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Abstract: The deployment of internet of things (IOT) devices in several applications is limited by
their need of having batteries as a power source. This has led many researchers to make efforts
on simultaneous wireless information and power transfer (SWIPT) systems design. Increasing the
bandwidth provides higher capacity; however, due to the narrowband response of conventional
power transfer subsystems, power delivery is decreased. In order to design an optimum wideband
SWIPT system, first, a realistic model of the system, including antennas and rectifier, should be
developed. Then, proper methods to increase the bandwidth of subsystems for optimum power
delivery can be proposed. In this paper, a wideband SWIPT system (300 MHz bandwidth at the
center frequency of 1.44 GHz) while considering realistic limitations of antennas and rectifiers is
designed. To optimize the system performance, a novel power allocation method is proposed.
Using this algorithm, Pareto fronts of Shannon channel capacity versus power delivery in three
scenarios (broadband antennas without considering rectifier, broadband antennas with narrowband
rectifier and broadband antennas with broadband rectifier) are compared. The results show
that, without considering the realistic behaviour of the subsystems, the performance is largely
overestimated. Furthermore, this model allows for designers to optimize each subsystem directly
and assess its effect on the overall SWIPT system performance.

Keywords: power delivery; rectifier; Shannon channel capacity; simultaneous wireless information
and power transfer (SWIPT); power allocation method

1. Introduction

Promising applications of Internet of Things (IOT) and its demand for low power consumption
have directed many researchers to study and design Simultaneous Wireless Information and Power
Transfer (SWIPT) systems [1–3]. SWIPT systems have been recently used in many applications, such as
Radio-Frequency Identification (RFID) [4,5], wireless sensors [6–9], and Multi Input Multi output
(MIMO) technology [10–13]. In these applications, the goal of wireless power transfer (WPT) is
providing the required energy for transferring the information. The receiver of these SWIPT systems
consists of a rectifier to detect information and store the energy [14]. The rectifier converts the input
RF power to DC power, and its conversion efficiency, ratio of output DC power to input RF power,
should be optimized in power allocation.
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Two figures of merit characterizing SWIPT systems are channel capacity and power delivery.
Regarding to these parameters, higher channel capacity is provided by a wider bandwidth. Depending
on the transmission techniques in SWIPT systems [14], power could be transmitted in narrow or
wideband spectrum. The latter solution allows for us to use similar channels for information and
power transfer, which may lead to simpler (i.e., cheaper) implementation. However, the power transfer
efficiency in its basic form for a single-stage rectifier is a concave function, which has maximum at
only one frequency. Therefore, transferring the power in a wide frequency band normally decreases
the rectifier efficiency. So, there is a trade-off between the channel capacity and power delivery. In [15],
this compromise has been analyzed for two dipole antennas as transmitter and receiver using the
Shannon channel capacity and water-filling algorithm for power allocation. The effect of broadband
matching on channel capacity and power delivery has been presented in [16].

In this paper, we propose an optimum broadband SWIPT system. This setup includes a broadband
circularly polarized (CP) transmitter antenna (to provide polarization diversity), a wideband linearly
polarized (LP) receiver antenna, and a broadband rectifier. In order to consider the effect of rectifier
that its characteristics change by frequency and input power, an iterative procedure using water-filling
algorithm is proposed to allot the transmission power. In addition, to verify the performance of the
proposed system, a comparison with narrowband setup that includes two dipole antennas and a
narrowband rectifier is performed.

When compared to [16], the proposed set up is more efficient because it is suitable for mobile
targets thanks to using CP transmitter and LP receiver antennas. Also, the proposed antennas are
wideband and an external active broadband matching network which forces additional loss is not
necessary. Although the conversion efficiency of the rectifier is considered in [17], it is assumed that
the conversion efficiency is fixed over frequency and input power level; however, it is not a correct
assumption for a real rectifier. The iterative algorithm proposed here for power allocation considers
the conversion efficiency of the rectifier as a function of input power and frequency.

