiB dynamic random access memory (DRAM)
ICs for data storage. As it is impractical to use the micromodule stand-alone, the optional
baseboard TE0603 provides power supply circuitry and a standard Ethernet connector for
testing purposes [40]. It can be replaced by a custom printed circuit board in actual applica-
tions. Figure 3.2 shows the two boards mated together.
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Xilinx Spartan-6 family FPGA

Ethernet connector Marvell 88E1111 Ethernet PHY

Figure 3.2: A Trenz Electronic TE0603 baseboard with a GigaBee XC6SLX series module
mounted on top. Source: [37] (component markings added).

The XC6SLX45 offers a total amount of 43,661 logic cells, 2,088 kB of block RAM storage, 8
digital clock managers (DCMs), and 4 phase locked loops (PLLs) [41]. All Spartan-6 family
FPGAs have 16 global clock buffers called BUFGMUX that must be used to get clock signals
onto the clocking interconnect, each of which can switch between two input clocks by way
of a third select input. The switch can be performed free of glitches provided both clocks
are continuously running [24].

Furthermore, there are flip-flop elements located directly besides every device pin in their
designated input/output blocks (IOBs) to provide outputs with low skew called OLOGIC2 and
capture inputs directly at their source called ILOGIC2 [42]. When combined with the possi-
bility to also capture a clock right at the pin in a BUFIO2 element and use it to clock the FFs of
neighboring data pins, input from high-speed data buses that supply their own clock signal
can be easily implemented, eliminating delay and skew issues when the clock is first routed
to a global buffer and then to a FF located arbitrarily in the device. The configurable delay
element IODELAY2 again built into every IOB can be used to delay the clock, the data signal,
or both in order to place the rising edge of the clock right in the middle of the valid data
window. All I/O registers additionally provide double data rate ability. Buffers supporting a
wide range of digital I/O standards are available. They drive either the general (input buffer
IBUF, output buffer OBUF) or the clocking interconnect (input buffer IBUFG). There is no
dedicated clock output buffer.

Up to this point, only preexisting technologies and products were introduced. Subsequently,
this information is put to good use by moving on to the design and implementation of the
FPGA-based Ethernet MAC sublayer.
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Design

The first step in developing the Ethernet MAC was to partition the task into smaller compo-
nents (VHDL entities) with distinct responsibilities and define their interconnection. Spe-
cial attention is drawn to a few key points that we will discuss first before we take a look
at the resulting design in Section 4.2. A more thorough look at each component follows in
Section 4.3.

4.1 Design trade-offs

The interface offered to the user is of primary concern: to reach the goals of this thesis,
it has to be fast enough to allow for symmetrical 1 Gb/s data transfer but also be easy to
use, i.e. use simple signals and a common pattern that hardware developers are inherently
familiar with. Furthermore, the users should be able to freely choose the clock they want
to use for communicating with the MAC to avoid implementing clock domain crossing - the
MAC should do that for them. A standard on-chip system bus like the Advanced eXtensible
Interface (AXI) by ARM Limited [43] or Wishbone by OpenCores [44] is unfeasible because
even though the concept is certainly well-known, it is over-sized for simple applications
both in terms of signal count and complexity. Already less complex but similar in the overall
idea is a block of RAM which acts as a buffer. To transmit a packet, the user could write it
into the memory, but then the following questions have to be considered: how does the
transmission logic know where the next packet lies in the buffer? How does it know that a
packet is ready to send? How does the user know which packets in the buffer were sent and
where he or she can write the next bulk of data? These are questions that can be answered,
but in the course of doing so the naively suggested RAM interface will inevitably become
more complex. If we think back to Section 2.2.3 though, we remember the FIFO interface
and its characteristic of being very simple. It is also well-known, allows for high-speed data
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transfer and, when backed by a standard implementation, offers easy clock domain crossing,
making it ideal for the MAC sublayer presented in this thesis.

When describing an interface, not only the connections, but also the width and format of
the data that is passed over them must be clear. To be able to construct a valid MAC frame,
at least the destination address, source address, length/type, and client data is needed as we
have seen in Section 2.1.3. The preamble and start frame delimiter can be skipped as they
do not carry any information anyway. Theoretically speaking, these fields can be encoded
in any fashion and order. But for both the user and the implementation of the media access
control sublayer, keeping it plain and sticking to the format already defined in the Ethernet
standard is the easiest option. There is also nothing to be gained by being fancy about the
frame data representation. By sticking to the standard, the MAC can pass through most of
the frame without any modification.

There is one complication concerning the frame trailer though: on the one hand, the user
should not have to include the padding and frame check sequence on transmission. This
problem can be solved when the data is defined to end right before padding and the MAC
takes care of adding it. On reception on the other hand, the original length of the frame is
not necessarily part of the header and thus unknown, so the padding cannot be removed in
the general case. The FCS is a fixed-length field at the end of the packet and thus can always
be stripped. Doing so makes the interface as symmetrical as possible. The user then has no
possibility of verifying the integrity of a received packet, but that is also not necessary when
theMAC takes proper care that erroneous packets are internally consumed and never reach
the FIFO interface.

We have yet to examine the question of how many bits to transfer in one clock cycle, but
as Ethernet counts data in multiples of bytes, making the interface 8 bit wide is the natural
choice. A wider data bus allows for lower interface clock rates at identical data rates, but
necessitates adaption logic to guarantee that byte units can be received and transmitted.
In a general-purpose MAC, it is impossible to know the exact requirements of the user and
what width would benefit his or her application, so the design has to cover all possibilities
with the least common denominator of 1 byte. Width conversion logic can be easily added
on top of the MAC FIFO interface by the user if there is a need for it.

A problem that still lingers in the FIFO architecture is that if only the data of packets is
passed on, there is no way to know where they start and end. This is fixed by placing two
bytes that indicate the size of the next packet in the buffer before each data part. Ethernet
frames can be up to 1514 bytes long (excluding the frame check sequence), so one byte (max-
imum value 255) would not be enough for storing their size; the next possibility is using two
bytes (maximum value 65535). As ⌈log2 1514⌉ = 11 bits are strictly needed for storing the
maximally possible frame size, 5 of the 16 bits will inevitably remain unused but the wasted
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space is so small that it is of no concern. It accounts for between 0.04 and 1.02 percent of
the total stored data, depending on the packet size.

Nevertheless, we can see that there are in fact two limitations with this simple approach:

1. Packets must be delayed in the FIFO until they have been completely received so their
size is known and can be put in front of the data.

2. The user needs to know the sizes of packets prior to starting transmission.

Both are rarely relevant in practice: a packet can usually not be acted upon as it is still being
received since it could contain errors that are only detected when the frame check sequence
that follows the data payload is verified. It is very important to understand that only the
latency is different but that the achievable RX data rate is identical both when delaying the
packet and when handing it to the user immediately. As for the second restriction, most
users will want to use protocols that include further header checksums like UDP/IP instead
of raw Ethernet frames. The IP header for example includes a field for the length of the
packet, so to calculate its checksum the packet size again has to be known beforehand no
matter how the MAC sublayer is designed.

One of the other choices to be made is whether to have completely separate modules in the
transmit and receive paths or to combine some or all of them. Either option is feasible as
there is zero interaction between both directions. However, the functionality is very sim-
ilar, symmetrical even, so the code will be easier to understand if it is kept in one place.
Splitting it per direction serves little purpose besides artificially increasing the component
count, complicating the design. The single exception where it is worthwhile to make a sep-
aration are the FIFOs. The user might want to replace only one direction with a custom
implementation.

These were the key points that we need to take into account when studying the MAC design
in the following section.

