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Summary 

Aspergilli are ubiquitous fungi which can be found in various natural environments. Evolution 

shaped their adaptability to diverse stress conditions, such as low temperature or nutrition 

limitations that they also encounter during host infection. We applied different assays and 

multi-omics approaches to gain deeper understanding about these strategies.  

The determination of intracellular ATP levels over the time of the freezing and defrosting 

processes revealed a high resistance of Aspergillus nidulans against cold- and cryostress. 

This suggests that A. nidulans is able to induce protective mechanisms to withstand low 

temperature and cryostress and to determine its lowest growth temperature at 10°C. Large-

scale proteomics, transcriptomics and metabolomics allowed us to gain insights into the low 

temperature response of this fungus at 10°C. These analyses revealed an induction of cold 

protection mechanisms and a change in cell development and natural product biosynthesis. 

The induced cold protection mechanisms were known from other organisms and ranged from 

oxidative to osmotic stress responses and the induction of chaperones and glycine-rich RNA 

binding proteins. Further on, sexual development was triggered. This finding indicated the 

existence of a light-independent mechanism of activation of cell developmental signalling and 

regulation by cold. The low temperature response also led to a distinct biosynthesis of 

secondary metabolites (SMs), including the production of so-far uncharacterised compounds 

with inhibitory effects against fungi and Gram-positive bacteria. The insights of this study 

may help to improve the cryo-conservation of filamentous fungi. Our data set is also highly 

relevant for the optimisation of fermentation processes under low temperature conditions. 

Further on, SMs produced at low temperature stress may represent a valuable source for 

therapeutic compounds. They may also represent important mediators of microbial 

communication. 

Another stress is caused by human cells. As a first step to characterise the adaptation, the 

regulation of extracellular protease secretion in the human-pathogenic fungus 

Aspergillus fumigatus was investigated by an LC-MS/MS based proteomic approach. The 

gene regulatory networks of the transcription factors (TFs) XprG and PrtT required for 

protease secretion were studied on the protein level. Deletion of these TFs resulted in a 

nearly absent degradation of substrate proteins. However, the double deletion strain 

ΔXprG/ΔPrtT did not show an attenuated virulence in a murine infection model of invasive 

aspergillosis. We concluded a genetic redundancy in proteolytic function and a putative 

induction of alternative virulence factors in the double mutant ΔXprG/ΔPrtT. Furthermore, 

XprG and PrtT influenced additional processes, such as cell wall modifications and allergen 
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production. Thus, the mutant strain ΔXprG/ΔPrtT may be useful for investigating the allergic 

response to fungal protein antigens.  

In summary, Aspergilli used in this study showed strong adaptability to the applied stress 

conditions and a valuable multi-omics data set for future studies was generated. 

Zusammenfassung 

Aspergilli sind ubiquitäre Pilze, die an den verschiedensten Standorten in der Umwelt 

gefunden werden können. Sie haben sich im Laufe der Evolution an diverse 

Stressbedingungen wie niedrige Temperaturen oder eine durch den Wirt verursachte 

Limitierung der Nahrungsquelle angepasst. Um tiefere Einblicke in die Anpassungsstrategien 

zu erlangen, haben wir einen Multi-Omics Ansatz und weitere unterschiedliche 

Untersuchungsmethoden angewandt.  

Durch Messungen der intrazellulären ATP Werte während des Einfrier- und Auftauvorgangs 

stellte sich heraus, dass Aspergillus nidulans eine hohe Resistenz gegenüber Kälte und 

Kryostress aufweist und 10°C die niedrigste Temperatur im Wachstum von A. nidulans 

darstellt. Der Pilz ist somit in der Lage, Schutzmechanismen gegen niedrige Temperaturen 

und Kryostress einzuleiten. Umfangreiche Proteomik-, Transkriptomik- und Metabolomik-

Analysen erlaubten Einblicke in die Kältestress-Antwort des Pilzes bei 10°C. Dadurch konnte 

eine Induktion von Kälteschutzmechanismen, eine Veränderung der Zellentwicklung sowie 

eine Biosynthese von Naturstoffen nachgewiesen werden. Bei den induzierten 

Kälteschutzmechanismen handelt es sich im Allgemeinen um von anderen Organismen 

bekannte Mechanismen, die von oxidativen und osmotischen Stressreaktionen bis hin zu der 

Induktion von Chaperonen und Glycin-reichen RNA-Bindungsproteinen reichen. Weiter 

wurde die sexuelle Entwicklung nach Kältestress induziert, und es gab Hinweise auf einen 

lichtunabhängigen, kälteregulierten Mechanismus zur Aktivierung der Signalübertragung und 

Regulierung der Zellentwicklung. Außerdem führte die Kältestressantwort zur Biosynthese 

von diversen Sekundärmetaboliten (SMen). Dabei wurden bisher noch nicht charakterisierte, 

chemische Verbindungen produziert, die eine inhibitorische Wirkung gegen Pilze und Gram-

positive Bakterien aufwiesen. Die Erkenntnisse dieser Studie können zu einer optimierten 

Kryokonservierung filamentöser Pilze beitragen. Weiterhin sind unsere Daten für die 

Optimierung von Fermentationsprozessen unter niedrigen Temperaturbedingungen von 

großer Bedeutung. Darüber hinaus können die kältestress-induzierten SMe eine wertvolle 

Quelle für therapeutische Verbindungen darstellen. Zudem ist es möglich, dass die SMe 

wichtige Signale der mikrobiellen Kommunikation übermitteln.  
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Eine weitere Stress-Art wird durch Immun-Zellen hervorgerufen. Als erster Schritt wurde zur 

Charakterisierung der Stress-Adaption mittels eines LC-MS/MS basierten proteomischen 

Ansatzes die Regulation der extrazellulären Protease-Sekretion im humanpathogenen Pilz 

Aspergillus fumigatus untersucht. Dazu wurde das genregulatorische Netzwerk der 

Transkriptionsfaktoren (TFen) XprG und PrtT auf Proteinebene erforscht. Die Deletion dieser 

TFen führte zu einem nahezu komplett zum Erliegen kommenden Abbau von 

Proteinsubstrat. Der Deletions-Stamm ΔXprG/ΔPrtT zeigte allerdings keine abgeschwächte 

Virulenz in einem murinen Infektionsmodell der invasiven Aspergillose. Entsprechend haben 

wir auf eine genetische Redundanz proteolytischer Funktion geschlussfolgert, bei der 

außerdem eine mutmaßliche Induktion alternativer Virulenzfaktoren in der Doppelmutante 

ΔXprG/ΔPrtT eine Rolle spielen könnte. Darüber hinaus konnten wir nachweisen, dass XprG 

und PrtT weitere Prozesse wie die Zellwandmodifikationen und die Produktion von 

Allergenen beeinflussen. Somit kann der Deletions-Stamm ΔXprG/ΔPrtT auch in der 

Erforschung der allergischen Reaktion auf Pilzproteinantigene verwendet werden. 

Zusammenfassend weisen die in dieser Studie verwendeten Aspergilli eine starke 

Anpassungsfähigkeit an die angewandten Stressbedingungen auf, und es wurde ein Multi-

Omics-Datensatz für zukünftige Studien erzeugt. 
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1 Introduction 

This work focuses on the ability of Aspergillus species to adjust to various growth challenges 

and withstand harsh conditions in the natural environments or in the human body. For 

investigating the behaviour of the fungus in the human body or in particular studying the 

ability to degrade structural barriers of the host, the human pathogenic fungus Aspergillus 

fumigatus was chosen. The regulation of extracellular proteases that may participate in host 

tissue invasion and destruction were investigated in more detail. As a harsh environmental 

condition, low temperature stress was chosen, and the adaptation ability of Aspergillus 

nidulans was examined in more detail. In the following sections, the characteristics of 

A. fumigatus in terms of pathogenicity as well as A. nidulans in terms of secondary 

metabolism, cell development, and cold protection will be introduced. 

1.1 The genus Aspergillus 

Fungi represent one of the largest eukaryotic kingdoms (1), in which the phylum Ascomycota 

forms the biggest faction with over 64,000 described species belonging to approximately 

6,400 genera (2). The filamentous fungi of the genus Aspergilli cover 350 different species 

(3). Aspergilli are moulds that are widespread in nature. As ubiquitous microbes with a large 

pool of enzymes, Aspergilli can degrade both plant and animal material (4,5), which is 

characteristic of a saprophytic life style (6). The different Aspergillus species can be 

distinguished by the morphology of their conidiophores (specific asexual fruiting structure) 

(6,7). With regard to their impact on humans, Aspergilli play an ambivalent role; some are 

beneficial while others can be harmful.  

Aspergilli can exhibit toxic activity and cause life-threatening disease, e.g. in susceptible 

individuals. Among those, the most well-known species is Aspergillus fumigatus (8). 

A. fumigatus can invade the lungs and cause invasive aspergillosis (IA) in 

immunocompromised patients (9). It is found in about 90% of all clinical cases of IA (10) 

most probably due to its high adaptability (9,11). Although we inhale about 100 A. fumigatus 

conidia per day (12), healthy individuals are hardly affected due to efficient clearance by the 

immune system (13).  

On the other side, Aspergilli are beneficial for mankind. In biotechnology, Aspergillus species 

are of industrial importance for food fermentations and the production of enzyme or organic 

acids (14–17). For example, Aspergillus oryzae is used for soybean fermentation (18), while 

Aspergillus niger produces citric acid in large quantities for industrial use (19). On the other 

hand, A. niger can also cause diseases in humans (20), which further demonstrates the 

ambivalent role of Aspergilli. Moreover, Aspergillus species are also interesting for the 
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pharmaceutical industry due to their ability to produce biologically active natural products 

(NPs) (21). Examples for compounds of medical significance are antimicrobial agents such 

as echinocandins or cholesterol-lowering drugs such as statins (22). To illustrate the 

relationships between the aforementioned Aspergilli, a phylogenetic tree of a regulatory gene 

in the aflatoxin biosynthesis gene cluster in a conserved region is shown (Figure 1). 

 

 

Figure 1: Phylogenetic tree without distance corrections for A. niger, A. oryzae, A. nidulans, 

and A. fumigatus for a regulatory gene (An01g15010 in A. niger, aflJ in A. oryzae, mdpA in 

A. nidulans, and tpcD in A. fumigatus) of the aflatoxin biosynthesis gene cluster. For the 

investigated genetic region, A. nidulans is closer related to A. oryzae, which have both the 

same distance to A. fumigatus and A. niger.  

1.1.1. Pathogenicity of A. fumigatus 

A. fumigatus is an opportunistic airborne pathogen that can infect humans. With a size of 

approximately 2-3 µm in diameter, the spores are small enough to reach the lung alveoli of 

humans. Depending on the state of the immune system, spores are either killed or germinate 

and establish an infection in immunocompromised hosts. IA infections are accompanied by 

tissue damage. IA is associated with mortality rates between 30 to 90% (9,23).  

