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1. General Introduction 

1.1. The plant cell wall 
Each plant cell is wrapped in a protective layer known as the plant cell wall (Fig. 1). A 

flexible and plastic primary cell wall allows developing cells to grow. In contrast, 

mature cells that have stopped growing develop a secondary cell wall by 

incorporating lignin, which provides further stability and resistance against outside 

stressors. On the molecular level, the plant cell wall consists of an array of sugar-

based polysaccharides synthesized by the plant cell. The predominance of 

polysaccharides in the plant cell wall is directly linked to the plant’s ability to perform 

photosynthesis, a process which permits an almost unlimited supply of sugars to be 

used as building blocks for a complex and resistant wall structure. In turn the plant 

can use more limited resources such as nitrogen or phosphate (two major plant 

growth factors) for growth (Pauly and Keegstra 2008). Traditionally the plant cell wall 

consists of three major, chemically diverse, polysaccharides: namely, cellulose, 

hemicelluloses and pectins. These polysaccharides represent a proportion of 20-50%, 

15-35 % and 5-35% of the plant cell wall composition, respectively (Payne et al. 

2015). All three polysaccharides represent the most abundant biopolymers on earth 

and are of major interest for the food-, textile-, paper- and biofuel industries (Pauly 

and Keegstra 2008). In the following chapters a closer look at each of those 

polysaccharides will be given. 

1.1.1. Cellulose 
Cellulose consists of a straight chain of -1,4-linked glucose moieties. Individual 

chains emerge from the cellulose synthase complex in parallel, attached to each 

other by hydrogen bonding and ultimately resulting in an aggregate of 

(para)crystalline cellulose microfibrils (Chang 1981; Somerville 2006; Thomas et al. 

2013). Due to the incorporation of lignin (which in turn replaces water), levels of 

cellulose crystallinity are believed to be high in the secondary plant cell wall (Pauly 

and Keegstra 2008). 
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Fig. 1: Schematic of the plant outer cell region. Depicted is a partial plant cell dissected 

into its three surface layers: middle lamella, cell wall and cell membrane as well as the major 

polysaccharides of the cell wall.  

Interestingly, not all cellulose parts are water-free, in particular in surface areas where 

cellulose microfibrils are in conformational disorder and are able to form hydrated 

“amorphous” areas (Fig. 2) (Beguin and Aubert 1994; Viëtor et al. 2002). Additionally, 

it is suspected that other polysaccharides (e.g. hemicelluloses) become entrapped 

within the cellulose microfibril formation, resulting in the disruption of the cellulose 

crystal structure (Cosgrove 2005). Within the primary cell wall, it is hypothesized (in 

addition to the above-mentioned facts) that “sloppy packing” and the random 

distribution of cellulose microfibrils during cell growth contribute to the formation of 

amorphous zones (Cosgrove 2014; Montanari et al. 2005). However, despite efforts 

to resolve the distribution of amorphous cellulose in relation to its crystalline state in 

the primary and secondary plant cell wall, much remains unknown (Ruel et al. 2012).  
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Fig. 2 Chemical structure and degradation of crystalline and amorphous cellulose. 
Amorphous cellulose is characterized by water solubility and is believed to be primarily 

located at surface areas of cellulose microfibrils. Endo- -1,4,-glucanases (EC 3.2.1.4)  are 

able to cleave cellulose in its amorphous state by releasing random-sized blocks of cellulose. 

In contrast, crystalline regions feature hydrogen bonds between individual cellulose chains 

that are made by excluding water and forming a quasi-crystalline structure. 

Cellobiohydrolases (EC 3.2.1.91) are able to cleave at the ends of the crystalline and 

amorphous regions. Red arrows indicate potential cleaving sites for the respective cellulases. 

In plants, cellulose can represent between 20 to 50% of the polysaccharides and is 

therefore believed to be the most abundant biopolymer on earth, making it a major 

research focus of the biofuel industry, which aims to convert cellulosic biomass into 

fuel-supplemented ethanol. 

1.1.2. Hemicellulose 
Hemicelluloses are a diverse set of heteropolymers, being structurally and 

physicochemically unrelated to each other. Based on Scheller and Ulvskov (2010), 

hemicelluloses mainly consist of the heteropolysaccharides xylan and xyloglucan, as 

well as mannans (glucomannan, galactomannan and galactoglucomannan). In 

contrast to cellulose, hemicelluloses are prevented from forming microfibrils due to 

their side-chain residues; these allow hydration and, conversely, inhibit crystallization 

(Gilbert 2010; Thomas et al. 2013). Within the plant cell wall, hemicelluloses are 
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thought to be mechanically linked to cellulose to further stabilize the structure 

(Cosgrove 2014; Scheller and Ulvskov 2010). 

Xylan consists of a backbone of xylose units and is commonly modified by 

substitutions of glucuronosyl residues (glucuronoxylan) and/or arabinose residues 

(arabino- and glucuronoarabinoxylan) (Fig. 3). The former can be found as major non-

cellulosic polysaccharide in the secondary plant cell wall of dicots, whereas the latter 

dominates the primary plant cell wall of certain monocots (Scheller and Ulvskov 

2010). Other side-chain substitutions of xylan include, for example, galactose, 

methylglucuronosyl residues or rhamnose (Javier et al. 2007). 

 

Fig. 3 Chemical structure of xylan. Xylan can be highly modified by side-chain residues. 

Two potential residues are depicted here. Blue represents xylose units connected in a -1,4-

manner, which forms the backbone xylan. 
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Xyloglucan is represented in all land plants and is assumed to be the major 

hemicellulose in the primary plant cell wall. Its general structure consists of beta-1,4-

linked glucose residues (similar to cellulose) which are unequally substituted with 

xylose units (Fig. 4). In turn xylose units can be further substituted with D-galactose, 

L-fucose and D-arabinose among others. The degree of substitution influences the 

solubility of xyloglucan, which varies greatly between plant species. 

Fig. 4 Chemical structure of xyloglucan. As a close molecular relative to cellulose, its 

backbone consists of D-glucose residues linked by a -1,4 glycosidic bond. Depicted in black 

are D-glucose residues; in blue, D-xylose; in red, L-fucose; and in green, D-galactose. 

The backbone of mannans consists of mannose residues (pure mannan), which in 

turn can be substituted with galactose residues (galactomannan). In contrast, 

glucomannan has a backbone of randomly distributed glucose and mannose residues 

which can be occasionally substituted with galactose (galactoglucomannan) (Scheller 

and Ulvskov 2010). Mannans often occur as storage polysaccharides in seeds, bulbs, 

tubers and roots (Buckeridge et al. 2000; Meier and Reid 1982), but they are also 

readily incorporated in the plant cell wall as structural components (Cosgrove 2005; 

Scheller and Ulvskov 2010). 
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Fig. 5 Chemical structure of galacto- and glucomannan. Galactomannan consists of a 

backbone of D-mannose residues linked by -1,4 glycosidic bonds that are decorated with D-

galactose units. In contrast, glucomannan is a straight-chain polymer consisting of unevenly 

distributed D-glucose and D-mannose residues. Occasional branching with D-galactose is 

common (galactoglucomannan). Pink = D-mannose residues, green = D-galactose, black = 

D-glucose. 

1.1.3. Pectins 
Pectins are a group of heterogeneous polysaccharides encompassing several 

complex polymers. The least complex is homogalacturonan, comprising of a straight 

chain of galacturonic acid moieties which can be substituted by xylose residues 

(xylogalactorunan). Rhamnogalacturonan I is composed of altering rhamnose and 

galacturonic acid residues with eventual branching, whereas rhamnogalacturonan II is 

a highly complex aggregate containing up to 11 different sugar residues. Pectins 
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embed both cellulose and hemicellulose, and are believed to increase the flexibility of 

the plant cell wall (Cosgrove 1997; Cosgrove 2005; Keegstra 2010). 

1.2.  Cellulolytic systems in animals 
Any organism able to degrade the plant cell wall gains access to many of plant-cell-

wall-derived sugars. Besides obtaining a substantial boost of energy, the degradation 

of the plant cell wall allows for the exploitation of the cell content, providing additional 

resources of nitrogen which are ultimately required for growth (Kainulainen et al. 

1996; Rossi et al. 1996). Ironically, plant cell wall polysaccharides form a resilient 

network which is resistant to enzymatic breakdown (in contrast to the highly similar, 

yet easily digestible storage polysaccharides, such as amylose or starch), only 

allowing highly specified organisms to degrade the plant cell wall (Bayer et al. 1998). 

Classically, the degradation of plant cell wall material by the use of so-called plant-

cell-wall-degrading enzymes (PCWDEs) was attributed only to the domain of 

microbes. PCWDEs were found in plant pathogenic bacteria and fungi, saprotrophs 

and in symbionts in the gut of herbivorous animals (Breznak and Brune 1994; 

Chambost J.P. 1987; Rincon et al. 2001; Schulein 1997). 

Conversely, it was commonly accepted that the success of herbivorous animals was 

ensured by the presence of mutualistic plant-cell-wall-degrading microbes in their 

guts. The first cracks in the belief that the cellulolytic system was solely dependent on 

symbionts did not arise until 1978, when a symbiont-free marine isopod was found to 

be still able to degrade cellulose (Boyle and Mitchell 1978; King et al. 2010). Despite 

this early discovery it took scientists another 20 years to sequence and characterize 

the first endogenous cellulase in a wood-feeding termite (Watanabe et al. 1998), and 

shortly after in nematodes (Smant et al. 1998). That initial discovery was followed by 

the identification of endogenous cellulases in other Metazoa, most prominently 

Arthropoda (Calderon-Cortes et al. 2010; Kim et al. 2008; McKenna et al. 2016; Mei 

et al. 2016; Pauchet et al. 2014a; Shelomi et al. 2016; Willis et al. 2011), as well as in 

Nematoda (Kikuchi et al. 2004; Palomares-Rius et al. 2014) and Mollusca (Guo et al. 

2008; Sakamoto and Toyohara 2009; Tsuji et al. 2013). Less frequently, endogenous 

cellulases have also been identified in the phyla Echinodermata (Nishida et al. 2007), 
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Chordata (Davison and Blaxter 2005; Dehal et al. 2002), Annelida (Arimori et al. 

2013), Rotifera (Szydlowski et al. 2015) and Tardigrada (Davison and Blaxter 2005). 

Based on their activity, cellulases are separated into endo- -1,4-glucanases 

(EC 3.2.1.4) and cellobiohydrolases (exoglucanases; EC 3.2.1.91). The former class 

of enzymes cleaves amorphous cellulose randomly, releasing fragments of 

oligopolysaccharides of varying sizes (Fig. 2). Cellobiohydrolases cleave cellulose 

from its reducing or non-reducing end by releasing dimers and occasionally trimers 

(Fischer et al. 2013; Takahashi et al. 2010). Cellobiohydrolases can degrade both 

amorphous and crystalline structures of the cellulosic network (Liu et al. 2011; Shen 

et al. 1995). 

According to their amino acid structure, cellulases can be classified into distinct 

families of glycoside hydrolases (GHs). It has been found that cellulases (i.e. endo- 

and exo-acting cellulases) do not belong to a single GH family but appear in diverse 

sets including the families 5, 6, 7, 8, 9, 10, 12, 26, 44, 45, 48, 51, 74 and 124 

(www.cazy.org) (Lombard et al. 2014). Notably, out of those 14 GH families only 

seven have been identified to be encoded by animals: GH5, GH6, GH7, GH9, GH10, 

GH45 and GH48. All of these GH families consist of a catalytic dyad harboring a 

glutamate and/or an aspartate. Both amino acids can perform either as a catalytic 

acid or as a base, e.g. in GH45s both catalytic residues are aspartates, whereas in 

GH5s both residues are glutamates. Upon hydrolysis the emerging C1 hydroxyl group 

may be retained in its original configuration or it may be inverted, facing the opposite 

site of its original configuration. Therefore, the hydrolytic mechanism is referred to as 

either “retaining” (e.g. GH5s, GH7s) or “inverting” (e.g. GH9s, GH45s) mode of action 

(Fig. 6). 
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Fig. 6 Catalytic mechanism of glycoside hydrolases comparing retaining and inverting 
modes of action. A) Depicts the retaining mechanism of glycoside hydrolases with two 

glutamates as catalytic core residues (e.g. in GH5 family members). After substrate cleavage, 

the C1-hydroxyl-group of the glucose residue is retained in its -configuration. B) Depicts the 

inverting mechanism of glycoside hydrolases with two aspartates as catalytic core residues 

(e.g. in GH45 family members). After substrate cleavage, the C1-hydroxyl-group of the 

glucose residues has inverted from - to -configuration. Adapted from Davies and Henrissat 

(1995). 
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In microorganisms, cellulases are frequently coupled to non-catalytic carbohydrate 

binding domains (CBMs) and form, together with several scaffolding proteins, multi-

enzyme complexes (Matte et al. 2009). These complexes can be found as small 

protein aggregates consisting of a single cellulolytic enzyme attached to a single CBM 

but can also appear as extremely large protein aggregates consisting of several 

CBMs and catalytic enzymes (so-called cellulosomes) (Gaudin et al. 2000; 

Sukharnikov et al. 2012; Watanabe and Tokuda 2010). Within those complexes, 

CBMs are believed to facilitate substrate cleavage, by i) increasing the enzyme 

concentration on the polysaccharide surface, ii) targeting specific substrate regions 

and iii) disrupting insoluble polysaccharide structures such as crystalline cellulose 

(Bolam et al. 1998; Boraston et al. 2004; Guillen et al. 2010). Removal of the CBM 

may lead to reduction or complete loss of enzymatic activity on insoluble substrates 

but has less effect on the activity on soluble substrates. Interestingly, and in contrast 

to their microbial counterparts, cellulases in insects have not generally been found to 

contain a CBM or multi-enzyme complex. A potential loss of the auxiliary domains of 

animal cellulases suggests that either they have developed other strategies to 

efficiently degrade crystalline cellulose or they do not degrade it at all. 

1.2.1. Cellulases of the GH5 subfamily 2 (GH5_2) 
The GH5 family is one of the largest and most diverse GHs, with two glutamates as 

catalytic residues responsible for retaining hydrolysis. GH5s are classified into 51 

subfamilies (Aspeborg et al. 2012) and to date only GH5_2 has been reported in 

animals as able to degrade cellulose. With the exception of having evolved two novel 

enzymatic functions in Anoplophora glabripennis -- namely, xylanase and 

xyloglucanase activity (McKenna et al. 2016) -- GH5_2 cellulolytic function appears to 

be conserved. Notably, their distribution in animals is patchy and is thought to be 

limited to the Phyla Nematoda (Karim et al. 2009; Ledger et al. 2006; Smant et al. 

1998) and Arthropoda (McKenna et al. 2016; Pauchet et al. 2014a; Sugimura et al. 

2003). Interestingly, within Arthropoda GH5_2 is so far restricted to xylophagous 

beetles of the Cerambycidae (Pauchet et al. 2010). The patchy distribution of genes 

encoding proteins of GH5_2 therefore raised question about their ancestral origin in 

animals. Intriguingly, research on nematode-derived GH5_2 has provided evidence 
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that this gene subfamily is not ancestral but has evolved independently (Danchin et 

al. 2010). It has been suggested that these genes were likely acquired by horizontal 

gene transfer (HGT) from a bacterial donor. However, whether GH5_2 evolved the 

same way in Cerambycidae remains unresolved (Danchin et al. 2010). 

1.2.2. Multifunctional cellulases of the GH9 family 
GH9 was the first glycoside hydrolase family to be identified as an endogenous 

cellulase in animals (Watanabe et al. 1998). Since then, GH9s have received wide 

attention and have been identified in a broad range of animal phyla, including 

Arthropoda, Annelida, Echinodermata, Chordata and Mollusca. The majority of GH9s 

to date have been identified in arthropods, including numerous GH9 encounters in 

Insecta (Busch et al. 2018b; Kim et al. 2008; Watanabe et al. 1998; Willis et al. 2011) 

and also in Crustacea (Bui and Lee 2015; Colbourne et al. 2011; Davison and Blaxter 

2005). Similarly, GH9-encoding genes have been uncovered in Mollusca (Li et al. 

2009; Suzuki et al. 2003; Wang et al. 2017; Zhang et al. 2012) and Chordata 

(Davison and Blaxter 2005; Dehal et al. 2002) but remained rare in Annelida (Arimori 

et al. 2013), Echinodermata (Nishida et al. 2007) or Rotifera (Szydlowski et al. 2015).

Discoveries in the latter three phyla have been scarce, likely because of a lack of 

general scientific attention throughout the last decades, yet the phyla remain 

promising locations for future GH9 identification. Additionally, GH9s are found in 

plants (Libertini et al. 2004), bacteria (Gaudin et al. 2000) and fungi (Nagy et al. 

2016). The broad distribution of GH9 in all these animal lineages, as well as in plants 

and microbes, suggests that GH9s may have been present in an ancestor of bacteria 

and eukaryotes (Davison and Blaxter 2005). 

GH9s are characterized by their inverting catalytic mechanism with an aspartate as 

catalytic base and a glutamate as the corresponding catalytic acid. This family is 

known to act as an endocellulase and/or a cellobiohydrolase, and was observed 

additionally to act as a -glucosidase (www.CAZy.org). Intriguingly, and although 

GH9s have been characterized mostly as cellulases, other activities have evolved 

most notably against xyloglucan and xylan (Lombard et al. 2014; Pauly et al. 2013; 

Shelomi et al. 2016). 
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1.2.3. GH6, GH7 and GH10 cellulases 
Much rarer in animals than the previously mentioned GH families are GH6, GH7 and 

GH10 family members. Interestingly, genes encoding GH6 proteins were not 

identified as single enzymes but as part of a cellulose synthase complex of marine 

sea squirts (Matthysse et al. 2004; Nakashima et al. 2004). Although both research 

groups performed no further characterization experiments, they independently found 

crucial mutations in the catalytic residues which led to the conclusion that GH6s  

derived from sea squirts have likely lost their cellulolytic activity. Ultimately, it remains 

to be shown whether more animal-derived GH6 members occur and whether these 

have truly lost their catalytic function on cellulose. 

GH7-encoding genes were recently identified in a broad range of marine Crustacea, 

including the basal classes Branchiopoda and Copepoda (Chang and Lai 2018; Kern 

et al. 2013; King et al. 2010; Kobayashi et al. 2018) as well as in a slime mold 

(Amoebozoa) (Kunii et al. 2014). Currently, the only functionally characterized GH7 in 

animals was described in the crustacean isopod Limnoria quadripunctata (Kern et al. 

2013) and the slime mold Dictyostelium discoideum. In both cases cellobiohydrolase 

activity was detected, which is in accordance with activities known from microbial 

GH7s. Although to date GH7-encoding genes from animals have been found mainly 

in Crustacea, phylogenetic evidence suggests a vertical transition from a last 

common ancestor of the Metazoa (King et al. 2010). If that is true, future research 

should unravel endogenous GH7s in a broad range of metazoans as well as 

microbes. 

Finally, several members of the GH10 family have been described in animals. In the 

Mollusca Ampullaria crossean a GH10 was characterized (EGX) with apparent 

activity against cellulose as well as xylan (Wang et al. 2003). Two GH10 genes (Pc1 

and Pc3), identified in the golden apple snail Pomacea canaliculata, were orthologous 

to EGX of A. crossean (Imjongjirak et al. 2008). Based on their orthologous 

relationship, the authors claimed cellulolytic activity in the corresponding proteins. 

However, this information should be viewed cautiously as the authors did not directly 

functionally characterize these GH10s. Other cases of GH10s in animals emerged, 
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such as in the weevil Hypothenemus hampei, in which the GH10 protein was 

characterized as an endo- -1,4-xylanase (Padilla-Hurtado et al. 2012), or  the bdeloid 

rotifer Adineta ricciae (Szydlowski et al. 2015). However, in the latter case no 

functional characterization was performed. Curiously, cellulase activity for this 

particular family is rare as GH10s are generally associated with xylanase activity. It is 

therefore likely that the above-observed cellulolytic activity has evolved recently 

based on the chemical similarities between cellulose and xylan. Nonetheless, future 

discoveries will likely shed light on the elusive enzymatic nature of GH10 putative 

cellulases in animals. 

