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Eröffnung des Promotionsverfahrens: 21. November 2018
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Abstract

We prove several results concerning the distribution of resonances for infinite-
area hyperbolic surfaces:

• We establish global upper and lower bounds for resonances for covers of
Schottky surfaces, which lead to a weak Weyl law for the resonance set in
families of covers. This result refines previously known results due to Guil-
lopé–Zworski [34, 35] and complements a result of Borthwick [12]. When
applied to congruence covers, we obtain resonance bounds in the level as-
pect, improving a result of Jakobson–Naud [38]. In the process, we prove a
growth estimate on L-functions (twisted Selberg zeta functions) of Schottky
groups.

• We give an improved fractal upper bound for resonances for covers of Schot-
tky surfaces in terms of geometric quantities of the cover. This improves
and refines the results of Jakobson–Naud [38], Guillopé–Lin–Zworski [33],
and Dyatlov [23]. This result can also be interpreted algebraically, in terms
of Cayley graphs of the Galois group of the cover. Moreover, it leads to
an estimate for the number of eigenvalues for covers of Schottky surfaces,
refining a more general result of Ballmann–Matthiesen–Mondal [5].

• We show that the spectral gap of hyperbolic surfaces can be arbitrarily small,
by passing to abelian covers. This solves a question raised by Naud and
subsumes earlier work on this topic by Randol [75] and Selberg [82]. In the
case of Schottky surfaces we give a more precise equidistribution result for
resonances of abelian covers close to the ‘first’ resonance s = δ.

• We establish a fractal upper bound for the Selberg zeta function (and more
generally, L-functions) of Hecke triangle groups of the second kind. This
implies a fractal Weyl upper bound for hyperbolic surfaces arising from
finite-index, torsion-free subgroups of the Hecke triangle family. This re-
sult is the first of its kind in the literature for surfaces with cusps, and it
complements the result of Guillopé–Lin–Zworski [33].

• We obtain an explicit strip in the complex plane containing infinitely many
resonances for hyperbolic surfaces arising from torsion-free, finite-index
subgroups of the Hecke triangle family. This follows from a lower bound
on the essential spectral gap, which we prove by closely following ideas of
Jakobson–Naud [40].
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• As a side result we prove that the Selberg zeta function of Hecke triangle
groups of the second kind has no zeros in the half-plane {Re(s) > 1

2} except
for s = δ.
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Zusammenfassung

Wir beweisen einige Resultate über die Verteilung von Resonanzen für hyper-
bolische Flächen unendlichen Volumens:

• Wir beweisen die Existenz globaler oberer und unterer Schranken für Reso-
nanzen für Überlagerungen von Schottkyflächen, die ein schwaches Weylge-
setz für Familien von Überlagerungen ergeben. Dieses Ergebnis verfeinert
frühere Ergebnisse von Guillopé–Zworski [34, 35] und ergänzt ein Ergeb-
nis von Borthwick [12]. Angewandt auf Kongruenzüberlagerungen, liefert
dieses Resultat Schranken für Resonanzen in Abhängigkeit des Levels, die
ein Ergebnis von Jakobson–Naud [38] verbessert. Auf dem Weg dahin be-
weisen wir eine Abschätzung zum Wachstum von L-Funktionen (getwistete
Selbergsche Zetafunktionen) von Schottkygruppen.

• Wir zeigen eine verbesserte fraktale obere Schranke für Überlagerungen
von Schottkyflächen in Abhängigkeit von geometrischen Größen der Über-
lagerung. Dies verbessert und verfeinert Resultate von Jakobson–Naud
[38], Guillopé–Lin–Zworski [33] und Dyatlov [23]. Dieses Resultat lässt
sich auch algebraisch mittels Cayleygraphen der Gruppe der Decktransfor-
mationen interpretieren. Außerdem liefert es Abschätzungen zur Anzahl
der Eigenwerte von Überlagerungen von Schottkyflächen, welche ein allge-
meineres Resultat von Ballmann–Matthiesen–Mondal [5] verfeinern.

• Wir zeigen, dass die spektrale Lücke (spectral gap) von hyperbolischen
Flächen beliebig klein sein kann, indem man auf abelsche Überlagerungen
übergeht. Dies beantwortet eine Frage von Naud und subsumiert frühere
Arbeiten zu diesem Thema von Randol [75] und Selberg [82]. Im Falle
der Schottkyflächen liefern wir eine präzisere Gleichverteilungsaussage für
Resonanzen abelscher Überlagerungen in der Nähe der “ersten” Resonanz
s = δ.

• Wir beweisen eine fraktale obere Schranke für die Selbergsche Zetafunktion
(und allgemeiner, für L-Funktionen) von Heckedreiecksgruppen zweiter
Ordnung. Dies impliziert eine fraktale obere Weylschranke für hyperbolis-
che Flächen Γ̃\H, wobei Γ̃ eine torsionsfreie Untergruppe der Heckedreicks-
familie mit endlichem Index ist. Dieses Ergebnis ist das Erste dieser Art für
Flächen mit Spitzen und es ergänzt das Resultat von Guillopé–Lin–Zworski
[33].

• Wir geben einen expliziten Streifen in der komplexen Zahlenebene an, der
unendlich viele Resonanzen für Γ̃\H enthält, wobei Γ̃ eine torsionsfreie Un-
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tergruppe der Heckedreicksfamilie mit endlichem Index ist. Dies folgt aus
einer unteren Schranke für die essentielle spektrale Lücke (essential spectral
gap), die wir wiederum mit den Ideen von Jakobson–Naud [40] beweisen.

• Als Nebenergebnis zeigen wir, dass die Selbergsche Zetafunktion von Hecke-
dreiecksgruppen zweiter Ordnung in der Halbebene {Re(s) > 1

2} keine
Nullstellen außer s = δ besitzt.
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Chapter 1

Introduction

The term ‘resonance’ is often associated with oscillating systems, which are sub-
jected by some outside force having a frequency close to their own natural fre-
quency. Although resonances have their origins in physics, they appear naturally
in mathematical subjects such as spectral theory, harmonic analysis, geometry,
and number theory.

The resonances considered in this work are complex numbers arising as poles of
the resolvent of the Laplace–Beltrami operator ∆X on some Riemannian mani-
fold X and as such, they may be regarded as generalized eigenvalues of ∆X. In
this setting, the main goal is to understand the interaction between the ‘classical’
side of X (geometry, dynamics, geodesics) and the ‘quantum’ side of X (spectral
theory, eigenvalues and resonances).

In the present thesis we focus on the case where X is a hyperbolic surface, that is, a
two-dimensional manifold of constant negative sectional curvature −1. One moti-
vation to study the hyperbolic case stems from the following fact [84, 4]: if X has
negative sectional curvature, then the geodesic flow on the tangent bundle TX is
ergodic and in particular chaotic. Hence the study of resonances for hyperbolic
surfaces falls into the realm of quantum chaos. Quantum chaos seeks to describe
chaotic classical dynamical systems in terms of quantum theory. This connec-
tion to physics is a valuable source for many conjectures, which are motivated by
experimental data.

Another reason to consider hyperbolic surfaces is that one can draw upon more
classical subjects of mathematics, such as automorphic forms and Maass cusp
forms (which are studied extensively in number theory), and Selberg theory (which
is essentially the spectral theory of finite-area hyperbolic surfaces).

One of the standard models for hyperbolic geometry is the Poincaré half-plane

H = {z = x + iy : x ∈ R, y > 0}

endowed with its metric of negative sectional curvature −1,

ds2 =
dx2 + dy2

y2 .

The group of orientation-preserving isometries of the hyperbolic plane is isomor-
phic to PSL2(R) = SL2(R)/{± id}. Each element g ∈ PSL2(R) acts on H by the
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Möbius transformation

z ↦→ az + b
cz + d

, g =

[
a b
c d

]
.

Every hyperbolic surface X is isometric to a quotient Γ\H of the hyperbolic plane
by some discrete subgroup Γ ⊂ PSL2(R). Hence, the study of discrete subgroups
of PSL2(R), also called Fuchsian groups, goes hand in hand with the study of
hyperbolic surfaces. The arguably most prominent example of a Fuchsian group
is the modular group PSL2(Z).
In this thesis we will mostly consider hyperbolic surfaces of infinite area and we
will always assume that X = Γ\H is geometrically finite. The latter condition is cru-
cial for doing spectral theory on X. It is equivalent with saying that the group Γ

is finitely generated, or that the Euler characteristic of X is finite. For the moment
we allow X to be of infinite or of finite area.

Let ∆X denote the positive Laplacian on X. The resolvent of ∆X is the operator

RX(s) :=
(
∆X − s(1 − s)

)−1 : L2(X) → L2(X).

It is well-defined for s ∈ C with Re(s) > 1/2 and s(1 − s) not being an L2-
eigenvalue of ∆X. From the work of Mazzeo–Melrose [53] and Guillopé–Zworski
[34] we know that it extends to a meromorphic family

RX(s) : C∞
c (X) → C∞(X)

on C with poles of finite rank. The poles of the meromorphically continued re-
solvent are called the resonances of X. Each resonance s has a finite multiplicity,
which is defined as the rank of the residue of RX at the pole s. We denote by R(X)
the set of resonances, repeated according to their multiplicities.

Notice that resonances can be thought of as generalized eigenvalues because of
their appearance as poles of the resolvent. If s ∈ R(X) is a resonance with Re(s) >
1
2 , then λ = s(1 − s) is indeed an L2-eigenvalue. On the other hand, resonances
with Re(s) < 1

2 are often interpreted as the poles of a scattering operator, called
scattering poles.

From the point of view of physics, each resonance corresponds to a decaying
wave. Indeed, to each resonance s ∈ C we can associate a generalized eigen-
function (a so-called purely outgoing eigenstate) ψs ∈ C∞(X), which provides a
stationary solution of the automorphic wave equation:

ϕ(t, x) = e(s−
1
2 )tψs(x),

(
∂

2
t + ∆X − 1

4

)
ϕ(t, x) = 0. (1.1)

In light of (1.1), Re(s)− 1
2 is the decay rate and Im(s) is the oscillation frequency

of the solutionϕ.

Whereas resonances for finite-area hyperbolic surfaces are contained in a vertical
strip of the complex plane of bounded width, in the infinite-area case they are
spread all over the half-plane {s ∈ C : Re(s) ≤ δ}. Here, the value δ = δ(Γ) ∈
[0, 1] plays an important role throughout this work. It is the Hausdorff dimension
of the limit set Λ(Γ) ⊆ ∂H of the group Γ .
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CHAPTER 1. INTRODUCTION

Understanding the location, distribution and density of resonances is an extremely
difficult task. For instance, the scattering poles s of the modular surface PSL2(Z)\H
are directly related to the non-trivial zeros of Riemann zeta function byζ(2s) = 0.
This example shows that even in the finite-area case, it is not a trivial matter to nu-
merically locate resonances, let alone compute them explicitly. Needless to say,
there is no analytic formula allowing us to calculate the resonances for general
hyperbolic surfaces.

In the last few decades, a great deal of research has been devoted to the study of
resonances for hyperbolic surfaces. The principal aim of this work is to further the
understanding of their distribution and density. One way to attack any problem
related to resonances is through the Selberg zeta function, which is defined on the
half-plane Re(s) > δ by the Euler product

ZΓ (s) := ∏
ℓ∈L(X)

∞
∏
k=0

(
1 − e−(s+k)ℓ

)
. (1.2)

Here, the outer product is taken over the primitive length spectrum L(X) of X, that
is, the set of lengths of the primitive periodic geodesics on X. As is well-known,
the Selberg zeta function ZΓ (s) extends to a meromorphic function of s ∈ C.
For compact and finite-area hyperbolic surfaces it is a deep fact that the zeros of
the (meromorphically continued) Selberg zeta function correspond, apart from
some well-understood zeros, to resonances of the Laplacian on X = Γ\H. This
fact is equivalent to the classical Selberg trace formula, which goes back to Selberg
[80], and yields a striking relation between the spectral data of X and its closed
geodesics. More recently, the same connection between the zeros of ZΓ and the
resonances for X = Γ\H was proven first by Patterson–Perry [68] in the convex
cocompact case, and then by Borthwick–Judge–Perry [13] for all geometrically
finite hyperbolic surfaces.

In view of the above discussion, it is not surprising that the asymptotic behaviour
of resonances is intimately connected to the analytic properties of the Selberg zeta
function. Consider for instance the problem of estimating the number NX(r) of
resonances inside disks centered at the origin of the complex plane,

NX(r) := # {s ∈ R(X) : |s| ≤ r} ,

as the radius r tends to infinity. Suppose for a moment that we had a global
growth estimate for ZΓ (s) of the type

|ZΓ (s)| ≤ C exp(C|s|2), s ∈ C, (1.3)

where C > 0 is some absolute constant. (‘Global’ because (1.3) applies to every
s ∈ C.) Once such an estimate is established, it is relatively straightforward (using
tools from complex analysis) to derive the global upper bound

NX(r) = O(r2).

However, establishing estimates such as (1.3) is by no means easy, given that on
the half-plane Re(s) ≤ δ, the Selberg zeta function is defined through meromor-
phic continuation of the infinite product (1.2). Part of this work is concerned with
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proving refined versions of (1.3), which in turn lead to new upper and lower
bounds for the resonance counting function NX(r) (see Chapter 3).

In the last decades a new interpretation for the Selberg zeta function has emerged.
In its simplest form, this new point of view can be described as follows: the action
of the group Γ on the hyperbolic plane H induces a discrete dynamical system on
its boundary ∂H. (For the modular group this dynamical system is the Gauss
map for continued fractions.) To this dynamical system, we associate in a natural
way a family of trace class operators Ls : H → H acting on some suitable Hilbert
space H. Then this family of so-called transfer operators, which is parametrized by
the spectral variable s, leads to the remarkable formula

ZΓ (s) = det(1 −Ls). (1.4)

Here, ‘det’ is the Fredholm determinant. Details and references concerning the
precise way of arriving at (1.4) will be given throughout this work.

The description of ZΓ in terms of Fredholm determinants of transfer operators
has numerous advantages. For instance, (1.4) almost immediately shows the ex-
istence of a meromorphic continuation of ZΓ , which is far from obvious in the
purely geometric description as a product over the length spectrum in (1.2). Most
of the results in this work are obtained by exploiting transfer operator techniques,
commonly referred to as ‘thermodynamic formalism’.

There is a long list of authors who have implemented the thermodynamic for-
malism (in some form or another) to obtain novel results in spectral theory and
beyond, which so far are inaccessible by usual spectral methods. It includes Naud
[57, 59], Jakobson–Naud [40, 38], Bourgain–Gamburd–Sarnak [17], Oh–Winter
[63], just to name a few. For us, the main advantage of transfer operators is that
they enable us to control the growth of the Selberg zeta function.

To better explain our motivation, let us have a closer look at one beautiful ap-
plicaton of (1.4) due to Guillopé–Lin–Zworski [33]. They proved one of the first
rigourous results in the direction of a more general conjecture for open chaotic
systems, called the fractal Weyl law, by analogy to the classical Weyl law for eigen-
values. This conjecture – motivated by numerical experiments and supported by
experimental evidence in the physics literature – was formulated by Sjöstrand
[85] and Lu–Sridhar–Zworski [48]. Roughly speaking, this conjecture predicts
the distribution of resonances and scattering poles in terms of the fractal dimen-
sion of the trapped set of the geodesic flow. When applied to the specific setting
of hyperbolic surfaces, it asserts that for all σ ∈ R negative enough one has

NX(σ , T) := # {s ∈ R(X) : Re(s) ≥ σ , |Im(s)| ≤ T} ≍ T1+δ, as T → ∞. (1.5)

Recall that δ denotes the Hausdorff dimension of the limit set of Γ . We point
out that the trapped set of the geodesic flow (viewed as a subset of the tangent
bundle of X) has Hausdorff dimension 2(1 + δ), see [14, Chapter 14]. Thus the
fractal Weyl conjecture says that the number of resonances in strips parallel to the
imaginary axis satisfies a power law, with exponent equal to half of the dimension
of the trapped set.

Now suppose that X is an infinite-area geometrically finite hyperbolic surface
without cusps. In this case it turns out that we can realize X as the quotient Γ\H,
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CHAPTER 1. INTRODUCTION

where Γ is a so-called Schottky group. Schottky groups stand out, among other
Fuchsian groups, by their particularly simple geometric structure. This structure
allows one to deduce a ‘natural’ transfer operator Ls satisfying (1.4).

Using (1.4) and some properties of transfer operators in a clever way, Guillopé–
Lin–Zworski [33] showed that in all half-planes {Re(s) ≥ σ}, we have

|ZΓ (s)| ≤ Cσ exp(Cσ |Im(s)|δ), (1.6)

for some constant Cσ only depending on σ . Notice that in vertical strips, (1.6)
vastly improves upon the global bound (1.3). Using this growth estimate and
the aforementioned correspondence between zeros of ZΓ and resonances for X =
Γ\H, it is only a matter of complex analysis to deduce the following upper bound
for all σ ∈ R:

NX(σ , T) = Oσ(T1+δ). (1.7)

This bound settles the upper bound of the fractal Weyl conjecture for hyperbolic
surfaces without cusps. We point out that there are also some known lower
bounds (for instance [36, 39]), though these are weaker than predicted by the
fractal Weyl conjecture. Sharp lower bounds for NX(σ , T) have remained elusive.

Even though many results supporting the fractal Weyl conjecture (mostly upper
bounds) have recently been achieved in different contexts (see for instance [21,
24, 25, 60, 61]), it remains untackled for hyperbolic surfaces with cusps. Nor is
it clear in this case how to obtain fractal growth estimates for the Selberg zeta
function analogous to (1.6).

In the presence of cusps, the trapped set is non-compact, a notoriously hard ob-
stacle to overcome. Another difficulty when dealing with cusps is that there is
no obvious way to realize ZΓ as a Fredholm determinant of a transfer operator
family. From Mayer [52], Morita [54], and more recently Pohl [71] and Fedosova–
Pohl [26], we know however that this can be done in many cases. A particularly
nice class of examples for which a transfer operator is available, is the family of
Hecke triangle groups. In some sense, Hecke triangle groups generalize the modu-
lar group PSL2(Z). In Chapter 5, we exploit the properties of this transfer opera-
tor to prove a fractal upper bound for the Selberg zeta function of Hecke triangle
groups and their subgroups. Our result yields, for the first time, a fractal upper
Weyl bound for resonances similar to (1.7) for a large class of surfaces with fun-
nels and cusps. This is also the first example in the literature of a fractal Weyl
bound in a situation where the trapped set is non-compact.

One further topic we address is ‘spectral gap’. Informally, this term refers to the
amount by which the bottom of the spectrum of the Laplacian ∆X is separated
from the remaining spectrum. For compact X, the spectrum of ∆X is a sequence
of positive real eigenvalues with a simple zero at the bottom:

λ0(X) = 0 < λ1(X) ≤ λ2(X) ≤ . . . .

In the compact case, the spectral gap of X is thus given by λ1(X) − λ0(X) =
λ1(X) > 0. It turns out that the notion of spectral gap can be extended in a natu-
ral way to non-compact surfaces X as well, in terms of the resonances of X. This
will be explained at the beginning of Chapter 4. In this setting, Naud [57] and
Bourgain–Dyatlov [15] proved the existence of a positive spectral gap, a rather
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non-trivial fact in non-compact situations. The size of the spectral gap directly af-
fects the error term in many counting results, such as the asymptotic distribution
of closed geodesics on X. However, the methods used in these proofs do not yield
effective bounds on the size of the spectral gap. This raised the question whether
this quantity can be arbitrarily small. More precisely, given any ε > 0, can one
find a hyperbolic surface whose spectral gap is smaller than ε? In Chapter 4 we
show (among other things) that this is indeed the case.

Guide for the reader

Chapter 2 contains the basic material on hyperbolic surfaces and their spectral
theory needed to understand the results in the subsequent chapters. Chapters 3,
4, and 5 contain the essential results of the present thesis. These chapters can be
read independently of each other and in any possible order, although Chapter 3
begins with a rather elaborate description of some known results on the distri-
bution of resonances. Reading this part first might benefit the reader unfamiliar
with the topic at hand. In Chapter 6 a brief outlook for possible future research is
presented.

In the following we provide a summary for each of the main chapters.

Chapter 3. The first main result of this chapter is Theorem 3.1, which gives global
upper and lower bounds for resonances for covers of Schottky surfaces. In the
process of proving Theorem 3.1, we prove Proposition 3.4, which is a growth
estimate on L-functions of Schottky groups of independent interest.

The second main result of Chapter 3, Theorem 3.2, is an improved fractal up-
per bound for resonances for covers of Schottky surfaces in terms of geometric
quantities of the cover. Applying Theorem 3.2 to congruence subgroups yields
Proposition 3.11. This result can also be interpreted in terms of Cayley graphs,
leading to Corollary 3.14.

Chapter 4. The two main statements of Chapter 4 are Theorem 4.1 and Theo-
rem 4.2. Together they show that the spectral gap of hyperbolic surfaces can be
arbitrarily small, by passing to abelian covers. Theorem 4.2 gives a much more
precise equidistribution result for resonances close to the ‘first’ resonance δ.

Chapter 5. This chapter deals with the family of Hecke triangle groups Γw, which
is parametrized by the cusp width w. The modular group PSL2(Z) corresponds
to the case w = 1. Thus we may think of Hecke triangle groups as generalizations
of the modular group. We restrict our attention to the non-cofinite Hecke triangle
groups, which are precisely those with cusp width w > 2. Our primary aim is to
prove fractal upper bounds for L-functions of Γw, Theorem 5.1. This theorem has
two immediate corollaries. First, it gives a new growth estimate for the Selberg
zeta function of arbitrary finite-index subgroups of the Hecke triangle family Γw,
see Corollary 5.2. Second, it leads to a fractal Weyl upper bound for hyperbolic
surfaces arising from torsion-free, finite-index subgroups of Γw, see Corollary 5.3.
The latter is the first example in the literature for a fractal Weyl law for hyperbolic
surfaces with cusps. We provide some explicit examples for torsion-free, finite-
index subgroups of Γw. As a side result, we show that the Selberg zeta function
ZΓw(s) with w > 2 has no zeros in the half-plane {Re(s) > 1

2} except at s = δ(Γw),
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CHAPTER 1. INTRODUCTION

see Corollary 5.5.

Another consequence of the newly obtained growth estimate is an explicit strip in
the complex plane containing infinitely many resonances for hyperbolic surfaces
arising from torsion-free, finite-index subgroups of Γw, see Theorem 5.4. This
result requires more effort to prove, and follows from an abstract lower bound on
the essential spectral gap, see Theorem 5.33.
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Chapter 2

Preliminaries

To set the stage for this thesis, we will first review some basic facts about hyper-
bolic geometry and spectral theory. The goal here is not a complete exposition,
but rather a brief overview of the concepts needed to understand the main results
of the thesis. All the statements in the present chapter are mentioned without
proofs. Most of them can be found in Borthwick’s book [14], in which case we do
not give a reference.

In this thesis we also make heavy use of concepts of functional analysis (such
as trace class operators, Fredholm determinants, and singular values). A brief
review of these concepts and some key properties can be found in the Appendix,
Section A.1.

2.1 Hyperbolic surfaces

Throughout we use the Poincaré half-plane model of the hyperbolic plane

H = {z = x + iy : x ∈ R, y > 0}, ds2 =
dx2 + dy2

y2 .

In these coordinates, the associated (positive) Laplace–Beltrami operator is

∆H = −y2(
∂

2
x + ∂

2
y
)
.

The group of orientation-preserving isometries of H is isomorphic to the group
PSL2(R) = SL2(R)/{± id}, acting by Möbius transformations on H. This action
extends continuously to the geodesic boundary ∂H of H, which we identify with
R := R∪ {∞}. More concretely, the action of the element

g =

[
a b
c d

]
∈ PSL2(R)

on the point z ∈ H = H∪ ∂H is given by the formula

g.z :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞ if z = ∞, c = 0, or z ̸= ∞, cz + d = 0,
a
c

if z = ∞, c ̸= 0,

az + b
cz + d

otherwise.
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Elements of PSL2(R) can be classified in terms of their fixed points. An element
g ∈ PSL2(R), g ̸= id, is called

• hyperbolic if it has precisely two fixed points z1, z2 on ∂H (or equivalently, if
| Tr g| > 2),

• elliptic if it has a single fixed point in H (| Tr g| < 2), and

• parabolic if it has a single fixed point in ∂H (| Tr g| = 2).

Notice that | Tr g| is well-defined in PSL2(R).
On PSL2(R), we use the standard matrix topology defined by the norm ∥g∥F =

Tr(g⊤g)1/2. A Fuchsian group is a discrete subgroup of PSL2(R).
A surface1 is called hyperbolic if it is equipped with a complete Riemannian met-
ric of constant negative sectional curvature −1. Every hyperbolic surface X is
isometric to a quotient Γ\H for some Fuchsian group Γ not containing elliptic
elements. If Γ contains at least one elliptic element, then Γ\H has conical sin-
gularities, in which case the quotient Γ\H is an orbifold, rather than a manifold.
Moreover, the fundamental group π1(X) of a hyperbolic surface X = Γ\H is iso-
morphic to Γ .

Let Γ be a Fuchsian group. An element g ∈ Γ , g ̸= id, is called primitive if for
every h ∈ Γ and n ∈ N, g = hn implies n = 1. We let [Γ]p denote the set of
Γ -conjugacy classes of the primitive hyperbolic elements in Γ , and [Γ] the set of
Γ -conjugacy classes of all hyperbolic elements in Γ .

There is a well-known one-to-one correspondence between the [Γ]p and the set
of primitive periodic geodesics on X = Γ\H. Similarly, there is a one-to-one
correspondence between [Γ] and the set of all periodic geodesics on X (allowing
multiple passages through the image). Hence, a closed geodesic represented by
the element γ is naturally identified with its conjugacy class [γ].

If g ∈ PSL2(R) is hyperbolic, then there is a unique geodesic α(g) connecting its
two fixed points z1, z2 ∈ ∂H, called the axis of g. On the axis α(g), the element g
acts by translation by some fixed length ℓ = ℓ(g), called the displacement length of
g. It is given by the formula

2 cosh
(
ℓ(g)

2

)
= | Tr g|. (2.1)

From (2.1) it follows that the displacement length is invariant under conjugation.
Moreover, if a periodic geodesic on X corresponds to the conjugacy class [g], then
its length is given by ℓ(g).

We denote the length of the shortest closed geodesic on X by ℓ0(X). In other
words,

ℓ0(X) = min
[g]∈[Γ]

ℓ(g). (2.2)

1For the purposes of this thesis, a ‘surface’ is a connected, orientable, two-dimensional smooth
manifold.
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2.1.1 Cusps and funnels

One way to understand the quotient Γ\H is through a so-called fundamental do-
main for the action of Γ on H, which is an open region F ⊂ H such that

H =
⋃
γ∈Γ

γF

and such that γ1F ∩γ2F = ∅ for all γ1,γ2 ∈ Γ with γ1 ̸= γ2.

Throughout this work, we only consider geometrically finite hyperbolic surfaces
X = Γ\H. This means that there exists a fundamental domain for the action of Γ
on H, which is a finite-sided convex2 polygon. The condition of geometric finite-
ness has strong geometric implications. It is equivalent to both finite generation
of the group Γ , and topologic finiteness of X (i.e. finite Euler characteristic χ(X)).
In this case, X can have only two types of endings: cusps and funnels. More pre-
cisely, if the surface X = Γ\H is non-elementary and geometrically finite, then it
can be decomposed as

X = K ∪ C ∪ F, (2.3)

where K is the compact core, and C and F are finite disjoint unions of cusps and
funnels, respectively. (Note that F or C might be empty.) For the decomposition
in (2.3) to be unique, we need precise definitions for funnels and cusps, since
these definitions vary in the literature. Funnels (of diameter ℓ) are isometric to

Fℓ := ⟨z ↦→ eℓz⟩\
{

z ∈ H : Re(z) ≥ 0
}

,

while cusps are isometric to

C∞ := ⟨z ↦→ z + 1⟩\
{

z ∈ H : 0 ≤ Re(z) ≤ 1, Im(z) ≥ 1
}

,

both endowed with the hyperbolic metric. Using the hyperbolic area measure

dxdy
y2

one can verify that

area(C∞) = 1 and area(Fℓ) = ∞.

Thus, X = Γ\H has infinite area if and only if it has at least one funnel ending
(F ̸= ∅). If X has at least one cusp but no funnels, then it is not compact, but
its area is still finite. Algebraically, cusps of X = Γ\H correspond one-to-one to
orbits of fixed points of parabolic elements in Γ .

In view of (2.3) we can define the convex core of X as the set K ∪ C, that is, X
minus the funnels. Note that if X has no cusps, then its convex and compact cores
agree, in which case X is sometimes called ‘convex cocompact’. It turns out (but
is by no means obvious) that if X = Γ\H is a geometrically finite, infinite-area
hyperbolic without cusps, then Γ is a so-called Schottky group. Schottky groups

2A subset U ⊂ H is ‘convex’ if for all z1, z2 ∈ U, the geodesic arc [z1, z2] is contained in U.
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Figure 2.1: Schematic view of a hyperbolic surface with three cusps and two fun-
nels

are Fuchsian groups that arise from a specific geometric construction, which we
describe in Subsection 2.2 below.

Given a non-elementary, geometrically finite hyperbolic surface X, we can define
its 0-volume as the volume of its convex core:

0-vol(X) := area(K ∪ C) < ∞.

We should point out that the 0-volume is actually defined in terms of a more gen-
eral ‘0-integral’. We refer to [14, Page 225] for the details. If X is of finite area it is
clear that 0-vol(X) = vol(X). Thus, the 0-volume can be seen a natural replace-
ment for the volume in the infinite-area case. (Note that we do not distinguish
the words ‘area’ and ‘volume’ in this context.) Using the Gauss–Bonnet formula,
one can show that

0-vol(X) = −2πχ(X), (2.4)

where χ(X) is the Euler characteristic of X.

2.1.2 Limit set

A very important object in the study of hyperbolic surfaces is the limit set of a
Fuchsian group Γ , usually denoted by Λ(Γ). It is defined as the set of accumula-
tion points (in the Riemann sphere topology) of all orbits Γ .z for z ∈ H. In fact,
one can show that if z ∈ H is not a fixed point of an elliptic element in Γ , then the
limit set is given by

Λ(Γ) = Γ .z ∩ ∂H.

The limit set is a closed, Γ -invariant subset of ∂H. In general, Λ(Γ) is a Cantor-like
fractal, and its Hausdorff dimension δ(Γ) := dimH Λ(Γ) plays an important role
in this work. Whenever Γ or X is fixed, we write δ for δ(Γ) or δ(X).

For the connection between the limit set of Γ and the trapped set of the geodesic
flow on T1(Γ\H) we refer to [14, Chapter 14].
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The topologic and measure-theoretic features of Λ(Γ) reveal a lot of information
about the group Γ . Indeed, by the classification of Poincaré and Fricke–Klein, we
have the following facts:

• If Λ(Γ) is finite, then Γ is an elementary group and δ(Γ) = 0.

• If Λ(Γ) = ∂H, then the quotient Γ\H is of finite area and δ(Γ) = 1. In this
case, Γ is said to be a Fuchsian group of the first kind.

• If Λ(Γ) is a perfect nowhere dense subset of ∂H, then Γ\H has infinite area
and 0 < δ(Γ) < 1. In this case, Γ is said to be a Fuchsian group of the second
kind.

If the quotient Γ\H has finite-area, then we call Γ ‘cofinite’. In particular, it follows
from the above characterization that

Γ is cofinite ⇐⇒ Λ(Γ) = ∂H ⇐⇒ Γ\H has no funnels.

Another interesting result due to Beardon [8, 9] says that if a non-elementary geo-
metrically finite surface X = Γ\H has at least one cusp, then necessarily δ(Γ) > 1

2 .
(The inverse statement is however not true.)

There are several other interesting ways of characterizing the quantity δ(Γ). For
instance, δ(Γ) equals both the topological entropy of the geodesic flow on the
trapped set (in the convex cocompact case), and the exponent of convergence of
the Poincaré series

PΓ (s; z, w) := ∑
γ∈Γ

e−sdH(z,w),

where dH(z, w) denotes the hyperbolic distance.

2.2 Schottky groups and Schottky surfaces

In Chapters 3 and 4 of this thesis, Fuchsian Schottky groups Γ play an important
role. Classically, Schottky groups are given by a specific geometric construction,
which we will take to our advantage. Let us recall this construction now.

Let m ∈ N and choose 2m open Euclidean disks in C = C∪{∞} having mutually
disjoint closures, and all of which are centered on ∂H = R ∪ {∞}. Endow these
disks with an ordering, say

D1, . . . ,D2m. (2.5)

Recall that the action of PSL2(R) on H by Möbius transformations extends con-
tinuously to the whole Riemann sphere C. For j ∈ {1, . . . , m} let γ j be an element
in PSL2(R) that maps the exterior of D j to the interior of D j+m. Then the elements
γ1, . . . ,γm and its inverses freely generate a Fuchsian group Γ . A Fuchsian group
Γ is called Schottky if it arises from such a construction.
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Figure 2.2: A configuration of Schottky disks and isometries with m = 3

A hyperbolic surface X is said to be a Schottky surface if there exists a Schottky
group Γ such that X is isometric to Γ\H.

By switching to a conjugate g−1Γ g of Γ for some suitable isometry g ∈ PSL2(R),
we can always assume that the disks D j in (2.5) are Euclidean disks in C (rather
than C). This restriction does not lead to a loss of generality and does not affect
our results, since we are mostly interested in Schottky surfaces X = Γ\H (in
which case we are free to choose Γ such that no such conjugation is needed) and
since our results are invariant under conjugations.

For convenience, given a Schottky group Γ , we omit throughout any reference to
a possibly necessary conjugation. Whenever we deal with a Schottky group Γ ,
we assume that there exists m ∈ N and a configuration of disks D1, . . . ,D2m ⊂ C
and corresponding isometries γ1, . . . ,γm as above such that Γ = ⟨γ±1 , . . . ,γ±m⟩.
Moreover, for j ∈ {m + 1, . . . , 2m}, it is extremely helpful to define

γ j := γ−1
j−m,

and to extend this definition cyclically to Z by defining

γk := γk mod 2m for k ∈ Z.

Further, we let

D :=
2m⋃
j=1

D j (2.6)

be the union of the disks (2.5) used in the construction.

Figure 2.3: Two Schottky surfaces: a three-funnel surface and a funneled torus

The importance of Schottky groups stems from a result of Button [20], which
asserts that (Fuchsian) Schottky groups are precisely those Fuchsian groups that
are geometrically finite, not cofinite, and have no elliptic nor parabolic elements.
In other words, the class of Schottky surfaces coincides with the class of convex
cocompact hyperbolic surfaces of infinite area (no cusps, no conical singularities,
just funnels!).
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2.3 Spectral theory and resonances

Let X = Γ\H be a geometrically finite hyperbolic surface, let ∆X denote the Lapla-
cian on X, and let

δ := δ(X) := dimH Λ(Γ)

denote the Hausdorff dimension of the limit set Λ(Γ) of Γ . In this section we
assume that X is of infinite-area.

In the infinite-area case the spectrum of ∆X on L2(X) is rather sparse. By Lax–
Phillips [47] and Patterson [66], the spectrum satisfies the following basic proper-
ties, assuming vol(X) = ∞:

• The (absolutely) continuous spectrum is [1/4, ∞).

• The pure point spectrum is finite and contained in (0, 1/4). In particular,
there are no eigenvalues embedded in the continuous spectrum.

• If δ < 1/2 then the pure point spectrum is empty. If δ > 1/2 then δ(1 − δ)
is the smallest eigenvalue.

The resolvent

RX(s) :=
(
∆X − s(1 − s)

)−1 : L2(X) → L2(X)

of ∆X is defined for s ∈ C with Re(s) > 1/2 and s(1 − s) not being an L2-
eigenvalue of ∆X. By [53, 34], it extends to a meromorphic family

RX(s) : C∞
c (X) → C∞(X)

on C with poles of finite rank. The resonances of X are the poles of RX. We denote
the set of resonances, repeated according to multiplicities, by

R(X).

The set R(X) of resonances is contained in the half-plane

{s ∈ C : Re(s) ≤ δ},

and, obviously, each L2-eigenvalue gives rise to a (pair of) resonance(s). All reso-
nances with Re(s) > 1

2 correspond to L2-eigenvalues (pure point spectrum), and
there are only finitely many of them. On the other hand, there are infinitely many
resonances in the half-plane {Re(s) < 1

2}. Moreover, there are no resonances on
the critical line Re(s) = 1

2 , except possibly at s = 1
2 . The set of resonances R(X)

furnishes the natural replacement for the L2-eigenvalues of ∆X.

We refer to the introduction of Chapter 3 for some known results on the finer
structure of the set R(X). When it comes to understanding the distribution of
resonances, we are mainly interested in the following two resonance counting
functions:

NX(r) := #{s ∈ R(X) : |s| ≤ r}, r > 0,
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iR Re = δRe = 1/2

s = δ
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Figure 2.4: Distribution of resonances for infinite-area Γ\H in the case δ > 1
2

There are no resonances on the critical line Re(s) = 1
2 , except possibly at s = 1

2

and

MX(σ , T) := # {s ∈ R(X) : Re(s) ≥ σ , |Im(s)− T| ≤ 1} , σ , T ∈ R.

R

iR Re = δ

s = δ

iT

Re = σ

{Re(s) ≥ σ , |Im(s)− T| ≤ 1}

Figure 2.5: Resonances in a box parallel to the imaginary axis

2.4 Representation

For any Fuchsian group Γ and any finite-dimensional representation ρ : Γ →
U(V) of Γ on a finite-dimensional unitary space V, we denote the inner prod-
uct on V by ⟨·, ·⟩V and its associated norm by ∥ · ∥V . We drop the subscript V
from the notation, whenever the vector space V is fixed.

We define the dimension of ρ to be the dimension of V:

dimρ := dim V.
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Further, we denote by 1V the trivial representation of Γ on V if Γ is understood
implicitly, and by 1Γ the trivial representation of Γ on V if V is understood im-
plicitly. The character of a representation (ρ, Γ) is the function χ : Γ → C defined
by

χ(g) := Trρ(g)

for all g ∈ Γ . Clearly, χ is constant on conjugacy classes of Γ .

2.4.1 Induced representation

Let Γ̃ be a subgroup of Γ with finite index n = [Γ : Γ̃ ]. Let ρ̃ : Γ̃ → U(Ṽ) be a rep-
resentation of Γ̃ . The induced representation ρ = IndΓ

Γ̃
(ρ̃) is the ‘natural’ extension

of ρ̃ to the larger group Γ , and can be described as follows. Let R = {g1, . . . , gn}
be a complete set of representatives in Γ of the left cosets in Γ/Γ̃ . The induced
representation can be thought of as acting on the vector space

V :=
n⨁

i=1

giṼ.

The elements of V can be written as

v =
n

∑
i=1

giṽi,

where ṽ1, . . . , ṽn belong to Ṽ. For every g ∈ Γ and gi ∈ R there exists hi ∈ Γ̃ and
g j(i) ∈ R such that ggi = g j(i)hi. The induced representation is then given by the
following action of Γ :

ρ(g)v :=
n

∑
i=1

g j(i)ρ̃(hi)ṽi.

The Frobenius formula (also called Mackey formula) enables us to compute the char-
acter χ = Trρ of the induced representation in terms of the character χ̃ = Tr ρ̃ by

χ(g) = ∑
x∈R

x−1gx∈Γ̃

χ̃(x−1gx). (2.7)

If there exists no x ∈ R such that x−1gx ∈ Γ̃ , then the sum in (2.7) is empty, in
which case we set χ(g) := 0.

2.5 Selberg zeta function and L-function

Let X = Γ\H be a geometrically finite hyperbolic surface and ρ : Γ → U(V) a
unitary representation of Γ on a finite-dimensional unitary space V.

The L-function (twisted Selberg zeta function) associated to (Γ ,ρ) is determined
by the initially only formal Euler product

LΓ (s,ρ) = ∏
[γ]∈[Γ]p

∞
∏
k=0

det
(

1 − ρ(γ)e−(s+k)ℓ(γ)
)

. (2.8)
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Recall that ℓ(γ) is the displacement length of γ given by (2.1). The infinite prod-
uct (2.8) converges compactly on {s ∈ C : Re(s) > δ(X)}. In many cases, a
meromorphic extension to all of C can be established, see for instance [26, 41]. If
Γ is Schottky group, then LΓ (s,ρ) extends to an entire function, as we explain in
Section 2.6 below.

For the one-dimensional trivial representation 1Γ , the L-function reduces to the
classical Selberg zeta function:

ZΓ (s) = LΓ (s, 1Γ ) = ∏
[γ]∈[Γ]p

∞
∏
k=0

(
1 − e−(s+k)ℓ(γ)

)
.

Let us now assume that X = Γ\H is a non-elementary, geometrically finite hyper-
bolic surface of infinite area. By the work of Guillopé–Zworski [34, 35], we know
that NX(r) = O(r2) as r → ∞. This in turn allows us to define the following
Weierstrass product over resonances:

PX(s) := sm(0)
∏

ζ∈R(X)r{0}

(
1 − s

ζ

)
exp

(
s
ζ
+

s2

2ζ2

)
, (2.9)

where m(0) is the multiplicity of s = 0 as a resonance of X. PX is an entire function
and its set of zeros, with multiplicities, is equal to R(X).

With this definition in place, we can now state the following result on the struc-
ture of ZΓ (s), which is due to Borthwick–Judge–Perry [13]. The Selberg zeta func-
tion ZΓ (s) extends to a meromorphic function of s ∈ C and admits the factoriza-
tion

ZΓ (s) = eq(s)G∞(s)−χ(X)Γ

(
s − 1

2

)nc

PX(s), (2.10)

where nc ≥ 0 is the number of cusps of X, q is a polynomial of degree at most 2,
and the function G∞ is

G∞(s) = (2π)−sΓ(s)G(s)2,

G being the Barnes G-function. The zeros of G∞ are precisely s = −n for n ∈ N0,
with multiplicity 2n + 1.

It follows immediately that outside the set 1
2(1 −N0), the zeros of ZΓ (s) are (in-

cluding multiplicities) equal to resonances for X. Therefore, counting zeros of
ZΓ (s) and counting resonances for X in a given domain of the complex plane
are essentially the same problems. It is precisely for this reason that we use the
Selberg zeta function as a tool for understanding the distribution of resonances.
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Figure 2.6: Zeros and poles of the Selberg zeta function

2.6 Transfer operators for Schottky groups

The thermodynamic formalism allows us to represent the Selberg zeta function
(and more generally, L-functions) as Fredholm determinants of well chosen trans-
fer operators. In this section we consider the specific case of Schottky groups and
we introduce the transfer operators needed in Chapters 3 and 4.

We refer to [68, 33, 14] for details regarding the representation of the Selberg
zeta function, and to [26] for the extension to twisted transfer operators and L-
functions.

Let Γ be a Schottky group, let (D j)
2m
j=1 be the family of open disks in C, and (γ j)

2m
j=1

the family of elements in PSL2(R) used in a (fixed) geometric construction of Γ
(see Section 2.2), and recall that

Γ = ⟨γ±1
1 , . . . ,γ±1

m ⟩

is freely presented as a group (thus, the only (omitted) relations are of the form
γγ−1 = id). Set

D :=
2m⋃
j=1

D j.