The diagnosis of IA is difficult and therapeutic options are rather limited due to the similarity 

of the biology of eukaryotic host cells and the fungal pathogen. Infections are usually 

microbiologically diagnosed by the detection of cell wall components like galactomannan or 

-1,3-glucan in serum (24), with the risk of false positives and negatives (25). Alternatively, 

Aspergilli can be diagnosed via a PCR reaction which has similar sensitivity and specificity 

compared to the aforementioned biomarker assays (26). A. fumigatus infections can be 

treated with three different groups of antifungal agents: azoles, polyenes and echinocandins 

(27,28). Azoles such as voriconazole and polyenes such as the polyene-macrolide 

amphotericin B interact with the fungal cell membrane component ergosterol and interfere 

with cell membrane integrity. Echinocandins have a completely different mechanism of 

action, they inhibit the synthesis of the cell wall polymer ß-1,3-glucan in a non-competitive 

manner, and therefore perturb cell wall functions (29). The increasing prevalence of 

antifungal drug resistance in A. fumigatus strains (30,31), e.g. against voriconazole or other 
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triazole-derivates, has become an emerging problem. Hence, searching for other agents 

active against fungi is crucial.  

In the immunocompetent host, the immune system has an armoury of weapons to clear an 

A. fumigatus infection. After conidia are inhaled, A. fumigatus is confronted by the pulmonary 

innate and adaptive immune system. The innate immune system in the human lungs consists 

of physiological barriers like epithelium and endothelium, and cellular components like 

macrophages, neutrophils, natural killer cells, monocytes, and dendritic cells.  

Upon reaching the bronchial system, the recognition of A. fumigatus takes place by 

pathogen-associated molecular patterns (PAMPs), which are detected by pattern-recognition 

receptors (PRRs) located on the surface of innate immune effector cells. Toll-like receptors 

TLR-2 and TLR-4, and the c-type-lectin-receptor dectin-1 support recognition of the ß-1-3-

glucan polymer in the fungal cell wall (32,33). Once, conidia are internalised by epithelial, 

endothelial, or professional phagocytic cells (macrophages, neutrophils) they are killed by 

acidification (34,35) inside  phagolysosomes (36). However, this process can be disturbed by 

the fungal conidial pigment melanin. Alveolar macrophages represent the largest number of 

immune cells that reside in the lung (37). They trigger the release of a multitude of 

proinflammatory cytokines and chemokines. This leads to the recruitment and activation of 

neutrophil granulocytes (38), which represent an essential line of defence of the immune 

system against A. fumigatus. They can degranulate and form so called neutrophil 

extracellular traps (NETs) (39), facilitating further recruitment of immune cells (36) and 

prevent spreading of the pathogen (40). It is also known that neutrophils can guide and 

differentiate dendritic cells (41), which can phagocytose and eliminate conidia and hyphae. 

After internalising conidia, dendritic cells secrete interleukin 12, inducing the protective 

T helper (Th-)1-cell immune response (42,43). In contrast, the phagocytosis of hyphae 

triggers the secretion of anti-inflammatory IL-10 and IL-4. The latter one activates a Th2-cell 

response (44).  

Another important part of the innate immune system is the complement system, which 

consists of a number of proteins and acts as a cascade to initiate an immune defence 

reaction (45). Some complement proteins have a direct antimicrobial effect, while others lead 

to the formation of the membrane attack complex (MAC) that causes cell lysis. Their main 

function is to opsonize pathogens and attract immune cells (46). Since this process cannot 

discriminate between exogenic and endogenic, healthy or damaged cells, the activity of this 

system needs to be tightly regulated, e.g. with membrane integrated factors and/or with 

regulators in the serum. Therefore, a common evasion strategy of pathogens is to bind 

immune regulators that are present in the serum. In vitro studies showed that conidia from 

A. fumigatus are able to bind regulatory factors like factor H, FHL-1, plasminogen, and the 
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C4-binding protein C4bp, which is a regulator of the lectin pathway  in order to avoid immune 

recognition (47). Hyphae can also evade the complement system by secreting the serine 

protease Alp1, which inactivates unspecific complement proteins by proteolytic degradation 

(48). 

During the infection process, A. fumigatus secretes secondary metabolites like gliotoxin, 

helvolic acid and fumagillin (23) and proteins like mitogillin, which inhibit cell activity, 

damages the respiratory epithelial tissue (49) or may have a cytotoxic or hemolytic activity 

against macrophages, epithelial cells and erythrocytes (50,51). These secretions represent 

one of the strategies that allow A. fumigatus to successfully invade and thrive in the human 

body (11,52).  

Beside challenges like the host immune response, the fungus also needs to adapt to a higher 

temperature, lower levels of oxygen, and nutrient limitations in the human host (11,23). An 

available nutrient source is the host tissue, which needs to be enzymatically degraded to low 

molecular mass carbon sources before uptake. It was shown in other microorganisms that 

the ability to utilize specific horst carbon sources is a requirement for invasive growth. For 

example, in Candida albicans (53) and Mycobacterium tuberculosis (54,55) the lipid 

metabolism is essential during infection. However, a study from Schöbel et al. (56) showed 

that A. fumigatus does not strongly depend on the ability to use lipids as a carbon source 

during infection (57). A. fumigatus developed different strategies to compensate nutrient 

deficiency. Amino acid starvation for instance results in accumulation of uncharged tRNA 

molecules, which activate the sensor kinase of the cross-pathway control system. This leads 

to the secretion of corresponding enzymes for amino acids uptake, which are essential for 

this fungus (58). 

1.1.2. Secretion of proteins by A. fumigatus 

It is well known that A. fumigatus secretes enzymes, like proteases, during lung invasion 

(59). After degradation of the host tissue, various nutrient sources are available for the 

fungus. Depending on the carbon source present, the enzyme methylcitrate synthase (MscA) 

is crucial for the survival of A. fumigatus in the host. When growing on carbon compounds 

such as propionate, isoleucine, valine, or methionine, the fungus accumulates the toxic 

metabolite propionyl-CoA, which is usually metabolised further by McsA and subsequent 

enzymes of the methylcitrate cycle. When McsA is lacking, the growth of A. fumigatus is 

strongly reduced on propionyl-CoA-generating carbon sources, including growth on protein 

sources. A mcsA mutant of A. fumigatus showed attenuation of virulence in different 

infection models. This suggests that proteins and amino acids serve as growth-supporting 

nutrients during infection (57).  
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To aid host tissue degradation, the protein secretion machinery is maintained by the unfolded 

protein response (UPR) and the endoplasmic-reticulum-associated protein degradation 

(ERAD) process. The involvement of secreted proteins in the infection process, in particular 

proteases and lipases, was shown for bacteria, protozoa, and pathogenic yeasts (60,61). In 

the case of the opportunistic human pathogen Cryptococcus neoformans, the secreted 

phospholipase B1 (Plb1) was shown to be an essential virulence factor for nutrition 

acquisition, tissue invasion and immune evasion (62,63). However, in case of proteases, 

these enzymes often substitute each other’s function to a certain extent. Hence, the 

functional analysis of single proteases is often very difficult by genetic methods. In Candida 

albicans, proteases can partially complement each other’s functions (64). It was shown that 

the aspartyl proteases SAP 1, 2, and 3 are responsible for the proteolysis of complement 

proteins (65) and thus represent virulence determinants. In A. fumigatus, protease-deficient 

strains did not show reduced virulence in mouse infection models (66–68). However, PrtT, a 

transcriptional regulator of several secreted proteases, has been shown to play a role in 

damaging epithelial cells and erythrocytes (59,68). Further nutritional profiling studies with 

regard to extracellular proteolysis and uptake of oligopeptides were carried out (69). Only a 

limited number of transporters, mainly members of the oligopeptide transporter family (OPT) 

and to a lesser extent amino acid permeases and peptide transporters, are responsible for 

the uptake of peptides in fungi (70,71). A strain lacking the entire set of opt family genes and 

the extracellular protease regulator prtT revealed growth defects on porcine lung tissue agar, 

but showed no attenuated virulence in a mouse infection model (69,72). This underlines the 

robustness and the high degree of redundancy encoded by the A. fumigatus genome to 

ensure nutrient supply and growth in a complex and hostile environment. 

1.2 The filamentous fungus A. nidulans  

A. nidulans is a ubiquitous filamentous fungus that belongs to the class of ascomycetes in 

the order of Eurotiales. It represents a well-established model organism for cell biology and 

gene regulation (73). This mould is fast growing and can be easily cultivated. Moreover, the 

genome of A. nidulans has been sequenced (74), which allows whole-genome, 

transcriptome, and proteome studies (75,76). A. nidulans has a sexual cycle and can be 

easily crossed. Numerous basic studies on signal transduction (77), gene regulation (78–80) 

and cell biology and development (81–83) illustrate the high relevance of A. nidulans for 

various scientific fields including medicine and biotechnology (17,21,22).  

Like many other moulds, the fungus has the ability to produce secondary metabolites (SMs) 

(84,85), secrete enzymes (86) and organic acids (87). Although A. niger is the most 

commonly utilized Aspergilli species for biotechnological use, A. nidulans has some 
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importance in applied biology and biotechnology as a source of biologically active natural 

products (NPs) and enzymes. The biosynthesis of SMs often coincides with development 

(sexual/asexual) in A. nidulans (80,88). The association between the SM production and cell 

differentiation or development has been reported for a long time (89,90). An interesting 

question is which environmental and genetic factors link these two processes with each 

other.  

1.2.1. Cell development of A. nidulans 

The cell development of A. nidulans depends on many different environmental signals such 

as nutrition (e.g. nitrogen sources, which can repress or activate certain cell developmental 

pathways (80)), partial oxygen pressure, pH, light, and further external stress factors. 

A. nidulans is homothallic (91) and can cross with a sexual partner in a heterothallic manner. 

It can reproduce via a parasexual, asexual, and sexual cycle (92,93). The parasexual cycle is 

an uncoordinated process, in which heterokaryons are formed. Hyphae with two 

homokaryons fuse, subsequently one cell possesses genetically different nuclei and other 

cytoplasmic components (93). After combination, the nuclei continue to divide mitotically 

(94). In the asexual cycle (Figure 2), a single haploid spore produces many identical asexual 

spores: Beginning with the germination and formation of hyphae, cells undergo vegetative 

growth. At a certain time-point, hyphae pause growth and enter the phase of asexual 

development. A specialized stalk, the conidiophore, is formed. On the head of the 

conidiophore, two layers of the uninucleate reproductive cells, the metulae and phialides, are 

formed (95), which produce the so-called conidia or conidiospores (95). For the sexual cycle 

(Figure 2), a fruiting body evolves in which a pair of nuclei undergoes meiosis. In the first 

step, ascogenous hyphae are formed. The hyphal tips develop into an ascus, where the 

fusion of two haploid nuclei occurs. The meiosis is followed by a post-meiotic mitosis. Here, 

eight haploid ascospores are generated (96). Thousands of ascospores are located in the 

fruiting body with a size of 125–200 μm in diameter. From the so-called cleistothecium, the 

ascospores are released after bursting (97). During the initial stages of cleistothecium 

ontogeny, the cleistothecia are surrounded by a nondeciduous chlamydospore-like structure 

called Hülle cells (98,99). These cells surround the dikaryotic hyphae and form spherical 

structures with 5-7µm thick cell walls, which can expand to a full size of up to 5 µm in 

diameter (92,96,100).  
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Figure 2: Developmental stages for asexual and sexual development of A. nidulans. (a) A 

vegetative hypha of A. nidulans is shown. The hyphae differentiate and can undergo asexual 

or sexual development. Asexual cycle (b-d): After formation of the footcell (b), the stalk 
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emerges and elongates. It takes about 6 hours until vesicle formation begins and metulae 

start to form at the stalk tip. Subsequently, phialides develop which give rise to long chains of 

conidia (c). Each conidium can germinate (d) and form vegetative hyphae. The sexual cycle 

is depicted in (e) – (i): In the beginning, ascogenous hyphae are formed (e). The fruiting body 

is produced (f) and surrounded by the Hülle cells. The thick-walled globose Hülle cells form a 

nest-like structure (g) (101) and the fruiting body formation is completed. The fruiting body is 

called a cleistothecium and is filled with thousands of ascospores. The asci release the 

ascospores (h), which can germinate again and form vegetative hyphae (i) (modified after 

Noble et al. (102)). 