1.2.4. GH45 cellulases 
Members of the GH45 family, which were found to be omnipresent in cellulolytic 

microbes (Gilbert et al. 1990; Saloheimo et al. 1994; Sheppard et al. 1994), contained 

two aspartates as catalytic residues and an inverting enzymatic mechanism (Davies 

et al. 1995). A GH45 gene endogenous to an animal was first described in the leaf 

beetle Phaedon cochleariae in 1999 (Girard and Jouanin). However, no direct 

correlation between the cellulolytic activity observed in the gut of P. cochleariae and 

the respective GH45 transcript was established. Thus, the first endogenous GH45 

functionally characterized in an insect was encoded by the longhorned beetle Apriona 

germari (Cerambycidae: Lamiinae). Based on its ability to degrade amorphous 

cellulose, this GH45 was classified as an endo-active cellulase (Lee et al. 2004). 

Simultaneously, endogenous GH45 endo- -1,4-cellulases were characterized in the 

pine wood nematode Bursaphelenchus xylophilus (Kikuchi et al. 2004). In the 

following years, the identification and characterization of GH45s remained limited to 

cerambycid beetles including Oncideres albomarginata chamela, Anoplophora 

glabripennis and Apriona japonica (Calderon-Cortes et al. 2010; McKenna et al. 2016; 

Pauchet et al. 2014a).  

With the advance of novel sequencing strategies, GH45 transcripts also emerged in 

other insects. The majority of GH45s were identified in various phytophagous beetles 

from the family Chrysomelidae and from the superfamily Curculionoidea (Pauchet et 

al. 2010). However, to date only one GH45 cellulase has been functionally 
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characterized from a beetle of the Chrysomelidae, namely, the Western corn 

rootworm Diabrotica virgifera virgifera (Valencia et al. 2013); none has been 

characterized in the Curculionoidea. Apart from beetles, GH45s have been 

characterized in arthropods other than insects, i.e. Collembola (Song et al. 2017) as 

well as in several Mollusca (Rahman et al. 2014; Sakamoto and Toyohara 2009; Xu 

et al. 2001) and Nematoda (Wang et al. 2018). All characterized GH45s are classified 

as endo-acting cellulases.  

Recently, GH45s have been identified in a Crustacea as well as in a species of 

bdeloid rotifer. However, functional data has only been provided for A. ricciae 

showing endo- -1,4-glucanase activity (Chang and Lai 2018; Szydlowski et al. 2015). 

Interestingly, phylogenetic analyses of GH45s derived from nematodes and molluscs 

suggested that their origin was not ancestral but likely inherited from a foreign source 

by HGT from a fungal donor (Palomares-Rius et al. 2014; Sakamoto and Toyohara 

2009). Based on this research and the patchy distribution of GH45s in arthropods 

(and the Metazoa in general), a similar hypothesis was assumed for beetle-derived 

GH45s. Yet, the first phylogenetic analysis of beetles-derived GH45s remained 

inconclusive due to a lack of sufficient sequence data (Calderon-Cortes et al. 2010). 

In a second more comprehensive approach, similar results were obtained (Eyun et al. 

2014). Although the authors of the latter study increased the number of GH45 

sequences from the former study, GH45 variety on species level remained low, 

preventing a clear evolutionary history of the GH45 gene family from being 

developed. To date the evolution of the GH45 family in beetles (and arthropods in 

general) remains unresolved. In a previous survey, we discovered several transcripts 

encoding putative cellulases of the GH45 family in a diverse set of Phytophaga 

beetles’ (Curculionoidea and Chrysomeloidea; (Marvaldi et al. 2009)); seven of these 

were chosen to be investigated in more detail. Six of those beetles belong to the 

Chrysomelidae (leaf beetles) and one to the Curculionidae (weevils). GH45 

transcripts encoded by beetles of interest are depicted in Figure 6.  
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Fig. 6 Target beetles and the number of their transcripts that encode the putative 
PCWDEs investigated in this thesis. Adapted from Pauchet et al. (2010). 

More precisely our research focus is Chrysomela tremula (Chrysomelidae: 

Chrysomelinae), which mainly feeds on poplar; Gastrophysa viridula (Chrysomelidae: 

Chrysomelinae), which feeds on Rumex spp. plants; Phaedon cochleariae 

(Chrysomelidae: Chrysomelinae), which feeds on brassicaceous plants; Leptinotarsa 

decemlineata (Chrysomelidae: Chrysomelinae), which is notorious for feeding on 

potato plants and on other solanaceous species; Diabrotica virgifera virgifera 

(Chrysomelidae: Galerucinae), a notorious pest on maize; Callosobruchus maculatus 

(Chrysomelidae: Bruchinae), a pest species on legumes; and Sitophilus oryzae 

(Curculionidae: Dryophthorinae), a pest on rice and other stored grains. 

1.2.5. GH48 cellulases 
Genes encoding putative cellulases of the GH48 family have been identified in 

Phytophaga beetles and represent the only examples to date of this GH family found 

in animals (Pauchet et al. 2010). Their catalytic core consists of a glutamate as proton 

donor (Parsiegla et al. 1998) and an aspartate as proton acceptor (Kostylev and 

Wilson 2011). Based on functional characterization experiments in microbes, GH48s 

have been classified as cellobiohydrolases (Irwin et al. 2000; Sanchez et al. 2003) or 
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endoglucanases (Reverbel-Leroy et al. 1997). To date, only two attempts have been 

made to functionally characterize GH48s in Coleoptera. First, a GH48 from 

Otiorhynchus sulcatus (Coleoptera: Curculionidae), resulting in inconclusive 

cellobiohydrolase activity (Edwards 2002), and second, a GH48 from Gastrophysa 

atrocyanea (Coleoptera: Chrysomelidae), which was surprisingly but not 

unambiguously characterized as a chitinase (Fujita et al. 2006). Based on these 

results, the function of GH48 in insects needs to be more thoroughly addressed to 

determine whether they are cellobiohydrolases, endoglucanases or chitinases. 

1.3. Hemicellulolytic systems in animals  
As stated above, hemicelluloses consist mainly of xyloglucan, xylan and mannans 

(Scheller and Ulvskov 2010). Conversely, enzymes that are able to degrade those 

substrates are endo- -1,4-xyloglucanases (EC 3.2.1.151), endo- -1,4-xylanases (EC 

3.2.1.8) and endo- -1,4-mannanases (EC. 3.2.1.78). According to the CAZy database 

(www.cazy.org), these enzyme classes are distributed in a wide range of GH families 

within the tree of life (Lombard et al. 2014). However, endo- -1,4-xyloglucanase 

activity in animals has been described only once for a functionally highly diverse 

group of GH9s, in stick insects (Phasmatodea) (Shelomi et al. 2016), and another 

time for a GH5_2, in the longhorned beetle (A. glabripennis) (McKenna et al. 2016). 

Likewise, endo- -1,4-xylanase activity in animals is rare and has been described only 

for two GH11s encoded by the leaf beetle Phaedon cochleariae (Pauchet and Heckel 

2013), for GH9s in Phasmatodea (Shelomi et al. 2016), for GH5_2 in Cerambycidae 

(McKenna et al. 2016) and for a single GH10 in the coffee berry borer H. hampei 

(Padilla-Hurtado et al. 2012). Finally, endo- -1,4-mannanases have been described 

in several of the Metazoa but are limited to two subfamilies of GH5, namely subfamily 

8 (GH5_8) and subfamily 10 (GH5_10). To date, the single GH5_8 characterized in 

H. hampei displayed endo- -1,4-mannanase activity (Acuna et al. 2012b). All 

additional endo- -1,4-mannanases were members of GH5_10, which will be further 

described in the following section.
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1.3.1. Endo- -1,4-mannanases of GH5 subfamily 10 
Although recently discovered in several Crustacea (Gan et al. 2018), GH5_10 

proteins have been identified and functionally characterized in only a handful of other 

species, including the bivalve Mytilus edulis (Larsson et al. 2006; Xu et al. 2002), the 

gastropods Haliotis discus hannai and Aplysia kurodai (Ootsuka et al. 2006; Zahura 

et al. 2011), the Crustacea Daphnia pulex (King et al. 2010), the annelid Eisenia 

fetida (Ueda et al. 2018) and the Collembola Cryptopygus antarcticus (Song et al. 

2008). All of these GH5_10s were characterized as endo- -1,4-mannanases. Based 

on their patchy distribution, the complex evolutionary history of the GH5_10 family is 

still under investigation (Tan et al. 2016). According to transcriptome data (Pauchet et 

al. 2010), GH5_10 putative mannanases are encoded by two beetles of the 

Chrysomelidae, the green dock beetle (G. viridula) and the bean beetle (C. 

maculatus). This discovery represents a rare finding in beetles, as the only other 

mannan-degrading enzyme found in a beetle species belonged to a different 

subfamily of the GH5 (Acuna et al. 2012b). Conversely, these findings suggest that 

mannan degradation has evolved at least twice in Phytophaga beetles. Additionally, 

the patchy distribution of the GH5_10 members in insects and animals, in general, 

suggests that they were likely not transferred vertically from an ancestral origin but 

may have evolved independently during beetle evolution. 

  



General Introduction 

18

1.4. Aims of the study and research questions addressed in this thesis 
The overall aim of this thesis is to investigate the ability of Phytophaga beetles to 

digest plant cell wall material and to determine the evolution of genes involved in that 

process. The following questions are addressed: How many genes were present in 

the LCA of the Phytophaga clade of beetles? Have beetle-derived PCWDEs kept their 

ancestral function or have they evolved novel functions? What is their evolutionary 

history? Is the origin of those genes ancestral or have they been acquired 

horizontally?  

In Manuscript one, I focus on genes encoding GH5_10 putative mannanases 

identified in two beetles of the Chrysomelidae with different feeding habits. I 

investigate the ability of GH5_10s to degrade plant-cell-wall-derived polysaccharides, 

and their physiological importance as well as their evolutionary origin. 

In Manuscript two, Gastrophysa viridula is the model organism through which I 

investigate three genes encoding glycoside hydrolases belonging to GH9 and GH45, 

both of which are known from microbes and Metazoa to act as cellulases. Here, I 

detail their enzymatic function, biochemical properties and biological relevance. 

In Manuscript three, I investigate the evolution of GH45s in Phytophaga beetles and 

extend this investigation to other GH45-encoding animal Phyla. Additionally, beetle-

derived GH45s are extensively characterized and the functional data obtained put into 

context through phylogenetic analysis. 

This thesis greatly increases our understanding of PCWDEs encoded by Phytophaga 

beetles. We show that GH45s as well as GH5_10s have evolved to acquire novel 

substrate specificities that allow those beetles to degrade several plant cell wall 

polysaccharides by expressing only two GH families. We also shed light on the 

especially intricate evolution of GH45s, a family which has evolved several times 

throughout the history of Arthropods. Our data suggest that GH45s were acquired 

from a fungal source, likely through a HGT. On a broad perspective, our functional 

experiments provide evidence that beetles of the Phytophaga may represent a source 
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of novel enzymes useable in processes such as paper making, beer brewing and 

biofuel production. 
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2. Overview of Manuscripts 

Manuscript I 

Evolution and functional characterization of CAZymes belonging to subfamily 10 of 
glycoside hydrolase family 5 (GH5_10) in two species of phytophagous beetles 

André Buscha, Grit Kunertb, David G. Heckela ,Yannick Paucheta 

Department of aEntomology and bBiochemistry, Max Planck Institute for Chemical Ecology, 

Jena, Germany 

Published in PLoS One, Volume 12, Issue 8, August 2017, e0184305 

In Manuscript I, we investigated putative mannanases belonging to members of glycoside 

hydrolase family 5 subfamily 10 (GH5_10) in Gastrophysa viridula (Chrysomelidae, 

Chrysomelinae) and Callosobruchus maculatus (Chrysomelidae, Bruchinae). We focused on 

GH5_10 functional characterization, biological relevance and evolutionary origin. We were 

able to confirm GH5_10 activity against mannan-derived polysaccharides but also found 

novel activities against xylan and cellulose. GH5_10 gene silencing using RNAi in G.viridula 

was successful resulting in a reduced gene as well as corresponding protein level. However, 

we were unable to detect any changes in phenotype suggesting a complex regulation of 

GH5_10 in the beetle. Phylogenetic analysis revealed a paraphyletic relationship of insect-

derived GH5_10 suggesting that those genes were acquired at least twice during insect 

evolution likely through horizontal gene transfer. 

André Busch and Yannick Pauchet planned the experimental framework, performed the 

experiments, analyzed the data, prepared figures and wrote the manuscript. Grit Kunert 

performed statistical analysis and helped discussing the data. David G. Heckel participated in 

the discussion of the results. All authors revised the manuscript. 
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Manuscript II 

Cellulose degradation in Gastrophysa viridula (Coleoptera: Chrysomelidae): functional 
characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a 

novel enzymatic activity 

André Buscha, Grit Kunertb, Natalie Wielschc, Yannick Paucheta 

Department of aEntomology and bBiochemistry and cResearch Group Mass Spectrometry, 

Max Planck Institute for Chemical Ecology, Jena, Germany 

Published in Insect Molecular Biology, Volume 27, Issue 5, May 2018, Pages 633-650 

In Manuscript II, we investigated putative cellulases belonging to members of glycoside 

hydrolase family 45 (GH45) and 9 (GH9) in Gastrophysa viridula (Chrysomelidae, 

Chrysomelinae). The major aim was to functionally characterize these proteins and 

investigate their biological function. Functional expression revealed that one GH45 has kept 

its cellulolytic function whereas the other has evolved to degrade xyloglucan. No activity was 

detected for the GH9. Gene silencing of both GH45s using RNAi resulted in a successful 

gene knockdown but no phenotypic effects were observed. Zymography experiments 

identified several other cellulases in the gut of G. viridula explaining the missing phenotype. 

Yet, the same experiment did not detect any additional xyloglucanases indicating a complex 

regulation and compensation of the silenced GH45 by other digestive enzymes. 

André Busch and Yannick Pauchet planned the experimental set up. André Busch performed 

the experiments, analyzed the data with the help of Yannick Pauchet, prepared the figures 

and wrote the manuscript. Grit Kunert performed statistical analysis and helped discussing 

the data. Natalie Wielsch performed LC-MS/MS analysis. All authors revised the manuscript.  
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Manuscript III 

Functional analyses of the horizontally acquired Phytophaga glycoside hydrolase 
family 45 (GH45) proteins reveal distinct functional characteristics 

André Busch1, Etienne G.J. Danchin2 and Yannick Pauchet1* 

1Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany and 
2INRA, Université Côte d'Azur, CNRS, ISA, Sophia Antipolis, France. 

Manuscript in preparation and to be submitted to Molecular Biology and Evolution 

In Manuscript III, we performed a wide spread analysis of beetle-derived GH45s 

encompassing four beetles of the Chrysomelidae and one beetle of the Curculionidae. We 

performed functional characterization experiments and identified active GH45 cellulases in 

each investigated species. Additionally, some GH45s have lost their ability to degrade 

cellulose but have evolved to degrade xyloglucan instead. Substitutions from aspartate to 

glutamate of catalytically important amino acid were likely responsible for the substrate shift. 

Our phylogenetic analysis revealed that beetle GH45s are not monophyletic with other 

Arthropoda GH45s but were most closely related to fungal ones suggesting a horizontal gene 

transfer from fungi to the last common ancestor of Phytophaga beetles. 

André Busch and Yannick Pauchet planned the experimental set up. André Busch performed 

the experiments, analyzed the data with the help of Yannick Pauchet, prepared the figures 

and wrote the manuscript. Yannick Pauchet performed phylogenetic analysis on beetle-

derived GH45s. Etienne Danchin performed phylogenetic analysis on animal-derived GH45s 

and helped discussing the results. All authors revised the manuscript. 
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3. Manuscripts 

3.1. Manuscripts I 
 

Evolution and functional characterization of CAZymes belonging to 
subfamily 10 of glycoside hydrolase family 5 (GH5_10) in two 

species of phytophagous beetles 

André Busch1, Grit Kunert2, David G. Heckel1 and Yannick Pauchet1 

1Department of Entomology, 2Department of Biochemistry, Max Planck Institute for 

Chemical Ecology, Jena, Germany 

Manuscript published in  

PLoS One 

Doi: 10.1371/journal.pone.0184305 

License number: ccBY 4.0 



RESEARCH ARTICLE

Evolution and functional characterization of
CAZymes belonging to subfamily 10 of
glycoside hydrolase family 5 (GH5_10) in two
species of phytophagous beetles

André Busch1, Grit Kunert2, David G. Heckel1, Yannick Pauchet1

1 Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany, 2 Biochemistry, Max Planck
Institute for Chemical Ecology, Jena, Germany

* ypauchet@ice.mpg.de

Abstract

Hemicelluloses, such as xyloglucan, xylan and mannans, consist of a heterogeneous array

of plant-derived polysaccharides that form the plant cell wall. These polysaccharides differ

from each other in their structure and physiochemical properties, but they share a -(1,4)-

linked sugar backbone. Hemicelluloses can be hydrolyzed by plant-cell-wall-degrading

enzymes (PCWDEs), which are widely distributed in phytopathogenic microbes. Recently, it

has become apparent that phytophagous beetles also produce their own PCWDEs. Our

previous work identified genes encoding putative mannanases belonging to the subfamily

10 of glycoside hydrolase (GH) family 5 (GH5_10) in the genomes of the leaf beetle,Gastro-

physa viridula (Chrysomelidae, Chrysomelinae; one gene), and of the bean beetle, Calloso-

bruchus maculatus (Chrysomelidae, Bruchinae; four genes). In contrast to proteins from

other GH5 subfamilies, GH5_10 proteins are patchily distributed within the tree of life and

have so far hardly been investigated. We addressed the following questions: Are beetle-

derived GH5_10s active PCWDEs? How did they evolve? What is their physiological func-

tion? Using heterologous protein expression and enzymatic assays, we show that theG. vir-

idulaGH5_10 protein is an endo- -1,4-mannanase. We also demonstrate that only one out

of four C.maculatusGH5_10 proteins is an endo- -1,4-mannanase, which has additional

activity on carboxymethyl cellulose. Unexpectedly, another C.maculatusGH5_10 protein

has evolved to use xylan instead of mannans as a substrate. RNAi experiments inG. viridula

indicate (i) that the sole GH5_10 protein is responsible for breaking down mannans in the

gut and (ii) that this breakdown may rather be accessory and may facilitate access to plant

cell content, which is rich in nitrogen and simple sugars. Phylogenetic analyses indicate that

coleopteran-derived GH5_10 proteins cluster together with Chelicerata-derived ones. Inter-

estingly, other insect-derived GH5_10 proteins cluster elsewhere, suggesting insects have

several independent evolutionary origins.
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Introduction
The plant’s primary cell wall is a complex structure consisting of polysaccharides and proteins

that encase and protect growing plant cells. Next to cellulose and pectins, the hemicellulose

network—made of polysaccharides such as xyloglucan, xylan and mannans—is one of the

main constituents of the plant’s primary cell wall [1,2]. The mannan group, which comprises

pure mannan, galactomannan and glucomannan, is widely distributed among plants and algae

[3] and may be part of the wall of different types of cells and tissues, such as roots, tubers,

bulbs and seeds [4]. Mannans may function as seed storage and/or structural components

[5,6]. For example, galactomannan, a storage polysaccharide in the endosperm cell wall of

legumes, occupies up to 30% of a seed’s dry weight [7]. The backbone of the polymer is com-

posed of mannose residues linked together by -1,4-glycosidic bonds. In galactomannan, this

backbone is substituted with -1,6-linked galactose residues. In contrast to mannan and galac-

tomannan, the backbone of glucomannan is made up of randomly alternating mannose and

glucose residues linked together by -1,4-glycosidic bonds [8].

Endo- -1,4-mannanase (EC: 3.2.1.78) is a family of so-called plant-cell-wall-degrading

enzymes (PCWDEs) that hydrolyze the backbone of mannan polysaccharides into oligosac-

charides [9]. These enzymes are widely distributed within the tree of life: they have been found

in bacteria, fungi, plants and animals [8]. According to the carbohydrate-active enzymes

(CAZy) database (http://www.cazy.org/) [10], endo- -1,4-mannanases are distributed in sev-

eral glycoside hydrolase (GH) families, namely, GH5, GH9, GH26, GH44, GH113 and GH134.