4.2 Overview

Figure 4.1 shows an overview of the MAC design. Every block corresponds to a VHDL entity
with the indicated name. The arrows indicate conceptual flow of data and do not imply
VHDL port directions. We shortly discuss the diagram beginning at the interface to the user
application on the left-hand side and continuing rightwards from there until reaching the
connection to the physical layer on the right-hand side.
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Figure 4.1: Block diagram of the Ethernet MAC presented in this thesis

To not require users to learn the details of the MAC implementation and buffer packets
themselves, FIFOs with standard interfaces are provided for both the transmit and receive
data paths as previously discussed. As can be seen in the diagram, the two directions are
completely independent from each other throughout the whole design. The first entity that
implements actual Media Access Control sublayer functionality is the framing component.
Functionality-wise, it performs the core operations that are expected from an EthernetMAC
like generating and verifying checksums and packet encapsulation. The following mii_gmii
module acts as transparent converter between the generic streams of packet data and the
actual signals expected by the media-independent interfaces as well as switching between
MII and GMII as needed based on the current link speed. The speed is periodically read
out of the MII management interface by miim_control which also takes care of the initial
configuration of the PHY after reset. Only the high-level functionality is allotted to this
module while the actual MIIM interface transactions are performed by miim. Lastly, due to
the narrow timing requirements of the MII/GMII connections, it is not possible to directly
connect them to the FPGA package pins. The device-specific I/O configuration needed in
between is provided by mii_gmii_io.

Besides the clock pins used by the MII, the MAC requires the user to supply a 125 MHz ref-
erence clock to use as transmission clock in GMII mode, a clock for the MII management
interface, and two FIFO clocks, one for each direction. The latter three of these clocks can
be identical to simplify the user design.
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The reset_generator entity (not shown in the figure) monitors the current link speed and
issues a complete reset for the MII RX and TX clock domains when it changes. This guaran-
tees a consistent system state after a potential transmission clock switch between MII and
GMII. The reset indication is also provided to the user to ensure that no mismatched data is
written to or read from the FIFOs. We will discuss the exact reasons why this procedure is
necessary later when describing the IO implementation in Section 5.1.1.

As a convenience for using the MAC core, all mentioned components beginning at framing
are preconnected to each other in a structural entity called ethernet which is then com-
bined again with the FIFOs to form ethernet_with_fifos. The latter is a ready-to-use en-
tity offering the FIFOs’ interfaces on the user side and direct MII connections on the PHY
side. It can be instantiated in custom designs that want to use Ethernet without much effort.
It generally does not provide any benefit to bypass the FIFOs and directly connect to the
framing component except in sufficiently sophisticated applications.

To clarify how the components relate to the layered architecture defined in the Ethernet
standard as introduced in Section 2.1.1, Figure 4.2 shows the Ethernet layers and selected
entities of the MAC design presented in this thesis side-by-side. The higher layers on the
right-hand side are only exemplary and can be exchanged for arbitrary user application
layers. Although the purposes of the reconciliation sublayer (RS) and the original Ethernet
MAC sublayer correspond to the mii_gmii and framing entities respectively, the interfaces
between them differ. The standard e.g. suggests that the RS and the MAC sublayer commu-
nicate data one bit at a time, which is impractical for actual implementation on an FPGA.
Similar considerations apply to the interface the MAC offers to higher layers. The logical
link control (LLC) sublayer is designated optional by the standard andmust be implemented
by the user if needed.

4.3 Components

Let us now take a closer look at each component and the input and output connections it
exposes to its neighbors.

4.3.1 FIFOs

The only modules that the user will normally interact with directly are the transmit and the
receive FIFO buffer. Consistentwith our prior considerations, both have a standard interface
as seen for instance with Chu [25, p. 280] with a data width of 8 bits and only one side facing
the user. The TX FIFO can be written, the RX FIFO can be read by the user. They both have
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Figure 4.2: Ethernet simplified layer architecture in relation to the MAC implementation
presented in this thesis. Ethernet side adopted from [5, fig. 1-1].

their own clock domain with the clock supplied by the user. The timing characteristics
conform to the interface of first-word fall-through FIFOs generated by the Xilinx LogiCore
IP FIFO generator [27].

To send a packet, first of all the FIFO must not be full. The application must put the 2-byte
size of the packet into the buffer, most significant byte (MSB) first, then the least signifi-
cant byte (LSB), after which precisely as many bytes of data as were indicated must follow.
Keeping the structure identical to the Ethernet standard avoids unnecessary and costly re-
arrangements within the Ethernet packet when sending. As soon as the FIFO detects that
the data for the next packet has been written completely, it starts passing the data on to the
framing module.

Receiving a packet works analogously: framing writes an incoming packet to the buffer.
After it has been received completely and without errors, the RX FIFO will indicate that it
is not empty and the size and data can be read. As an added convenience, the FIFO will
pretend to be empty for a few clock cycles after every packet even when technically more
packets are available, so the user can sense the end of a transmission unit and does not need
to count the data bytes while reading. During ongoing read-out of a packet, the FIFO never
becomes empty. Although the interface is identical to that of a normal FIFO and the entity
is called rx_fifo, it cannot work like one internally. The packet size is known and written
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to the memory only after the last data byte has been received, but needs to be read out first,
before the data, in clear violation of the first-in-first-out principle. Also, erroneous frames
must be skipped without requiring the user to read them out.

Figure 4.3 shows basic flowcharts for both transmission and reception of packets using the
FIFO. The signal name wr_enmeans “write enable” while rd_en stands for “read enable”. In
the actual entities, the port names are additionally prefixed by the direction (tx_ or rx_).
Although it is not shown for the TX case (Figure 4.3a) because it would considerably clutter
the diagram, each write step can only occur when tx_full_o is not asserted. If it is, the user
has to deassert tx_wr_en_i and delay the byte until the FIFO has space available again, or
the write will be lost.

Yes

No

Yes

No

Frame ready?

Assert wr_en

Write MSB of size n to data

Write LSB of size n to data

Write one byte of data to data

n bytes written?

Deassert wr_en

(a) Transmission

Yes

No

Yes

No

empty = 0?

Assert rd_en

Read MSB of size n from data

Read LSB of size n from data

Read one byte of data from data

empty = 1?

Deassert rd_en

(b) Reception

Figure 4.3: Flowcharts for packet transmission and reception on the MAC’s FIFO user in-
terface
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4.3.2 Framing

As the core part implementing actual MAC sublayer functionality, the framing component
has the following responsibilities:

• Encapsulation of packets on transmission:

– Insertion of the preamble and start frame delimiter before transmitting the data

– Insertion of padding as required

– Calculation and insertion of the frame check sequence

– Enforcement of the interpacket gap

• Verification and decapsulation of packets on reception:

– Verification of the frame start which should be any number of preamble bytes
followed by the start frame delimiter

– Verification of the frame check sequence

– Verification of the packet length which should be within the limits required by
the Ethernet standard

All tasks are fulfilled by forwarding the data stream from the FIFO to mii_gmii and vice-
versa, carefully inserting and removing data bytes as necessary. The interface offered to
the FIFOs is almost identical to the one towards the mii_gmii module. Table 4.1 lists all
ports of the module. Transfer of a single byte of data can take a different amount of clock
cycles depending on the underlying MII variant in use: only 4 bits can be transferred at a
time with the Fast Ethernet MII for example, so it will take two cycles to completely send 8
bits. Since mii_gmii does not buffer data, a new byte can only be placed on the line after
the current one was processed. The next data unit should be placed on tx_data in each
clock cycle that has tx_byte_sent high when transmitting data, and read from rx_data in
each clock cycle that has rx_byte_received high when receiving data. The tx_byte_sent
and rx_byte_received signals effectively act as a data strobe signal. Exemplary timing
diagrams for packet transactions are found in Appendix A.

All differences between the two sides of framing are related to the interpacket gap (IPG) in
frame transmission: tx_busy exists only towards the FIFO and tx_gap only towards mii_
gmii. The busy indication is needed for signaling the FIFO to delay sending the next packet
during the IPG while tx_gap actively requests continued operation of tx_byte_sent with-
out actually transmitting data on the media-independent interface.