Let ρ : Γ → U(V) be a finite-dimensional unitary representation of Γ . The transfer
operator Ls,ρ with parameter s ∈ C associated to (Γ ,ρ) is (initially only formally)
given by

Ls,ρ :=
2m

∑
j=1

1D j

2m

∑
i=1

i ̸= j+m

νs(γi), (2.11)

where 1D j denotes the characteristic function of D j, and for g ∈ PSL2(R), U ⊆ C,
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f : U → C we set

νs,ρ(g−1) f (z) :=
(

g′(z)
)s
ρ(g−1) f (g.z), (2.12)

whenever this is well-defined. For the complex powers in (2.11) we use the stan-
dard complex logarithm on CrR− (principal arc). A straightforward calculation
shows well-definedness on D (which is what we need in this work).

More concretely, if z ∈ D j and f : D → V, then the transfer operator is given by

Ls,ρ f (z) =
2m

∑
i=1

i ̸= j+m

ρ(γi)
[
(γ−1

i )′(z)
]s

f (γ−1
i .z). (2.13)

So far we have omitted to specify the domain of definition of the transfer oper-
ator family Ls,ρ, since there is some freedom in the choice of the function space
on which Ls,ρ can act. In fact, the precise choice of this space is a crucial ingre-
dient in some proofs. For the sake of definiteness, we will now define a concrete
Hilbert space H, which we will take to be the ‘default’ space for Ls,ρ. For each
j ∈ {1, . . . , 2m}, let

H j := H2(D j; V) :=

{
f : D j → V holomorphic

⏐⏐⏐⏐⏐
∫
D j

∥ f ∥2
V dvolV < ∞}

denote the space of holomorphic square-integrable V-valued functions on D j.
Here, ‘vol’ is the standard Lebesgue measure on C. Endowed with the inner
product

⟨ f , g⟩ :=
∫
D j

⟨ f (z), g(z)⟩V dvol(z),

the space H j is a Hilbert space, called the (Hilbert) Bergman space on D j. Let

H :=
2m⨁
j=1

H j

denote the direct sum of the Hilbert spaces H j, j = 1, . . . , 2m. As usual, we
identify tacitly functions

f ∈ H, f =
2m⨁
j=1

f j ( f j ∈ H j)

with functions on D.

Note that for all i, j ∈ {1, . . . , 2m}, i ̸= j + m mod 2m, we have γ−1
i (D j) ⊂ Di.

Hence γ−1
i : D j → Di is a holomorphic contraction, the transfer operator Ls,ρ is

well-defined as an operator
Ls,ρ : H → H,

and as such it is compact and of trace class.

The crucial property for all our applications (and the reason why we are in-
terested in thermodynamic formalism) is that the Fredholm determinant of the
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transfer operators Ls,ρ represents the L-function. Indeed, for all s ∈ C we have
the identity

LΓ (s,ρ) = det(1 −Ls,ρ). (2.14)

In particular, (2.14) immediately implies that LΓ (s,ρ) extends to a holomorphic
function on the entire complex plane. We postpone the proof of (2.14) to the Ap-
pendix, Subsection A.2. For more details and references regarding the functional-
analytic aspects of transfer operators, we refer to Subsection A.1.

2.7 Further Notation

For z ∈ C we set ⟨z⟩ :=
√

1 + |z|2. For any z ∈ C and R > 0 we let D(z, R) denote
the open Euclidean ball in C with center z and radius R, and we let D(z, R) denote
its closure. We write N = {1, 2, . . .} for the natural numbers starting with 1 and
N0 = N∪ {0}.

We use the standard symbols from analytic number theory ≪, ≫, ≍, and the O-
notation. In particular, we write f (x) ≪ g(x) (respectively f (x) ≫ g(x)) if there
exists a constant C > 0 such that | f (x)| ≤ C|g(x)| (respectively | f (x)| ≥ C|g(x)|)
for all x under consideration. Furthermore, f (x) ≍ g(x) means that f (x) ≪ g(x)
and f (x) ≫ g(x). We frequently use the notations Oa,b,c,..., ≪a,b,c,..., ≫a,b,c,...,
and ≍a,b,c,... to mean that the implied constant C may depend on the variables
a, b, c, . . . . We use the latter convention whenever we have to keep track of the
variables a, b, c . . . .

In a statement or in a proof involving the ‘key’ variables X1, X2, . . . , XN, we write
C = C(Xi1 , . . . , Xin) to mean that the constant C may depend on Xi1 , . . . , Xin , but
does not depend on the other variables. Without further specification, C is an ab-
solute constant not depending on any of the key variables. The same convention
applies to all the other constants (not just C) such asα,α0,α1, C0, C1, c1, c2, . . . .
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Chapter 3

Density of resonances for covers of
Schottky surfaces

3.1 Introduction and statement of main results

The distribution, localization, and asymptotics of resonances and eigenvalues of
the Laplacian of hyperbolic surfaces are of interest in several different areas of
research, in particular in spectral theory, harmonic analysis, number theory and
mathematical physics. Classically, these questions were studied for compact and
finite-area hyperbolic surfaces, where the spectrum of the Laplacian is more di-
rectly linked to automorphic forms and Maass cusp forms.

Over the last decade, understanding the distribution of resonances for infinite-
area surfaces has attracted some attention and continues to be a topic of ongoing
research.

For certain applications, an understanding of the distribution of resonances is
mandatory. The generalization of Selberg’s 3

16 Theorem by Bourgain–Gamburd–
Sarnak [17] and Oh–Winter [64] as well as the progress towards the Zaremba con-
jecture by Bourgain–Kontorovich [18] are number-theoretic applications in which
resonances are indispensable.

The asymptotic distribution of resonances in the finite-area case is fairly well un-
derstood by now. However, in the infinite-area case even the most basic questions
regarding these asymptotics have remained elusive. With the results that we have
obtained in this work, we contribute to the understanding of the distribution of
the resonances of hyperbolic surfaces of infinite area.

The main interest in this chapter is to understand how resonance counting func-
tions behave when one passes from a hyperbolic surface X to a finite cover X̃
of X. Put differently, given a family (X j) j of covers of X (a tower of coverings),
how does the asymptotic behaviour for resonances vary among members of this
family as j → ∞?

To explain our motivation and results in more detail, let us review some of the
known results in the literature. A good reference on the spectral theory of infinite-
area hyperbolic surfaces is Borthwick’s book [14]. For a rather general review of
the current knowledge on counting results for resonances, we refer to the recent
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exhaustive survey of Zworski [92]. We will focus on the hyperbolic case.

Let X be a geometrically finite hyperbolic surface (of finite or infinite area), and
let ∆X denote the (positive) Laplacian on X. The resolvent

RX(s) :=
(
∆X − s(1 − s)

)−1 : L2(X) → L2(X)

of ∆X is defined for s ∈ C with Re(s) > 1/2 and s(1 − s) not being an L2-
eigenvalue of ∆X. From the works of Mazzeo–Melrose [53] and Guillopé–Zworski
[34], we know that it extends to a meromorphic family

RX(s) : C∞
c (X) → C∞(X)

on C with poles of finite rank. The resonances of X are the poles of this meromor-
phic continuation. The multiplicity of a resonance s is given by the rank of the
residue operator, that is,

m(s) := rank rest=s
(

RX(t)
)
,

where rest=s denotes the residue at s. In the sequel, R(X) will denote the set of
resonances, repeated according to their multiplicities.

We are interested in the asymptotics of two resonance counting functions. The
first one counts the number of resonances in growing disks centered at the origin
0 ∈ C:

NX(r) := #{s ∈ R(X) : |s| ≤ r}, r > 0.

In the literature, some authors prefer to consider the number of resonances in
disks centered at 1/2:

ÑX(r) := #
{

s ∈ R(X) :
⏐⏐s − 1

2

⏐⏐ ≤ r
}

, r > 0.

However, since
ÑX(r) ≤ NX

(
r + 1

2

)
≤ ÑX(r + 1),

all counting results considered in this chapter are identical for NX and ÑX (up to
the values of some implied or unspecified constants). It is slightly more conve-
nient for us to work with NX.

If X is a compact hyperbolic surface then all resonances arise from L2-eigenvalues
of ∆X, and the famous Weyl law gives us the precise asymptotics

1
2

NX(r) ∼ #
{
λ < r2 : λ is L2-eigenvalue

}
∼ vol(X)

4π
r2 as r → ∞. (3.1)

If X is not compact, but still of finite-area (i.e, X has at least one cusp but no
funnels), the situation is more subtle. In this case, resonances arise not only from
L2-eigenvalues but also as scattering poles. By taking into account the contribution
of the scattering poles, Selberg [79] managed to establish an analog of the Weyl
law for infinite-area hyperbolic surfaces, which reads as

#
{
λ < r2 : λ is L2-eigenvalue

}
− 1

4π

∫ r

−r

φ′

φ

( 1
2 + it

)
dt ∼ vol(X)

4π
r2 (3.2)
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as r → ∞. Here,φ denotes the determinant of the scattering matrix of X.

Re = 1/2

s = 1

eigenvalues
scattering

poles

Figure 3.1: Resonances for generic finite-area X = Γ\H

Furthermore, Selberg realized that for certain arithmetic surfaces and orbifolds
(such as the modular surface PSL2(Z)\H and its congruence covers), the corre-
sponding scattering matrix can be expressed in terms of well-known functions
from analytic number theory (such as the Riemann zeta function ζ and Dirichlet
L-functions). For instance, the resonances for the Laplacian on PSL2(Z)\H which
do not arise from L2-eigenvalues, are directly related to the non-trivial zeros of ζ
by the equation ζ(2s) = 0.

1/2

s = 1

1/4

eigenvalues
scattering

poles

Figure 3.2: Resonances for X = PSL2(Z)\H under the assumption
of the Riemann Hypothesis

Exploiting well-known zero-density results for these number-theoretic functions,
Selberg proved that the contribution coming from the scattering matrix is negligi-
ble (≪ r log r) compared to the main term. This yields a Weyl law for these arith-
metic surfaces, thus showing that they possess an infinitude of eigenvalues (and
corresponding Maass cusp forms). For generic (that is, non-arithmetic) finite-area
hyperbolic surfaces it is not clear whether the analogue of the Weyl law holds true
for the set of L2-eigenvalues. In fact, according to the Phillips–Sarnak conjecture
[70], (3.1) is false for generic surfaces X = Γ\H with cusps. On the other hand,
Müller [55] proved that (3.2) yields a Weyl law for the resonance set:

NX(r) ∼
vol(X)

2π
r2. (3.3)
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Let us now turn to hyperbolic surfaces X of infinite area, which will be the case
of interest for the rest of this chapter. For a schematic view on the distribution of
resonances for infinite-area hyperbolic surfaces, see Figure 2.4.

In the infinite-area case there is only a finite number of eigenvalues (or possibly
none), all of which are contained in the interval (0, 1

4), see Section 2.3. Moreover,
there are no resonances on the critical line Re(s) = 1

2 , except possibly at s = 1
2 .

Hence, in the infinite-are case, resonances constitute the main spectral data and
much less is known about their distribution. For instance, an analogue of the
Weyl law for the resonance set such as (3.3) is not known yet and perhaps not
even to be expected. Obviously, in any infinite-area analogue of (3.3), one would
have to replace vol(X) = ∞ by some other geometric quantity of X.

So far, the only hyperbolic surfaces for which all resonances can be computed
explicitly, are the elementary hyperbolic surfaces: the hyperbolic plane H, the hy-
perbolic cylinders

Cℓ := ⟨z ↦→ eℓz⟩\H,

and the parabolic cylinders

Cw := ⟨z ↦→ z + w⟩\H.

Their resonance counting functions satisfy

NH(r) ∼ r2, NCℓ
(r) ∼ ℓ

2
r2, NCw(r) = 1. (3.4)

The order of growth of the resonance counting function NX(r) is well-understood
and matches with the Weyl law. Indeed, for any geometrically finite hyperbolic
surface X, Guillopé and Zworski [34, 35] showed that

NX(r) ≍ r2 (3.5)

(which subsumes the elementary hyperbolic surfaces by noticing that the lower
bound is allowed to be zero). Unfortunately, the methods used in these proofs
yield only ineffective constants, with no clear dependence on the surface X.

Using methods from spectral theory, Borthwick [12] proved the bounds (valid for
finite and infinite-area hyperbolic surfaces)

NX(r) ≤
(

0-vol(X)

2π
+

n f

∑
j=1

ℓ j

4

)
exp(1)r2 + o(r2) (3.6)

and

ck
0-vol(X)

2π

(
1 +

2π
0-vol(X)

n f

∑
j=1

ℓ j

4

)− 2
k

r2 ≤ NX(r), (3.7)

where 0-vol(X) denotes the 0-volume of X, n f is the number of funnels, ℓ1, . . . , ℓn f
are the diameters of the geodesic boundary of the funnels, k is any element of N,
and ck is a constant depending only on k. The limit for the o-term is r → ∞, its
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speed of convergence may depend on X. Obviously, these bounds have a clear
geometric content and the upper bound (3.6) resembles the classical Weyl law
when n f = 0 (that is to say, for hyperbolic surfaces of finite area).

The upper bound is sharp in the sense that it agrees (up to some absolute con-
stants) with the asymptotics for the hyperbolic cylinder NCℓ

. It is not clear whether
it is sharp in general.

A more algebraic approach to produce estimates for resonance counting functions
was pursued by Jakobson and Naud [38]. They considered convex cocompact
hyperbolic surfaces X (no singularities!) of infinite area, thus, geometrically finite
hyperbolic surfaces without cusps and with at least one funnel. In this work we
refer to such surfaces as Schottky surfaces, for reasons explained in Section 2.2.

They restricted further to those Schottky surfaces X for which the fundamental
group Γ is conjugate to some subgroup of PSL2(Z). These are essentially convex
cocompact subroups of arithmetic groups. We call such Schottky groups integral.
Given such an integral Schottky surface X = Γ\H, Jakobson and Naud consid-
ered the sequence of finite covers

Xq = Γ(q)\H, q ∈ N prime

where
Γ(q) := {g ∈ Γ : g ≡ id mod q}

is the ‘principal congruence subgroup’ of Γ of level q. They showed that

• there exist constants C1 > 0, q0 ∈ N (possibly depending on X) such that
for all q ≥ q0, q prime, and all r ≥ 1 we have

NXq(r) ≤ C1[Γ : Γ(q)] log(q)r2, (3.8)

• and there exist constants C2, r0 > 0 (possibly depending on X) such that for
all ε > 0 there exists q0 ∈ N such that for all q ≥ q0, q prime, and all r > r0
we have

NXq

(
r · (log q)ε

)
≥ C2[Γ : Γ(q)]r2. (3.9)

We note that if Y = Γ\H, Ỹ = Γ̃\H are hyperbolic surfaces of finite area with
Γ̃ ⊆ Γ then the constant in the Weyl law (3.3) scales by [Γ : Γ̃ ] when passing from
the asymptotics of NY to those of NỸ:

vol(Ỹ)
2π

r2 = [Γ : Γ̃ ]
vol(Y)

2π
r2.

Consequently, the estimates (3.9) and (3.8) can be seen as weak versions of the
Weyl law for large prime levels q.

Our first main result is a generalization and improvement of this result. To make
the statement of our result more compact, let us introduce the notation

dcov(X̃, X) := degree of X̃ as a cover of X.

Theorem 3.1. Let X be a Schottky surface (not necessarily integral).
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(i) There exists a constant C1 > 0 such that for each finite cover X̃ of X and all r ≥ 1
we have

NX̃(r) ≤ C1 dcov(X̃, X)r2.

(ii) There exist constants C2, r0 > 0 such that for each finite cover X̃ of X and all r ≥ r0
we have

NX̃(r) ≥ C2 dcov(X̃, X)r2.

We list a few remarks about Theorem 3.1 and its relation to the counting results
mentioned above.

• If X = Γ\H and X̃ = Γ̃\H then

dcov(X̃, X) = [Γ : Γ̃ ].

Thus, Theorem 3.1 shows that the bounding constants for the resonance
counting function can be chosen such that they scale exactly as the constant
in the Weyl law (3.3) when passing to covers.

• The hyperbolic cylinders Cℓ are Schottky surfaces. For these, Theorem 3.1
follows easily from (3.4), see the detailed discussion in Section 3.3 below.

• Theorem 3.1 obviously applies to sequences of principal congruence covers
of integral Schottky surfaces, and it improves upon the result in [38].

• For any finite cover X̃ of a Schottky surface X we have the relation

dcov(X̃, X) · 0-vol(X) = 0-vol(X̃).

For non-elementary Schottky surfaces (in which case 0-vol(X) ̸= 0) this
relation can be read as

dcov(X̃, X) =
0-vol(X̃)

0-vol(X)
. (3.10)

Using (3.10) in Theorem 3.1 and merging the term 0-vol(X) into the con-
stants C1, C2 (which are allowed to depend on X) gives

C2 0-vol(X̃)r2 ≤ NX̃(r) ≤ C1 0-vol(X̃)r2, (3.11)

which is reminiscent of (3.3). Consequently, Theorem 3.1 shows that for any
sequence of finite covers (X j) j of a non-elementary Schottky surface X we
have a weak Weyl law

NX j(r) ≍ 0-vol(X j)r2,

with implied constants only depending on the base surface X. Unfortu-
nately, we cannot provide any further insight about the unspecified con-
stants C1, C2 in Theorem 3.1.
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• Theorem 3.1 is stated with dcov(X̃, X) instead of using (the arguably more
intriguing variants) (3.10) and (3.11) in order to be able to subsume the hy-
perbolic cylinders into the statement (note that 0-vol(Cℓ) = 0).

• It would certainly be interesting to understand the relation between Theo-
rem 3.1 and Borthwick’s bounds (3.6)-(3.7). This is however out of the scope
of this work.

The second resonance counting function we investigate is

MX(σ , T) := # {s ∈ R(X) : Re(s) ≥ σ , |Im(s)− T| ≤ 1} (3.12)

for σ , T ∈ R. For any hyperbolic surface X = Γ\H it is known that the right half
plane {s ∈ C : Re(s) > δ} does not contain any resonances, where

δ := δ(X) := dimH Λ(Γ)

is the Hausdorff dimension of the limit set of Γ . Thus, MX(σ , T) counts the num-
ber of resonances inside the rectangle

[σ , δ] + i[T − 1, T + 1].

The counting function MX(σ , T) is closely related to

NX(σ , T) := # {s ∈ R(X) : Re(s) ≥ σ , |Im(s)| ≤ T} ,

which counts the number of resonances in the vertical strip of the complex plane,
parallel to the imaginary axis. According to the fractal Weyl law conjecture [85,
48] for hyperbolic surfaces we should have, as T → ∞,

NX(σ , T) ≍ T1+δ, (3.13)

for all σ ∈ R negative enough. For hyperbolic surfaces of finite area (in this case
δ = 1), (3.13) follows from (3.3). For hyperbolic surfaces of infinite area, it is still
under investigation.

Clearly, every asymptotics for MX(σ , T) yields one for NX(σ , T). For Schottky
surfaces X, Guillopé–Lin–Zworski [33] showed that for any σ ∈ R there exists a
constant C > 0 such that for T > 1 we have the upper fractal Weyl bound

MX(σ , T) ≤ CTδ. (3.14)

An improved upper fractal Weyl bound was recently provided by Dyatlov [23],
showing that for σ near δ, the exponent in (3.14) can be improved.

In [38] (prior to [23], and with different techniques), Jakobson and Naud also
studied the behaviour of the function MX(σ , T) for principal congruence covers
of level q of integral Schottky surface in the large q regime. They found functions
α,β : R → R that are strictly concave, increasing, and positive on (δ/2, δ] such
that for eachσ > δ/2 there exists C > 0 and q0 ∈ N such that for all T ≥ 1 and all
levels q ≥ q0, q prime, we have

MXq(σ , T) ≤ C[Γ : Γ(q)]1−α(σ)⟨T⟩δ−β(σ). (3.15)
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Forσ ∈ (δ/2, δ], the bound (3.15) simultaneously improves upon the fractal Weyl
upper bound (3.14) and shows how the bounding constants behave in the level
aspect.

Our second main result is a generalization of (3.15) to arbitrary Schottky surfaces
and arbitrary finite covers.

Theorem 3.2. Let X be a Schottky surface, and let δ := δ(X) denote the Hausdorff
dimension of its limit set. Then there exist functions τ1, τ2 : R → R that are strictly
concave, strictly increasing and positive on (δ/2, δ] such that for every σ > δ/2 there
exists C > 0 such that for each finite cover X̃ of X and all T ∈ R we have

MX̃(σ , T) ≤ C 0-vol(X̃)e−τ1(σ)ℓ0(X̃)⟨T⟩δ−τ2(σ), (3.16)

where ⟨T⟩ :=
√

1 + |T|2 and ℓ0(X̃) denotes the minimal length of a periodic geodesic
on X̃.

For hyperbolic cylinders, Theorem 3.2 is vacuously true, since both sides of the
estimate (3.16) vanish. The functions τ1 and τ2 can be determined in terms of the
topological pressure of the natural dynamical system on Λ(Γ) induced by Schottky
groups. Details will follow in Section 3.4.

Integrating the bound along T yields the following (weaker) statement, which
should be seen as an extension of [59, Theorem 1.1]. It allows us to understand
the behaviour of the multiplicative constants in families of covers (X j) j of a fixed
base surface X.

Corollary 3.3. With hypotheses and notation as in Theorem 3.2, we have

NX̃(σ , T) ≤ C 0-vol(X̃)e−τ1(σ)ℓ0(X̃)⟨T⟩1+δ−τ2(σ).

Without the aspect of the transition to covers, Corollary 3.3 is the same as [59,
Theorem 1.1], although it is slighlty weaker with respect to τ2. In [59], Naud
showed further properties of the function τ2. Both [23] and [59, Theorem 1.1]
(which is older than [23] and uses different techniques) show that the exponent
in the upper fractal Weyl bound (3.14) can be improved near δ. In other words,
there exists a function σ ↦→ τ2(σ) as in Theorem 3.2 such that

lim
T→∞ log NX(σ , T)

log T
≤ 1 + δ− τ2(σ).

Our result in Corollary 3.3 shows that this improvement (= τ2(σ)) is uniform
along a family of covers (X j) j. We point out that this does not contradict the
fractal Weyl conjecture (3.13), since the function τ2 is only known to be positive
on the interval (δ/2, δ]. According to the fractal Weyl conjecture, we should have

lim
T→∞ log NX(σ , T)

log T
= 1 + δ

for all σ ∈ R negative enough.
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If we assume furthermore that X̃ = Γ̃\H is a regular cover of X = Γ\H (‘regular’
means that Γ̃ is normal in Γ ), then Theorem 3.2 can be rephrased in terms of the
girth of the Cayley graph of Γ/Γ̃ . This gives an algebraic reformulation of our
second main result, which we discuss in Section 3.6 below.

It turns out that our second main theorem of this chapter, Theorem 3.2, has new
implications for the number of L2-eigenvalues of the Laplacian on Schottky sur-
faces. As already observed by Jakobson–Naud [38], along sequences of principal
congruence covers (Xq)q the bound (3.15) implies the growth estimate

#{λ Laplace L2-eigenvalue of Xq} = O(0-vol(Xq)
1−ε) as q → ∞ (3.17)

for someε > 0. A similar estimate (in more generality) was recently shown by Oh
[62], and the same conclusion can be deduced from (3.16). In fact, a similar state-
ment holds for more general families of congruence covers, see Proposition 3.11
below.

These estimates complement the recent bounds by Ballmann, Matthiesen and
Mondal [5]. Let Ω(X) denote the set of L2-eigenvalues of the Laplacian of X
inside the interval (0, 1/4) (the so called ‘small’ eigenvalues of ∆X). Then their
result states that for any geometrically finite hyperbolic surface, one has

#Ω(X) ≤ −χ(X), (3.18)

where χ(X) denotes the Euler characteristic of X. Using the relation between
0-volume and Euler characteristic (see (2.4)), the result of Ballmann–Matthiesen–
Mondal can be rewritten as

#Ω(X) ≤ 0-vol(X)

2π
. (3.19)

By applying Theorem 3.2 to T = 0 we obtain the following refinement of (3.19)
for Schottky surfaces: there exist constants C, τ1 > 0 such that for every finite
cover X̃ of X we have

#Ω(X̃) ≤ C 0-vol(X̃)e−τ1ℓ0(X̃).

In particular, if (X j) j is a sequence of finite covers of X such that ℓ0(X j) → ∞ as
j → ∞, then

#Ω(X j)

0-vol(X j)
→ 0 as j → ∞. (3.20)

If δ(X) < 1/2 then (3.20) is useless because #Ω(X j) = 0 in this case. However, for
δ(X) > 1/2, Laplace eigenvalues are known to exist, and they are all contained
in (0, 1/4). In Section 3.5 below we provide examples of families (X j) j for which
the minimal length ℓ0(X j) of closed geodesics on X j grows to infinity as j → 0.

Let us provide a brief overview of the structure of this chapter. The proofs of
Theorem 3.1 and 3.2 are based on thermodynamic formalism and transfer opera-
tor techniques. In particular, we make use of the standard transfer operator Ls,ρ
for Schottky surfaces X = Γ\H that are twisted with finite-dimensional unitary
representations ρ : Γ → U(V), which we introduced in Section 2.6. Recall that
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the Fredholm determinant of Ls,ρ is known to be equal to the L-function (twisted
Selberg zeta function)

LΓ (s,ρ) = ∏
[γ]∈[Γ]p

∞
∏
k=0

det
(

1 − ρ(γ)e−(s+k)ℓ(γ)
)

, Re(s) ≫ 1

and its analytic continuation to all of C (see Section 2.6 for notation and Section
A.2 for a proof). Thus,

LΓ (s,ρ) = det (1 −Ls,ρ) . (3.21)

The special nature of Schottky groups makes it possible to decouple the represen-
tation ρ : Γ → U(V) from the action of Γ (see Section 3.3 below). Combining this
decoupling argument with the known growth estimates on the singular values of
Ls,1C , enables us to establish the following result on the growth of LΓ , which is a
key ingredient for the proof of Theorem 3.1.

Proposition 3.4. Let Γ be a Schottky group. Then there exists C > 0 such that for every
finite-dimensional unitary representation ρ of Γ and all s ∈ C we have

log
⏐⏐LΓ (s,ρ)

⏐⏐ ≤ C · dimρ · ⟨s⟩2.

For the necessary background knowledge on Schottky surfaces and transfer oper-
ators, we refer to Section 2.2 and 2.6, respectively. Sections 3.2 and 3.3 are devoted
to the proofs of Proposition 3.4 and Theorem 3.1, respectively. In Section 3.4 we
provide a proof of Theorem 3.2. The final two Sections 3.5 and 3.6 discuss exam-
ples for (3.20) and a relation of Theorem 3.2 to Cayley graphs, respectively.

3.2 Proof of Proposition 3.4

In this section we provide a proof of Proposition 3.4. We note that if ρ = 1C is
the trivial one-dimensional representation, then Proposition 3.4 coincides with
[33, Proposition 3.2]. Using a simple decoupling argument, we can reduce the
proof of Proposition 3.4 to an already known estimate on the singular values of
the one-dimensional trivial transfer operator. We must carefully show that all the
estimates for the proof of Proposition 3.4 are uniform for all finite-dimensional
unitary representations.

Throughout this section let Γ be a Schottky group. We use the notation from
Section 2.2. In particular, we let D1, . . . ,D2m denote the open disks in C and
γ1, . . . ,γ2m the generators (already including the inverses) of Γ used in the geo-
metric construction of Γ , and we use the Hilbert Bergman space from Section 2.6.

Proof of Proposition 3.4. Let V be a finite-dimensional unitary space, ρ : Γ → U(V)
a unitary representation of Γ , and let Ls,ρ denote the transfer operator associated
to (Γ ,ρ) (see (2.11)). We consider Ls,ρ as an operator on the Hilbert Bergman
space H defined in Section 2.6. Recall from (2.14) that

LΓ (s,ρ) = det
(
1 −Ls,ρ

)
.
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For all s ∈ C the Weyl inequality (see (A.4)) implies that

|LΓ (s,ρ)| = | det
(
1 −Ls,ρ

)
| ≤ det(1 + |Ls,ρ|).

In the following we estimate the right hand side further from above. Let us now
introduce the decoupling argument, which is the following observation. Roughly
speaking, we can separate the unitary action ρ : Γ → U(V) from the action of Γ
on D. To materialize this idea, consider the operator

U :=
2m⨁
j=1

ρ(γ j)

which acts on H by

U f =
2m⨁
j=1

ρ(γ j) f j

for all f =
⨁2m

j=1 f j ∈ H. With this notation in place, we can write

Ls,ρ = Ls,1V ◦ U.

Now notice that U is unitary, meaning that U∗ = U−1, since ρ is unitary. Unitarity
of U now implies that

|Ls,ρ| = U−1 ◦ |Ls,1V | ◦ U.

In other words, the spectra of the absolute values |Ls,ρ| and |Ls,1V | coincide,
which leads to (see (A.3))

det(1 + |Ls,ρ|) = det(1 + |Ls,1V |).

Let IV denote the identity operator on V. From Ls,1V = Ls,1C ⊗ IV it follows that

|Ls,1V | = |Ls,1C | ⊗ IV .

Therefore, we have

det
(
1 + |Ls,1V |

)
= det(1 + |Ls,1C |)

dim V .

On the other hand, by (A.3), we have

det(1 + |Ls,1C |) =
∞
∏
k=1

(1 +µk(Ls,1C)).

Thus, we have reduced all matters to an estimate on the singular values µk(Ls,1C)
of the one-dimensional operator Ls,1C . Fourtunately, such an estimate already
exists in the literature. By [33, Proof of Proposition 3.2] there exist constants
c1, c2 > 0 (only depending on Γ ) such that for all s ∈ C and all k ∈ N we have

µk(Ls,1C) ≤ c1ec1|s|−c2k.

Thus, ∞
∏
k=1

(1 +µk(Ls,1C)) ≤
∞
∏
k=1

(
1 + c1ec1|s|−c2k

)
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Let

ℓ(s) :=
⌈

1
c2

(log c1 + c1|s|)
⌉

.

Then ∞
∏

k=ℓ(s)+1

(
1 + c1ec1|s|−c2k

)
≤

∞
∏

m=1

(
1 + e−c2m) ,

which is convergent and bounded independently of s.

Further (note that ec1|s| ≥ 1 for the second inequality)

ℓ(s)

∏
k=1

(
1 + c1ec1|s|−c2k

)
≤
(

1 + c1ec1|s|
)ℓ(s)

≤
(

c3ec1|s|
)ℓ(s)

≤ exp
(

c3 + c4|s|+ c5|s|2
)

≤ exp
(

c6 + c7|s|2
)

with appropriate constants c3, . . . , c7 > 0 (again, only depending on Γ ). Thus,
there exists c8 > 0 such that

|LΓ (s,ρ)| ≤
(

c8ec6+c7|s|2
)dim V

.

It follows that
log |LΓ (s,ρ)| ≪ dim V · ⟨s⟩2,

completing the proof of Proposition 3.4.

3.3 Proof of Theorem 3.1

In this section we prove Theorem 3.1. Throughout let X be a Schottky surface and
let Γ be a Schottky group such that X = Γ\H.

Let us first discuss the much easier case when X is elementary, hence a hyperbolic
cylinder. Then Γ is generated by a single hyperbolic element, say Γ = ⟨γ⟩. In
this case the resonances of X can be computed explicitly (see for instance [14,
Proposition 5.2]). The counting function satisfies the asymptotic formula

NX(r) ∼
ℓ(γ)

2
r2.

If X̃ is a cover of X of degree k then X̃ = ⟨γk⟩ \H. Hence

NX(r) ∼
ℓ(γk)

2
r2 = k

ℓ(γ)

2
r2,

which establishes an even stronger result than Theorem 3.1. Unfortunately, the
same argument does not apply in the non-elementary case.
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From now on, we assume that X is non-elementary. We first prove the upper
bound stated in Theorem 3.1(i). This proof relies on the following two key in-
gredients: Suppose that X̃ = Γ̃\H is a finite cover of X, or equivalently, suppose
that Γ̃ ⊆ Γ is a subgroup of finite index. As explained in Section 2.5, the res-
onance counting function NX̃(r) can be bounded from above by the number of
zeros of the Selberg zeta function Z

Γ̃
in {|s| ≤ r}. By the Venkov–Zograf factor-

ization formula (Theorem A.3), the Selberg zeta function Z
Γ̃

of X̃ is identical to
the L-function of (Γ , λ), where

λ = IndΓ
Γ̃

1
Γ̃

is the representation of Γ obtained from the induction of the one-dimensional
trivial representation of Γ̃ . Formally,

Z
Γ̃
(s) = LΓ (s, λ).

Proposition 3.4 allows us to bound LΓ (and hence Z
Γ̃
) in terms of

dim λ = [Γ : Γ̃ ] = dcov(X̃, X)

and additional factors that are independent of Γ̃ . These estimates result in an
upper bound for NX̃(r).

The lower bound stated in Theorem 3.1(ii) is then shown by using the upper
bound in combination with the so-called Guillopé–Zworski argument [35, 36].

Throughout we assume without loss of generality that the Schottky group Γ is
chosen such that the disks (2.5) used in the geometric construction of Γ are con-
tained in C. Moreover, for any finite cover X̃ of X we choose a representative Γ̃ of
its fundamental group such that Γ̃ is a subgroup of Γ .

Before we proceed, let us recall Titchmarsh’s Number of Zeros Theorem, which is
consequence of the more prominent Jensen’s formula, see [89, Chapter III]. This
is a standard device from complex analysis which allows us to convert growth
estimates for the Selberg zeta function into estimates on the number of its zeros.
Recall that

D(z0, R) := {z ∈ C : |z − z0| < R}

denotes the open Euclidean disk of radius R around z0.

Lemma 3.5 (Titchmarsh’s Number of Zeros Theorem). Fix z0 ∈ C and R > 0. Let
f : D(z0, R) → C be a bounded function, which is holomorphic on D(z0, T). Assume
furthermore that f (z0) ̸= 0. Then for all 0 < η < 1, the number of zeros of f inside
D(ηR, z0) (counted with multiplicities) is bounded from above by

1
log(η−1)

(
max

|z−z0|=R
log | f (z)| − log | f (z0)|

)
.

Proof of Theorem 3.1(i) (upper bound). All constants cn with n ∈ {1, 2, . . . } that ap-
pear during the proof are positive and may depend on Γ (or equivalently, on X).
None of these constants depend on any finite cover of X.
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Let X̃ = Γ̃\H be a finite cover of X, let 1
Γ̃

: Γ̃ → S1 denote the trivial character of
Γ̃ , and let

λ := IndΓ
Γ̃

1
Γ̃

denote its induction to a representation of Γ . Let s ∈ C. By the Venkov–Zograf
factorization formula (Theorem A.3) we have

Z
Γ̃
(s) = L

Γ̃
(s, 1

Γ̃
) = LΓ (s, λ).

Recall that
dim λ = [Γ : Γ̃ ] = dcov(X̃, X).

From Proposition 3.4 it follows that

log
⏐⏐Z

Γ̃
(s)
⏐⏐ ≤ c1 dcov(X̃, X)⟨s⟩2. (3.22)

In order to convert the growth estimate for Z
Γ̃

into an upper bound for the num-
ber of resonances, we note that

NX̃(r) ≤ #{s ∈ C : |s| ≤ r, Z
Γ̃
(s) = 0}

≤ #{s ∈ C : |s − 1| ≤ r + 1, Z
Γ̃
(s) = 0}.

Since LΓ (·, λ) = Z
Γ̃

is analytic on all of C, and Z
Γ̃
(1) > 0, Titchmarsh’s Number

of Zeros Theorem (Lemma 3.5) with z0 = 1, T = 2(r + 1) and η = 1/2 yields

NX̃(r) ≤
1

log 2
(
log max

{
|Z

Γ̃
(s)| : |s − 1| = 2(r + 1)

}
− log Z

Γ̃
(1)
)

≤ 1
log 2

(
c2 dcov(X̃, X)⟨2(r + 1)⟩2 − log Z

Γ̃
(1)
)

.

Since r ≥ 1, we have ⟨2(r + 1)⟩2 ≪ ⟨r⟩2 ≪ r2, and hence

NX̃(r) ≤ c3

(
dcov(X̃, X)r2 − log Z

Γ̃
(1)
)

. (3.23)

We claim that
Z
Γ̃
(1) ≥ ZΓ (1)dim λ. (3.24)

Indeed, since 1 > δ, the expression of L-functions as Euler products applies and
yields

Z
Γ̃
(1) = LΓ (1, λ)

= ∏
[g]∈[Γ]p

∞
∏
k=0

det
(

1 − λ(g)e−(1+k)ℓ(γ)
)

≥ ∏
[g]∈[Γ]p

∞
∏
k=0

(
1 − e−(1+k)ℓ(γ)

)dim λ

= LΓ (1, 1)dim λ

= ZΓ (1)dim λ,
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which shows (3.24). Thus,

− log Z
Γ̃
(1) ≤ − dim λ · log ZΓ (1) = − dcov(X̃, X) log ZΓ (1) (3.25)

Clearly, − log ZΓ (1) is a positive constant only depending on Γ . Combining (3.23)
and 3.25, we conclude that there exists c4 > 0 such that

NX̃(r) ≤ c4 dcov(X̃, X)r2

for all r ≥ 1.

Taking advantage of the already established upper bound for the resonance count-
ing function, we can now prove the lower bound.

Proof of Theorem 3.1(ii) (lower bound). As in the proof of Theorem 3.1(i), the con-
stants cn with n ∈ {1, 2, . . . } are all positive and may depend on X, but are inde-
pendent of any finite cover of X.

We take advantage of the following wave 0-trace formula provided by Guillopé–
Zworski [36], which we recall now. For any functionϕ ∈ C∞

c
(
(0, ∞)

)
let

ϕ̂(z) :=
∫ ∞
−∞ e−ixzϕ(x) dx.

be its Fourier transform. Then, for any non-elementary Schottky surface Y and
all test functionsϕ ∈ C∞

c
(
(0, ∞)

)
we have

∑
s∈R(Y)

ϕ̂

(
i
(

s − 1
2

))
= −0-vol(Y)

4π

∫ ∞
−∞

cosh t
2

sinh2 t
2

ϕ(t) dt (3.26)

+ ∑
ℓ∈L(Y)

∞
∑
k=1

ℓ

2 sinh kℓ
2

ϕ(kℓ),

where L(Y) is the primitive length spectrum of Y, that is, the set of lengths of the
primitive periodic geodesics on Y (with multiplicities).

Let X̃ be a finite cover of X. Pickϕ1 ∈ C∞
c
(
(0, ∞)

)
such thatϕ1 is non-negative

and suppϕ1 ⊆ (0, ℓ0(X)). For T ∈ R, T > 0, we defineϕT ∈ C∞
c
(
(0, ∞)

)
by

ϕT(x) := Tϕ1(Tx).

We want to apply the wave 0-trace formula to X̃ and ϕT with T ≥ 1. Note that
suppϕT ⊆ (0, ℓ0(X)/T).

Since ℓ0(X̃) ≥ ℓ0(X), the sum on the right hand side of (3.26) vanishes for all
T ≥ 1:

∑
ℓ∈L(X̃)

∞
∑
k=1

ℓ

2 sinh kℓ
2

ϕT(kℓ) = 0.

Thus, we arrive at⏐⏐⏐⏐⏐⏐ ∑
s∈R(X̃)

ϕ̂T

(
i
(

s − 1
2

))⏐⏐⏐⏐⏐⏐ = 0-vol(X̃)

4π

∫ ∞
−∞

cosh t
2

sinh2 t
2

ϕT(t) dt. (3.27)
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The strategy now is to estimate the left hand side of (3.27) from above and below.
For the lower bound we note that∫ ∞

0

cosh(t/2)
sinh(t/2)2ϕT(t)dt =

∫ ℓ0(X)

0

cosh(t/2T)
sinh(t/2T)2ϕ1(t)dt.

From cosh(t/2T) ≥ 1 and

sinh(t/2T) =
∞
∑
k=1

(t/2T)2k+1

(2k + 1)!
≤ 1

T

∞
∑
k=1

(t/2)2k+1

(2k + 1)!
=

1
T

sinh(t/2)

for all t > 0 (recall that T ≥ 1) it follows that∫ ∞
0

cosh(t/2)
sinh(t/2)2ϕT(t)dt ≥ T2

∫ ℓ0(X)

0

1
sinh(t/2)2ϕ1(t)dt.

Thus, (3.27) can be bounded from below by⏐⏐⏐⏐⏐⏐ ∑
s∈R(X̃)

ϕ̂T

(
i(s − 1

2
)

)⏐⏐⏐⏐⏐⏐ ≥ c10-vol(X̃)T2, (3.28)

with

c1 :=
1

4π

∫ ℓ0(X)

0

1
sinh(t/2)2ϕ1(t)dt ∈ (0, ∞).

For an upper bound of (3.27) we let r ≥ 1, split the sum in the left hand side of
(3.27) at r, and estimate⏐⏐⏐⏐⏐⏐ ∑

s∈R(X̃)

ϕ̂T

(
i
(

s − 1
2

))⏐⏐⏐⏐⏐⏐ ≤ ∑
s∈R(X̃)
|s|≤r

⏐⏐⏐⏐ϕ̂T

(
i
(

s − 1
2

))⏐⏐⏐⏐+ ∑
s∈R(X̃)
|s|>r

⏐⏐⏐⏐ϕ̂T

(
i
(

s − 1
2

))⏐⏐⏐⏐ .

We estimate both sums on the right hand side separately.

Sinceϕ1 ∈ C∞
c
(
(0, ℓ0(X))

)
, iterated integration by parts yields

|ϕ̂T(z)| =
⏐⏐⏐ϕ̂1

( z
T

)⏐⏐⏐ ≤ c
(

1 +
⏐⏐⏐ z
T

⏐⏐⏐)−3
×
{

exp
(
ℓ0(X)

T Im(z)
)

if Im(z) ≥ 0

1 if Im(z) ≤ 0,
(3.29)

for all z ∈ C and T > 0, where c > 0 is a constant depending only on ℓ0(X) and
the choice ofϕ1.

Recall that for each resonance s ∈ R(X̃) we have

Im
(

i
(

s − 1
2

))
= Re(s)− 1

2
≤ δ− 1

2
.

From (3.29) it follows that⏐⏐⏐⏐ϕ̂T

(
i
(

s − 1
2

))⏐⏐⏐⏐ ≤ c

(
1 +

⏐⏐⏐⏐⏐ s − 1
2

T

⏐⏐⏐⏐⏐
)−3

≤ c2.
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Thus,

∑
s∈R(X̃)
|s|≤r

⏐⏐⏐⏐ϕ̂T

(
i
(

s − 1
2

))⏐⏐⏐⏐ ≤ c2NX̃(r). (3.30)

Using (3.29) again, we find

∑
s∈R(X̃)
|s|>r

⏐⏐⏐⏐ϕ̂T

(
i
(

s − 1
2

))⏐⏐⏐⏐ ≤ c ∑
s∈R(X̃)
|s|>r

(
1 +

⏐⏐⏐⏐ s − 1/2
T

⏐⏐⏐⏐)−3

. (3.31)

The sum on right hand side of (3.31) can be bounded by a Stieltjes integral as
follows:

∑
s∈R(X̃)
|s|>r

(
1 +

⏐⏐⏐⏐ s − 1/2
T

⏐⏐⏐⏐)−3

≤ ∑
s∈R(X̃)
|s|>r

(
1 − 1

2T
+
⏐⏐⏐ s
T

⏐⏐⏐)−3

≤ T3
∑

s∈R(X̃)
|s|>r

|s|−3

≤ T3
∫ ∞

r

1
t3 dNX̃(t).