1.2.2. Asexual development 

How asexual development in A. nidulans is initially triggered is not fully understood. Different 

ambient stimuli like variation in carbon levels, light intensity and wave lengths, or osmotic 

and oxidative stressors can influence the regulation of cell development in A. nidulans (103). 

It is known that the interplay between the trimeric G-protein signalling with two different 

heterotrimeric G-protein complexes and the cytoplasmic protein FluG together promotes 

vegetative growth and asexual development (104,105). FluG is suggested to be a central 

regulator for asexual sporulation (106) and is responsible for conidiophore formation and 

germination (107). Further downstream, FluG activates brlA (108), which induces the 

formation of conidiophore vesicles. The activation of brlA is sufficient for the induction of the 

asexual spore formation (108). This is accompanied by the activation of a cascade, including 

AbaA, WetA, AtuA, MedA and VosA (109). StuA and MedA are developmental modifiers, 

whereas StuA enables proper spatial expression and MedA proper temporal expression of 

brlA and abaA (95,109). The nuclear protein VosA controls the activation of asexual 

development (105), but is also important for sexual development (110). 

1.2.3. Sexual development 

It is believed that all Aspergilli can reproduce by sexual means (111), although some species 

such as A. nidulans (112), A. flavus (113) A. parasiticus (114) or A. nomius (115) are more 

prone to switch to the sexual development cycle than other species like A. fumigatus (116). 

The initiation of sexual development is triggered by environmental and intrinsic signals, which 

induce the mating type (MAT) genes (91). It is known that in A. nidulans, the loci MAT1-1 and 

MAT1-2 need to be induced to initiate sexual reproduction. These loci have several functions 

in filamentous ascomycetes. They determine cell type identity and are important for nuclear 

recognition, proliferation and pheromone signalling (117). Although no interaction between 

pheromones and their receptors is yet known in A. nidulans, psi factors (precocious sexual 

inducer) may interact with these receptors (118). A study on the identified pheromone 
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receptors GprA and GprB unveils their involvement in the homothallic sexual reproduction 

cycle (118). These receptors activate a G protein-coupled receptor protein (GPCR) which is 

essential for cleistothecia formation during the homothallic sexual cycle and fruiting body 

development (118–120). The G-protein -subunit FadA activates via a serine/threonine 

kinase a mitogen-activated protein kinase (MAPK) pathway, which is involved in cleistothecia 

and heterokaryon formation (109,121).  

1.2.4. Regulation of cell development 

Early studies (122) revealed hundreds of genes which are putatively involved in cell 

development. Different regulators contribute to a complex network which modulates timing 

and balance of the cell development in A. nidulans (89). 

One of these regulatory factors is the psi factor (precocious sexual inducer). Psi-factors are 

hormone-like molecules which are composed of hydroxylated analogues of linoleic (psiα) or 

oleic acid (psiβ): PsiC is hydroxylated on position 5’,8’ (dihydroxy-acid), the psiB on position 

8’ (hydroxy-acid) and psiA is a lactonized ester of psiC (92,123). Champe et al. (124) 

described that psiAα alone stimulates asexual sporulation while psiBα and psiCα favour 

sexual and inhibit asexual development. Hence, the ratios of these psi-factors, and the 

activity of the ppo genes ppoA, ppoB and ppoC (125) that encode fatty acid oxygenases 

required for the production of psi factors, determine whether sexual or asexual sporulation is 

promoted (124,125). The transcript level of the ppo genes changes during sexual and 

asexual development and influences the timing of developmental events (125,126).  

It is also known that A. nidulans prefers asexual development in light and sexual 

development during darkness (127,128). A. nidulans has several receptors for sensing light 

of different wave length. Red light is sensed by phytochrome FphA, blue light by the white 

collar complex LreA (WC-1) and LreB (WC-2) and UV light as well as blue light by 

cytochrome CryA (127). Together, these photoreceptors regulate development and induce or 

repress the asexual and sexual reproduction (129,130). FphA has an N-terminal 

photosensory module (GAF and PHY domain) and a C-terminal histidine kinase-related 

domain. It acts as an inducer of the asexual cycle and as a repressor of the sexual cycle. 

LreA contains a light-, oxygen-, and voltage-sensitive domain, protein-protein interaction 

domains and a GATA-type zinc-finger DNA binding domain. LreA and LreB are activators of 

sexual development. CryA is a combined cryptochrome/photolyase that is involved in 

repairing UV induced DNA damage. CryA is a repressor of sexual development and takes 

part in the regulation of fruiting body formation under both UV and blue light conditions 

(129,130).  
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Furthermore, some genes are known to be involved in modulating the sexual and asexual 

cycle, such as LaeA and VeA (131). LaeA is a global regulator which impacts the Hülle cell 

and cleistothecia formation (131) and the conidia production (132). VeA is a well-studied light 

dependent gene; its expression influences sexual development positively and down-

regulates asexual reproduction (133). When the fungus is exposed to white or blue light, the 

protein VeA is localised in the cytoplasm, while in the dark or during red light it is 

predominantly found in the nucleus (81,131). Furthermore, the VeA protein does not only 

influence cell development, but also plays a role in regulation of secondary metabolism 

(134).  

Hence, the production of SMs is strongly connected with sexual development in A. nidulans 

(83,129). For instance, deletion of velA led to inhibited sterigmatocystin and penicillin 

production in A. nidulans (132). The relevance of VelA for secondary metabolism has been 

shown for several filamentous fungi over the years (135–138). 

1.3 Natural Products 

Natural products (NPs) are chemical substances produced by a living organism (139). NPs 

are known to be extracted from all kinds of organisms, such as animals, plants, fungi, and 

bacteria (140,141). They are produced by pathways of the primary or secondary metabolism. 

The term secondary metabolites (SMs) for NPs indicates that these compounds are not 

essential for growth and survival of an organism. The biological role of the majority of SMs is 

not understood, but it is likely that these compounds often contribute to an advantage in the 

organism-specific ecological niche (142,143). Fungal SMs can function as anti-predator 

components to protect against natural enemies (144). For example, the fungivorous springtail 

Folsomia candida developed a preference for feeding on an SM-deficient A. nidulans strain 

over an SM-producing wild type (145). Another example is the production of siderophores 

like fusarinine C, triacetylfusarinine C and ferricrocin in A. nidulans. The siderophores allow 

the fungus to survive under iron-limiting conditions and provide advantages over competing 

microorganisms (146). Since siderophores are essential for the organisms during iron 

depletion, it can be debated whether siderophores should be regarded as typical NPs. Since 

the fungal siderophores in Aspergilli are produced by typical SM clusters, several 

publications assign siderophores as SMs (147,148). 

NPs can also play a role as signalling molecules. As discussed above, oxylipins regulate 

asexual and sexual spore production in A. nidulans (92,126). Apart from the importance for 

the microorganism itself, NPs can be either beneficial or harmful to humans. Fungal species 

are a valuable source of NPs. These active compounds (ACs) are widely used as 

therapeutics, such as antibiotics, immunosuppressants, antiparasitics, cholesterol-lowering, 
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and antitumoral agents (149). In particular, penicillin (150,151), griseofulvin (152) and 

lovastatin (153) are known as ACs advantageous to humans. However, fungal-derived NPs 

can also threat human health. For instance, the mycotoxins gliotoxin (154), aflatoxin B1 

(155), and ochratoxin A (156) exhibit strong carcinogenic and toxic activity. 

1.3.1. Biosynthesis of secondary metabolites 

In Aspergilli, the genes which code for enzymes involved in the production of SMs are 

organised in clusters (21,154). These gene clusters vary in size between 30 – 80 kb (157) 

and contain one or multiple central biosynthesis genes (158,159). The exceptions include 

oxylipins (125) and kojic acid (160). Although these metabolites are lacking a central 

biosynthesis gene and are derived from fatty acids (161) or glucose (160), they are still 

regarded as SMs (162) due to their similar biosyntheses and properties to other NPs (161). 

The main groups for assembling the SM backbone are multidomain enzymes like polyketide 

synthases (PKSs) (163) or non-ribosomal peptide synthetases (NRPSs) (164). PKS/NRPS 

hybrid, PKS- and NRPS-like enzymes or prenyltransferases (dimethylallyl tryptophan 

synthase (DMATS)) and terpene cyclases (DTS) are also participating in producing SM 

backbones.  

In general, PKSs contain a set of modules and domains which carry out three different 

reaction steps. The typical domains are the ketosynthase (KS), the acyltransferase (AT), and 

the acyl carrier protein (ACP). These domains are responsible for the starting, elongation, 

and termination stage. Dependent on the nature of the PKS (modular or iterative), these 

steps can be repeated multiple times. The iterative PKS allows use of modules in an iterative 

way, whereas the modular PKS needs a new module for each molecule that is connected or 

modified. A prominent example of a compound derived from an iterative PKS is lovastatin 

from Aspergillus terreus (165), and for a modular PKS erythromycin A from the bacterium 

Saccharopolyspora erythraea (166). A further classification refers to the fatty acid synthase 

nomenclature. Type I PKSs consist of large multifunctional enzymes, which are linearly 

arranged and have covalently fused catalytic domains, while type II PKSs have a dissociable 

complex and usually consist of monofunctional enzymes. PKSs of type III are described as 

chalcone synthases, which are multifunctional in selecting the starter unit (163).  

NRPSs also use multidomain enzymes with different modules and domains to synthesize the 

SM backbones. Apart from proteinogenic amino acids, also non-proteinogenic amino acids, 

fatty acids and α-hydroxy acids can be incorporated (167). Similar to the PKSs, NRPSs are 

also composed of three main domains for the starting module, elongation, and termination. 

Each NRPS gene cluster consists of multiple elongation modules. Often this fully elongated 

molecule forms cyclic amides (lactams) or cyclic esters (lactones) (168).  
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Structural prediction of PKSs is very challenging due to the possibility of tailoring and 

iterative or modular processing of the PKSs. For NRPSs, the substrate specificity of the A-

domain can be predicted with computational approaches such as NPRSpredictor2 (169). 

Bioinformatic tools, based on algorithms such as SMURF (170), CASSIS (171) and 

antiSMASH (172), predict that A. nidulans produces a wide diversity of SMs with up to 70 

biosynthetic gene clusters (157,173) that are often silenced under standard growth 

conditions (174–176) and controlled by a complex regulatory network (142).  

1.3.2. Regulation of secondary metabolite gene clusters 

Fungi naturally produce a diverse array of SMs which are often regulated by cluster-specific 

transcription factors (177,178). For A. nidulans, a few products (about 20) of the 70 predicted 

putative SMs have been chemically identified so far. The fact that the majority of gene 

clusters remain uncharacterised illustrates the importance of finding methods to induce silent 

SM gene clusters.  