Verification of incoming packets has two distinct ways in which errors are handled: should
the frame beginning be invalid already, the remainder of the frame is silently skipped as no
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Table 4.1: Ports of the framing entity

Port name Function
tx_reset_i Active-high asynchronous reset of all TX functions
tx_clock_i Clock for all transmit signals
tx_enable_i Active-high transmit enable
tx_data_i<7:0> Data to transmit
tx_byte_sent_o Put next byte on tx_data when asserted
tx_busy_o Start new packet only when deasserted
rx_reset_i Active-high asynchronous reset of all RX functions
rx_clock_i Clock for all receive signals
rx_frame_o Asserted as long as one continuous frame is being received
rx_data_o<7:0> Data received
rx_byte_received_o Asserted when rx_data is valid
rx_error_o Active-high receive error indication
mii_tx_enable_o Function equivalent to tx_enable_i
mii_tx_data_o<7:0> Function equivalent to tx_data_i
mii_tx_byte_sent_i Function equivalent to tx_byte_sent_o
mii_tx_gap_o Transmit IPG when asserted
mii_rx_frame_i Function equivalent to rx_frame_o
mii_rx_data_i<7:0> Function equivalent to rx_data_o
mii_rx_byte_received_i Function equivalent to rx_byte_received_o
mii_rx_error_i Function equivalent to rx_error_o

data has left framing yet. If the FCS or length checks fail, a reception error is indicated by
rx_error_o. In any case, the FCS is not stripped from the packet on reception since doing
so would require delaying the data stream by the checksum length of 4 bytes. This would
substantially increase the complexity of the receive state machine. Instead, the rx_fifo

entity is responsible for removing the FCS before it reaches the user.

4.3.3 Media-independent interface

As the name mii_gmii indicates, we have reached the first entity where actual communica-
tion with the physical layer device takes place. Because it primarily serves as a thin signal
adaption layer, there is not much to do here, especially when GMII is used. Then the data
received from framing can be passed on to the MII IO entity by directly mapping the ports.
For MII though each data byte must be split into two 4-bit units on transmission and com-
bined on reception. The MII signals CRS, COL, and TX_ER are omitted from the MII/GMII
ports because they are only useful in half-duplex modes.
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4.3.4 Media-independent interface input/output

The outputs and inputs of the mii entity on the MII side already conform to the functional
characteristics of the Ethernet specification, but their timing has to be adapted. Getting this
right is dependent on the concrete FPGA architecture and as a consequence put into a sepa-
rate exchangeable entity named mii_gmii_io. The ports must then finally be connected to
the pins of the device by the user where they will reach the PHY.

4.3.5 Media-independent interface management

miim implements the standard management interface of MII. In addition to the actual MIIM
MDC and MDIO signals for connection to the PHY, an interface to read and write single regis-
ters one at a time is provided. It runs in a user-supplied separateMIIMclock domain together
with miim_control.

4.3.6 Media-independent interface management control

For both the IO block and theMII/GMII interface adapter it is critical to knowwhich speed is
used on the physical medium because the PHY will only meaningfully process MII signals in
10 or 100Mb/s operation and GMII signals in 1000Mb/s operation. miim_control leverages
the miim entity to poll the status and auto-negotiation management registers which show
if and at what speed a link is currently established. The speed information is propagated
both MAC-internally and to the user. Whether a link has been established at all is irrelevant
to the operation of the MAC; the indication is only provided for the user application. MII
operation is completely stateless, so it is impossible to bring the interface into an invalid
state. As long as the physical layer device has not successfully connected to a link partner,
it will ignore transmission requests and not put any received packets on the RX interface.

The MAC sublayer will not support half-duplex connections, yet the PHY still needs to know
that it should never try to establish a link at any such mode, which can be done via MIIM.
TheMIIM control entity thus is also responsible for configuring the physical layer device for
full-duplex-only operation after reset.

In this chapter, we discussed the abstract design of the MAC sublayer implementation, what
decisions were made for design trade-offs and why. We can now go one step further and
consider the actual VHDL implementation on a Xilinx Spartan-6 family FPGA.



Chapter 5

Implementation

The task of implementing the system design presented in Chapter 4means devisingworking,
synthesizable VHDL code for each entity of the MAC core as well as their interconnections.
For the verification purposes of this thesis, it is sufficient if it runs on a GigaBee module, but
as was stated in the initial goals, the code should be flexible enough to allow for easy porting
to other devices and vendors. In fact, the majority of it should be generic VHDL that does
not use components specific to certain FPGA families at all. Some design entities such as the
MII/GMII input/output architecture and the user FIFOs warrant special attention as their
implementation needs more thought beyond just adhering to the specification. We will see
how they are realized next.

The previous design choices were independent of the hardware description language used,
as will many of the considerations relevant for implementation be. Generally, the focus is
drawn to the ideas and concepts inherent to the source code rather than the concrete lines
of code here. For some details that concern the goal of easymaintainability and understand-
ability of the actual code, though, it is necessary to briefly discuss a few aspects of VHDL. As
a general measure to make the code easier to grasp, a consistent coding style was applied
throughout the source code; specific rules are found in Appendix B.

5.1 (Gigabit) media-independent interface input/output

The only entity introduced as device-dependent was mii_gmii_io which implements the
input/output part of MII and GMII. We will now see why this is not possible with generic
HDL code and how it was concretely realized, starting with the transmission of Ethernet
frame data.

29
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5.1.1 Transmission

As explained in Section 2.1.2, MII/GMII transmission clocking is complicated by the fact that
two completely different clock sources must be used depending on the link speed. This and
the need to meet the gigabit media-independent interface timing led to the structure seen
in Figure 5.1. Note that the mii_gmii TX logic block is only included for clarity and not part
of mii_gmii_io.

TXD0 input/output block

TXD1 input/output block

GTX_CLK input/output blockBUFGMUX S
O

I0 I1

Q
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D1
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mii_gmii
TX logic

clock_tx_o

...
repeat for TXD<2:7> and TX_EN

...

Figure 5.1: Structure of the transmission part of mii_gmii_io on Spartan-6 family FPGAs
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The flip-flops in the Spartan-6 FPGAs do not have the ability to switch between different
clock signals, but the global clock buffers (BUFGMUX) do. One of them is used for generating
the clock_tx signal necessary for the TX logic and output. The first input I0 is the MII TX_
CLK pin buffered by an IBUFG clock input buffer that provides a relatively direct connection
to the multiplexer. The second input I1 needs to be a user-provided 125 MHz reference
clock which is called clock_125. Where this signal comes from is not important, it might
for example also come directly from another input pin (although there are restrictions on
which pins can be used in this case), or be generated by a digital clock manager from a
system clock with differing frequency. What does matter is that it should not already be
the output of another global clock buffer as cascading them results in the usage of general-
purpose routing for the connection [24]. Which of those two clocks is put on the output O is
decided by the select input S. Themost significant bit of the speed_select signal generated
by the MII management interface control component indicates whether the PHY currently
operates at gigabit speed (logic high) or 10 or 100 megabit speed (logic low). This is exactly
what is needed for the S input, no further conversion is necessary. The correct TX clock is
then provided by the mii_gmii_io entity on the clock_tx_o port for the transmission logic
throughout the MAC.

The Ethernet standard does not specify whether the MII TX_CLK continues running in GMII
modewhen both interfaces are supported, thus we have to assume that it stops on transition
to gigabit speed. This means that the BUFGMUX can not be operated in synchronous glitch-
free mode. Switching asynchronously between clocks implicates that glitches can occur on
the resulting clock signal e.g. when changing from a clock that has just fallen to one that is
just about to rise, possibly violating timing requirements in every circuit that uses the signal.
The consequences are metastability and an inconsistent system state. To get the MAC back
into a defined state, the reset_generator component initiates a complete reset of the core
whenever it detects a speed change.

When the 125 MHz clock is used in GMII mode, it is necessary to output the TX clock for
the PHY on the GTX_CLK pin. Connecting the signal directly to an output buffer makes for
a sub-optimal solution due to routing restrictions in the Spartan-6 family FPGAs. If the de-
sign is routable at all, the output may exhibit high delay and skew issues. The technique
recommended by Xilinx in its ISE design suite is to use a double data rate output register
ODDR2, connect the desired clock to the first clock input C0, and its inverse to the second
clock input C1. We will discuss later why the exact opposite was done here. Each time a
rising edge is detected on C0, the value of the input D0 is put on the output Q. Similarly, a
rising edge on C1 (which is equal to a falling edge on C0 since both are the inverse of each
other here) puts D1 through. Fixing D0 to a logic one and D1 to a logic zero then leads to a
clock signal on Q that is identical to the input C0 save for the delay induced by the register
and the output buffer. To avoid outputting an unused high-frequency signal in MII mode
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when GTX_CLK is not used, the clock enable input CE of the ODDR2 instance is connected to
the speed indicator. When it is at logic low for 10/100 Mb/s link speed, the output will stop
toggling.