In metazoans, endo- -1,4-mannanases have been identified and functionally characterized in

bivalves [11,12], gastropods [13,14], Crustacea [15] and a springtail [16]. The common feature

of these metazoan mannanases is that they are members of the subfamily 10 of GH5

(GH5_10), according to the current nomenclature of this gene family [17]. This subfamily of

GH5 is one of the smallest described to date; as of April 2017, only 28 sequences had been

found in the CAZy database. Functionally characterized enzyme members of this subfamily

are all endo- -1,4-mannanases [11,13,14,16]. Genes encoding GH5_10 have also been identi-

fied from several bacterial genomes, but to date none has been functionally characterized

[18,19]. Neither fungal- nor plant-derived GH5_10 sequences are present in the CAZy data-

base, suggesting that this subfamily of GH5 is absent from these two phyla. During a survey of

transcriptomes of several herbivorous beetles member of the Phytophaga clades [20], we iden-

tified transcripts encoding GH5_10 putative mannanases in two species of the family Chry-

somelidae [21]. This finding indicated that in addition to their ability to break down cellulose

and pectins [22–26], some beetles of the Phytophaga clade may also possess the ability to break

down mannan polysaccharides. Interestingly, an endo- -1,4-mannanase has been character-

ized in a species of Phytophaga beetles—the coffee berry borer,Hypothenemus hampei—but it

belongs to the subfamily 8 of GH5 (GH5_8) [27,28], suggesting that the ability to break down

mannan polysaccharides appeared several times in the evolution of beetles of the Phytophaga

clade.

Here we analyze the function and the evolutionary history of GH5_10 putative mannanases

encoded by the genome of two chrysomelid beetles with different feeding habits. Larvae and

adults of the green dock beetle, Gastrophysa viridula (Coleoptera: Chrysomelinae), feed exclu-

sively on the foliage of dock plants (Rumex spp.), whereas larvae of the bean beetle, Callosobru-
chus maculatus (Coleoptera: Bruchinae), feed on the galactomannan-rich endosperm of

legume seeds. Besides GH5_10 proteins, the genome of G. viridula—like other species of the

subfamily Chrysomelinae—encodes GH45 and GH48 putative cellulases as well as GH28 pecti-

nases [21,23,29]. In contrast, in C.maculatus GH5_10 proteins are only complemented by

GH28 pectinases [21,23]. First, we asked whether beetle-derived GH5_10 proteins are active

Evolution and characterization of GH5_10 proteins in phytophagous beetles
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PCWDEs and how they have evolved. Second, we asked what their physiological function is.

We demonstrate that the sole GH5_10 protein of G. viridula and one out of four GH5_10 pro-

teins of C.maculatus are endo- -1,4-mannanases. In addition, a second GH5_10 protein of C.
maculatus has evolved to become an endo- -1,4-xylanase, which represents the first example

of such enzymatic activity in this subfamily of GH5. We show that the genes encoding

GH5_10 proteins in these two distantly related chrysomelid beetles share intron positions and

phases, and thus have a common origin. Finally, the phylogenetic relationships of these beetle-

derived GH5_10 proteins and their counterparts found in other metazoans are quite complex,

suggesting that several of the genes in this group of animals may have originated through the

acquisition by horizontal gene transfer events from bacterial donors.

Materials andmethods

Insect rearing
Gastrophysa viridula adults and larvae were initially collected from broad leaf dock plants

(Rumex obtusifolius) in the vicinity of Jena, Germany (50˚55’16.4"N 11˚35’14.1"E). No specific

permissions were required to collect G. viridula. This beetle species is not endangered or pro-

tected in any way, and the location where the beetles were collected is a park freely accessible

to the public. Collected individuals were brought to the lab and larvae were raised to adult-

hood. Insects were reared in plastic containers on detached leaves of R. obtusifolius grown in a

greenhouse. Beetles were allowed to mate and oviposit, and the offspring were used for experi-

ments. Larvae and adults were kept under a light/dark cycle of 16:8 hours at 18˚C and 13˚C,

respectively. Callosobruchus maculatus originated from a lab culture obtained fromMatthew

Benton (University of Cologne) and were reared in plastic containers on organic black-eyed

peas at room temperature on a lab bench.

Insect cell culture and heterologous expression
Open reading frames (ORFs) were amplified from cDNAs using gene specific primers (S1

Table) designed according to previously described GH5 sequences from G. viridula and C.
maculatus [21]. The forward primer was designed to introduce a Kozak sequence at the begin-

ning of the ORF, and the reverse primer was designed to omit the stop codon. Complementary

DNAs (cDNAs) initially generated for RACE-PCR experiments as described by Pauchet and

coworkers [21] were used as a template, and PCR reactions were conducted using a high-fidel-

ity Taq polymerase (AccuPrime, Invitrogen). PCR products were cloned into the pIB/V5-His

TOPO/TA (Invitrogen), in frame with the coding sequence of a V5-(His)6 epitope. TOP10

competent E. coli cells (Invitrogen) were transformed and plated on LB-agar dishes supple-

mented with 100 μg/ml ampicillin. To select for constructs correctly oriented after ligation

into pIB/V5-His TOPO/TA, randomly picked colonies were checked by colony-PCR using the

OpIE2 forward primer located on the vector and a gene-specific reverse primer (S1 Table).

Positive clones were further cultured in 3 ml DYT-medium containing 100 μg/ml ampicillin.

After plasmid isolation using GeneJET Plasmid Miniprep Kit (Thermo Scientific), the ORF of

selected clones was fully sequenced in both directions using capillary sequencing to confirm

that the ORF had been correctly inserted into the vector and to control that no mutation were

introduced during the cloning process. Positive constructs were then transfected in Sf9 cells
(Invitrogen) using FuGENE HD (Promega) as a transfection reagent. First, successful expres-

sion was determined by transiently transfecting three clones per construct in a 24-well plate

format. After 72 h, the culture medium was harvested, and successful expression was verified

byWestern blot using the anti-V5-HRP antibody (Invitrogen). In order to collect enough

material for downstream enzymatic activity assays, a single clone per construct was used for

Evolution and characterization of GH5_10 proteins in phytophagous beetles
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subsequent transfection of insect cells in a 6-well plate format. After 72 h, culture medium was

harvested and centrifuged (16,000 x g, 5 min, 4˚C) to remove cell debris; finally the medium

was stored at 4˚C until further use. Again, successful expression was verified by Western blot

using the anti-V5-HRP antibody.

Agarose diffusion assays
Enzymatic activity of the recombinant proteins was initially assessed using agarose diffusion

assays. Agarose (1%) plates were prepared, containing 0.1% substrate (glucomannan, galacto-

mannan and carboxymethyl cellulose) in 40 mM citrate/phosphate buffer pH 5.0. Galactoman-

nan (Megazyme) was derived from Carob pods and had a Galactose to Mannose ratio of 22/

78. Glucomannan and carboxymethyl cellulose were both purchased from Sigma Aldrich.

Small holes were made in the agarose matrix using cut-off pipette tips, to which 10 μl of the
crude culture medium of each produced enzyme was applied. After incubation overnight at

40˚C, activity was revealed by incubating the agarose plate in a 0.1% Congo red solution for 2

h at room temperature followed by a washing step with 1 M NaCl for 30 min at room

temperature.

Preparation of primary cell wall from Rumex obtusifolius leaves
Plant cell wall was extracted from R. obtusifolius leaves according to Feiz et al. [30] with slight

modifications. Briefly, 32 g of R. obtusifolius leaves was blended in 5 mM acetate buffer pH 4.6

and 400 mM sucrose. The plant tissue homogenate was incubated for 30 min at 4˚C while

being stirred and then pelleted by centrifugation for 15 min at 1000 x g and 4˚C. The pellet was
washed twice in 5 mM acetate buffer pH 4.6 containing 0.6 M and 1 M sucrose, respectively.

Finally, the pellet was transferred to a 25 μm nylon net (Miracloth) and washed with 6 l of 5

mM acetate buffer pH 4.6. The resulting cell wall was ground in liquid nitrogen and then

lyophilized for 48 h. To remove proteins associated with the plant cell wall, 650 mg of lyophi-

lized cell wall material was washed twice in 25 ml of 5 mM acetate buffer pH 4.6 containing

200 mM CaCl2, and was then washed twice in 30 ml 5 mM acetate buffer pH 4.6 containing 1

M NaCl. For each washing step, the cell wall was homogenized by vortexing for 10 min at

room temperature and subsequently centrifuged at 4000 x g and 4˚C. Subsequently, the pro-
tein-free cell wall was washed with 3 l of double distilled water before being lyophilized.

Freeze-dried plant cell wall from R. obtusifolius was rehydrated in double distilled water,

resulting in a 5% stock solution. For thin layer chromatography analyses (see below), 35 μg of
the 5% rehydrated PCW was incubated with 30 μl heterologously expressed GH5 from G. viri-
dula in a 20 mM citrate/phosphate buffer pH 5.0.

Analysis of hydrolysis reaction products by thin layer chromatography
(TLC)
The culture medium of transiently transfected cells was first dialyzed against distilled water at

4˚C for 24 h, using Slide-A-Lyzer Dialysis Cassettes with a 10 kDa cut-off, before being

desalted with Zeba Desalt Spin Columns 7 kDa cut-off (both Thermo Scientific), according to

the manufacturer’s guidelines. Samples were stored at 4˚C until used. Twenty microliter

enzyme assays were set up, using 14 μl of dialyzed and desalted crude enzyme extracts mixed

with 4 μl of a 1% solution of substrate in a 20 mM citrate/phosphate buffer pH 5.0. The follow-

ing substrates were tested: carboxymethyl cellulose, beechwood xylan (both Sigma Aldrich),

glucomannan, galactomannan and xyloglucan (all Megazyme). Additionally, the manno-oligo-

mers, D-(+) tetraose to D-(+) hexaose (Megazyme) were tested at a final concentration of 250

ng/μl. Samples were then incubated overnight at 40˚C. Finally, 15 μl of the reaction was

Evolution and characterization of GH5_10 proteins in phytophagous beetles
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applied to TLC plates (silica gel 60, Merck) and enzymatic breakdown products were separated

using the following mobile phase: butanol/glacial acetic acid/water (2:1:1). Breakdown prod-

ucts were revealed by spraying the TLC plates with 0.2% (w/v) orcinol in methanol/sulfuric

acid (9:1) followed by heating until reaction products appeared. The reference standard con-

tained 2 μg each of mannose, mannobiose, mannotriose, mannotetraose and mannopentaose

(all Megazyme) or 2 μg each of glucose, cellobiose, cellotriose, cellotetraose and cellopentaose
(all from Sigma-Aldrich) or 2 μg each of xylose (Sigma-Aldrich), xylobiose and xylotriose

(both Megazyme), according to the substrate tested.

Temperature optimum and pH optimum
To test the temperature optima, dialyzed and desalted crude enzyme extracts were incubated

with 0.5% (w/v) galactomannan (GVI1), or galactomannan and carboxymethyl cellulose in

parallel (CMA3), or beechwood xylan (CMA2) in 20 mM citrate phosphate buffer (pH 5.0) at

different temperatures ranging from 20˚C to 80˚C in steps of 10˚C. In detail, each enzyme

assay was performed with 24 μl crude enzyme extract, 30 μl of 1% (w/v) substrate solution and

6 μl of 20 mM citrate phosphate buffer pH 5.0. Negative controls were carried out with 24 μl of
distilled water instead of enzyme. The enzymatic activity was assayed at 40˚C for 5 min

(GVI1), 2.5 h (CMA3 against GalM), 16 h (CMA3 against CMC) and 16 h (CMA2). The

amount of reducing sugars produced in these reactions was measured using the dinitrosalicylic

acid (DNS) method according to Kirsch and co-workers [23]. To test for pH optima, dialyzed

and desalted crude enzyme extracts were incubated with their respective substrate as described

above and assayed in 20 mM citrate phosphate buffers ranging from pH 2.0 to 9.0 as well as in

20 mM sodium carbonate buffer pH 10.0. The amount of reducing sugars produced in these

reactions was measured using the dinitrosalicylic acid (DNS) method as described above. Each

reaction was carried out in triplicate.

Preparation of double-stranded RNA and off-target prediction
Primers for RNA interference (RNAi) experiments were designed for G. viridulaGH5 (GVI1)

and GFP used as controls, yielding a 300 bp fragment and a 379 bp fragment, respectively (S1

Table). To predict potential off-target effects, the sense and anti-sense RNA strands were diced

in silico into all possible 21 bp fragments using an in-house algorithm. The resulting siRNAs

were searched against our G. viridula larval gut transcriptome [21], using previously described

parameters [31]. A siRNA was considered off-target if the resulting hit was equal to or higher

than 21 bp by allowing one mismatch. Gene fragments were amplified from sequenced recom-

binant plasmids containing GVI1 or GFP. The amplicons were gel-purified using Zymoclean

Gel DNA recovery Kit (Zymo Research). To obtain double-stranded RNA (dsRNA), the puri-

fied PCR product was used as a template for in vitro transcription using the MEGAscript

RNAi kit (Ambion), following the manufacturer’s instructions. To remove residual DNA con-

tamination, the resulting dsRNA was nuclease-digested using TURBO™DNase (Thermo Sci-

entific), and then purified and recovered in 150 μl injection buffer (3.5 mM Tris–HCl, 1 mM

NaCl, 50 nM Na2HPO4, 20 nM KH2PO4, 3 mM KCl, 0.3 mM EDTA, pH 7.0). The quantity

of dsRNA was estimated using a spectrophotometer (NanoDrop ND-1000, Peqlab Biotechnol-

ogy), and its quality was assessed by gel electrophoresis.

Injection of dsRNA and assessment of RNAi efficiency
Early second-instar G. viridula larvae were injected dorsally with 50 nl (150 ng) of target
dsRNA into the metathorax, using a Nanoliter 2010 Injector (World Precision Instruments)

attached to a three-dimensional micromanipulator, and were then put onto fresh R.
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obtusifolius leaves. To record weight gain and mortality, five animals per replicate were

injected with a total of six replicates for each target gene. To analyze gene expression and enzy-

matic activity, three animals per replicate were injected with a total of six replicates for each

target gene. In addition to larvae injected with dsRNA targeting GFP, a non-injected control

was also included. For quantitative PCR and enzymatic activity analyses, larvae were collected

at days 1, 4 and 8 post injection. Whole larvae were crushed in liquid nitrogen and separated

in half. One aliquot was used for total RNA preparation, the other for protein extraction.

Total RNA was isolated using innuPREP RNAMini Kit (Analytik Jena), following the man-

ufacturer’s protocol. The resulting RNA was then subjected to DNase digestion (Ambion), and

its quality was subsequently checked using the RNA 6000 Nano LabChip kit on a 2100 Bioana-

lyser (both Agilent Technologies). Total RNA was used as a template to synthesize cDNAs

using the Verso cDNA synthesis kit (Thermo Scientific). The resulting cDNA samples were

then used for real-time qPCR experiments, which were performed in 96-well hard-shell PCR

plates on the CFX Connect Real-Time System (both Biorad). All reactions were carried out

using the 2-Step QPCR SYBR Kit (Thermo Scientific), following the manufacturer’s instruc-

tions. Primers were designed using Primer3 (version 0.4.0) (S1 Table). The specific amplifica-

tion of each transcript was verified by dissociation curve analysis. A standard curve for each

primer pair was determined in the CFXManager (version 3.1) based on Cq-values (quantita-

tion cycle) of qPCRs run with a dilution series of cDNA pools. The efficiency and amplification

factors of each qPCR, based on the slope of the standard curve, were calculated using an inte-

grated efficiency calculator of the CFX manager software (version 3.1). The sequence of the

transcript encoding ribosomal protein S3 (RPS3), extracted from our G. viridula larval gut
transcriptome [21], was used as a reference for all qPCR experiments, and the abundance of

GVI1 transcripts was expressed as RNAmolecules per 1000 RNAmolecules of RPS3.
To directly compare GH5 transcript abundance to GH5 enzymatic activity in RNAi-treated

G. viridula, crushed and frozen material was suspended in 40 mM citrate/phosphate buffer at

pH 5.0 containing a protease inhibitor cocktail (Complete EDTA-free, Roche). Then, the sam-

ples were centrifuged (10 min, 16000xg, 4˚C), and the supernatant was collected and stored at

4˚C until further use. Protein concentration was estimated by Bradford Protein Assay (Bio-

Rad). Enzymatic activity assays were carried out using the DNS method as described above,

using 2 μg of extracted proteins in the reaction. Alternatively, 0.5 μg total extracted proteins

were prepared for zymogram analysis by diluting the sample in Laemmli buffer without any

reducing agent. Samples were run on a 12.5% SDS-PAGE gel containing 0.1% (w/v) galacto-

mannan. Electrophoresis was carried out at 4˚C using pre-chilled running buffer. Gels were

then washed three times in a 2.5% Triton X-100 solution for 15 min, each at 4˚C, before being

equilibrated in the reaction buffer (50 mM citrate/phosphate buffer pH 5.0) for 16 h at 4˚C,

followed by a 1 h incubation at 40˚C. The gels were then incubated in a 0.1% (w/v) Congo red

solution before being destained in 1 M NaCl until pale activity zones appeared against a dark

red background.

Two life history traits were recorded after larvae were injected with dsRNA. First, larvae

(we used groups of five insects per replicate, six replicates in total) were weighed on day 1and

day 8 post injection. Then, growth rate was calculated using the formula “Growth
rate = Log10(Final weight)-Log10(Initial weight)/ Time (days)”. Finally, mortality was recorded

at the end of the experiment.

Tissue-specific gene expression
Late-instar G. viridula larvae, actively feeding on leaves of R. obtusifolius, as well as late-instar
C.maculatus larvae, actively feeding inside black-eyed peas, were used for RNA extraction.
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Larvae were cut open from abdomen to head, and the complete gut was removed and stored

separately from the rest of the body. Dissection and storage were carried out in RL solution

(Analytik Jena). Three biological replicates were sampled, each containing three larvae. RNA

extraction, generation of cDNAs and subsequent real-time qPCR experiments were performed

as described above. Primers used for these experiments are listed in S1 Table.

Statistical analyses
If not otherwise stated data were analyzed in R version 3.2.0 [32]. Statistical analyses of gene

expression over time were performed as follows: The influence of GVI1 RNAi treatment

(iGH5) over time RNAi treatment and time used as categorical explanatory variables on GVI1

transcript abundance was investigated using the generalized least squares method (gls from

the nlme library [33]) to account for the variance heterogeneity among the residuals. The varI-

dent variance structure was used, with a different variance for the combination of treatment

and time (varIdent (form = ~1|combination of [treatment and time])). The influence of the

explanatory variables was determined by sequentially removing explanatory variables starting

with the full model and comparing the simpler model to the more complex one, using a likeli-

hood ratio test [34]. Differences between factor levels were determined by factor level reduc-

tion [35]. The influence of RNAi treatment on the enzyme activity over time was analysed with

a two-way ANOVA. The Tukey HSD test was performed in order to find differences between

the groups. To compare weight gain over time in RNAi-treated larvae, we calculated the rela-

tive growth rate for the period of 8 days and analyzed the data in SigmaPlot version 11.0 (Systat

Software) using a one-way ANOVA. Differences in mortality were analyzed using the equality

of proportions–test. Differences in tissue-specific gene expression were analyzed with paired t-

tests again in SigmaPlot Version 11.0.

Gene structure determination
The GVI1 ORF was amplified by PCR from genomic DNA using gene-specific primers (S1

Table). Genomic DNA was prepared from a single G. viridulamale beetle using the QIAamp

DNAmicro kit (Quiagen), following the manufacturer’s instructions. The PCR product was

then cloned into the pCR4 TOPO TA vector (Invitrogen), followed by the transformation of

TOP10 competent E. coli cells (Invitrogen). Cells were then plated on LB-agar dishes supple-

mented with 100 μg/ml ampicillin. To select for constructs harboring the sequence of interest,

randomly picked colonies were checked by PCR using M13 forward and reverse primers. Plas-

mid DNA was prepared from positive clones using the GeneJET Plasmid Miniprep Kit

(Thermo Scientific). The sequence of the GVI1 ORF was deduced from three independent

clones after capillary sequencing. Sequences corresponding to the genes encoding CMA1,

CMA2, CMA3 and CMA4 were retrieved from a draft genome assembly of C.maculatusmade

publicly available (http://www.beanbeetles.org/genome/). The intron/exon structure was

determined for each gene using Splign [36].

Amino acid alignment and phylogenetic analyses
All sequences corresponding to GH5_10 proteins present in the carbohydrate-active enzymes

(CAZy) database [37] as of February 1, 2017, were retrieved. Due to the paucity of GH5_10

sequences available, extra searches were conducted in bacterial and fungal genomes available

through the genome portal of the Joint Genome Institute (http://jgi.doe.gov/) as well as in

transcriptome shotgun assemblies available at Genbank (https://www.ncbi.nlm.nih.gov/

genbank/tsa/). A description of the sequences can be found in S2 Table. All obtained sequences

were analyzed for the presence of a signal peptide and extra protein domains other than the
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GH5 domain using InterProScan version 61.0. Once such features were identified, they were

removed from the collected protein sequences, and only the GH5 domain was conserved for

amino acid alignment. Amino acid alignments were carried out using MUSCLE version 3.7 on

the Phylogeny.fr web platform (http://www.phylogeny.fr) [38], and were inspected and cor-

rected manually when needed. Maximum-likelihood-inferred phylogenetic analyses were con-

ducted in MEGA6 [39]. The best model of protein evolution was determined in MEGA6 using

the ‘find best DNA/protein models’ tool. The best model was the ‘Le and Gascuel’ (LG) model,

incorporating a discrete gamma distribution (shape parameter = 5) to model differences in

evolutionary rates among sites (+G) and a proportion of invariable sites (+I). The robustness

of each analysis was tested using 1,000 bootstrap replicates.