Different strategies have been developed to study gene clusters and their regulation. The 

induction of certain stress factors, coincubation with different organisms (179), or alteration of 

growth conditions (180) represent strategies to identify new SMs and unveil the regulation of 

their production. Coincubations are often established with organisms that naturally share a 

common habitat, like the interaction between A. nidulans and the soil bacterium 

Streptomyces rapamycinicus, which led to the activation of the orsellinic acid gene cluster 

(ors) and the production of the polyketide orsellinic acid and its derivatives (181). It was 

shown that secreted bacterial NPs, like rapamycin (182) or trichostatin A (183,184), alone 

were not sufficient to induce the ors gene cluster. A physical contact between the two 

organisms is indispensable. This suggests that a bacterial protein or signal molecule needs 

to penetrate the fungus in order to induce the ors gene cluster (185).  

Apart from triggering the production of SMs by different stresses and growth conditions, 

molecular biological methods can be used as well. Genome mining approaches use target 

gene inactivation and can unveil new NPs (186). Often transcription factors of corresponding 

SM gene clusters (187,188) or global regulators (178,189) are overexpressed to induce the 

production of SMs. This strategy led to a successful identification of formerly unknown 

metabolites like aspyridone A and B (178). Transcriptional regulators can be triggered 

constitutively or with an inducible promoter. Examples for common inducible promoters in 

A. nidulans are derived from the gene alcohol dehydrogenase (alcA) or glyceraldehyde-3-

phosphate dehydrogenase (gpdA) (178,190). Due to the need of precursors for SM 

production, growth rate is often impeded when a constitutive promoter is used. It was also 

found that SM production can be increased with manipulation of chromatin modifying 
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enzymes or chemicals (191). Another possibility of genetical manipulation is the transfer of 

the whole gene cluster to another production organism. Heterologous gene expression is 

useful to elucidate the SM biosynthetic pathway when the homologous host is difficult to 

genetically manipulate, has a low production yield, or a low generation time (192,193).  

Regulation of SM cluster expression is often closely connected to the developmental stage or 

the primary metabolism of a fungus (194,195). The methyltransferase-domain protein LaeA 

(196), which triggers the production of several secondary metabolites also contributes to 

developmental processes (131,197). It has been shown in several studies (83,129,132,133) 

that the central regulator VeA, a light-dependent regulator of developmental processes, 

regulates sterigmatocystin and penicillin production in A. nidulans (129,198). Lind et al. 

described an increased expression level and therefore a temperature-dependent regulation 

of VeA-controlled SM gene clusters of several SMs at lower temperatures (30°C versus 

37°C) (199). How environmental factors influence the fungal SM production is not well 

studied. To elucidate the variety of SMs produced by A. nidulans, environmental variations 

like adaptation to low temperatures can contribute to a better understanding of fungal SM 

production and to the ecological meaning of A. nidulans.  

1.4 Adaptation to low temperature stress 

Since fungi are exposed to constant environmental changes, responding to these variations 

is a critical challenge and part of their lifestyle. During the seasonal cycle, fungi and many 

other microorganisms need to adapt to drastic changes in their environment, such as 

temperature shifts (200,201). An adaptation is challenging when the temperature drops 

below the temperature limit for growth of an organism or below the freezing point of water. 

Under these conditions, organisms have to deal with drastically reduced metabolic 

processes, because enzymes need to operate below their temperature optimum (202). 

Moreover, cold stresses are associated with the alteration of the pH of biological buffers 

(200) and decreased membrane fluidity (203,204). The main causes of cell damages during 

low temperature stress below 0°C results from the formation of intracellular ice crystals and 

dehydration (205). Often the cell wall, membrane, and cellular organelles are affected. 

Hence, the organisms need to develop effective strategies to adapt to these stresses (Figure 

3). 

To prevent or control ice crystal formation (206), many organisms that have to endure 

temperatures near the freezing point, can produce anti-freezing-proteins (AFPs) (207,208). 

Examples can be found in many different species like various fish (209), insects (210) and 

plant species (211). Similar to the AFPs, cryoprotectants are largely used to improve survival 

of organisms during low temperatures. They can be produced by organisms, or artificially 



Introduction | 14 

 

added, for example during cryo-conservation. Cryo-conservation is a process in which 

biological material such as cells or tissues are preserved at very low temperatures. 

Cryoprotectants lead to the excretion of water so that ice crystals cannot be formed 

intracellularly. Common cryoprotectants are sugars such as trehalose or glycerol, which are 

just a few examples of compounds produced by cold-adapted organisms (212) as a strategy 

to increase stress resistance against freezing (213).  

 

Figure 3: Schematic illustration of low temperature stress adaptation in a fungal cell. In (a), 

the ice crystal formation is depicted. Formation of ice crystals is accompanied by increased 

osmolarity and alteration of pH in biological buffer systems (b) due to an enrichment of 

solved salts in the residual water. Usually, the surrounding medium of the fungal cell cools 

down faster, hence the medium freezes first. Consequently, a water efflux from the cell can 

be measured, which leads to desiccation (c). The decreased temperature results in a lower 

rate of biological and chemical processes. In order to adapt to these effects, the fungus can 

develop different strategies. Enzymes can adapt to the lower temperatures with a decreased 

temperature optimum to ensure maintenance of metabolic processes (d). For sensing the 

temperature and facilitating transcription at a certain temperature the organism can use RNA 

thermometers, e.g as shown for bacteria (e). Furthermore, functioning membranes are 

essential for survival. In order to preserve membrane fluidity, the average chain length of 

fatty acids is reduced at lower temperatures (f). Membranes can also be stabilised with sugar 

molecules. Moreover, sugars can act as cryoprotectants and can induce a controlled freezing 

process (g). Therefore, the fungus can produce or incorporate sugar entities. Some 

organisms are able to produce AFPs, which have a similar function to cryoprotectants. 

Among others, they can increase the protein stability (h) and chaperones can assist in 
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maintaining protein functions by refolding misfolded proteins. Similarly, cold-adapted proteins 

facilitated transcription of DNA and translation of RNA at low temperatures. Glycine-rich RNA 

binding proteins (GRPs) destabilize the secondary structure of RNA and allow translation at 

low temperature stress (i) (modified after Robinson (214)). 

1.4.1. Fungal strategies to adapt to low temperatures 

Little is known about cryo-stress adaptation in filamentous fungi, but they are found in harsh 

environments like the Antarctic where average temperatures are around the freezing point 

(215). A common strategy of lower temperature adaptation is the accumulation of sugars and 

sugar alcohols (216,217) intracellularly (218,219) or extracellularly (205,220,221). The most 

prominent cryo-protective sugars or sugar alcohols are glycerol, arabitol, trehalose, and 

mannitol or sugar derivatives like polyols (222). These compounds stabilise membranes or 

maintain their integrity and function (223–226). Most of the molecular changes required for 

adaptation to low temperatures can be achieved under conditions above the freezing point, 

allowing an enhanced resistance to freezing (227).  

Another strategy to gain a higher tolerance against freezing is to stabilize the cellular 

membranes. This can be achieved by the global reduction in the average chain length of fatty 

acids (204). The abundances of triacylglycerides with medium-chain fatty acids, triterpenes 

like squalene and sterol esters are increased, whereas that of phosphatidic acid and the ratio 

of phosphatidylcholine to phosphatidylethanolamine is decreased (228–230). These 

membrane changes lead to enhanced membrane fluidity at lower temperatures and prevents 

cell damages. Additionally, low-temperature adapted organisms like snow moulds (231) can 

produce anti-freezing proteins, which help to prevent or control the freezing process by 

modifying the growth of ice crystals (206). 

However, the formation of ice crystals and consequent damages on the molecular or cellular 

level are not the only factors that have an impact survival of an organism. Dropping 

temperature can damage the organism in multiple ways. Ice crystal formation is 

accompanied by an increasing salt concentration in the surrounding medium, biological 

processes are slowed down, and molecules or cell structures can be damaged. The cell can 

react with a general protective stress response. Hence the survival under low temperature 

stress is affected by the capacity to detoxify reactive oxygen species (232,233) and the 

activity of heat shock proteins (234).  

Further on, maintenance of metabolism at cold temperatures is of great importance. In order 

to enable translation at low temperatures, glycine-rich RNA binding proteins (GRPs) 

destabilize the secondary structure of RNA (235). GRPs may substitute for the function of 

cold shock domain proteins (or RNA chaperones) in fungi, facilitating to trigger numerous 



Introduction | 16 

 

biochemical, physiological, and metabolic changes needed for the acquisition of freezing-

thawing tolerance (236). On the protein level, the activity of enzymes at low temperatures is 

important. Furthermore, the cold tolerance of fungi is increased by cold-adapted enzymes 

with high catalytic activities at low temperatures (237,238).  

Finally, adaptation to the specific ecological niche is critical. Usually, the germination of 

fungal spores occurs in the warmer months and fungi can switch to an inactive, dormant 

state during the colder times of the year to avoid freezing stress (239,240). This flexible 

adaptation also enables fungi to undergo one or more growing seasons, alternating with the 

dormant state. In summary, evolution generated diverse stress responses in different 

organisms. What they all have in common is that fungi require the ability to sense 

temperature changes for each of those adaptations.  

1.4.2. Temperature sensing 

Sensing temperature is a critical parameter that needs to be monitored by organisms to 

efficiently adapt to changes in the environment (241). In order to sense temperature, a direct 

measurement is not necessarily needed. A highly conserved response to stress caused by 

an increased temperature is the unfolded-protein response (242,243). After a temperature-

induced stress, many proteins misfold and the production of heat-shock proteins (Hsp) is 

initiated. Different Hsp chaperones can be produced in order to refold misfolded proteins 

(244). Hsp70 for example is a well-studied protein in the cytosol of Saccharomyces 

cerevisiae as a response to high temperatures (245). At low temperatures, a similar strategy 

exists (246,247). The so-called cold shock proteins are induced at low temperatures (248). 

Their main task is not the refolding of proteins, but RNA unwinding like the CsdA ribosomal 

associated protein (249) or facilitating the translation at low temperatures as the ribosomal 

binding factor RbfA (250). 

Changes in membrane fluidity and membrane dynamics can act as a temperature sensor in 

cells. A rise in temperature results in an increase of fluidity due to a decrease of the 

molecular order of cellular membranes. In Histoplasma capsulatum, genes can be triggered 

by a change of saturated fatty acids as a result of a high temperature (251). In S. cerevisiae, 

C. albicans, and C. neoformans, transcriptional profiling revealed transcriptional activators 

(252–254), which may respond to temperature changes. Nevertheless, changes in 

membrane fluidity are slow processes. Hence, an existence of other primary temperature 

sensors is likely.  

RNA thermometers (255) are able to react much faster to temperature changes and have the 

advantage of directly measuring temperature changes (256). RNA thermometers are cis-

active regulatory elements which can switch between two different conformations (257), often 



Aim of this study and motivation | 17 

the stability of cold-shock mRNAs is increased at low temperatures, which may occur due to 

changes in the RNA structure (258). They are localised on the mRNA and regulate the 

access to mRNA binding sites, which can be blocked or released for translation (255,259). 

Up to date, nothing is known about RNA thermometers in fungi.  

The adaptation of fungi to low temperature stress is only partially studied. Tsuji et al. (229) 

for example tested for the antifreeze activity of different fungi obtained from Antarctica and 

found secretion of extracellular polysaccharides or a higher amount of unsaturated fatty acids 

as an adaptation to cold. In their global study on S. cerevisiae to low temperature stress, 

Aquilera et al. (260) observed a cold-induced accumulation of trehalose, glycerol, and heat-

shock proteins. In a chemostat-based transcriptome study on S. cerevisiae, the authors 

concluded that genes involved in lipid metabolism and ribosomal protein–encoding genes 

were overrepresented at low temperature and may be part of a compensation strategy for the 

underlying low-temperature–induced problems (261). In another global transcriptional 

analysis in S. cerevisiae, the authors compared the cold response of the yeast to other stress 

stimuli (262) and found that heat-shock proteins and the alteration of the membrane fluidity 

are crucial. Another proteome study on the macro-fungus Flammulina velutipes investigated 

the cold and light stress response mechanism underlying the fruiting processes.  