For the TX signal lines TXD<0:7> and TX_EN, we need to take special care to meet the GMII
timing requirements of 2.5 ns setup time and 0.5 ns hold time with respect to the rising
edge of GTX_CLK. Connecting the flip-flops that generate the final output values inside the
FPGA logic slices directly to the output buffers results in high routing skew between the
bus signals and an unclear timing relation to the clock output pin. Utilizing the OLOGIC2
output flip-flops integrated into the input/output blocks, however, eliminates any larger
skew as the routing delay between the flip-flop and the buffer located in the same IOB is
close to identical for all signals. The relation to the GTX_CLK output is also clear: although
the HDL primitive for a D-type flip-flop with synchronous reset FDRE is different from the
ODDR2 primitive used for the clock signal, both end up in OLOGIC2 blocks here, using the
same hardware. The delay from a rising edge on the TX clock to the register input value
appearing on the device pin for any TX signal including the output clock is thus almost
equal. With this structure, the data pins will change when GTX_CLK rises and are almost
guaranteed to violate the hold time requirement. Actually, the opposite should be done: if
the outputs change on the falling edge of the clock, both the setup and hold time is met and
there is still a 1.5 ns setup margin for bus skew. This is easily achieved by swapping the
C0 and C1 input pins of the ODDR2 instance used for GTX_CLK, thereby inverting the clock
output.

The aforementioned considerations were only valid for gigabit speed, but the resulting so-
lution can be used without modifications for plain MII, too. It mandates a setup time of
15 ns and a hold time of 0 ns. Put differently, with a 25 MHz interface clock at 100 Mb/s link
speed, 25 ns are available for the propagation of a rising edge on TX_CLK through the input
and global clockmultiplexer to the clock input pin of the output flip-flops and from there for
the propagation of the FF input signal to the device pin. All component and routing delays
are small enough to meet this requirement without special intervention.

As different aspects need to be discussed for the reception case, it can not be implemented
analogously and warrants a closer inspection.

5.1.2 Reception

To begin with a simplification compared to the transmission structure, the same interface
clock is used for bothMII and GMII. In contrast, other points get more complicated: for GMII
output, 5 ns of the 8 ns clock period are available for transitioning the data signals. The op-
posite is true for the input case: the pins need to be sampled within a short window of 2 ns,
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not even 3 ns as one would assume because the Ethernet standards mandates differing tim-
ing requirements for the sender and the receiver to account for propagation delaymismatch
between the clock and signal lines [5]. A prerequisite for matching the timing at all is that
the Spartan-6 family IOB input flip-flops allow for combined setup and hold times of shorter
than 2 ns, which they do. Depending on the speed grade of the device, the duration forwhich
the signal has to stay stable is between 0.9 ns and 0.3 ns [45]. The key problem is making
sure that the rising edge of the RX_CLK clock reliably arrives at the capture flip-flops when
the centers of the data validity window of the signal lines and the flip-flop input window
requirement line up.

Skew is usually the engineer’s enemy, but here we can use it to our advantage: controlled
insertion or removal of skew between the clock and signal paths is required. Possibilities to
achieve this include (in order of complexity):

• Trying to set timing constraints on the FPGA input pins in the design and letting the
hardware synthesizer figure out how to make ends meet. As design tools are gener-
ally not advanced enough to devise complicated IO clocking schemes and using only
routing delays comes with a number of limitations, this will most likely fail.

• Using a digital clock manager or PLL to induce a defined phase shift on the clock.
10 Mb/s operation is not supported in this case as the minimum input frequencies for
both the DCM (5 MHz) and the PLL (19 MHz) [45] are well above the 2.5 MHz required.

A switch between 25 MHz and 125 MHz interface clock rate when the PHY changes
speeds will cause the clock output to become incoherent with the interface clock until
the DCM/PLL regains its locking state, but only for a short time of 5 ms at maximum.
A loss of link also allows the device to increase the time between two rising edges from
8 ns up to 16 ns according to the IEEE standard [5], leading to the same situation. Both
conditions should only occur on initial connection of the link or when errors emerge
at the physical layer. Under those circumstances however, frames must be expected
to get lost until the link is stable, so the small recovery time of the clock manager is
of no concern.

The clock may also be stretched or shortened by the PHY when it transitions between
its reference clock and the clock recovered from the medium. Although the standard
does not explicitly state it for the MII and GMII interfaces, with the most commonly
used copper Ethernet variants 100BASE-TX and 1000BASE-T this should only happen
in half-duplex operation. The stream and therefore clocking on the physical medium
in full-duplex mode is continuous as long as power-saving capabilities are not specifi-
cally enabled.
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• Using the dedicated IO clocking buffer BUFIO2 that provides minimum delay routing
at low skew for the clock and inserting an IODELAY2 element into each data signal path
to compensate for its propagation delay. The delay time is configurable, so in theory,
the value could be exactly matched to the signal setup time and the time needed for
the clock to propagate through the BUFIO2 to the clock pin. In practice though, “the
Spartan-6 FPGA delay line is not compensated for either temperature or voltage” [42],
which means that the exact delay time varies greatly depending on the operating con-
ditions.

• Combining a DCM or PLL for 1000 Mb/s GMII operation with a simple buffer of RX_
CLK for 10/100 Mb/s MII operation and switching the clock source for the capture flip-
flop as neededwith a BUFGMUX clockmultiplexer. The DCM/PLLwith its configurable
phase shift guarantees that timing is reliably met for Gigabit Ethernet, but is bypassed
for interface clock speeds that it does not support and, in fact, is not needed for. MII
has much more lenient timing requirements of 10 ns setup and 10 ns hold time that
can bemetwithout any special arrangements. The issuewith the clockmanager losing
its lock on the clock signal when the PHY decides to stretch or short a pulse stays.

None of the proposed solutions is completely satisfactory. The last one is the most reliable
option, but at the same time, it is also the most complex and requires a DCM or PLL, of
which only a small number are available in the XC6SLX45, and they might be needed by the
application using the MAC core. Using BUFIO2 and delay lines is straightforward and only
requires one of 32 IO clocking buffers. The IODELAY2 elements are always associated with
exactly one device pin and can not be used for another purpose by the user anyway. We see
the resulting RX structure of mii_gmii_io in Figure 5.2. The BUFIO2 element also provides
a second output clock that can be put on the global clocking interconnect by a global clock
buffer BUFG. All reception logic in the design uses this clock to capture the MII interface
data from the IO flip-flops. Again, the mii_gmii RX logic block is not part of mii_gmii_io
and only included for clarity.

Due to the way the IO clocking is routed inside the device, some constraints apply to the
MII/GMII RX pin placement beyond the limitation that RX_CLKmust be put on a global clock
input pin which is true for all possible solutions. All RX interface signal pin locations must
additionally belong to the same BUFIO2 clocking region. The exact extent of those regions is
described in detail in the clocking user guide [24], but it should generally not be a problem
for the user to meet this requirement. The primary target platform of this thesis - the Trenz
Electronic GigaBee module - allows for this option.

We still have to address the major downside of this implementation variant: setting a delay
value that guarantees reliable operation under all conditions. The IODELAY2 element can



Chapter 5 - Implementation 35

RXD0 input/output block

RXD1 input/output block

RX_CLK input/output block

RX_CLK
1

IBUFG

IOCLK

DIVCLK
I BUFIO2

1
BUFG

RXD0
1

IBUF
DATAOUTIDATAIN IODELAY2 Q

D

C FDRE

RXD1
1

IBUF
DATAOUTIDATAIN IODELAY2 Q

D

C FDRE

clock_rx

mii_rxd_i<1>

mii_rxd_i<2> mii_gmii
RX logic

clock_rx_o

...
repeat for RXD<2:7>, RX_EN, and RX_ER

...