The reminder of this article is structured as follows: Section 2 defines the problem, and Section 3
describes the SWIPT system design. Next, the transmitter, the receiver antennas and the rectifier
are presented. In Section 5, the iterative algorithm and the results of broadband SWIPT system are
presented, and finally, Section 6 concludes the article.

2. Problem Statement

In a SWIPT system, the power of the receiver is provided from own received signal. Therefore,
the demand is harvesting maximum energy over time without loss of link. Since these systems are
usually mobile where the orientation of receiver usually varies in time and the polarization mismatch
results in fading in the case of linear polarization of transceiver antennas, the best solution for this issue
concerning maximum energy transfer over time is using circular polarization in one side and linear
polarization in other side. This set up is more robust against fading. Therefore, according to space
limitation in portable receivers, a wireless system with a CP antenna as a transmitter and a rectenna
(a linearly polarized antenna plus a rectifying circuit) as a receiver was selected for simultaneous
wireless information and power transfer. Furthermore, because of requiring more data rate in these
systems, the proposed system is broadband. The configuration of proposed setup is illustrated in
Figure 1.

As shown in Figure 1, in the receiver front end, a rectifying circuit converts RF received power
into DC output voltage. The Dynamic Power Splitter (DPS) is a device, which can separate the energy
signal and information signal. Various types of DPS are explained in [14]. For the sake of simplicity,
we consider the static power splitter (SPS), which is a special type of DPS and simply divides the
total received power with a constant ratio between information and energy receivers [14]. It worth
noting that we ignored the fading effect here. However, due to multipath, reflection, movement, etc.,
fading should be accounted in realistic scenarios whether SPS or DPS is used. There are some papers
considering fading effect and the ignoring rectifier effect [18]. Our main target; however, is to consider
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rectifier effect in wideband SWIPT systems. Therefore, as the first step, we ignore fading and suppose
only the additive white Gaussian noise (AWGN) channel. When considering fading in addition to
rectifier could be a topic of future researches.

Figure 1. Proposed set up.

The figure of merit for system performance is the ratio of the received to transmitted power of
proposed set up, which can be written as:

Pr

Pt
=

V2
dc( f )

RLoad Pt
, (1)

where Vdc is the DC output voltage, Pt is the transmitted power, and Rload is the load, as defined in
Figure 1.

The goal of SWIPT systems is to increase the power delivery and the channel capacity,
simultaneously. The method of achieving this aim is explained in the next section.

3. SWIPT System Design

One of the important parameters is the channel capacity in communication systems. The channel
capacity represents the maximum achievable data rate for a communication channel. We use the
unconstrained Shannon capacity formula for the AWGN channel [19]. It should be noted that this
is an overestimation not only due to ignoring the modulation effect, but also due to ignoring the
rectifier effect on noise. Since the rectifier is a nonlinear component, the whiteness assumption for
noise is not fulfilled [20]. Notwithstanding, for the sake of simplicity, we use this well-known metric
as an unreachable upper bound. The Shannon channel capacity for AWGN channel Cs is a function of
signal-to-noise ratio. It can be calculated per bandwidth segment, as follows [21]:

Cs

ΔB
= log2

(
1 +

Pr

PN

)
, (2)

where ΔB is the bandwidth, Pr is the received power, and PN is the noise power, which is assumed to
be constant over the bandwidth. For M channels with equal bandwidth, the total channel capacity is
as follows [21]:

Cs = ΔB ×
M

∑
m=1

log2

(
1 +

Pr( fm)

PN

)
(3)

where
Pr( fm) = ηp( fm)Pi( fm), (4)

where ηp( fm) and Pi( fm) are the ratio of delivered power to transmitted power ( Pr
Pt

) and input power
at the mth channel, respectively.