Note that the integral converges, since NX̃(t) = O(t2) as t → ∞.

By Theorem 3.1(i) (which is already proven above) there exists C > 0 (indepen-
dent of X̃) such that NX̃(r) ≤ C 0-vol(X̃)r2 for all r ≥ 1. (Here we use the relation
0-vol(X̃) = dcov(X̃, X) 0-vol(X).) It follows that∫ ∞

r

1
t3 dNX̃(t) = lim

R→∞ R−3NX̃(R)− r−3NX̃(r) + 3
∫ ∞

r

NX̃(t)
t4 dt

≤ r−3NX̃(r) + 3C 0-vol(X̃)
∫ ∞

r

dt
t2

≤ 4C 0-vol(X̃)r−1.

Thus, we have established

∑
s∈R(X̃)
|s|>r

⏐⏐⏐⏐ϕ̂T

(
i
(

s − 1
2

))⏐⏐⏐⏐ ≤ c3 0-vol(X̃)T3r−1 (3.32)

for all r ≥ 1 and T ≥ 1, where c3 := 4C · c.

Gathering (3.27), (3.30) and (3.32) leads to the inequality

c1 0-vol(X̃)T2 ≤ c2NX̃(r) + c3 0-vol(X̃)T3r−1, (3.33)

which is valid for all r ≥ 1 and T ≥ 1.

Finally set a := (2c3)
−1c1 > 0 and r0 := max{1, a−1}, and notice that these

constants only depend on X. For all r ≥ r0 we apply (3.33) with T := ar ≥ 1 to
obtain

NX̃(r) ≥ c4 0-vol(X̃)r2,
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where

c4 :=
c1a2 − c3a3

c2
=

c3
1

8c2c2
3
> 0.

This completes the proof of Theorem 3.1(ii).

3.4 Proof of Theorem 3.2

In this section we provide a proof of Theorem 3.2. This proof follows a route simi-
lar to the one taken by Jakobson and Naud for the proof of [38, Theorem 1.3]. The
main novelties here are the use of twisted transfer operators and a new separation
lemma (Lemma 3.8).

Throughout this section let
X = Γ\H (3.34)

be a fixed Schottky surface, and δ = δ(X) = dim Λ(Γ) the Hausdorff dimension
of the limit set of Γ .

For any finite cover X̃ = Γ̃\H we can estimate the number MX̃(σ , T) of reso-
nances of X̃ in the box

R(σ , T) := [σ , δ] + i[T − 1, T + 1]

by counting the number of zeros of the Selberg zeta function Z
Γ̃

in R, and we can
use the identities

Z
Γ̃
(s) = LΓ (s, λ) = det

(
1 −Ls,λ

)
, (3.35)

where λ = IndΓ
Γ̃

1
Γ̃

is the induction of the trivial character of Γ̃ to Γ , and Ls,λ is the
transfer operator associated to Γ twisted with λ.

However, instead of using Ls,λ we will use a suitable power LN
s,λ of this transfer

operator. Since we have the identity

1 −LN
s,λ = (1 −Ls,λ)(1 +Ls,λ + · · ·+LN−1

s,λ ), N ∈ N

and since Ls,λ (and all of its iterates) are trace class operators, we obtain

det(1 −LN
s,λ) = det(1 −Ls,λ) · det(1 +Ls,λ + · · ·+LN−1

s,λ )

= Z
Γ̃
(s) · det(1 +Ls,λ + · · ·+LN−1

s,λ ).

It follows that the Fredholm determinant of any iterate of Ls,λ is just some multi-
ple of the Selberg zeta function of Γ̃ . In particular, for any N ∈ N,

MX̃(σ , T) ≤ #{s ∈ R(σ , T) : det(1 −LN
s,λ) = 0}.

The goal of this section is to derive an improved growth estimate for det(1 −
LN

s,λ), for a suitable choice of N. The bound on the number of resonances is then
deduced from Titchmarsh’s Number of Zeros Theorem.

The domain of definition on which LN
s,λ acts is a ‘refined’ Hilbert space parametrized

by h > 0, and will be introduced in Section 3.4.1 below. During the proof, the
variables h and N will be chosen, so as to optimize the estimate.
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Throughout let Γ be chosen such that the disks D1, . . . ,D2m (see (2.5)) used in the
geometric construction of Γ are all contained in C, let γ1, . . . ,γm be the associated
generators of Γ (see Section 2.2), and set

D :=
2m⋃
j=1

D j.

3.4.1 Refined Hilbert spaces and iterates
of the transfer operator

We recall from [33] the definition of a family of Hilbert spaces, depending on a
parameter h > 0, which we use as domain of definition for appropriate powers
of the transfer operators.

Throughout let Λ := Λ(Γ) denote the limit set of Γ . For h > 0 we let

Λ(h) := (−h, h) +Λ.

By [33] we find h0 > 0 such that for all h ∈ (0, h0), the set Λ(h) is bounded, has
finitely many connected components, say N(h) many, its connected components

Ip(h), p = 1, . . . , N(h),

are intervals of lengths at most Ch for some C > 0 independent of h, each con-
nected component is contained in some connected component of D, and

N(h) = O(h−δ) as h ↘ 0,

where δ = δ(X) = dim Λ is the Hausdorff dimension of Λ.

For each h ∈ (0, h0) and p ∈ {1, . . . , N(h)} let Ep(h) be the open Euclidean disk
in C with center in R such that

Ep(h) ∩R = Ip(h),

and let
E(h) :=

⋃
Ep(h).

For each finite-dimensional unitary space V let H2(Ep(h); V) denote the Hilbert
Bergman space of V-valued functions on Ep(h), and let

H2(E(h); V) :=
N(h)⨁
p=1

H2(Ep(h); V).

A slight adaptation of [33] shows that there exists N1 ∈ N (independent of h ∈
(0, h0)) such that for all finite-dimensional unitary spaces V, all unitary represen-
tations ρ : Γ → U(V) and all N ≥ N1, the N-th power of Ls,ρ defines on operator
on H2(E(h); V):

LN
s,ρ : H2(E(h); V) → H2(E(h); V).
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Considered as an operator on H2(E(h); V), the transfer operator LN
s,ρ remains to

be of trace class, and its Fredholm determinant is identical to the one of LN
s,ρ as an

operator on the Hilbert space from Section 2.6.

We need an explicit formula for the N-th iterate of Ls,ρ. To that end, let us in-
troduce some notations. First, for any n ∈ N let [n] := {1, . . . , n}. Now, for any
multi-indexα = (α1, . . . ,αN) ∈ [2m]N, set

γα := γα1 · · ·γαN .

Further, let

WN :=
{
(α1, . . . ,αN) ∈ [2m]N : ∀ j ∈ [N − 1] : α j+1 ̸= α j + m mod 2m

}
denote the set of multi-indices in [2m]N corresponding to the elements in Γ of
reduced word length N over the alphabet {γ1, . . . ,γ2m}. Finally, for j ∈ [2m] we
set

W
j
N := {α ∈ WN : α1 ̸= j + m mod 2m}.

With these notations in place, one can inductively show that we have

LN
s,ρ =

2m

∑
j=1

1D j ∑
α∈W j

N

νs,ρ(γα). (3.36)

3.4.2 Separation lemmas

The results of this subsection are crucial in the proof of growth bounds of the
Fredholm determinant of LN

s,ρ, see Proposition 3.10 below.

What we prove is roughly speaking the following statement: given two distinct
words α ̸= β of the same length N and z ∈ E(h), the images γ−1

α .z and γ−1
β .z lie

in different components (that is, they are separated), provided N is of moderate
size.

Throughout, X refers to the fixed Schottky surface (3.34). All the implied con-
stants are allowed to depend on the base surface X.

Lemma 3.6. Let C > 0. Then there exists h1 ∈ (0, 1) (depending on X and C) and
C1 > 0 (depending on X, C, h1) such that for all j ∈ {1, . . . , 2m}, for all z ∈ D j, for all

h ∈ (0, h1), for all N ∈ N with N < C1 log h−1 and for allα,β ∈ W
j
N the bound⏐⏐⏐γ−1

α .z −γ−1
β .z

⏐⏐⏐ < Ch

impliesα = β.

Proof. By [38, Lemma 4.4] we find c > 0 and ρ ∈ (0, 1) such that for all j ∈
{1, . . . , 2m}, for all z ∈ D j, for all N ∈ N, for allα,β ∈ W

j
N withα ̸= β we have⏐⏐⏐γ−1

α .z −γ−1
β .z

⏐⏐⏐ ≥ cρN . (3.37)
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Let C > 0. Suppose that we have h ∈ (0, 1), j ∈ {1, . . . , 2m}, z ∈ D j, N ∈ N,

α,β ∈ W
j
N such thatα ̸= β and⏐⏐⏐γ−1

α .z −γ−1
β .z

⏐⏐⏐ < Ch. (3.38)

Combining (3.37) and (3.38) yields cρN < Ch, which implies (note that logρ < 0)

N > c1 + c2 log h−1.

where

c1 :=
log C − log c

logρ
, c2 :=

1
logρ−1 > 0.

Now pick h1 ∈ (0, 1) so small that

c2 >
c1

log h−1
1

and pick

C1 ∈
(

0, c2 −
c1

log h−1
1

)
.

Then, for all h ∈ (0, h1) we have

N > C1 log h−1.

This completes the proof of the lemma.

Lemma 3.7. There exists C2 > 0 (depending on X) such that for all finite covers
X̃ = Γ̃\H of X, for all N ∈ N with N < C2ℓ0(X̃) and for all α,β ∈ WN with
Tr IndΓ

Γ̃
1
Γ̃
(γαγ

−1
β ) ̸= 0 we haveα = β.

Proof. Let ∥ · ∥F denote the Frobenius norm on SL2(R). Let g =

(
a b
c d

)
∈ SL2(R)

be hyperbolic. Then we have

∥g∥2
F = Tr(g⊤g) = a2 + b2 + c2 + d2 = (a + d)2 + (b − c)2 − 2

≥ (Tr g)2 − 2 =
(

eℓ(g)/2 + e−ℓ(g)/2
)2

− 2

≥ eℓ(g),

or equivalently,
∥g∥F ≥ eℓ(g)/2. (3.39)

Set
K := max

{
∥γ j∥F : j ∈ {1, . . . , 2m}

}
and

C2 :=
1

4 log K
.
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Notice that K > 1, which implies C2 > 0. Let Γ̃ be any subgroup of Γ of finite
index. We argue by contradiction. Let N ∈ N with N < C2ℓ0(X̃) and suppose
that there existα,β ∈ WN such thatα ̸= β and Tr IndΓ

Γ̃
1
Γ̃
(γαγ

−1
β ) ̸= 0. Let

g := γαγ
−1
β .

Sinceα,β ∈ WN, the element g is the product of at most 2N matrices, all of which
are in the set {γ1, . . . ,γ2m}. Using the sub-multiplicativity of the Frobenius norm,
we obtain

∥g∥F ≤ K2N . (3.40)

Since Tr IndΓ
Γ̃

1
Γ̃
(g) ̸= 0, it follows from the Frobenius formula (2.7) that g is con-

jugated to some element in Γ̃ . In other words, there exists p ∈ Γ is such that

pgp−1 ∈ Γ̃ .

Furthermore we know that g is hyperbolic, sinceα ̸= β. Hence,

ℓ(g) = ℓ
(

pgp−1) ≥ ℓ0
(
X̃
)
.

Invoking (3.39) gives
∥g∥F ≥ eℓ(g)/2 ≥ eℓ0(X̃)/2. (3.41)

Combining (3.40) and (3.41) yields

N ≥ 1
4 log K

ℓ0(X̃) = C2ℓ0(X̃),

a contradiction. This completes the proof.

The combination of Lemmas 3.6 and 3.7 yields the following result.

Lemma 3.8. Let C > 0. Then there exists h1 ∈ (0, 1) and ε0 > 0 such that for all
h ∈ (0, h1), for all finite covers X̃ = Γ̃\H of X, for all N ∈ N with N ≤ ε0

(
ℓ0(X̃) +

log h−1), for all j ∈ {1, . . . , 2m}, for all z ∈ D j, for all α,β ∈ W
j
N the following is

satisfied: if

Tr IndΓ
Γ̃

1
Γ̃

(
γαγ

−1
β

)
̸= 0 and

⏐⏐⏐γ−1
α .z −γ−1

β .z
⏐⏐⏐ < Ch

thenα = β.

3.4.3 Bounds on Fredholm determinants

In this subsection, we provide growth bounds on the Fredholm determinants of
iterates of the transfer operator Ls,λ, where λ = IndΓ

Γ̃
1
Γ̃

for finite covers X̃ =

Γ̃\H of X = Γ\H. These estimates together with an application of Titchmarsh’s
Number of Zeros Theorem allow us to prove Theorem 3.2, see Section 3.4.4 below.

Throughout, X = Γ\H is the fixed Schottky surface (3.34), δ = δ(X) denotes the
Hausdorff dimension of the limit set of Γ , and all powers of transfer operators
are defined on the Hilbert spaces from Section 3.4.1 for some h ∈ (0, h0). All
constants may depend on X.
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Proposition 3.9. There exists a constant C > 0 such that for all finite covers X̃ of X, for
all N ∈ N, for all s ∈ C with Re(s) > δ we have

− log
⏐⏐⏐det

(
1 −LN

s,λ

)⏐⏐⏐ ≤ CN dcov(X̃, X)
Re(s)

Re(s)− δ e−(Re(s)−δ)ℓ0(X̃),

where λ := IndΓ
Γ̃

1
Γ̃

denotes the representation of Γ that is induced by the trivial character
1
Γ̃

of Γ̃ .

Proof. Since Re(s) > δ, we can expand the Fredholm determinant using (A.5).
We obtain

det
(

1 −LN
s,λ

)
= exp

(
−

∞
∑

n=1

1
n

Tr
(
LnN

s,λ

))
.

This leads to ⏐⏐⏐det
(

1 −LN
s,λ

)⏐⏐⏐ = exp

(
−Re

∞
∑

n=1

1
n

Tr
(
LnN

s,λ

))
,

and therefore

− log
⏐⏐⏐det

(
1 −LN

s,λ

)⏐⏐⏐ = Re
∞
∑

n=1

1
n

Tr
(
LnN

s,λ

)
≤

∞
∑

n=1

1
n

⏐⏐⏐Tr
(
LnN

s,λ

)⏐⏐⏐ . (3.42)

By adding extra non-negative terms to the infinite sum, we obtain∞
∑

n=1

1
n

⏐⏐⏐Tr
(
LnN

s,λ

)⏐⏐⏐ = N
∞
∑

n=1

1
Nn

⏐⏐⏐Tr
(
LnN

s,λ

)⏐⏐⏐ ≤ N
∞
∑

m=1

1
m
⏐⏐Tr

(
Lm

s,λ
)⏐⏐ . (3.43)

Let LS(γ) denote the word length of γ with respect to the generating set S =
{γ1, . . . ,γ2m} of Γ . We denote by WL(γ) = min{LS(g) : g ∈ [γ]} the minimal
word length of any element in the conjugacy class of γ. By (A.8), we have the
following formula for the traces of iterates of Ls,λ:

Tr(Lm
s,λ) = ∑

d|m
∑

[γ]∈[Γ]p
WL(γ)=d

dχλ(γm/d)
e−sℓ(γ)m

d

1 − e−ℓ(γ)m
d

, (3.44)

where
χλ(γ) := Tr IndΓ

Γ̃
1
Γ̃
(γ).

Combining (3.42)–(3.44) yields

− log
⏐⏐⏐det

(
1 −LN

s,λ

)⏐⏐⏐ ≤ N
∞
∑

m=1

1
m ∑

d|m
∑

[γ]∈[Γ]p
WL(γ)=d

dχλ(γm/d)
e−Re(s)ℓ(γ)m

d

1 − e−ℓ(γ)m
d

.

Introducing the new variable k = m/d and rearranging the above sum accord-
ingly, leads to

− log
⏐⏐⏐det

(
1 −LN

s,λ

)⏐⏐⏐ ≤ N
∞
∑
k=1

∑
[γ]∈[Γ]p

1
k
χλ(γ

k)
e−Re(s)ℓ(γ)k

1 − e−ℓ(γ)k

≤ N
∞
∑
k=1

∑
[γ]∈[Γ]p

χλ(γ
k)

e−Re(s)ℓ(γ)k

1 − e−ℓ(γ)k
,
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where we have dropped the 1/k-terms in the last estimate. Further,

− log
⏐⏐⏐det

(
1 −LN

s,λ

)⏐⏐⏐ ≤ N ∑
[γ]∈[Γ]

χλ(γ)
e−Re(s)ℓ(γ)

1 − e−ℓ(γ)

≤ N
1 − e−ℓ0(X) ∑

[γ]∈[Γ]
χλ(γ)e−Re(s)ℓ(γ).

Recall that χλ(γ) > 0 implies that γ is conjugate to an element in Γ̃ , and hence
ℓ(γ) ≥ ℓ0

(
X̃
)
. Moreover, χλ ≤ [Γ : Γ̃ ]. Thus,

− log
⏐⏐⏐det

(
1 −LN

s,λ

)⏐⏐⏐ ≤ N[Γ : Γ̃ ]
1 − e−ℓ0(X) ∑

[γ]∈[Γ]
ℓ(γ)≥ℓ0(X̃)

e−ℓ(γ)Re(s). (3.45)

By the prime geodesic theorem [46, Corollary 11.2] we find a constant C > 0 such
that

ΠΓ (t) := #{[γ] ∈ [Γ] : ℓ(γ) ≤ t} ≤ Ceδt. (3.46)

Interpreting the right hand side of (3.45) as a Stieltjes integral and using (3.46),
we obtain

∑
[γ]∈[Γ]

ℓ(γ)≥ℓ0(X̃)

e−ℓ(γ)Re(s) = Re(s)
∫ ∞
ℓ0(X̃)

e−Re(s)xΠΓ (x)dx ≤ C
Re(s)e−(Re(s)−δ)ℓ0(X̃)

Re(s)− δ .

This completes the proof of Proposition 3.9.

Proposition 3.10. There exists ε0 > 0, N0 ∈ N, and a map η : R → R that is strictly
concave, strictly increasing and has a unique zero at δ/2 such that for each pair σ1 >
σ0 ≥ 0 and each T0 ∈ R there exists a constant c > 0 (depending continuously on T0)
such that for all T ∈ R and all s ∈ (σ0,σ1) + i(T − T0, T + T0) and each finite cover X̃
of X we have

log
⏐⏐⏐⏐det

(
1 −L

2N(T,X̃)
s,λ

)⏐⏐⏐⏐ ≤ c dcov(X̃, X)e−η(σ0)ℓ0(X̃)⟨T⟩δ−η(σ0)

with
N(T, X̃) =

⌊
ε0

(
ℓ0(X̃) + log⟨T⟩

)
+ N0 + 1

⌋
,

where λ := IndΓ
Γ̃

1
Γ̃

denotes the representation of Γ that is induced by the trivial character
1
Γ̃

of Γ̃ .

Proof. Throughout let

d := dim λ = dcov(X̃, X) = [Γ : Γ̃ ].

and let V be the d-dimensional unitary vector space on which λ represents Γ .

In this proof we consider the iterates of the transfer operator Ls,λ as an operator
on the Hilbert space H2(E(h); V) for a specific h, approximately of size ⟨T⟩−1. To
be more precise, we fix some parameters:
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• Recall the parameter h0 > 0 from Section 3.4.1. We fix C > 0 such that for
all h ∈ (0, h0) and all p ∈ {1, . . . , N(h)} we have diamEp(h) < Ch.

• Depending on the choice of C, we fix h1 = h1(C) ∈ (0, h0) and ε0 = ε0(C) >
0 such that the conclusions of Lemma 3.8 are valid.

• For all h ∈ (0, h1) and j ∈ {1, . . . , 2m} let

P j(h) := {p ∈ {1, . . . , N(h)} : Ep(h) ⊆ D j}.

By [59, Lemma 3.2] we find N0 ∈ N such that for all N > N0, for all h ∈
(0, h1), all j ∈ {1, . . . , 2m}, all α ∈ W

j
N, all p ∈ P j(h) there exists a unique

q ∈ {1, . . . , N(h)} such that

γ−1
α

(
Ep(h)

)
⊆ Eq(h) and d

(
γ−1
α

(
Ep(h)

)
, ∂Eq(h)

)
≥ h

2
. (3.47)

Recall the number N1 ∈ N from Section 3.4.1. We fix N0 such that

e−(N0+1)/ε0 < h1

and N0 > N1.

• Let T ∈ R. We set h := e−(N0+1)/ε0⟨T⟩−1.

• We set N := N
(X̃,T) :=

⌊
ε0

(
ℓ0(X̃) + log h−1

)⌋
. Note that

N ≥ ε0 log h−1 − 1 ≥ N0.

By [83, Lemma 3.3] and the relation between the trace norm and the Hilbert-
Schmidt norm (denoted by ∥ · ∥HS), we get

log
⏐⏐⏐det

(
1 −L2N

s,λ

)⏐⏐⏐ ≤ L2N
s,λ


1
≤
LN

s,λ

2

HS
(3.48)

for all s ∈ C. Thanks to (3.48), proving Proposition 3.10 amounts to estimating
the Hilbert-Schmidt norm of LN

s,λ, for which there is a nice explicit expression.

We take advantage of an explicit Hilbert basis for the Hilbert Bergman space
H2(E(h);C). First we fix an orthonormal basis e1, . . . , ed of V.

For p ∈ {1, . . . , N(h)} let rp := rp(h) and cp := cp(h) denote the radius and center
of Ep = Ep(h), respectively. For q ∈ N0 set

κp,q := κ(h)p,q : Ep → C, κp,q(z) :=

√
q + 1
πr2

p

(
z − cp

rp

)q
.

Then {κp,q}q∈N0 is a Hilbert basis for H2(Ep;C). We extend each function κp,q to
a functionϕp,q : E → C by setting

ϕp,q(z) :=

{
κp,q(z) for z ∈ Ep

0 otherwise.
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For k ∈ {1, . . . , d}, p ∈ {1, . . . , N(h)}, q ∈ N0 define ψk,p,q := ψ
(h)
k,p,q : E → V by

ψk,p,q(z) :=ϕp,q(z)ek

Then the family of functions

{ψk,p,q : 1 ≤ k ≤ d, 1 ≤ p ≤ N(h), q ∈ N0}

is a Hilbert basis for H2(E; V), which in turn allows us to write

LN
s,λ

2

HS
= ∑

q∈N0

N(h)

∑
p=1

d

∑
k=1

LN
s,λψk,p,q

2
. (3.49)

In what follows, we evaluate step by step the right hand side of (3.49), proceeding
from the most inner norm to the final outer series.

Let k ∈ {1, . . . , d}, p ∈ {1, . . . , N(h)}, q ∈ N0. Then using the expression for the
iterates of the transfer operator (3.36) we haveLN

s,λψk,p,q

2
=
∫
E

⏐⏐⏐LN
s,λψk,p,q(z)

⏐⏐⏐2 dvol(z)

=
2m

∑
j=1

∫
E∩D j

∑
α,β∈W j

N

⟨
νs,ρ(γα)ψk,p,q(z),νs,ρ(γβ)ψk,p,q(z)

⟩
dvol(z)

=
2m

∑
j=1

∑
α,β∈W j

N

⟨λ(γα)ek, λ(γβ)ek⟩

×
∫
E∩D j

((
γ−1
α

)′
(z)
)s ((

γ−1
β

)′
(z)
)s
ϕp,q

(
γ−1
α .z

)
ϕp,q

(
γ−1
β .z

)
dvol(z).

Let χλ := Tr λ(γ) be the character associated with the representation λ. Using

d

∑
k=1

⟨
λ
(
γα
)
ek, λ

(
γβ
)
ek
⟩
= Tr λ

(
γαγ

−1
β

)
= χλ

(
γαγ

−1
β

)
,

we can evaluate the sum over k in (3.49):

d

∑
k=1

LN
s,λψk,p,q

2
=

2m

∑
j=1

∑
α,β∈W j

N

χλ
(
γαγ

−1
β

)
×
∫
E∩D j

((
γ−1
α

)′
(z)
)s ((

γ−1
β

)′
(z)
)s
ϕp,q

(
γ−1
α .z

)
ϕp,q

(
γ−1
β .z

)
dvol(z).

(3.50)

Lemma 3.8 implies that in (3.50) only the summands with α = β contribute.
Hence

d

∑
k=1

LN
s,λψk,p,q

2
= d

2m

∑
j=1

∑
α∈W j

N

∫
E∩D j

⏐⏐⏐((γ−1
α

)′
(z)
)s⏐⏐⏐2 ⏐⏐⏐ϕp,q

(
γ−1
α .z

)⏐⏐⏐2 dvol(z).
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For j ∈ {1, . . . , 2m}, α ∈ W
j
N, u ∈ P j let v = v(u,α) ∈ {1, . . . , N(h)} be the

unique element such that γ−1
α (Eu) ⊆ Ev. Then

N(h)

∑
p=1

d

∑
k=1

LN
s,λψk,p,q

2
= d

2m

∑
j=1

∑
α∈W j

N

∑
u∈P j

N(h)

∑
p=1

∫
Eu

⏐⏐⏐((γ−1
α

)′
(z)
)s⏐⏐⏐2 ⏐⏐⏐ϕp,q

(
γ−1
α .z

)⏐⏐⏐2 dvol(z)

= d
2m

∑
j=1

∑
α∈W j

N

∑
u∈P j

∫
Eu

⏐⏐⏐((γ−1
α

)′
(z)
)s⏐⏐⏐2 ⏐⏐⏐ϕv(u,α),q

(
γ−1
α .z

)⏐⏐⏐2 dvol(z).

To evaluate the final outer series in (3.49) we use that, for each v ∈ {1, . . . , N(h)},
the series

∑
q∈N0

ϕv,qϕv,q

converges compactly to the Bergman kernel BEv of Ev, and that due to the specific
shape of Ev (a complex ball), the Bergman kernel BEv is given by a rather easy ex-
plicit formula (which in this case also follows from a straightforward calculation).
More precisely, for all (z, w) ∈ E× E we have

∑
q∈N0

ϕv,q(z)ϕv,q(w) = BEv(z, w) =
r2

v

π (r2
v − (w − cv)(z − cv))

2 . (3.51)

Hence, we obtain the final expression for the Hilbert–Schmidt norm of LN
s,λ:

LN
s,λ

2

HS
= ∑

q∈N0

N(h)

∑
p=1

d

∑
k=1

LN
s,λψk,p,q

2

= d
2m

∑
j=1

∑
α∈W j

N

∑
u∈P j

∫
Eu

⏐⏐⏐((γ−1
α

)′
(z)
)s⏐⏐⏐2 BEv(u,α)

(
γ−1
α .z,γ−1

α .z
)

dvol(z).

(3.52)

For all j ∈ {1, . . . , 2m}, allα ∈ W
j
N, u ∈ P j, z ∈ Eu, the combination of (3.51) with

(3.47) yields that ⏐⏐⏐BEv(u,α)

(
γ−1
α .z,γ−1

α .z
)⏐⏐⏐ ≤ c1h−2 (3.53)

where
c1 :=

16
π

C

depends on X only.

From now on, let σ1 > σ0 ≥ 0 and T0 ∈ R be fixed, and set

D := (σ0,σ1) + i(T − T0, T + T0).

By [59, below (11)] there exists c2 = c2(σ0,σ1, T0) > 0 such that for all j ∈
{1, . . . , 2m} and all s ∈ D we have

sup
{⏐⏐⏐⏐((γ−1

α

)′
(z)
)s⏐⏐⏐⏐ : α ∈ W

j
N , z ∈ Eu, Eu ⊆ D j

}
≤ c2 sup

x∈I j

((
γ−1
α

)′
(x)
)Re(s)

.

(3.54)
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In [59] this estimate is shown for the case that |Im(s)| = h−1. In this case, the
constant c2 is independent of h (and hence of T). Any continuous perturbation of
T then results in a continuous perturbation of c2. Thus, applied to all s ∈ D, the
constant c2 remains independent of T but depends (continuously) on T0.

Using (3.53) and (3.54) in (3.52) we get for all s ∈ D,LN
s,λ

2

HS
≤ c3dh−2

2m

∑
j=1

∑
α∈W j

N

sup
x∈I j

((
γ−1
α

)′
(x)
)2Re(s)

∑
u∈P j

∫
Eu

1 dvol(z) (3.55)

for a constant c3 > 0 with the same dependencies as c2. From [88] (see also [33,
Section 5] or [14, Proof of Theorem 15.12]) it follows that

#P j ≤ N(h) ≤ c4h−δ

for some constant c4 > 0 depending on X only. Further, for any u ∈ {1, . . . , N(h)},∫
Eu

1 dvol(z) ≤ π

(
Ch
2

)2

.

By [59, Lemma 3.1] there exists a map p : R → R that is strictly convex, strictly de-
creasing, and has a unique zero which is precisely δ and a constant c5 = c5(σ0,σ1)
such that for all s ∈ R with Re(s) ∈ (σ0,σ1) we have

2m

∑
j=1

∑
α∈W j

N

sup
x∈I j

((
γ−1
α

)′
(x)
)Re(s)

≤ c5eNp(σ0). (3.56)

The function p is a rescaled variant of the topological pressure of the discrete
dynamical system that gives rise to the transfer operator Ls. We refer to [59] for
more details.

Using these estimates in (3.55) we get for all s ∈ C, Re(s) ∈ (σ0,σ1),LN
s,λ

2

HS
≤ c6dh−δeNp(2σ0)

where c6 depends on σ0,σ1, T0 and X only, and the dependence on T0 is continu-
ous.

Inserting the values for h and N as defined in the beginning of this proof, using
d = dcov(X̃, X), and combining with (3.48) completes the proof.

3.4.4 Proof of Theorem 3.2

If X is an elementary Schottky surface (that is to say, a hyperbolic cylinder) and
X̃ is a finite cover of X (hence also a hyperbolic cylinder), then the statement of
Theorem 3.2 is vacuously true, since both MX̃(σ , T) and 0-vol(X̃) vanish.

Therefore, we assume for the rest of this section that X is non-elementary. Fix
σ > δ/2, let X̃ be a finite cover of X, and let T ∈ R. Recall that the quantity
MX̃(σ , T) which we seek to estimate is the number of resonances in the rectangle

R(σ , T) := [σ , δ] + i[T − 1, T + 1].
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We will use Titchmarsh’s Number of Zeros Theorem (Lemma 3.5) to obtain such
an estimate. However, Lemma 3.5 is formulated to count zeros in disks, not rect-
angles. To bypass this issue, we use suitable disks containing R(σ , T). Let

z0 := 2 + iT

and fix r2 > r1 > 0 such that

R(σ , T) ⊆ D(z0; r1)

and 2 − r2 > δ/2, thus

D(z0; r2) ⊆ {z ∈ C : Re(z) > δ/2}.

Note that the choice of r1, r2 may depend on σ but it is independent of T.

Further let N(T, X̃) be as in Proposition 3.10 and set f : C → C,

f (s) := det
(

1 −L
2N(T,X̃)
s,λ

)
.

Then

MX̃(σ , T) ≤ #{s ∈ R(X̃) : s ∈ D(z0; r1), f (s) = 0}.

Titchmarsh’s Number of Zeros Theorem yields

MX̃(σ , T) ≤ 1
log(r2/r1)

(
log max

|s−z0|=r2

| f (s)| − log | f (z0)|
)

. (3.57)

Since Re(z0) = 2 > δwe can use Proposition 3.9 to estimate the second summand
in (3.57). To estimate the first summand, we use Proposition 3.10 with σ0 :=
2 − r2, σ1 := 2 + r2, T0 = r2. Thus, there is a function η : R → R with the
properties as stated in Proposition 3.10 and constants c1, c2 > 0 depending on σ
(and X) only such that

MX̃(σ , T) ≤ c1 0-vol(X̃)e−η(σ0)ℓ0(X̃)⟨T⟩δ−η(σ0) + c2 0-vol(X̃)N(T, X̃)e−(2−δ)ℓ0(X̃).

Recall from Proposition 3.10 that

N(T, X̃) ≈ c3ℓ0(X̃) + c4 log⟨T⟩+ c5

for certain constants c3, c4, c5 > 0 depending on X only. Since

0 ≤ log⟨T⟩ ≤ cε⟨T⟩ε

for all ε > 0, and
ℓ0(X̃)e−(2−δ)ℓ0(X̃)

is bounded as ℓ0(X̃) → ∞, we find τ1(σ) > 0, τ2(σ) ∈ (0, δ), c > 0 depending
on σ and X only such that

MX̃(σ , T) ≤ c 0-vol(X̃)e−τ1(σ)ℓ0(X̃)⟨T⟩δ−τ2(σ).

Due to the properties of η, the functions τ j : σ ↦→ τ j(σ) ( j = 1, 2) can be chosen as
stated in Theorem 3.2. This completes the proof of Theorem 3.2.
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3.5 Examples for covers with long shortest
geodesics

The goal of this section is to give examples of sequences (X j) j of finite covers
of Schottky surfaces, for which ℓ0(X j) tends to infinity as j → ∞. For such
sequences (3.20) holds true. If we assume the stronger condition that ℓ0(X j)
grows logarithmically with the zero-volume of X j, i.e. if we have ℓ0(X j) ≫
log

(
0-vol(X j)

)
, then one obtains a power-savings estimate for the number of

L2-eigenvalues analogous to (3.17). That is, there exists some ε > 0 only depend-
ing on Γ such that

#Ω(X j) = #{λ Laplace L2-eigenvalue of X j} = O(0-vol(X j)
1−ε) as j → ∞

(3.58)

Recall that a cover X̃ = Γ̃\H of X = Γ\H is called abelian if Γ̃ is a finite normal
subgroup of Γ , and the quotient group Γ/Γ̃ is abelian. We point out that for any
abelian sequence (X j) j, the minimal length ℓ0(X j) remains bounded as j → ∞.
(To see this, see for instance Figure 4.2 for a general intuition, or combine Theorem
3.2 with Theorem 4.2 in Chapter 4.) Hence, along sequences of abelian covers
such a growth behavior is not possible.

This suggests that we should be looking for regular covers Γ̃\H → Γ\H with
non-abelian quotient group G = Γ/Γ̃ . ‘Congruence’ surfaces are good candi-
dates for covers having long shortest geodesics, since the corresponding quotient
groups G (also called Galois groups) are subgroups of the highly non-abelian
group SL2(Z/qZ). The term ‘highly non-abelian’ is justified by the fact that the
dimension of non-trivial representations of SL2(Z/qZ) is typically very large, as
opposed to abelian groups, whose representations are all one-dimensional.

Let X = Γ\H be an integral Schottky surface, thus, Γ ⊆ SL2(Z). We consider
X and Γ to be fixed throughout this section. For q ∈ N we consider (allowing a
slight abuse of notation for notational convenience) the following three families
of congruence subgroups:

Γ0(q) := {g ∈ Γ : g ≡ ( ∗ ∗
0 ∗ ) mod q} ,

Γ1(q) :=
{

g ∈ Γ : g ≡
(

1 ∗
0 1
)

mod q
}

,

Γ2(q) :=
{

g ∈ Γ : g ≡
(

1 0
0 1
)

mod q
}
= Γ(q).

For j ∈ {0, 1, 2}, we set
X j(q) := Γ j(q)\H.

As shown in Proposition 3.11 below, along any sequence (Xq)q∈N of covers of X
sandwiched between (X0(q))q∈N and (X2(q))q∈N, an analog of (3.17) holds. The
sequence (X1(q))q∈N is one such example. For the sequence (X2(q))q, Proposi-
tion 3.11 recovers the result by Jakobson–Naud.

Proposition 3.11. For each q ∈ N let Γq be a Schottky group such that Γ2(q) ⊆ Γq ⊆
Γ0(q) and set Xq := Γq\H. Then there exists functions α,β : R → R that are strictly
concave, increasing, and positive on (δ/2, δ] such that for each σ > δ/2 there exists
C > 0 such that for all T ≥ 1 and all q ∈ N (not necessarily prime), we have

MXq(σ , T) ≤ C[Γ : Γq]
1−α(σ)⟨T⟩δ−β(σ). (3.59)
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In particular, there existsα > 0 such that the number of L2-eigenvalues satisfies

#Ω(Xq) = O
(
[Γ : Γq]

1−α) as q → ∞.

Proposition 3.11 follows immediately from Proposition 3.13 below in combina-
tion with Theorem 3.2. Before we discuss Proposition 3.13, we present the fol-
lowing lemma on the growth of the covers.

Lemma 3.12. For j ∈ {0, 1, 2} we have

[Γ : Γ j(q)] ≍ q j+1 as q → ∞, q prime.

Proof. Let q ∈ N be prime. Let

πq : Γ → SL2(Z/qZ), g ↦→ g mod q.

For j ∈ {0, 1, 2} we let H j(q) denote the subgroup of SL2(Z/qZ) given by

H0 :=
{(

∗ ∗
0 ∗

)}
, H1 :=

{(
1 ∗
0 1

)}
, H2 := {id}.

Then
Γ j(q) := π−1

q
(

H j(q)
)
, ( j ∈ {0, 1, 2}).

By [30, Section 2], the map πq is surjective if q is sufficiently large. Thus, the
isomorphism theorems for groups show that for all such sufficiently large q and
each j ∈ {0, 1, 2} we have

[Γ : Γ j(q)] = [SL2(Z/qZ) : H j(q)] =
| SL2(Z/qZ)|

|H j(q)|
. (3.60)

As is well-known, | SL2(Z/qZ)| = q(q2 − 1). Obviously, |H2(q)| = 1 and |H1(q)| =
q. Since q is prime, Z/qZ is a field and hence contains q − 1 multiplicatively in-
vertible elements. Thus, there are q − 1 possibilities for the pair of diagonal en-
tries of an element of H0. Hence, |H0| = q(q − 1). Using these element counts in
(3.60) completes the proof.

Proposition 3.13. Under the hypotheses of Proposition 3.11 there exists c0 > 0 such
that for all q ∈ N we have

ℓ0
(
Xq
)
≥ c0 log[Γ : Γq].

Proof. For any q ∈ N we have

[Γ : Γ0(q)] ≤ [Γ : Γq] ≤ [Γ : Γ2(q)] ≤ | SL2(Z/qZ)| = q3
∏

p prime
divisor of q

(
1 − 1

p2

)
< q3.

Thus, it suffices to establish the existence of c0 > 0 such that

ℓ0
(
Xq
)
≥ c0 log q (3.61)

for all q ∈ N. Since for each q ∈ N the group Γq is contained in Γ0(q), the shortest
geodesic on Xq is at least as long as the shortest geodesic on X0(q). Hence, to
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establish (3.61) it suffices to prove the existence of c0 > 0 such that for all q ∈ N
we have

ℓ0
(
X0(q)

)
≥ c0 log q. (3.62)

To that end let q ∈ N and let

g =

(
a b
c d

)
∈ Γ0(q)

be hyperbolic. Since, necessarily, |b| ≥ 1 and |c| ≥ q, it follows that

| Tr g| = |a + d| ≥ 1
2

√
|ad| = 1

2

√
|1 + bc| ≥ 1

2

√
q − 1 ≥

√
q
8

.

Thus,

ℓ(g) ≥ 2 log
| Tr g|

2
≥ log

q
32

.

Hence, we get
ℓ0
(
X0(q)

)
≥ c0 log q

for some suitably small constant c0 > 0, completing the proof.

3.6 Regular covers and Cayley graphs

Throughout this section let X = Γ\H be a fixed non-elementary Schottky surface,
let S be a fixed set of generators for Γ and suppose that S is symmetric (i. e.,
S−1 = S). For convenience, we suppose that S = {γ1, . . . ,γ2m} is the set of
generators arising from a geometric construction of Γ , see Section 2.2.

Let X̃ = Γ̃\H be a finite regular cover of X, that is, Γ̃ is normal in Γ . Let G := Γ/Γ̃
be the quotient group. The group G is also called the Galois group of the covering
X̃ → X. Let π : Γ → G be the natural projection. We associate to the pair (X, X̃)
the Cayley graph

G := Cay (G, π(S))

of G with respect to π(S). Let us recall the construction of Cayley graphs. Note
that π(S) is a symmetric generating set for G. The vertices of G are given by the
elements of G. Two vertices x, y ∈ G are connected if and only if xy−1 ∈ π(S).
Since π(S) is a symmetric generating set for G, one can easily verify that G is a
simple, connected graph. Recall that the girth of G, denoted by girth(G), is the
length of the shortest cycle in G or, equivalently, the length of the shortest non-
trivial relation in the group G with respect to the generating set π(S).

In this section we show the following bound of the resonance counting function
MX̃, which is essentially a corollary of Theorem 3.2, and can be seen as an alge-
braic reformulation of it.

Corollary 3.14. Let X̃ → X be a finite regular cover and let G be the associated Cayley
graph. Then for all σ > δ/2 and T ∈ R we have

MX̃(σ , T) ≤ C|G|e−α1girth(G)⟨T⟩δ−α2 ,

for constants C,α1,α2 > 0 depending solely on σ and X.
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Remark 3.15. (i) If G is abelian (i.e. the covering X̃ → X is abelian), then girth(G) ≤
4, since G must contain a 4-cycle (a + b − a − b = 0). By contrast, Cayley
graphs G of the group G = SL2(Z/qZ) with q prime have logarithmic girth, i.e.
girth(G) ≫ log |G|, see [30, Section 2].

(ii) Let (X j) j be a sequence of finite covers of a Schottky surface X and let (G j) j be the
associated sequence of Cayley graphs. Corollary 3.14 shows that if girth(G j) → ∞,
then the number of resonances satisfy

MX j(σ , T)

|G j|
→ 0 as j → ∞,

for fixed σ > δ/2 and T ∈ R.

For γ ∈ Γ let LS(γ) denote the minimal word length of γ over the alphabet S
(i. e., the representing word of γ does not contain neighboring pairs of mutually
inverses). Further, let

WL(γ) := min
g∈[γ]

LS(g)

be the shortest word length of a representative in the conjugacy class of γ. Note
that WL(γ) = WLS(γ) depends on the set S of generators of the group Γ . While
different choices of the generating sets typically lead to different word-lengths, all
the word-lengths are in some sense equivalent. Indeed, given another generating
set S′, there is a constant C > 0 such that

C−1 · WLS(γ) ≤ WLS′(γ) ≤ C · WLS(γ),

since every element in S′ can be written as a finite word in the alphabet S (and
vice-versa). We will drop the set S from the notation, assuming it to be fixed.
The crucial (and less obvious) observation for the proof of Corollary 3.14 is that
WL(γ) is controlled by the hyperbolic displacement length ℓ(γ).

Lemma 3.16. There exists a constant C > 0 (depending only on Γ and S) such that for
all γ ∈ Γ \ {id} we have

WL(γ) ≤ C · ℓ(γ).

Proof. Let N ⊂ H be the Nielsen region of X = Γ \ H, that is, the union of all
geodesic arcs connecting two points in the limit set Λ(Γ) of Γ . Let N := Γ \ N

denote the convex core of X. Since X is a Schottky surface and hence convex co-
compact, N is compact. Let Ñ be a compact subset of N that contains at least one
representative for each point in N. Let dH denote the hyperbolic metric on H.