Results

Characterization ofG. viridula andC.maculatusGH5_10 proteins
reveals distinct enzymatic activities
Full-length amplicons of target GH5_10 transcripts were cloned into a pIB-V5/His TOPO vec-

tor and transiently expressed in insect Sf9 cells. Validation that GH5_10 proteins were success-

fully expressed and secreted into the culture medium was made byWestern blot; heterologous

proteins had an apparent molecular weight of 45 to 55 kDa close to their theoretical expected

size ranging from 41.7 to 43.2 kDa (Fig 1A). To test whether these GH5_10 proteins were enzy-

matically active, we initially analyzed crude enzyme extracts on agarose diffusion plates con-

taining various plant cell wall polysaccharides as substrates (Fig 1B). Gastrophysa viridula
GH5-1 (GVI1) and C.maculatus GH5-3 (CMA3) exhibited activity halos on plates containing

galactomannan (GalM) and glucomannan (GluM). In addition, CMA3 showed activity halos

on plates containing carboxymethyl cellulose (CMC).

To further analyze the enzymatic properties of beetle-derived GH5_10 proteins, we used

in-tube assays with an array of cellulosic and hemicellulosic poly- and oligosaccharides, and

analyzed them by TLC (Fig 2). GVI1 exhibited activity against GalM and GluM (Fig 2A and

2B). GalM breakdown products consisted mainly of trimers and larger oligomers and, to a

lesser extent, monomers and dimers of mannose. GluM breakdown products seemed to be tri-

mers and tetramers and, to a lesser extent, dimers and monomers (Fig 2A and 2B). Compared

to GalM breakdown products, however, these oligomers appear to be far less resolved on TLC.

Most likely, this discrepancy in the resolution of breakdown products lies in the chemical

nature of both substrates. GalM is a polysaccharide consisting of a pure mannose backbone

decorated with evenly distributed galactose moieties, whereas GluM is a straight-chain poly-

saccharide consisting of a backbone that alternates unevenly between mannose and glucose

moieties with occasional branching. Thus, we believe that the heterogeneous structure of

GluM leads to inconsistently sized breakdown products which appear as smears on TLC. We

then tested the ability of GVI1 to cleave several mannan oligomers (Fig 2). GVI1 cleaved man-

nohexaose into mannotriose (Fig 2F), and mannopentaose into mannotriose and mannobiose

(Fig 2G). The smallest mannan oligomer that GVI1 could cleave was mannotetraose, resulting

in the breakdown products mannotriose, mannobiose and mannose (Fig 2H).

Like GVI1, CMA3 exhibited activity against galactomannan and glucomannan (Fig 2A and

2B), but CMA3 was also able to break down CMC (Fig 2C). The main breakdown products

accumulating after GalM and CMC degradation are the corresponding trioses and the larger

oligomers. As we observed for GVI1, GluM breakdown products did not resolve very well on

TLC. The smallest oligomer that CMA3 was able to cleave was mannohexaose, releasing man-

notriose (Fig 2F). The results obtained for GVI1 and CMA3 on TLC confirmed the activity
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Fig 1. Heterologous expression of GH5_10 proteins fromG. viridula andC.maculatus in Sf9 insect
cells. (A) GH5_10 cDNAs cloned into an expression vector in frame with a V5/(His)6 epitope were transfected
into Sf9 cells. The culture medium of transfected cells was collected 72 hours post transfection and samples
were subjected to Western blot. An anti-V5-HRP antibody was used for detection and the blot was revealed
using chemiluminescence. Molecular weight markers are indicated next to theWestern blot. (B) The culture
medium of transfected cells was applied to agarose plates containing 0.1% substrate in McIllvain buffer pH
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observed in agarose plate assays. Our data strongly indicate that GVI1 and CMA3 are endo- -

1,4-mannanases, with CMA3 also acting as endo- -1,4-glucanase.

Unexpectedly, TLC experiments allowed us to detect a second enzymatically active

GH5_10 protein in C.maculatus (CMA2), which was able to degrade beechwood xylan (Fig

2D). The breakdown products generated by CMA2 were xylotriose and larger oligomers of

xylan, which suggests that this enzyme acted as an endo- -1,4-xylanase. GH5 family members

harboring xylanase activity have been described in bacteria [40,41] and, recently, in ceramby-

cid beetles [25,26]. However, these xylan-degrading GH5 enzymes were encoded by distinct

GH5 subfamilies (GH5_2, _4 and _21) [17]. CMA2 represents the first example of a GH5_10

protein harboring endo- -1,4-xylanase activity.

None of the tested heterologously expressed proteins showed activity against xyloglucan

(Fig 2E). No activity either on plates or on TLC was observed for C.maculatus GH5-1, -4, -5

(CMA1, CMA4, CMA5) on any of the substrates tested. An alignment of the amino acid

sequences including all coleopteran-derived GH5_10 proteins together with two additional

sequences of proteins with known crystal structures [11,42] showed that the two catalytic glu-

tamate residues are conserved, and confirmed that no dramatic substitutions of active site resi-

dues occurred between the two reference sequences and the sequences derived from beetles

(S1 Fig). These patterns may indicate that CMA1, CMA4 and CMA5 are active enzymes but

that their substrate has not yet been discovered or, alternatively, that they lost their activity due

to mutations in other functionally important sites.

Investigation of optimal pH values and temperatures for coleopteran
GH5_10 enzymes
The enzymatic performance of GVI1 was monitored using galactomannan as a substrate.

GVI1 performed best at acidic pH values with an optimum around pH 5.0 (Fig 3A) and a tem-

perature optimum close to 50˚C (Fig 3B). As CMA3 was the only enzyme we discovered exhib-

iting activity against three substrates—namely, GalM, GluM and CMC—we chose to test

CMA3 against GalM and CMC in parallel. The optimal pH value for CMA3 using GalM as a

substrate was 5.0, and the corresponding optimal temperature was around 40˚C (Fig 3A and

3B). The optimal pH value for CMA3 tested against CMC was close to 4.0 and the correspond-

ing optimal temperature, around 40˚C (Fig 3A and 3B). The enzymatic performance of CMA2

was monitored using beechwood xylan as a substrate. The pH optimum for CMA2 was deter-

mined to be around 6.0 and the optimal temperature was approximately 50˚C. In summary,

each enzyme analyzed performed best under acidic conditions, which correlates well to the pH

conditions of the gut lumen in related beetle species [43].

Tissue-specific gene expression and gene silencing of theG. viridula
GH5_10 gene
To learn where the genes encoding GH5_10 family members are expressed in G. viridula and
C.maculatus, we performed quantitative RT-PCR on midgut tissue and on the rest of the

body. Transcripts encoding all GH5_10 proteins in both species are significantly more abun-

dant (statistical values see S3 Table) in the midgut tissue, whereas almost no transcripts were

detected in the rest of the body, reinforcing the fact that these GH5_10 proteins have a diges-

tive function (S2 Fig).

5.0, and plates were incubated for 16 hours at 40˚C. Activity halos were revealed after staining with Congo
red.

https://doi.org/10.1371/journal.pone.0184305.g001

Evolution and characterization of GH5_10 proteins in phytophagous beetles

PLOSONE | https://doi.org/10.1371/journal.pone.0184305 August 30, 2017 10 / 23

Manuscripts I 

33

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Fig 2. Thin-layer chromatograms of beetle GH5_10 assays against a range of plant cell wall polysaccharides andmannan oligomers. (A)
Heterologously expressedG. viridula andC.maculatusGH5_10 proteins were incubated with galactomannan. GVI1 releases mannose, mannobiose,
mannotriose and larger oligomers. CMA3 releases mannotriose and larger oligomers. (B) The same proteins incubated with glucomannan. GVI1 and
CMA3 release a range of oligomers, which proved difficult to resolve on TLC. (C) The same proteins incubated with carboxymethylcellulose (CMC).
CMA3 releases cellotriose and larger oligomers. (D) The same proteins incubated with beechwood xylan. CMA2 releases xylotriose and larger
oligomers. (E) The same proteins incubated with xyloglucan. None of the proteins showed activity against this substrate. (F) The same proteins
incubated with mannohexaose. Both GVI1 and CMA3 release mannotriose. (G) The same proteins incubated with mannopentaose. GVI1 releases
mannotriose and mannobiose. (H) The same proteins incubated with mannotetraose. GVI1 releases mannose, mannobiose and mannotriose.
Standards (Std) used are mannose to mannopentaose (M1 to M5), glucose to cellopentaose (G1 to G5), xylose to xylotriose (X1 to X3). A negative
control was introduced (C-) to which no enzyme was added. A positive control (C+), which is composed of a commercial cellulase preparation from
Trichoderma reesei incubated with the corresponding substrates, was included in the TLCs of xylan and xyloglucan activity assays.

https://doi.org/10.1371/journal.pone.0184305.g002
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To investigate how important GH5_10 are for the biology of these beetles, we used dsRNA-

mediated silencing of the expression of the gene encoding GVI1 in G. viridula and analyzed

the subsequent genotype and phenotype. We decided to perform RNAi experiments only with

G. viridula. In fact RNAi is not really possible to perform with C. maculatus mainly due to the

biology of this beetle species. As mentioned earlier, C. maculatus larvae develop inside legume

seeds. One would have to remove the larvae out of the seeds to inject the dsRNA and then put

them back into a legume seed which is practically not possible.

First, we examined gene expression levels of GVI1 at several time points after the injection

of dsRNA (Fig 4A). We managed to significantly knock down the expression of the GVI1 gene

(iGH5) compared to insects injected with dsRNA targeting GFP as control (iGFP) (likelihood

ratio = 59.634, p< 0.001). The changes of the expression levels over time differed between

treatments (likelihood ratio = 21.114, p<0.001). More precisely, we were able to reduce the

expression of the GVI1gene up to 96.6% at day 4 post injection, 70.8% at day 8 post injection

and 64.7% in adults compared to iGFP control animals. In general, our knockdown of the

expression of the GVI1 gene using dsRNA proved to be stable and lasted through the adult

stage (Fig 4A). Second, we measured the mannanase activity of guts dissected from iGH5 lar-

vae at several time points. We found that levels of mannanase activity in iGH5 insects were sig-

nificantly reduced compared to iGFP and NIC control insects (Fig 4B) (F = 71.361, p< 0.001).

The changes of enzymatic activity over time differed between treatments (F = 3.499, p = 0.014)

and was reduced to 73.96% at day 4 post injection, 70.32% at day 8 post injection and 57.93%

Fig 3. Determining the optimal pH values and temperatures of the enzymatically active GH5_10 proteins. (A) GVI1, CMA2 and CMA3 were
incubated with their respective substrates at various pH values, ranging from 2.0 to 10.0. (B) The same proteins were incubated with their respective
substrates at various temperatures, ranging from 20 to 80˚C. The amount of reducing sugars released was determined by DNS assay and converted
into millimolar (mM) of sugar monomer equivalent. The results are the means of three independent replicates SEM. The substrates used were
galactomannan for GVI1 and CMA3, beechwood xylan for CMA2 and carboxymethylcellulose (CMC) for CMA3.

https://doi.org/10.1371/journal.pone.0184305.g003
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in adults compared to iGFP control insects. Again, the reduction of mannanase activity

remained stable in the gut of iGH5 insects from the larval to the adult stage (Fig 4B).

Although the reduction of mannanase activity in iGH5 insects was substantial and corre-

lated with the knockdown of the expression of the gene encoding GVI1, it did not reach the

same level (that is, ca. 95% reduction). Therefore we asked whether GVI1 is the only manna-

nase present in the gut of G. viridula. To answer this question, we performed zymogram analy-

ses using galactomannan as a substrate, and compared iGH5 to iGFP and non-injected control

insects (S3 Fig). A single band harboring mannanase activity could be seen in all samples. The

intensity of the band in iGH5 protein samples was strongly reduced compared to the intensity

of the band from the control insects, indicating (i) that GVI1 is the sole endo- -1,4-mannanase

present in the gut fluid of G. viridula; and (ii) that there is still a non-negligible amount of this

enzyme even after RNAi.

We then monitored two life history traits (growth rate and mortality) and compared them

between iGH5 insects and both iGFP and non-injected control insects over several days post

injection (Fig 5). We chose day 8 post injection for our analysis as this was the last day larvae

actively fed. Although our data suggested iGH5 insects tend to grow more slowly compared to

control insects, no statistically significant differences could be documented (Fig 5A) (F = 1.875,

p = 0.188). Additionally, we saw no significant differences in the mortality of larvae injected with

GH5 dsRNA compared to control larvae (Fig 5B, 2 = 0.423, p = 0.809). In summary, although

wemanaged to knock down the expression of the gene encoding GVI1 and reduce levels of man-

nanase activity, we observed no differences in growth and mortality. As a result, we believe that

GVI1 may not have a primary digestive function but is more likely an accessory enzyme.

Significance forG. viridula to express a mannanase
Taking into account that the amount of mannan polysaccharides in the primary cell wall of

plant leaves is usually comprised between 2 and 5% [44], we wondered whether, the action of

Fig 4. Knockdown of the expression of the gene encoding GVI1 by RNA interference. Early second-instar larvae ofG. viridulawere injected with
double-stranded RNA (dsRNA), targeting GVI1 (iGH5) or targeting GFP (iGFP) as a control. A non-injected control (NIC) was also included. Larvae
were collected on days 4 and 8 post injection. Newly emerged adults were also collected. Groups of three insects (six replicates per treatment) were
snap-frozen in liquid nitrogen before being ground into a fine powder. Half of the powder was used for total RNA preparation and subsequent
quantitative RT-PCRs, and the other half was used in enzyme assays. (A) The expression of the gene encoding GVI1 was assessed in the different
treatments by quantitative RT-PCR. The gene expression is given as copy number per 1000 RNAmolecules of RPS3. (B) Quantification of the
mannanase activity in the same treatments. The amount of reducing sugars released was determined by DNS assay and converted into millimolar
(mM) of mannose. The different letters on top of each box plot indicate significant differences (P 0.05). For details on the statistics, please refer to the
Materials andMethods section.

https://doi.org/10.1371/journal.pone.0184305.g004
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GVI1 could release mannan oligomers from the cell wall of Rumex leaves. To test this hypothe-
sis, we isolated primary cell wall from leaves of R. obtusifolius free of proteins and incubated it

with GVI1 heterologously expressed in Sf9 cells; then we visualized the results of this experi-

ment on TLC (S4 Fig). We observed the presence breakdown products in cell wall samples

treated with GVI1, whereas no oligomers could be detected in cell wall samples incubated

alone, indicating that the primary cell wall of R. obtusifolius leaves possesses polysaccharides
that can be broken down by GVI1 in the gut of G. viridula beetles.

Phylogenetic analysis and evolution of GH5_10 proteins
To clarify the evolutionary history of GVI1 and CMA1–4 (CMA5 was excluded from the anal-

ysis as we believe it is an allele of CMA4), we reconstructed their molecular evolution in a phy-

logenetic analysis. We performed extensive searches of GH5_10 genes in various databases,

including the CAZy database (http://www.cazy.org; [37]), as well as in publicly available

genome and transcriptome assemblies. We identified GH5_10 genes in several other insects

(Zygentoma, Archaeognatha, Ephemeroptera) and also in Collembola, Crustacea, Chelicerata

of the family Oribatidae, mollusks and bacteria (See S2 Table). According to current data,

GH5_10 genes seem to be absent in plants and fungi. Amino acid sequences collected from

our search were first aligned with each other and a maximum-likelihood-inferred phylogenetic

analysis was performed, showing that the coleopteran-derived GH5_10 proteins clustered in a

highly supported clade together with Oribatidae (Chelicerate)-derived proteins (Fig 6). Inter-

estingly, other insect-derived GH5_10 proteins do not cluster together with the coleopteran

proteins but form a well-supported clade together with crustacean- and collembolan-derived

GH5_10 proteins. This heterogeneous distribution of insect GH5_10 proteins may hint at

Fig 5. Effects of knocking down the expression of the gene encodingGVI1 on growth rate andmortality. Early second-instar larvae ofG.
viridulawere injected with double-stranded RNA (dsRNA) targeting GVI1 (iGH5) or targeting GFP (iGFP) as a control. A non-injected control (NIC) was
also included. Larvae were collected at days 4 and 8 post injection. Newly emerged adults were also collected. (A) Groups of five insects (six replicates
per treatment) were weighed on day 1 and day 8 after they were injected with dsRNA, and growth rates were calculated. A one-way ANOVA statistical
test was applied to the data. (B) The number of dead larvae per treatment was recorded during the eight days of the experiment. Mortality data were
analyzed using the equality of proportions–test.

https://doi.org/10.1371/journal.pone.0184305.g005
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Fig 6. Phylogenetic relationships among beetle GH5_10 proteins and other animals and bacteria. Amaximum-likelihood-inferred phylogeny is
shown which compares the predicted amino acid sequences of the GH5_10 proteins fromG. viridula andC.maculatus described here with their other
animal and bacterial counterparts. Bootstrap support values (1000 replicates) are indicated at corresponding nodes. When the bootstrap support value
of a given node was below 50, the corresponding node was condensed. Details of the sequences used for the analyses as well as accession numbers
are provided in the electronic supplementary material, S2 Table. Branches in blue correspond to insect proteins; branches in red to bacterial proteins;
branches in purple to mollusk proteins; branches in orange to chelicerate proteins; branches in green to collembolan proteins; and branches in pink to
crustacean proteins.

https://doi.org/10.1371/journal.pone.0184305.g006
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several independent evolutionary origins for this gene family in insects, indicating the likeli-

hood of several potential horizontal gene transfer events from bacterial donors.

We investigated beetle-derived GH5_10 encoding genes in more detail by examining

intron-exon structures (S5 Fig). We investigated three full-length (GVI1, CMA3, CMA4) and

two partial genomic sequences (CMA1, CMA2). For that, we PCR-amplified the gene encod-

ing GVI1 from genomic DNA, and we acquired the structure of the CMA GH5_10 genes from

a draft genome sequence. Two introns were identified in the gene encoding GVI1. The posi-

tion of these two introns is conserved in the genes encoding GVI1 and the CMA GH5_10

genes. We also found extra introns in the CMA sequences. Not only do the gene encoding

GVI1 and the CMAs GH5_10 genes share two intron positions, but the phase of these introns

is also conserved, suggesting that the most recent common ancestor of G. viridula and C.
maculatusmay have possessed one or several GH5_10 genes in its genome. Also, the presence

of introns in all target genes confirmed that these genes are endogenous to the beetles’

genomes.

Discussion
We previously reported that the transcriptomes of two phytophagous beetles, G. viridula and
C.maculatus, harbor transcripts encoding GH5_10 putative mannanases [21]. Here, we dem-

onstrated that at least some of these GH5_10 proteins are indeed enzymatically active on plant

cell wall polysaccharides, implying that they have a digestive function. According to our data,

the gene encoding GVI1 is expressed in the gut and the corresponding protein is secreted into

the gut lumen. The same is also true for the GH5_10 genes and corresponding proteins found

in C.maculatus. A transcriptome analysis of C.maculatus indicated that the transcripts corre-

sponding to CMA3 and CMA4 were expressed specifically in larval gut tissue [45]. In addition,

the corresponding proteins, as well as CMA2, were identified in a proteome analysis of C.
maculatus, indicating that they had been secreted into the gut lumen [46]. Clearly, these

enzymes fulfill a digestive function in these beetles.