In total, these and other studies addressed either very specific topics such as the 

phosphoproteome dynamics in S. cerevisiae (263) or only used very simple techniques 

(264,265) and therefore delivered restricted insights. 

2 Aim of this study and motivation 

Fungi are widespread in diverse natural environments and their exposure to a plethora of 

stress conditions shaped their evolution and adaptation to harsh conditions. This study 

investigated the adaptation strategies of both A. nidulans to low temperature stress and 

A. fumigatus to host-imposed nutrient limitations. Proteomics, transcriptomics, and 

metabolomics were applied to deepen our understanding of cold adaptation in a filamentous 

fungus. The goal of this study was not only to reveal cold protection mechanisms in 

A. nidulans, but also to follow other aspects of cold adaptation including cell development 

and natural product biosynthesis. A better understanding of the adaptation mechanisms to 

low temperature stress may also help to improve cryo-conservation and fermentation of 

filamentous fungi in cold conditions.  

The second project aimed at exploring the role of the A. fumigatus transcription factors XprG 

and PrtT in controlling the secretion of extracellular proteins, in particular proteases, by 

means of LC-MS/MS based proteomics. Such a proteomic data set can contribute to our 
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understanding of the role of proteases secreted by A. fumigatus in establishing an infection in 

the immunocompromised host. 

3 Manuscripts 

3.1 ATP content and cell viability as indicators for cryostress 

across the diversity of life 

Felizitas Bajerski, Johanna Stock, Benjamin Hanf, Tatyana Darienko, Elke Heine-

Dobbernack, Maike Lorenz, Lisa Naujox, E. R. J. Keller, H. M. Schumacher, Thomas Friedl, 

Sonja Eberth, Hans-Peter Mock, Olaf Kniemeyer and Jörg Overmann 

Published manuscript 

Frontiers in Physiology, 9 (July), pp. 1–14. doi: 10.3389/fphys.2018.00921 

Summary 

In natural environments, organisms undergo temperature shifts within the seasonal cycle. 

During cold seasons or in standard preservation protocols, involving ultradeep freezing, 

organisms need to deal with temperatures below their optimum and are exposed to low 

temperature stress. Here, we use the intracellular ATP content as an indicator of the 

physiological state of cells in a comparable approach with different cell types such as 

bacteria, fungi, algae, plant tissue, as well as plant and human cell lines. In general, we 

observed a decrease of the intracellular ATP content along with the temperature drop in most 

of the organisms. Afterwards, the initial ATP level could be restored or exceeded 

subsequently to a regeneration phase. In parallel, cell viability was monitored and unveiled a 

positive correlation between ATP content and viability for cryosensitive algae 

Chlamydomonas reinhardtii SAG 11-32b and Chlorella variabilis NC64A, and in plant cell 

lines of Solanum tuberosum. Further on, it was noticeable that psychrophilic and cryotolerant 

bacteria or algae exhibited elevated ATP level during growth phases in comparison to 

mesophilic or cryosensitive representatives and achieved a better culturability after the 

process of cryo-conservation.  

Contribution to the manuscript 

Benjamin Hanf contributed to the manuscript by conducting the experiments for fungi and 

partially for algae and also wrote the section “The Filamentous Fungus Aspergillus nidulans” 
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and in part the introduction, results and discussion. He was involved in editing the 

manuscript.  

Estimated contribution in percentage 

Felizitas Bajerski      30 % 

Johanna Stock and Benjamin Hanf    30 % 

Tatyana Darienko, Elke Heine-Dobbernack,  

Maike Lorenz, Lisa Naujox, E. R. J. Keller,  

H. M. Schumacher, Thomas Friedl,  

Sonja Eberth and Hans-Peter Mock   25 % 
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3.2 Transcriptomic and proteomic profiling of the Aspergillus 

nidulans response to low temperature stress revealed a distinct 

profile of secondary metabolites and the induction of sexual 

development  

Benjamin Hanf, Thomas Krüger, Derek Mattern, Maria Stroe, Theresia Conrad, Boyke Bunk, 

Gerhard H. Braus, Jörg Overmann, Axel A. Brakhage and Olaf Kniemeyer  

Manuscript in submission (Proteomics Journal) 

Summary 

Fungi are exposed to regular temperature changes due to the seasonal cycles and need to 

adapt to harsh environmental conditions such as low temperatures. This study investigates 

the global adaptation of filamentous fungi to low temperature stress for the first time. 

Different omics approaches (transcriptomics, proteomics and metabolomics) were applied to 

investigate the adaptation of A. nidulans to 10°C and 37°C. 

An enrichment analysis revealed differentially regulated proteins and transcripts at 10°C, in 

the categories of cold stress protection, cell development and biosynthesis of natural 

products. This data showed that several protective mechanisms were induced, which are 

among others commonly known from oxidative, osmotic and cold stress response in different 

organisms. Further on, an altered secondary metabolite (SM) expression profile was found at 

low temperature stress, with cold-induced SMs that show activity against Gram-positive 

bacteria and fungi. Additionally, sexual development was induced, suggesting an alternative, 

light-independent activation for an altered cell development.  

Understanding low temperature stress adaptation strategies of A. nidulans give new insights 

in the regulation of cell development and is highly relevant for natural product research as 

SMs can be used as valuable sources for therapeutic compounds or exert important tasks as 

mediators of biological communication.  

Contribution to the manuscript 

Benjamin Hanf contributed to the manuscript by conducting all the experiments and also 

writing and editing the whole manuscript.  

Estimated contribution in percentage 

Benjamin Hanf       60 % 
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3.3 Phenotypic and proteomic analysis of the Aspergillus 

fumigatus ΔPrtT, ΔXprG and ΔXprG/ΔPrtT protease-deficient 

mutants 

Einav Shemesh†, Benjamin Hanf†, Shelly Hagag, Shani Attias, Yana Shadkchan, Boris 
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Published manuscript 
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Summary 

Aspergillus fumigatus is an airborne opportunistic fungal pathogen which can be inhaled and 

can lead to life-threatening diseases in immunocompromised hosts. Once reaching the lung 

alveoli, the fungus can germinate and penetrate the pulmonary epithelia which is a crucial 

step of the infection process in humans. It is assumed that A. fumigatus degrades structural 

barriers with secreted proteases. In this study, we examine the role of the transcription factor 

XprG in regulating extracellular proteolysis, alone and in combination with PrtT, which is 

known from former studies to control secreted proteolytic activity. Deletion mutants of these 

regulators showed a reduced or nearly absent degradation activity of substrate proteins. 

Nevertheless, virulence in the murine systemic and pulmonary model of infection was 

unaffected. Proteomic analysis revealed the regulation of secreted proteases by XprG and 

PrtT and suggested an influence on additional cellular processes, such as cell wall 

modifications and allergens. This study elucidates the high adaptive potential of the fungus 

and demonstrates the gene redundancy of critical biologically functions for A. fumigatus, 

such as the ability to degrade organic matter for nutrition uptake.  

Contribution to the manuscript 

Benjamin Hanf contributed to the manuscript by conducting the proteomics experiments, the 

data analysis and interpretation. Further on, he contributed to writing and editing the 

introduction, method section, results and discussion and created figures.  

Estimated contribution in percentage 

Einav Shemesh and Benjamin Hanf   50 % 
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4 Additional materials and methods 

For studying the global comparison of intracellular ATP content (manuscript “ATP Content 

and Cell Viability as Indicators for Cryostress Across the Diversity of Life”), it was necessary 

to find out which conditions A. nidulans would survive during cryo-conservation. Therefore, 

the viability of the fungus after cryo-conservation was measured. The results can be found in 

section 5.1 (Glucose consumption after freezing of A. nidulans). 

Furthermore, we conducted surface proteomics approach on Lichtheimia corymbifera spores. 

L. corymbifera is one of the major causative agents of mucormycosis, a fatal disease 

especially in immunocompromised patients. Previous studies (266) suggested that the 

protein surface structures of Lichtheimia spores are interacting with immune cells, particularly 

with murine alveolar macrophages (MH-S). These studies demonstrated the Lichtheimia 

corymbifera strain FSU:09682 is virulent while the strain FSU:10164 is attenuated in a 

mouse infection model. Further proteomic studies of the spore surface could contribute to a 

deeper knowledge about the different virulence mechanisms of these two strains and gain 

insights into the infection mechanism in Lichtheimia species (Section 5.2, “Surface 

proteomics of L. corymbifera”). 

4.1 Glucose consumption of A. nidulans after freezing 

A. nidulans strain R21 (yA2, pabaA1, veA) (267) was cultivated in 100 ml Aspergillus minimal 

medium (AMM; (268)). The fungus was incubated for 18 hours at 37°C, inoculated with 106 

spores/ml. Afterwards the sample was divided into two parts. One half was stopped from 

growing by incubation at 4°C – 8°C (control), the other half was frozen to -80°C with a 

controlled cooling rate of about 1°C per minute (sample). Both samples were incubated for 

24h. The samples were defrosted over the time-course of 1 minute up to 37°C and 

transferred into new medium. At the time points of 0, 15, 18, 21, 23 and 38 hours, the 

glucose concentration of the culture supernatant was determined with the BIOSEN C-Line 

analyzer (EKF Diagnostic, Germany) according to the manufacturer’s instructions. The 

measurement was repeated in 3 biological replicates. 

4.2 Proteomic analysis of Lichtheimia corymbifera spore surface 

Freshly collected spores of the two strains Lichtheimia corymbifera strains FSU:09682 and 

FSU:10164 were re-suspended in ammonium bicarbonate buffer (25 mM, pH 8), 10 µg of 

trypsin (Sigma) was added to 108 spores/ml for 30 min at 37°C. The enzymatic reaction was 

stopped with 1% (v/v) formic acid. Supernatants were filtered (0.22 µm) and stored at -80°C 
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(269) for LC-MS/MS analysis. In parallel, the trypsin-treated spores were used for a 

phagocytosis assay. 

For LC-MS/MS analysis, the protocol from Baldin et al. (270) was applied with the following 

modifications. After treating the protein samples with 200 mM tris (2-carboxyethyl) phosphine 

and Iodoacetamide (375 mM), samples were loaded on an Ultimate 3000 nano RSLC system 

coupled to a QExactive Plus mass spectrometer (both Thermo Scientific Fischer). The pre-

concentrated sample was eluted on the analytical column (Acclaim PepMap RSLC, 15 cm x 

75 µm, 2 µm). The binary mobile phase consisted of ((A) 0.1% (v/v) formic acid in H2O and 

(B) 0.1% (v/v) formic acid in 90/10 ACN/H2O) to separate the peptides with a 135 min 

gradient elution: 0-5 min at 4% B, 10-20 min at 4.5-6% B, 25-30 min at 6.6-7.2% B, 35-45 

min at 7.9-9.3% B, 50 min at 10.2% B, 55 min at 11.4% B, 60 min at 12.9% B, 65 min at 15% 

B, 70 min at 17.1% B, 75 min at 20.4% B, 80 min at 24% B, 88 min at 30% B, 94 min at 38% 

B, 100 min at 55% B, 103 min at 66% B, 106 – 114 min at 96% B, and 115-135 min at 4% B. 