By Knopp–Sheingorn [44] we find constants c1, c2 > 0 such that for every γ ∈
Γ \ {id} we have

LS(γ) ≤ c1dH(γi, i) + c2.

Since Ñ is compact we find c3 > 0 such that for all z′ ∈ Ñ we have dH(z′, i) ≤ c3.
Now let z ∈ N be arbitrary. Clearly, there exists h ∈ Γ such that z′ := hz ∈ Ñ.
Note that

WL(γ) ≤ LS(hγh−1) ≤ c1 · dH(hγh−1i, i) + c2
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Using the triangle inequality and exploiting left-invariance of dH leads to

dH(hγh−1i, i) ≤ dH(hγh−1i, hγz) + dH(hγz, hz) + dH(hz, i)

= dH(h−1i, z) + dH(γz, z) + dH(z′, i)
= dH(i, z′) + dH(γz, z) + dH(z′, i)
= dH(γz, z) + 2dH(z′, i)
≤ dH(γz, z) + 2c3.

Thus, there exists c4 > 0 such that for every z ∈ N and every γ ∈ Γ \ {id} we
have

WL(γ) ≤ c1dH(γz, z) + c4.

For each γ ∈ Γ \ {id}, there is an element, say η, in the conjugacy class [γ] such
that the geodesic on H connecting the two fixed points of η passes through Ñ.
Let α(γ) be the geodesic arc connecting the two fixed points of γ. Thus, there is
z ∈ α(γ) ⊂ N such that ℓ(γ) = ℓ(η) = dH(ηz, z). Since ℓ(γ) = ℓ(η) is bounded
from below by ℓ0(X) > 0, we obtain

WL(γ) ≤ c1ℓ(γ) + c4 ≤ c5ℓ(γ)

for a constant c5 > 0 depending on Γ only.

Proof of Corollary 3.14. In view of Theorem 3.2 it suffices to show that

ℓ0(X̃) ≥ c · girth(G)

for some constant c > 0 only depending on Γ .

Clearly, every element γ ∈ Γ \ {id} can be written as a reduced word γi1γi2 · · ·γiL
with L = LS(γ) > 0 and indices i1, . . . , iL ∈ {1, . . . , 2m}.

Pick an element γ ∈ Γ̃ \ {id} with minimal word length. By the assumption of
minimality, we can write γ as a reduced word γi1γi2 · · ·γiL with L = WL(γ). Set
gi := π(γi) ∈ G for each i ∈ {1, . . . , 2m}. Clearly, since γ ∈ Γ̃ \ {id} we have

idG = π(γ) = gi1 gi2 · · · giL .

For j = 1, . . . , L set x j := gi1 gi2 · · · gi j ∈ G. Using again the assumption of min-
imality of L, it is easy to see that the elements x1, . . . , xL = idG are all distinct.
This yields the cycle

idG → x1 → · · · → xL = idG

in G of length L. Since the girth of G is by definition the length of its shortest cycle,
it follows that

min
γ∈Γ̃\{id}

WL(γ) ≥ girth(G). (3.63)

By Lemma 3.16, we have ℓ(γ) ≥ C−1WL(γ), which combined with (3.63) yields

ℓ0(X̃) = min
γ∈Γ̃\{id}

ℓ(γ) ≥ C−1girth(G).

The proof of Corollary 3.14 is complete.
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Chapter 4

Abelian covers and spectral gap

4.1 Introduction and motivation

Throughout this chapter let X = Γ\H be a geometrically finite, non-elementary
hyperbolic surface. Let δ = δ(Γ) = dimH Λ(Γ) be the Hausdorff dimension of
the limit set of Γ . By the work of Patterson [66, 67] we know that there exists
one resonance at the value s = δ of multiplicity one, and that there are no other
resonances in the half-plane Re(s) ≥ δ. This result can be translated in terms of
the Selberg zeta function as follows. The function ZΓ (s) has a zero at s = δ of
order one, and no other zeros in the half-plane Re(s) ≥ δ.

One consequence of this fact is an asymptotic formula for the prime geodesic
counting function. To state this result, let L(X) be the primitive length spectrum
of X, that is, the set of lengths of the primitive periodic geodesics on X (counted
with multiplicities). Then, as t → ∞, we have

πX(t) := #{ℓ ∈ L(X) : ℓ ≤ t} ∼ Li(eδt), (4.1)

where Li is the (Eulerian) logarithmic integral

Li(x) :=
∫ x

2

dt
log t

∼ x
log x

.

The fact that the resonance at s = δ is always the ‘first’ resonance of X (the reso-
nance with largest real part) leads us to the following definition of the spectral gap
of X:

Gap(X) := inf
s∈R(X)r{δ}

(δ− Re(s)).

Suppose that δ > 1
2 . In this case, s = δ corresponds to the lowest L2-eigenvalue

λ0(X) = δ(1 − δ) of the Laplacian ∆X, which is a simple eigenvalue. All the
remaining resonances s ∈ R(X) with Re(s) > 1

2 correspond to L2-eigenvalues,
all of which are contained in the interval (0, 1

4). Since there only finitely many of
them, we immediately conclude that X has a positive spectral gap if δ > 1

2 .

Now suppose that X has δ ≤ 1
2 . In this case, it is not at all clear whether Gap(X) >

0, since we can no longer argue using the basic spectral theory of X. Nevertheless,

69



Naud [57] gave an ingeneous proof for Gap(X) > 0, by adapting the techniques
introduced by Dolgopyat [22]. More recently, Bourgain–Dyatlov [15] proved a
refined version of Naud’s result, using different techniques.

R

iR Re = 1/2

Re = δ

Re = δ−ε

s = δ

Figure 4.1: Schematic representation of spectral gap for δ ≤ 1
2 : the gray strip is

resonance-free, except for s = δ

Therefore, for every non-elementary, geometrically finite hyperbolic surface X (in
which case 0 < δ ≤ 1) there exists an ε > 0 such that

R(X) ∩ {Re(s) > δ−ε} = {δ}. (4.2)

Having a positive spectral gap allows us to estimate the error term in some asymp-
totic formulas for counting functions associated to the geometry and dynamics of
hyperbolic surfaces. For instance, if ε > 0 is chosen as in (4.2), we obtain the
following refined asymptotics for the length spectrum:

πX(t) := #{ℓ ∈ L(X) : ℓ ≤ t} = Li(eδt) + O
(

e(δ−ε/2)t
)

, (4.3)

see Naud [58, 57]. In view of applications such as (4.3), it would certainly be
interesting to have an estimate for the spectral gap ε. However, the methods
used in [57] and [15] to prove positivity of the spectral gap are not effective, in
the sense that they do not provide explicit bounds on the spectral gap.

Thus the following natural question arises: Can the spectral gap of a geometri-
cally finite, non-elementary hyperbolic surface X be arbitrarily small? The pri-
mary aim of this chapter is to show that this question can be answered affirma-
tively. More precisely, we will show that for every ε > 0, there exists an abelian
cover X′ of X such that Gap(X′) < ε. This is essentially the content of Theorems
4.1 and 4.2 (note that Theorem 4.2 gives a much more precise statement).
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Recall that X′ → X is said to be a (finite) abelian cover if and only if π1(X′) is a
normal subgroup of π1(X) and the Galois group G := π(X)/π(X′) is a (finite)
abelian group. The existence of abelian covers is a priori not obvious. However,
it turns out that hyperbolic surfaces have an abundance of abelian covers.

4.1.1 Abelian covers

An efficient way to manufacture abelian covers is to use the first homology group
with integral coefficients,

H1(X,Z) ≃ Γ/[Γ , Γ],

where [Γ , Γ] is the commutator subgroup of Γ . If we assume that X = Γ\H is non-
compact, then Γ is actually a free group3. In particular, this implies that there is
some integer m ≥ 1 such that

H1(X,Z) ≃ Zm. (4.4)

We can therefore choose a surjective homomorphism P : Γ → Zm. Let N :=
(N1, N2, . . . , Nm) be an m-tuple of positive integers and consider the surjective
map πN given by

πN :
{

Zr → Z/N1Z×Z/N2Z× . . . ×Z/NmZ
x = (x1, . . . , xm) ↦→ (x1 mod N1, . . . , xm mod Nm)

One can then check that

Γ̃ := ker(πN ◦ P)

is a normal subgroup of Γ with Galois group

G := Γ̃/Γ ≃ Z/N1Z×Z/N2Z× . . . ×Z/NmZ.

In particular, G is a finite abelian group, which means that Γ̃\H → Γ\H is a finite
abelian cover.

3It’s a pure fact of algebraic topology that the fundamental group of a non-compact surface
with finite geometry is free, see for example [86].
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Xj = Γj\H

X = Γ\H

1

Figure 4.2: A cyclic cover with Galois group G j = Z/ jZ. This is a special case of
an abelian cover

It should be noted that whenever Γ̃ is a finite index subgroup of Γ , the limit sets
Λ(Γ) and Λ(Γ̃ ) have the same Hausdorff dimensions: δ = δ(Γ) = δ(Γ̃ ). That is to
say, the first resonance at s = δ of X remains unchanged after moving to a finite
cover X̃.

For the remainder of this chapter we assume that X is a non-elementary, geomet-
rically finite, and non-compact hyperbolic surface. Additional assumptions will
be stated explicitly. We consider infinite sequences (X j) j of finite abelian covers
(indexed by j ∈ N) of the fixed base surface X. For any such sequence there exists
a sequence of m-tuples of positive integers N( j) = (N( j)

1 , . . . , N( j)
m ) such that the

Galois group of the covering X j → X is isomorphic to

G j = Z/N( j)
1 Z×Z/N( j)

2 Z× . . . ×Z/N( j)
m Z,

where m is defined through (4.4). The first result of this chapter is the following.

Theorem 4.1. Assume that X = Γ\H has at least one cusp, and let (X j) j be a sequence
of abelian covers with Galois group G j as above with |G j| → ∞ as j → ∞. Then for all
ε > 0, one can find an index j such that X j = Γ j\H has at least one non-trivial resonance
s with |s − δ| ≤ ε.

We call a resonance s ∈ R(X) ‘non-trivial’ if s ̸= δ.

In the case of compact hyperbolic surfaces, this is a known result proved by Ran-
dol4 [75] in 1974. Note that in the compact case, it follows also from min-max

4although there is no interpretation in terms of abelian covers in this early work.
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techniques and the Buser inequality, see for example in the book of Bergeron [11,
Chapter 3]. In the case of abelian covers of the modular surface PSL2(Z)\H, this
fact was first observed by Selberg, see [82]. For more general compact manifolds,
we mention the work of Brooks [19] (based on the Cheeger constant) which gives
sufficient conditions on the fundamental group that guarantee existence of cov-
erings with arbitrarily small spectral gaps.

The outline of the proof is as follows. Since X has a cusp, we have δ = δ(X) > 1
2

and therefore, resonances close to δ are actually L2-eigenvalues. One can then
use the fact that Cayley graphs of abelian groups are never expanders, combined
with some L2 techniques and Fell’s continuity of induction to prove the result.
We follow earlier ideas of Gamburd [30]. The proof of Theorem 4.1 is rather
different than the rest of this work, since we use mainly representation theoretic
techniques, rather than thermodynamic formalism. It can be found in the last
section of this chapter.

If we assume in addition that X is convex cocompact (no cusps), we can actually
prove a much more precise result which goes as follows. Recall from Section 2.2
that in this case, X is a Schottky surface.

Theorem 4.2. Assume that Γ is a non-elementary Schottky group. Let X j := Γ j\H be
a sequence of abelian covers with Galois group G j as above with |G j| → ∞ as j → ∞.
Then, up to a sequence extraction, there exists a small open set U with δ ∈ U ⊂ C such
that for all j large we have R(X j)∩U ⊂ R. Moreover, for all test functionsϕ ∈ C∞

c (U),
we have

lim
j→∞ 1

|G j| ∑
λ∈R(X j)∩U

ϕ(λ) =
∫

I
ϕdµ,

where µ is a finite positive measure which is absolutely continuous with respect to the
Lebesgue measure on an interval I = [a, δ] for some a < δ.

• The absolutely continuous measureµ depends dramatically on the sequence
of covers: a more detailed description of this density is provided at the end
of Section 4.2.

• Since δ belongs to the support ofµ, a simple approximation argument shows
that for all ε > 0 small enough, we have as j → ∞,

#{λ ∈ R(X j) : |λ− δ| < ε} ∼ Cε|G j|,

for some constant Cε > 0 only depending on ε.

• Another obvious corollary is that for all ε > 0 one can find a finite abelian
cover X j of X such that X j has a non-trivial resonance ε-close to δ. Both
Theorems 4.1 and 4.2 fully cover the case of all geometrically finite surfaces.
We have existence of surfaces with arbitrarily small spectral gap, which was
not known so far.

• Note that the non-trivial resonances obtained here are real: for δ > 1/2, this
is clear because when close enough to δ they are actually L2-eigenvalues.
However, when δ ≤ 1/2, this is not an obvious fact.

73



• In the general context of scattering theory on spaces with negative curva-
ture, it is to the knowledge of the author the first exact asymptotic result on
the distribution of resonances, apart from the ‘trivial’ cases of elementary
groups or cylindrical manifolds where resonances can be explicitly com-
puted. For a review of the current knowledge on counting results for reso-
nances, we refer to the recent exhaustive survey of Zworski [92].

The proof of Theorem 4.2 mostly uses thermodynamic formalism and L-functions
to carefully analyze the contribution of L-factors related to characters which are
close to the identity. In particular we use in a fundamental way dynamical L-
functions related to characters of Zm and their representation as Fredholm deter-
minants of suitable transfer operators, see Section 2.6. We point out that using
the coding available for compact hyperbolic surfaces [73], the proof of the above
equidistribution result carries through without modification in the compact case,
which to the knowledge of the author is also new (though less surprising). In [75],
Randol showed that the number of small eigenvalues in (0, 1/4) can be as large as
wanted, by passing to a finite abelian cover. However Randol’s technique, which
is based on the ‘twisted’ trace formula, prevented him from further investigating
the distribution of these small eigenvalues.

4.2 Equidistribution of resonances and abelian
covers

In this section we prove Theorem 4.2. Recall the geometric definition of a Schot-
tky group Γ from Section 2.2. As in Section 2.2, we let D1, . . . ,D2m and γ1, . . . ,γ2m
denote the corresponding configuration of disks and isometries used in the con-
struction of Γ . The Schottky group Γ = ⟨γ±1 , . . . ,γ±m⟩ is isomorphic to a free group
on m symbols. Moreover, we set

D :=
2m⋃
i=1

Di.

Recall that we are considering a family of abelian covers of the surface X = Γ\H
given by normal subgroups Γ j ▹ Γ with Galois group

G j = Z/N( j)
1 Z×Z/N( j)

2 Z× . . . ×Z/N( j)
m Z.

Since we assume that |G j| → ∞ as j → ∞, we can extract a sequence (and
reindex) such that

G j = Z/N( j)
1 Z× . . . ×Z/N( j)

r Z×Z/Nr+1Z× . . . ×Z/NmZ,

with min{N( j)
1 , . . . , N( j)

r } → ∞ as j → ∞ and Nr+1, . . . Nm are fixed (and could
be 1). Since the groups G j are abelian, all their irreducible representations are
one-dimensional (i.e. characters). The characters of G j are given by

χα(g) := exp

(
2iπ

m

∑
ℓ=1

αℓ

Nℓ
gℓ

)
,
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where g = (g1, . . . , gm) and α = (α1, . . . ,αm) with αℓ ∈ {0, . . . , Nℓ − 1}. Thanks
to the Venkov–Zograf factorization formula, Theorem A.3, we can factorize the
Selberg zeta function of Γ j as a product of L-functions,

ZΓ j(s) = ∏
α

LΓ (s, χα), (4.5)

where α belongs to the above specified set product. The case α = 0 corresponds
to the trivial representation χ0 = 1C, in which case we have LΓ (s, 1C) = ZΓ (s).
Recall that ZΓ has a simple zero at s = δ. Roughly speaking, we need to split
this product into two separate factors: the one corresponding to ‘smallα’s’ which
will produce a zero close to s = δ via an implicit function theorem, and the other
one for which we have to show that they do not vanish in a small neighbourhood
of δ. To that effect, we will introduce an auxiliary L-function that is related to
characters of the homology group H1(X,Z) ≃ Zm.

Given θ ∈ Cm, we define the ‘twisted’ transfer operator Ls,θ : H2(D) → H2(D)
by

Ls,θ f (z) =
2m

∑
i=1

i ̸= j+m

e2iπθ•P(γi)
[
(γ−1

i )′(z)
]s

f (γ−1
i .z) if z ∈ D j (4.6)

where s ∈ C is the spectral parameter, P : Γ → Zm is the projection in the first
homology group. In addition we have denoted by θ • a the pairing

θ • a :=
m

∑
k=1
θkak.

Notice that Ls,θ is nothing else but the transfer operator associated to the one-
dimensional representation χθ : Γ → S1, as defined by equation (2.13).

This family (of trace class operators) depends holomorphically on (s,θ). There-
fore the Fredholm determinant

LΓ (s,θ) := det(I −Ls,θ)

is holomorphic on C × Cm. By equation (2.14), LΓ (s,θ) = LΓ (s, χθ) is the L-
function associated to (Γ , χθ). Using this auxiliary function, we can rewrite (4.5)
as

ZΓ j(s) = ∏
k=(k1 ,...,km)∈S j

LΓ (s, k1/N( j)
1 , . . . , kr/N( j)

r , . . . , km/Nm), (4.7)

where

S j = {0, . . . , N( j)
1 − 1} × . . . × {0, . . . , N( j)

r − 1} × . . . × {0, . . . , Nm − 1}.

4.2.1 A non-vanishing result for LΓ (s,θ)

The goal of this subsection is to establish the following fact which is crucial in the
analysis of resonances close to s = δ. Recall that Γ = ⟨γ±1 , . . . ,γ±m⟩ is a Schottky
group.
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Proposition 4.3. Using the above notations, we have for θ ∈ Rm,

LΓ (δ,θ) = 0 ⇔ θ ∈ Zm.

Proof. Obviously if θ ∈ Zm, then LΓ (s,θ) = ZΓ (s) vanishes at s = δ. The converse
will follow from a convexity argument that is similar to what has been used by
Parry and Pollicott [65, Chapter 5] to analyze dynamical Ruelle zeta functions on
the line {Re(s) = 1}. First we need to recall the usual ‘normalizing trick’ which
is essential in the latter part of the argument. By the Ruelle–Perron–Frobenius
Theorem (see [65, Theorem 2.2]), the operator

Lδ,0 : H2(D) → H2(D)

has 1 as a simple eigenvalue and the associated eigenspace is spanned by a real-
analytic function H which satisfies H(x) > 0 for all x ∈ Λ(Γ). For j ∈ {1, . . . , 2m}
let I j := D j ∩R. By setting (we work on Λ(Γ))

Mδ(F)(x) :=
2m

∑
i=1

i ̸= j+m

egi(x) f (γ−1
i .x), x ∈ I j ∩Λ(Γ),

where
gi(x) = δ log

[
(γ−1

i )′(x)
]
− log H(x) + log H(γ−1

i .x),

we obtain an operator
Mδ : C0(Λ(Γ)) → C0(Λ(Γ))

which satisfies Mδ(1) = 1. Assume now that LΓ (δ,θ) = 0 for some θ ∈ Rm.
Then Lδ,θ has 1 as an eigenvalue. Pick an associated non-trivial 1-eigenfunction
W, obviously continuous on Λ(Γ). By writing

H−1Lδ,θ(H.(H−1W)) = H−1W,

we deduce that

2m

∑
i=1

i ̸= j+m

egi(x)e2iπθ•P(γi)W̃(γ−1
i .x) = W̃(x), x ∈ I j ∩Λ(Γ) (4.8)

where we have set
W̃(x) = H−1(x)W(x).

Choosing x0 ∈ Λ(Γ) (say in I j ∩Λ(Γ))) such that

|W̃(x0)| = sup
ξ∈Λ(Γ)

|W̃(ξ)|,

we get by the triangle inequality

sup
ξ∈Λ(Γ)

|W̃(ξ)| ≤ Mδ(|W̃|)(x0) ≤ sup
ξ∈Λ(Γ)

|W̃(ξ)|.
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The same conclusion holds when iterating Mδ so that for all N ≥ 0, we have

sup
ξ∈Λ(Γ)

|W̃(ξ)| = MN
δ (|W̃|)(x0).

Because MN
δ are normalized, this forces

sup
ξ∈Λ(Γ)

|W̃(ξ)| = |W̃(γ−1
α .x0)|

for all wordsα ∈ W
j
N. Since the set {γ−1

α .x0}α∈W j
N

is dense in Λ(Γ) as N → ∞, we

deduce that |W̃| is constant on Λ(Γ). Without loss of generality we may assume
that

|W̃| = 1.

By strict convexity of the unit Euclidean ball in C, we deduce from (4.8) that for
all i ̸= j + m, we have

e2iπθ•P(γi)W̃(γ−1
i .x) = W̃(x), x ∈ I j ∩Λ(Γ)

Writing
W̃(x) = e2iπV(x),

where V : Λ(Γ) → R is a continuous lift, we end up with the identity (for all
j ̸= i + m and all x ∈ I j ∩Λ(Γ))

θ • P(γi) = V(x)− V(γ−1
i .x) + Mx,i, (4.9)

where Mx,i is an integer. Now let xi ∈ Ii be the unique attracting fixed point of
the map

γ−1
i : Ii → Ii.

By inserting x = xi into equation (4.9), we obtain

θ • P(γi) = Mxi ,i ∈ Z. (4.10)

for every i ∈ {1, . . . , m}. Recall that Γ is a free group on m elements generated by
the elements γ1, . . . ,γm (and its inverses). Therefore

(P(γ1), . . . , P(γm))

is a Z-basis of H1(X,Z) ≃ Zm. As a consequence, the m × m matrix whose rows
are given by the vectors P(γ1), . . . , P(γm) has determinant ±1 and is thus invert-
ible with integer coefficients: this implies by (4.10) that θ ∈ Zm. The proof is
complete.

A direct corollary, which is what we will actually use in the proof of Theorem 4.2,
is the following.

Corollary 4.4. Using the above notations, for all ε > 0 small enough, one can find a
complex neighbourhood V of δ such that for all s ∈ V and θ ∈ Rm,

LΓ (s,θ) = 0 ⇒ dist(θ,Zm) < ε.
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Proof. We argue by contradiction. Fix some ε > 0. If the above statement is not
true, then one can find a sequence

(s j,θ j) ∈ C×Rm

such that for all j we have LΓ (s j,θ j) = 0 and dist(θ j,Zm) ≥ ε and lim j s j =
δ. Using the Zm-periodicity of LΓ (s,θ) with respect to θ, we can assume that θ j
remains in a bounded subset of Rm and use compactness to extract a subsequence
such that θ j → θ̃ with dist(θ̃,Zm) ≥ ε. We then have LΓ (δ, θ̃) = 0, which
contradicts Proposition 4.3.

4.2.2 Proof of Theorem 4.2

We are now ready to prove Theorem 4.2. Consider the holomorphic map

C×Cm → C, (s,θ) ↦→ LΓ (s,θ).

Since LΓ (δ, 0) = 0, we have (recall that s = 0 is a simple zero of ZΓ (s))

∂sLΓ (δ, 0) = Z′
Γ (δ) ̸= 0.

Hence, we can apply the Holomorphic Implicit Function Theorem, which states
that there exists an open set O ⊂ C with δ ∈ O and some ε > 0 such that for all
(s,θ) ∈ O× B∞(0,ε),

LΓ (s,θ) = 0 ⇐⇒ s = φ(θ),

whereφ : B∞(0,ε) → O is a real-analytic map and

B∞(0,ε) := {x = (x1, . . . , xm) ∈ Rm : max
1≤l≤m

|xl| < ε}

is the ε-ball in Rm centered at 0 with respect to the infinity norm.

Using Corollary 4.4 with the above ε, we deduce that if s ∈ U := O ∩ V is a such
that

LΓ (s,θ) = 0,

for some θ ∈ Rm, then dist(θ,Zm) < ε, and s = φ(θ̃) where θ̃ = θ mod Zm and
θ̃ ∈ B∞(0,ε).

Now pick ϕ ∈ C∞
c (U), using the factorization formula (4.7), we observe that

provided ε is taken small enough we have

∑
λ∈R(X j)∩U

ϕ(λ) = ∑
k=(k1 ,...,kr)∈Zr

|k1|<εN( j)
1 ,...,|kr|<εN( j)

r

ϕ ◦φ
(

k1

N( j)
1

, . . . ,
kr

N( j)
r

, 0, . . . , 0

)
.

Next we will apply the following Lemma.
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Lemma 4.5. Fix ε > 0 and assume thatψ ∈ C∞(Rr) is a compactly supported function
on B∞(0,ε) ⊂ Rr. Then we have

lim
j→∞ 1

N( j)
1 . . . N( j)

r
∑

k=(k1 ,...,kr)∈Zr

|k1|<εN( j)
1 ,...,|kr|<εN( j)

r

ψ

(
k1

N( j)
1

, . . . ,
kr

N( j)
r

)
=
∫

B∞(0,ε)
ψ(x) dx.

Proof. Using the Poisson summation formula, we can write

1

N( j)
1 . . . N( j)

r
∑

k=(k1 ,...,kr)∈Zr

|k1|<εN( j)
1 ,...,|kr|<εN( j)

r

ψ

(
k1

N( j)
1

, . . . ,
kr

N( j)
r

)

=
1

N( j)
1 . . . N( j)

r
∑

k∈Zr
ψ

(
k1

N( j)
1

, . . . ,
kr

N( j)
r

)

=
∫
Rr
ψ(x)dx + ∑

k∈Zr ,k ̸=0
ψ̂(2πN1k1, . . . , 2πNrkr),

where ψ̂ is as usual the Fourier transform defined by

ψ̂(ξ) =
∫
Rr
ψ(x)e−iξ .xdx.

Since ψ̂ has rapid decay (Schwartz class), a simple summation argument gives

1

N( j)
1 . . . N( j)

r
∑

k=(k1 ,...,kr)∈Zr

|k1|<εN( j)
1 ,...,|kr|<εN( j)

r

ψ

(
k1

N( j)
1

, . . . ,
kr

N( j)
r

)

=
∫
ψ(x) dx + Oα

(
1

(min{N( j)
1 , . . . N( j)

r })α

)
,

for all integersα. The proof is complete.

Applying the above lemma with ψ(x) =ϕ ◦φ(x, 0) we get as j → ∞,

lim
j→∞ 1

|G j| ∑
λ∈R(X j)∩U

ϕ(λ) = Nr+1 . . . Nm

∫
Rr
ϕ ◦φ(x, 0) dx :=

∫
ϕ dµ,

whereφ(x, 0) = φ(x1, . . . , xr, 0, . . . , 0).

The measure µ is nothing else but the push-forward of Lebesgue measure on the ball
B∞(0,ε) via the map φ. It is clear from the above formula that δ belongs to the
support of µ sinceφ(0) = δ. What remains to show is:

• The maps x ↦→ φ(x, 0) are real valued. This implies that all the resonances
in the vicinity of s = δ are actually real.
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• The maps x ↦→ φ(x, 0) are non-constant.

• The corresponding push-forward measure µ is absolutely continuous.

Since all the resonances in R(X j) (also all zeros of s ↦→ LΓ (s,θ) for θ ∈ Rm) are
in the half plane {Re(s) ≤ δ}, we must have ∇Re(φ)(0) = 0. However, one can
actually show that Im(φ) = 0 identically. Indeed, recall that by using the same
ideas leading to the Fredholm determinant identity (2.14), one can show that for
all Re(s) > δ and all θ ∈ Zm, we have

LΓ (s,θ) = exp

⎛⎝− ∑
[γ]∈[Γ]p

∞
∑
k=0

∞
∑

m=1

χθ(γ
m)

m
e−(s+k)mℓ(γ)

⎞⎠ ,

where the first sum runs over prime conjugacy classes. By complex conjugation
and uniqueness of analytic continuation, we obtain the identity valid for all s ∈ C
and all θ ∈ Zm:

LΓ (s,θ) = LΓ (s,−θ). (4.11)

This implies that for all θ ∈ B∞(0,ε), we have

φ(−θ) = φ(θ).

On the other hand, if [γ] ∈ [Γ]p, then [γ−1] ∈ [Γ]p and ℓ(γ) = ℓ(γ−1), while
χθ(γ

−1) = χ−θ(γ). Therefore ‘time reversal’ invariance of [Γ]p yields another
identity (again using unique continuation) valid for all s ∈ C and all θ ∈ Zm:

LΓ (s,θ) = LΓ (s,−θ) (4.12)

Combining (4.11) and (4.12) shows that for allθ ∈ B∞(0,ε), we must haveφ(θ) =
φ(−θ) = φ(θ). In particular,φ is real-valued. This fact was observed in previous
works related to prime orbit counting (in homology classes) for geodesics flows,
see for example [65, Chapter 12]. By the same arguments as above, we know that
the Hessian matrix ∇2Re(φ)(0) must be negative. Because the zeta functions
ZΓ j(s) all have a simple zero at s = δ, the maps x ↦→ φ(x, 0) have to be non-
constant.

One can actually show, using that the length spectrum of X is not a lattice, that
(see for example the arguments in [65, page 199]) we have

det
(
∇2Re(φ)(0)

)
̸= 0,

i.e. that the associated quadratic form is negative-definite. Historically, the non-
degeneracy of this critical point has played an important role in works related to
prime orbit counting in homology classes, see [2, 42, 45, 69, 72]. Since each map
(x1, . . . , xr) ↦→ φ(x1, . . . , xr, 0) ∈ R is non-constant, the (closure of the) image is a
closed interval I = [a, δ] for some a < δ. Moreover, because

(x1, . . . , xr) ↦→ F(x) := φ(x1, . . . , xr, 0)

is real-analytic (and non-constant), the set of points x = (x1, . . . , xr) ∈ B∞(0,ε)
such that ∇F(x) = 0, has zero Lebesgue measure. It follows from standard ar-
guments (see for example in [74]) that F has the ‘0-set’ property: the pre-image
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of each set of zero Lebesgue measure has zero Lebesgue measure. We can apply
the Radon–Nikodym theorem and conclude that µ is absolutely continuous with
respect to Lebesgue on I. The proof of Theorem 4.2 is now complete.

Let us now give a more precise description of the measure µ. It is possible to
describe the Radon-Nikodym derivative dµ

dm(u) in the vicinity of δ, where m is
Lebesgue measure on I. Indeed, we know from the above that locally,

φ(x) = δ− Q(x) + O(∥x∥3),

where Q(x) is a positive definite quadratic form.

The Morse lemma implies that for all ε > 0 small enough there an open neigh-
bourhood Ũ ⊂ Rr of 0 and a diffeomorphism

Ψ : B∞(0,ε) → Ũ, (x1, . . . , xr) ↦→ (y1, . . . , yr)

such that Ψ(0) = 0 and φ ◦ Ψ−1(y) = δ − y2
1 − · · · − y2

r . Therefore, for any ϕ ∈
C∞

0 (U) we have∫
ϕ dµ =

∫
Rr
ϕ ◦φ(x, 0)dx

=
∫

Ũ
ϕ(δ− y2

1 − · · · − y2
r ) · |DΨ−1(y)| dy

≍
∫

Ũ
ϕ(δ− y2

1 − · · · − y2
r ) dy,

where |DΨ−1(y)| is the Jacobian determinant. Choosing polar coordinates yields∫
ϕdµ ≍

∫
R+
ϕ(δ− R2)Rr−1dR.

With one last change of variables R ↦→ ξ = R2 we obtain∫
ϕ dµ ≍

∫
R+
ϕ(δ−ξ)ξ r−2

2 dξ .

We conclude that there exists a constant C > 0 such that for all u close enough to
delta (u < δ)

C−1(δ− u)
r−2

2 ≤ dµ
dm

(u) ≤ C(δ− u)
r−2

2 ,

where r is defined above as the number of unbounded cyclic factors in the se-
quence of abelian groups G j. In particular we observe a drastic difference in the
density shape when r = 1, 2 and r > 2.

We conclude this section by a remark on the case of elementary groups (which
we have excluded so far). Given a non-trivial hyperbolic isometry γ in PSL2(R),
we set Γ = ⟨γ⟩ and X = Γ\H the corresponding hyperbolic cylinder. It is easy to
check that all finite covers of X are (obviously) abelian and given by

XN = ΓN\H, ΓN = ⟨γN⟩,

with N ≥ 1. In this case, we can explicitly compute the Selberg zeta function of
XN (see Borthwick [14, Chapter 10]):

ZXN(s) = ∏
k≥0

(
1 − e−(s+k)Nℓ(γ)

)2
,

81



where ℓ(γ) is the displacement length of γ. The zero-set of ZXN(s) is therefore
the half-lattice

2iπ
Nℓ(γ)

Z−N0,

from which we can see that resonances accumulate as N → ∞ on the axis

{Re(s) = δ = 0}.

Notice that for the hyperbolic cylinder, each resonance has multiplicity two, which
explains why the perturbative argument does not work here.

4.3 Fell’s continuity and Cayley graphs
of abelian groups

In this section we prove Theorem 4.1. The arguments follow closely those of
Gamburd in [30]. Roughly speaking, since Cayley graphs of finite abelian groups
can never form a family of expanders, one should also expect that there is no
uniform spectral gap in the family of covers X j = Γ j\H. We give a rigorous proof
of this fact using Fell’s continuity.

Let G be a finite graph with set of vertices V and of degree k. That is, for every
vertex x ∈ V there are k edges adjacent to x. For a subset of vertices A ⊂ V we
define its boundary ∂A as the set of edges with one extremity in A and the other
in G− A. The Cheeger isoperimetric constant h(G) is defined as

h(G) := min
{
|∂A|
|A| : A ⊂ V and 1 ≤ |A| ≤ |V|

2

}
. (4.13)

Let L2(V) be the Hilbert space of complex-valued functions on V, endowed with
the inner product

⟨F, G⟩L2(V) = ∑
x∈V

F(x)G(x).

Let ∆ be the discrete Laplace operator acting on L2(V) by

∆F(x) = F(x)− 1
k ∑

y∼x
F(y),

where F ∈ L2(V), x ∈ V is a vertex of G, and y ∼ x means that y and x are
connected by an edge. The operator ∆ is self-adjoint and positive. Let λ1(G)
denote the first non-zero eigenvalue of ∆.

The following result due to Alon and Milman [1] relates the spectral gap λ1(G)
and Cheeger’s isoperimetric constant.

Proposition 4.6. For finite graphs G of degree k we have

1
2

k · λ1(G) ≤ h(G) ≤ k
√
λ1(G)(2 − λ1(G)).
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We note that large first non-zero eigenvalue λ1(G) implies fast convergence of
random walks on G, that is, high connectivity (see Lubotzky [49]).

Definition 4.7. A family of finite graphs {G j} of bounded degree is called a family of
expanders if there exists a constant c > 0 such that h(G j) ≥ c.

The family of graphs we are interested in is built as follows. Let Γ = ⟨S⟩ be a
Fuchsian group generated by a finite set S ⊂ PSL2(R). We will assume that S is
symmetric, i.e. S−1 = S. Given a sequence Γ j of finite index normal subgroups of
Γ , let S j be the image of S under the natural projection rG j : Γ → G j = Γ/Γ j. No-
tice that S j is a symmetric generating set for the group G j. Let G j = Cay(G j, S j)
denote the Cayley graph of G j with respect to the generating set S j. That is, the
vertices of G j are the elements of G j and two vertices x and y are connected by
an edge if and only if xy−1 ∈ S j.

The connection of uniform spectral gap with the graphs constructed above comes
from the following result.

Proposition 4.8. Assume that δ = δ(Γ) > 1
2 and assume that there exists ε > 0 such

that for all j all non-trivial resonances s of X j = Γ j\H satisfy |s − δ| > ε. Then the
Cayley graphs G j form a family of expanders.

Let us see how Proposition 4.8 implies Theorem 4.1.

Proof of Theorem 4.1. Since X = Γ\H has at least one cusp by assumption, we have
δ > 1

2 so that we can apply Proposition 4.8. Suppose by contradiction that there
exists ε > 0 such that for all j we have |s − δ| > ε for all non-trivial resonances
s of X j. Then Proposition 4.8 implies that the Cayley graphs G j = Cay(G j, S j)
form a family of expanders. We will show that this is never true for the sequence
of abelian groups G j defined in Section 4.1.1, thus showing Theorem 4.1. Write

G j = Z/N( j)
1 Z×Z/N( j)

2 Z× · · · ×Z/N( j)
m Z.

The space L2(G j) is spanned by the characters χα given by

χα(x) = exp

(
2π i

m

∑
ℓ=1

αℓ

N( j)
ℓ

xℓ

)

where x = (x1, . . . , xm) and α = (α1, . . . ,αm) with αℓ ∈ {0, . . . , N( j)
ℓ − 1}. Note

that the trivial character χα ≡ 1 corresponds to α = 0. Applying the discrete

83



Laplace operator to χα yields

∆χα(x) = χα(x)− 1
|S j| ∑

s∈S j

χα(x + s)

= χα(x)− 1
|S j| ∑

s∈S j

exp

(
2π i

m

∑
ℓ=1

αℓ

N( j)
ℓ

sℓ

)
χα(x)

= χα(x)− 1
|S j| ∑

s∈S j

cos

(
2π i

m

∑
ℓ=1

αℓ

N( j)
ℓ

sℓ

)
χα(x)

=

⎛⎝1 − 1
|S j| ∑

s∈S j

cos

(
2π i

m

∑
ℓ=1

αℓ

N( j)
ℓ

sℓ

)⎞⎠ χα(x),

where we exploited the symmetry of the set S j in the third line. Thus every char-
acter χα is an eigenfunction of ∆ with eigenvalue

λ
( j)
α :=

1
|S j| ∑

s∈S j

(
1 − cos

(
2π i

m

∑
ℓ=1

αℓ

N( j)
ℓ

sℓ

))
.

Note that we can view S j as a subset of

{0, . . . , N( j)
1 − 1} × · · · × {0, . . . , N( j)

m − 1} ⊂ Zm.

Since the generating set S is a finite subset of PSL2(R), there exists a constant M >
0 independent of j such that maxs∈S j ∥s∥∞ ≤ M, where ∥s∥∞ = max1≤ℓ≤m |sℓ|
is the supremum norm. Since we assume that |G j| → ∞, we may assume (after

extracting a sequence and re-indexing) that N( j)
1 → ∞. Setα = (1, 0, . . . , 0). Then

we have

0 ≤ η( j) := max
s∈S j

m

∑
ℓ=1

αℓ

N( j)
ℓ

sℓ = max
s∈S j

1

N( j)
1

s1 ≤ M

N( j)
1

→ 0

as j → ∞. Using the bound 1 − cos x ≪ x2, we obtain

λ
( j)
α ≪ (η( j))2 → 0

as j → ∞. We need to exclude the possibility that λ( j)
α is zero. Note that G j is a

connected graph because S j is a generating set for G j. Hence the zero eigenvalue
of the discrete Laplacian is simple and therefore

λ
( j)
α = 0 ⇔ α = 0.

In particular, forα = (1, 0, . . . , 0) we have λ( j)
α > 0. We have thus shown that the

spectral gap λ1(G j) of G j tends to zero as j → ∞, up to a sequence extraction. By
Proposition 4.6 this implies that the G j do not form a family of expanders. The
proof of Theorem 4.1 is therefore complete.
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4.3.1 Proof of Proposition 4.8

A very similar statement to that of Proposition 4.8 was given by Gamburd [30,
Section 7]. The key ingredient in Gamburd’s proof is Fell’s continuity of induction
and we will follow this line of thought.

For the remainder of this section set G = SL2(R) and let Ĝ be its unitary dual,
that is, the set of equivalence classes of (continuous) irreducible unitary repre-
sentations of G. We endow the set Ĝ with the Fell topology. The Fell topology
can actually be defined on more general sets of unitary representations of G, not
only irreducible ones. We refer the reader to [27] and [10, Chapter F] for more
background on the Fell topology.

A representation of G is called spherical if it has a non-zero K-invariant vector,
where K = SO(2). Let us consider the subset Ĝ1 ⊂ Ĝ of irreducible spherical
unitary representations. According to Lubotzky [50, Chapter 5], the set Ĝ1 can be
parametrized as

Ĝ1 = iR+ ∪
[

0,
1
2

]
,

where s ∈ iR+ corresponds to the spherical unitary principal series representa-
tions, s ∈ (0, 1

2) corresponds to the complementary series representation, and s =
1
2 corresponds to the trivial representation. See also Gelfand–Graev–Pyatetskii-
Shapiro [31, Chapter 1 §3] for a classification of the irreducible (spherical and
non-spherical) unitary representations with a different parametrization. More-
over the Fell topology on Ĝ1 is the same as that induced by viewing the set of
parameters s as a subset of C, see [50, Chapter 5]. In particular, the spherical
unitary principal series representations are bounded away from the identity.

Let us now recall the connection between the exceptional eigenvalues λ ∈ (0, 1
4)

and the complementary series representation. Consider the (left) quasiregular
representation (λG/Γ , L2(G/Γ)) of G defined by

λG/Γ (g) f (hΓ) = f (hg−1Γ).

(We will denote this representation simply by L2(G/Γ).) Define the function
s(λ) =

√
1/4 − λ for λ ∈ (0, 1

4). Then, λ ∈ (0, 1
4) is an exceptional eigenvalue of

∆Γ\H if and only if the complementary series πs(λ) occurs as a subrepresentation
of L2(G/Γ). This is the so-called Duality Theorem [31, Chapter 1§4].

Let us return to the proof of Proposition 4.8. Let Γ and Γ j be as in Proposition
4.8. Let Ω(Γ) denote eigenvalues of the Laplacian ∆X on X = Γ\H. Let λ0(Γ) =
δ(1 − δ) = inf Ω(Γ) denote the bottom of the spectrum. Since Γ j is by assumption
a finite-index subgroup of Γ , we have δ(Γ j) = δ and consequently

λ0(Γ j) = λ0(Γ) =: λ0

for all j. Let Vs0 be the invariant subspace corresponding to the representation
πs0 and let L2

0(G/Γ j) be its orthogonal complement in L2(G/Γ j). For each j we
can decompose the quasiregular representation of G into direct sum of subrepre-
sentations

L2(G/Γ j) = L2
0(G/Γ j)⊕ Vs0 .
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Recall that λ0 is a simple eigenvalue by the result of Patterson [66]. By the Duality
Theorem it follows that Vs0 is one-dimensional. The following lemma provides
us with a link between uniform spectral gap and representation theory.

Lemma 4.9. Let R ⊂ Ĝ1 be the following set:

R =
⋃

j

{(π ,H) : π is spherical irreducible unitary subrep. of L2
0(G/Γ j)}/ ∼,

where ∼ denotes the equivalence of representations. Let us further define the set

R′ =
⋃

j

{(π ,H) : π is spherical unitary subrep. of L2
0(G/Γ j)}/ ∼

Then the following statements are equivalent.

(i) There exists ε0 > 0 such that |s − δ| > ε0 for all j and all non-trivial resonances s
of X j.

(ii) The representation πs0 is isolated in the set R ∪ {πs0} with respect to the Fell
topology.

(iii) The representation πs0 is isolated in the set R′ ∪ {πs0} with respect to the Fell
topology.