According to our data, GVI1 and CMA3 are mannanases, which mainly break down galac-

tomannan, and most likely also mannan. The ability of these enzymes to break down gluco-

mannan as well is most likely due to their ability to cleave -1,4-bonds of two adjoining

mannose residues in the glucomannan backbone. The additional activity observed for CMA3

on carboxymethylcellulose may be explained by the ability of this enzyme to partially cleave -

1, 4-bonds between two glucose residues. This ability is most likely due to the fact that glucose

is an isomer of mannose, and the high molecular similarity of both polysaccharides might lead

to substrate recognition and subsequent cleavage by CMA3. However, we would like to point

out that no such secondary enzymatic activity on carboxymethylcellulose was observed for

GVI1. Thus, the ability of a GH5_10 mannanase to act as cellulase is the exception rather than

the rule for this family of enzymes. In addition, we know that G. viridula encodes members of

the GH45 family which are absent in C.maculatus [21]. Most GH45 proteins characterized

from phytophagous beetles are endo- -1,4-glucanases that can break down amorphous cellu-

lose [22,25,26,47–49]. Thus, CMA3 may have evolved to break down amorphous cellulose on

top of mannans to adapt to the loss of genes encoding GH45 cellulases present in other sub-

families of Chrysomelidae. Notably, bi-functional mannanase-cellulase enzymes such as

CMA3 are rare among GH5 enzymes and were recorded only once for a GH5_1 protein in

Ruminococcus albus (which is only able to cleave CMC and GluM as secondary activity to

lichenan degradation) [50]. To our surprise, we discovered that CMA2 has lost its ability to

degrade mannans and has evolved to break down xylan, another hemicellulosic polysaccha-

ride. Xylanase activity in coleopteran species mediated by GH5s has so far been shown only
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for two cerambycid beetles, but those cerambycid-derived enzymes belonged to a different

GH5 subfamily than those investigated here [25,26]. Additionally, xylanases have been identi-

fied in the coffee berry borer,Hypothenemus hampei [51], and the mustard leaf beetle, Phaedon
cochleariae [52], but those enzymes belonged to entirely different GH families (GH10 and

GH11, respectively).

As cellulolytic and pectolytic enzymes are widely distributed among phytophagous beetles

[21,24,25,53], implying they have an important biological function, it is striking that so few

hemicellulolytic enzymes (such as xylanases and mannanases) have emerged in the course of

Phytophaga beetle evolution. The distribution of hemicellulolytic enzymes in coleopteran spe-

cies may hint at either a strong variation in the abundance of hemicellulosic polysaccharides in

different plant species or plant organs, or at more specific biological requirements for breaking

down hemicellulose according to the insect. We would also like to point out that it is still

unclear whether symbiotic microbes are involved in plant cell wall degradation in beetles; if

the microbes are, they may potentially be providing hemicellulolytic enzymes in the gut of

insects that lack endogenous enzymes. The ability of C.maculatus to break down GalM, GluM,

CMC and xylan by expressing only GH5_10 proteins likely evolved through subfunctionaliza-

tion events. In an evolutionary context, this ability seems to be a consequential event, as no cel-

lulases or xylanases of any other GH family were found in the larval transcriptome of C.
maculatus [21]. Altogether, and taking into account our previous work on the C.maculatus
GH28 proteins [23], this beetle species possesses the ability to almost completely break down

the polysaccharides of the plant’s primary cell wall by expressing only two GH families.

CMA1, CMA4 and CMA5 (a likely allele of CMA4) exhibited no enzymatic activity against the

substrates tested, although no substitution of important catalytic residues was observed. Inter-

estingly, the expression of CMA4 transcripts in the gut tissue as well as the presence of the cor-

responding protein in the gut lumen of C.maculatus larvae have been reported elsewhere

[45,46], suggesting that this protein plays an important role in the gut of C.maculatus. The
inability to degrade any of the substrates we tested does not exclude the possibility that these

proteins are still active enzymes for which no substrate has yet been found. This fact could also

suggest a neo-functionalization of these proteins, but this possibility remains to be

investigated.

To learn more about the physiological function of the G. viridulaGH5_10 mannanase, we

performed RNAi experiments. We successfully managed to knock down the expression of

GVI1, which correlated with a reduction of enzymatic activity against galactomannan, indicat-

ing that GVI1 is the only mannanase expressed in the gut of G. viridula. However, we found

no significant differences regarding either growth rate or mortality between GVI1-silenced lar-

vae and the GFP control. These results would imply that GVI1 may not fulfill a primary diges-

tive function, such as providing degraded plant cell wall polysaccharides (e.g. manno-

oligomers or mannose) for metabolic purposes, e.g., glycolysis or fatty acid metabolism. We

hypothesize instead that cleaving hemicellulosic components of the plant’s cell wall is rather

accessory and may facilitate exposure of plant cells to the insect, allowing G. viridula to gain
access to and to benefit from simple sugars and proteins present in plant cells. Although the

previous hypothesis may also elicit reduced growth and/or the increased mortality of silenced

larvae, the activity of GVI1 may be compensated for by other glycoside hydrolase families

encoded by G.viridula, such as GH45 cellulases and GH28 pectinases. But such speculation

needs to be further examined by, for example, performing comparative expression profiling

using RNA-Seq between silenced and control insects. Interestingly, Nogueira et al. demon-

strated that C.maculatus treated with a cysteine peptidase inhibitor responded by up-regulat-

ing other digestive enzymes, including CMA3 [46]. This finding may suggest a compensation

of inhibited proteases by other digestive enzymes or it is a stress response due to the decreasing
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amount of nitrogen set free in the digestive tract of the animal. The former hypothesis seems

rather unlikely, as mannan degradation does not directly increase nitrogen levels. Thus, we

believe that a stress response is rather likely and this hypothesis has been already suggested

elsewhere [54].

GH5 is a large multigene family, but its members are rarely found in Coleoptera or in

insects in general; to date only three subfamilies (2, 8 and 10) have been identified [21,25–

27,55]. Our investigation revealed that, according to data currently available, only 59 genes

encoding GH5_10 are present within the tree of life, and, in fact, this gene family seems

completely absent from plants and fungi. Of those 59 genes, only five are found in two species

of Coleoptera. We can also exclude bacterial contamination because the GH5_10 genes of G.
viridula and C.maculatus were found to harbor introns. Contamination by fungal-derived

GH5s is also unlikely because, as previously mentioned, genes encoding GH5_10 seem absent

in fungi. To our surprise, our phylogenetic analysis revealed that coleopteran-derived GH5_10

proteins did not cluster together with other insect counterparts but, rather, with those derived

from three different species of mites belonging to the Oribatidae (Chelicerata). Additional

GH5_10 sequences were identified in transcriptomes of insects belonging to orders other than

Coleoptera, i.e. Zygentoma, Archaeognatha and Ephemeroptera. The latter sequences clus-

tered together with collembolan- and crustacean-derived GH5_10 sequences. The patchy dis-

tribution of those proteins within arthropods indicates that the apparition of GH5_10 genes

happened several times individually or else a massive gene loss has occurred in this phylum.

As the latter hypothesis seems unlikely, we believe that the most parsimonious explanation for

the appearance of GH5_10 genes in arthropods is the occurrence of several independent hori-

zontal gene transfer (HGT) events, probably from bacteria to arthropod, occurring at several

time points in the evolution of arthropods. However, we would like to note that because of the

few bacteria-derived GH5_10 sequences currently available, our phylogenetic analysis has a

poor resolution. Although we cannot fully support the hypothesis of an HGT event, the avail-

ability of an increasing amount of bacteria-derived GH5_10 sequences in the near future may

solve this problem.

As we investigated the structure of the genes encoding GH5_10 in G. viridula and C.macu-
latus, we realized that the position and phase of the first and last introns are shared between

these sequences. A logical explanation for this observation is that the most recent common

ancestor of these two species of chrysomelid beetles possessed at least one GH5_10 gene har-

boring these two conserved introns. Subsequently, if the hypothesis for the acquisition of this

gene family through an HGT event is true, this transfer should have happened at least in the

most recent common ancestor of these two beetle species. Apart from G. viridula and C.macu-
latus, and according to the state of transcriptome and genome data currently available, genes

encoding GH5_10 are apparently absent from other species of Chrysomelidae and even from

species within the superfamily Chrysomeloidea and its sister superfamily Curculionoidea

[21,25,28,53]. Altogether, it implies that a major gene loss happened among Chrysomelidae.

An HGT event between these two species may also represent an alternative hypothesis, but

this remains to be investigated.

Finally, the restriction of GH5_10 proteins to confined animal lineages may have repre-

sented an important factor to allow these animals to adapt to their food. Although the advan-

tage of having mannanases is understandable for C.maculatus and other species of Bruchinae,
it is less clear how G. viridulawould benefit. In fact, species of Bruchinae often use the seeds of

legumes as a food source. Legume seeds are notoriously rich in galactomannan, which is used

as a storage sugar and subsequently as a source of energy during germination [7,56]. For an

insect feeding on these seeds, the ability to break down galactomannan and use it as a potential

source of energy represents a true advantage. We strongly believe that, within Bruchinae, the
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presence of GH5_10 is common and not limited to C.maculatus. A similar situation has been

observed in the coffee berry borer,H. hampei—a species that feeds on coffee beans, which are

also very rich in mannans [7] -which has acquired a GH5_8 mannanase from bacteria through

HGT [27]. On the other hand, our RNAi experiments indicated that knocking down the

expression of GVI1, which correlated with a drastic reduction of the mannanase activity in the

gut of silenced larvae, neither significantly decreased growth nor increased mortality com-

pared to control larvae. We also could not find any information in the literature which would

indicate that the content of mannans in Rumex sp. leaves is unusually high. Yet when GVI1

was put in contact with a preparation of plant cell wall isolated from Rumex leaves, mannan

oligomers were visible on TLC, indicating that this enzyme likely contributes to breaking

down the plant cell wall when the beetle feeds on its host plant.

Supporting information
S1 Fig. Amino acid alignment of beetle-derived GH5_10 proteins with two others for

which the crystal structure has been resolved. Amino acid sequences were aligned without

their predicted amino-terminal signal peptide. Conserved sites are depicted from dark to light

blue, depending on the degree of amino acid identity. The two catalytic glutamate residues are

indicated in red. Active site residues are indicated by arrows. The two reference sequences for

which the crystal structure has been resolved are derived from the Antarctic springtail, crypto-
pygus antarcticus (CAN1, PDB: 4OOU_A), and from the blue mussel,Mytilus edulis (MED1,

PDB: 2C0H_A).

(TIF)

S2 Fig. Tissue-specific expression of beetle-derived genes encoding GH5_10 proteins. Late-

instar actively feeding larvae were dissected, and gut and rest bodies were used for total RNA

preparation and quantitative RT-PCR. (A) The gene encoding GVI1 is significantly more

expressed in the gut of G. viridula larvae compared to in the rest of the body. The gene expres-

sion is given as the copy number of GVI1 per 1000 molecules of RPS3 (control gene) ± SEM.

(B) Genes encoding GH5_10 are significantly more expressed in the gut of C.maculatus larvae
compared to in the rest of the body. The gene expression is given as the copy number of GVI1

per 1000 molecules of EF1 (control gene) ± SEM. Data were plotted using a log-transformed

scale. Gene expression data were analyzed using paired t-tests (statistical values see S3 Table).

(TIF)

S3 Fig. Zymogram of the mannanase activity after RNAi in G. viridula.The same protein

samples (day 4 post injection) as those described in Fig 4 were used for zymographic analyses.

(A) 5 μg total proteins were loaded on a semi-native SDS-PAGE gel containing 0.1% (w/v)

galactomannan. After the run, the gel was stained with Coomassie and used as a loading con-

trol. (B) 0.5 μg total proteins from the same samples were loaded on the same semi-native

SDS-PAGE gel. After the run, this part of the gel was used to detect mannanase activity and

activity bands were detected after staining with Congo red. iGH5: samples were prepared from

G. viridula larvae injected with dsRNA targeting GVI1; iGFP: samples were prepared from lar-

vae injected with dsRNA targeting GFP and used as controls; NIC: non-injected control lar-

vae.

(TIF)

S4 Fig. Action of GVI1 on a preparation of plant cell wall from Rumex obtusifolius leaves.
GVI1 was heterologously expressed in Sf9 cells and crude enzyme extract was incubated with a

preparation of protein-free plant cell wall (PCW) isolated from R. obtusifolius leaves. Results
were analyzed on TLC. A reaction in which GVI1 had been omitted was included as a control.
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In addition, the PCWwas also incubated with a commercially available control cellulase prepa-

ration (CCP) isolated from Trichoderma reesei. Several standards were used: from mannose

(M1) to mannohexaose (M6); from glucose (G1) to cellopentaose (G5); from xylose (X1) to

xylotriose (X3).

(TIF)

S5 Fig. Conservation of intron position and phase between G. viridula and C.maculatus
GH5_10 genes. The amino acid sequences of G. viridulaGVI1 and C.maculatus CMA1 to

CMA4 were aligned using MUSCLE. The sequence corresponding to the signal peptide is indi-

cated in bold. The G. viridulaGVI1 gene was amplified by PCR using gDNA as a template.

The sequences corresponding to the C.maculatus GH5_10 genes were retrieved from a

genome draft assembly of this species (http://www.beanbeetles.org/genome/). Missing

sequence data for the C.maculatus GH5_10 genes are indicated in gray. Intron positions and

phase are indicated by colored amino acids. Amino acids in green correspond to the insertion

of a phase 0 intron. Amino acids in red correspond to the insertion of a phase 1 intron. Amino

acids in blue correspond to the insertion of a phase 2 intron.

(TIF)

S1 Table. List of primers used in this study.

(PDF)

S2 Table. Details of the amino acid sequences used for the phylogenetic analysis.

(PDF)

S3 Table. Statistical analysis of tissue specific gene expression (S2 Fig).

(PDF)
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Supplementary Material 

S1 Fig. Amino acid alignment of beetle-derived GH5_10 proteins with two others for 
which the crystal structure has been resolved. Amino acid sequences were aligned 

without their predicted amino-terminal signal peptide. Conserved sites are depicted from dark 

to light blue, depending on the degree of amino acid identity. The two catalytic glutamate 

residues are indicated in red. Active site residues are indicated by arrows. The two reference 

sequences for which the crystal structure has been resolved are derived from the Antarctic 

springtail, Cryptopygus antarcticus (CAN1, PDB: 4OOU_A), and from the blue mussel, 

Mytilus edulis (MED1, PDB: 2C0H_A). 
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S2 Fig. Tissue-specific expression of beetle-derived genes encoding GH5_10 proteins. 
Late-instar actively feeding larvae were dissected, and gut and rest bodies were used for total 

RNA preparation and quantitative RT-PCR. (A) The gene encoding GVI1 is significantly more 

expressed in the gut of G. viridula larvae compared to in the rest of the body. The gene 

expression is given as the copy number of GVI1 per 1000 molecules of RPS3 (control gene) 

± SEM. (B) Genes encoding GH5_10 are significantly more expressed in the gut of C. 

maculatus larvae compared to in the rest of the body. The gene expression is given as the 

copy number of GVI1 per 1000 molecules of EF1  (control gene) ± SEM. Data were plotted 

using a log-transformed scale. Gene expression data were analyzed using paired t-tests 

(statistical values see S3 Table). 



Manuscripts I 

49

 

S3 Fig. Zymogram of the mannanase activity after RNAi in G. viridula. The same protein 

samples (day 4 post injection) as those described in Fig 4 were used for zymographic 

analyses. (A) 5 g total proteins were loaded on a semi-native SDS-PAGE gel containing 

0.1% (w/v) galactomannan. After the run, the gel was stained with Coomassie and used as a 

loading control. (B) 0.5 g total proteins from the same samples were loaded on the same 

semi-native SDS-PAGE gel. After the run, this part of the gel was used to detect mannanase 

activity and activity bands were detected after staining with Congo red. iGH5: samples were 

prepared from G. viridula larvae injected with dsRNA targeting GVI1; iGFP: samples were 

prepared from larvae injected with dsRNA targeting GFP and used as controls; NIC: non-

injected control larvae. 
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S4 Fig. Action of GVI1 on a preparation of plant cell wall from Rumex 
obtusifolius leaves. GVI1 was heterologously expressed in Sf9 cells and crude enzyme 

extract was incubated with a preparation of protein-free plant cell wall (PCW) isolated 

from R. obtusifolius leaves. Results were analyzed on TLC. A reaction in which GVI1 had 

been omitted was included as a control. In addition, the PCW was also incubated with a 

commercially available control cellulase preparation (CCP) isolated from Trichoderma reesei. 

Several standards were used: from mannose (M1) to mannohexaose (M6); from glucose (G1) 

to cellopentaose (G5); from xylose (X1) to xylotriose (X3). 
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S5 Fig. Conservation of intron position and phase between G. viridula and C.
maculatus GH5_10 genes. The amino acid sequences of G. viridula GVI1 

and C. maculatus CMA1 to CMA4 were aligned using MUSCLE. The sequence 

corresponding to the signal peptide is indicated in bold. The G. viridula GVI1 gene was 

amplified by PCR using gDNA as a template. The sequences corresponding to 

the C. maculatus GH5_10 genes were retrieved from a genome draft assembly of this 

species (http://www.beanbeetles.org/genome/). Missing sequence data for 

the C. maculatus GH5_10 genes are indicated in gray. Intron positions and phase are 

indicated by colored amino acids. Amino acids in green correspond to the insertion of a 

phase 0 intron. Amino acids in red correspond to the insertion of a phase 1 intron. Amino 

acids in blue correspond to the insertion of a phase 2 intron. 
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S2_Table. Details of the amino acid sequences used for the phylogenetic analysis.

Specie name abbreviation Accession number Notes
Bacteria
Fibrobacter succinogenes subsp. succinogenes S85 FSU1 ACX74338.1 Fibrobacteres
Flammeovirga sp. MY04 FLA1 ANQ49303.1 Bacteroidetes
Flammeovirga sp. MY04 FLA2 ANQ52741.1 Bacteroidetes
Flammeovirga yaeyamensis FYA1 ACA05117.2 Bacteroidetes
Melioribacter roseus P3M-2 MRO1 AFN74927.1 Ignavibacteriae
Saccharophagus degradans 2-40 SDE1 ABD81545.1 Proteobacteria (gamma)
Spirochaeta thermophila DSM 6192 STH1 ADN01068.1 Spirochaetes
Spirochaeta thermophila DSM 6578 STH2 AEJ60366.1 Spirochaetes
Uncultured bacterium UBA1 AEV59732.1
Vibrio natriegens VNA1 ANQ24656.1 Proteobacteria (gamma)

Insects
Gastrophysa viridula GVI1 ADU33333.1 Arthropoda (Coleoptera)
Callosobruchus maculatus CMA1 ADU33271.1 Arthropoda (Coleoptera)
Callosobruchus maculatus CMA2 ADU33272.1 Arthropoda (Coleoptera)
Callosobruchus maculatus CMA3 ADU33273.1 Arthropoda (Coleoptera)
Callosobruchus maculatus CMA4 ADU33274.1 Arthropoda (Coleoptera)
Tricholepidion gertschi TGE1 GASO02036642 Arthropoda (Zygentoma)
Tricholepidion gertschi TGE2 GASO02042472 Arthropoda (Zygentoma)
Thermobia domestica TDO1 GASN02045897 Arthropoda (Zygentoma)
Thermobia domestica TDO2 GASN02045380 Arthropoda (Zygentoma)
Machilis hrabei MHR1 GAUM02040243 Arthropoda (Archaeognatha)
Eurylophella sp. AD-2013 EUR1 GAZG02013172 Arthropoda (Ephemeroptera)
Isonychia bicolor IBI1 GAXA02038640 Arthropoda (Ephemeroptera)

Collembola
Cryptopygus antarcticus CAN1 ABV68808.1 Arthropoda
Orchesella cincta OC12957 OCI1 GAMM01012947 Arthropoda
Sminthurus viridis SVI1 GATZ02024785 Arthropoda
Folsomia candida FCA1 GASX02002882 Arthropoda
Pogonognathellus sp. AD-2013 POG1 GATD02008031 Arthropoda
Tetrodontophora bielanensis TBI1 GAXI02022226 Arthropoda

Crustacea
Limnoria quadripunctata LQU1 ADE58567.1 Arthropoda
Limnoria quadripunctata LQU2 ADE58568.1 Arthropoda
Limnoria quadripunctata LQU3 ADE58569.1 Arthropoda
Hyalella azteca HAZ1 XP_018022370.1 Arthropoda
Daphnia pulex DPU1 EFX71596.1 Arthropoda
Daphnia pulex DPU2 EFX71597.1 Arthropoda
Proasellus grafi PGR1 HAEX01030896 Arthropoda
Talitrus saltator TSA1 GDUJ01040948 Arthropoda
Cherax quadricarinatus CQU1 HACK01027957 Arthropoda

Chelicerata
Nothrus palustris NPA1 GEYJ01076133 Arthropoda
Nothrus palustris NPA2 GEYJ01112851 Arthropoda
Nothrus palustris NPA3 GEYJ01073735 Arthropoda
Platynothrus peltifer PPE1 GEYZ01027687 Arthropoda
Platynothrus peltifer PPE2 GEYZ01016327 Arthropoda
Platynothrus peltifer PPE3 GEYZ01010130 Arthropoda
Steganacarus magnus SMA1 GEYQ01012964 Arthropoda
Steganacarus magnus SMA2 GEYQ01047325 Arthropoda

Gastropoda
Aplysia kurodai AKU1 BAJ60954.1 Mollusca
Biomphalaria glabrata BGL1 AAV91523.1 Mollusca
Haliotis discus discus HDI1 ACJ12612.1 Mollusca
Haliotis discus discus HDI2 ACJ12613.1 Mollusca
Haliotis discus hannai HDI3 BAE78456.1 Mollusca
Limacina antarctica LAN1 GDRM01030628 Mollusca
Elysia timida ETI1 GBRM01102742 Mollusca
Deroceras reticulatum DRE1 JW037389 Mollusca
Pomacea canaliculata PCA1 GBZZ01045211 Mollusca
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S3 Table. Statistical analysis of tissue specific gene expression (Fig S2).