Figure 5.2: Structure of the reception part of mii_gmii_io on Spartan-6 family FPGAs

be configured with the IDELAY_VALUE parameter, an integer between 0 and 255, that deter-
mines how much delay is applied to the signal. How this number maps to the time domain
is not stated in the SelectIO user guide [42], so it must be found by trial and error. After
implementing a design, the static timing report generated by the Xilinx ISE tool suite shows
how long the delay applied actually is.

The total delay of the RX clock from the device pin until the final flip-flop input port is at
least 1.7 ns under optimum conditions and at most 3 ns under worst-case conditions on the
reference board according to the timing report. The input FF in the Spartan-6 FPGA used
needs 0.54 ns of setup time Tsetup,FF and zero hold time when used in combination with IODE-
LAY2 [45]. To meet both that and the GMII validity window Tvalid,GMII of 2 ns combined setup
and hold time, the delay on the data signals must thus be between 1.7 ns and 3.2 ns for the
best case and between 3 ns and 4.5 ns for the worst case. Figure 5.3 illustrates the difference
between the signals at the device pin and inside the FPGA for the best-case scenario. The
data signals are captured correctly when they are valid during the time span indicated by
Tsetup,FF. Although there is some overlap between the best and worst case intervals, we must
keep in mind that no matter what value is chosen for IDELAY_VALUE, the data path delay
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Figure 5.3: Delay of clock and data signals on the GMII receive side atminimum clock delay

will also exhibit strong variation with device temperature and voltage. This is not only a
result of the nonexistent compensation in IODELAY2, but also of varying propagation and
routing delays of the input buffer.

Experimenting with IDELAY_VALUE shows that an optimal solution is not possible in this
configuration. A value of at least 27 is needed to reach the required 1.7 ns under the best
operating conditions, but it will cause the worst case data path delay to climb up to 6.2 ns
already, exceeding the maximum allowed 4.5 ns by 1.7 ns. However, using a value of 10
provides a delay range of 1.4 ns (best case) to 4.8 ns (worst case). Correlating this to the
GMII timing, we see that 2.3 ns setup and 0.3 ns hold time can bemet under all circumstances.
This is well within the range of 2.5 ns setup and 0.5 ns hold time the PHY has to guarantee at
its output according to the standard. Usually, there will be some added margin on the PHY
side. The only limitation is therefore that the printed circuit board must be designed with
very low skew between the data and clock MII receive direction signals.

Looking back to Section 3.1, we know that Xilinx has also released an Ethernet MAC com-
patible with Spartan-6 FPGAs themselves. The approach to realizing MII and GMII I/O in
a simple and reliable manner described above has led to a structure very similar to what
Xilinx is using [46], although they do not describe the delay line timing for an exemplary
case. This should be of no surprise as the limitations of the device do not allow for radically
different solutions.

5.2 Transmit FIFO

As Xilinx provides a very flexible generator for FIFOs, it is not necessary to implement the
actual FIFO memory. However, a component that reads the data and passes it on to the
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framing entity is still needed. The previously introduced tx_fifo entity is therefore sub-
divided into two: the actual FIFO memory and tx_fifo_adapter. This adaption module is
device-independent. It reads the size of the next packet out of the FIFO when it is not empty,
waits until at least as many bytes as were indicated are available for reading, passes the data
on to framing, and then repeats the process.

The actual FIFO memory in fact does not need any device-specific features, too, but as the
output of the Xilinx core generator is proprietary and can only be used with Xilinx devices,
it should be considered at least vendor-dependent. Other FPGA manufacturers have similar
generators that can be used instead when adopting the MAC core for their devices. It is also
possible, albeit a lot more complicated, to implement a custom asynchronous FIFO in VHDL.

5.3 Receive FIFO

While it was viable to use a preexisting FIFO implementation for the transmit buffer, we
have already discussed in Section 4.3.1 that the rx_fifomodule can not be realized with a
single actual first-in-first-out memory. It can be done with two of them, one for the packet
sizes and one for their data, but this increases vendor dependencies when using generated
FIFOs again like for the transmit path. For a custom implementation, just one memory is
sufficient and simpler than two.

FIFOs on FPGAs are usually implementedwith block RAMused as ring buffer for data storage
and separate counters in the read andwrite domain that designate the nextmemory location
to read or write. The most difficult problem is the synchronization of the counters across
clock domains so that on the one hand values that have yet to be read out are not overwritten
by the write side when the memory overflows and on the other hand the data transfer to
the user stops when he or she has read all available bytes. A general implementation would
use grey-encoded values when crossing clock domains to ensure that only one bit changes
between clock cycles [25]. This results in a design that is quite complicated to get completely
right. In this Ethernet MAC design, a different approach is used that results in a structure
whose implications are more easily understood.

What makes this possible is that we know that the memory stores packets and their sizes
and as such it is sufficient to synchronize the read and write sides per packet transaction as
opposed to per data unit. Inside the memory, a 3-byte header is attached to each received
packet. It contains a 1-byte validity indicator and the 2-byte size of the packet. The validity
indicator is either all-zeros when there is no complete packet at the address yet or all-ones
otherwise. The write side uses two pointers when receiving packets: the current packet
pointer and the write pointer. The current packet pointer designates the address of the
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currently receiving packet’s first header byte while the write pointer is the address the next
byte of packet data should be written to. It advances after each received byte, while the
current packet pointer only gets a new value after reception of one packet has completed.
When a packet is received from framing, the following happens, in order:

1. If there is not enough room in the buffer to store the size and validity indication, skip
the whole packet.

2. Set write pointer to 3 bytes after the current packet pointer. Write the first byte of
data there.

3. Continue writing bytes and advancing the write pointer until the frame ends. If the
buffer or the packet size would overflow on the next byte, skip the rest of the packet.

4. Subtract 4 bytes from the received packet size to remove the FCS when read out.

5. Write an all-zeros value at 3 bytes before the write pointer to mark the following
packet invalid.

6. Write the least significant byte of the packet size at two bytes after the current packet
pointer.

7. Write the most significant byte of the packet size at one byte after the current packet
pointer.

8. Write an all-ones value at the current packet pointer to mark the packet valid.

9. Advance current packet pointer to the first byte after the packet data that has just
been written.

The read side is simpler, it only uses one pointer, the read pointer. Initially, the read and
write pointers point to the same address, the validity indicator of the first packet in the
buffer. The read state machine waits for the memory value at the pointer to become all-
ones, then it knows that the following packet can be read safely. It deasserts rx_empty_o
to show the user that data is available and begins reading the packet size. The size is both
given to the user and internally stored to detect when the packet ends. The following packet
data is passed on to rx_data_o each time a byte is requested, until the end of the packet is
reached. The state machine asserts the empty indicator again and tries to read the next
packet.

So far, this process makes sure that the read side does not underflow. It is equally important
to guarantee that the buffer contents are not corrupted when the FIFO is full and packets
arrive. The memory itself was used to cross clock domains from the write to the read side.
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Now we need the opposite direction which can not be achieved by the same means as block
RAMs usually do not have two sides that can both be used for reading and writing. Instead,
a normal register is used to push the last data address of a packet to the write side after it
was completely read. This address is called the write safe pointer because it is guaranteed
that writing bytes to the memory will not corrupt unread data until it is reached. An update
enable signal synchronized by two flip-flops indicates that the address is valid to counter
metastability issues.

No assumptions should bemade about the clock speed of either side; it is for example plausi-
ble that the write side is at 2.5 MHz (10 Mb/s link speed MII), but the read side is at 125 MHz
to support gigabit data transfer. Consequently, it can happen that the user has read a com-
plete packet while the write state machine has not seen a single clock edge in the meantime.
If the write safe address is updated again, it might get sampled in the write clock domain
while it is transitioning, leading to metastability issues. A two-phase cross-domain hand-
shake as proposed by Chu [25] solves the problem. The read state machine delays reading
the next packet until the write side acknowledges the write safe address update.