Proof. Equivalence of (ii) and (iii) is clear, since one can decompose every rep-
resentation into irreducible ones. It suffices to prove the equivalence of (i) and
(ii).

Since the resonances s of X j = Γ j\Hwith Re(s) > 1
2 correspond to the eigenvalues

λ = s(1 − s) ∈ [λ0, 1
4), the uniform spectral gap condition (i) can be stated as

follows. There exists ε1 > 0 such that for all j we have

Ω(Γ j) ∩ [0, λ0 +ε1) = {λ0}. (4.14)

By the discussion preceding the lemma, eigenvalues correspond to subrepre-
sentations of L2

0(G/Γ), which allows us to reformulate (4.14) in representation-
theoretic language. Set s0 = s(λ0). Then by the Duality Theorem, there exists
ε > 0 such that for all j and all s ∈ (s0 − ε, 1

2 ], the complementary series rep-
resentation πs does not occur as a subrepresentation of L2(G/Γ j). Since Vs0 is
one-dimensional (and each representation πs with s ̸= 1

2 is infinite-dimensional),
(i) is equivalent to

R∩
(

s0 −ε,
1
2

]
= {s0}. (4.15)

Since the Fell topology on Ĝ1 is equivalent to the one induced by viewing Ĝ1 as
the subset iR+ ∪

[
0, 1

2

]
of the the complex plane, the equivalence of (i) and (ii) is

now evident.

Let 1Γ j denote the trivial representation of Γ j on C. Then the induced representa-
tion IndΓ

Γ j
1Γ j is equivalent to the (left) quasiregular representation (λG j , L2(G j))

of Γ defined by

(λG j(γ)F)(hΓ j) = (γ.F)(hΓ j) = F(hγ−1Γ j).
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The action of Γ on L2(G j) given by γ.F = λG j(γ)F is transitive. Hence the only
Γ -fixed vectors are the constants. Thus we can decompose the representation of Γ
on L2(G j) into a direct sum of subrepresentations

L2(G j) = L2
0(G j)⊕C,

where L2
0(G j) is the subspace of functions orthogonal to the constant function,

and (1Γ ,C) does not occur as a subrepresentation of L2
0(G j).

Consider

T =
⋃
j∈N

{(ρ, V) : ρ is unitary subrepresentation of L2
0(G j)}/ ∼ .

We claim the following.

Lemma 4.10. Assume that one of the equivalent statements in Lemma 4.9 holds true.
Then the trivial representation 1Γ is isolated in T ∪ {1Γ} with respect to the Fell topology.

Proof. Let us start with some general definitions. Let K be a closed subgroup of a
locally compact group H. Given a unitary representation (π , V) of K, the induced
representation IndH

K π of H is defined as follows. Let µ be a quasi-invariant reg-
ular Borel measure on H/K and set

IndH
K π := { f : H → V : f (hk) = π(k−1) f (h) for all k ∈ K and f ∈ L2

µ(H/K)}.
(4.16)

Note that the requirement f ∈ L2
µ(H/K) makes sense, since the norm of f (g) is

constant on each left coset of H. The action of G on IndG
H π is defined by

g. f (x) = f (g−1x)

for all x, g ∈ G, f ∈ IndG
H π . We also note that the equivalence class of the induced

representation IndH
K π is independent of the choice of µ. We refer the reader to

[10, Chapter E] for a more thorough discussion on properties of induced repre-
sentations.

If two representations (π1,H1) and (π2,H2) are equivalent, we write H1 = H2
by abuse of notation. Using induction by stages (see [28] or [29] for a proof) we
have

Vs0 ⊕ L2
0(G/Γ j) = L(G/Γ j)

= IndG
Γ j

1Γ j

= IndG
Γ IndΓ

Γ j
1Γ j

= IndG
Γ L2(G j)

= IndG
Γ 1Γ ⊕ IndG

Γ L2
0(G j)

= Vs0 ⊕ L2
0(G/Γ)⊕ IndG

Γ L2
0(G j).

Choose an index j and a unitary subrepresentation (τ , V) of L2
0(G j). The above

calculation implies that IndG
Γ τ is a subrepresentation of L2

0(G/Γ j). Since τ is uni-
tary, so is IndG

Γ τ . Moreover IndG
Γ τ is a spherical representation of G, since any
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non-zero function f ∈ L2(H/Γ) and non-zero vector v ∈ V gives rise to a non-
zero K-invariant function F ∈ IndG

Γ τ . Indeed, we have H ∼= K\G, so that we may
view f as function f : G → C satisfying f (kgγ) = f (g) for all g ∈ G, k ∈ K,γ ∈ Γ .
Now one easily verifies that F = f v : G → V belongs to IndG

Γ τ and is invariant
under K. We have thus shown that IndG

Γ τ is a spherical unitary subrepresenta-
tion of L2

0(G/Γ j). In other words, IndG
Γ τ belongs to the set R′, which we defined

in the statement of Lemma 4.9.

Now suppose the lemma is false. Then there exists a sequence (τn)n∈N ⊂ T that
converges to 1Γ as n → ∞. On the other hand, πs0 is weakly contained in IndG

Γ 1Γ .
By Fell’s continuity of induction [27] we have

πs0 ≺ IndG
Γ 1Γ = lim

n→∞ IndG
Γ τn ∈ R′,

which contradicts Lemma 4.9.

We can now prove Proposition 4.8.

Proof of Proposition 4.8. Assume that every non-trivial resonance s of X j = Γ j\H
satisfies |s − δ| > ε for some ε > 0 uniform in j. By the preceding lemma,
this statement implies that every subrepresentation of L2

0(G j) is bounded away
(with respect to the Fell topology) from the trivial representation, uniformly in
j. The goal now is to show that the latter statement implies that the graphs
G j = Cay(G j, S j) yield a family of expanders. This implication seems to well-
known in the literature and a proof of this fact appears in Gamburd [30, Section 7].
For the sake of completeness, we provide a detailed proof here.

Let us recall the definition of the Fell topology on Γ̂ (for further reading consult
[10, Chapter F]). For an irreducible unitary representation (π , V) of Γ , for a unit
vectorξ ∈ V, for a finite set Q ⊂ Γ , and forε > 0 let us define the set W(π ,ξ , Q,ε)
that consists of all irreducible unitary representations (π ′, V′) of Γ with the fol-
lowing property. There exists a unit vector ξ ′ ∈ V′ such that

sup
γ∈Q

|⟨π(γ)ξ ,ξ⟩V − ⟨π ′(γ)ξ ′,ξ ′⟩V′ | < ε.

The Fell topology is generated by the sets W(π ,ξ , Q,ε). By Lemma 4.10 and the
definition of the Fell topology, there exists c0 = c0(Γ , S) > 0 only depending on Γ

and the generating set S of Γ , but not on j, such that for all functions f ∈ L2
0(G j)

with ∥ f ∥L2(G j)
= 1 we have

sup
γ∈S

|⟨γ. f , f ⟩L2(G j)
− 1| ≥ c0. (4.17)

Let us drop the index L2
0(G j) from the notation and write ⟨·, ·⟩ and ∥ · ∥ instead.

Let F ∈ L2
0(G j) be an arbitrary non-zero function. Applying (4.17) to the unit

vector
f =

F
∥F∥ ∈ L2

0(G j)

yields the more practical inequality

sup
γ∈S

|⟨γ.F − F, F⟩| ≥ c0∥F∥2. (4.18)
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By the Cauchy-Schwarz inequality, (4.18) implies

sup
γ∈S

∥γ.F − F∥ ≥ c0∥F∥. (4.19)

Now fix a non-empty subset A of G j with |A| ≤ 1
2 |G j| and define the function

F(x) := −|A|+ |G j| · 1A(x),

where 1A denotes the indicator function of A. By construction, F ∈ L2
0(G j). A

computation shows that

∥F∥2 = |A||G j|(|G j| − |A|).

On the other hand (recall that (γ.F)(x) = F(γ−1x)),

∥γ.F − F∥2 = ∑
x∈G j

(
F(γ−1x)− F(x)

)2

= |G j|2 ∑
x∈G j

(
1γA(x)− 1A(x)

)2

= |G j|2 · |γA △ A|,

where A △ B denotes the symmetric difference of A and B. Thus, invoking (4.19)
leads to

|γA △ A| = ∥γ.F − F∥2

|G j|2
≥ c2

0
∥F∥2

|G j|2
= c2

0

(
1 − |A|

|G j|

)
|A| ≥

c2
0

2
|A|

for some element γ ∈ S. Hence, we obtain a lower bound for the size of the
boundary of A in the graph G j = Cay(G j, S j):

|∂A| ≥ 1
2

sup
γ∈S

|γA △ A| ≥
c2

0
4
|A|.

From the definition of the Cheeger isoperimetric constant in (4.13), it follows that

h(G j) ≥
c2

0
4

for all j. Consequently, the graphs G j form a family of expanders, completing the
proof of Proposition 4.8.
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Chapter 5

Fractal Weyl bounds and Hecke
triangle groups

5.1 Introduction and statement of results

Hecke triangle groups are, in some sense, natural generalizations of the more
prominent modular group

ΓZ = PSL2(Z) =
{[

a b
c d

]
∈ PSL2(R) : a, b, c, d ∈ Z

}
,

which is generated by the two elements

T :=
[

1 1
0 1

]
and S :=

[
0 1
−1 0

]
.

On the hyperbolic plane H, these elements act by S(z) = −1/z and T(z) = z + 1.
In [37], Hecke introduced the groups Γw generated by S(z) := −1/z and Tw(z) :=
z + w and showed that Γw is discrete if and only if w = 2 cos (π/q) for q ∈ N≥3,
or w ≥ 2. In both cases, these groups came to be known as Hecke triangle groups
with cusp width w. He found that

F(w) =
{

z ∈ H : |Re(z)| < w
2

, |z| > 1
}

provides a fundamental domain for the action of Γw on H.

w < 2

-1 0 1w
2−w

2

i

w = 2

-1 0 1 = w
2

i

w > 2

-1 0 1−w
2

w
2

i

Figure 5.1: Fundamental domain for three Hecke triangle groups
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The fundamental domain F(w) meets the real line in an open interval (which
leads to a funnel in the quotient Γw\H) if and only if w > 2. Consequently, the
Hecke triangle groups with w ≤ 2 (that is w = 2 or w = 2 cos (π/q) for q ∈ N≥3)
are Fuchsian groups of the first kind, meaning that the quotient Γw\H is of finite
area. On the other hand, for w > 2, Γw is a Fuchsian group of the second kind, i.e.
Γw\H has infinite area.

In the present chapter we focus on Hecke groups of the second kind (w > 2)
and their finite-index subgroups. In particular, the limit set Λ(Γw) for w > 2
is a Cantor-like fractal, whose Hausdorff dimension we denote by δw. For cer-
tain values of w, the Hausdorff dimension δw has been estimated numerically by
Phillips–Sarnak [77]. For instance, we have δ3 = 0.753 ± 0.003. Note that for any
finite-index subgroup Γ̃ 6 Γw, we have δ(Γ̃ ) = δ(Γw) = δw. In the Appendix,
Subsection A.4, we investigate the bahaviour of δw as w → ∞. We write δ = δw
if the cusp width w is fixed.

Our principal aim is to establish a fractal growth estimate on the Selberg zeta
function in strips parallel to the imaginary axis and bounded away from the real
axis. In other words, we are looking for an estimate of the type

log |ZΓ (s)| ≪ε,σ |Im(s)|δ+ε, (5.1)

for all s ∈ C with Re(s) ≥ σ and |Im(s)| ≥ 10 (here, the number 10 may be re-
placed by any other positive number). We refer to estimates of this type as fractal
upper bounds, since they involve the Hausdorff dimension of the limit set Λ(Γ).
For cofinite Fuchsian groups (in which case δ = 1) the estimate (5.1) is true with-
out the ε-loss in the exponent and can be proven within the framework of Selberg
theory, see for instance [90, Lemma 5.2.3]. Guillopé–Lin–Zworski [33] proved a
fractal upper bound without the ε-loss for convex co-compact Schottky groups
acting on the (n + 1)-dimensional hyperbolic space Hn+1. Their estimate leads to
new estimates on the number of resonances and scattering poles of the Laplacian
on X = Γ\Hn+1, often referred to as ‘fractal Weyl upper bounds’. Their result
provides a rigorous statement in the direction of the fractal Weyl conjecture, pro-
posed by Sjöstrand [85] and Lu–Sridhar–Zworski [48]. In the case of hyperbolic
surfaces this conjecture reads as follows. If R(X) denotes the set of resonances of
the Laplacian on a non-elementary hyperbolic surface X, then for all σ negative
enough,

NX(σ , T) := # {s ∈ R(X) : Re(s) ≥ σ , |Im(s)| ≤ T} ≍ T1+δ, (5.2)

as T → ∞. Using the fractal upper bound for the Selberg zeta function, Guillopé–
Lin–Zworski proved that for convex co-compact Schottky manifolds X one has

MX(σ , T) := #
{

s ∈ R(X) : Re(s) ≥ σ , |Im(s)− T| ≤ 1
}
≪σ Tδ. (5.3)

Clearly, the upper bound in (5.2) follows by integrating (5.3) along T. This settles
one half of the fractal Weyl law conjecture for all geometrically finite hyperbolic
surfaces without cusps.

As of today no analogues of (5.1), (5.3), or (5.3) have been proven for Fuchsian
groups of the second kind containing parabolic elements. In the present chap-
ter, we widen the validity of (5.1) to Hecke triangle groups of the second kind

92



CHAPTER 5. FRACTAL WEYL BOUNDS AND HECKE TRIANGLE GROUPS

and their finite-index subgroups. We actually prove a more general result for
L-functions (twisted Selberg zeta functions). To state it, let ρ : Γw → U(V) be a
finite-dimensional unitary representation with representation space V, and recall
that for Re(s) > δ the L-function associated to (Γw,ρ) is defined by the product

LΓw(s,ρ) = ∏
[γ]∈[Γw]p

∞
∏
k=0

det
(

1 − ρ(γ)e−(s+k)ℓ(γ)
)

.

Our first main result is the following.

Theorem 5.1. Let Γw be the Hecke triangle group with cusp width w > 2, let ρ : Γw →
U(V) be a finite-dimensional unitary representation of Γw, and let δ = δw be the Haus-
dorff dimension of Λ(Γw). Then LΓw(s,ρ) extends to a meromorphic function on C and
all its poles are contained in 1

2(1 −N0). For all s = σ + iT with σ , T ∈ R, and |T| ≥ 2
there exists C = C(σ , w,ρ) such that

log |LΓw(s,ρ)| ≤ C|T|δ(log |T|)2−δ.

Theorem 5.1 has various corollaries. By the Venkov–Zograf factorization formula
(see Theorem A.3), the Selberg zeta function Z

Γ̃
of a finite-index subgroup Γ̃ 6

Γw is equal to the L-function associated to (Γw, λ), where λ is the representation
of Γ̃ that is induced from the trivial one-dimensional representation of Γw. We
immediately deduce the following growth estimate on the Selberg zeta function
of arbitrary finite-index subgroups of Hecke triangle groups.

Corollary 5.2. Let w > 2 and let Γ̃ be a finite-index subgroup of Γw. Then for all
s = σ + iT with σ , T ∈ R, and |T| ≥ 2 there exists C = C(σ , w, Γ̃ ) such that

log |Z
Γ̃
(s)| ≤ C|T|δ(log |T|)2−δ.

Up to the logarthmic loss, Corollary 5.2 is analogous to the result of Guillopé–
Lin–Zworski [33] for Schottky groups. It is likely that Corollary 5.2 holds without
this logarithmic term, though our methods do not allow it to be removed.

From Borthwick–Judge–Perry [13] we know that if Γ is a finitely generated, torsion-
free5 Fuchsian group, then the resonances for X = Γ\H correspond one-to-one
to the zeros of the Selberg zeta function ZΓ , with the exception of a set of well-
understood real zeros. Therefore, using a standard argument of complex analysis,
we can convert the growth estimate of the preceding corollary to upper bounds
on the resonance counting functions NX(σ , T) and MX(σ , T) defined in (5.2) and
(5.3).

Corollary 5.3. Let Γ̃ be torsion-free, finite-index subgroup of some Hecke triangle group
Γw with w > 2. Set X̃ = Γ̃\H. Then for allσ ∈ R there exists C = C(σ , w, Γ̃ ) such that

MX̃(σ , T) ≤ C|T|δ(log |T|)2−δ, |T| > 2

and
NX̃(σ , T) ≤ CT1+δ(log T)2−δ, T > 2.

5this means that Γ has no elliptic elements. Consequently, the quotient Γ\H has no conical
singularities and therefore it qualifies as a surface in the sense of Riemannian geometry
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Corollary 5.3 gives, for the first time, a fractal Weyl upper bound for a class of
hyperbolic surfaces with cusps, at the expense of the logarithmic factor. Notice
that Corollary 5.3 does not apply to the Hecke triangle group Γw itself, since it
contains the elliptic element S. The quotient Xw := Γw\H has one cusp, one
funnel, and one conical singularity. Because of the latter, Xw is an orbifold (rather
than a manifold).

There exist plenty of torsion-free subgroups of Γw. By passing to finite-index,
torsion-free subgroups Γ̃ 6 Γw, one can obtain plenty of geometrically finite
groups without elliptic elements, producing examples of Riemannian surfaces
with several cusps and funnels. In Subsection 5.1.2 below we give some exam-
ples of such subgroups of Γw.

Another consequence of Theorem 5.1 (although far less direct) is an explicit strip
in the complex plane containing infinitely many resonances for hyperbolic sur-
faces arising from torsion-free, finite-index subgroups of Γw.

Theorem 5.4. Let w > 2 and let Γ̃ be a torsion-free, finite-index subgroup of Γw. Then
for every ε > 0, the hyperbolic surface X̃ = Γ̃\H has infinitely many resonances in the
half-plane

Re(s) ≥ δ

2
− δ2 −ε.

If we assume further that the parameter w is the square-root of some integer ≥ 5, then for
every ε > 0, X̃ has infinitely many resonances in the half-plane

Re(s) ≥ δ

2
− 1

4
−ε.

Theorem 5.4 is proved by closely following the analysis of Jakobson–Naud [40]. It
ultimately follows from a lower bound on the essential spectral gap. We refer to [40]
for a stronger conjecture on the size of the essential spectral gap and its heuristic
justification, and for an application concerning the error term of the hyperbolic
lattice counting problem.

The present chapter is roughly organized as follows. In Section 5.2 we develop a
general framework for transfer operators acting on spaces of vector-valued holo-
morphic functions. In Section 5.3 we prove Theorem 5.1 and Corollary 5.3. In
Section 5.4 we prove Theorem 5.4. We continue to use the notational conventions
that are already in place, see Subsection 2.7.

5.1.1 Overview of main ideas

Let us give an overview of the main ideas leading to Theorem 5.1. For the sake
of exposition, we will only outline the argument for the group Γw. The gener-
alization to arbitrary finite-index subgroups Γ̃ 6 Γw is similar and relies on a
vector-valued extension of this argument.

We will adopt a similar a view as in Guillopé–Lin–Zworski [33], where thermo-
dynamic formalism and transfer operators techniques play a crucial role. Recall
from Subsection 2.6 that for Fuchsian Schottky groups Γ , the Selberg zeta function
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can be expressed as the Fredholm determinant

ZΓ (s) = det (1 −Ls) , (5.4)

where Ls is the standard tranfer operator arising from the geometric contruc-
tion of Γ . By a clever exploitation of (5.4), Guillopé–Lin–Zworski [33] managed
to derive fractal estimates for the Selberg zeta function in strips parallel to the
imaginary axis.

For Fuchsian groups Γ with parabolic elements (that is, when X = Γ\H has cusps)
it is less obvious to establish Fredholm determinant representations such as (5.4).
Mayer [51] discovered that the Selberg zeta function of the modular group Γ =
PSL2(Z) satisfies (5.4) in the half-plane Re(s) > 1

2 , where the transfer operator Ls
is given by

Ls f (z) =
∞
∑

n=1

(
1

z + n

)2s
f
(

1
z + n

)
. (5.5)

We point out that L1 is precisely the Perron–Ruelle operator for the Gauss map on
continued fractions. Here, the operator Ls acts on the Banach space of functions
f which are holomorphic on the open disk D(1, 3

2) and continuous on the closure

D(1, 3
2).

Morita [54] proved analogues of (5.4) (up to certain correction factors) for general
cofinite Fuchsian groups. More recently Pohl [71] and Fedosova–Pohl [26] consid-
ered geometrically finite (cofinite and non-cofinite) Fuchsian groups and proved
existence of transfer operators satisfying the Fredholm determinant identity (5.4),
under an additional geometric condition.

A particularly nice class of examples are the Hecke triangle groups Γw with w >
2, for which there is a relatively simple transfer operator satisfying (5.4). Not
surprisingly, since Γ1 = PSL2(Z), the transfer operator for Γw is very similar to
Mayer’s operator (5.5), see Subsection 5.3.1 for a description.

This new point of view on the Selberg zeta function enables us to prove fractal up-
per bounds in the same spirit of [33]. The main idea is to let the transfer operator
act on ‘refined’ function spaces. This means that we work on a small neighbour-
hood Ω(h) in C of (a portion of) the limit set Λ(Γw) of Γw. Here, the parameter
h > 0 determines how close we are to Λ(Γw). The Hilbert space on which Ls acts
is then given by the Bergman space H2(Ω(h)) on Ω(h).

Identity (5.4) remains valid independently of the parameter h (provided it is small
enough to ensure that Ls : H2(Ω(h)) → H2(Ω(h)) is of trace class). Thus there is
some freedom in the choice of h. On the other hand, the singular values of Ls on
which our estimates are based, heavily depend on h.

As we let h ↘ 0, that is, as we come closer to the limit set, its fractal nature be-
comes more visible and Ω(h) has more and more connected components. Whereas
the analogue of Ω(h) in [33] is a union of Euclidean disks all of which have di-
ameter ≍ h, in our proof the connected components of Ω(h) are ‘stretched balls’
having diameters ranging from h to ≍

√
h. The lack of structure in our setting

poses new technical difficulties that were not present in the Schottky-scenario.
Nevertheless, for Re(s) > 1

2 the singular values of Ls : H2(Ω(h)) → H2(Ω(h))
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can be shown to satisfy an upper bound of the type

µk(Ls) ≪σ h−AeB|Im(s)|h exp(−Chδk), k ∈ N (5.6)

for some constants A, B, C > 0 possibly depending on σ = Re(s), but not on h,
see Proposition 5.18. Hence the sequence of singular values decays exponentially
fast, and the decay rate is governed by hδ (it is only here where the Hausdorff di-
mension makes its appearance). Using (5.6) in conjunction with Weyl’s inequality
on determinants, we get

log |ZΓw(s)| ≤
∞
∑
k=1

log(1 +µk(Ls)) ≪σ h−δ log
(

1 + h−AeB|Im(s)|h
)2

(5.7)

for all Re(s) > 1
2 and for all h small enough. A computation reveals that we can

optimize this bound by choosing

h =

(
|Im(s)|

log |Im(s)|

)−1

.

Note that this is a valid choice for large |Im(s)|. With this choice, we obtain

log |ZΓw(s)| ≪σ |Im(s)|δ · (log |Im(s)|)2−δ , (5.8)

which establishes Theorem 5.1 in the half-plane Re(s) > 1
2 . Notice that the log-

loss in (5.8) is caused solely by the h−A-term in (5.6).

To deal with the case Re(s) ≤ 1
2 , we are forced to work with a meromorphic con-

tinuation of the operator Ls, making the proof of Theorem 5.1 much more subtle
in this range. It should be noted that the Selberg zeta function of a Fuchsian group
Γ has poles in 1

2(1 −N0) if and only if Γ contains parabolic elements. This is an
additional technical difficulty that only occurs in the presence of cusps. Luck-
ily, the meromorphic continuation for Ls in the case of Hecke triangle groups is
constructive, see Proposition 5.24. It turns out that we can write Ls as a sum
of a finite-rank operator (which extends meromorphically to C) and an operator
which is holomorphic on the entire complex plane. Understanding the meromor-
phic continuation of Ls amounts to understanding the analytic properties of the
naturally appearing Lerch zeta function, see Subsection 5.3.4

The bulk of the proof of Theorem 5.1 is concerned with establishing (5.6). Fortu-
nately, we can draw upon the work of Bandtow–Jenkinson [7], for which we give
an independent treatment in Section 5.2.

5.1.2 Examples of torsion-free subgroups of Γw

and one consequence

As promised in the introduction of this chapter, we now give some examples of
finite-index subgroups Γ̃ 6 Γw with the property that Γ̃ does not contain elliptic
elements. These are precisely the groups that come under the purview of Corol-
lary 5.3 and Theorem 5.4.
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If the parameter w > 2 is an integer, then clearly the group Γw only consists
of matrices having integer coefficients. In this case we can fabricate families of
torsion-free subgroups using congruence subgroups. More precisely, let m ≥ 3
and q ≥ 2 be integers and let ΓZ(q) := ker(πq) be the principal congruence
subgroup of level q, where

πq : PSL2(Z) → SL2(Z/qZ), g ↦→ g mod q.

is the reduction map modulo q. Consider the group Γm,q := Γm ∩ ΓZ(q). Since
ΓZ(q) is known to be torsion-free, so is Γm,q. Moreover, its index as a subgroup
of Γm is finite, since [Γm : Γm,q] ≤ |SL2(Z/qZ)| < ∞. Hence, the groups Γm,q with
m ≥ 3 and q ≥ 2 are all torsion-free, finite-index subgroups of the Hecke triangle
group Γm.

For arbitrary w > 2 we can produce a torsion-free subgroup Γ 0
w 6 Γw of index

2 as follows. Let ρ : Γw → C× be the one-dimensional representation defined
by ρ(Tw) = 1 and ρ(S) = −1 and set Γ 0

w := ker(ρ). The group Γ 0
w is a normal

subgroup of Γw (being the kernel of a homomorphism), is freely generated by the
elements Tw and STwS, and contains no elliptic elements. Moreover, we have

Γw/Γ
0
w ≃ {id, S} ≃ Z/2Z.

The action of Γ 0
w on H has the fundamental domain

F0(w) = F(w) ∪ S.F(w),

see Figure 5.2.

w > 2

0 w
2−w

2 − 2
w

2
w

Figure 5.2: Fundamental domain for Γ 0
w with w > 2

The quotient X0
w := Γ 0

w\H is a hyperbolic surface (no conical singularities!) with
one funnel (n f = 1), two cusps (nc = 2), and genus zero (g = 0). In particular, X0

w
has Euler characteristic χ(X0

w) = 2 − 2g − nc − n f = −1. A consequence of this
example is the following side result.

Corollary 5.5. Fix w > 2. The Selberg zeta functions of the groups Γw and Γ 0
w have no

zeros s with Re(s) > 1
2 , except at s = δ.

Proof. All the zeros of ZΓ 0
w
(s) with Re(s) > 1

2 correspond to the L2-eigenvalues of
the Laplacian on X0

w in the interval (0, 1
4) (so-called ‘small’ eigenvalues of X0

w). By
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the result of Ballmann–Mathiesen–Mondal [5], the number of small eigenvalues
is bounded by −χ(X0

w) = 1. Hence, the eigenvalue δ(1 − δ) corresponding to the
zero s = δ is the only eigenvalue, which proves Corollary 5.5 for Γ 0

w.

To prove the result for Γw we invoke the Venkov–Zograf factorization formula,
Theorem A.3, from which we deduce that

ZΓ 0
w
(s) = ZΓw(s)LΓw(s,ρ),

where ρ is the representation given by ρ(Tw) = 1 and ρ(S) = −1. From Theorem
5.1 we know that LΓw(s,ρ) is holomorphic on the half-plane {Re(s) > 1

2}. There-
fore, in {Re(s) > 1

2} zeros of ZΓw(s) must be zeros of ZΓ 0
w
(s). The result for Γw

now follows from the result for Γ 0
w.

5.2 Vector-valued transfer operators and
singular value estimates

5.2.1 Setup and Notation

In this section we consider a rather general type of transfer operator and prove
an estimate for their singular values. The main result of this section is Theo-
rem 5.10 below. We use some methods in the paper of Bandtlow–Jenkinson [7],
in which they prove precise estimates for the eigenvalues for transfer operators
acting on spaces of holomorphic functions. The statements that we prove are
tailored specifically to our situation.

One of the main novelties in our approach is that we consider vector-valued trans-
fer operators. Moreover we do not have to introduce the notion of exponential
classes developed by Bandtlow in [6] (prior to [7]), which was crucial in deriving
the results in [7]. Instead, our approach relies solely on some rather well-known
properties of singular values, which we have deferred to the Appendix, Subsec-
tion A.1.1.

For the remainder of this section let V be a finite-dimensional complex vector
space, endowed with the hermitian inner product ⟨·, ·⟩V . Moreover, given a non-
empty open subset Ω ⊂ C, we consider the vector-valued Bergman space on Ω,

H2(Ω; V) :=
{

f : Ω → V holomorphic
⏐⏐⏐⏐ ∥ f ∥2

L2(Ω)
:=
∫
Ω
∥ f (z)∥2

V dvol(z) < ∞}
,

(5.9)
where ∥v∥V :=

√
⟨v, v⟩V and vol is the Lebesgue measure. Endowed with the

inner product

⟨ f , g⟩ :=
∫
Ω
⟨ f (z), g(z)⟩V dvol(z),

the space H2(Ω; V) is a Hilbert space. Note that H2(Ω;C) = H2(Ω) is the usual
Bergman space on Ω. The norm of an endomorphism M ∈ End(V) is defined as

∥M∥End(V) := sup
v∈Vr{0}

∥Mv∥V

∥v∥V
.
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Furthermore, given sets A, B, we write A b B to mean that the closure of A is a
compact subset of B. The following definition generalizes the terminology used
in [7].

Definition 5.6. Let Ω, Ω′ ⊂ C be two non-empty, open, bounded subsets and let I

be a countable index set. The quintuple (Ω, Ω′, V,φn, Wn)n∈I is called a vector-valued
holomorphic map-weight system if

(i) (φn)n∈I is a family of holomorphic mapsφn : Ω → Ω′ such that⋃
n∈I
φn(Ω) b Ω′,

(ii) the weights Wn are functions in H2(Ω; End(V)) satisfying

∑
n∈I

∥Wn(·)∥End(V) ∈ L2(Ω, dvol).

If Ω′ = Ω we write (Ω, V,φn, Wn)n∈I instead of (Ω, Ω, V,φn, Wn)n∈I.

5.2.2 Generic transfer operators

Given a vector-valued holomorphic map-weight system

(Ω, Ω′, V,φn, Wn)n∈I

we can associate to it the (initially only formal) transfer operator

L f (z) = ∑
n∈I

Wn(z) f (φn(z)) (5.10)

acting on functions f ∈ H2(Ω′; V). The following result shows that (5.10) defines
a bounded operator

L : H2(Ω′; V) → H2(Ω; V),

under the conditions given by Definition 5.6.

Proposition 5.7. Let (Ω, Ω′, V,φn, Wn)n∈I be a vector-valued holomorphic map-weight
system. Define ρn := dist

(
φn(Ω), ∂Ω′) and set ρ := infn∈I ρn > 0.

Then the operator L : H2(Ω′; V) → H2(Ω; V) is well-defined and bounded with norm

∥L∥H2(Ω′ ;V)→H2(Ω;V) ≤ ρ−1

∑
n∈I

∥Wn(·)∥End(V)


L2(Ω)

.

For the proof of Proposition 5.7 we need the following result.

Lemma 5.8. Let Ω ⊂ C be an open subset of the complex plane. Given f ∈ H2(Ω; V)
and z0 ∈ Ω we have

∥ f (z0)∥V ≤ dist(z0, ∂Ω)−1∥ f ∥L2(Ω).

In particular, for a compact subset K ⊂ Ω we have

sup
z∈K

∥ f (z)∥V ≤ dist(K, ∂Ω)−1∥ f ∥L2(Ω).
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Proof. Fix 0 < r < dist(z0, ∂Ω), so that D(z0, r) ⊂ Ω. Let d = dim V and fix an
orthonormal basis e1, . . . , ed for V. Then for each l ∈ {1, . . . , d} the function

fl := ⟨ f , el⟩V

is holomorphic on Ω. In particular, we can Taylor-expand fl as

fl(z) =
∞
∑
k=0

ak,l(z − z0)
k, ∀z ∈ D(z0, r)

for some suitable ak,l ∈ C. A simple calculation shows

1
vol(D(z0, r))

∫
D(z0 ,r)

fl(z) dvol(z) = a0,l = fl(z0).

By Cauchy–Schwarz we have

| fl(z0)|2 ≤ 1
vol(D(z0, r))

∫
D(z0 ,r)

| fl(z)|2 dvol(z).

Summing over l yields

∥ f (z0)∥2
V =

d

∑
l=1

| fl(z0)|2

≤ 1
vol(D(z0, r))

∫
D(z0 ,r)

d

∑
l=1

| fl(z)|2 dvol(z)

=
1

vol(D(z0, r))

∫
D(z0 ,r)

∥ f (z)∥2
V dvol(z)

≤ r−2∥ f ∥2
L2(Ω).

Sending r ↗ dist(z0, ∂Ω) finishes the proof.

Proof of Proposition 5.7. Without loss of generality we may assume that I = N.
Consider the truncated transfer operator

LN f (z) :=
N

∑
n=1

Wn(z) f (φn(z)), f ∈ H2(Ω′; V), z ∈ Ω.

Clearly, for each N ∈ N the operator LN : H2(Ω′; V) → H2(Ω; V) is well-defined.
By Lemma 5.8 we have

sup
z∈Ω

∥ f (φn(z))∥V ≤ ρ−1
n ∥ f ∥L2(Ω′) ≤ ρ−1∥ f ∥L2(Ω′),

for all f ∈ H2(Ω′; V) and all n ∈ N. Hence, by the triangle-inequality and the
definition of the norm on End(V), we have

∥LN f (z)∥V ≤ ρ−1∥ f ∥L2(Ω′)

N

∑
n=1

∥Wn(z)∥End(V), (5.11)
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for all z ∈ Ω. Integrating (the square) of (5.11) over Ω leads to

∥LN f ∥L2(Ω) ≤ ρ−1∥ f ∥L2(Ω′)

 N

∑
n=1

∥Wn(·)∥End(V)


L2(Ω)

≤ ρ−1∥ f ∥L2(Ω′)

 ∞
∑

n=1
∥Wn(·)∥End(V)


L2(Ω)

,

where in the last line we used the assumption

∞
∑

n=1
∥Wn(·)∥End(V) ∈ L2(Ω). (5.12)

Since f ∈ H2(Ω′; V) was arbitrary, we obtain

∥LN∥H2(Ω′ ;V)→H2(Ω;V) ≤ ρ−1

 ∞
∑

n=1
∥Wn(·)∥End(V)


L2(Ω)

.

We now claim that for every fixed f ∈ H2(Ω′; V), we have LN f → L f in H2(Ω; V)
as N → ∞. Fix an arbitrary ε > 0. Without loss of generality, we may assume
that f ̸= 0. By (5.12), there exists N0 ∈ N such that ∞

∑
n=N0

∥Wn(·)∥End(V)


L2(Ω)

<
ε · ρ

∥ f ∥L2(Ω′)
.

Using the same estimates as above, we obtain for all N ≥ N0 the bound

∥LN f −L f ∥L2(Ω) ≤ ρ−1∥ f ∥L2(Ω′)

 ∞
∑

n=N
∥Wn(·)∥End(V)


L2(Ω)

< ε,

which proves the claim. By the uniform boundedness principle (also called the
Banach–Steinhaus theorem) we deduce that L : H2(Ω′; V) → H2(Ω; V) is a well-
defined operator, whose norm is bounded by

∥L∥H2(Ω′ ;V)→H2(Ω;V) ≤ sup
N∈N

∥LN∥H2(Ω′ ;V)→H2(Ω;V) ≤ ρ−1

 ∞
∑

n=1
∥Wn(·)∥End(V)


L2(Ω)

.

The proof is complete.

5.2.3 Main estimate on singular values

In order to state the main estimate, let us introduce some new language. Given a
Euclidean disk in the complex plane

D = D(z0, r) = {z ∈ C : |z − z0| < r},

we will denote its η-dilate D(z0, ηr) by D(η), for ease of notation. In other words,
the disk D(η) has the same center as D but its radius is rescaled by the factor η.
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Definition 5.9. Let Ω1 and Ω2 be open sets of the complex plane and assume that Ω1 b
Ω2. A relative (N, η)-cover of the pair (Ω1, Ω2) is a family of open Euclidean disks
{D j}N

j=1 in the complex plane such that the following two conditions hold:

Ω1 ⊆
N⋃

j=1

D j (5.13)

and
N⋃

j=1

D j(η) ⊆ Ω2. (5.14)

The main theorem in this section is the following estimate.

Theorem 5.10. Let (Ω, V,φn, Wn)n∈I be a vector-valued holomorphic map-weight sys-
tem and let L : H2(Ω; V) → H2(Ω; V) be the associated transfer operator as defined in
(5.10). Let

Ω̃ :=
⋃
n∈I
φn(Ω).

Let Ω′ be an intermediate set satisfying

Ω̃ b Ω′ b Ω,

such that the pair (Ω′, Ω) has a relative (N, η)-cover with η > 1. Assume further that

ρ := inf
n∈I

dist
(
φn(Ω

′), ∂Ω
)
> 0.

Then the k-th singular value of L satisfies

µk(L) ≤ ρ−1Nη−k/(N dim V)+1

∑
n∈I

∥Wn(·)∥End(V)


L2(Ω)

.

We immediately obtain the following corollary. If the operator

L : H2(Ω; V) → H2(Ω; V)

satisfies the hypotheses of Theorem 5.10, then the sequence (µk(L))k is summable
in k. This implies that L is of trace class, i.e.

∥L∥1 :=
∞
∑
k=1
µk(L) < ∞.

5.2.4 Canonical embeddings

Given two open sets of the complex plane Ω1 and Ω2 with Ω1 b Ω2, we define
the canonical embedding

J : H2 (Ω2; V) → H2(Ω1; V), J f = f �Ω1 .

That is, J f is the restriction of f to Ω1. The following lemma is a vector-valued
version of [7, Proposition 3.4 (ii)].
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Lemma 5.11. Let D ⊂ C be a non-empty open Euclidean disk. If η > 1 then for all k ∈
N the k-th singular value of the canonical embedding J : H2 (D(η); V) → H2(D; V)
satisfies

µk(J) ≤ η−k/ dim V .

Proof. By translation invariance of the Lebesgue measure we may assume that the
disk D is centered at the origin, i.e. D = D(0, r) and D(η) = D(0, ηr) for some
radius r > 0. Let d = dim V and fix an orthonormal basis e1, . . . , ed for V. Then
the family of functions

ϕn,l(z) =

√
n + 1

(ηr)2n+2π
znel , n ∈ N0, l ∈ {1, . . . , d}.

provides an orthonormal basis for H2(D(η); V). In particular,

⟨ϕn,l ,ϕm,l′⟩H2(D(η);V) =
∫

D(η)
⟨ϕn,l(z),ϕm,l′(z)⟩V dvol(z) = δnmδll′

for all n, m ∈ N0 and all l, l′ ∈ {1, . . . , d}. By the definition of J we have

⟨J∗ Jϕn,l ,ϕm,l′⟩H2(D(η);V) = ⟨Jϕn,l , Jϕm,l′⟩H2(D(η);V)

= ⟨ϕn,l ,ϕm,l′⟩H2(D;V)

=
∫

D
⟨ϕn,l(z),ϕm,l′(z)⟩V dvol(z)

= η−2(n+1)δnmδll′ .

We deduce that the operator J∗ J : H2(D(η); V) → H2(D(η); V) is diagonal with
respect to the basis (ϕn,l) with set of eigenvalues being equal to

{η−2(n+1) : n ≥ 0},

and each eigenvalue having multiplicity exactly d. Hence, the set of singular val-
ues of J is equal to {η−1, η−2, η−3, . . . }, where each element is repeated d times.
We conclude that µk(J) ≤ η−k/d for all k ≥ 1, as claimed.

5.2.5 Proof of Theorem 5.10

Before we can prove the main result of this section, Theorem 5.10, we need an
intermediate result. For the proof of the latter we use the following notion which
can also be found in [7]: {D̃ j}N

j=1 is called a disjointification of {D j}N
j=1 if {D̃ j}N

j=1

is a partition of
⋃N

j=1 D j (up to sets of zero Lebesgue measure) and if D̃ j ⊆ D j for
all j ∈ {1, . . . , N}.

Observe that we can always obtain a disjointification by setting

D̃1 := D1 and D̃ j := int

⎛⎝D j r
j−1⋃
i=1

Di

⎞⎠ for j = 2, . . . , N.
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Proposition 5.12. Let Ω1 and Ω2 be non-empty open sets of the complex plane with
Ω1 b Ω2 and assume that (Ω1, Ω2) has a relative (N, η)-cover with η > 1. Then the
k-th singular value of the canonical embedding J : H2 (Ω2; V) → H2(Ω1; V) satisfies

µk(J) ≤ Nη−k/(N dim V)+1.

Proof. By assumption there exists a family {D j}N
j=1 of Euclidean disks satisfying

conditions (5.13) and (5.14). Let {D̃ j}N
j=1 be a disjointification of {D j}N

j=1. For
notational convenience set

D :=
N⋃

j=1

D j =
N⋃

j=1

D̃ j,

where the second equality is to be understood up to sets of zero Lebesgue mea-
sure.

For each n = 1, . . . , N define the operator Tn : H2(Dn; V) → H2 (D; V) implicitly
by

⟨Tn f , g⟩H2(D;V) :=
∫

D̃n
⟨ f , g⟩V dvol .

We claim that Tn : H2(Dn; V) → H2 (D; V) is a bounded operator with norm at
most 1. Indeed, for any f ∈ H2(Dn; V) and g ∈ H2(D; V) we have by Cauchy-
Schwarz⏐⏐⏐⟨Tn f , g⟩H2(D;V)

⏐⏐⏐2 ≤
(∫

D̃n
∥ f ∥2

V dvol
)(∫

D̃n
∥g∥2

V dvol
)
≤ ∥ f ∥2

H2(Dn ;V)∥g∥2
H2(D;V).

(5.15)
Applying (5.15) to g = Tn f shows that

∥Tn f ∥H2(D;V) ≤ ∥ f ∥H2(Dn ;V).

Since f ∈ H2(Dn; V) was arbitrary, this gives

∥Tn∥H2(Dn ;V)→H2(D;V) ≤ 1, (5.16)

as claimed. Now consider the canonical identifications

J̃n : H2(Ω2; V) → H2(Dn(η); V),

Jn : H2(Dn(η); V) → H2(Dn; V),

and
J̃ : H2(D; V) → H2(Ω1; V).

We claim that J : H2 (Ω2; V) → H2(Ω1; V) can be written as

J =
N

∑
n=1

J̃Tn Jn J̃n. (5.17)
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To see this pick arbitrary functions f ∈ H2(Ω2; V) and g ∈ H2(Ω1; V). A step by
step computation gives⟨

N

∑
n=1

J̃Tn Jn J̃n f , g

⟩
H2(Ω1 ;V)

=
N

∑
n=1

⟨
J̃Tn Jn J̃n f , g

⟩
H2(Ω1 ;V)

=
N

∑
n=1

⟨
Tn Jn J̃n f , J̃∗g

⟩
H2(Dn ;V)

=
N

∑
n=1

∫
D̃n

⟨
Jn J̃n f , J̃∗g

⟩
V

dvol (definition of Tn)

=
N

∑
n=1

∫
D̃n

⟨
f , J̃∗g

⟩
V

dvol (since Jn J̃n f = f on D̃n)

=
∫

D

⟨
f , J̃∗g

⟩
V

dvol (disjointification)

=
⟨

f , J̃∗g
⟩

H2(D)

=
⟨

J̃ f , g
⟩

H2(Ω1)

=
⟨

J f , g
⟩

H2(Ω1)
(Ω1 ⊂ D ⊂ Ω2).