Based on Equation (3), higher bandwidths lead to a higher channel capacity. However, the power
delivery trend is opposite, as the power transfer efficiency for single-stage rectennas has maximum at
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only one frequency. In order to increase the power delivery and channel capacity simultaneously, it is
necessary to optimize power allocation, so the water-filling algorithm is used in this paper. Based on
Lagrange optimization, the allotted power to maximize the Shannon channel capacity for the mth
channel is as follows [15]:

Pi( fm) =

(
1.44

λ
− PN

ηp( fm)

)
(5)

where λ is the wavelength. Notice that only positive values of Pi( fm) are acceptable. Negative values
are converted to zero power. This formula is obtained with this assumption that the summation of the
allotted power is equal to total transmitted power:

M

∑
m=1

Pi( fm) = Pav, (6)

At the receiver, the total amount of received power is defined, as follows:

Pr =
M

∑
m=1

Pr( fm) =
M

∑
m=1

Pi( fm)ηp( fm), (7)

When the SWIPT receiver is a rectenna, it is essential to consider the efficiency of the rectifier in
the water-filling algorithm. The conversion efficiency of the rectifier depends on both the frequency
and input power. To consider this dependency in the water-filling algorithm, the flowchart of Figure 2
is proposed.

Figure 2. Iterative algorithm flow chart includes water-filling algorithm.
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According to Figure 2, at the first step, it is assumed that the system does not include the
rectifier and it consists of only two antennas. The allotted power to each channel using water-filling
algorithm is calculated based on gain of the transmitter antenna, free space path loss, and gain of the
receiver antenna. At the second step, a rectifier is designed regarding to the received power at the
center frequency of bandwidth. Then, the efficiency of the rectifier is calculated for all the channels
(according to output DC voltage and received power of each channel). Next, the ratio of delivered
power (output DC power) to transmitted power while considering the conversion efficiency of the
rectifier is calculated by Equation (1), then the water-filling algorithm is used to allot transmission
power of each channel. Putting the rectifier design in the loop increases design complexity and risk
of divergence. Therefore, it is constant during the power allocation. Iterations continue until the
criterion Pi(n) − Pi(n − 1) < 0.001 W is met where n and i refer to the iteration and the channel
number, respectively. This condition means that the difference of two consecutive power transfers by
the water-filling algorithm is too low, which does not affect the power delivery.

In the following, first, the narrowband set up is presented to demonstrate the algorithm, then the
wideband set up is explained. It is assumed that the noise power Pn = 10−8 W is fixed over the
frequency where the power density in 300 MHz bandwidth is −135 dBm/Hz. This value is smaller
comparison with the results in [16], this value is chosen. The total transmitted power is considered as
Pav = 1 W.

3.1. A SWIPT System Using Two Dipoles and a Narrow Band Rectifier

For the first step, two dipole antennas and a rectifier are assumed for a SWIPT system (Figure 3).
As shown in Figure 3, two half wavelength dipoles at 1.44 GHz are separated by 2 m, where the length
of each dipole is 9.15 cm. The impedance of source is 50 Ω and the bandwidth of the proposed setup is
300 MHz with 16 channels by the center frequency of 1.44 GHz. The simulated S11 and the antenna
realized gain are illustrated in Figure 4.

Figure 3. Configuration of two dipoles.

Figure 4. Simulated S11 and gain for dipole antenna.
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According to Friis’ transmission equation, the ratio of delivered power to transmitted power for
two antennas separated by R meter can be calculated as follows:

Pr

Pt
= Gt(θt, φt)Gr(θt, φt)

(
λ

4πR

)2

(1 − |Γt|)2(1 − |Γr|)2|at.a∗r |2e−αR (8)

where Gt is the gain of transmitter antenna, Gr is the gain of receiver antenna, Γt is the reflection
coefficient of transmitter, Γr is the reflection coefficient of receiver, at and ar are the polarization vectors
of antennas, * is Hermitian transpose operator, and α is the absorption coefficient of the medium (α = 0
for free space).

Based on Equation (8), the ratio ( Pr
Pt

) of the two parallel dipole antennas with two meters distance
is shown in Figure 5.
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Figure 5. Pr/Pt of two dipole antennas.

Now, we can calculate power of each channel based on proposed flow chart. After calculating
the power of channels, the delivered power of RX for each channel is computed by Equation (8).
The delivered power to RX antenna is the input power of the rectifier. Then, a rectifier is designed at
the input power of center frequency (1.44 GHz), because the Pr

Pt
is maximum at the center frequency.