On first glance, this approach might seem to negatively impact the maximum data through-
put by a considerable amount, but it in fact does not. The Ethernet standard guarantees
12 byte times of interpacket gap, which is sufficient to complete the handshake when both
sides run at the same clock speed. If the read side is faster, throughput is not adversely af-
fected as data cannot arrive faster than the PHY allows. If the read side is slower, the user
cannot expect to achieve the full data rate allowed by the Ethernet connection in either case,
and the two or three read clock cycles needed to get the handshake acknowledgement into
the read clock domain will not make a big difference.

However, a portion of the memory will always be unused at any time since buffer space
belonging to a single packet is only made available after the user has read it completely. If
the read clock is at least 125MHz, a Gigabit Ethernet connection is used, and packets are read
out of the FIFO immediately after they become available, the buffer must be big enough to
hold two complete Ethernet frames of maximum size plus three bytes header and one frame
check sequence (3038 bytes in sum) at the very least to avoid packet loss. To accommodate
some leeway, a default RX memory size of 4 kiB is chosen. The user is free to change this
size provided it stays a power of two.

What has not been clarified yet is whether accessing the block RAM of the FPGA device can
be implemented in a device-agnostic manner. This is indeed the case, as special coding tech-
niques exist that allow HDL synthesizers to automatically infer memory primitives of the
targeted device. The documentation of the Xilinx Synthesis Technology (XST) for instance
shows the exact conditions needed [47]. Other tools provide similar support with the same
coding style. The general idea is to use a signal with an array type of the desired content
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type for conceptual storage, resulting in concise code. The following lines from the rx_fifo
implementation serve as an example:

type t_memory is array (0 to (RX_MEMORY_SIZE - 1)) of t_ethernet_data;

signal memory : t_memory;

It is obvious that the memory signal can hold as many data bytes as specified in the RX_

MEMORY_SIZE constant. Writing and reading the RAM need similarly few lines of code. This
processwrites write_data to the integer address write_address, synchronously to clock_
write:

process(clock_write)

begin

if rising_edge(clock_write) then

memory(write_address) <= write_data;

end if;

end process;

Reading data from the memory works analogously.

The code is much clearer than using a block RAM primitive with data, address, and enable
signals, but has the same effect. The instantiation alone needs more than 100 lines of mostly
boilerplate codewith a Spartan-6 FPGA. Additionally, thememory size can be easily changed
and the implementation can be used throughout FPGAs of many families and vendors with-
out any modification. We should, however, keep in mind that the memory signal may only
be manipulated in ways that can be mapped back to the hardware. It is, for example, not
possible to read the same memory array from four different processes with distinct clocks
if the FPGA does not happen to have a four-port RAM component. rx_fifo only uses one
read and one write port, which is provided by almost all FPGAs.

5.4 Frame check sequence calculation

Calculation of the frame check sequence is in its most basic form performed one bit at a
time, but here we would need 8 times the GMII clock frequency of 125 MHz to update the
value on-the-fly while data is being sent or received. Doing so in parallel for 8 bits of Eth-
ernet data per clock cycle allows using the same clock at the cost of more logic resources.
The boolean equations needed for this can be derived mathematically as seen e.g. in [48]
and then adopted into VHDL code one-to-one. The result of this is a long sequence of XOR
operations that are virtually impossible to comprehend by looking at them. Sprachmann
proposes a different solution in [49] that is vastly superior in understandability by using a
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simple linear feedback shift register for a one bit update step and letting the VHDL synthe-
sizer figure out the logic gates needed for performing multiple steps in a single clock cycle.
His approach is adopted with minor modifications in the MAC core FCS calculation.

This concludes the review of the Ethernet MAC implementation. We have seen not only how
some parts particularly relevant to the design goals or the general operation of the MAC
core were put into practice, but also a number of alternatives and why they were ultimately
rejected. The next topic then is verifying the considerations of both this and the preceding
chapter.
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Test and Results

The presentation of the IP core would not be complete without also demonstrating that
it indeed performs the functionality it was designed to and, equally importantly, that the
original goals were reached.

To this end, a sequence of tests was performed that in sum verifies all important aspects
of the implementation. We will start with a computer simulation for the basic processes,
continue with a hardware test and benchmark on the target platform, show the integration
of the core into an existing application, and conclude with statistical information about the
FPGA resource utilization and the code.

6.1 Functional verification

Before testing the MAC sublayer on actual hardware, its basic functionality is verified by a
simulation of the VHDL code. A special VHDL entity, the testbench called ethernet_mac_

tb, embeds the core including an application that uses its FIFO interface. The testbench em-
ulates an Ethernet physical layer device’s media-independent interface and directs theMAC
user application to perform specific operations depending on what functionality is being
checked.

First, ethernet_mac_tb hands a number of test packets to the MAC and expects that they
either come back identically or not at all if they were deliberately invalid and thus should be
dropped. Any incoming packets received by the MAC user code are looped back by copying
them from the RX to the TX FIFO. This way, the complete data path from frame reception
on the MII RX interface over reaching the user on the receive FIFO and being written to the
transmit FIFO to frame transmission on theMII TX interface is tested. After that, the padding
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capabilities of the MAC sublayer are tested by having the user application send very small
packets.

In detail, the following test cases are conducted at all supported speeds of 10, 100, and
1000 Mb/s (frame sizes measured without the frame check sequence):

1. Frames with each possible size in the range of 60 to 1514 bytes must be looped back
identically. No other packets must be transmitted by the MAC.

2. The following malformed frames must not be looped back, but a 100-byte frame must
be identically looped back after every frame to verify that the MAC is still functioning:

(a) Frames with each possible size in the range of 1 to 59 bytes (too small) and 1515
to 1524 bytes (too big)

(b) A frame with a size of 2118 bytes (overflowing 11 bits of size information)

(c) A frame with a size of 9999 bytes (larger than the RX memory size)

(d) A frame with a deliberately mismatching frame check sequence

3. After suspending the loopback process, sending 8 packets with a size of 1024 bytes
each, and activating the loopback again, the first 3 packets must be looped back iden-
tically and no other packets must be transmitted by the MAC. This makes sure that
overflowing the RX FIFO, which has a default size of 4096 bytes, correctly drops later
packets and does not corrupt the previously received ones.

4. The loopback user application is replaced with a simple frame generator. Then, the
MACmust correctly pad frames with each possible size in the range of 1 to 59 bytes to
exactly 60 bytes in transmission without corrupting the contents.

The verification aborts and an error is indicated immediately if the MAC:

• ends transmission of a frame on a half-byte when plain MII is used,

• transmits a frame that does not startwith 7 preamble bytes followed by the start frame
delimiter,

• transmits a framewith a size that is below theminimum or above themaximum frame
length,

• does not respect the minimum interpacket gap of at least 12 byte times on transmis-
sion,

• transmits a frame where the frame check sequence does not not match its contents,
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• does not transmit a reply to a correct packet or the size and contents of the reply
packet do not match the properties of the original one,

• transmits more replies than packets were sent to it,

• transmits a reply to an invalid packet in test case 2,

• transmits a reply to a packet that should have been dropped in test case 3,

• transmits a reply that is not exactly 60 bytes in size or does not match the expected
contents in test case 4, or

• does not transmit a required packet within 20 ms.

If, on the contrary, the simulation concludes normally, all results are as expected. The be-
havior verified by the automatic testbench as listed above covers all functions and failure
modes relevant for normal use except the rather simple operation of the MII management
interface.

The open-source VHDL simulator GHDL [50] has successfully run the testbench, proving that
the basic functionality is correctly working. The importance of this verification is under-
lined by the fact that most of the test cases above can not be replicated on hardware without
an expensive Ethernet protocol testing device because network interface controllers do not
commonly have the ability to send invalid packets. Also, stress tests with millions of pack-
ets that can detect intermittent failures are generally unfeasible in simulation due to high
processing overhead. The manual check and benchmark in the following section will cover
both this and MIIM.