This proves (5.17). Notice that we have the trivial estimates

∥ J̃n∥H2(Ω2 ;V)→H2(Dn(η);V) ≤ 1 and ∥ J̃∥H2(D;V)→H2(Ω1 ;V) ≤ 1,

as well as (5.16). Hence, we can apply (A.2) and Lemma A.1 (1) (in that order) to
obtain

µk(J) ≤
N

∑
n=1

µ⌊ k+N−1
N ⌋

(
J̃Tn Jn J̃n

)
≤

N

∑
n=1

µ⌊ k+N−1
N ⌋ (Jn) .

Using Lemma 5.11 and noticing that⌊
k + N − 1

N

⌋
≥ k

N
− 1,

we obtain (recall that η > 1 by assumption)

µk(J) ≤
N

∑
n=1

η−⌊ k+N−1
N ⌋/ dim V = Nη−⌊ k+N−1

N ⌋/ dim V ≤ Nη−k/(N dim V)+1,

which completes the proof of Proposition 5.12.

We can now prove Theorem 5.10:

Proof of Theorem 5.10. The operator L : H2(Ω; V) → H2(Ω; V) lifts to an operator
L′ : H2(Ω′; V) → H2(Ω; V). Let J : H2(Ω; V) → H2(Ω′; V) be the canonical
embeding associated to the pair (Ω′, Ω). Notice that the operator L factorizes as
L = L′ J. Therefore, by Proposition 5.12, we arrive at

µk(L) ≤ ∥L′∥H2(Ω′ ;V)→H2(Ω;V) ·µk(J) ≤ ∥L′∥H2(Ω′ ;V)→H2(Ω;V) · Nη−k/(N dim V)+1.
(5.18)
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By Lemma 5.7, the norm of L′ : H2(Ω′; V) → H2(Ω; V) we can be estimated as

∥L′∥H2(Ω′ ;V)→H2(Ω;V) ≤ ρ−1

∑
n∈I

∥Wn(·)∥End(V)


L2(Ω)

. (5.19)

Combining (5.18) and (5.19) gives

µk(L) ≤ ρ−1Nη−k/(N dim V)+1

∑
n∈I

∥Wn(·)∥End(V)


L2(Ω)

,

which finishes the proof of Theorem 5.10.

5.3 Growth of L-functions for
Hecke triangle groups

In this section we prove Theorem 5.1 and Corollary 5.3.

5.3.1 Hecke triangle groups and transfer operators

Recall that

γ =

[
a b
c d

]
∈ PSL2(R)

acts on H by z ↦→ (az + b)/(cz + d).

The Hecke triangle group Γw with cusp width w > 2 is the subgroup of PSL2(R)
generated by the two elements

T := Tw :=
[

1 w
0 1

]
and S :=

[
0 1
−1 0

]
.

Throughout this section the parameter w > 2 is fixed and all constants are al-
lowed to depend on w.

Let Λ be the limit set of the group Γw (viewed as a subset of ∂H = R = R∪ {∞}).
We will only consider a small portion of the limit set, namely Λ0 := Λ ∩ (−1, 1).
For h > 0 let

Ω(h) := Λ0 + D(0, h)

be the complex h-neighbourhood of Λ0. Throughout we will assume that h > 0 is
small enough. The parameter h will be decreased whenever necessary.

Throughout this section, let ρ : Γw → U(V) be a finite-dimensional representation
of Γw. The representation space V is endowed with the inner-product ⟨·, ·⟩V with
respect to which ρ is unitary. Let H2(Ω(h); V) be the V-valued Bergman space of
Ω(h), as defined in (5.9).

We will work with the (initially only formal) operator

Ls,ρ = ∑
n∈Zr{0}

νs,ρ(T−nS) (5.20)
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acting on H2(Ω(h); V), where νs,ρ(γ) is defined as the action of the element γ ∈ Γ

on functions f : U → V, given by(
νs,ρ(γ) f

)
(z) :=

[
(γ−1)′(z)

]s
ρ(γ) f (γ−1.z), z ∈ U,

whenever this makes sense. More concretely, the transfer operator is defined for
all f ∈ H2(Ω(h); V) by the equation

Ls,ρ f (z) = ∑
n∈Zr{0}

γ′n(z)sρ(γn)
−1 f (γn(z)), z ∈ Ω(h),

where we have set γn := STn and

γn(z) :=
−1

z + nw

for notational convenience. Note that γ′n is a positive on the real line. Therefore,
the complex power γ′n(z)s is well-defined for all z ∈ Ω(h) with h small enough,
by setting

γ′n(z)s = esLog(γ′n(z)),

where Log is a complex logarithm defined on Cr (−∞, 0].

The reason we are interested in the operator Ls,ρ will become apparent in Subsec-
tion 5.3.6 below, where we prove that its Fredholm determinant is identical to the
L-function LΓw(s,ρ). However, the connection with L-functions will not be used
until we actually finish the proof of Theorem 5.1 in Subsection 5.3.8.

Lemma 5.13. Notations being as above, there exist h0 > 0 and 0 < α < 1 such that for
all h ∈ (0, h0) we have

Ω̃(h) :=
⋃

n∈Zr{0}
γn(Ω(h)) ⊆ Ω(αh).

Proof. First note that we can write

Ω(h) = {z ∈ C : ∃p ∈ Λ0 : |z − p| < h}.

Let n ∈ Zr {0} be arbitrary. Then

γn(Ω(h)) = {z′ ∈ C : ∃p ∈ Λ0 : |γ−1
n (z′)− p| < h}.

Suppose z′ ∈ C and p ∈ Λ0 are such that |γ−1
n (z′) − p| < h. Then by setting

q := γn(p) ∈ Λ0 we obtain the bound

|z′ − q| ≤ sup
y∈Ω(h)

|γ′n(y)| · |γ−1
n (z′)− p| ≤ sup

y∈Ω(h)
|γ′n(y)| · h.

Choose h0 > 0 such that Ω(h0) ⊂ D(0, 1). Then for all h ∈ (0, h0) we have

sup
y∈Ω(h)

|γ′n(y)| ≤ sup
y∈D(0,1)

|γ′n(y)| ≤ 1
(w − 1)2 .

Thus we have shown that
γn(Ω(h)) ⊆ Ω(αh),

whereα := 1
(w−1)2 . Since w > 2, we haveα < 1 and the lemma follows.
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Proposition 5.14. There exists h0 > 0 such that for all h ∈ (0, h0), the operator Ls,ρ :
H2(Ω(h); V) → H2(Ω(h); V) is well-defined and bounded on the half-plane {Re(s) >
1
2}.

Proof. Let h0 be as in Lemma 5.13 and let h ∈ (0, h0). Notice that there is some
constant C > 0 such that for all z ∈ Ω(h), n ∈ N we have⏐⏐γ′n(z)s⏐⏐ ≤ C

|n|2Re(s)
eC|Im(s)|h.

Moreover, since ρ is unitary, we have ∥ρ(γ)∥End(V) = 1 for all γ ∈ Γw. It follows
that (γ′n)sρ(γn)

−1


End(V)
≤ C

|n|2Re(s)
eC|Im(s)|h

and consequently

∑
n∈Zr{0}

(γ′n)sρ(γn)
−1


End(V)
∈ L2(Ω(h)),

provided Re(s) > 1
2 . Therefore for all Re(s) > 1

2 , the quintuple(
Ω, Ω, V,γn, (γ′n)

sρ(γn)
−1)

n∈Zr{0} (5.21)

is a vector-valued holomorphic map-weight system in the sense of Definition 5.6.
Notice that Ls,ρ is precisely the transfer operator associated to (5.21). Therefore,
the statement follows from Lemma 5.13 and Lemma 5.7.

5.3.2 Structure of the limit set

In this subsection we prove a crucial upper bound on the volume of the set Ω(h).
We use the finite version of the Basic Covering Lemma, sometimes also referred to
as ‘Vitali’s Covering Lemma’, although the latter stands for different statements
in the literature. To avoid confusion we state what we need here:

Lemma 5.15. Let B1, . . . , Bn be a finite collection of balls in an arbitrary metric space.
Then there exists a subcollection B j1 , . . . , B jm of these balls which are mutually disjoint
and satisfy

n⋃
i=1

Bi ⊂
m⋃

k=1

3B jk ,

where 3B denotes the ball with the same center as B but three times its radius.

The result which we seek to prove in this subsection is the following:

Proposition 5.16. There exists h0 > 0 and C > 0 such that for all h ∈ (0, h0) we have

vol(Ω(h)) ≤ Ch2−δ.

Remark 5.17. Proposition 5.16 shows that the Hausdorff dimension and the Minkowski
dimension of Λ0 are identical.
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Proof. Consider the real h-neighbourhood of Λ0, that is, the set Λ0(h) := Λ0 +
[−h, h]. Notice that Ω(h) ⊆ Λ0(h) + i[−h, h], which implies that

vol(Ω(h)) ≤ 2h · |Λ0(h)|,

where | · | denotes the Lebesgue measure. Thus it suffices to prove that

|Λ0(h)| ≤ Ch1−δ. (5.22)

Observe that

Λ0(h) ⊂ Λ0(2h) = Λ0 + [−2h, 2h] =
⋃

p∈Λ0

I(p, 2h),

where I(p, r) := (p − r, p + r). Since Λ0(h) is compact, there exists a finite set of
points {p1, . . . , pM} ⊂ Λ0 such that

Λ0(h) ⊂
M⋃

i=1

I(ξi, 2h).

By Lemma 5.15, there exists a subset {p′1, . . . , p′N} ⊆ {p1, . . . , pM} such that the
intervals I(p′j, 2h), j = 1, . . . , N are mutually disjoint and such that

Λ0(h) ⊂
N⋃

j=1

I(p′j, 6h). (5.23)

For convenience we now switch to the unit disk model D of hyperbolic geometry,
in which the boundary at infinity S1 = ∂D is treated in a uniform way. Let ΛS1

denote the limit set of Γw viewed as a subset of S1. Fix a Cayley transform φ :
H → D so that ΛS1 = φ(Λ).

Recall the family of Patterson-Sullivan measures µz,z′ on S1 associated with Γw
with vantage point z ∈ D and base point z′ ∈ D. For a construction of these
measures we refer to [66] or [14, Chapter 14]. It is well-known that µz,z′ is a
probability measure supported on the limit set ΛS1 , for any choice z, z′ ∈ D. We
will work with µ := µ0,0, where 0 is the origin of D.

For notational convenience set ξi := φ(pi) for i = 1, . . . , M and ξ ′j := φ(p′j) for
j = 1, . . . , N. Furthermore let IS1(ξi, r) := φ(I(pi, r)) and note that IS1(ξi, r) is
an interval on S1 with center ξi. For r > 0 small enough (smaller than some r1,
say) we have I(p, r) ⊆ [−1, 1] for all p ∈ Λ0. The mapφ restricted to the interval
[−1, 1] has bounded length distortion. This implies that there exist constants c1, c2
such that the length of the intervals IS1(ξi, r), are bounded from below by c1r
and from above by c2r, provided that r ∈ (0, r1). In other words, for every i =
1, . . . , M and every h small enough, IS1(ξi, 2h) is an interval on S1 centered at the
point ξi ∈ ΛS1 and of size comparable to h.

Given a point ξ ∈ S1, let sξ be the ray from the origin 0 in D to ξ . If A is a subset
of D, then the shadow at infinity of A is defined by

{ξ ∈ S1 : sξ ∩ A ̸= ∅}.
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For t > 0, let ξ(t) be the point on sξ which lies at hyperbolic distance t from
the origin. Let b(ξ(t)) denote the shadow at infinity of the geodesic arc which is
orthogonal to sξ and which intersects sξ at the point ξ(t). It can be shown, using
elementary hyperbolic geometry, that b(ξ(t)) is an interval on S1 centered at ξ
with length comparable to e−t.

We deduce that all the intervals IS1(ξi, 2h) contain some shadow b(ξi(t)) where
h is comparable to e−t. More precisely, there exist h0, c3, c4 > 0 such that for all
i = 1, . . . , M and all h ∈ (0, h0) we have

IS1(ξi, 2h) ⊇ b(ξi(t))

where c4e−t ≤ h ≤ c3e−t. By the result of Stratmann–Urbański [87, Theorem 2],
we obtain

µ(IS1(ξi, 2h)) ≥ µ(b(ξi(t))) ≥ c5e−δt ≥ c6hδ.

for some constants c5, c6 > 0 not depending on t or h. (The additional factor
appearing in the lower bound of [87, Theorem 2] is larger or equal than 1 and
thus we can ignore it.)

Since the sets I(p′j, 2h), j = 1, . . . , N are mutually disjoint, so are the sets IS1(ξ ′j, 2h).
This gives

c6hδN ≤
N

∑
j=1
µ(IS1(ξ ′j, 2h)) = µ

⎛⎝ N⋃
j=1

IS1(ξ ′j, 2h)

⎞⎠ ≤ 1,

which implies
N ≤ c−1

6 h−δ.

It follows from (5.23) that

|Λ0(h)| ≤
N

∑
j=1

|I(ξ ′j, 6h)| = 6hN ≤ 6c−1
6 h1−δ,

proving (5.22) and thus concluding the proof of Proposition 5.16.

5.3.3 Singular value estimate

In this section we prove the crucial upper bound for the singular values of the
transfer operator Ls,ρ defined in (5.20) for Re(s) > 1

2 . As we shall see in the
subsequent subsections, having estimates for the singular values in the half-plane
{Re(s) > 1

2} is sufficient to control the growth of the L-function LΓw(s,ρ) on the
entire complex plane (and bounded away from the real line, where some poles
may live.)

The goal here is to specialize the main theorem of the previous section, Theorem
5.10, to the Hecke triangle groups setting. We obtain the following estimate.

Proposition 5.18. There exists h0 > 0 such that for every finite-dimensional represen-
tation ρ : Γw → U(V), for all σ := Re(s) > 1

2 , and all h ∈ (0, h0) the singular values
of Ls,ρ : H2(Ω(h); V) → H2(Ω(h); V) satisfy

µk(Ls,ρ) ≤ C1 · h−3δ/2 · eC2|Im(s)|h · exp
(
−C3hδk

)
,
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where C j = C j(σ , w,ρ), j = 1, 2, 3 are positive constants depending only on σ , w, and
the representation ρ.

Remark 5.19. In a nutshell, Proposition 5.18 asserts that the sequence of singular values
of Ls,ρ decays exponentially where the exponent of the decay rate is proportional to hδ. It
is precisely here where the fractal bound for LΓw(s,ρ) comes from.

To make the proof of Proposition 5.18 more readable, let us start with the follow-
ing general result, which is a consequence of the Basic Covering Lemma.

Lemma 5.20. Let S ⊂ C be a bounded subset and let 0 < β < 1 and h > 0. Consider
the two complex neighbourhoods S1 = S + D(0,βh) and S2 = S + D(0, h). Then the
pair (S1, S2) possesses a relative (N, 2)-cover with

N ≤ 36
π(1 −β)2 h−2 vol(S2).

Proof. Set h1 := βh > 0 and h2 := 1−β
6 h > 0 so that h1 + 6h2 = h. Clearly we

can cover S1 by open disks of radius h2, all of which are centered in S1. Since S1
is compact, we can do so with only a finite number of disks, meaning that there
exists a finite set of points {p1, . . . , pM} ⊆ S1 such that

S1 ⊂
M⋃

i=1

D(pi, h2).

By Lemma 5.15, there exists a subset {p′1, . . . , p′N} ⊆ {p1, . . . , pM} such that the
disks D(p′j, h2), j = 1, . . . , N are mutually disjoint, and such that

S1 ⊂
N⋃

j=1

D(p′j, 3h2). (5.24)

We claim that {D(p′j, 3h2)}N
j=1 provides a relative (N, 2)-cover for (S1, S2) where

N is as in the statement. By exploiting the disjointness of the disks D(p′j, h2) we
obtain

N · πh2
2 =

N

∑
j=1

vol(D(p′j, h2))

= vol

⎛⎝ N⋃
j=1

D(p′j, h2)

⎞⎠
≤ vol(S1 + D(0, h2))

= vol(S + D(0, h1 + h2))

≤ vol(S2).

Hence, the number N of disks used in the cover (5.24) is bounded by

N ≤ (πh2
2)

−1 vol(S2) =
36

π(1 −β)2 h−2 vol(S2).
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To finish the proof notice that the 2-dilate of each disk in (5.24) satisfies

D(p′j, 6h2) = p′j + D(0, 6h2) ⊆ S1 + D(0, 6h2) = S + D(0, h1 + 6h2) = S2,

so {D(p′j, 3h2)}N
j=1 is indeed a relative (N, 2)-cover for (S1, S2).

Proof of Proposition 5.18. Fix h0 > 0 such that the conclusions of Lemma 5.13 and
Proposition 5.16 hold true for all h ∈ (0, h0) and fix such an h for the rest of the
proof. By Lemma 5.13, we can findα < 1 such that

Ω̃(h) =
⋃

n∈Zr{0}
γn(Ω(h)) ⊆ Ω(αh).

Set β := 1+α
2 so that α < β < 1. Then Ω(βh) is an intermediate set in the sense

that
Ω̃(h) b Ω(βh) b Ω(h).

When applied to the set S = Λ0, Lemma 5.20 shows that the pair
(
Ω(βh), Ω(h)

)
has a relative (N, 2)-cover with

N ≤ c1h−2 vol(Ω(h)),

Using Proposition 5.16 we can further estimate vol(Ω(h)), leading to

N ≤ c2h−δ.

Using Lemma 5.13 again, we obtain furthermore

ρ := inf
n

dist
(
γn(Ω), ∂Ω(βh)

)
≥ dist

(
Ω(αh), ∂Ω(βh)

)
≥ (β−α)h =

1 −α
2

h.

Thus for all h ∈ (0, h0) and all Re(s) > 1
2 the conditions in Theorem 5.10 for the

transfer operator
Ls,ρ : H2(Ω(h); V) → H2(Ω(h); V)

are satisfied with Ω = Ω(h), Ω̃ = Ω̃(h), Ω′ = Ω(βh), N ≤ c2h−δ, η = 2, and
ρ ≥ 1−α

2 h. By setting c3 := log 2 > 0, we arrive at

µk(Ls,ρ) ≤ c4ρ
−1N exp (−c3k/(N dimρ))

 ∑
n∈Zr{0}

(γ′n)sρ(γn)
−1


End(V)


L2(Ω(h))

≤ c5h−1−δ exp
(
−c6hδ(dimρ)−1k

)  ∑
n∈Zr{0}

(γ′n)sρ(γn)
−1


End(V)


L2(Ω(h))

.

It remains to estimate the norm in the last line. Using ∥ρ(γ)∥End(V) = 1 and
Proposition 5.16, we obtain ∑

n∈Zr{0}

(γ′n)sρ(γn)
−1


End(V)


2

L2(Ω(h))

≤ c7 vol(Ω(h)) ∑
n∈Zr{0}

ec8|Im(s)|h

|n|2σ

≤ c9h2−δec8|Im(s)|h
∑

n∈Zr{0}

1
|n|2σ .
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Combining this with the elementary estimate

∑
n∈Zr{0}

1
|n|2σ = 2

∞
∑

n=1

1
n2σ ≤ 2

(
1 +

∫ ∞
1

dx
x2σ

)
=

4σ
2σ − 1

,

we obtain

µk(Ls,ρ) ≤ c10 · h−3δ/2 · ec8|Im(s)|h ·
√

σ

2σ − 1
· exp

(
−c6hδ(dimρ)−1k

)
.

Relabelling the constants finishes the proof of Proposition 5.18.

5.3.4 Lerch zeta function

In this subsection we digress briefly into questions related to the Lerch zeta func-
tion. As will become evident in the next subsections, understanding its analytic
properties is mandatory in our proof of Theorem 5.1 in the range Re(s) ≤ 1

2 . The
Lerch zeta function is defined for Re(s) > 1, z ∈ Cr (−∞, 0], and λ ∈ (0, 1] by
the absolutely convergent series

φ(z, s, λ) :=
∞
∑

n=0
e2π iλ(n + z)−s.

The Lerch zeta function may be regarded as a far-reaching generalization of the
Riemann zeta function. It is important to notice that the complex power (n + z)s

makes sense by setting
(n + z)s = es Log(n+z),

where Log is defined on Cr (−∞, 0] by

Log(1 + z) := z
∫ 1

0

dt
1 + tz

.

By uniform convergence, (z, s) ↦→ φ(z, s, λ) is holomorphic on

Cr (−∞, 0]× {Re(s) > 1}.

For our purposes it is slightly more convenient to work with

H(z, s, λ) :=
∞
∑

n=1
e2π iλ(n + z)−s, (5.25)

which defines, for a fixed number λ ∈ (0, 1], a holomorphic function (z, s) ↦→
H(z, s, λ) on

Cr (−∞,−1]× {Re(s) > 1}.

This subsection has two purposes. First, we prove that s ↦→ H(z, s, λ) (for fixed
|z| < 1 and λ ∈ (0, 1]) extends to a meromorphic function with poles contained
in the set {1, 0,−1,−2, . . . }. Second, we establish a growth estimate on H(s, z, λ)
in vertical lines of the s-plane. We borrow some ideas of Murty–Sinha [56].

The first result is probably well-known but we give an independent proof here
for the sake of completeness.
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Proposition 5.21. If |z| < 1 and λ ∈ (0, 1] are fixed, then s ↦→ H(z, s, λ) extends to a
meromorphic function on the complex plane. Its poles are all contained in the set

1 −N0 = {1, 0,−1,−2, . . . }.

Moreover, for fixed s /∈ 1 −N0 and 0 < r < 1, the function z ↦→ H(z, s, λ) is holomor-
phic on D(0, r).

Proof. For Re(s) > 1 consider the series

∞
∑

n=1

e2π iλn

ns =: H(0, s, λ). (5.26)

It is well-known that s ↦→ H(0, s, λ) extends to a meromorphic function on the
complex plane C, whose poles are contained in 1 −N0, see for instance [3, Equa-
tion 1.3]. Clearly, for some fixed s ∈ Cr {1, 0,−1, . . . }, the sequence (|H(s +
k, 0, λ)|)k∈N is bounded by a constant M(s, λ) (depending on s and λ).

Now recall that if |z| < 1, we have the absolutely convergent series expansion

(1 + z)−s =
∞
∑
k=0

(−s)k
k!

zk,

where (u)0 := 1 and (u)k := u · (u − 1) · . . . · (u − k + 1) for k ≥ 1. Assuming
Re(s) > 1, we can write

H(z, s, λ) =
∞
∑

n=1

e2π iλn

ns

(
1 +

z
n

)−s
=

∞
∑

n=1

∞
∑
k=0

e2π iλn

ns+k
(−s)k

k!
zk

By an easy application of the theorems of Lebesgue and Fubini (in that order), we
obtain the series

H(z, s, λ) =
∞
∑
k=0

H(s + k, 0, λ)
(−s)k

k!
zk, (5.27)

Formula (5.27) is a priori only valid for Re(s) > 1 but it can be used to obtain
analytic continuation of s ↦→ H(z, s, λ) to the complex plane, except for the points
s ∈ {1, 0,−1, . . . }. Indeed, for all s ∈ C r {1, 0,−1, . . . }, we can bound the
summands in (5.27) individually as⏐⏐⏐⏐H(s + k, 0, λ)

(−s)k
k!

zk
⏐⏐⏐⏐ ≤ M(s, λ) · Ak(|s|) · |z|k

where

Ak(u) :=

⎧⎪⎪⎨⎪⎪⎩
A0(u) = 1,
A1(u) = u,

u ∏
k−1
j=1

(
1 + u

j

)
, k ≥ 2

(5.28)

Now notice that Ak(u) grows only polynomially as k → ∞. Indeed, for u > 0
and k ≥ 2 we have

Ak(u) ≤ u
k−1

∏
j=1

exp
(

u
j

)
= u exp

(
u

k−1

∑
j=1

1
j

)
≤ u exp (u(1 + log k)) = euku+1.
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Since |z| < 1, it is now clear that the series (5.27) converges absolutely for all
s ∈ Cr {1, 0,−1, . . . }. Hence, for all 0 < r < 1, (5.27) defines a holomorphic
map

D(0, r)× (Cr {1, 0,−1, . . . }) → C, (z, s) ↦→ H(z, s, λ),

thus proving Proposition 5.21.

Let us now turn to our second goal of estimating H(z, s, λ). To this end we recall
the result of Katsurada [43, Lemma 1], which goes as follows. For σ ∈ R define
the quantity

µ(x,σ , λ) := lim sup
t→±∞

log |φ(x,σ + it, λ)|
log |t| ,

which measures the polynomial growth rate of φ(x, s, λ) in vertical strips of the
s-plane. Then we have for any x ∈ (0, 1] and λ ∈ (0, 1]

µ(x,σ , λ) ≤

⎧⎪⎨⎪⎩
1/2 −σ if σ ≤ 0
(1 −σ)/2 if 0 ≤ σ ≤ 1
0 if σ ≥ 1

.

In particular, this result gives us a polynomial upper bound for the Lerch zeta
function in strips parallel to the imaginary axis. This bound carries over to the
modified function H(x, s, λ). Indeed, observe that H(x, s, λ) = φ(x, s, λ) − x−s

and that |x−s| ≤ x−Re(s) is bounded in strips parallel to the imaginary axis. It
follows that

H(x,σ + it, λ) ≤ C′
0(x,σ , λ) · |t|α0(σ) (5.29)

for all |t| ≥ 1 (say), x ∈ (0, 1), and λ ∈ (0, 1]. Now suppose that x ∈ (−1, 0). In
this case we use the relation

H(x,σ + it, λ) = x−s + e2π iλH(1 + x,σ + it, λ),

which gives (because 0 < 1 + x < 1)

|H(x,σ + it, λ)| ≤ x−Re(s)+ |H(1+ x,σ + it)| ≤ x−Re(s)+C′
0(1+ x,σ , λ) · |t|α0(σ).

Hence, up to a change of the multiplicative factor, we obtain

H(x,σ + it, λ) ≤ C0(x,σ , λ) · |t|α0(σ) (5.30)

for all |t| ≥ 1, x ∈ (−1, 1), and λ ∈ (0, 1]. What is important to notice here is that
we can choose C0(x,σ , λ) and α0(σ) that only depend on x,σ , λ and σ , respec-
tively. The next result is an extension of estimate (5.30) when the first argument
is complex.

Proposition 5.22. Let λ ∈ (0, 1] and r ∈ (0, 1). Write s and z in cartesian coordinates
as s = σ + it, z = x + iy, and assume that |z| ≤ r and |t| ≥ 1. Then we have

|H(z, s, λ)| ≤ C(r,σ , λ) · |t|α(σ) · e
2

1−r |y||s| log(1+|s|).

Remark 5.23. Proposition 5.22 shows that if |Im(z)| ≪ |s|−1, then H(z, s, λ) is at
most polynomial in |Im(s)|.
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Proof. Let s and z be as in the statement. Since we assume that |z| ≤ r, we have
x ∈ [−r, r].

First note that for k large enough, |H(x, s + k, λ)| is bounded by some constant
depending only on the variables σ , x, and λ. Hence we can define the quantities

C1(x,σ , λ) := max
k∈N

{C0(x,σ + k, λ)} < ∞
and

α1(σ) := max
k∈N

{α0(σ + k)} < ∞,

where C0(x,σ , λ) and α0(σ , λ) are constants satisfying (5.30). With these defini-
tions in place, we can clearly write

|H(x, s + k, λ)| ≤ C1(x,σ , λ)|t|α1(σ) (5.31)

for all k ∈ N. We can write

H(z, s, λ) =
∞
∑

n=1
e2π iλn(n + z)−s

=
∞
∑

n=1
e2π iλn(n + x)−s

(
1 +

iy
n + x

)−s

=
∞
∑

n=1
e2π iλn(n + x)−s

∞
∑
k=0

(−s)k
k!

(
iy

n + x

)k
.

Interchanging sums (as we did in (5.27)) yields the expression

H(z, s, λ) =
∞
∑
k=0

H(x, s + k, λ)
(−s)k

k!
(iy)k. (5.32)

Using (5.31), we can estimate the summands individually as⏐⏐⏐⏐H(x, s + k, λ)
(−s)k

k!
(iy)k

⏐⏐⏐⏐ ≤ C0(x,σ , λ)|t|β0(σ)Ak(|s|)|y|k,

where Ak(·) is defined by (5.28). Using similar arguments as in the proof of
Proposition 5.21, it is now easy to prove that the series (5.32) converges.

To actually obtain an estimate from (5.32) we set r1 := 1+r
2 , so that r < r1 < 1,

and

p :=
⌈

|s||y|
r1 − |y|

⌉
+ 1,

so that

|y|
(

1 +
|s|
p

)
≤ r1.

Then for all k ≥ p we have

Ak(|s|)|y|k ≤ (1 + |s|)p+1|y|p
(

1 +
|s|
p

)k−p

|y|k−p ≤ (1 + |s|)p+1rk−p
1 .
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To finish the proof, we simply write (notice that |y| ≤ |z| ≤ r)

|H(z, s, λ)| ≤
p−1

∑
k=0

⏐⏐⏐⏐H(x, s + k)
(−s)k

k!
(iy)k

⏐⏐⏐⏐+ ∞
∑
k=p

⏐⏐⏐⏐H(x, s + k)
(−s)k

k!
(iy)k

⏐⏐⏐⏐
≤ C1(x,σ , λ) · |t|α1(σ) ·

(
p−1

∑
k=0

Ak(|s|)rk +
∞
∑
k=p

(1 + |s|)p+1rk−p
1

)

≤ C1(x,σ , λ) · |t|α1(σ) · (1 + |s|)p+1
(

1
1 − r

+
1

1 − r1

)
≤ C2(x,σ , λ, r) · |t|α1(σ) · exp

((
|y||s|

r1 − |y| + 3
)

log(1 + |s|)
)

≤ C3(x,σ , λ, r) · |t|α1(σ)+3 · exp
(

2
1 − r

|y||s| log(1 + |s|)
)

Settingα(σ) := α1(σ) + 3 and

C(r,σ , λ) := sup
x∈[−r,r]

C3(x,σ , λ, r)

finally yields

|H(z, s, λ)| ≤ C(σ , λ, r) · |t|α(σ) · e
2

1−r |s||y| log(1+|s|),

concluding the proof.

5.3.5 Meromorphic continuation

The transfer operator family Ls,ρ defined in (5.20) is given by an infinite sum
which only converges in the half-plane {Re(s) > 1

2}. To pass beyond the line
{Re(s) = 1

2}, we show the meromorphic continuability of s ↦→ Ls,ρ similarly to
the proof of Mayer [51] for his transfer operator family for the modular group
PSL2(Z). To deal with the twist ρ, we diagonalize the unitary map ρ(T), as was
done in Pohl [71]. Moreover, we have to take into account the fact that Ω(h)
may consist of more than one (but only finitely many) connected components.
As we will see below, the properties of the meromorphic continuation of Ls,ρ rely
on the properties of the Lerch zeta function, which we studied in the previous
subsection.

Let us be more precise. We will show that the map s ↦→ Ls,ρ (viewed as a map
from {Re(s) > 1

2} to the Banach space of trace class operators H2(Ω(h); V) →
H2(Ω(h); V)) extends to a meromorphic function on C. In this context, meromor-
phic continuation is to be understood as follows. There exists a discrete set P ⊂ C
of poles such that for every s ∈ Cr P there exists a trace class operator

L̃s,ρ : H2(Ω(h); V) → H2(Ω(h); V),

which agrees with Ls,ρ whenever Re(s) > 1
2 . Moreover, given f ∈ H2(Ω(h); V)

and z ∈ Ω(h) the function s ↦→ L̃s,ρ f (z) is meromorphic with poles in P.

117



Once this fact is established, we immediately obtain meromorphic continuation
for the Fredholm determinants s ↦→ det (1 −Ls,ρ) with the same set of (potential)
poles P.

We will actually prove a refined version of the above statement, which is better
suited for our purposes:

Proposition 5.24. For each k ∈ N there exists an operator

Ψk : H2(Ω(h); V) → H2(Ω(h); V)

and for each k ∈ N and Re(s) > 1
2 there exists a finite-rank operator

Fs,ρ,k : H2(Ω(h); V) → H2(Ω(h); V)

such that the following holds true:

1. For all Re(s) > 1
2 we have the formula

Ls,ρ = Fs,ρ,k +Ls+ k
2 ,ρΨk.

2. For each k ∈ N0, the map s ↦→ Fs,ρ,k extends to a meromorphic function with poles
contained in 1

2 (1 −N0) .

3. We have the identities

Ψk := Ψk
1, Fs,ρ,k :=

k−1

∑
j=0

Fs+ j
2 ,ρ,1

Ψ
j
1.

4. The rank of Fs,ρ,k is at most dimρ · k.

Remark 5.25. Parts (1) and (2) together provide an meromorphic continuation for Ls,ρ

on the half-plane {Re(s) > 1−k
2 } for every k ∈ N. Although Proposition 5.24 is for-

mulated in a rather abstract way, its proof is constructive in the sense that the ‘auxiliary
operators’ Ψk and Fs,ρ,k are given by explicit formulas. These explicit formulas will enable
us to control their operator norms in Subsection 5.3.7.

Proof. Let us first consider the case k = 1.

Let M = M(h) be the number of connected components of Ω(h) and denote them
by Ω1(h), . . . , ΩM(h). Let Ω1(h) be the connected component that contains the
point z = 0.

We have the direct sum of Hilbert spaces

H2(Ω(h); V) =
M⨁

j=1

H2(Ω j(h); V).

In other words, we can (and will) view every function f ∈ H2(Ω(h); V) as a
vector

( f 1, . . . , f M),
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where the j-th component is the restriction of f to the j-th component, that is,
f j = f 1Ω j(h).

It is not hard to see that for every f ∈ H2(Ω(h); V) there exists a function f̃ =

( f̃ 1, . . . , f̃ M) ∈ H2(Ω(h)) satisfying

f 1(z) = f 1(0) + z f̃ 1(z), z ∈ Ω1(h) (5.33)

and
f j(z) = z f̃ j(z), z ∈ Ω j(h) for j ∈ {2, . . . , M} (5.34)

Indeed, we can set

f̃ 1(z) :=

⎧⎨⎩
1
z
( f 1(z)− f 1(0)) if z ̸= 0

( f 1)′(0) if z = 0
, f̃ 2(z) :=

1
z

f 2(z), . . . , f̃ M(z) :=
1
z

f M(z).

Given a pair (i, j) ∈ [M]× [M] we define the index set

S(i, j) := {n ∈ Zr {0} : γn(Ωi(h)) ⊂ Ω j(h)}. (5.35)

From general topology we know that the continuous image of a connected set is
connected. Hence, for every n ∈ N and every index i ∈ {1, ..., M} =: [M] there
exists an index j ∈ [M] such that γn(Ωi(h)) ⊂ Ω j(h). Consequently, for fixed i
the family {S(i, j)}M

j=1 is a partition of Zr {0} and similarly, for fixed j the family
{S(i, j)}M

i=1 is a partition of Zr {0}.

Moreover, for all z ∈ C, we have

lim
|n|→∞γn(z) = 0 ∈ Ω1(h).

Hence for all |n| sufficiently large, we have γn(Ωi(h)) ⊂ Ω1(h). This shows that
S(i, j) with j ̸= 1 is a finite set, while S(i, 1) contains every integer with suffi-
ciently large absolute value. (See Lemma (5.26) below for a quantitative version
of this fact.)

Keeping the above properties in mind and isolating the indices n ∈ S(i, 1), we
can write

Ls f (z) = ∑
n∈Zr{0}

γ′n(z)sρ(γn)
−1 f (γn(z))

=
M

∑
i=1

∑
n∈Zr{0}

γ′n(z)sρ(γn)
−1 f (γn(z)) 1Ωi(h)(z)

=
M

∑
i=1

M

∑
j=1

∑
n∈S(i, j)

γ′n(z)sρ(γn)
−1 f j (γn(z)) 1Ωi(h)(z)

=
M

∑
i=1

∑
n∈S(i,1)

γ′n(z)sρ(γn)
−1 f 1 (γn(z)) 1Ωi(h)(z)

+
M

∑
i=1

M

∑
j=2

∑
n∈S(i, j)

γ′n(z)sρ(γn)
−1 f j (γn(z)) 1Ωi(h)(z).
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Inserting equations (5.33) and (5.34) into the previous line and rearranging, leads
to

Ls,ρ f (z) =

⎡⎣ M

∑
i=1

∑
n∈S(i,1)

γ′n(z)sρ(γn)
−11Ωi(h)(z)

⎤⎦
  

=:G(z,s,ρ)

f 1(0)

−
M

∑
i=1

M

∑
j=1

∑
n∈S(i, j)

γ′n(z)s+ 1
2ρ(γn)

−1 f̃ j (γn(z)) 1Ωi(h)(z)  
=L

s+ 1
2 ,ρ

f̃ (z)

.

In the last line we used the identity

γ′n(z)sγn(z) = −γ′n(z)s+1/2. (5.36)

(It is enough to check (5.36) for real z. The result follows for all z ∈ Ω(h) by
analytic continuation.) Hence, we have established

Ls,ρ f (z) = G(z, s,ρ) f1(0)−Ls+ 1
2 ,ρ f̃ (z).

We can put this in the more abstract form

Ls,ρ = Fs,ρ,1 +Ls+ 1
2 ,ρΨ1, (5.37)

where Ψ1 : H2(Ω(h); V) → H2(Ω(h); V) is the operator sending f = ( f 1, . . . , f M)
to

− f̃ = (− f̃ 1, . . . ,− f̃ M)

and Fs,ρ,1 is the operator defined by

Fs,ρ,1 f (z) := G(z, s,ρ) f 1(0). (5.38)

Notice that for Re(s) > 1
2 we have G(·, s,ρ) ∈ H2(Ω(h); End(V)). Thus,

Fs,ρ,1 : H2(Ω(h); V) → H2(Ω(h); V)

is well-defined for Re(s) > 1
2 .

Note that the second term on right hand side of (5.37) is well-defined in the half-
plane Re(s) > 0, while the first term is a priori only defined for Re(s) > 1

2 . To
extend the domain of existence of the first term further to the left, we will show
in the next few lines that s ↦→ G(z, s,ρ) extends to a meromorphic function (with
possible poles in 1

2(1 −N0) and that z ↦→ G(z, s,ρ) is holomorphic on Ω(h) for all
points s not being a pole.

Since the sets S(i, 1) contain every integer with sufficiently large absolute value,
we can write

S(i, 1) = (Zr {0})r Si,

120



CHAPTER 5. FRACTAL WEYL BOUNDS AND HECKE TRIANGLE GROUPS

where Si ⊂ Zr {0} is a finite set. Therefore,

G(z, s,ρ) =
M

∑
i=1

∑
n∈S(i,1)

γ′n(z)sρ(γn)
−11Ωi(h)(z)

= ∑
n∈Zr{0}

γ′n(z)sρ(γn)
−1 −

M

∑
i=1

∑
n∈Si

γ′n(z)sρ(γn)
−11Ωi(h)(z) (5.39)

Observe that the functions

Ω(h) → End(V), z ↦→
M

∑
i=1

∑
n∈Si

γ′n(z)sρ(γn)
−11Ωi(h)(z)

are holomorphic for all s ∈ C, since Si are finite sets. Now let us have a closer
look at the infinite sum appearing in (5.39). Since ρ(T) ∈ End(V) is a unitary
map, there exists a basis e1, . . . , ed of V (where d = dim V = dimρ) with respect
to which ρ(T) acts diagonally. That is, we can find numbers λ1, . . . , λd ∈ (0, 1],
such that under this basis, we can write

ρ(T) = diag
(
e−2π iλ1 , . . . , e−2π iλd

)
. (5.40)

Then (we continue to work with the basis e1, . . . , ed) we can write

∑
n∈Zr{0}

γ′n(z)sρ(γn)
−1 = ∑

n∈Zr{0}
γ′n(z)sρ(T−nS)

=

⎛⎝ ∑
n∈Zr{0}

γ′n(z)sρ(T−n)

⎞⎠ρ(S)

= diag

⎛⎝ ∑
n∈Zr{0}

γ′n(z)se2π inλ1 , . . . , ∑
n∈Zr{0}

γ′n(z)se2π inλd

⎞⎠ρ(S)

Let us consider the diagonal elements in the last line individually. Fix some index
l ∈ {1, . . . , d}. Using the definition of the complex powers γ′n(z)s we can write

∑
n∈Zr{0}

γ′n(z)se2π inλl =
∞
∑

n=1
e2π inλl(nw + z)−2s +

∞
∑

n=1
e−2π inλl(nw − z)−2s

= w−2sH
( z

w
, 2s, λl

)
+ w−2sH

(
− z

w
, 2s,−λl

)
,

where H(z, s, λ) is the (modified) Lerch zeta function defined by (5.25). Putting
everything together, we obtain the following final expression for G(z, s,ρ):

G(z, s,ρ) = diag
(

w−2sH
( z

w
, 2s, λl

)
+ w−2sH

(
− z

w
, 2s,−λl

))d

l=1
· ρ(S) (5.41)

−
M

∑
i=1

∑
n∈Si

γ′n(z)sρ(γn)
−11Ωi(h)(z).
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Invoking the analytic properties of H(z, s, λ) from Proposition 5.21, we deduce
from the above expression that s ↦→ G(z, s,ρ) extends to a meromorphic func-
tion and that z ↦→ G(z, s,ρ) is holomorphic on Ω(h) provided s /∈ 1

2(1 −N0), as
claimed. It follows that

s ↦→
(
Fs,ρ,1 : H2(Ω(h); V) → H2(Ω(h); V)

)
extends to a meromorphic map, whose poles are contained in the set 1

2(1 −N0).
Thus we have established (1) and (2) for k = 1.

To obtain (1) and (2) for general k ∈ N we simply iterate the recursion equation
(5.37) k times, where in each iteration step the ‘current’ s gets replaced by s + 1

2 .
This leads to

Ls,ρ = Fs,ρ,k +Ls+ k
2 ,ρΨk, (5.42)

where
Ψk := Ψk

1 (5.43)

and

Fs,ρ,k :=
k−1

∑
j=0

Fs+ j
2 ,ρ,1

Ψ
j
1. (5.44)

This completes the proof of (1) (for all k ∈ N) and (3).

Moreover, by the analytic properties of Fs,ρ,1 already established above, the right
hand side of equation (5.44) immediately reveals that

s ↦→
(
Fs,ρ,k : H2(Ω(h); V) → H2(Ω(h); V)

)
extends to a meromorphic map, whose poles are contained in the set 1

2 (1 −N0) ,
thus proving (2) for all k ∈ N.

It remains to estimate the rank of the operator Fs,ρ,k. From the definition of Ψ1,
one easily verifies that

(Ψ
j
1 f )(0) =

(−1) j

j!
f ( j)(0).