For the sake of integrity, the design of rectifier is explained in the next section.
After calculating the conversion efficiency of the rectifier for each channel again, the transmission

power is calculated by the water-filling algorithm and the condition is checked. If it is not satisfied,
then the conversion efficiency of the rectifier is recalculated (based on new delivered power).
This procedure continues iteratively until the condition is satisfied. For this configuration, after seven
iterations, the condition is satisfied. The input power of the rectifier and the conversion efficiency of
the rectifier for the first iteration are illustrated in Figure 6.
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Figure 6. Input power and conversion efficiency of rectifier for first iteration.
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As shown in Figure 6, the highest efficiency occurs at 1.44 GHz where the input power is
−22.8 dBm and the efficiency is 33%.

The channel capacity versus power delivery based on Equation (3) is shown in Figure 7.
This Pareto front is plotted for 16 channels with 20 MHz bandwidth. As shown in Figure 7, when the
set up includes just two dipole antennas, for one channel (center frequency) the channel capacity is
0.3 Gbit/s and the power delivery is 85 μW. Also, for 16 channels, the power delivery is 63 μW and the
Shannon channel capacity is 2.74 Gbit/s. Therefore, when the number of channels increases, the power
delivery decreases and the channel capacity jumps to the highest point.
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Dipole Antennas + Rectifier (First Iteration Water-Filling)
Dipole Anntennas + Rectifier (Equal Power)
Dipole Antennas + Rectifier (7th Iteration Water-Filling)

Figure 7. Pareto fronts of Shannon capacity versus power delivery in different cases.

After adding the designed rectifier, in the first iteration, the values Pi for three channels are
negative and these channels are deleted. It means that the setup with the assumption of 16 channels
and Pav = 1 W cannot be realized and the number of channels should be decreased in order to allocate
the transmitted power. So, for 13 channels, the power delivery is 7.2 μW and the channel capacity is
1.05 Gbit/s. By increasing the number of iterations, after seven iterations, three more channels are also
deleted and for the remaining 10 channels, the power delivery is increased to 10.8 μW and the Shannon
channel capacity reaches 1.15 Gbit/s, so both power delivery and the Shannon channel capacity are
increased when compared to the first iteration. Therefore, the proposed algorithm not only considers
the rectifier conversion efficiency, but also optimizes the SWIPT system and increases both channel
capacity and power delivery.

In order to compare presented power allocation method (iterative water-filling algorithm) with
the equal power allocation, the Pareto fronts of Shannon capacity versus power delivery are drawn in
Figure 7. As shown in Figure 7, when the set up contains two dipole antennas, for the first 10 channels
in which S11 < −10 dB, there is no difference between water-filling algorithm and the equal power
allocation. It is obvious that when the number of channels increases, the water-filling algorithm has a
better result, because in the water-filling algorithm, the allotted power is determined with the respect
of Pr

Pt
, but the equal power allocation does not consider Pr

Pt
. The difference of power delivery and

channel capacity for water-filling algorithm compared with the equal power allocation are 10.5 μW
and 0.9 Gbit/s, respectively. As illustrated in Figure 7, the power delivery of equal power scenario is
less than the water-filling set up.

As observed, using a narrowband subsystem reduces the number of channels and therefore
capacity. Using wideband subsystems allows to use more channels efficiently, which will be shown in
Section 5 (Figure 26).
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4. Component Design

As it is mentioned in Section 2, the proposed set up in this article includes a broadband CP
antenna as a transmitter, a broadband LP antenna, and a rectifier as a receiver. Designing the rectifier,
the transmitter antenna and the receiver antenna are expressed in the following.

4.1. Rectifier Circuit

Rectifying circuits work on the base of nonlinear properties of semiconductor devices (diodes).
These circuits convert unmodulated RF input signal to DC voltage. Their operations in time and
frequency domain are shown in Figure 8.

Figure 8. The operations of rectifiers in time and frequency domain.