Additionally, when the MAC sends a burst of multiple frames in test case 3, the duration of
inactivity on the MII between two consecutive frames is measured. This value corresponds
to the minimum interpacket gap that the sublayer is able to transmit. It was measured to be
14 byte times when using GMII and 12.5 byte times when using plain MII. The difference is a
consequence of having an additional clock cycle per transmitted byte available in the state
machines withMII. Substituting these values for nIPG in the equations for the achievable data
rate devised in Section 2.1.3 results in a simulated maximum TX data rate of 974.0 Mb/s for
Gigabit Ethernet and 97.50 Mb/s for Fast Ethernet.

For request-response communication schemes, the latency between a request packet and
its corresponding response is a significant characteristic of the MAC core. In test case 1,
where the packet is looped back identically and not processed in any way, the time required
for a complete transaction (start of request transmission until end of response reception)
was measured to be 1.76 µs at 1000 Mb/s link speed for a minimum size packet of 60 bytes
and 125 MHz user clock. The actual processing inside the FPGA takes 0.63 µs or 36 percent



Chapter 6 - Test and Results 45

of the total time, the rest is occupied by the data transmission on the media-independent
interface. The values were determined by manually analyzing the MII waveforms produced
by the simulation and allow for a maximum of 568,181 request-response transactions per
second, which is usually more than sufficient. If necessary, bypassing the user FIFOs will
minimize processing latency at the cost of design complexity.

Behavioral simulation generally operates on the basis of full clock cycles and does not ac-
count for the component and routing delays in FPGAs. It is possible to include these fac-
tors in a post-synthesis simulation by transforming the fully routed design netlist back into
VHDL code. This code then contains only FPGA primitives like flip-flops, LUTs, and buffers
and their interconnections, including the actual delays incurred. Consequently, this form
of simulation is more accurate and can additionally detect timing violations. In contrast
to the behavioral test, only a selection of corner cases and intermediate sizes is checked in
test cases 1 and 2 instead of verifying all possible packet sizes. This allows the verification
to complete in a reasonable amount of time despite the increase in processing time caused
by the more accurate model. Furthermore, the testbench was extended to simulate and
check the setup and hold times for GMII. The resulting test cases were successfully run on
the commercial HDL simulator ModelSim byMentor Graphics [51]. The free GHDL simulator
could not be used again because it does not support the extended VHDL features needed for
accurate timing simulation.

6.2 Benchmark

Both behavioral and post-synthesis simulation do not model the exact function of external
ICs and circuitry. It is possible to repeat a false assumption e.g. about MII that was made
while programming the core in the testbench and get a successful result. To show that the
MAC is working in practice, we will look into performing a hardware test of the full core
and an encompassing benchmark design on the GigaBee platform introduced in Section 3.2.
Apart from simple packet reception and transmission, the maximum achievable data rate is
of particular interest.

The general idea is similar to the simulation, although both link partners are now actual
devices and not emulated anymore. A personal computer is connected directly to the Ether-
net connector of the GigaBee baseboard via a standard cable and sends packets to the device
which the FPGA then returns identically, again testing the complete data path. Instead of
verifying single packets of specific lengths, packets of maximum size are sent continuously,
thereby allowing the peak data rate to be measured.
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A custom benchmark application was developed for the Linux operating system in C++ that
puts data packets on the link as fast as the network interface and operating system allow.
The application stamps each packet with a continuously increasing 4-byte sequence num-
ber and checks that this number does not skip any values in the mirrored packets received
from the network. If this happens, the MAC implementation is either malfunctioning or
not fast enough as packets were definitely lost. Each packet carries different payload data
that is compared for equality between transmitted and received packets to ensure that no
packet contents were corrupted. To check for intermittent failures, the test is performed
without interruption for 8 hours each at all three supported link speeds. For every second
the amount of bits received from the FPGA is recorded. Basic MII management operation is
also tested by this procedure because all data transfer depends on miim_control providing
accurate PHY speed information.

Running the benchmarkproducedno errors and themeasurement resultswe see in Table 6.1:
the average data rate was always very close to the theoretical maximum with negligible
deviation and no sequence numbers were skipped. However, the peak data rate shows that
the maximally possible values (e.g. 975.3 Mb/s for Gigabit Ethernet) were never reached.
If we assume that the MAC layer was not fast enough to mirror the incoming packets, it
would have had to drop some of them. That this is not the case can only indicate that the
device or application initially sending the packets is unable to saturate the physical link to
the FPGA board due to e.g. processing overhead in the network interface controller or the
operating system. Without enterprise-grade hardware and preferably a real-time operating
system, the absolute maximum data rate that the MAC sublayer is able to process cannot be
measured this way.

Nonetheless, this does not cause the test to become meaningless. It has shown that the
MAC implementation is correctly working on the target platform, adopts to the physical link
speed, and is able to continuously both send and receive at 99.2 percent of the theoretical
maximum speed allowed by the Ethernet standard.

Even though the computer system used for the benchmark was clearly not able to send pack-
ets out at full Gigabit Ethernet rate, a short experiment revealed that it was able to receive
at this speed. This fact was utilized for measuring the maximum TX data rate of the MAC
core. Instead of transmitting packets on the personal computer and having them looped

Table 6.1: Results of the MAC loopback benchmark. Data rates are measured in the direction from
the FPGA to the test computer.

Link speed Peak data rate Avg. data rate Std. deviation Lost packets
10 Mb/s 9.7440 Mb/s 9.7307 Mb/s 0.0043 Mb/s 0

100 Mb/s 97.332 Mb/s 97.307 Mb/s 0.011 Mb/s 0
1000 Mb/s 968.24 Mb/s 967.70 Mb/s 0.93 Mb/s 0
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back, a process on the FPGA continuously fills the TX FIFO with maximum-size packets. The
benchmarking application on the computer only needs to monitor the incoming interface
data rate. As intermittent failures in the general operation of the core were already tested
in the previous benchmark, a shorter duration of 60 seconds can be used now.

The measured average TX data rates were 974.0 Mb/s for Gigabit Ethernet, 97.50 Mb/s for
Fast Ethernet and 9.750 Mb/s for 10 Mb/s Ethernet. They are consistent with the values
calculated from the simulation results in the preceding section.

6.3 Example application

The benchmark code already serves as an example for the way users can interact with the
MAC sublayer implementation presented in this thesis, but showing a more elaborate appli-
cation will further prove that the core can be easily integrated.

Higher-layer network protocols such as IP and TCP can be implemented more easily in soft-
ware programming languages than in hardware description languages. The open-source
project Chips [52] allows compilation of specially crafted code written for sequential execu-
tion in the C programming language to synthesizable Verilog-HDL code. It interacts with
the rest of the hardware design using 16-bit wide data buses. The author also provides a
demo [53] that implements basic IP functionality and a simple HTTP server on a specific
development board. It supports only Gigabit Ethernet connections via GMII.

To use this project to demonstrate the functionality of the MAC sublayer, the core must
replace the prior implementation of Ethernet connectivity, an adaptor must be installed as
MAC user application to convert between the MAC FIFO and the Chips interface, and the
existing code must generally be adopted to the pinout and infrastructure of the GigaBee
platform used in this thesis. Writing the adaptor was very straightforward as it primarily
needs to copy each two Ethernet data bytes into one word on reception and split each word
into two bytes on transmission. Circa 150 lines of VHDL code were necessary. The complete
result of the customization is available at [54].

After downloading the design onto the FPGA, a standard web browser was pointed at the
static IP address set in the C code. Figure 6.1 shows a screenshot of the resulting web page.
Pressing the “Update LEDs” button changes the state of the light emitting diodes on the
baseboard as expected. The test was successfully repeated at 10 and 100 Mb/s link speed.
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Figure 6.1: Index page of the modified Chips webserver demo project using the MAC sub-
layer presented in this thesis

6.4 FPGA resource and code statistics

On the test platform, the fully routed design including the loopback benchmark application
consumed the resources we see in Table 6.2. The amount of available units is different for
most other members of the Spartan-6 family and is included only as an indicator for how
much logic is left for actual user applications on the smallest GigaBee micromodule. Also,
the number of used resource units will vary greatly when the MAC is ported to other FPGA
families.