Positive charged ions were generated at the Nanospray Flex Ion Source (Thermo Fisher 

Scientific) as described in Baldin et al. (270), the mass range of the precursor ions was set to 

m/z 300 – 1800 at a resolution of 70k full width at half maximum (FWHM) with a maximum 

injection time of 120 ms and an automatic gain control target of 1 x 106 The quadrupole / 

orbitrap mass analyser worked in Full MS/ddMS2 (TopN) mode. For data-dependent 

acquisition, up to eight most abundant precursor ions with an assigned charge of z = 2-6 

were selected for further fragmentation by the quadrupole in each scan cycle with an 

isolation width of m/z 2.0. In the collision cell, the fragments were generated at normalised 

collision energy of 30 V with nitrogen gas. Precursor ions were excluded dynamically for 35 

s. With a maximum injection time of 120 ms and an automated gain control target of 2 x 105, 

the fragment ion resolution was set to 17.5k FWHM. The software Thermo/Dionex 

Chromeleon Xpress v6.80 SR13 build 3818 and the Thermo QExactive Plus Tune/Xcalibur 

v3.0.63 2.3 build 1765 graphical interface software was used on for controlling the LC-

MS/MS instrument and data acquisition.  

The raw files generated by the LC-MS/MS were further processed by the software Proteome 

Discoverer v1.4.0.288 (Thermo). Tandem mass spectra were searched against the NCBI 

Lichtheimia corymbifera protein database with the algorithm of MASCOT v2.4.1 (Matrix 

Science, UK), SEQUEST HT, and MS Amanda for database analysis with a maximum of two 

missed cleavages. The mass tolerances were set to 10 ppm for the precursor ion and to 0.02 

Da as a fragment mass tolerance. As modifications, oxidation of Met (variable) and 

carbamidomethylation of Cys (fixed) were considered. For validation (q value) of the peptide 

spectra matches, a reverse decoy database and a percolator node were used with a 

maximum ΔCn of 0.05 and a target false discovery rate of 0.01 (strict) and 0.05 (relaxed). A 
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minimum of 2 peptides per protein hit were required and only unique peptides were used for 

quantification. The reporter ions were normalised to the protein median. Spectral counting 

(normalized spectral abundance factor, NSAF) was performed according to (271). A change 

in abundance of ≥1.5-fold was considered as significant threshold.  

5 Additional results 

5.1 Glucose consumption after freezing of A. nidulans 

In Figure 4, the glucose consumption of A. nidulans after freezing and the control were 

monitored. The control culture consumed glucose only slightly faster than the frozen culture. 
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Figure 4: Glucose consumption after freezing of A. nidulans. On the x-axis, the time in hours 

is indicated, on the y-axis the glucose concentration in mmol/l.  

5.2 Surface proteomics of Lichtheimia corymbifera  

To explore which proteins are located on the spore surface of two L. corymbifera strains and 

to investigate whether a difference between the cell surface proteome of the two strains 

exists, spores were shortly treated by tryptic digestion to release accessible proteins from the 

cell surface of spores. These surface proteins were identified by liquid chromatography-mass 

spectrometry (LC-MS/MS). A total of 113 proteins were identified in both samples (Table S1 

in attachment) of which 30 were predicted to be located on the surface based on the 

presence of a secretory signal peptide. Overall the sequence of 14 detected proteins could 

be annotated based on the presence of functional domains (Table S1 in attachment). The 

ratio of peptide-spectrum matches (PSM) score to the number of amino acids (AA) of a 

protein was used as an indicator for the relative abundance of a protein. These quantitative 
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data revealed differences in abundance of proteins between the two strains, which exhibit 

different virulence. Among these proteins, the spore coat protein CotH and the hydrophobic 

surface binding protein HsbA were ten-fold more abundant on the surface of the virulent 

strain FSU:09682 than on the attenuated strain FSU:10164 (Table S1). Of note, we also 

found proteins without a signal peptide for secretion which suggests a secretion by non-

classical pathways. However, in this study, we focused on surface proteins with an N-

terminal signal peptide for secretion. Three CotH proteins were identified on the spores of L. 

corymbifera; namely LCor12344, LCor04095 and LCor04208 (Table 1 in attachment). Based 

on PhylomeDB (phylomedb.org) data base analysis, these proteins are similar to CotH2/4 of 

Rhizopus oryzae which have been described as virulence factor during interaction with 

immune cells. For the HsbA protein, four different protein copies were detected. The proteins 

LCor05141, LCor05147, LCor05809 and LCor07988 were only found on the surface of the 

virulent strain FSU:09682 and were absent on the surface of the attenuated strain 

FSU:10164. The similarity between the various copies of the HsbA proteins does not exceed 

40% on the protein sequence level as shown in table 2. Genome mining of mucoralean fungi 

showed that Mucor circinelloides and Rhizopus delemar have seven and four copies of HsbA 

proteins, respectively.  

Table 2: Comparisons of the protein sequences of the four HsbA proteins that were detected 

on the surface of L. croymbifera spores by proteomic analyses. The highest sequence 

similarity was detected for the comparions of LCor05147 with LCor05141 (46% similarity). 

However, the study centred on the proteins LCor05809 and LCor07899 that showed a 

sequence similarity of 26%. 

 

LCor05141 LCor05147 LCor05809 LCor07899 

LCor05141 100 % 41 % 31 % 39 % 

LCor05147 46 % 100 % 28 % 38 % 

LCor05809 34 % 38 % 100 % 26 % 

LCor07988 36 % 28 % 26 % 100 % 
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6 Discussion 

Fungi play an important role in terrestrial ecosystems. They account for a large proportion of 

decomposed organic matter as a part of energy cycling (272,273) and interact in a symbiotic 

manner with the majority of plants, throughout the world (274). A high stress tolerance is 

crucial to survive harsh environmental conditions such as extreme temperatures (275,276), 

high osmolarity (277), oxidative stress (278), desiccation (279), radiation (280) and nutrient 

limitation (281). Fungi have developed a plethora of survival strategies to efficiently adapt to 

natural stressors. This stress resistance  may help fungi to occupy various ecological niches 

but also to persist and develop in the human host (243,282). Besides the great ecological 

importance, an exploration of fungal adaptation strategies to low temperatures is also of 

biotechnological benefit as documented in several studies (283,284). Therefore, a deeper 

understanding of these strategies is not only scientifically pertinent, but also of great practical 

relevance. This study investigated for the first time the adaptation of filamentous fungi to low 

temperature stress by using omics technologies.  

6.1 Effect of low temperature stress on A. nidulans 

In natural environments, A. nidulans is exposed to low temperatures in the seasonal cycle. 

This suggests the establishment of adaptation mechanisms to low temperature stress in 

A. nidulans. We could show that the fungus survives freezing stress at temperatures far 

below the freezing point of water, without the addition of any cryoprotectant (Figure 4). The 

study of the A. nidulans low temperature response, which results in high tolerance to cold- 

and cryostress, was the focus of this work.  

In a genome-wide comparative approach with different cell types such as bacteria, fungi, 

algae, plant tissue, as well as plant and human cell lines, the intracellular ATP content was 

used as an indicator of the physiological state of the cells studied. In parallel, cell viability 

was monitored. A direct dependence of the intracellular ATP content on the temperature was 

observed for fungi and algae. Biochemical processes like the ATP-anabolic pathways are 

temperature-dependent and become less effective at lower temperatures or are even 

inoperative at freezing temperatures (285,286). Thus, intracellular ATP decreases by energy-

consuming pathways, such as maintenance and repair processes that are activated by cold 

shock damage (287). Apart from reduced ATP levels due to impaired energy-generating 

metabolic pathways and ATP consumption by repair processes, further reasons are 
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discussed in the literature. Russell et al. (288) and Sobczyk et al. (289) described the 

connection between impaired cellular membrane transport processes and the decrease in 

intracellular ATP levels. In our study, the intracellular ATP content decreased in dependence 

of the temperature, but could be restored to initial levels after defrosting and a certain 

regeneration phase. Psychrophilic organisms such as Psychrobacter cryohalolentis and 

Psychrobacter aquaticus showed an already increased intracellular ATP level after 

defrosting, which indicates a fast initiation of ATP level regeneration and a high cyrostress 

tolerance. In our study, psychrophilic and cryotolerant bacteria or algae showed a better 

cultivability after cryo-conservation compared to mesophilic or cryo-sensitive 

microorganisms. The catabolic pathways in psychrophiles are better adapted to low 

temperatures due to a lower temperature optimum of metabolic enzymes. Thus, intracellular 

ATP levels can be rapidly regenerated after cold shock (290). In bacteria and plants, the 

initial intracellular ATP level even exceeded the initial levels during the regeneration phase. 

An increased ATP level in plants was found during starch storage and was coupled to an 

elevated metabolic activity (291). The higher metabolic activity was highlighted by our 

observation of a higher respiration rate in A. nidulans after freezing and subsequent 

defrosting. Probably, an elevated respiration rate is needed to recover the initial intracellular 

ATP levels (287). Hence, the intracellular ATP level may indicate an increased activity of 

catabolic activity, but does not necessarily correlate with the viability of cells after ultradeep 

freezing. Therefore ATP levels do not allow predicting survival of cells after the exposure to 

low temperature stress (292).  

In summary, a correlation between intracellular ATP levels and decreasing temperatures was 

observed for A. nidulans. An elevated ATP level and increased metabolic activity after a 

regeneration phase may indicate a mechanism to return to initial values of the intracellular 

ATP content after cold stress. To further investigate the metabolic changes in A. nidulans 

after a freezing period, multi-omics analyses of the low temperature response were 

conducted. 

6.2 Survival strategies of A. nidulans as a stress response to low 

temperature 

The low temperature response of A. nidulans was investigated by analysing the 

transcriptome, proteome and secondary metabolome. Since intracellular ATP levels 

indicated nearly no metabolic activity at temperatures below the freezing point, a temperature 

was determined, where the fungus undergoes low temperature stress, but is still growing and 

metabolically active. The results indicate that the fungus reaches its growth limit at about 

10°C, which corresponds to the average temperature in the moderate climate zone (293).  
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Acclimation strategies are already known from other organisms such as plants (294) or 

vesicular arbuscular mycorrhiza fungi (295), while strategies of saprophytic filamentous fungi 

are mainly unacknowledged (260). A common strategy of plants is a rise in the proportion of  

unsaturated phospholipids in the plasma membrane after 4 weeks of acclimatisation, which  

leads to higher freezing tolerance (289). Other typical strategies in low temperature-adapted 

microorganisms and plants are the production of cryo-protective agents (222), cold 

shock (236,296,297) and anti-freezing (206) proteins or the usage of cold-adapted 

enzymes (237,238,298,299).  