A representative parameter showing the rectifier performance is conversion efficiency. In this
study, a zero bias schottky diode, HSMS-285B in SOT 323 package [22], is used. In order to simulate the
circuit, the equivalent linear models for diode [23] is used. It should be noted that the library model of
conventional CAD software (ADS) is not accurate for design. Not only that models consider a parallel
capacitance in each terminal to ground, but also the value of the presented elements in [23], which is
used in ADS, are different. The SOT-323 package is illustrated in Figure 9. The LL is the leadfarm
inductance, CP is the package capacitance, Cc is the coupling capacitance between pin 1 and 2, and LB
is bondwire inductance. The Spice parameters of diode chip are Rs = 25 Ω, Cj0 = 0.18 pF, EG = 0.69 V,
and VB = 3.8 V [22]. The measured input impedance of the diode versus frequency when the input
power is −30 dBm and the load resistance is 1 MΩ has been reported in [24]. The value of package
parameters obtained in [24] is illustrated in Table 1.

Figure 9. Linear model of HSMS-285B [23].

Table 1. Value of diode elements.

Element CC CP LL LB

Value 0.214 pF 0.184 pF 0.5 nH 0.7 nH
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According to [22], when the input power is higher than −20 dBm, diodes work in the large-signal
regime, so the input impedance not only depends on frequency but also depends on input power [25].
It is also worth noting that surface mount assembly profile during assembly process must be
applied [22] to function the diode properly and track the simulation results.

As mentioned in Section 3.1, the center frequency is 1.44 GHz and the input power of the rectifier
is −22.8 dBm in this frequency. The load resistance in this work has been obtained through simulation
with various load resistances and comparing with [26]. The input impedance of the rectifier is 6.9− 169 j
when the load resistance is 20 KΩ and CL = 100 pF, so the matching network should include a series
inductance and a parallel capacitance.

It should be noted that designing a matching network is so important to properly operate the
circuit, because the rectifier works in two modes. One mode is the fundamental frequency mode and
the other one is the DC mode. In DC mode, the DC current path should be closed. If it is simulated
in CAD, like Figure 10a, the current DC path would be like Figure 10b, but this circuit does not
work in reality because our source is an antenna and it is not like a 50 ohm series resistance in DC
mode. Therefore, the matching should be changed and it includes a series and a parallel inductance
(Figure 11a), which the DC path is illustrated in Figure 11b. In consequence, the modified design for
rectifier is illustrated in Figure 11b.

(a) (b)

Figure 10. (a) First design for rectifier; (b) DC path for this design.

(a) (b)

Figure 11. (a) Modified design for rectifier; (b) DC path of designed rectifier.

The elements of matching network are as follows: L1 is 32 nH and L2 is 2.2 nH.

4.2. Transmitter (TX) Antenna

As mentioned in the introduction, using CP antenna in one side of link, mitigates the fading
resulted from random alignment of target. Since the wideband CP antenna in this frequency needs a
more complicated structure, we put it at the transmitter, and used simpler LP antenna at the receiver.
The challenge of designing TX antenna is a broadband axial ratio. In order to have a broadband CP
antenna, square slot antennas with coplanar waveguide (CPW) fed is recommended [27–29]. Not only
do these structures enhance the axial ratio bandwidth, but also the impedance bandwidth would be
increased. Based on [27], a broadband CP slot antenna is designed and illustrated in Figure 12. It is
fabricated on FR-4 substrates with εr = 4.3, tan δ = 0.02, and thickness (h) of 1.6 mm.
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(a) (b) (c)

Figure 12. Configuration of presented circularly polarized (CP) square slot antenna; (a) slot patch
antenna top view; (b) antenna with reflector; and, (c) implemented antenna.

As shown in Figure 12a, the antenna is fed with a CPW line. w f and g provide 50 ohm CPW
transmission line. The CPW line is connected to L-shaped metal. The length of this L-shaped metal
and the asymmetric shape of it are consequential to obtain CP operation. The rectangular metal patch
with the dimension of LP × WP extends axial-ratio bandwidth. In addition, the stub with the length of
L4 and width of Wf with the height of S2 from lower edge is added to enhance impedance bandwidth
and reduce the size. In order to increase the gain of the antenna, a square metal reflector with the
length of GL is located at λ0/4 below the patch, where λ0 is the free-space wavelength at the center
frequency, so the reflected backward waves from the reflector have the same phase and polarization
with the forward radiated waves [27]. All of the required dimensions of the antenna with reflector are
presented in Table 2.