Although it was decisively not a goal of the present thesis, the utilization of FPGA resources
is quite small as a consequence of the minimal feature set.

The complete core of the MAC sublayer (without any user application) was implemented in
2,275 lines of actual VHDL code not including blank lines and 531 additional lines of com-
ments. The testbench additionally needs 869 lines of code and 149 lines of comments. In
other words, comments make up approx. 18 percent of all lines and verification code ac-
counts for about 28 percent of the lines of code.

Table 6.2: MAC sublayer resource usage (includingminimal encompassing user design) on the Xilinx
Spartan-6 family FPGA XC6SLX45-2FGG484

Resource Used Total available
Slice registers 603 54,576
Slice LUTs 882 27,288
Occupied slices 349 6,822
RAMB16BWERs (block RAM) 3 116
BUFG/BUFGMUXs 3 16
DCMs 1 8
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Conclusion

This thesis presented an Ethernet MAC sublayer design and corresponding implementation
in VHDL that was devised primarily with simplicity in mind, both in external usage and in
internal operation. Smaller applications that want to use Ethernet directly from the HDL
code such as the transmission of measurement data in a network of ultra-wideband sensors
will benefit from the simple FIFO interface offered while nevertheless being able to send and
receive at almost full Gigabit Ethernet speed.

The MAC supports communicating with a physical layer integrated circuit via the standard
media-independent interface at 10, 100, and 1000 Mb/s link speed and automatic detec-
tion of the current speed. Prior FPGA implementations of tri-mode Ethernet MAC sublayers
were ladenwithnonessential features such as CSMA/CD for half-duplex connections, energy-
efficient Ethernet support, or complex on-chip bus interfaces. While beneficial for e.g. using
them in combination with embedded processors, an increasing amount of features is accom-
panied by increasing complexity and cost. In contrast, only essential Ethernet functionality
was considered for the present thesis.

The design discussion demonstrated how ease of use and understanding were achieved in
practice. We have seen that the tasks the Ethernet MAC has to perform were clearly sepa-
rated into a concise structure of VHDL entities. The user interface is comprised of two FIFO
buffers with well-known and simple interfaces for sending and receiving packets respec-
tively. To avoid requiring the user to process invalid data, broken packets received from
the network are dropped internally. All functionality is wrapped in a single entity called
ethernet_with_fifos that the user can instantiate into his or her design with little effort.
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We then reviewed the implementation ofMII I/O functionality on theXilinx Spartan-6 family
FPGAused in the primary target platform, the Trenz Electronic GigaBeemicromodule. Archi-
tectures were presented for both transmission and reception that allow dynamic switching
between MII and GMII and provide sufficient performance even at 1000 Mb/s link speed.

For the FIFO buffers facing the user, a generated standard implementation was chosen for
the TX direction and a custom one for the RX direction because it was the best way to en-
sure a consistent, symmetrical interface. By synchronizing the read and write pointers per
packet transaction, the complexity of using grey counters usually needed for asynchronous
FIFOs was avoided.

A self-checking VHDL testbench confirmed that all basic functionality was implemented cor-
rectly. To ensure that no major speed limitations emerged as a consequence of keeping the
design simple, a benchmark was performed which clearly proved that performance very
close to the theoretical maximum is reached at all three supported link speeds. Finally, in-
tegrating the MAC sublayer into an existing web-server demo project with little effort has
shown us that applications can make use of the core easily.

The resulting source code is published on the online collaboration platform GitHub [55] un-
der an open-source license. The preceding chapters specifically described the state found
at [56], but further updates to the code might be made in the future. To the knowledge of
the author, this is the first VHDL tri-mode Ethernet MAC implementation available without
any license fee. One free Verilog alternative exists at OpenCores [34], but its design goals
are severely different.

While attention was paid to the secondary goal of making large parts of the IP core device-
independent, the TX FIFO is not completely satisfactory in this regard. It relies on the pro-
prietary LogiCORE generator that will only work with Xilinx FPGAs. Although this was a
deliberate choice for the sake of simplicity, it becomes a significant limitation when porting
the MAC to FPGAs of other vendors. Future work should provide a custom implementation
similar to the RX FIFO directly in VHDL code as an alternative where using the Xilinx FIFO
is unfeasible.

Although all basic Ethernet functionality is included, some secondary features were left out.
Half-duplex operation is highly unlikely to be encountered in modern networks, but flow
control functionality is certainly desirable when operating at high data rates. The IEEE stan-
dard even recommends that every Gigabit Ethernet component supports flow control [6].
However, care must be taken to reach a fair compromise between the benefit of additional
features and the complexity they introduce. While it should be possible to integrate flow
control into the existing design with only minor modifications to the current entities by
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adding a component that handles the transmission and reception of the corresponding con-
trol frames, doing so is expected to compromise the clarity of the present MAC sublayer
too much. In contrast, additional interfaces to the PHY such as the reduced gigabit media-
independent interface (RGMII) should not pose a problem since they can be implemented by
replacing the mii_gmii and mii_gmii_io entities without adding additional components
at all.

An aspect of media access control functionality that has received little attention in the
present thesis is the addressing of nodes on the network. All packets received from the PHY
are handed to the user, no matter whether they were ultimately destined for the device or
not. He or she is then responsible for checking the destination address and acting accord-
ingly. The amount of non-matching data received will be small because Ethernet switches
generally forward packets only to the switch port corresponding to the destination address
anyway. Nevertheless, dropping packetsmeant for other network nodes inside theMAC sub-
layer already should be considered to further improve user-friendliness. Similarly, outgoing
packets need a valid source address that could be inserted automatically by the IP core.

When we take a look at the bigger picture, we observe that Ethernet is rarely used by itself
without at least network and transport protocols such as IP and TCP. The ultra-wideband
sensor networks which this Ethernet MAC was primarily developed for are no exception.
Consequently, most users will have an additional demand for an FPGA core that realizes this
functionality, so that only the actual application layer functionality is left for them to imple-
ment. Quite similar to the original problem statement that led to this thesis, simple and un-
derstandable hardware TCP/IP implementations for FPGAs are scarce. Future work should
investigate which features of which higher-layer protocols are essential for basic applica-
tions and how they can be implemented in cooperation with the MAC sublayer presented
in this thesis in a straightforward manner to offer a comprehensive solution for Ethernet
communication.
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Timing Diagrams

The following diagrams show the detailed timing when interacting with the framing entity
from the user (FIFO) side. 4 bytes of data are transmitted or received respectively. The
mii_gmii side is identical for reception and only differs in the missing tx_busy signal for
transmission. The meaning of the signals is provided in Section 4.3.2 and, more specifically,
in Table 4.1.

A.1 Transmission

tx_clock

tx_enable

tx_data D0 D1 D2 D3

tx_byte_sent

tx_busy

Figure A.1: Transmission of a frame when GMII is used

tx_clock

tx_enable

tx_data D0 D1 D2 D3

tx_byte_sent

tx_busy

Figure A.2: Transmission of a frame when MII is used
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A.2 Reception

rx_clock

rx_frame

rx_data D0 D1 D2 D3

rx_byte_received

Figure A.3: Reception of a frame when GMII is used

rx_clock

rx_frame

rx_data D0 D1 D2 D3

rx_byte_received

Figure A.4: Reception of a frame when MII is used



Appendix B

Coding Style

A consistent coding style makes the code considerably easier to grasp both locally and in its
entirety. To that effect, the following principles have been applied consistently throughout
the source code:

• Expressive names for signals, variables, constants etc.

• Prefixing type names with t_ and suffixing all entity port names with their respective
direction (_i for input, _o for output, or _io for both)

• Usage of the standard IEEE package ieee.numeric_std instead of vendor-specific
ones for mathematical functions

• Putting types, constants, and functions common to multiple entities into shared pack-
ages instead of repeating them

• Distinct usage of signals for storage and variables for intermediate values

• Usage of generics and type attributes for flexibility

• Simple one-process unified coding style for finite state machines by default, usage of
two processes where they provide an easier representation of the functionality

• Comments where they addmeaningful information beyond the obvious operation per-
formed by the code

• Indentation with tabulator characters
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