The first step to initiate these strategies is the sensing of temperature changes (241). The 

multi-omics analysis revealed some possible sensing mechanisms for A. nidulans. We found 

an overrepresented putative glycine-rich RNA-binding protein (GRP) with high similarities 

(>50%) to orthologues of GRPs in other Aspergilli. RNA thermometers are predominantly 

found in prokaryotes. In eukaryotes, GRPs facilitate the translation of RNA at low 

temperatures by administering access to the binding site (255). Another common 

temperature sensing mechanism is the ER-mediated unfolded-protein response (UPR) 

(243,300) which results in upregulation of heat-shock proteins (HSPs). Most HSPs are hardly 

characterised in A. nidulans and their biological function can be only predicted based on 

sequence similarities (301). Nevertheless, the function of several enriched HSPs in this 

analysis could be assigned a putative function. Hsp20 (AN10507) was found to have an 

unfolded protein binding activity in response to heat shock and was underrepresented at 

10°C. Other HSPs have a function in osmoadaptation (Hsp70) or in growth at high 

temperatures (Hsp90). These findings lead to the conclusion that a UPR-mediated 

temperature perception is rather unlikely at low temperatures and may be more important for 

a heat shock stress response. On the other side, A. nidulans induces heat shock genes at 

10°C, which indicates the utilisation of heat shock response mechanisms also at low 

temperatures. Noteworthy, the heat shock response regulator HSF1 (AN8035), which 

triggers several cytoprotective genes at elevated temperatures (302), was overrepresented 

at low temperature.  

The induction of cytoprotective response genes is necessary because temperature stress is 

usually accompanied by damages on the cellular and molecular level. At low temperatures, 

these damages can be caused by desiccation or osmotic stress for example (236). In 

Cryptococcus flavescens, cold adaptation leads to an increased liquid hyperosmotic shock 

tolerance and an improved desiccation tolerance (303). In our omics data, we also observed 

an increase in osmotic stress-related identifiers (genes and proteins, IDs) such as IDs from 

the high-osmolarity glycerol (HOG) signalling pathway and additional IDs connected to 

osmotic shock tolerance.  
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Another low temperature effect is that cellular processes operate below their temperature 

optimum (304,305), which promotes a decreased enzyme activity (306) because of the lower 

turnover rates (276). This consequently interferes with transcription and protein biosynthesis 

and causes a disturbance of the protein structure (307,308). Thus, cellular functions are 

compromised, and as a result increased oxidative stress can be detected (309,310) and 

repair mechanisms are induced (235,311,312). We observed an induction of several cellular 

repair systems represented by IDs in the categories DNA repair or DNA damage response. 

Damages also result from the formation of reactive oxygen species (ROS). Li et al. (313) 

reported on an accumulation of ROS after low temperature exposure in the plant 

Jatropha curcas and also described an increased chilling (5°C) tolerance of cells with 

elevated antioxidant enzyme activity levels. We determined an enrichment of IDs in the 

category of oxidative stress response at low temperature stress in A. nidulans. Moreover, IDs 

such as chaperones and RNA or DNA stabilizing IDs were overrepresented.  

Damages may also occur from a reduced fluidity of the cellular membrane. Several examples 

found in the literature state that a decrease in temperatures leads to a re-organisation 

(203,314,315) or stabilisation (225) of the cell membrane to ensure flexibility e.g. by 

increasing the membrane fluidity at lower temperatures (203). Unsaturated fatty acids, a 

reduction of the average chain length of fatty acids and membrane lipid modification, e.g. 

mediated by desaturases, contribute to an increased membrane fluidity (316). It was 

demonstrated in Synechocystis sp. PCC 6803 that a decrease in temperature from 34°C to 

22°C increased the level of desaturases by 10-fold (317,318) and conferred cold hardiness 

(319,320). Our results show a downregulation of IDs involved in sterol metabolism or 

desaturase activity at 10°C. Suutari and Laasko (321) made a similar observation after 

incubating Bacillus megaterium at 10°C and observed a lower amount of unsaturated fatty 

acids in comparison to incubation at higher temperatures. However, additional 

measurements revealed that the overall melting temperature of fatty acids decreased. 

Hence, the production of sterols, fatty acid desaturases and unsaturated fatty acids does not 

necessarily imply a higher membrane fluidity or vice versa. Accordingly, further experiments 

are required to elucidate the modification of the cytoplasmic membrane of A. nidulans at low 

temperature stress. Additionally, membrane stabilisation can be accomplished by 

incorporating cryoprotectants such as trehalose (212), which, in addition, can also prevent 

ice crystal formation by lowering the freezing point of intracellular fluids. Furthermore, anti-

freezing proteins or osmolytes maintain enzyme activity and therefore reduce the low 

temperature stress. Our omics data-sets and results on freezing the fungus without addition 

of any cryoprotectant suggest that A. nidulans may use sugar entities as cryoprotectants and 

therefore benefits from an increased low temperature tolerance.  
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In summary, the analysis of the stress response to low temperatures in A. nidulans reveals 

several protective mechanisms. A. nidulans is able to restore the intracellular ATP content 

after being frozen and may accomplish the molecular requirements for the ability to sense 

temperature changes, e.g. by producing several HSPs or putative GRPs. Induced protective 

mechanisms include the activation of RNA/protein chaperones, an elevated antioxidant 

enzyme activity, DNA repair proteins, osmotic stress response proteins and enzymes of the 

trehalose biosynthesis pathway. In summary, the fungus prevents and repairs cellular 

damages that occur during low temperature stress. Furthermore, A. nidulans produces the 

cryoprotectant trehalose (75), which maintains membrane stability, enzyme activity, and 

prevents ice crystal formation.  

6.3 Low temperature stress triggers a change in cell development 

of A. nidulans 

Further strategies to survive temporal low temperature conditions include morphological 

changes or entry into dormancy. In our study, we observed a morphological change of the 

fungus at 10°C. On microscopic level, Hülle cell formation was observed, which is known to 

be accompanied by an increase in intracellular ROS (322). ROS levels can be regulated by 

catalases and peroxidases (323) by converting harmful H2O2 into oxygen and water. NADPH 

oxidases (Nox), which are also involved in ROS generation and play a role in cell 

differentiation, were found to be not significantly regulated in our omics data. We further 

assume that low temperature exposure promotes the production of ROS, resulting for 

instance from mitochondrial ROS which are not sufficiently detoxified due to a decreased 

biological activity at low temperatures. Consequently, the level of antioxidative enzymes is 

increased during low temperature stress (324). Our multi-omics data suggest that 

temperature stress triggers a switch from asexual to sexual development in A. nidulans. It is 

known in ascomycetes that factors such as nutrients, light, temperature, aeration, and pH 

commonly promote fruiting body development (96). In A. nidulans, nitrogen starvation, low 

oxygen levels, and a light-dependent activation of the velvet gene veA, are known 

mechanism for inducing sexual development. In this study, a veA- strain with a non-functional 

velvet gene is used and we showed that low temperature is an inducer for sexual 

development in A. nidulans. No nitrogen starvation or a low oxygen level were applied in this 

study, nevertheless we observed sexual development. This indicates that another, yet 

unknown mechanism for the regulation of sexual development exists. Therefore, low 

temperature stress is suggested to contribute to the initiation of sexual development in 

A. nidulans.  
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It is known that sexually derived ascospores show an elevated stress resistance compared to 

asexually derived conidia (325). The thicker cell wall, two nuclei, increased levels of HSPs, 

and an elevated level of sugars, such as trehalose, explain the higher stress resistance of 

ascospores compared to conidia (112,325,326). Additionally, fruiting bodies are more 

resistant against fungivores in comparison to conidia or vegetative mycelium. Therefore, the 

morphological change to fruiting bodies favours not only an avoidance of low temperature 

exposure in a sensitive growth phase (vegetative mycelium), but also provides further 

advantages for the fungus such as an elevated thermo-resistance or an increased ability to 

withstand desiccation (112,325). Hence, A. nidulans may benefit from a change in cell 

development at low temperature stress with an increased fitness and therefore a higher 

possibility to claim its ecological niche. The production of the stress-resistant ascospores 

(325) enables A. nidulans to withstand winter cold in temperate zones.  

In summary, low temperature stress contributes to an induction of sexual development in 

A. nidulans and we suggest the presence of a new mechanism to trigger this development. 

The switch from asexual to sexual reproduction may improve fungal survival in harsh 

environmental conditions by changes in fungal morphology.  

6.4 Low temperature stress induces distinct SM profile in 

A. nidulans 

In fungi, secondary metabolism is known to be associated with cell development. Many 

coregulations of cell development and secondary metabolism by transcriptional regulators 

are described for A. nidulans (81,105,327). Bayram et al. (81) showed that the velvet 

complex consisting of VelB/VeA/LaeA is a light-responding regulator for cell development in 

Aspergillus and the regulation of the velA - velC genes is accompanied by a SM expression 

(105). The velvet gene veA, for instance, is involved in the regulation of sexual fruiting body 

formation, but also induces the production of sterigmatocystin and further SMs (132). This 

indicates a connection between low temperature-induced cell development and SM 

production.  

In our study, we found SMs typically associated with asexual as well as sexual development 

at an incubation temperature of 10°C. Emericellamide and terrequinone A are commonly 

known for sexual development, and asperthercin can be found during asexual development 

(328). This indicates that the induction of sexual development may not be the only factor that 

affects secondary metabolism at low temperature stress. Low temperature itself may be a 

direct or indirect trigger of secondary metabolite production. Marine-derived fungi, for 
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instance, showed an induced SM production during increased osmotic stress (329), which 

may also trigger SM production at low temperatures.  

The altered SM profile at 10°C may contribute to ecological fitness in natural environments 

(144,145). This is emphasized by the production of so-far uncharacterised SMs with an 

inhibitory effect on other microorganisms such as fungi and Gram-positive bacteria. Hence, 

metabolic differentiation may represent a defence mechanism against competitors under 

severe growth conditions. It has been hardly proven yet that SMs serve as defence 

mechanism against predators in the natural environment (330). Rohlfs et al. (331) studied the 

relationship of A. nidulans under the attack of the fungivorous springtail Folsomia candida. 

The authors found that the production of SMs grants a certain protection to the fungus and 

the arthropod prefers feeding on the mutant strain of A. nidulans that is deficient in the laeA 

gene. This ultimately regulates the cell development and expression of several SMs in this 

fungus (332). Döll et al. (333) investigated grazer-challenged A. nidulans cultures and 

observed a higher production of toxic SMs as an adjustment to the fungivore environmental 

challenge. Upon grazer challenge, a sexual reproduction was triggered, which led to an 

increased survival of the fungus. Therefore, it is possible that synthesis of SMs is induced as 

a defence and protective mechanism in A. nidulans after the ecological challenge of low 

temperature stress. Low temperatures can induce secretion of SMs which have the ability to 

inhibit the growth of natural enemies. Thus, the fungus can prevent to be overgrown and is 

able to defend its ecological niche. Other functions of SM differentiation may help to acquire 

nutrients (334,335) such as the secretion of siderophores for iron uptake. It is also possible 

that SMs serve as signal molecules, e.g. to regulate cell development in A. nidulans (327). 

Linoleic acid-derived compounds such as PpoA for instance coordinate the sporulation of 

A. nidulans (126,336). In summary, low temperature stress leads to an altered SM profile of 

A. nidulans. The SM production is possibly linked to cell development or is a direct or indirect 

effect of the low temperature stress response. Previously uncharacterised SMs with an 

inhibitory effect on other microorganisms are produced. Most likely, this leads to an 

increased ecological fitness under low temperature stress.  