Species Gene t-value p-value
G.viridula GH5 16.092 0.004

C. maculatus

GH5-1 4.525 0.006
GH5-2 9.019 0.003
GH5-3 30.468 <0.001
GH5-4 7.422 0.002
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Abstract 
Cellulose is a major component of the primary and secondary cell walls in plants. 

Cellulose is considered to be the most abundant biopolymer on Earth and represents 

a large potential source of metabolic energy. Yet, cellulose degradation is rare and 

mostly restricted to cellulolytic microorganisms. Recently, various metazoans, 

including leaf beetles, have been found to encode their own cellulases, giving them 

the ability to degrade cellulose independently of cellulolytic symbionts. Here, we 

analyzed the cellulosic capacity of the leaf beetle Gastrophysa viridula, which typically 

feeds on Rumex plants. We identified three putative cellulases member of two 

glycoside hydrolase (GH) families, namely GH45 and GH9. Using heterologous 

expression and functional assays, we demonstrated that both GH45 proteins are 

active enzymes, in contrast to the GH9 protein. One GH45 protein acted on 

amorphous cellulose as an endo- -1,4-glucanase, whereas the other evolved to 

become an endo- -1,4-xyloglucanase. We successfully knocked down the expression 

of both GH45 genes using RNAi, but no changes in weight gain or mortality were 

observed compared to control insects. Our data indicated that the breakdown of these 

polysaccharides in G. viridula may facilitate access to plant cell content, which is rich 

in nitrogen and simple sugars. 

 

Keywords 
Chrysomelidae; cellulase; xyloglucanase; GH9; GH45; RNAi 
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Introduction 
As the sun’s electromagnetic energy is gathered by plants and converted into 

chemical energy, most of it is stored as glucose-derived polysaccharides. Among 

these are polysaccharides contributing to the architecture of the plant cell wall, such 

as the hemicelluloses (e.g. xyloglucan and mannans) or pectin (e.g. polygalacturonic 

acid). However, the most abundant polysaccharide is believed to be cellulose (Bayer 

et al. 1998), which consists of -1,4-linked anhydroglucose residues forming an 

unbranched polysaccharide chain. After biogenesis at the cellulose synthase 

complex, the individual chains attach to each other by hydrogen bonds and yield a 

(para)crystalline structure (Chang 1981). Yet, there are “weak points” on the surface 

of the cellulose polymer that are not crystallized and these are referred to as 

amorphous regions (Ruel et al. 2012). Although it is assumed that cellulose 

crystallinity is low in primary cell walls (Cosgrove 2014), we still lack a complete 

understanding of how the native cellulose is packed with regards to the proportion of 

amorphous and crystalline cellulose (Knox 2008; Saxena 2007). 

Nonetheless, cellulose theoretically represents an abundant source of energy to any 

organism which has evolved the ability to degrade it. However, in nature, the 

degradation of cellulose seems to be difficult, as it is recalcitrant to hydrolysis (Bayer 

et al. 1998). Thus, only a few organisms have evolved the ability to degrade cellulose 

enzymatically, and, for a long time, cellulose degradation was believed to be 

restricted to the domain of microorganisms, such as saprophytic fungi (Schulein 

1997), plant pathogenic parasites (Chambost J.P. 1987; Py et al. 1991), or mutualistic 

symbionts in the gut of insects (Breznak and Brune 1994) or in the rumen of ruminant 

animals (Rincon et al. 2001). In 1998, the first metazoan-derived cellulase was 

discovered (Watanabe et al. 1998), and since then, cellulases and other plant cell 

wall degrading enzymes (PCWDEs) have been found continuously in multicellular 

organisms though their distribution is patchy. Those discoveries ultimately changed 

the dogmatic view that the cellulolytic system in metazoans is dependent solely on 

microbes. Today, the presence of endogenous cellulolytic enzymes in multicellular 

organisms spans the phyla Nematoda, Arthropoda and Mollusca (Girard and Jouanin 
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1999; Kikuchi et al. 2004; Pauchet et al. 2014a; Sakamoto and Toyohara 2009; 

Shelomi et al. 2014; Smant et al. 1998; Willis et al. 2011; Xu et al. 2001). 

To degrade cellulosic material, cellulases have evolved two types of activity and are, 

accordingly, named either exo- -1,4-glucanases (EC 3.2.1.91) or endo- -1,4-

glucanases (EC 3.2.1.4). Exoglucanases (cellobiohydrolases) attack the 

polysaccharide from its non-reducing terminal regions, releasing cellobiose and 

occasionally cellotriose (Takahashi et al. 2010). Cellobiohydrolases are able to break 

down amorphous as well as crystalline cellulose. In contrast, endoglucanases are 

able to attack only amorphous regions, releasing randomly sized fragments of 

cellulose. Both types of cellulases act synergistically in order to efficiently break down 

the cellulose network (Kostylev and Wilson 2012). 

According to amino acid sequence similarities, cellulases are classified into distinct 

families of glycoside hydrolases (GHs) (Henrissat and Bairoch 1993). In insects, the 

most commonly distributed endogenous cellulolytic families are GH5, GH9 and GH45 

(Fischer et al. 2013). The first indication of a coleopteran-derived GH45 involved in 

cellulose degradation was described in the leaf beetle Phaedon cochleariae 

(Coleoptera: Chrysomelidae) in 1999 (Girard and Jouanin 1999). But not until 2004 

was the first recombinant GH45 characterized as an active cellulase within the 

beetles (Lee et al. 2004). In the following years, several other beetle-derived GH45s 

were identified and functionally characterized (Chang et al. 2012; Lee et al. 2004; Lee 

et al. 2005; McKenna et al. 2016; Mei et al. 2015; Valencia et al. 2013; Valencia 

Jimenez et al. 2014; Xia et al. 2013) or found in transcriptome as well as proteome 

data (Busconi et al. 2014; Kirsch et al. 2012; Pauchet et al. 2010). Today, the 

superfamilies Chrysomeloidea (leaf beetles and longhorned beetles) and 

Curculionoidea (weevils), generally referred to as the Phytophaga clade (Marvaldi et 

al. 2009), are commonly found to encode proteins of the GH45 family (Pauchet et al. 

2010). Interestingly, to date and to the best of our knowledge, there are only two 

cases of endogenous GH9s known to be present in beetles: first, a cellulolytically 

active GH9 described in the tenebrionid Tribolium castaneum (Willis et al. 2011) and 
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second, a GH9 from the cerambycid Anoplophora glabripennis, which did not show 

enzymatic activity under the experimental conditions tested (McKenna et al. 2016). 

Here, we analyzed the ability of the green dock beetle Gastrophysa viridula 

(Coleoptera: Chrysomelidae) to break down various polysaccharides typically 

associated with the plant cell wall. Our main objective was to identify the enzymes 

responsible for the breakdown of cellulose in this species and to estimate their 

biological relevance. Previously, we analyzed the larval gut transcriptome generated 

from G. viridula and identified a single transcript encoding a putative cellulase, a 

member of the GH45 family, which we named GH45-1 (Pauchet et al. 2010). Re-

analysis of this transcriptome allowed us to identify a transcript encoding a second 

putative cellulase member of the GH9 family. We demonstrate here that neither 

GH45-1 nor GH9 possesses the ability to break down any of the cellulosic substrates 

we tested. Using protein purification, we identified a protein responsible for the 

breakdown of amorphous cellulose in the gut of G. viridula larvae. This protein 

happened to be a second GH45 (GH45-2) that was previously not covered by the 

transcriptome analysis. After functionally expressing the corresponding proteins, we 

demonstrate that GH45-1 has evolved to become an endo- -1,4-xyloglucanase, and 

our demonstration represents the first case of such activity within the GH45s; GH45-

2, in contrast and as expected for this GH family, is a endo- -1,4-glucanase acting on 

amorphous cellulose. Finally, in order to assess the biological importance of these 

GH45s in G. viridula, we used RNAi to knock down the expression of the 

corresponding genes. Although successful, the knockdown of the expression of the 

two GH45 genes induced no striking phenotype (weight gain and mortality) compared 

to control insects.  
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Results 
Enzymes present in the G. viridula gut can attack a range of plant cell wall 
polysaccharides 
We used dialyzed and desalted gut content in an in-tube assay against various kinds 

of celluloses, hemicelluloses and pectins, and the breakdown products were 

visualized by TLC (Fig. 1B, D, E). We were able to show enzymatic activity against 

glucomannan and galactomannan (Fig. 1B), which, in both cases, are degraded down 

to the monomer as well as to larger oligomers. In addition, we found that the gut 

content is able to degrade various pectins (Fig. 1C). In particular, polygalacturonic 

acid is broken down to mainly monomer, dimer as well as larger oligomers, whereas 

citrus pectin is mostly degraded into trimer and larger oligomers with traces of 

monomer and dimer. Pectin derived from apple is degraded to monomer, trimer and 

larger oligomers, but lacks dimers. The patterns of esterified pectin and beet pectin 

show the least degradation, most likely due to substitutions of the pectin polymer with 

either methyl ester (esterified pectin) or acetyl groups (beet pectin). These results are 

in agreement with our previous work confirming both mannanase (Busch et al. 2017) 

and pectinase activity (Kirsch et al. 2014) in G. viridula. More important, we found that 

each cellulosic substrate tested (carboxymethyl cellulose (CMC), cellobiose, 

cellotriose, cellopentaose, microcrystalline cellulose and filter paper) was degraded 

down to glucose (Fig. 1A). For carboxymethyl cellulose (CMC), cello-oligomers also 

appear as “smears” on TLC. We do note, however, that microcrystalline cellulose 

(Avicel) shows only a faint signal, matching a monomer in size and indicating that 

cellulolytic proteins of the gut content exhibit only restricted activity towards 

microcrystalline cellulose. Additionally, we found that xyloglucan was highly 

degraded. Xyloglucan breakdown products correlate with glucose, cellobiose and 

cellotriose (as well as with larger oligomers), but, based on the fact that glucose 

moieties within the xyloglucan backbone can be highly substituted with xylose (which, 

in turn, may be substituted with galactose and/or fucose), the observed breakdown 

products can reflect any combination of those polysaccharides. This experiment 

clearly demonstrated the ability of G. viridula to effectively degrade most of the major 

polysaccharides present in the plant cell wall.  



Manuscript II 

61

 

Fig. 1. Enzymatic activity of G. viridula gut content against several plant-cell-wall-
derived polysaccharides. (A,B,C) TLC of G. viridula gut content incubated with several 

plant-cell-wall-derived polysaccharides for 16 h at 40 °C and pH 5.0. Breakdown products 

were visualized using 0.2 % orcinol in methanol/sulphoric acid. C1-C5 = cellulose-oligomers; 

CMC = carboxymethyl cellulose; CC = crystalline cellulose; FP = filter paper; XylG = 

xyloglucan; Xyl1-Xyl3 = xylan-oligomers; Man1-Man6 = mannose-oligomers; GluM = 

glucomannan; GalM = galactomannan; Gal1 = galactose; GA1-GA3 = galacturonic acid-

oligomers; PGA = polygalacturonic acid; Pcit = citrus pectin; Papp = apple pectin; Pest = 

esterified pectin; Pbee = beet pectin. 
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Investigation of candidate genes encoding putative cellulases 
Our previous transcriptome analysis revealed a transcript encoding a putative 

cellulase of the glycoside hydrolase family 45 (GH45-1; accession: ADU33334.1). 

The full-length amplicon of GH45-1 was cloned into a pIB-V5/His TOPO vector in 

frame with a V5/His6-Tag and was subsequently used for transient transfection in 

insect Sf9 cells. According to the presence of an amino-terminal signal peptide in the 

sequence of GH45-1, the target recombinant protein was secreted into the culture 

medium and its successful expression was validated by Western blot using Anti-V5 

Antibody. GH45-1 was successfully expressed with an apparent molecular weight of 

~35 kDa (Fig. 2A). Although the protein’s theoretically expected size was ~26 kDa, 

we reasoned that the increased size of the target protein was due to the artificially 

added V5/His6-tag as well as to post-translational modifications such as glycosylation. 

To analyze the cellulolytic properties of the recombinant GH45-1, we tested the crude 

protein extract on an agarose-diffusion plate containing 0.1 % CMC (Fig. 2B). To our 

surprise, no cellulase activity was detected. We re-screened the transcriptome of G. 

viridula and discovered a partial sequence with strong similarities to proteins of the 

glycoside hydrolase family 9 (GH9). As GH9s are well known for their cellulolytic 

properties (Kim et al. 2008; Watanabe et al. 1998; Willis et al. 2011), we decided to 

RACE-amplify the GH9 and we obtained a full-length sequence (accession: 

MG875329). We then cloned and heterologously expressed the G. viridula GH9 and 

tested it for its cellulolytic ability. We validated the successful expression by Western 

blot, yielding a protein signal with an apparent molecular weight of ~60 kDa (Fig. 2A 

and B), which is in accordance with its estimated size (~53.4 kDa). Once more, no 

activity against CMC could be observed. The confirmed activity of the gut lumen in 

response to several cellulosic substrates indicated that either the G. viridula 

transcriptome was incomplete or a gene(s) coding for protein families of yet unknown 

cellulolytic ability was (were) present. To track the cellulolytic enzyme(s) present in 

the larval gut of G. viridula, we performed a protein purification scheme. 
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Fig. 2. Western Blot and enzymatic activity assays of target recombinant GH45 and 
GH9 proteins. (A) Western blot of target recombinant proteins expressed in frame with a 

V5/His(6)-Epitope in insect Sf9 cells. Detection was carried out by chemiluminescence using 

an anti-V5-HRP antibody. Molecular weight markers are indicated to the left of the Western 

blot in kilodalton (kDa). (B) Agarose-diffusion-assay containing 0.1 % CMC. The assay was 

incubated for 16 h at 40 °C and pH 5.0 with target recombinant proteins, and activity halos 

were revealed by Congo red staining. 

Purification of a cellulolytically active GH45 protein from the larval gut 
We used 100 G. viridula larval guts to perform three consecutive protein purification 

steps. Using agarose-diffusion-assays containing 0.1 % CMC, we traced CMCase 

activity within each purification step. To identify potential proteins acting as cellulases, 

we performed a LC-MS/MS analysis based on the final cellulolytically active fraction 

of the purified gut content (Fig. S1). The resulting data were searched against the 

NCBInr database using Mascot. In addition, the peptides were interpreted de novo 
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and searched against the same database as well as the subdatabase ‘Insecta’ of 

NCBInr using MS-BLAST. We identified two putative cellulase proteins: the first 

belonged to the glycoside hydrolase family 48 (GH48) and was identified both by 

Mascot and MS-BLAST searches and corresponded to a G. viridula GH48 (Table S2); 

the second identified protein had peptides matching GH45 proteins from another 

chrysomelid beetle, Phaedon cochleariae, but no matches with G. viridula GH45-1 in 

our Mascot and MS-BLAST searches. Indeed, no protein fragment belonging to 

GH45-1 appeared at all in the investigated samples. Altogether, our purification 

scheme uncovered a novel GH45 in G. viridula with strong similarities to GH45 of 

other closely related leaf beetles which was not identified during our first 

transcriptome analysis (Pauchet et al. 2010).  

In summary, both GH45 and GH48 family members discovered by LC-MS/MS are 

known to have cellulolytic abilities in microbes and are likely cellulase candidates in 

G. viridula. Until now, however, GH48s in beetles have not been confirmed to be 

cellulases and are indeed believed to have lost their cellulolytic abilities (Sukharnikov 

et al. 2012). To date, they are solely known for their distinct ability to degrade chitin 

(Fujita et al. 2006). In contrast, GH45s have been frequently characterized as 

cellulases in beetles (Chang et al. 2012; Girard and Jouanin 1999; Lee et al. 2004; 

Pauchet et al. 2014a). Based on this knowledge, we focused our attention on the 

novel GH45 rather than the GH48. 

In order to clone the cDNA corresponding to the newly identified GH45 protein, we 

first designed degenerated primers (Table S1) based on sequence information from 

various GH45s found in closely related leaf beetle species. As a PCR template, we 

used RACE-ready cDNAs generated from larval gut tissue and performed gradient 

PCRs. The resulting PCR fragments of appropriate size were cloned and sequenced. 

Using BLAST homology searches, we were able to identify a partial sequence 

matching a GH45 derived from P. cochleariae instead of GH45-1 derived from G. 

viridula. Based on that fragment, we designed specific primers and were able to 

successfully amplify a full-length sequence using RACE-PCR. Using BLAST 

searches, we also confirmed that the newly cloned G. viridula GH45 protein was 

absent from the larval gut transcriptome. Thus, from here on the novel GH45 will be 
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referred to as GH45-2 (accession: MG875330). Finally, the peptides obtained by LC-

MS/MS from the partially purified GH45 matched 100 % to the deduced protein 

sequence of GH45-2. 

G. viridula GH45 proteins harbor distinct enzymatic properties 
To test the cellulolytic property of GH45-2, the ORF was cloned and heterologously 

expressed in Sf9 cells. Positive expression, confirmed by Western blot, yielded an 

apparent molecular weight of ~35 kDa (Fig. 2A). The culture medium containing the 

heterologously expressed GH45-2 was deposited on an agarose diffusion plate 

containing 0.1 % CMC; an activity halo was observed on the plate after staining (Fig. 

2B), indicating that GH45-2 was an active endo- -1,4-glucanase. 

To further analyze the enzymatic characteristics of beetle-derived GH45s and GH9, 

we performed in-tube assays with a battery of plant-cell-wall-derived poly- and 

oligosaccharides. The breakdown products were visualized on TLC (Fig. 3). GH45-2 

was active on CMC and regenerated amorphous cellulose (RAC) by releasing dimers, 

trimers and tetramers, confirming that GH45-2 was indeed an endo- -1,4-glucanase. 

We then tested several cellulose oligomers against GH45-2, ranging from cellotriose 

to cellohexaose. Only cellopentaose and cellohexaose were degraded by the 

enzyme, releasing dimers, trimers and tetramers. Noteworthy was the appearance of 

a tetramer after cellopentaose degradation. Although a tetramer implies exo-activity of 

GH45-2, no corresponding monomer was detected, suggesting that GH45-2 may 

have the ability to catalyze a transglycosylation reaction between two dimers, as has 

been described before in other glycoside hydrolase families (Tanabe et al. 2003). 

Unexpectedly, we discovered that GH45-1 possessed the ability to break down 

xyloglucan instead of cellulose. The breakdown products correlated with heptamers 

and octamers, but may differ due to highly substituted glucose moieties within the 

xyloglucan polysaccharide (as described above), indicating that GH45-1 was an 

endo- -1,4-xyloglucanase (EC 3.2.1.151). According to the literature, GH45s are 

known solely for their activity towards cellulose (Guo et al. 2008; Kikuchi et al. 2004; 

Liu et al. 2010; Mcgavin and Forsberg 1988; Pauchet et al. 2014a). In conclusion, we 

believe we have discovered the first case of a GH45 with specific xyloglucanase 

activity. 
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Fig. 3. Enzymatic breakdown products of various plant-cell-wall-derived 
polysaccharides tested against recombinant GH45 proteins. Incubation of (A) GH45-1 

and (B) GH45-2 with several plant-cell-wall-derived polysaccharides for 16 h at 40 °C and pH 

5.0. Breakdown products were analyzed on TLC and visualized using 0.2 % orcinol in 

methane/sulphoric acid (9:1) under continuous heating. CMC = carboxymethyl cellulose; CC 

= crystalline cellulose (Avicel); RAC = regenerated amorphous cellulose; GluM = 

glucomannan; GalM = galactomannan; XG = xyloglucan; standards: C1-C5 = glucose to 

cellopentaose; XG2 - XG9 = isoprimeverose to xyloglucan nona saccharide. 