Table 2. Dimensions of the Tx antenna based on Figure 12 (unit: mm).

G L L1 L2 L3 L4 Wf g WP LP S1 S2 GL H Wr

100 60 26.5 20 18 22 5 0.5 23 46 1 15 140 50 15

Figures 13 and 14 show the simulated and measured S11 and the axial ratio of the TX antennas
versus frequency, respectively.
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Figure 13. Simulated and measured return loss of the TX Antenna.
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Figure 14. Simulated and measured the axial-ratio of the TX Antenna.

As shown in Figure 13, the impedance bandwidth of the antenna is 45% in the center frequency
of 1.44 GHz (1.1–1.75 GHz). As illustrated in Figure 14, the axial-ratio bandwidth is 25% in the
center frequency of 1.44 GHz (1.25–1.6 GHz). This makes it suitable for using as transmitter in the
SWIPT system.

The simulated and measured radiation pattern in two different planes (phi = 0 and phi = 90) at
1.44 GHz are shown in Figure 15.

(b)  (a)  

Figure 15. Simulated (dashed line) and measured (solid line) radiation pattern (a) φ = 0
◦
; (b) φ = 90

◦
.

As shown in Figure 15a,b, using the reflector has resulted in 10 dB front to back ratio.

4.3. Receiver (RX) Antenna

As mentioned in Section 2, the receiver antenna should be broadband and has linearly polarized
radiation. Generally, there are some methods to increase impedance bandwidth, such as U-shaped
slot, stacked structures, cutting the ground of the structure, like ultra wide band (UWB) antennas,
and etc. [30]. The first two methods cannot support the recommended bandwidth (1.3–1.6 GHz),
so the method that provides this bandwidth is an UWB antenna. Therefore, a broadband linearly
polarized patch antenna is designed based on [31]. Figure 16 shows the configuration of the antenna.
It is fabricated on FR-4 substrates with εr = 4.4, tan δ = 0.02, and thickness (h) of 1.6 mm.
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(a)

 
(b)

Figure 16. (a) Top view of receiver (RX) antenna; (b) fabricated printed CPW-fed half elliptical monopole.

The antenna is a printed CPW-fed half elliptical monopole. CPW-fed is 50 ohm. According to
simulation, the surface current of the patch on the bottom apex and along the margin of the patch
is maximum and in center of patch is zero. It means that the center of the half elliptical patch does
not affect the radiation (it is shown in Figure 17), so we can cut half of the metal of the patch and
reduce the metal surface without impacting on the antenna performance. The antenna dimensions
are presented in Table 3. As a rule of thumb in printed UWB monopole antenna design, at the
lowest resonance frequency, R1 must be around λ0

4 , which mimics a quarter wavelength monopole
antenna [32]. However, again similar to monopole antennas, width of radiating part (R3) also affects
the resonant frequency. The final antenna dimensions are listed in Table 3.

(a) (b)

Figure 17. (a) The current density for complete antenna; (b) the current density for half elliptical antenna.

Table 3. Dimensions of RX antenna (unit: mm).

L W Wf g d R1 R2 R3 R4

115 110 4 0.5 10 101 52 70 25

The simulated and measured reflection coefficient of RX antenna is plotted in Figure 18. As can be
seen, there is an upper shift in measurement, which is probably due to uncertainty of the applied FR4
dielectric constant. However, the impedance bandwidth of the antenna is still 720 MHz and covers our
system requirements that are described in Section 2.
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Figure 18. Measured and simulated S11 of the RX antenna.

The simulated and measured radiation pattern in two different planes (phi = 0 and phi = 90) at
1.44 GHz are illustrated in Figure 19.

(b) (a) 

Figure 19. Simulated (dashed line) and measured (solid line) radiation pattern (a) φ = 0
◦
; (b) φ = 90

◦
.