6.5 Regulation of extracellular proteases in A. fumigatus 

The human body is a further habitat which can be colonised by Aspergilli. Since Aspergilli are 

ubiquitous fungi, the spores from A. fumigatus for instance are dispersed widespread in 

nature and frequently inhaled by humans (12). After inhalation, the spores start to germinate 

in the immunocompromised host, where they have to overcome different obstacles such as 

attack by the residual human immune system or nutrient limitations. This work explored the 

role of secreted proteases in the pathogenesis of A. fumigatus.  
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Extracellular protease activity is mainly controlled by global regulators. The A. fumigatus 

genome encodes the TF PrtT and XprG. PrtT is the major regulator for the secretion of 

extracellular protease activity, while XprG plays a minor role. However, this is in contrast to 

the situation in other Aspergilli. For instance, in A. nidulans, PrtT is not present and the 

secretion of proteolytic enzymes is mainly controlled by XprG. The double mutant 

ΔXprG/ΔPrtT in A. fumigatus has nearly no remaining proteolytic activity. Nevertheless, the 

fungus is still able to penetrate the epithelium and the transcriptional regulators PrtT and 

XprG are not essential for maintaining virulence in a mouse model of invasive aspergillosis. 

Of the 50 putative secreted proteases, 24 are underrepresented in the double mutant, 

including 5 proteases which are induced during in vivo infection (337). It is possible that the 

residual 26 putative proteases that are not underrepresented, and the reduced amount of the 

24 underrepresented proteases, are sufficient for degrading the host tissue in vivo. This 

indicates the high functional gene redundancy in substrate-degrading proteases. The 

saprophytic life style of Aspergilli explains the importance for organic matter-degrading 

enzymes and emphasizes from an evolutionary point of view the priority for the high 

redundancy of these enzymes. Examples for functional gene redundancies are commonly 

found in large gene families such as chitin synthases (338), α-1,3-glucan synthases (339), 

and oligopeptide transporters (69). Alternatively, secretion of proteases may be induced 

in vivo by alternative mechanisms, which compensate the reduced secretory activity of the 

deleted genes prtT and xprG. Additionally, in vivo stress may activate alternative virulence 

determinants that are lacking in the wild type, such as the synthesis of toxic substances. 

Hagag et al. (340) described an upregulation of four SM clusters in the deletion mutant 

ΔPrtT. Independent of the reduced protease secretion in the double mutant, formation of 

toxic compounds such as pseurotin A and others could increase the virulence of this mutant 

strain.  

As shown for the deletion mutant ΔPrtT (340), the double mutant ΔXprG/ΔPrtT also shows 

side effects apart from the reduced extracellular protease activity. The double mutant shows 

a reduced expression of 21 of the 23 allergens identified in A. fumigatus. In vivo, cleavage of 

fibrinogen by fungal allergens (341) cause an allergic Th-2 response by acting as Toll-like 

receptor 4 ligands on alveolar macrophages and airway epithelium (342). Thus, our findings 

provide a good platform to determine the allergy response to fungi in more detail.   

Briefly, secreted proteases regulated by the transcription factors XprG and PrtT in 

A. fumigatus are not critical for the infection of an immunocompromised host, although the 

double mutant ΔXprG/ΔPrtT has almost no detectable secreted protease activity. However, 

the fungus can still grow in the host, probably as a result of the high functional gene 
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redundancy in proteolysis. The observation of a reduced allergen expression may be 

important for investigating the fungal allergy response in future studies. 

6.6 Surface protein HsbA as a virulence factor in L. corymbifera 

Another fungus which can cause invasive infections in humans is the mucoralean fungus 

Lichtheimia corymbifera. It can cause mucormycosis with high rates of mortality, especially in 

patients suffering from immunodeficiency (343). The infection process of L. corymbifera is 

not fully understood yet. After entering the human body, the fungus can be recognised by the 

immune system by pattern recognition receptors. Some pathogens developed strategies to 

avoid recognition by the immune system by masking their surface, as shown for the fungal 

pathogens Cryptococcus neoformans (344), which uses galactoxylomannan and 

glucuronoxylomannan as a capsule. Another example is A. fumigatus, preventing the 

immune recognition of spores by various immune cells with the surface-hydrophobin RodA 

(345,346). However, it has not been elucidated yet, whether similar mechanisms exist in 

spores of L. corymbifera. 

Therefore, we identified the surface proteins that vary in two L. corymbifera strains, which 

may explain their difference in virulence and recognition by the immune system. Annotation 

was carried out dependant on functional domains of the proteins. Proteins which showed 

differences in protein abundance between the two strains were three copies of the spore coat 

protein homologues CotH (LCor12344, LCor04095 and LCor04208) and four copies of 

hydrophobic surface binding protein A, HsbA (LCor05141, LCor05147, LCor05809, and 

LCor07988). CotH homologues are the most conserved proteins on the surface of 

mucoralean fungi and facilitate their invasion of host cells. Furthermore, CotH was reported 

to be recognised by the GRP78 receptor on the surface of endothelial cells (347). HsbA 

orthologues are antigenic galactomannoproteins that are exclusively detected in 

Mucormycotina and Eurotiales fungi and are highly distributed among various mucoralean 

species (348). HsbA proteins were identified as virulence factor for several fungal species 

during different interactions, including both fungal-plant and fungal-animal interactions. In the 

interaction of Colletotrichum fructicola with strawberry plants (Fragaria × ananassa Duch) 

(349) and Magnaporthe oryzae infection of rice (Oryza sativa) (350), HsbA may be involved 

in appressorium development. Moreover, HsbA played a role in the formation of fungal 

hyphae in the entomopathogenic fungus Beauveria bassiana during the infection of the host 

insect Frankiniella occidentalis (351). In Talaromyces marneffei, the HsbA proteins bind to 

lipid structures, such as arachidonic acid, and downregulate a cytokine production (352). 

Further studies indicated that HsbA has the capability to degrade hydrophobic structures 

(353) and plant biomass (354).  



Conclusion and future prospects | 98 

 

In summary, HsbA proteins are moonlighting proteins that have various functions in 

preventing immune recognition and mediating adhesion. However, the interaction of HsbA 

with immune cells has not been studied on the molecular level yet. Therefore, our findings 

form a good basis for investigating the contribution of the spore surface structure to the 

virulence of L. corymbifera.  

On this basis, future experiments are planned to heterologously overexpress the LCor07988 

HsbA protein in Pichia pastoris for further experiments. In addition, the interaction of the 

LCor07988 HsbA protein with immune cells such as the human monocytic cell line THP-1, 

human cell line Mono Mac 6 and murine alveolar macrophages (MH-S) will be investigated. 

These additional experiments should address the differences in the interaction of the immune 

system with the virulent (FSU:09682) and attenuated (FSU:10164) L. corymbifera strains 

(virulent in a mouse model). Our aim is to find out whether the HsbA protein can inhibit 

phagocytosis and contribute to the survival of L. corymbifera inside host cells. This may help 

to develop new therapeutic tools against mucoralean fungi.  

In summary, our analysis revealed two differentially expressed proteins in the two 

L. corymbifera strains, which are assumed to contribute to the virulence of these strains. The 

protein CotH is known for its ability of masking the pathogen cell surface, facilitating an 

invasion to the host cells. The second protein of our interest, HsbA, exhibits properties that 

may contribute to the virulence of L. corymbifera.  

7 Conclusion and future prospects 

The main foci of this thesis were the investigation of the adaptation strategies of A. nidulans 

and A. fumigatus to harsh environmental conditions. In A. nidulans, I investigated the 

adaptation to low temperatures; in A. fumigatus I studied the regulation of protease secretion, 

which is essential for host tissue degradation.  

First, I elucidated the viability of A. nidulans at temperatures down to -80 °C. Based on the 

findings, we hypothesised that the fungus utilises an elevated energy metabolism to provide 

ATP for repairing processes which are essential for the survival of low temperatures and 

cryostress. The physiological changes during low temperature adaptation were investigated 

further by multi-omics analyses of the low temperature response of A. nidulans.  

The omics analysis revealed a plethora of protective mechanisms which were induced in 

response to low temperatures and which may help the fungus to survive these harsh 

conditions. The mechanisms include the activation of chaperones, an elevated abundance of 

antioxidant enzymes, DNA repair proteins, osmotic stress response proteins and elevated 
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trehalose levels in the cells. Other studies reported on the induction of osmotic stress 

response pathways and accordingly an increased osmotic stress tolerance after exposure to 

cold. In line with this observation, we found several osmotic stress-related proteins such as 

proteins involved in the HOG signalling pathway and in osmoadaptation. Additionally, our 

results proposed that the saturation status of membrane fatty acids may not be altered at low 

temperatures. The incorporation of sugars may be the major mechanism to maintain the 

membrane stability. We suggested the presence of mechanisms for sensing temperature 

changes which would be a good target for additional experiments. The analysis of the 

putative GRP AN2989 for instance could unveil the role of GRPs in Aspergilli and contribute 

to a better understanding of the temperature perception in filamentous fungi. In conclusion, 

the gained knowledge may also contribute to an optimised process of cryo-conservation in 

filamentous fungi.  

Beside strategies which could directly be assigned to protection against damages occurring 

at low temperatures, decreased growth temperature triggered sexual development in 

A. nidulans. In the literature, an induction of a light-induced sexual development is described 

via the velvet gene veA. We used a veA- strain which does not possess a functioning velvet 

gene and therefore propose another, so-far uncharacterised low temperature-based 

induction of sexual development. In summary, this work delivers a good basis for further 

investigation to deepen the knowledge about the signalling pathways triggering cell 

development.  

Another effect of applying low temperature stress to A. nidulans is an altered SM profile and 

an induced production of several SMs. We suggest that a distinct SM profile leads to an 

increased ecological fitness under harsh environmental conditions, which is emphasised by 

the inhibitory effect of SMs on other microorganisms. These SMs may protect against natural 

competitors in cold seasons and may prevent being overgrown in a phase where the fungus 

has slowed down its metabolism. Low temperature stress induction may represent a valuable 

strategy to exploit the potential of filamentous fungi as sources of novel SMs and the 

combined knowledge of the low temperature stress response and SM production may assist 

to improve fermentation of filamentous fungi at low temperatures.  

The second focus of this work was the response of A. fumigatus to nutrient limitations 

inflicted by the host by investigating the transcriptional regulators XprG and PrtT. A detailed 

protein profile of each single mutant and the double mutant was created. The double mutant 

ΔXprG/ΔPrtT showed reduced conidiogenesis and an impaired ability to degrade substrate 

proteins but was still able to invade the immunocompromised host. We showed that 

proteases whose secretion was regulated by XprG and PrtT are not crucial for establishing 

an infection in the immunocompromised host. The consistent virulence in the mouse model 
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may result from the high gene redundancy in proteases. Further analysis of the role of 

remaining secreted proteases in destroying host tissue could contribute to evaluate the 

importance of extracellular proteins in the infection process of A. fumigatus. Further on, 

alternative virulence determinants triggered by the lack of the regulators XprG and PrtT, may 

lead to an increased production of SMs in the ΔXprG/ΔPrtT strain, which may compensate 

the depletion in protease activity. Although the double mutant did not lead to a reduced 

virulence in the mouse infection model, our proteomic data set demonstrated the importance 

of the regulators XprG and PrtT for determining the fungal allergy potential. 21 of 23 known 

fungal allergens were underrepresented in the double mutant ΔXprG/ΔPrtT. Hence, the 

A. fumigatus ΔXprG/ΔPrtT strain can be used in future studies of the allergic response to 

A. fumigatus. 

Overall, the studies of Aspergilli in extreme environments provide insights into novel 

pathways and mechanisms for gene regulations and the application of adaptation strategies 

to different environmental triggers. These discoveries offer new possibilities for therapeutics, 

fermentation processes and basic research in the fields of developmental and immune 

biology.  
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