Here, f ( j)(z) = ∂
j
z f (z) denotes the usual j-th derivative (applied to each compo-

nent of f = ( f 1, . . . , f M)). In particular,

Fs+ j
2 ,ρ,1

Ψ
j
1 f (z) =

(−1) j

j!
G(z, s + j/2,ρ) f ( j)(0).

Notice that linear map f ↦→ f ( j)(0) has rank equal to 1 and for fixed s, z, j, we
have G(z, s + j/2,ρ) ∈ End(V). Thus, we have

rank
(
Fs+ j

2 ,ρ,1
Ψ

j
1

)
≤ dim V = dimρ.

Using (5.44) once again, we find

rank(Fs,ρ,k) ≤
k−1

∑
j=0

rank
(
Fs+ j

2 ,ρ,1
Ψ

j
1

)
≤ dimρ · k,

proving (4). The proof of Proposition 5.24 is now complete.
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Let us finish this subsection with the following result, which we used in the above
proof of Proposition 5.24. Moreover, we give a quantitative version of it, which
will be useful later in Subsection 5.3.7.

Lemma 5.26. Let S(i, j) be the sets defined by (5.35). For each i ∈ {1, . . . , M} there
exists a finite set Si ⊂ Zr {0} such that

S(i, 1) = (Zr {0})r Si.

Moreover, the sets Si are not too large in the sense that there exists a constant C > 0
independent of h and i such that maxn∈Si |n| ≤ Ch−1.

Proof. Pick an arbitrary i ∈ {1, . . . , M} and let z ∈ Ωi(h). The statement follows
essentially from the estimate

|γn(z)| =
⏐⏐⏐⏐ 1
z + nw

⏐⏐⏐⏐ ≤ 1
||n|w − |z|| ,

which implies that for all integers n with |n| > Ch−1 for some large enough C > 0
(independent of h and i), we must have

dist (γn(z), 0) = |γn(z)| < h.

This means that for all |n| > Ch−1 we have γn(z) ∈ Ω1(h). In other words,

{n ∈ Z : |n| > Ch−1} ⊆ S(i, 1).

This concludes the proof.

5.3.6 Fredholm determinant representation

The next theorem states that we can realize the L-function associated to (Γw,ρ) as
the Fredholm determinant of Ls,ρ.

Theorem 5.27. For all h > 0 small enough and Re(s) > 1
2 the operator

Ls,ρ : H2(Ω(h); V) → H2(Ω(h); V)

is trace class and we have the identity

LΓw(s,ρ) = det (1 −Ls,ρ) .

Moreover, LΓw(s,ρ) extends to a meromorphic function on C. All the poles of LΓw(s,ρ)
are contained in 1

2(1 −N0).

Proof. Fix h0 > 0 small enough such that the conclusion of Proposition 5.18 holds
true for all h ∈ (0, h0). Fix s ∈ C with Re(s) > 1

2 and h ∈ (0, h0). Then

Ls,ρ : H2(Ω(h); V) → H2(Ω(h); V)

is a trace class operator, since the sequence of singular values (µk(Ls))k∈N decays
exponentially as k → ∞ and is therefore summable in k.
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Consider the entire function u ↦→ det (1 − uLs,ρ). For all |u| small enough we can
use (A.5) to expand the determinant as

det (1 − uLs,ρ) = exp

(
−

∞
∑

N=1

uN

N
tr
(
LN

s,ρ

))
. (5.45)

In light of this formula, proving Theorem 5.27 amounts to finding a suitable ex-
pression for the traces for the iterates of Ls,ρ. We have

LN
s,ρ = ∑

γ∈PN

νs,ρ(γ), (5.46)

where
PN := {Tn1 STn2 S · · · TnN S : n1, . . . , nN ∈ Zr {0}} .

Set
P :=

⋃
N∈N

PN .

Let [γ] ∈ [Γw]h be a conjugacy class represented by a hyperbolic element γ ∈
Γw. Let m(γ) denote the unique positive integer m satisfying γ = γm

0 with γ0
primitive (i.e. [γ0] ∈ [Γw]p).

The following properties can be checked easily:

• Every element in P is hyperbolic.

• Every conjugacy class [γ] ∈ [Γw]h has a representative in P, say in PN (and
N = N(γ) is unique with this property).

• Every conjugacy class [γ] ∈ [Γw]h has precisely N(γ)/m(γ) distinct repre-
sentatives in PN(γ).

Moreover, for every hyperbolic element γ ∈ Γw with γ−1(Ω(h)) ⊂ Ω(h) we have

tr(νs,ρ(γ)) =
e−sℓ(γ)

1 − e−ℓ(γ)
χ(γ), (5.47)

where χ = Trρ is the character associated to ρ. Equation (5.47) is widely known
in the literature, at least in the case ρ = 1C. For a proof of (5.47) for arbitrary
twists, we refer to Pohl [71, Lemma 5.2] and the references therein.

Taking traces on both sides of (5.46), and using (5.47) and a geometric series ex-
pansion, we obtain

tr
(
LN

s,ρ

)
= ∑
γ∈PN

e−sℓ(γ)

1 − e−ℓ(γ)
χ(γ) =

∞
∑
k=0

∑
γ∈PN

χ(γ)e−(s+k)ℓ(γ).

Using the above properties, we can rewrite the inner sum in the previous line as

∑
γ∈PN

e−(s+k)ℓ(γ)χ(γ) =
∞
∑

m=1
∑
γ∈PN

γ=γm
0 , [γ0]∈[Γw]p

χ(γm
0 )e

−m(s+k)ℓ(γ0)

=
∞
∑

m=1
∑

[γ0]∈[Γw]p
N(γ0)·m=N

N
m
χ(γm

0 )e
−m(s+k)ℓ(γ0)
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Hence, going back to (5.45), we obtain

− log det (1 − uLs,ρ) =
∞
∑

N=1

uN

N
tr
(
LN

s

)
=

∞
∑

N=1

uN

N

∞
∑
k=0

∞
∑

m=1
∑

[γ0]∈[Γw]p
N(γ0)·m=N

N
m
χ(γm

0 )e
−(s+k)ℓ(γ)

Rearranging the order of summation (which is justified for Re(s) large enough by
absolute convergence) leads to

− log det (1 − uLs) =
∞
∑
k=0

∑
[γ0]∈[Γw]p

∞
∑

m=1

uN(γ0)·m

m
χ(γm

0 )e
−m(s+k)ℓ(γ0)

= −
∞
∑
k=0

∑
[γ0]∈[Γw]p

log det
(

1 − uN(γ0)ρ(γ0)e−(s+k)ℓ(γ0)
)

= − log
∞
∏
k=0

∏
[γ0]∈[Γw]p

det
(

1 − uN(γ0)ρ(γ0)e−(s+k)ℓ(γ0)
)

.

Notice that since the expression in the last line converges at u = 1, provided
Re(s) is large enough, we obtain the Fredholm determinant identity

LΓ (s,ρ) = det (1 −Ls,ρ) , Re(s) ≫ 0. (5.48)

The validity of (5.48) immediately extends to Re(s) > 1
2 , since the right hand

side of (5.48) defines a holomorphic function in the range Re(s) > 1
2 . Finally,

meromorphic continuation to the entire complex plane with poles contained in
1
2(1 −N0) follows from Proposition 5.24, completing the proof of Theorem 5.27.

5.3.7 Controlling the norms of Ψk and Fs,ρ,k

The aim of this subsetion is to develop estimates for the operator-norm of the
operators Ψk and Fs,ρ,k arising from the meromorphic continuation in Proposition
5.24. These estimates are crucial for the proof of Theorem 5.1 when dealing with
the case Re(s) ≤ 1

2 .

Lemma 5.28. There exists h0 > 0 such that for all h ∈ (0, h0) we have

∥Ψ1∥H2(Ω(h);V)→H2(Ω(h);V) ≤ 4h−3/2.

Proof. As in the proof of Proposition 5.24, let Ω1(h), . . . , ΩM(h) denote the con-
nected components of Ω(h), and let Ω1(h) be the connected component contain-
ing z = 0. Given a function f ∈ H2(Ω(h)), let f j = f 1Ω j(h) be its restriction to the
component Ω j(h). Recall the definition of the operator Ψ1 from equation (5.37):

Ψ1 f := − f̃ = (− f̃ 1, f̃ 2, . . . ,− f̃ M),
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where f̃ is defined by (5.33) and (5.34). The goal of this proof is to find an upper
bound for ∥ f̃ ∥L2(Ω(h)) in terms of ∥ f ∥L2(Ω(h)).

It turns out that we can reduce all considerations to the one-dimensional case (d =
1). To this end, fix an orthonormal basis e1, . . . , ed for V. For each j ∈ {1, . . . , M}
and l ∈ {1, . . . , d} set

f j
l (z) := ⟨ f j(z), el⟩V , f̃ j

l (z) := ⟨ f̃ j(z), el⟩V

and
fl(z) := ⟨ f (z), el⟩V , f̃l(z) := ⟨ f̃ (z), el⟩V .

Let us choose an index l ∈ {1, . . . , d} that shall remain fixed until the end of the
proof. Notice that the functions f̃ j

l inherit the relations (5.33) and (5.34):

f 1
l (z) = f 1

l (0) + z f̃ 1(z), z ∈ Ω1(h) (5.49)

and
f j
l (z) = z f̃ j

l (z), z ∈ Ω j(h) for j ∈ {2, . . . , M}. (5.50)

Let us fix an Euclidean disk D(0, r) centered around z = 0 with radius r = h/2,
say, so that D(0, r) ⊂ Ω1(h). Since f 1

l is a holomorphic function, we can write

f 1
l (z) =

∞
∑
k=0

ak,lzk, ∀z ∈ D(0, r),

and therefore

f̃ 1
l (z) =

∞
∑
k=0

ak+1,lzk, ∀z ∈ D(0, r).

Using the orthogonality relation

∫
D(0,r)

znzm dvol(z) = π · r2n+2

n + 1
δnm

for all n, m ∈ N0, we calculate∫
D(0,r)

| f 1
l |2 dvol = π

∞
∑
k=0

|ak,l|2r2k+2

k + 1
(5.51)

and ∫
D(0,r)

| f̃ 1
l |2 dvol = π

∞
∑
k=0

|ak+1,l|2r2k+2

k + 1
. (5.52)

Comparing the left hand sides of (5.51) and (5.52) shows that

∫
D(0,r)

| f̃ 1
l |2 dvol = π

∞
∑
k=0

|ak+1,l|2r2k+2

k + 1
= π

∞
∑
k=1

|ak,l|2r2k

k

≤ 2πr−2
∞
∑
k=1

|ak,l|2r2k+2

k + 1
≤ 8πh−2

∫
D(0,r)

| f 1
l |2 dvol .
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Since we can trivially bound the integral in the last line by ∥ f 1
l ∥2

L2(Ω(h)), the pre-
vious estimate yields∫

D(0,r)
| f̃ 1

l |2 dvol ≤ 8πh−2∥ f 1
l ∥2

L2(Ω(h)). (5.53)

Using the elementary estimate

| f 1
l (z)− f 1

l (0)|2 ≤ 2| f 1
l (z)|2 + 2| f 1

l (0)|2,

we obtain

∫
Ω1(h)rD(0,r)

| f̃ 1
l |2 dvol =

∫
Ω1(h)rD(0,r)

⏐⏐⏐⏐⏐ f 1
l (z)− f 1

l (0)
z

⏐⏐⏐⏐⏐
2

dvol

≤ r−2
∫
Ω1(h)rD(0,r)

(
2| f 1

l (z)|2 + 2| f 1
l (0)|2

)
dvol(z)

≤ 8h−2∥ f 1
l ∥2

L2(Ω(h)) + 8 vol(Ω1(h))h−2| f 1
l (0)|2.

By Lemma 5.8 we have

| f 1
l (0)| ≤ h−1∥ f 1

l ∥L2(Ω(h)). (5.54)

Moreover, we have vol(Ω1(h)) ≤ h for h sufficiently small. Hence, we obtain (by
further decreasing h if necessary)∫

Ω1(h)rD(0,r)
| f̃ 1

l |2 dvol ≤ 8h−2∥ f 1
l ∥2

L2(Ω(h)) + 8h−3∥ f 1
l ∥2

L2(Ω(h)) (5.55)

≤ 9h−3∥ f 1
l ∥2

L2(Ω(h)).

Adding up the estimates (5.53) and (5.55) yields (again, after decreasing h if nec-
essary) the estimate

∥ f̃ 1
l ∥2

L2(Ω(h)) =
∫
Ω1(h)

| f̃ 1
l |2 dvol ≤ 8πh−2∥ f 1

l ∥2
L2(Ω(h)) + 9h−3∥ f 1

l ∥2
L2(Ω(h)) (5.56)

≤ 10h−3∥ f 1
l ∥2

L2(Ω(h)).

For the remaining connected components, indexed by j = 2, . . . , M, we have

∥ f̃ j
l ∥

2
L2(Ω(h)) =

∫
Ω j(h)

| f̃ j
l |

2 dvol =
∫
Ω j(h)

| f j
l (z)|2

|z|2 dvol(z) ≤ h−2∥ f j
l ∥

2
L2(Ω(h)),

(5.57)
where we simply recorded the fact that |z| ≥ dist(0, Ω j(h)) ≥ h for all z ∈ Ω j(h).

Summing up the estimates (5.56) and (5.57) leads to

∥ f̃l∥2
L2(Ω(h)) =

M

∑
j=1

∥ f̃ j
l ∥

2
L2(Ω(h)) ≤ 10h−3

M

∑
j=1

∥ f j
l ∥

2
L2(Ω(h)) = 10h−3∥ fl∥2

L2(Ω(h)).

(5.58)
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We can finally sum inequality (5.58) over all indices l ∈ {1, . . . , d} to obtain

∥Ψ f ∥2
L2(Ω(h)) = ∥ f̃ ∥2

L2(Ω(h)) =
d

∑
l=1

∥ f̃l∥2
L2(Ω(h))

≤ 10h−3
d

∑
l=1

∥ fl∥2
L2(Ω(h)) = 10h−3∥ f ∥L2(Ω(h)).

Since f ∈ H2(Ω(h); V) was arbitrary, we conclude that

∥Ψ1∥H2(Ω(h);V)→H2(Ω(h);V) ≤
√

10h−3 < 4h−3/2.

The proof is complete.

Lemma 5.29. There exists h0 > 0 such that for all h ∈ (0, h0) and all s ∈ C with
|Im(s)| ≥ 1 we have

∥Fs,ρ,1∥H2(Ω(h);V)→H2(Ω(h);V) ≤ C(σ ,ρ)h−A(σ)|Im(s)|α(σ)eCh|s| log(1+|s|).

Proof. Choose h0 > 0 sufficiently small such that Ω(h) ⊂ D(0, 1) for all h ∈
(0, h0). From (5.38) we know that the operator Fs,ρ,1 is given by

Fs,ρ,1 f (z) := G(z, s,ρ) f1(0), f ∈ H2(Ω(h); V).

Recall from (5.41) that we have the expression

G(z, s,ρ) = diag
(

w−2sH
( z

w
, 2s, λl

)
+ w−2sH

(
− z

w
, 2s,−λl

))d

l=1
· ρ(S)

−
M

∑
i=1

∑
n∈Si

γ′n(z)sρ(γn)
−11Ωi(h)(z),

where Si are the finite sets given by Lemma 5.26.

The first goal in this proof is to estimate G(z, s,ρ) pointwise. To this end, fix some
z ∈ Ω(h) (say z ∈ Ωi(h)). Using the estimate

∥ diag(ξ1, . . . ,ξd)∥End(V) ≤ max
1≤l≤d

|ξl|,

and the triangle inequality, we obtain

∥G(z, s,ρ)∥End(V) ≤ max
1≤l≤d

{
w−2σ

⏐⏐⏐H ( z
w

, 2s, λl

)⏐⏐⏐+ w−2σ
⏐⏐⏐H (− z

w
, 2s,−λl

)⏐⏐⏐}
+ ∑

n∈Si

|γ′n(z)s|,

Recall that we have |γ′n(z)s| ≤ C
|n|2σ eC|Im(s)|h for some C > 0 independent of h.

Using Lemma 5.26 and increasing the constant C if necessary, we can estimate
the sum in the last line as

∑
n∈Si

|γ′n(z)s| ≤ 2 ∑
1≤n≤Ch−1

C
n2σ eC|Im(s)|h ≤ c1(σ)eC|Im(s)|hh2σ−1. (5.59)
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Now we invoke the estimate on the Lerch zeta function, Proposition 5.22. Note
that for all z ∈ D(0, 1) we have z/w ∈ D(0, 1

2). Hence, applying Proposition 5.22
with r = 1/2, we get for all z ∈ D(0, 1) the estimate⏐⏐⏐H (± z

w
, 2s,±λ

)⏐⏐⏐ ≤ c2(σ , λ)|Im(s)|α(σ)e4|Im(z)||s| log(1+|s|). (5.60)

Recall that the numbers λ1, . . . , λd are defined through equation 5.40. As such,
they only depend on the representation ρ. Hence, combining (5.59) and (5.60) we
obtain

∥G(z, s,ρ)∥End(V) ≤ c3(σ ,ρ)|Im(s)|α(σ)e4|Im(z)||s| log(1+|s|) + c1(σ)eC|Im(s)|hh2σ−1,
(5.61)

where c3(σ ,ρ) depends solely onσ and the representation ρ. By merging the two
summands on the left of (5.61), we get a pointwise estimate of the type

∥G(z, s,ρ)∥End(V) ≤ c4(σ ,ρ)h2σ−1|Im(s)|α(σ)eC|Im(z)||s| log(1+|s|). (5.62)

To finish the proof, pick an arbitrary function f ∈ H2(Ω(h); V). Using Lemma
5.8, we find

∥Fs,ρ,1 f ∥L2(Ω(h)) =

(∫
Ω(h)

∥G(z, s,ρ) f 1(0)∥2
V dvol(z)

)1/2

≤
(∫

Ω(h)
∥G(z, s,ρ)∥2

End(V) dvol(z)
)1/2

∥ f 1(0)∥V

≤
(∫

Ω(h)
∥G(z, s,ρ)∥2

End(V) dvol(z)
)1/2

h−1∥ f ∥L2(Ω(h)).

Using the pointwise estimate in (5.62) and noticing that for all z ∈ Ω(h) we have
|Im(z)| ≤ h, we can crudely bound the integral in the previous line, leading to

≤ vol(Ω(h)) · c4(σ ,ρ)h−A1(σ)|Im(s)|α(σ)eCh|s| log(1+|s|)∥ f ∥L2(Ω(h))

= c5(σ ,ρ)h−A2(σ)|Im(s)|α(σ)eCh|s| log(1+|s|)∥ f ∥L2(Ω(h)).

Since f was arbitrary, we obtain (after relabelling the constants) the claimed esti-
mate for the norm of Fs,ρ,1.

We can finally prove the last result of this subsection, which is what we actually
need in the proof of Theorem 5.1.

Proposition 5.30. There exist C > 0 and h0 > 0 such that for all h ∈ (0, h0), s ∈ C
with |Im(s)| ≥ 1, and all k ∈ N there exist constants α1 = α1(σ , k), A1 = A1(σ , k)
and C1 = C1(σ , k,ρ) such that

∥Fs,ρ,k∥H2(Ω(h);V)→H2(Ω(h);V) ≤ C1h−A1 |Im(s)|α1 eCh(|s|+ k
2 ) log(1+|s|+ k

2 ) (5.63)

and
∥Ψk∥H2(Ω(h);V)→H2(Ω(h);V) ≤ 4kh−3k/2. (5.64)
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Proof. For ease of notation we write ∥ · ∥ instead of ∥ · ∥H2(Ω(h);V)→H2(Ω(h);V). By
Proposition 5.24 (3) and Lemma 5.28, we have

∥Ψk∥ ≤ ∥Ψ1∥k ≤ 4kh−3k/2,

proving (5.64). Applying the triangle inequality to the recursion equation for
Fs,ρ,k in Proposition 5.24 (3), and using the already established norm estimate in
Lemma 5.29 for Fs,ρ,1, we get

∥Fs,ρ,k∥ ≤
k−1

∑
j=0

∥Fs+ j
2 ,ρ,1

∥ · ∥Ψ1∥ j

≤
k−1

∑
j=0

C
(
σ +

j
2

,ρ
)

h−A
(
σ+

j
2

)
|Im(s)|α

(
σ+

j
2

)
eCh|s+ j

2 | log
(

1+|s+ j
2 |
)
· 4 jh−3 j/2

≤
k−1

∑
j=0

4 jC
(
σ +

j
2

,ρ
)

h−
(

A
(
σ+

j
2

)
+

3 j
2

)
|Im(s)|α

(
σ+

j
2

)
eCh

(
|s|+ j

2

)
log
(

1+|s|+ j
2

)
.

Choosing (without trying to optimize the constants)

α1 := max
0≤ j≤k−1

{
α

(
σ +

j
2

)}
, A1 := max

0≤ j≤k−1

{
A
(
σ +

j
2

)
+

3 j
2

}
,

and

C1 := k · max
0≤ j≤k−1

{
4 jC

(
σ +

j
2

,ρ
)}

,

we obtain
∥Fs,ρ,k∥ ≤ C1h−A1 |Im(s)|α1 eCh(|s|+ k

2 ) log(1+|s|+ k
2 ),

thus proving (5.63).

5.3.8 Proof of Theorem 5.1

We can now prove Theorem 5.1 by gathering all the results established in previ-
ous subsections. The following inequality on Fredholm determinants allows us
to separate the finite-rank part (Fs,ρ,k) arising in Proposition 5.24 from the holo-
morphic part (Ls+ k

2 ,ρΨk) of the transfer operator. For the latter we have a rather
precise singular value estimate, thanks to Proposition 5.18.

Lemma 5.31. Let H be a separable Hilbert space, F : H → H a finite-rank operator, and
T : H → H an arbitrary trace class operator. Then

log | det(1 + F+ T)| ≤ rank(F) log(1 + ∥F∥) +
∞
∑

m=1
log(1 +µm(T)).
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Proof. By the well-known Weyl inequality (see (A.4)), we have

| det(1 + F+ T)| ≤ det(1 + |F+ T|).

By a result of Seiler–Simon [78], we have

det(1 + |F+ T|) ≤ det(1 + |F|) det(1 + |T|).

Since F is a finite-rank operator, we have µm(F) = 0 for all m > rank(F). Thus,
taking logarithms leads to

log | det(1 + F+ T)| ≤ log det(1 + |F|) + log det(1 + |T|)

=
∞
∑

m=1
log(1 +µm(F)) +

∞
∑

m=1
log(1 +µm(T))

≤ rank(F) log(1 + ∥F∥) +
∞
∑

m=1
log(1 +µm(T)).

The proof is complete.

Also helpful is the following elementary estimate.

Lemma 5.32. For all M ≥ 0 we have, as η↘ 0,

∞
∑

m=0
log(1 + Me−ηm) = O

(
η−1 log(2 + M)2

)
.

Proof. Set m0 := ⌊η−1 log(2 + M)⌋. Then for all integers m > m0 we have
Me−ηm < 1, which implies

∞
∑

m=0
log(1 + Me−ηm) ≤ m0 log(1 + M) +

∞
∑
j=1

log(1 + e−η j)

≤ η−1 log(2 + M)2 +
∞
∑
j=0

e−η j

= η−1 log(2 + M)2 +
1

1 − e−η
.

Since e−η = 1 − η+ o(η) as η↘ 0, we conclude that

∞
∑

m=0
log(1 + Me−ηm) ≤ η−1 log(2 + M)2 + O(η−1) = O

(
η−1 log(2 + M)2

)
,

as claimed.

Proof of Theorem 5.1. From Theorem 5.27 we already know that LΓw(s,ρ) extends
to a meromorphic function of s ∈ C, and that its poles are contained in the set
1
2(1 −N0).
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So it remains to prove the growth estimate. To this end, fix some h0 > 0 small
enough such that the conclusions of Proposition 5.24, Proposition 5.18, and Propo-
sition 5.30 hold true for all h ∈ (0, h0). Fix s = σ + iT where σ = Re(s) and

T = Im(s), and assume that |T| ≥ 2. Set h := h0

(
|T|

1+log |T|

)−1
∈ (0, h0) and

k :=

{
⌈−2σ + 1⌉+ 1 if σ ≤ 1

2
0 otherwise,

so that Re(s) + k
2 > 1

2 . By Theorem 5.27 and Proposition 5.24 we can express the
L-function as

LΓw(s,ρ) = det(1 − Fs,ρ,k −Ls+ k
2 ,ρΨk). (5.65)

In the case k = 0 (that is, when σ > 1
2 ) we simply set Fs,ρ,0 = 0 and Ψ0 = id,

to avoid an artificial case distinction. Again, we simplify the notation by writing
∥ · ∥ instead of ∥ · ∥H2(Ω(h);V)→H2(Ω(h);V).

Applying Lemma 5.31 to the right hand side of (5.65) leads to

log |LΓw(s,ρ)| ≤ S1 + S2,

with the two terms

S1 := rank(Fs,ρ,k) · log(1 + ∥Fs,ρ,k∥)

and

S2 :=
∞
∑

m=1
log(1 +µm(Ls+ k

2 ,ρΨk)).

The goal is to estimate these two terms individually, starting with S1. By Proposi-
tion 5.24 and the definition of k, the rank of Fs,ρ,k can be bounded solely in terms
of σ ,ρ:

rank(Fs,ρ,k) ≤ dimρ · k ≪σ ,ρ 1.

Combining this with the norm estimate for Fs,ρ,k in (5.63) and noticing that the
constants C1, A1,α1 appearing in (5.63) are now bounded solely in terms of σ ,ρ,
we obtain

S1 ≪σ ,ρ log
(

1 + C1h−A1 |T|α1 eCh(|s|+ k
2 ) log(1+|s|+ k

2 )
)

≪σ ,ρ log(h−1) + log |T|+ h(|s|+ k/2) log(1 + |s|+ k/2).

Observe that we trivially have |s|+ k/2 ≪σ |T|, from which we deduce the final
bound on S1:

S1 ≪σ ,ρ log(h−1) + log |T|+ h|T| log |T| ≪σ ,ρ (log |T|)2. (5.66)

We proceed with estimating S2. First notice that

µm(Ls+ k
2
Ψk) ≤ µm(Ls+ k

2
) · ∥Ψk∥.

We can now invoke the singular value estimate from Proposition 5.18 and the
norm estimate for Ψk in (5.64). Combining both of these estimates leads to an
estimate of the type

µm(Ls+ k
2
Ψk) ≤ Ah−AeB|T|h exp(−Chδm),
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where A, B, C > 0 may depend on σ and ρ, but not on h. We can now invoke
Lemma 5.32, which gives

S2 ≤
∞
∑

m=1
log

(
1 + Ah−AeB|T|h exp(−Chδm)

)
≪σ ,ρ h−δ log

(
2 + Ah−AeB|T|h

)2

≪σ ,ρ

(
|T|

log |T|

)δ
log

(
2 + Ah−A

0

(
|T|

1 + log |T|

)A

eBh−1
0 log |T|

)2

≤
(

|T|
log |T|

)δ
log

(
2 + Ah−A

0 e(A+Bh−1
0 ) log |T|

)2

Noticing that log
(

2 + Ah−A
0 e(A+Bh−1

0 ) log |T|
)
≪σ log |T| finally leads to the bound

S2 ≪σ ,ρ

(
|T|

log |T|

)δ
(log |T|)2 = |T|δ(log |T|)2−δ. (5.67)

Adding together (5.66) and (5.67) yields

log |LΓw(s,ρ)| ≪σ ,ρ (log |T|)2 + |T|δ(log |T|)2−δ. (5.68)

Clearly, the first term in (5.68) gets absorbed by the second. The proof of Theorem
5.1 is complete.

5.3.9 Proof of Corollary 5.3

We can now prove Corollary 5.3. Let Γ̃ be a torsion-free, finite-index subgroup of
Γw, let X̃ = Γ̃\H be its corresponding hyperbolic surface, and let NX(σ , T) and
MX(σ , T) be the resonance counting functions defined in (5.2) and (5.3), which
we seek to estimate. Notice that it suffices to prove the estimate for MX̃(σ , T),
since

NX̃(σ , T) ≤
∫ T

−T
MX̃(σ , t)dt.

By the result of Borthwick–Judge–Perry [13], the zeros of Z
Γ̃
(s) correspond with

multiplicities to the resonances for X̃, except for some zeros on the real line. More
formally, we have the equality of sets (including multiplicities)

#
{

s ∈ CrR : Z
Γ̃
(s) = 0

}
= R(X̃)rR. (5.69)

Hence, for fixed σ ∈ R we have

MX̃(σ , T) = M(σ , T)− O(1),

where

M(σ , T) := #
{

s ∈ C : Z
Γ̃
(s) = 0, Re(s) ≥ σ , |Im(s)− T| ≤ 1

}
.

Therefore, it is enough to estimate the zero-counting function M(σ , T). Recall
that if σ > δ, then the Selberg zeta function Z

Γ̃
(s) has no zeros in the half-plane
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{Re(s) ≥ σ}. We can therefore assume that σ ≤ δ in which case M(σ , T) is equal
to the number of zeros of Z

Γ̃
(s) within the box

R(σ , T) := [σ , δ] + i[T − 1, T + 1].

Set s0 = 1 + iT and observe that

R(σ , T) ⊂ D(s0, r1) ⊂ D(s0, r2),

with radii r1 =
√

1 + (1 −σ)2 + 1 and r2 = 2r1. Notice that r1, r2 depend solely
on σ . By increasing the multiplicative constant in the statement of Corollary 5.3,
we may assume that |T| > r2 + 2, so that for each s ∈ D(s0, r2) we have |Im(s)| ≥
2. In particular, the disk D(s0, r2) does not meet the real line. Since all the poles of
Z
Γ̃
(s) lie on the real line, the function Z

Γ̃
(s) is holomorphic on D(s0, r2), allowing

us to apply Titchmarsh’s Number of Zeros Theorem (see Lemma 3.5). We obtain

M(σ , T) ≤ 1
log(r2/r1)

(
max

|s−s0|=r2

log |Z
Γ̃
(s)| − log |Z

Γ̃
(s0)|

)
. (5.70)

Using the Euler product representation for the Selberg zeta function Z
Γ̃
(s) (which

is valid for all Re(s) > δ), we find

|Z
Γ̃
(s0)| = |Z

Γ̃
(1 + iT)| ≥ Z

Γ̃
(1). (5.71)

Hence, inserting (5.71) and Corollary 5.2 into (5.70) gives

M(σ , T) ≤ 1
log(2)

(
max

|s−s0|=r2

log |Z
Γ̃
(s)| − log |Z

Γ̃
(1)|

)
≪σ |T|δ(log |T|)2−δ,

as claimed.

5.4 Essential spectral gap

The goal of this section is to prove the last result stated in the introduction of this
chapter, Theorem 5.4. It will follow from Theorem 5.33 below, which is a more
abstract result that applies to every non-elementary, finitely generated, torsion-
free Fuchsian group.

Let Γ be a finitely generated Fuchsian group and let ZΓ be its Selberg zeta func-
tion. We define the essential spectral gap of Γ as

G(Γ) := inf {σ : ZΓ (s) has finitely many zeros in {Re(s) ≥ σ}} .

Notice that the statement G(Γ) ≥ σ is equivalent with saying that for every ε > 0
the Selberg zeta function ZΓ (s) has infinitely many zeros with Re(s) ≥ σ − ε.
Thus, an explicit lower bound on the essential gap leads to an explicit vertical
strip containing infinitely many zeros. If we assume furthermore that Γ is torsion-
free, then the zeros of ZΓ (s) in {Re(s) ≥ σ − ε} are (up to a finite number of
exceptions) resonances of X = Γ\H.
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In this section, we follow the ideas of Jakobson–Naud [40] to show how one can
utilize vertical growth estimates for the Selberg zeta function to derive lower
bounds for G(Γ).

To adequately formulate our main result, we define for each σ ∈ R the quantity
κ(σ), which measures the growth of the Selberg zeta function ZΓ (s) in the half-
plane {Re(s) ≥ σ} and bounded away from the real axis. More precisely, we let
κ(σ) be the infimum over all κ > 0 such that for all s ∈ C with Re(s) ≥ σ and
|Im(s)| ≥ 1 there exists C = C(σ ,κ) such that

log |ZΓ (s)| ≤ C|Im(s)|κ .

Notice that the condition |Im(s)| ≥ 1, which ensures that s is bounded away from
the real axis, may be replaced by |Im(s)| ≥ c for any other fixed positive value c
without changing the value κ(σ).

The fractal upper bound for Schottky groups Γ due to Guillopé–Lin–Zworski [33]
immediately implies that κΓ (σ) ≤ δ for all σ ∈ R. Similarly, Corollary 5.2 shows
that for any finite-index subgroup Γ̃ of a Hecke triangle group Γw we haveκ

Γ̃
(σ) ≤

δ. On the other hand, using the product definition for the Selberg zeta function,
it is not hard to show that for every finitely generated Fuchsian group Γ and all
σ > δ, we have κΓ (σ) = 0.

The main result of the present section relates the essential spectral gap G(Γ) with
the growth κΓ (σ) of the Selberg zeta function ZΓ .

Theorem 5.33. Let Γ be a non-elementary, finitely generated, torsion-free Fuchsian
group and let δ = δ(Γ) be the Hausdorff dimension of the limit set Λ(Γ). Then

G(Γ) ≥ δ

2
−κΓ (G(Γ))δ.

Moreover, if Γ has the bounded cluster property and δ(Γ) > 1
2 , we have

G(Γ) ≥ δ− κΓ (G(Γ))

2
− 1

4
.

The term ‘bounded cluster property’ refers to a property of the trace spectrum of
Γ and will be recalled in Subsection 5.4.2.

This section is mainly devoted to the proof of Theorem 5.33. It is only in the
last subsection, Subsection 5.4.3, where we will show how Theorem 5.4 can be
deduced from Theorem 5.33.

5.4.1 An approximate trace formula

The next result can be seen as an approximate trace formula with error term. It
is essentially an extension of [40, Proposition 3.1] to the case when X = Γ\H has
cusps. Recall that for any given functionϕ ∈ C∞

c
(
(0, ∞)

)
we let

ϕ̂(z) :=
∫ ∞
−∞ e−ixzϕ(x) dx.

be its Fourier transform. Moreover, we denote by ZΓ the set of zeros of ZΓ .
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Proposition 5.34. Let Γ and δ be as in Theorem 5.33. Let σ < δ and κ > 0. Assume
that κ > κΓ (σ) and assume that ZΓ (s) has only finitely many zeros in the half-plane
Re(s) ≥ σ . Then for all test functionsϕ ∈ C∞

c
(
(0, ∞)

)
and all ε > 0 sufficiently small

we have

∑
[γ]∈[Γ]p

∞
∑

m=1

ℓ(γ)ϕ(mℓ(γ))

1 − e−mℓ(γ)
(5.72)

= ∑
ζ∈ZΓ

Re(ζ)≥σ

ϕ̂(iζ)− SΓ (σ) + Oε,σ ,κ

(∫ ∞
−∞⟨x⟩κ|ϕ̂(x + i(σ +ε))|dx

)
, (5.73)

where

SΓ (σ) =

{
0 if σ > 1

2

nc ∑
⌈1−2σ⌉
k=0 ϕ̂

(
i 1−k

2

)
if σ ≤ 1

2

is the contribution coming from the possible poles of ZΓ and nc ≥ 0 denotes the number
of cusps of X = Γ\H.

For the proof of Proposition 5.34 we need the Borel-Carathéodory inequality (for
a proof see Titchmarsh [89, Chapter V]):

Lemma 5.35. Let f be a holomorphic function on a neighbourhood of {|z| ≤ R}. Then
for any r < R we have

max
|z|=r

| f ′(z)| ≤ 8R
(R − r)2

(
max
|z|=R

|Re f (z)|+ | f (0)|
)

.

Proof of Proposition 5.34. For all Re(s) > δ, the Euler product definition of the
Selberg zeta function leads to the following formula for its logarithmic derivative:

Z′
Γ (s)

ZΓ (s)
= ∑

[γ]∈[Γ]p

∞
∑

m=1

ℓ(γ)e−smℓ(γ)

1 − e−mℓ(γ)
. (5.74)

Fix some real number a > δ and consider the contour integral

I(a) :=
1

2π i

∫
Re(s)=a

Z′
Γ (s)

ZΓ (s)
ϕ̂(is)ds. (5.75)

By (5.74), we have ⏐⏐⏐⏐Z′
Γ (s)

ZΓ (s)

⏐⏐⏐⏐ ≤ Z′
Γ (a)

ZΓ (a)

for all Re(s) ≥ a. Moreover, ϕ̂(is) decreases rapidly as |Im(s)| → ∞, since
ϕ ∈ C∞

c (R). Therefore (5.75) converges absolutely. Using formula (5.74) and
interchanging summation and integration (justified by the absolute convergence
of the contour integral), we obtain

I(a) = ∑
[γ]∈[Γ]p

∞
∑

m=1

ℓ(γ)

1 − e−mℓ(γ)

1
2π i

∫
Re(s)=a

ϕ̂(is)e−smℓ(γ)ds.
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Deforming the contour to the imaginary axis and using the Fourier inversion
formula, we obtain

1
2π i

∫
Re(s)=a

ϕ̂(is)e−smℓ(γ)ds =
1

2π i

∫
Re(s)=0

ϕ̂(is)e−smℓ(γ)ds

=
1

2π

∫ ∞
−∞ eiξmℓ(γ)ϕ̂(ξ)dξ

=ϕ(mℓ(γ)).

Thus,

I(a) = ∑
[γ]∈[Γ]p

∞
∑

m=1

ℓ(γ)

1 − e−mℓ(γ)
ϕ(mℓ(γ)).

Let us return to (5.75). By assumption, ZΓ (s) has only finitely many zeros in the
half-plane Re(s) ≥ σ . By moving the contour in (5.75) to the left, we have (at least
formally)

I(a) = ∑
ζ∈ZΓ

Re(ζ)≥σ

ϕ̂(iζ)− SΓ (σ) +
1

2π i

∫
Re(s)=σ+ε

Z′
Γ (s)

ZΓ (s)
ϕ̂(is)ds, (5.76)

for all ε > 0 small enough, where SΓ (σ) is the contribution coming from the
possible poles of ZΓ in the half-plane {Re(s) ≥ σ}. From the result of Bortwick–
Judge–Perry [13] (see also Section 2.5), we know that the possible poles of ZΓ are
located at the points 1

2(1 −N0), and each pole has multiplicity nc. (Note that if Γ
has no parabolic elements (nc = 0), then ZΓ has no poles.) It follows that

SΓ (σ) =

{
0 if σ > 1

2

nc ∑
⌈1−2σ⌉
k=0 ϕ̂

(
i 1−k

2

)
if σ ≤ 1

2
.

We now claim that there exists a constant M ≥ 1 such that⏐⏐⏐⏐Z′
Γ (s)

ZΓ (s)

⏐⏐⏐⏐≪a,ε,σ ,κ |Im(s)|κ (5.77)

for all s ∈ C with σ + ε ≤ Re(s) ≤ a and |Im(s)| > M. Before we prove this
claim, let us see how it can be used to finish the proof. First, notice that the
estimate (5.77) shows that the integral appearing in (5.76) converges absolutely,
and therefore justifies the contour deformation used in (5.76). Using (5.77), we
obtain

I(a) = ∑
ζ∈ZΓ

Re(ζ)≥σ

ϕ̂(iζ)− SΓ (σ) + Oε,σ ,κ

(∫ ∞
−∞⟨x⟩κ|ϕ̂(x + i(σ +ε))|dx

)
,

and Proposition 5.34 follows.

It remains to establish estimate (5.77). For t ∈ R, consider the meromorphic
function

z ↦→ ZΓ (z + a + it)
ZΓ (a + it)

. (5.78)
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Using the assumption that ZΓ (s) has only finitely many zeros in Re(s) ≥ σ , we
deduce that there exists M ≥ 1 such that for all |t| > M, (5.78) defines a non-
vanishing holomorphic function on the closed disk D(0, a−σ −ε/2). This allows
us to define the complex holomorphic logarithm

ft(z) := log
(

ZΓ (z + a + it)
ZΓ (a + it)

)
,

satisfying ft(0) = 0 and

Re( ft(z)) = log
⏐⏐⏐⏐ZΓ (z + a + it)

ZΓ (a + it)

⏐⏐⏐⏐ .

Applying the Lemma 5.35 to the function ft with radii R = a − σ − ε/2 and
r = a −σ −ε, we obtain

max
|z|=a−σ−ε

⏐⏐⏐⏐Z′
Γ (z + a + it)

ZΓ (z + a + it)

⏐⏐⏐⏐ ≤ 32Rε−2 max
|z|=a−σ

log
⏐⏐⏐⏐ZΓ (z + a + it)

ZΓ (a + it)

⏐⏐⏐⏐ (5.79)

= 32Rε−2
(

max
|z|=a−σ−ε/2

log |ZΓ (z + a + it)| − log |ZΓ (a + it)|
)

(5.80)

Since a > δ, we can use the product definition of ZΓ to obtain the lower bound

|ZΓ (a + it)| ≥ ZΓ (a) (5.81)

for all t ∈ R. On the other hand, by the definition of κ(σ) and by the assumption
that κ > κ(σ), we know that for all s ∈ C with Re(s) ≥ σ and |Im(s)| ≥ M we
have the growth estimate

log |ZΓ (s)| ≪σ ,κ |Im(s)|κ .

In particular, we have
|ZΓ (z + a + it)| ≪a,σ ,κ |t|κ . (5.82)

for all complex z with |z| = a −σ −ε/2. The claimed estimate (5.77) now follows
from inserting (5.81) and (5.82) into (5.80).

5.4.2 Bounded cluster property

A Fuchsian group Γ is said to have the bounded cluster property if there exists a
constant C = C(Γ) such that for every N ∈ N0 we have

|Tr(Γ) ∩ [N, N + 1]| ≤ C,

where
Tr(Γ) := {|tr(γ)| : γ ∈ Γ}

is the trace spectrum of Γ (without multiplicities!). The bounded cluster property
imposes strong implications on the length spectrum of X = Γ\H.

Recall that the (primitive) length spectrum of X = Γ\H is the countable set

L(X) = {ℓ(γ) : [γ] ∈ [Γ]p}.
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Each element ℓ ∈ L(X) in this set appears with a certain multiplicity, which we
denote by MΓ (ℓ). The following lemma is a quantitative version of the fact that,
on average, the lengths in the length spectrum of groups having bounded cluster
property occur with high multiplicity.

Lemma 5.36. Let Γ be a finitely generated Fuchsian group with δ = δ(Γ) > 1
2 . Assume

that Γ has the bounded cluster property. Then for any c > 0 we have

∑
ℓ

τ−c≤ℓ≤τ+c

MΓ (ℓ)
2 ≫ e(2δ−1/2)τ

τ2 , as τ → ∞, (5.83)

where the summation is taken over each length ℓ appearing in L(X) ∩ [τ − c, τ + c].
Moreover, the implied constant in (5.83) depends on Γ and c only.