The discrepancy between measurement and simulation might be due to uncertainty of our
anechoic chamber, which is not perfect below 2 GHz. However, since the TX antenna radiates CP,
and the link was designed with the assumption of a movable RX, the RX pattern rotation is not very
important in practice. In the next section, the result of involving these component in the final system
will be presented.

5. Proposed Broadband SWIPT Setup

In this section, the broadband SWIPT system and its performance are analyzed. For this purpose,
three different scenarios are considered. First, two broadband antennas are considered, then it
is assumed that the receiver contains a narrowband rectenna (the broadband LP antenna and a
narrowband rectifier), and finally, the broadband rectenna is considered as a receiver. The channel
capacity versus the power delivery of these configurations are compared and discussed.

5.1. A SWIPT System Using Two Broadband Antennas

As mentioned, the transmitter is a broadband CP antenna and the receiver is a broadband linearly
polarized antenna. The broadside realized gain of the TX and RX antennas versus frequency are shown
in Figure 20.

The ratio of ( Pr
Pt

) for two supposed antennas with 2 m distance based on Equation (9) is illustrated
in Figure 21.

As shown in Figure 21, the ratio of (Pr/Pt) is decreased by increasing the frequency due to
free space loss. According to the ratio of (Pr/Pt), the Pareto front of the channel capacity versus
power delivery will be illustrated in Figure 26. However, for wireless power transmission realization,
a rectifier is necessary. Introducing the rectifier in the link degrades the performance; but the proper
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design of it can alleviate this degradation. Two cases of narrowband and wideband rectifiers will be
compared in the next subsections.
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Figure 20. Realized gain of transmitted and received antenna versus frequency.
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Figure 21. The ratio of Pr/Pt of broadband antennas without rectifier.

5.2. A SWIPT System Using Two Broadband Antennas and a Narrowband Rectifier

The ratio of (Pr/Pt) for two broadband antennas was calculated in pervious section, and in this
part, it is assumed that the receiver also has a rectifier. Based on the proposed flow chart in Figure 2,
after calculating the allotted power according to the water-filling algorithm with assumption Pav = 1 W
and PN = 10−8 W, at the second step, the input power of the rectifier from Equation (4) is calculated.
In the center frequency (1.44 GHz), the input power of the rectifier is −17.59 dBm. A narrowband
rectifier, like Section 4.1 at 1.44 GHz with the input power −17.59 dBm, is designed. With this input
power, the input impedance of the rectifier at 1.44 GHz is 5.09 − j169.87 Ω. The configuration of the
simulated and implemented rectifier is shown in Figure 22. It was fabricated on RO4003 with εr = 3.38.
The load resistance is 20K Ω, C1 is 100 PF and the matching network consist of a series inductance
(L1 = 18 nH) and a parallel inductance (L2 = 2.2 nH). The TL1 and TL2 microstrip lines are used to
mount the pins of diode and smd inductor, respectively. TL3 microstrip line is 50 ohm and it is added
to mount the SMA (Sub Miniature version A) connector.

(a)
 

(b)

Figure 22. (a) Simulated rectifier; (b) implemented rectifier.
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After designing the rectifier, its conversion efficiency is considered in the power allocation
algorithm (water-filling) and the allotted power is calculated for each channel. Again, the conversion
efficiency of the rectifier based on new input power is calculated, and it continuous until the stop
condition is satisfied (here after two iterations). At the end, the results of simulation and measurement
of the conversion efficiency of rectifiers after two steps of the iteration algorithm for 16 channels with
different input power are illustrated in Figure 23. It is observed that, when the antennas are broadband,
the number of iterations decrease and the algorithm converges rapidly.
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Figure 23. Measured and simulated efficiency of the rectifier and its input power.

The simulated conversion efficiency of the rectifier is 41% when the input power is −17.95 dBm
at 1.44 GHz, and this value is acceptable when compared with [26,33]. The measured efficiency at this
frequency and input power is 34.5% and the DC output voltage is 0.331 V. The corresponding diagram
of the channel capacity versus power delivery will be plotted in Figure 26.