In addition, we also attempted to characterize the GH9 protein with the same 

enzymatic assays as described above. Surprisingly, no activity was detected on any 

of the substrates tested, indicating either that the G. viridula GH9 protein has lost its 

enzymatic ability or that we were unable to find its substrate. 

pH and temperature optima of the G. viridula GH45 proteins 
The enzymatic performance of GH45-1 was monitored using xyloglucan as substrate. 

The optimal pH of GH45-1 laid was about pH 5.0 (Fig. S2A) with an optimal 

temperature around 40 °C (Fig. S2B). We then tested GH45-2 using CMC as a 

substrate. Similar to our findings regarding GH45-1, GH45-2 performed best under 

acidic conditions, however, with a much broader pH spectra, ranging from pH 2.0 to 

6.0 (Fig. S2A), and with an optimal temperature around 50 °C (Fig. S2B). We also 

investigated the thermal stability of both GH45s by incubating them for 16 h starting at 

their optimal temperatures and increasing to 80 °C without substrate. Then, the 

residual activity was measured at their optimal temperature (Fig. S2C). Our data 
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showed that both enzymes were highly stable between 40 and 60 °C with minor 

(GH45-1) or no loss (GH45-2) of activity. In summary, each enzyme performed best 

under acidic conditions, a finding which correlated well with gut pH measurements 

from closely related beetle species (Sinha 1959a). 

Tissue-specific gene expression and gene expression knockdown of GH45s in 
G.viridula 
By performing qPCR comparing the midgut tissue and the corresponding rest of the 

body of G. viridula larvae (Fig. S3), we showed that transcripts encoding both GH45s 

were significantly more expressed in the gut compared to in the rest of the body. In 

contrast, the expression of the gene encoding the GH9 protein was extremely low in 

both tissues. This finding reinforced the fact that both GH45s have a digestive 

function, whereas the GH9 has likely lost digestive significance in G. viridula. 

We then investigated the biological relevance of both GH45 proteins by using gene 

expression knockdown (i45-1 and i45-2 treatments) by means of RNAi (Fig. 4A and 

B). Gene expression analyses were carried out four and eight days after dsRNA 

injection as well as at the adult stage (seven days post-eclosion). We were able to 

significantly down-regulate the expression of the genes encoding GH45-1 (likelihood 

ratio = 72.514, P <0.001) and GH45-2 (likelihood ratio = 52.715, P < 0.001). More 

precisely, we were able to reduce the gene expression of GH45-1 to 96.9 % on day 

four and 89.6 % on day eight post-injection as well as 52.1 % in adults compared to a 

GFP control injection (iGFP). Similarly, the gene expression of GH45-2 went down to 

89.3 % on day four, 83.3 % on day eight and 95.8 % at the adult stage compared to 

iGFP (detailed statistical values see supplementary table S4). In summary, our RNAi 

treatment was successful in knocking down the expression of the genes encoding 

both GH45 proteins; this knockdown of expression remained stable until adulthood.
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Fig. 4. Knockdown of the expression of the genes encoding GH45 proteins using RNA 
interference. Late first-instar larvae were injected with double-stranded RNA (dsRNA) 

targeting GH45-1 (i45-1) and -2 (i45-2) or GFP (iGFP) as controls. A non-injected control 

(NIC) was also included. Larvae were sampled on days four and eight post-injection. Adults 

were sampled one week after eclosion. Groups of three insects (six replicates per group) 

were snap-frozen in liquid nitrogen before being ground into a fine powder. Half of the powder 

was used for total RNA preparation and subsequent qPCR, and the other half was used for 

protein extraction and enzyme assays. (A, B) expression of the respective GH45 genes 

expressed per 1000 molecules of the reference gene after dsRNA treatment at different time 

points post-injection, and (C, D) corresponding enzymatic activity depicted as amounts of 

reducing sugar equivalents enzymatically released. Different letters indicate significant 

differences between treatments over time (P < 0.05). If changes over time were not different 

between treatments (D), letters are not applicable and were omitted. For details on the 

statistics, please refer to the Materials and Methods section and supplementary table S4. 

To test whether the knockdown of the expression of the genes encoding both GH45 

proteins affected the abundance of the corresponding proteins, we performed 
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enzymatic activity assays (Fig. 4C and D, statistical values supplemental table S4). 

The enzymatic activity of treatment i45-1 and i45-2 was investigated and compared to 

iGFP on day four, day eight and as adults. Larvae of the i45-1 treatment exhibited 

significantly reduced enzymatic activity against xyloglucan (likelihood ratio = 43.640, 

P < 0.001). In detail, the enzymatic activity against xyloglucan was reduced in larvae 

of the i45-1 treatment down to 84.3 % on day four and 58.9 % on day eight post-

injection as well as 12.0 % at the adult stage compared to insects of the iGFP control 

treatment. Taken together, the reduction of xyloglucanase activity in insects of the 

i45-1 treatment was significant compared to the level of activity in control insects and 

correlated well with the knockdown of the expression of the gene encoding GH45-1. 

A more complex situation applied to i45-2 treatments: cellulase activity was 

significantly different between the treatments (F= 15.989, P < 0.001). The activity in 

i45-2 treated insects was significantly lower than in both control groups. In general, 

the cellulase activity changed significantly over time (F= 14.548, P < 0.001), with the 

highest activity on day eight post-injection. These changes over time did not differ 

between treatments (F=0.809, P = 0.526). Interestingly, the resulting enzymatic 

down-regulation in the i45-2 treatment did not match the corresponding gene 

expression pattern. The resulting enzymatic down-regulation reached 26.2 % on day 

four and 25.0 % on day eight post-injection as well as 50.9 % in adults compared to 

iGFP control insects, amounts that are clearly inconsistent with the corresponding 

i45-2 gene expression pattern (knockdown >83 % at all time points). This discrepancy 

indicates that either protein levels of GH45-2 in i45-2 treatments are less affected by 

the knockdown of the corresponding gene, than what we observed after knocking 

down the expression of GH45-1, or more than one cellulase is present in the larval 

gut. 

To examine why the reduction of enzymatic activity against cellulose and xyloglucan 

did not reach the same levels as the corresponding gene knockdown suggested, we 

conducted a zymogram analysis using either CMC or xyloglucan as a substrate (Fig. 

S4). We compared both i45-1 and i45-2 treatments to non-injected (NIC) and iGFP 

control insects on day four post-injection. We observed a single activity band 
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appearing in both controls on zymogram containing xyloglucan. No signal for the i45-

1 treatment was observed, confirming (i) that only one endo-active xyloglucanase is 

present in G. viridula and (ii) that, although the encoding gene is down-regulated, 

residual xyloglucanase activity due to GH45-1 likely accounts for the discrepancy 

observed between gene knockdown and corresponding enzymatic activity. Analyzing 

the zymogram containing CMC, we observed activity bands corresponding to several 

endo- -1,4-glucanase isozymes in each treatment, indicating that GH45-2 may likely 

not be the only endo-acting cellulase present in G. viridula. We observed only a slight 

reduction of the intensity of a single isozyme (the one harboring the highest apparent 

molecular weight) in the i45-2 treatment compared to both controls, this isozyme likely 

corresponded to GH45-2. Although we were able to down-regulate the expression of 

the gene encoding GH45-2, it is clear that the genome of G. viridula encodes 

additional endo-active cellulases and that these greatly influence cellulose 

breakdown. 

To get insight into whether gene silencing of the target GH45s affected weight gain 

and mortality, we observed larvae for seven consecutive days post-injection (Fig. 5) 

and analyzed them on the last day of larval development (day eight post-injection). 

Although we expected to see a decrease in weight gain after dsRNA treatment, we 

were unable to detect a significant reduction among insects in the i45-1 treatment 

(F = 0.891; P = 0.431) or the i45-2 treatment (F = 1.151, P = 0.344). Similarly, we did 

not observe any significant differences in mortality among insects in either the i45-1 

( 2 = 1.0976, P = 0.5777) or the i45-2 ( 2 = 0.42353, P = 0.8092) treatments. In 

summary, although the knockdown of the genes encoding GH45-1 and GH45-2 

turned out to be successful, a corresponding decrease in enzymatic activity could be 

observed only among insects in the i45-1 treatment. In addition, we were unable to 

find an influence of the knockdown of both GH45-encoding genes on any of the life 

history traits we analyzed. Altogether, our results suggest a secondary role for GH45 

enzymes rather than a primary function in digestion.  
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Fig. 5. Effect of GH45 gene silencing on growth rate and mortality. Late first-instar larvae 

were injected with double-stranded RNA (dsRNA) targeting GH45-1 (i45-1) and -2 (i45-2) or 

GFP (iGFP) as controls. A non-injected control (NIC) was also included. (A) Groups of five 

insects (six replicates per treatment) were observed on days one and eight post-injection and 

growth rates were calculated. A one-way ANOVA statistical test was applied to the data. (B) 

The number of dead larvae per treatment was recorded during the eight days of the 

experiment. Mortality data were analyzed using the equality of proportions test. Different 

letters indicate significant differences (P < 0.05); n = 30. 

Significance for G. viridula’s ability to express a xyloglucanase and a endo-
acting cellulase 
Considering that the primary plant cell wall consists of up to 30 % of cellulose and 

equally high amounts of xyloglucan (20-25 %) (Fry 1989; Hayashi 1989; Schultink et 

al. 2014), we asked whether GH45-1 and GH45-2 can break down xyloglucan and 
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cellulose under more natural conditions (Fig. S5). To test this hypothesis, we 

extracted plant primary cell wall from Rumex obtusifolius leaves and incubated it with 

either GH45-1 or GH45-2. The breakdown products were then analyzed on TLC. We 

found that GH45-1 was indeed able to release oligomers from the primary cell wall 

compared to untreated plant cell wall extract. This ability indicated the presence of 

plant-cell-wall-derived polysaccharides -- likely xyloglucan -- which can be accessed 

and digested by GH45-1. In contrast, no breakdown products appeared for plant cell 

wall treated with GH45-2, indicating that cellulose might be harder to access and/or 

has other chemical properties, such as a crystalline configuration, under more natural 

conditions.  
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Discussion 
Our previous analysis of the larval gut transcriptome of G. viridula revealed the 

presence of at least one putative cellulase, a GH45 protein (Pauchet et al. 2010). We 

demonstrated here that this GH45 protein (GH45-1) was inactive on all the cellulosic 

substrates we tested. After rescreening the G. viridula transcriptome, we discovered 

another gene encoding another putative cellulase, this time, a GH9 protein that we 

had originally overlooked. Again, we showed here that the recombinant GH9 protein 

was inactive on all the cellulosic substrates tested. The ability of the digestive system 

of G. viridula to break down cellulose was obvious (Fig. 1); thus, we hypothesized that 

yet another cellulase, either one not covered by the transcriptome analysis or one 

belonging to a yet-unknown protein family, was present in the larval gut of this beetle. 

Indeed, after a three-step purification process of larval gut proteins, we enriched the 

samples with proteins able to break down CMC and eventually identified a second 

GH45 (GH45-2). When heterologously expressed, GH45-2 acted as an endo- -1,4-

glucanase. The ability of G. viridula GH45-2 to break down amorphous cellulose in an 

endo-acting manner was in accordance with other, previously described, GH45 

cellulases in insects, nematodes or microbes (Girard and Jouanin 1999; Kikuchi et al. 

2004; Mcgavin and Forsberg 1988). To our surprise, we found that GH45-1 had lost 

its assumed ability to degrade cellulose but had evolved the ability to degrade 

xyloglucan, the major hemicellulose in the plant primary cell wall (Pauly et al. 2013). 

The breakdown products generated by G. viridula GH45-1 also suggested that this 

enzyme was an endo- -1,4-xyloglucanase. To our knowledge, this is the first report of 

a GH45 protein exhibiting activity against xyloglucan. In phytophagous beetles, only 

one other protein has been described as able to break down xyloglucan, namely a 

member of the subfamily 2 of GH5 (GH5_2) from the cerambycid Anoplophora 

glabripennis (McKenna et al. 2016). However, because this particular GH5 had 

acquired a bifunctional mode of action, it was also able to act on amorphous 

cellulose. The ability to break down xyloglucan has also been discovered in the 

Phasmatodea or stick insects. Here, an orthologous clade of GH9 proteins had 

evolved the bi-functional ability to break down xyloglucan in addition to cellulose 

(Shelomi et al. 2016). Interestingly, xyloglucanase activity in insects seems to arise 
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only within glycoside hydrolase families which are primarily known for their ability to 

degrade cellulose, i.e. GH5_2, GH9 and now GH45, suggesting that cellulolytic 

enzymes of these families may be evolutionary adapted to substrate shifts. 

The ability of a protein to shift from using cellulose to using xyloglucan as a substrate 

can be explained by the similarities of the structure of these two polysaccharides. The 

molecular structure of cellulose consists of an unbranched succession of -1,4-linked 

glucose residues. Xyloglucan shares the same backbone structure as cellulose but 

has additional -1,6-linked xylose substitutions on two out of four glycosyl residues; 

these substitutions are in turn occasionally decorated with galactose and/or fucose 

residues (Brummell and Maclachlan 1989). An evolutionary shift of activity between 

closely related substrates within the GH45 might thus be due to a few amino acid 

substitutions, allowing to accommodate the decorations of xyloglucan into the 

substrate binding pocket of the enzyme. 

G. viridula feeds on Rumex spp. which harbor constantly growing leaves where the 

proportion of primary cell wall content is likely to be very high. Taking into account 

that xyloglucan is the most abundant hemicellulose in the primary cell wall, having the 

ability to break down this polysaccharide would be highly beneficial for G. viridula. 

Thus, the biological need to acquire a xyloglucanase by altering the function of an 

existing enzyme is conceivable in an evolutionary perspective. Moreover, due to the 

restricted knowledge of PCWDEs in phytophagous beetles (and insects in general), 

future research will unravel whether neo- and bi-functionalization events occur 

frequently within glycoside hydrolase families. According to the CAZy database 

(Lombard et al. 2014) (http://www.cazy.org/), innovations in the enzymatic activity of 

glycoside hydrolase families seem to be the rule rather than the exception, e.g. GH1, 

GH3 or GH12. It is likely, however, that neo- and bi-functionalization events may have 

been required, as an evolutionary response to altering the composition of plant cell 

walls, ultimately promoting host plant adaptation. 

According to previous work on insect-derived GH9s (Shelomi et al. 2016; Watanabe 

et al. 1998; Willis et al. 2011), it was surprising to find that the GH9 encoded by G. 

viridula was not active on any of the substrates we tested. Hence, this protein is either 
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active on a substrate we have not tested yet or it has lost its enzymatic activity. 

Although the former hypothesis seems more likely, our qPCR results demonstrated 

low to no expression in either gut tissue or the rest of the body of G. viridula, 

suggesting the possibility that the corresponding gene is currently being purged from 

the genome. In comparison, the expression of the genes encoding both GH45s in this 

species was high in the gut tissue and, together with our functional characterization, 

clearly indicated the digestive function of the corresponding proteins. Before the 

present study, there have been only two functionally characterized GH9 proteins in 

beetles: one was identified in the tenebrionid T. castaneum, which was characterized 

as an endo- -1,4-glucanase (Willis et al. 2011), and the other in the cerambycid A. 

glabripennis, which did not exhibit any enzymatic activity under the conditions tested 

(McKenna et al. 2016). Thus, the two GH9 proteins analyzed in beetles of the 

superfamily Chrysomeloidea (see A. glabripennis (McKenna et al. 2016) and the 

present study) were both found to be inactive. In both cases, the loss of cellulolytic 

activity might have evolved in favor of the more efficient cellulolytically active 

enzymes of other families, i.e. GH45s. Until more GH9 proteins are discovered and 

characterized from other Chrysomeloidea species, this hypothesis remains highly 

speculative. Based on the data obtained (related to the G. viridula GH9 protein), the 

question arises whether what we observed here is a gene in the process of genomic 

“extinction”. 

For insight into the role of the G. viridula GH45 proteins on a more natural substrate, 

we assessed whether the heterologously expressed GH45 proteins are active on the 

extracted plant cell wall of R. obtusifolius. The action of GH45-1 on this substrate 

revealed distinct breakdown patterns which are comparable in size with the 

corresponding breakdown products released by the action of GH45-1 on purified 

xyloglucan. This similarity suggests that xyloglucan is present in R. obtusifolius, and 

that GH45-1 has both access to and the ability to break it down directly from the cell 

wall network. In contrast and much to our surprise, incubating GH45-2 with extracted 

plant cell wall did not end up producing any breakdown products. Several hypotheses 

may explain these unexpected results: (i) cellulose is rarely or not at all present in R. 

obtusifolius, (ii) only crystalline cellulose is present within the extracted cell wall, (iii) 
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cellulose is not accessible by the enzyme due to its being packed compactly within 

other plant cell wall polysaccharides i.e. xyloglucan and pectins. The first hypothesis 

seems unlikely, as cellulose has been shown to be a constant constituent of the plant 

primary cell wall in all plants (Keegstra 2010). Regarding the second statement, our 

functional characterization clearly demonstrated that G. viridula GH45-2 is an endo- -

1,4-glucanase. It is widely accepted that endo-active cellulases are able to act only on 

the amorphous regions of cellulose but are useless on crystalline cellulose (as shown 

in Fig. 3B). Although it has been proposed that cellulose in the plant’s primary cell 

wall has less crystallinity compared to the secondary wall (which would explain the 

presence of an endo-acting cellulase in G. viridula in the first place), the packing of 

cellulose within the primary cell wall remains elusive (Cosgrove 2014; Thomas et al. 

2013). A recent article focusing on the packing of cellulose within cell walls of A. 

thaliana demonstrated that the cellulose in primary cell walls was in an almost entirely 

crystalline state, and as the secondary walls developed, there was an increase in the 

proportion of amorphous regions within cellulose microfibrils (Ruel et al. 2012). As the 

leaves of R. obtusifolius constantly grow, the proportion of primary cell walls 

compared to secondary walls should be high. Why, therefore, does G. viridula 

express a cellulase which mostly acts on amorphous regions? Hence, the third 

hypothesis seems to be the most likely. The access of cellulose within the primary cell 

wall is somewhat limited to enzymes and may require the synergistic effort of several 

PCWDEs rather than being accomplished by a single GH45 cellulase (Kostylev and 

Wilson 2012; Mansfield et al. 1999). Although co-incubation experiments with both G. 

viridula GH45s in our lab did not support this hypothesis, it is likely that other GH 

families encoded by G. viridula may contribute to the proposed synergism, e.g. GH5 

and GH28s (Busch et al. 2017; Kirsch et al. 2014). 

To validate the physiological importance of GH45 enzymes in G. viridula, we 

performed expression knockdown experiments of both GH45-encoding genes. We 

hypothesized that plant-cell-wall polysaccharides provide extensive energy storage 

which, if properly exploited, can be of important nutritive value for the insect. Fig. 1B 

clearly shows the ability of G. viridula gut content to degrade CMC to glucose, a 

process that is likely facilitated by the synergy of GH45-2 and -glucosidases, both of 



Manuscript II 

77

which are known to be ubiquitous in insects (Watanabe and Tokuda 2010). Based on 

the above hypothesis, knocking down the expression of the GH45-encoding genes 

should reduce or even prevent weight gain and even affect mortality in G. viridula. We 

were able to successfully down-regulate the expression of both GH45-encoding 

genes. Although the expression of the gene encoding GH45-2 was highly down-

regulated in RNAi-treated insects (89.3 % on day four post-injection), the 

corresponding reduction of enzymatic activity reached only 26.2 %, suggesting that 

more than one cellulase is present in the larval gut of G. viridula. A CMC-based 

zymogram of G. viridula gut contents revealed the presence of at least five cellulase 

isozymes, indicating the presence of at least four other uncharacterized endo-

cellulases in the larval gut. Unsurprisingly, we did not see any differences in weight 

gain or mortality in GH45-2 silenced insects compared to in a GFP control, as the 

other potential cellulases likely compensate for the reduction of the amount of GH45-

2 protein due to the silencing. A similar lack of striking changes in phenotype was 

observed in GH45-1 silenced insects compared to controls, suggesting that the 

breakdown products of the individual cell wall polysaccharides may play a less 

important role in nutrient acquisition than anticipated. A lack of striking changes in the 

phenotype of RNAi-treated insects may have occurred because both GH45 enzymes 

may function as secondary enzymes by allowing the insect to access the plant cell 

content rather than being responsible for the exploitation of the plant cell wall 

polysaccharides for metabolic purposes, as has been suggested in our previous work 

(Busch et al. 2017). Consequently, the insect would not need to break down the 

recalcitrant polysaccharide network down to sugar monomers, but would gain access 

to many simple sugars and proteins from the plant cells. If this logic is true, and taking 

into account that protein-bound nitrogen is the limiting factor required for growth in 

phytophagous insects (Kainulainen et al. 1996; Kerslake et al. 1998; Rossi et al. 