Proof. The bounded cluster property implies that there exists C′ = C′(Γ) such that
for all x ≥ 1 we have

#{t ∈ Tr(Γ) : t ≤ x} ≤ C′x. (5.84)

Combining (5.84) with the identity

|tr(γ)| = 2 cosh
(
ℓ(γ)

2

)
,

shows that there exists some C′′ = C′′(Γ) such that

#{ℓ ∈ L(X) : ℓ ≤ τ} ≤ C′′ cosh(τ/2) ≤ C′′eτ/2,

where the set on the left is to be understood without multiplicities. Hence, using
the Cauchy-Schwarz Inequality leads to⎛⎜⎝ ∑

ℓ
τ−c≤ℓ≤τ+c

MΓ (ℓ)

⎞⎟⎠
2

≤ C′′eτ/2
∑

ℓ∈L(X)
τ−c≤ℓ≤τ+c

MΓ (ℓ)
2, (5.85)

On the other hand, by the prime geodesic theorem (see Borthwick [14, Theo-
rem 14.20] and the references therein), we have

∑
ℓ

τ−c≤ℓ≤τ+c

MΓ (ℓ) = πΓ (τ + c)− πΓ (τ − c) ≫ eδτ

τ
, (5.86)

with implied constant only depending on c and Γ . Combining (5.85) and (5.86)
finishes the proof.

The next result, which is needed only in the proof of the second part of Theorem
5.4, asserts that Hecke triangle groups Γw with cusp width w have the bounded
cluster property if w2 is an integer.
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Lemma 5.37. Let Γw be the Hecke group with parameter w =
√

n for some n ∈ N. Then
every element of Γw is either of the form[

a b
√

n
c
√

n d

]
, a, b, c, d ∈ Z

or [
a
√

n b
c d

√
n

]
, a, b, c, d ∈ Z.

Moreover, Γw has the bounded cluster property.

Proof. Set Γ := Γw and T := Tw. Every element γ ∈ Γ is of the form

γ = Tαk STαk−1 · · · STα0 (5.87)

for some k ∈ N andα0,α1, . . . ,αk ∈ Z (note thatα j = 0 is allowed and we do not
require this representation to be unique). For fixed k ∈ N let Γ (k) denote the set of
all the elements in Γ for which (5.87) is satisfied for some α0,α1, . . . ,αk ∈ Z. Let
M ⊂ PSL2(R) be the following subset:

M :=
{[

a b
√

n
c
√

n d

]
: a, b, c, d ∈ Z

}
∪
{[

a
√

n b
c d

√
n

]
: a, b, c, d ∈ Z

}
.

We will show that Γ (k) ⊆ M for every k ∈ N. For k = 1 the statement is clear,
since we have the expression

Tα0 STα1 =

[
α0

√
n −1 +α0α1n

1 α1
√

n

]
An elementary calculation shows the inclusions

T ·M ⊆ M and S ·M ⊆ M,

and hence the statements for all k ∈ N follow by induction. Thus Γ ⊆ M.

Consequently, the trace spectrum of Γ is contained in the set Z ∪
√

nZ, which
implies that Γ satisfies the bounded cluster property. The proof is complete.

5.4.3 Proof of Theorem 5.33

This subsection is entirely devoted to the proof of Theorem 5.33. Throughout
let Γ be a non-elementary, finitely generated, torsion-free Fuchsian group with
δ = δ(Γ). All the implied constants during the proof may depend on Γ .

Fix σ > G(Γ) and then κ > κΓ (σ). We will show that any such choice of σ and κ
must satisfy the inequality

σ ≥ δ

2
−κδ. (5.88)

Taking the limit κ ↘ κΓ (σ) in (5.88) leads to

σ ≥ δ

2
−κΓ (σ)δ.
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Notice that by the definition of κΓ we have lim supσ↘σ0
κ(σ) = κ(σ0) for all σ0 ∈

R. Hence, taking the limitσ ↘ G(Γ) in the previous inequality yields the desired
conclusion

G(Γ) ≥ δ

2
−κΓ (G(Γ))δ.

If we assume furthermore that Γ has the bounded cluster property, we will show
that for any choice of σ and κ as above, we must have

σ ≥ δ− κ
2
− 1

4
. (5.89)

After sending first κ ↘ κΓ (σ) and then σ ↘ G(Γ), we obtain

G(Γ) ≥ δ− κΓ (G(Γ))

2
− 1

4
. (5.90)

Thus, our goal is to prove (5.88) (respectively (5.89) in the case that Γ has the
bounded cluster property) for any fixed pair σ and κ satisfying σ > G(Γ) and
κ > κ(σ).

By the definition of G(Γ), we know that ZΓ (s) has only a finite number of zeros in
the half-plane {Re(s) ≥ σ}. In particular,σ andκ satisfy the conditions of Propo-
sition 5.34, which we want to a apply to a suitable familyϕξ ,τ of test functions.

Fix a positive functionϕ ∈ C∞
c (R), with support in the interval [−1, 1] and such

thatϕ = 1 on
[
− 1

2 , 1
2

]
. For real parameters ξ and τ , set

ϕξ ,τ(x) := e−iξtϕ(x − τ)

Define the quantity

S(ξ , τ) := ∑
[γ]∈[Γ]p

∞
∑

m=1

ℓ(γ)ϕξ ,τ(mℓ(γ))

1 − e−mℓ(γ)
= ∑

[γ]∈[Γ]p

∞
∑

m=1

ℓ(γ)e−iξmℓ(γ)

1 − e−mℓ(γ)
ϕ(mℓ(γ)− τ).

Note that for all τ > 2, we have supp(ϕξ ,τ) ⊂ (0, ∞). Hence, applying Proposi-
tion 5.34 toϕξ ,τ , we obtain

S(ξ , τ) = ∑
ζ∈ZΓ

Re(ζ)≥σ

ϕ̂ξ ,τ(iζ)− SΓ (σ) + E(ξ , τ), (5.91)

where the error term E(ξ , τ) satisfies for all ε > 0 small enough

E(ξ , τ) = Oε,σ ,κ

(∫ ∞
−∞⟨x⟩κ|ϕ̂ξ ,τ(x + i(σ +ε))|dx

)
To estimate the integral in the error term, note that

ϕ̂ξ ,τ(x) = e−i(x+ξ)ϕ̂(x +ξ),

which follows from basic properties of the Fourier transform. Moreover, sinceϕ
is compactly supported, its Fourier transform decays rapidly, which implies that

|ϕ̂ξ ,τ(x + i(σ +ε))| ≪m e(σ+ε)τ (1 + |x +ξ + i(σ +ε)|)−m
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for any positive integer m. Taking m = 3, say, we obtain the estimate∫ ∞
−∞⟨x⟩κ|ϕ̂ξ ,τ(x + i(σ +ε))|dx = Oε(e(σ+ε)τ⟨ξ⟩κ). (5.92)

Hence, we obtain the following estimate on the error term:

E(ξ , τ) = Oε,σ ,κ(e(σ+ε)τ⟨ξ⟩κ) (5.93)

The Gaussian average of S(ξ , τ) with parameter λ > 0 is defined as

G(λ, τ) :=

√
λ

π

∫ ∞
−∞ |S(ξ , τ)|2e−λξ

2
dξ . (5.94)

The strategy of the proof is to give a lower and an upper bound bound for G(λ, τ)
(the upper bound will be optimized with respect to the parameter λ), and then to
compare lower and upper bounds as τ → ∞ and ε↘ 0.

Let us start with the upper bound. By (5.91) we can estimate the Gaussian average
from above as follows:

G(λ, τ) ≤ 2

√
λ

π

⎛⎜⎜⎜⎝
∫ ∞
−∞

⏐⏐⏐⏐⏐⏐⏐⏐ ∑
ζ∈ZΓ

Re(ζ)≥σ

ϕ̂ξ ,τ(iζ)− SΓ (σ)

⏐⏐⏐⏐⏐⏐⏐⏐
2

e−λξ
2
dξ +

∫ ∞
−∞ |E(ξ , τ)|2e−λξ

2
dξ

⎞⎟⎟⎟⎠ .

(5.95)
Recall that for any integer m ≥ 2 we have

|ϕ̂ξ ,τ(iζ)| ≪m eRe(ζ)τ⟨ξ⟩−m.

Recall that SΓ (σ) is the contribution coming from the poles of the Selberg zeta
function ZΓ (s) in the half-plane Re(s) ≥ σ . Since all the zeros and poles of the
Selberg zeta function ZΓ (s) lie in the half-plane Re(s) ≤ δ, and since there are
only finitely many zeros and poles in the half-plane Re(s) ≥ σ , we obtain (by
taking m = 1)

∫ ∞
−∞

⏐⏐⏐⏐⏐⏐⏐⏐ ∑
ζ∈ZΓ

Re(ζ)≥σ

ϕ̂ξ ,τ(iζ)− SΓ (σ)

⏐⏐⏐⏐⏐⏐⏐⏐
2

e−λξ
2
dξ ≪σ e2δτ

∫ ∞
−∞⟨ξ⟩−2e−λξ

2
dξ ≪ e2δτ .

(5.96)
Using the bound for the error term E(ξ , τ) in (5.93), we have∫ ∞

−∞ |E(ξ , τ)|2e−λξ
2
dξ ≪ε,σ ,κ e2(σ+ε)τ

∫ ∞
−∞⟨ξ⟩2κe−λξ

2
dξ ≪ε,σ ,κ e2(σ+ε)τλ−κ−1/2.

(5.97)
Going back to (5.95) and summing (5.96) and (5.97), we obtain the upper bound

G(λ, τ) ≪ε,σ ,κ e2δτλ1/2 + e2(σ+ε)τλ−κ (5.98)
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We now proceed to give a lower bound for the Gaussian average G(λ, τ). Using
its definition in (5.94) we compute

G(λ, τ) = (5.99)

∑
[γ]1 ,[γ]2∈[Γ]p

∑
m1 ,m2≥1

ℓ(γ1)ℓ(γ2)ϕ(m1ℓ(γ1)− τ)ϕ(m2ℓ(γ2)− τ)
(1 − e−m1ℓ(γ1))(1 − e−m2ℓ(γ2))

I(m1,γ1; m2,γ2),

(5.100)

where

I(m1,γ1; m2,γ2) =

√
λ

π

∫ ∞
−∞ e−λξ

2
e−iξ(m1ℓ(γ1)−m2ℓ(γ2))dξ (5.101)

Using the formula for the Fourier transform of the Gaussian, we find

I(m1,γ1; m2,γ2) = exp
(
− (m1ℓ(γ1)− m2ℓ(γ2))

2

4λ

)
Thus, the Gaussian average can be written as the sum

G(λ, τ) = ∑
[γ]1 ,[γ]2∈[Γ]p

∑
m1 ,m2≥1

ℓ(γ1)ℓ(γ2)ϕ(m1ℓ(γ1)− τ)ϕ(m2ℓ(γ2)− τ)
(1 − e−m1ℓ(γ1))(1 − e−m2ℓ(γ2))

× exp
(
− (m1ℓ(γ1)− m2ℓ(γ2))

2

4λ

)
.

All the terms of the above sum are positive. By restricting this sum to the terms
m1 = m2 = 1 and all [γ2], [γ1] ∈ [Γ]p with ℓ(γ1) = ℓ(γ2), we obtain the lower
bound

G(λ, τ) ≥ ∑
ℓ

ℓ2ϕ(ℓ− τ)2

(1 − e−ℓ)2 MΓ (ℓ)
2 ≥ ∑

ℓ

ℓ2ϕ(ℓ− τ)2MΓ (ℓ)
2, (5.102)

where the summation is over each length appearing in the primitive length spec-
trum L(X) of X = Γ\H, and MΓ (ℓ) denotes the multiplicity with which ℓ appears
in L(X).

By the assumption thatϕ = 1 on the interval
[
− 1

2 , 1
2

]
, we have

G(λ, τ) ≥ ∑
ℓ

τ−1/2≤ℓ≤τ+1/2

ℓ2MΓ (ℓ)
2 ≫ τ2

∑
ℓ

τ−1/2≤ℓ≤τ+1/2

MΓ (ℓ)
2. (5.103)

Hence, using the prime geodesic theorem the prime geodesic theorem (see Borth-
wick [14, Theorem 14.20] and the references therein), we obtain the final lower
bound for the Gaussian average:

G(λ, τ) ≫ τ2 (πΓ (τ + 1/2)− πΓ (τ − 1/2)) ≫ eδτ . (5.104)

We can finally compare the upper bound (5.98) with the lower bound (5.104). This
comparison yields

eδτ ≪ε,σ ,κ e2δτλ1/2 + e2(σ+ε)τλ−κ . (5.105)
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Now we set λ = e−
2(δ−σ)
κ+1/2 τ , so as to optimize the left hand side of (5.105). This

choice gives, for every τ large enough and for every ε > 0 small enough, the
bound

eδτ ≪ε,σ ,κ e
(

2δκ+σ
κ+1/2 +ε

)
τ (5.106)

Hence, taking the logarithm on both sides of (5.106), dividing by τ , and finally
sending τ → ∞ and ε↘ 0, yields

δ ≤ 2δκ +σ
κ + 1/2

⇐⇒ σ ≥ δ

2
−κδ,

which proves (5.88). Thus, the proof of the first part of Theorem 5.33 is complete.

Let us now prove the second part and assume that Γ has the bounded cluster
property. In this case, the proof requires only one modification in the above argu-
ment. By invoking Lemma 5.36, we obtain a sharper lower bound on the Gaus-
sian average, when δ > 1

2 . Indeed, combining (5.103) and Lemma 5.36 leads to

G(λ, τ) ≫ τ2
∑

ℓ∈L(X)
τ−1/2≤ℓ≤τ+1/2

MΓ (ℓ)
2 ≫ e(2δ−1/2)τ (5.107)

for τ → ∞. Therefore, under the assumption that Γ has the bounded cluster
property and δ > 1

2 , Inequality (5.106) gets replaced by

e(2δ−1/2)τ ≪ε,σ ,κ e
(

2δκ+σ
κ+1/2 +ε

)
τ (5.108)

for all τ large enough and for all ε > 0 sufficiently small. Arguing as above, this
leads to

2δ− 1
2
≤ 2δκ +σ
κ + 1/2

⇐⇒ σ ≥ δ− κ
2
− 1

4
,

proving (5.89). The proof of Theorem 5.33 is now complete.

5.4.4 Proof of Theorem 5.4

Using the results of this section, we are now in place to prove Theorem 5.4.

Proof of Theorem 5.4. Let Γw be the Hecke triangle group with cusp width w > 2
and let Γ̃ 6 Γw be a torsion-free, finite-index subgroup. From the fractal growth
bound on Z

Γ̃
in Corollary 5.2, we find κ

Γ̃
(σ) ≤ δ for all σ ∈ R. Applying the first

part of Theorem 5.33 leads to

G(Γ̃ ) ≥ δ

2
−κ

Γ̃
(G(Γ̃ ))δ ≥ δ

2
− δ2. (5.109)

Let us now assume in addition that w =
√

n is the square-root of some integer
n ≥ 5. Then, by Lemma 5.37, the group Γw has the bounded cluster property.
Therefore Γ̃ inherits this property, being a subgroup of Γw. By the second part of
Theorem 5.33, we obtain

G(Γ̃ ) ≥ δ−
κ
Γ̃
(G(Γ̃ ))

2
− 1

4
≥ δ

2
− 1

4
. (5.110)

This completes the proof.
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We remark that in Theorem 5.4 we assumed Γ̃ to be torsion-free, since we were
mainly interested in resonances for the corresponding surface X̃ = Γ̃\H. How-
ever, we may drop this assumption on Γ̃ . Following the steps that led to Theorem
5.33 and using Corollary 5.2 (which is valid for all finite-index subgroups Γ̃ 6 Γw),
we obtain the same lower bound on the essential spetral gap of Γ̃ as in (5.109) and
(5.110). This in turn leads to an explicit strip in the complex plane containing in-
finitely many zeros for the Selberg zeta function Z

Γ̃
of all finite-index subgroups

Γ̃ 6 Γw.
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Chapter 6

Conclusion and outlook

Although we gained further insight into the spectral theory of infinite-area hyper-
bolic surfaces, this subject is by no means closed and many interesting questions
remain open. In this last chapter, we briefly outline some of these questions. The
goal here is not an exhaustive list of all the problems that might be interesting.
Rather, we provide a list of some problems that we feel could be attacked using
methods similar to those used and developed in this thesis.

In Chapter 3, we proved global estimates for resonances for covers of Schottky
surfaces, in terms of their 0-volume. We believe the same estimate to hold true
for all geometrically finite hyperbolic surfaces. The main reason we restricted to
Schottky surfaces was the relative simplicity of the associated transfer operators,
which allowed us to perform the decoupling trick needed to establish Proposition
3.4.

Problem 6.1. Let X be an arbitrary geometrically finite, infinite-area hyperbolic surface
and let (X j) be a family of finite covers of X with 0-vol(X j) → ∞ as j → ∞. Can
one prove that NX j(r) ≍ 0-vol(X j)r2 as r → ∞, or even the stronger asymptotics
NX j(r) ∼ CX 0-vol(X j)r2 as r, j → ∞?

In Chapter 4 we considered the notion of spectral gap in the case of abelian covers
X j. By exploiting the ‘abelianness’ of these covers, we frabicated hyperbolic sur-
faces with arbitrarily small spectral gap. Abelianness was absolutely crucial for
doing so, and there exist examples for families of covers for which precisely the
opposite is true. For instance, from the work of Bourgain–Gamburd–Sarnak [17]
and Oh–Winter [63] we know that congruence covers X(q) lead to uniform spectral
gap. We say that a family of covers (X j) has ‘uniform spectral gap’ if there exists
ε0 = ε0(X) > 0 such that Gap(X j) ≥ ε0 for all j. We point out that uniform spec-
tral gap for congruence subgroups of the modular group PSL2(Z) is given by the
famous ‘Selberg 3

16 -theorem’ [81], which Selberg proved using Weil’s bounds on
Kloosterman sums.

We believe that the example of congruence covers is merely a ‘distraction’. From
the deep work of Bourgain–Gamburd [16] we know that certain Cayley graphs of
SL2(Fp), p prime, give rise to families of expanders. This key fact was used in [17]
and [63] to prove uniform spectral gap of congruence covers. In view of [17] and
[63], it seems that uniform spectral gap is caused solely by this expanding prop-
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erty of the sequence of Galois groups G j of the covering X j → X. Our problem
can thus be formulated in terms of the Cayley graphs G j = Cay(G j, π j(S)) from
Proposition 4.8.

Problem 6.2. Let X be a geometrically finite hyperbolic surface with δ(X) ≤ 1
2 . Let

(X j) j be a sequence of finite covers of X. Assume that the associated Cayley graphs (G j) j
form a family of expanders. Is it then true that (X j) j has uniform spectral gap?

In the case δ(X) > 1
2 , Problem 6.2 is solved in [17] by purely spectral methods.

The same techniques are no longer accessible when δ(X) ≤ 1
2 . Note that every

geometrically finite hyperbolic surface with δ(X) ≤ 1
2 must be a Schottky surface,

for reasons explained in Subsection 2.1.2. Hence Problem 6.2 could (at least in
principle) be attacked using the transfer operators Ls,ρ defined in Section 2.6.

Another interesting problem to consider is a possible generalization of the equidis-
tribution result gained in Chapter 4:

Problem 6.3. Can we generalize Theorem 4.2 to arbitrary finitely generated Fuchsian
groups Γ?

We believe that this question can be answered affirmatively, using more transfer
operators for more general Fuchsian groups. Again, using transfer operators for
non-Schottky groups will certainly give rise to new non-trivial obstacles.

In Chapter 5 we went on to prove fractal Weyl bounds for Hecke triangle groups.
Transfer operator techniques were absolutely crucial. In order to use them effec-
tively, we developed estimates for singular values of rather general vector-valued
transfer operators. Inspired by the work of Bandtlow–Jenkinson [7], we proved
Theorem 5.10, which we subsequently specialized to the Hecke triangle group
setting.

It would be interesting to prove ‘sharp’ estimates for generic transfer operators
acting on subsets of Cd with d ≥ 1. So far we have only considered the case
d = 1, which was sufficient for the goals of this thesis. Even better, we could try
to derive some estimates for their eigenvalues.

Problem 6.4. Can we prove estimates for singular values and eigenvalues of general
vector-valued transfer operators acting on subsets of Cd ?

Once established, such estimates could be applied to prove fractal Weyl bounds
for discrete subgroups of PSL2(C) or even more general Kleinian groups acting
on the (d + 1)-dimensional hyperbolic space Hd+1 for arbitrary d ≥ 1. In the case
of three dimensions, i.e. d = 2, we may consider for instance the analogues of the
Hecke triangle groups Γw generated by the three elements[

1 w
0 1

]
,
[

1 iw
0 1

]
,
[

0 −1
1 0

]
.

Estimates analogous to Theorem 5.10 are also likely to lead to growth estimates
on Ruelle zeta functions. These are zeta-type functions associated to more gen-
eral dynamical systems, which were introduced in Ruelle’s famous work [76].
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However, Problem 6.4 is interesting for its own sake, regardless of the possible
applications it may have in the future.

The main theorem in Chapter 5 and its direct corollaries have a logarithmic loss in
it. The methods employed in this work do not allow the logarithm to be removed
and we do not know if our upper bounds are optimal.

Problem 6.5. Can we remove the logarithmic loss in Theorem 5.1, or in Corollaries 5.2
and 5.3? Can we improve the exponent δ in Theorem 5.1 for values σ < δ close to δ ?

It is likely that we can improve Corollary 5.3. We strongly believe that working
with iterates of the transfer operator (as is done towards our proof of Theorem
3.2) will yield at least logarithmic improvements, without the need for new key
insights.

The last problem we would like to mention is work in progress, which is being
pursued jointly with Pohl and Naud.

Problem 6.6. Can we prove fractal Weyl upper bounds analogous to Theorem 5.1 for
arbitrary finitely generated Fuchsian groups?

The work of Pohl [71] and Fedosova–Pohl [26] allows us to represent the Selberg
zeta function (and more generally, L-functions) of very general Fuchsian groups
in terms of transfer operators. We believe that the methods that led to Theorem
5.1 are robust enough, so as to generalize it to the general geometrically finite
case. In particular, meromorphic continuation of transfer operators and the deli-
cate covering arguments of the limit set seem to be applicable in a more general
setting. Conceptually, no big changes seem to be required, but the level of gener-
ality we are aiming at will certainly add more technical and notational complexity
to the proof.
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Appendix A

Background material

A.1 Some elements of functional analysis

A.1.1 Sigular values

We recall a few elements of functional analysis that are used throughout this
work. For proofs and more details we refer to [83] or any other standard ref-
erence.

Let H1 and H2 be separable Hilbert spaces, and let A : H1 → H2 be a trace class
operator. We note that some parts of this subsection apply to operators more
general than trace class. However, such generalizations are not needed for our
purposes.

The (operator) norm of A : H1 → H2 is defined by

∥A∥H1→H2 := sup
v∈H1r{0}

∥Av∥H2 .

When it is clear from the context which Hilbert spaces H1,H2 are being used, we
simply write ∥A∥ instead of ∥A∥H1→H2 .

Let A∗ : H2 → H1 denote the adjoint of A. Then A∗A : H1 → H1 is positive
semi-definite, and hence the absolute value

|A| :=
(

A∗A
) 1

2 .

of A exists. The singular values of A are the non-zero eigenvalues of |A|. Let
(µk(A))

S(A)
k=1 be the sequence of singular values (with multiplicities) of A, ar-

ranged by decreasing order:

µ1(A) ≥ µ2(A) ≥ µ3(A) ≥ · · ·

If necessary, we turn this sequence into an infinite one by filling it up with zeros
at the end. The trace norm of A is

∥A∥1 :=
∞
∑
j=1
µ j(A).
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Singular values enjoy some nice properties, which we use frequently in this work.
Recall the following characterization of the k-th singular value as the following
infimum over operators L : H1 → H2 of rank less than k:

µk(A) = inf{∥A − L∥ : L : H1 → H2, rank(L) < k}. (A.1)

In particular, µ1(A) = ∥A∥. A proof of (A.1) can be found in [32].

Lemma A.1. Let H1,H2,H3,H4 be separable Hilbert spaces, and let A : H3 → H4,
B : H2 → H3, C : H1 → H2 be operators:

H1
C−→ H2

B−→ H3
A−→ H4.

Furthermore, let A1, A2 : H1 → H2 be operators. Then, notation being as above, we
have

1. µk(ABC) ≤ ∥A∥µk(B)∥C∥.

2. For all i, j ∈ N we have µi+ j−1(A1 + A2) ≤ µi(A1) +µ j(A2).

Proof. We will the characterization (A.1) to prove both (1) and (2).

Let us start with (1). Observe that if K : H2 → H3 is an operator of rank < k, then

AKC : H1 → H4

is also an operator of rank < k. Thus, for any k ∈ N we have

µk(ABC) = inf{∥ABC − L∥ : L : H1 → H4, rank(L) < k}
≤ inf{∥ABC − AKC∥ : K : H2 → H3, rank(K) < k}

≤ ∥A∥ · inf{∥B − K∥ : K : H2 → H3, rank(K) < k} · ∥C∥
= ∥A∥µk(B)∥C∥.

Let us now prove (2): Suppose L1 : H1 → H2 is an operator of rank < i, and
L2 : H1 → H2 is an operator of rank < j. Then L1 + L2 is of rank < i + j − 1.
Thus

µi+ j−1(A1 + A2) = inf{∥A1 + A2 − L∥ : L : H1 → H2 rank(L) < i + j − 1}
≤ inf{∥A1 + A2 − (L1 + L2)∥ : L1, L2 : H1 → H2, rank(L1) < i, rank(L2) < j}
≤ inf{∥A1 − L1∥+ ∥A2 − L2∥ : L1, L2 : H1 → H2, rank(L1) < i, rank(L2) < j}

= inf{∥A1 − L1∥ : L1 : H1 → H2, rank(L1) < i}
+ inf{∥A2 − L2∥ : L2 : H1 → H2, rank(L2) < j}

= µi(A1) +µ j(A2).

The proof of Lemma A.1 is finished.

A direct corollary of Part (2) of Lemma A.1 is the following iterated version,
which is sometimes more useful. Given N ≥ 1 operators A1, . . . , AN : H1 → H2
and k ∈ N we have

µk

(
N

∑
j=1

A j

)
≤ µN⌊ k+N−1

N ⌋−(N−1)

(
N

∑
j=1

A j

)
≤

N

∑
j=1
µ⌊ k+N−1

N ⌋(A j). (A.2)
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A.1.2 Fredholm determinants

For the purposes of this subsection, assume that A : H1 → H1 is a trace class
operator from a separable Hilbert space H1 to itself. Let (λ j(A))

E(A)
j=1 be the se-

quence of eigenvalues (with multiplicities) of A, arranged by decreasing absolute
value:

|λ1(A)| ≥ |λ2(A)| ≥ · · · ,

As in the case of sigular values, we turn this sequence into an infinite one by
filling it up with zeros at the end, if E(A) < ∞. Then the Fredholm determinant
of A is given by

det(1 + A) =
∞
∏
j=1

(1 + λ j(A)). (A.3)

By the Weyl inequality we have for each N ∈ N,

N

∏
j=1

(
1 + |λ j(A)|

)
≤

N

∏
j=1

(
1 +µ j(A)

)
.

In particular, letting N → ∞, we get

⏐⏐ det(1 + A)
⏐⏐ = ∞

∏
j=1

(
1 + λ j(A)

)
≤

∞
∏
j=1

(
1 +µ j(A)

)
= det

(
1 + |A|

)
. (A.4)

If we assume further ∥A∥1 < 1, then we can express the Fredholm determinant
in terms of the traces of iterates of A:

det(1 + A) = exp

( ∞
∑

N=1

(−1)N+1

n
Tr
(

AN)) . (A.5)

A.2 Fredholm determinant identity for
Schottky groups

The following result, which we announced in Section 2.6, was crucial in Chapters
3 and 4.

Proposition A.2 (Determinant identity for Schottky groups). Let Γ be a non-
elementary Schottky group and ρ : Γ → U(V) a finite-dimensional unitary represen-
tation of Γ . Let H = H2(D; V), and let

Ls,ρ : H → H

be the transfer-operator corresponding to (Γ ,ρ), as defined in Section 2.6. Then for all
Re(s) ≫ 0, we have the identity

LΓ (s,ρ) = det(1 −Ls,ρ).

In particular, LΓ (s,ρ) extends to an entire function.
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We provide a proof here for the benefit of the reader. We point out that Proposi-
tion A.2 for the trivial representation appears in [33]. For arbitary unitary repre-
sentations it can also be found in [41]. A proof of this identity in a more general
setting can be found in the work of Fedosova–Pohl [26].

Proof. We will use the transfer operator Ls,ρ defined in Section 2.6. The main
step in the proof is to derive a formula for the trace of the iterates of the transfer
operator, LN

s,ρ.

Set d = dim V and let e1, . . . , ed be an orthonormal basis for V. For each Schot-
tky disk D j let (ϕ j

ℓ)ℓ∈N0 be a Hilbert basis for the Bergman space H2(D j). One
possible choice would be

ϕ
j
ℓ(z) =

√
l + 1
π

1
r j

(
z − c j

r j

)ℓ

, ℓ ∈ N0,

where r j is the radius and c j is the center of D j. Then the family defined by

Ψ j,ℓ,k(z) :=

{
ϕ

j
ℓ(z)ek if z ∈ D j

0 otherwise,

is a Hilbert basis of H = H2(D; V). Using the formula for the N-th power of Ls,ρ
(see for instance equation (3.36)) we can write

⟨LN
ρ,s(Ψ j,ℓ,k), Ψ j,ℓ,k⟩H = ∑

α∈W j
N

∫
D j

[
(γ−1
α )′(z)

]s
ϕ

j
ℓ(γ

−1
α z)ϕ j

ℓ(z)⟨ρ(γα)ek, ek⟩V dvol(z).

Therefore, summing over all indices, we obtain

Tr(LN
ρ,s) =

2m

∑
j=1

∑
ℓ∈N0

d

∑
k=1

⟨LN
ρ,s(Ψ j,ℓ,k), Ψ j,ℓ,k⟩H

=
2m

∑
j=1

∑
ℓ∈N0

d

∑
k=1

∑
α∈W j

N

∫
D j

[
(γ−1
α )′(z)

]s
ϕ

j
ℓ(γ

−1
α z)ϕ j

ℓ(z)⟨ρ(γα)ek, ek⟩Vρ dvol(z).

Since

∑
ℓ, j
ϕ

j
ℓ(z)ϕ j

ℓ(w)

converges uniformly on compact sets of D×D to the Bergman kernel BD(z, w),
we can rearrange sums to write

Tr(LN
ρ,s) = ∑

j
∑

α∈W j
N

χ(γα)
∫
D j

[
(γ−1
α )′(z)

]s
BD(γ

−1
α z, z) dvol,

where χ = tr ρ is the character of ρ.

Now observe that since D is a disjoint union of disks, the Bergman kernel satisfies
BD(z, w) = 0 whenever z and w lie in different disks. On the other hand, if z, w
both lie in D j we have BD(z, w) = BD j(z, w), where BD j is the Bergman kernel of
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D j. Given a word α ∈ W
j
N and a point z ∈ D j, we have γ−1

α z ∈ D j if and only if
αN = j. Hence, the above expression reduces to

Tr(LN
ρ,s) = ∑

j
∑

α∈W j
N

αN= j

χ(γα)
∫
D j

[
(γ−1
α )′(z)

]s
BD j(γ

−1
α z, z) dvol(z). (A.6)

We are left with the computation of the integral appearing in (A.6). To this end,
recall that there is an explicit formula for the Bergmann kernel of D j = D(c j, r j):

BD j(w, z) =
r2

j

π
[
r2

j − (w − c j)(z − c j)
]2 .

It is now an exercise involving Stoke’s and Cauchy formula (for details we refer
to Borthwick [14, Lemma 15.9]) to obtain the Lefschetz identity∫

D j

[
(γ−1
α )′(z)

]s
BD j(γ

−1
α z, z) dvol(z) =

[
(γ−1
α )′(xα)

]s

1 − (γ−1
α )′(xα)

,

where xα is the unique fixed point of γ−1
α : D j → D j. Moreover,

(γ−1
α )′(xα) = e−ℓ(γα),

where ℓ(γα) is the displacement length of γα. We have therefore achieved

Tr(LN
ρ,s) = ∑

j
∑

α∈W j
N

αN= j

χ(γα)
e−sℓ(γα)

1 − e−ℓ(γα)
. (A.7)

Our next goal is to rewrite the right hand side of this equation as a sum over
primitive conjugacy classes in Γ . This requires a combinatorial argument.

Let LS(γ) denote the word length of γ with respect to the generating set S =
{γ1, . . . ,γ2m} of Γ . We denote by WL(γ) = min{LS(g) : g ∈ [γ]} the minimal
word length of any element in the conjugacy class of γ. There is a one-to-one
correspondence between prime reduced words (up to circular permutations) in

⋃
N≥1

2m⋃
j=1

{α ∈ W
j
N such that αN = j},

and prime conjugacy classes in Γ (see Borthwick [14, Proposition 15.6]). Con-
sequently, there is a one-to-one correspondence between prime reduced words
(again, up to circular permutations) in

2m⋃
j=1

{α ∈ W
j
N such that αN = j},

and the primitive conjugacy classes of word length m dividing N. Hence, (A.7)
can be rewritten in terms of the minimal word length as

Tr(LN
ρ,s) = ∑

m|N
∑

[γ]∈[Γ]p
WL(γ)=m

mχ(γN/m)
e−sℓ(γ) N

m

1 − e−ℓ(γ) N
m

. (A.8)
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Recall from Subsection 2.6 that Ls,ρ is a trace class operator. Therefore, for all
z ∈ C with |z| small enough, we can use (A.5) to obtain the following expansion
for the Fredholm determinant:

det(I − zLs,ρ) = exp

(
− ∑

N≥1

zN

N
Tr(LN

s,ρ)

)

for |z| small enough. Inserting formula (A.8) into the above expansion and using
a geometric series expansion, we obtain

det (1 − zLs,ρ) = exp

⎛⎜⎜⎜⎝− ∑
N≥1

zN

N ∑
k≥0

∑
m|N

∑
[γ]∈[Γ]p

WL(γ)=m

me−ℓ(γ)(s+k) N
m χ
(
γN/m

)⎞⎟⎟⎟⎠ .

Introducing the new variable d = N/m and rearranging the sums accordingly
leads to

det (1 − zLs,ρ) = exp

⎛⎝− ∑
k≥0

∑
d≥1

∑
[γ]∈[Γ]p

zWL(γ)d

d
e−ℓ(γ)(s+k) jχ(γd)

⎞⎠
= exp

⎛⎝∑
k≥0

∑
[γ]∈[Γ]p

log det
(

1 − ρ(γ)zWL(γ)e−(s+k)ℓ(γ)
)⎞⎠

= ∏
[γ]∈[Γ]p

∏
k≥0

det
(

1 − ρ(γ)zWL(γ)e−(s+k)ℓ(γ)
)

.

For Re(s) large enough the result converges at z = 1 and we obtain the result.

A.3 Venkov–Zograf factorization formula

In this short subsection we state (without proof) a result of Venkov–Zograf [91,
90], which was frequently used in the main body of this thesis.

It was first proved for cofinite Fuchsian groups, using a version of the Selberg
trace formula with unitary representations. A simpler proof using only properties
of finite-dimensional representations and which applies to all finitely generated
Fuchsian groups can be found in the paper of Fedosova–Pohl [26, Theorem 6.1].

Theorem A.3. Let Γ be a finitely generated Fuchsian group and let Γ̃ be a subgroup of
finite index. Let ρ : Γ → U(V) be a unitary representation.

(i) If ρ =
⨁m

j=1 ρ j decomposes into a finite direct sum representations ρ j of Γ then

LΓ (s,ρ) =
m

∏
j=1

LΓ (s,ρ j).
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(ii) Let ρ̃ be a finite-dimensional representation of Γ̃ such that ρ = IndΓ
Γ̃
(ρ̃) is its

induced representation on Γ . Then

L
Γ̃
(s, ρ̃) = LΓ (s,ρ).

(iii) Assume Γ̃ is a normal subgroup of Γ and let G := Γ/Γ̃ be the quotient group. Then

Z
Γ̃
(s) = ∏

ρ∈Ĝ

LΓ (s,ρ)dim(ρ),

where Ĝ denotes the unitary dual of the group G.

Recall that the unitary dual Ĝ of a finite group G is the set of irreducible represen-
tations of G, up to equivalence of representations.

A.4 A remark on the Hausdorff dimension of
Hecke triangle groups

The calculation and estimation of the Hausdorff dimension of limit sets of Fuch-
sian groups is a hard problem. In this section we analyze the Hausdorff dimen-
sion of the limit set of Hecke triangle groups. We will use the notation from
Chapter 5.

Let Tw := T and let Γ := Γw = ⟨Tw, S⟩ be the Hecke triangle group with cusp
width w > 2, as we defined it in Chapter 5. We want to consider the Hausdorff
dimension δ = δw of (the limit set of) Γw as a function of the parameter w.

Phillips–Sarnak [77] estimated the numerical value of δw for certain values of w.
For instance, they found δ3 = 0.753 ± 0.003. Moreover, they showed that the
lowest eigenvalue λ0(w) = δw(1 − δw) is convex, as a function of w ∈ (2, ∞). It
is also known that w ↦→ δw is decreasing, see [77] and the references therein. On
the other hand, since Γw contains a parabolic element, we must have δw > 1

2 for
every w. The next result shows how δw and λ0(w) behave as w → ∞.

Proposition A.4. For each w > 2, let δw be the Hausdorff dimension of the limit set of
Γw and let λ0(w) be the lowest eigenvalue of the Laplacian on Xw = Γw\H. Then we
have δw ≤ 1/2 + 4/w and λ0(w) ≥ 1/4 − 16/w2.

We need two Lemmas to prove Proposition A.4. Recall that γn(x) = −1
x+nw for

n ∈ Z. Let us introduce some notation. For a multi-index α = (α1, . . . ,αk) ∈ Zk

set γα := γα1 ◦ · · · ◦ γαk and Iα := γα([−1, 1]). Note that Iα ⊂ R is an interval.

Let us further define

Zk
∗ :=

{
(α1, . . . ,αk) ∈ Zk : α j ̸= 0 for all j ∈ {1, . . . , k}

}
.

Observe that for all k ∈ N, for all α ∈ Zk
∗, and for every interval A ⊂ [−1, 1], we

have γα(A) ⊂ [−1, 1].
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Lemma A.5. For every interval A ⊂ [−1, 1] and multi-indexα ∈ Zk
∗, we have

|γα(A)| ≤ |A|
(w − 1)2k(α1 · · ·αk)2 ,

where | · | denotes the Lebesgue measure. In particular, for every α ∈ Zk
∗ we have the

estimate
|Iα| ≤

2
(w − 1)2k(α1 · · ·αk)2 .

Proof. For allα ∈ N and x ∈ [−1, 1] we have

|γ′α(x)| = 1
(x +αw)2 ≤ 1

(w − 1)2α2 .

Therefore, writing A = [a, b] yields

|γα(A)|
|A| =

⏐⏐⏐⏐γα(a)−γα(b)
a − b

⏐⏐⏐⏐ ≤ 1
(w − 1)2α2 (A.9)

and the statement for k = 1 follows. To obtain the the statement for general k one
argues by induction. Assume that the statement of the lemma is true for k ∈ N.
Now pick α = (α1,α2, . . . ,αk+1) ∈ Zk+1

∗ and write α̃ := (α2, . . . ,αk+1) ∈ Zk
∗.

Using (A.9) and the induction hypothesis gives

|γα(A)| = |γα1(γα̃(A))| ≤ |γα̃(A)|
(w − 1)2α2

1
≤ |A|

(w − 1)2(k+1)α2
1α

2
2 · · ·α2

k+1
.

The proof is complete.

Lemma A.6. Assume that r > 1
2 satisfies 2ζ(2r)

(w−1)2r < 1, where ζ is the Riemann zeta
function. Then δw ≤ r.

Proof. Let r be as in the statement.

Recall that Λ is the limit set of Γ = ⟨T, S⟩ viewed as subset of R and Λ0 = Λ ∩
(−1, 1). Using T-invariance of Λ, we can write Λ as a countable disjoint union of
translates of Λ0, that is,

Λ =
⋃

n∈Z
TnΛ0. (A.10)

From (A.10) it follows that both Λ0 and Λ have the same Hausdorff dimension.
Using S-invariance of Λ, we find furthermore

Λ = S.Λ =
⋃

n∈Z
STn.Λ0.

Notice that STn.x = γn(x). Hence, we have the inclusion

Λ =
⋃

n∈Z
γn(Λ0) ⊂

⋃
n∈Z

In,

where the intervals In are defined as above.
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Observe that γn maps the interval [−1, 1] into itself if and only if n ̸= 0. We
deduce that

Λ0 ⊂ {0} ∪
⋃

n∈Zr{0}
In. (A.11)

Since γn(Λ) ⊂ Λ0 for all n ̸= 0, the k-fold iterate of (A.11) gives

Λ0 ⊂ {0} ∪
⋃
α∈Zk∗

Iα . (A.12)

Now let us briefly recall the definition of the Hausdorff dimension. Let ε > 0.
Given a set E ⊂ R, let

Hr
ε(E) = inf

{
∑
i∈I

diam(E)r : E ⊂
⋃
i∈I

Ei, diam(Ei) < ε

}
.

Then the r-dimensional Hausdorff measure is defined as

Hr(E) = lim
ε↘0

Hr
ε(E),

and the Hausdorff dimension of E is given by

dimH(E) = inf{r : Hr(E) = 0}.

By Lemma A.5 there exists k0(ε) such that for all k > k0(ε) and for all α ∈ Zk
∗ we

have |Iα| < ε. Therefore we can use (A.12) with some k > k0(ε) and the definition
of Hr

ε, to obtain

Hr
ε(Λ0) ≤ ∑

α∈Zk∗

|Iα|r.

Using Lemma A.5 we can further estimate

Hr
ε(Λ0) ≤ ∑

α∈Zk∗

(
2

(w − 1)2k(α1 · · ·αk)2

)r

=

(
2

(w − 1)2k

)r
⎛⎝ ∑
α∈Zr{0}

(
1
α2

)r
⎞⎠k

= 2r
(

2ζ(2r)
(w − 1)2r

)k

.

By assumption, we have 2ζ(2r)
(w−1)2r < 1. Therefore we can send k → ∞ to obtain

Hr
ε(Λ0) = 0. Consequently, Hr(Λ0) = 0 and therefore, by the definition of the

Hausdorff dimension, we have δw = dimH(Λ0) ≤ r. This completes the proof of
Lemma A.6.

We can now prove Proposition A.4.
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Proof of Propositon A.4. Observe that for w ≤ 8 we have δw < 1 ≤ 1/2 + 4/w.
Hence the estimates for δw and λ0(w) in Proposition A.4 are trivially satisfied in
the range w ≤ 8. Let w > 8 and set r := 1/2 + 4/w. Notice that for all 0 < ξ < 1
we have the elementary estimate

ζ(1 +ξ) =
∞
∑

n=1

1
n1+ξ ≤ 1 +

∫ ∞
1

dx
x1+ξ =

1 +ξ

ξ
<

2
ξ

.

Conseqently, since w > 8, we obtain

2ζ(2r)
(w − 1)2r =

2ζ(1 + 8/w)

(w − 1)2r <
w

2(w − 1)
< 1. (A.13)

By Lemma A.6, the latter implies that δw ≤ r = 1/2 + 4/w and consequently
λ0(w) = δw(1 − δw) ≥ 1/4 − 16/w2, thus completing the proof of Proposition
A.4.
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