5.3. A SWIPT System Using Two Broadband Antennas and a Broadband Rectifier

In previous section, the matching network of rectifier was narrowband. In order to increase the
bandwidth of the matching network, two stages are added to the matching network. The target is
flatting the conversion efficiency over the frequency in different input powers. The configuration
of designed matching network is shown in Figure 24. Using the ADS software optimization tool,
the values listed in Table 4 were obtained.

Figure 24. The configuration of simulated broadband rectifier.

Table 4. The values of matching network in Figure 24.

RL C1 L1 L2 L3 L4 C2 C3

20 KΩ 100 (pF) 22 (nH) 2.53 (nH) 4.5 (nH) 2.2 (nH) 7.34 (pF) 2.27 (pF)

The conversion efficiency diagram of the broad band rectifier in comparison to the narrowband
rectifier is shown in Figure 25. As can be seen, the conversion efficiency of narrowband rectifier is
higher than 30 percent for six channels. However, the conversion efficiency of broadband rectifier is
higher than 30 percent for 13 channels.
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Figure 25. Simulated conversion efficiency of broadband rectifier (solid) and narrowband
rectifier (dashed).

The Pareto front of the channel capacity versus power delivery based on the proposed power
allocation algorithm for three different cases (two broadband antennas without considering rectifier,
broadband antennas and narrowband rectifier, and broadband antennas with broadband rectifier) is
shown in Figure 26.

Figure 26. Pareto front of the Shannon capacity versus power delivery for different cases with different
power allocation methods.

As shown in Figure 26, when the set up contains two broadband antennas (which means
inefficiency of rectifier has been ignored), the power delivery is 260 μW and the channel capacity is
3.45 Gbit/s for 16 channels. Adding narrowband rectifier to system model reduced power delivery and
channel capacity to 35 μW and 2.16 Gbit/s, respectively. When the rectifier is broadband, the maximum
conversion efficiency decreases, but it is more than 30% for more channels when compared with the
narrowband rectifier. This causes the broadband rectifier to have less power delivery for one channel,
but when the number of channels increases it overpasses the narrowband rectifier i.e., the channel
capacity and the power delivery for broadband rectifier increase in compression with the narrowband
one. For broadband setup, the power delivery is 79 μW and the channel capacity is 2.86 Gbit/s for
16 channels. It is obvious that the channel capacity and the power delivery of broadband system is
increased to 0.7 Gbit/s and 44 μW, respectively, when compared to narrowband rectifier. Therefore,
as can be seen from Figure 26, to properly design a SWIPT system, the rectifier should be considered.

Similar to Section 3.1, to compare the equal power allocation with presented allocation power
in this article, the channel capacity versus power delivery for three different types are drawn in
Figure 26. It is illustrated that when the set up includes wideband antennas, the power allocation
method does not influence on power delivery and channel capacity. However, if the set up contains
WB antennas and a narrowband rectifier, the performance of power allocation appears for higher
channels. For 16 channels, the power delivery and channel capacity that were obtained by water-filling
algorithm are 3 μW and 0.03 Gbit/s higher than the equal power allocation. Finally, for wideband
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antennas and wideband rectifier these differences are too low (0.03 μW and less than 0.001 Gbit/s),
which can be neglected.

6. Conclusions

In this paper, a broadband SWIPT system was implemented and analyzed. To consider the
random change of antenna directions, the transmitter was broadband CP antenna and the receiver
includes broadband LP antenna and rectifier. In addition, an iterative algorithm for SWIPT systems
when the receiver includes rectenna was proposed. To explain the concept, three different SWIPT
scenarios consist of two broadband antennas, two broadband antennas with narrowband rectifier,
and finally, two broadband antennas with broadband rectifier are considered. The results show that
ignoring the rectifier in the model overestimates channel capacity and power delivery capabilities.
Considering the rectifier provides weaker but more reliable Pareto fronts. According to the Pareto
fronts, including rectifier, when the rectifier is broadband, the Shannon channel capacity and power
delivery increases 0.7 Gbit/s and 44 μW, respectively, as compared to narrowband one.
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