1996), reduced access to plant cells should result in striking phenotype differences 

compared to control animals. However, and as stated elsewhere (Busch et al. 2017), 

reduced xyloglucanase activity in GH45-1-silenced insects may be compensated for 

by the action of other glycoside hydrolase families present in G. viridula, such as GH5 

mannanases (Busch et al. 2017) or GH28 pectinases (Kirsch et al. 2014). It is also 
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possible that the gut microbiota may contribute to the degradation of the plant cell 

wall in phytophagous beetles and may compensate for the reduction of the 

xyloglucanase and cellulase activity due to the silencing of the GH45 genes. 

However, examples of microbial symbionts within phytophagous beetles contributing 

to plant cell wall degradation are rare, and only one chrysomelid beetle is known to 

harbor a pectinolytic symbiont (Salem et al. 2017). Nonetheless, a lack of change of 

phenotype for GH45-1-silenced animals remains difficult to understand as 

xyloglucanases from plant pathogenic fungi were shown to be essential to insects’ 

ability to penetrate and infest plant cells (Ma et al. 2017). Alternatively, a lack of a 

clear phenotype may have been caused by the optimal rearing conditions used for 

our experiments such as optimal food quality and supply. Gastrophysa viridula is an 

oligophagous which can feed, besides R. obtusifolius as main host plant, on other 

Polygonacious plants. However, it seems that full beetle development can only be 

achieved when feeding on R. obtusifolius. Choosing a non-optimal host plant for our 

experiments may have resulted in a more striking phenotype in silenced larvae. 

In summary, the ability of a phytophagous beetle to efficiently degrade plant matter 

depends greatly on the set of PCWDEs the beetle’s genome can express. The more 

complex this set is, the greater the synergism among PCWDEs and the more efficient 

the breakdown of the plant cell wall. As a consequence, the animal may take 

advantage of the released sugar monomers and, more important, improve its access 

to the nitrogen-rich plant cell content. Based on the present work and our previous 

studies, focusing on GH28 pectinases and GH5 mannanases (Busch et al. 2017; 

Kirsch et al. 2014), G. viridula possesses the ability to break down almost every 

component of the plant primary cell wall, i.e. pectins, mannans, amorphous cellulose 

and xyloglucan. Notably, the most abundant polysaccharides (cellulose and 

xyloglucan) are degraded solely by GH45 proteins, and these have likely evolved 

from a gene duplication event. We strongly believe that PCWDEs allowed beetles of 

the Phytophaga (Marvaldi et al. 2009) to thrive on plant tissue and may have been a 

prerequisite for the ability of these animals to adapt to their food.  
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Experimental procedures 
Leaf beetles 
Gastrophysa viridula larvae and adults were collected on Rumex obtusifolius in the 

vicinity of Jena (Germany) and brought to the lab. Individuals were reared in plastic 

containers on fresh R. obtusifolius leaves under a light/dark cycle of 16:8 hours at 

18 °C. Insects were allowed to mate and oviposit, and the progeny was used for 

experimentation. 

Preparation of regenerated amorphous cellulose (RAC) 
RAC was prepared according to (Zhang et al. 2006). Briefly, 600 μl of double distilled 

water was added to 200 mg of microcrystalline cellulose (Avicel). Then, 10 ml of ice-

cold ortho-phosphoric acid (86 %) was added while the mixture was stirred 

vigorously; after that, the solution was left for 60 min on ice and stirred occasionally. 

Ice-cold double-distilled water (10 ml) was applied four times with vigorous stirring in 

between. After centrifugation (10,000 g at 4 °C for 20 min), the pellet was washed 

three times by re-suspension in 40 ml ice-cold double-distilled water. Then, 40 ml of 

ice-cold 25 mM Na2CO3 was added, followed by three consecutive washing steps as 

described above until pH 5.0 - 7.0 was reached. 

Protein purification and gel electrophoresis  
After each purification step, fractions were deposited on a 1 % agarose plate 

containing 0.1 % carboxymethyl cellulose (CMC) in 40 mM citrate/phosphate buffer 

pH 5.0. CMCase activity was tracked after staining the plates with Congo red followed 

by destaining using 1 M NaCl, and cellulolytically active fractions were used for 

further purification steps.  

One hundred G. viridula third-instar larvae were dissected in 40 mM citrate/phosphate 

buffer pH 5.0 containing a protease inhibitor cocktail (cOmplete, EDTA-free Protease 

Inhibitor Cocktail, Sigma-Aldrich). The guts were removed and pooled in 200 μl of the 

same buffer/inhibitor mixture containing 1% Triton X-100 and 50 mM NaCl. Guts were 

homogenized on ice using a 15 ml Dounce Tissue grinder (Wheaton, Millville, NJ, 

USA). The homogenate was centrifuged (100,000 g, 60 min, 4 °C) and the pellet 

discarded. Four times the volume of ice-cold acetone was added to the supernatant 
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and the mixture was then incubated for 10 min, followed by centrifugation (16,000 g, 

4 °C and 10 min). The resulting protein pellet was dissolved in 1 ml Tris-HCl pH 8.0 

containing 50 mM NaCl and a protease inhibitor cocktail (cOmplete, EDTA-free 

Protease Inhibitor Cocktail, Sigma-Aldrich). The protein mixture was then loaded on a 

1 ml RESOURCE Q anion exchange chromatography column (GE Healthcare) 

attached to an Äkta FPLC System (GE Healthcare). After the column was washed 

thoroughly, bound proteins were eluted over 20 column volumes (1 ml) using a linear 

NaCl gradient ranging from 0 to 600 mM. Two fractions positive for CMCase activity 

were put in binding buffer (20 mM Tris-HCL, 0.5 M NaCl, 1 mM MnCl2, 1mM CaCl2, 

pH 7.4) using Zeba Desalt Spin Columns (Thermo Scientific) following the 

manufacturer’s protocol. The resulting 2 ml sample was loaded on a HiTrap ConA 4B 

affinity chromatography column (GE Healthcare). After the column was washed 

thoroughly, bound proteins were eluted in six 1 ml fractions using elution buffer (0.5 M 

methyl- -D-glucopyranoside, 20 mM Tris-HCl, 0.5 M NaCl, pH 7.4). Fractions positive 

for CMCase activity were adjusted to 20 mM Tris-HCl, pH 8.0 containing 0.15 M NaCl 

using Zeba Desalt spin columns. The resulting 5 ml sample was concentrated to 

600 μl using Pierce concentrators with a 9 kDa molecular weight cutoff (Thermo 

Scientific). The concentrated sample was loaded on a Superdex 200 10/300 GL size-

exclusion column (GE Healthcare), and proteins were eluted into 500 μl fractions 

using 20 mM Tris-HCl, pH 8.0 containing 0.15 M NaCl. Three hundred microliters of 

each fraction was precipitated using 1 % trichloroacetic acid and 0.02 % sodium 

deoxycholate. The resulting pellets were washed twice in 100 % ice-cold acetone, 

then dissolved and boiled in XT-sample buffer containing XT-reducing agent (Bio-

Rad). Samples were then loaded on a Criterion XT gradient 4-12 % precast gel (Bio-

Rad) and run for 2 h in XT-MOPS buffer at 120 V constant voltage. The gel was then 

fixed in 40% (v/v) ethanol, 7 % (v/v) acetic acid for 2 h followed by staining using 

colloidal Coomassie (Neuhoff et al. 1985). 

In-gel digestion of proteins 
Protein bands of interest were excised from the Coomassie-stained gels, cut into 

small pieces, washed several times with 25 mM NH4HCO3 and destained with 50 % 

acetonitrile (ACN) in 25 mM NH4HCO3. The proteins were then reduced with 10 mM 
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dithiothreitol (DTT) at 50 °C for 1 h and alkylated with 55 mM iodoacetamide (IAA) at 

room temperature in the dark for 45 min. Next, destained and washed dehydrated gel 

pieces were rehydrated for 60 min in a 12 ng/μL solution of porcine trypsin (Promega) 

in 25 mM NH4HCO3 at 4 °C and incubated overnight at 37 °C. The tryptic peptides 

were extracted from gel pieces in 75 % ACN/ 5 % formic acid (FA), and dried down in 

a SpeedVac (Shevchenko et al. 2006).  

LC-MS/MS analysis 
Each sample was injected onto a nanoAcquity nanoUPLC system (Waters) coupled 

to a Q-ToF HDMS mass spectrometer (Waters, Manchester, UK). Peptides were 

initially transferred with 0.1 % aqueous formic acid for desalting onto a Symmetry C18 

trap-column (20 x 0.18 mm, 5 μm particle size) at a flow rate of 15 μL min-1 (0.1 % 

aqueous FA), and subsequently eluted onto a nanoAcquity C18 analytical column 

(200 mm x 75 μm ID, BEH 130 material, 1.7 μm particle size) at a flow rate of 

350 nL/min with the following gradient: 1 to 30 % A (composed of 0.1 % FA and 

100 % ACN) over 13 min, 30 to 50 % A over 5 min, 50 to 95 % A over 5 min, isocratic 

at 95 % A for 4 min, and  returned to 1 % A over 1 min. The analytical column was re-

equilibrated for 9 min prior to the next injection. The eluted peptides were transferred 

to the nanoelectrospray source of a Synapt HDMS tandem mass spectrometer 

(Waters, Manchester, UK) that was operated in V-mode with a resolution power of at 

least 10,000 full width at half maximum. All analyses were performed in positive ESI 

mode. A 650 fmol/ L human glu-fibrinopeptide B in 0.1 % FA/ACN (1:1 v/v) was 

infused at a flow rate of 0.5 L per min through the reference Nano-LockSpray source 

every 30 s to compensate for mass shifts in MS and MS/MS fragmentation mode. LC-

MS data were collected using data-dependent acquisition (DDA). The acquisition 

cycle consisted of a survey scan covering the range of m/z 400-1500 Da followed by 

MS/MS fragmentation of the four most intense precursor ions collected at 1 s intervals 

in the range of 50-1700 m/z. Dynamic exclusion was applied to minimize multiple 

fragmentations for the same precursor ions.  
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Data Processing and protein identification 
DDA raw files were collected using MassLynx v4.1 software and processed using 

ProteinLynx Global Server Browser (PLGS) v2.3 software (Waters, Manchester, UK) 

under baseline subtraction, smoothing, de-isotoping, and lockmass-correction. The 

peptide fragment spectra were searched against a sub-database containing common 

contaminants (human keratins and trypsin). The following searching parameters were 

applied: fixed precursor ion mass tolerance of 15 ppm for survey peptide, fragment 

ion mass tolerance of 0.03 Da, estimated calibration error of 0.003 Da, one missed 

cleavage, fixed carbamidomethylation of cysteines and possible oxidation of 

methionine. Spectra that remained unmatched by database searching were 

interpreted de novo to yield peptide sequences. A 0.002 Da mass deviation for de 

novo sequencing was allowed, and sequences with a ladder score (percentage of 

expected y- and b-ions) exceeding 40 were subjected for homology-based searching 

using the MS-BLAST program (Shevchenko et al. 2001) installed on an in-house 

server. MS-BLAST searches were performed against the NCBInr database, sub-

database insect (downloaded on October  21, 2014) and the in silico translated G. 

viridula gut transcriptome using the following settings: scoring table, 100; filter, none; 

expect, 100; matrix, PAM30MS; advanced options, no-gap-hspmax100-

sort_by_totalscore-span1.  Statistical significance of the matched hits was evaluated 

according to the MS-BLAST scoring scheme (Shevchenko et al. 2001). In parallel, pkl 

files of MS/MS spectra were generated and searched against NCBInr database 

(updated on October 20, 2014) combined with the G. viridula sub database using 

MASCOT software version 2.4 (searching parameters are described above). Hits 

were considered to be confident if at least three peptides were matched with ion 

scores above 30, or proteins were identified by one or two peptides with score of 55 

or better. 

Full-length gene amplification using degenerate primers 
To amplify the cDNA corresponding to the GH45 (GH45-2) identified after protein 

purification, degenerate primers were designed (Table 1) based on recently described 

GH45 sequences of various leaf beetle species (Pauchet et al. 2010), excluding G. 

viridula GH45-1. cDNAs initially generated for the rapid amplification of cDNA ends 
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PCR (RACE-PCR) as described by (Pauchet et al. 2010) were used as the template, 

and the PCR reactions were performed using the Avantage 2 PCR kit (Clontech). 

Amplicons of estimated appropriate size were gel-purified and cloned into PCR4-

TOPO (Invitrogen). TOP10 chemically competent Escherichia coli cells (Invitrogen) 

were transformed and incubated overnight on a LB agar plate containing ampicillin 

(100 μg/ml). Clones were randomly picked and cultured in DYT medium containing 

100 μg/ml ampicillin. Plasmid isolation was performed in 96 deep-well plate using the 

1-step DNA Isolation Kit for plasmids (Nexttec) on a Freedom EVO platform (Tecan). 

The recombinant DNA was sequenced in both directions using Sanger sequencing, 

and the resulting sequences were blasted against the NCBInr database. Amplicons 

with confirmed GH45 hits were used as a template to design gene-specific primers 

(Table S1), and full-length cDNA sequences were amplified by 5´- and 3´-RACE-

PCRs using RACE-ready cDNAs as described by (Pauchet et al. 2010). Fragments 

obtained after RACEs-PCR were cloned into pCR4-TOPO and Sanger sequenced as 

described above. 

Transient protein expression in insect cells 
Open reading frames (ORFs) of target genes were amplified from cDNAs using gene-

specific primers designed according to either G. viridula transcriptomic data (GH45-1 

and GH9) or based on RACE-PCR results as described above (GH45-2). The forward 

primer was designed to introduce a Kozak sequence at the beginning of the ORF, 

and the reverse primer was designed to omit the stop codon. RACE-ready cDNAs as 

described above were used for amplification, and PCR reactions were performed 

using a high-fidelity Taq polymerase (AccuPrime, Invitrogen). PCR products were 

cloned into pIB/V5-His TOPO (Invitrogen) in frame with a V5-(His)6 epitope. Top10 

chemically competent E. coli cells were transformed and treated as described above. 

To select constructs for which the sequence of interest had ligated in the correct 

direction, randomly picked colonies were checked by colony PCR using the OpIE2 

forward primer (located on the vector) and the gene-specific reverse primer (Table 

S1). Positive clones were further cultured in DYT medium containing 100 μg/ml 

ampicillin. After plasmid isolation using GeneJET Plasmid Miniprep Kit (Thermo 

Scientific), the recombinant plasmids were sequenced (see above) to confirm whether 
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the ORF had been correctly inserted into the vector. Positive constructs were then 

transfected in Sf9 cells (Invitrogen) using FuGENE HD (Promega) as a transfection 

reagent. First, successful expression was determined by transiently transfecting three 

clones per construct in a 24-well plate format. After 72 h, the culture medium was 

harvested, and successful expression was verified by Western blot using the anti-V5-

HRP antibody (Invitrogen). In order to collect enough material for downstream 

enzymatic activity assays, a single clone per construct was chosen to be transiently 

transfected in a 6-well plate format. After 72 h, culture medium was harvested and 

centrifuged (16,000 x g, 5 min, 4 °C) to remove cell debris; finally the medium was 

stored at 4 °C until further use. Again, successful expression was verified by Western 

blot using the anti-V5-HRP antibody. The enzymatic activity of recombinant proteins 

was initially tested by agarose diffusion assays using CMC as a substrate as 

described above. 

Analysis of hydrolysis reaction products by thin layer chromatography (TLC) 
The culture medium of transiently transfected cells was dialyzed and desalted as 

described in (Busch et al. 2017). Gut content samples were dialyzed three times 

against 500 ml double-distilled water within 24 h. The following substrates were 

tested: CMC, RAC, Avicel, filter paper, glucomannan, galactomannan, xyloglucan, 

glucomannan, galactomannan, polygalacturonic acid (all from Megazyme), xylan, 

citrus pectin, apple pectin, esterified pectin (all from Sigma Aldrich), beet pectin 

(kindly provided by CP Kelco, Grossenbrode, Germany) and plant cell wall extracted 

from R. obtusifolius as previously reported (Busch et al. 2017). Additionally, we tested 

the cello-oligomers D-(+)-biose to D-(+)-hexaose, the manno-oligomers D-(+)-biose to 

D-(+)-hexaose, dimer and trimer of xylan (all from Megazyme), and the di- and tri-

galacturonic acid (Santa Cruz Biotech, Dallas, TX, USA) at a final concentration of 

250 ng/μl per reaction. Samples were incubated and analyzed as previously 

described (Busch et al. 2017). The reference standard contained 2 μg of each 

oligomer: glucose, cellobiose cellotriose, cellotetraose and cellopentaose and 

mannose, mannobiose, mannotriose, mannotetraose and mannopentaose (all from 

Megazyme) and xylose (Sigma-Aldrich), xylobiose and xylotriose (both from 

Megazyme) and mono-, di- tri- galacturonic acid (all from Sigma-Aldrich). 
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pH optima and temperature optima  
To test the temperature optima, dialyzed and desalted crude enzyme extracts were 

incubated with 0.5 % (w/v) CMC (GH45-2), or xyloglucan (GH45-1) in 20 mM citrate 

phosphate buffer (pH 5.0) at temperatures ranging from 20 °C to 80 °C in steps of 

10 °C. In detail, each enzyme assay was performed with 24 μl dialyzed and desalted 

enzyme extract, 30 μl of 1% (w/v) substrate solution and 6 μl of 20 mM citrate 

phosphate buffer pH 5.0. Negative controls were carried out with 24 μl of distilled 

water instead of enzyme. The enzymatic activity was assayed for 45 min (GH45-1) 

and 120 min (GH45-2). The amount of reducing sugars produced in these reactions 

was measured using the dinitrosalicylic acid (DNS) method according to (Kirsch et al. 

2014). To test for pH optima, dialyzed and desalted enzyme extracts were incubated 

at 40 °C (GH45-1) and 50 °C (GH45-2) with their respective substrates, as described 

above, and assayed in 20 mM citrate phosphate buffer ranging from pH 2.0 to 8.0 as 

well as in 50 mM sodium carbonate buffer covering pH 9.0 and 10.0. The amount of 

reducing sugars produced in these reactions was measured using the DNS method 

as described above. To test for thermal stability, dialyzed and desalted enzyme 

extracts were incubated without substrate for 16 h at different temperatures starting 

with the enzymes’ optimum up to 80 °C in steps of 5 °C. Then, each enzyme was 

incubated with its respective substrate at pH 5.0 for 45 min and analyzed as 

described above. Each reaction was carried out in triplicate. 

Preparation of double-stranded RNA and off-target prediction 
Primers for the generation of double-stranded RNA (dsRNA) were designed for G. 

viridula GH45-1 and GH45-2, and for GFP as the control, yielding two 200 bp 

fragments and a 379 bp fragment, respectively. Off-target prediction and dsRNA 

synthesis were performed as described previously (Busch et al. 2017). 

Injection of dsRNA and assessment of RNAi efficiency 
Early second-instar G. viridula larvae were injected dorsally with 50 nl (150 ng) of 

target dsRNA into the metathorax, using a Nanoliter 2010 Injector (World Precision 

Instruments) attached to a three-dimensional micromanipulator, and were then put 

onto fresh R. obtusifolius leaves. To record weight gain and mortality, five animals per 
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replicate were injected with a total of six replicates for each target gene. To analyze 

gene expression and enzymatic activity, three animals per replicate were injected with 

a total of six replicates for each target gene. In addition to larvae injected with dsRNA 

targeting GFP, a non-injected control was also included. For quantitative PCR and 

enzymatic activity analyses, larvae were collected on days 1, 4 and 8 post-injection. 

Whole larvae were crushed in liquid nitrogen; half of the resulting powder was used 

for total RNA preparation and the other half was used for protein extraction and 

enzymatic assays. 

Total RNA was isolated using the innuPREP RNA Mini Kit (Analytik Jena), following 

the manufacturer’s protocol. The resulting RNA was then subjected to DNase 

digestion (Ambion), and its quality was subsequently checked using the RNA 6000 

Nano LabChip kit on a 2100 Bioanalyser (both Agilent Technologies). Total RNA was 

used as a template to synthesize cDNAs using the Verso cDNA synthesis kit (Thermo 

Scientific). The resulting cDNA samples were then used for real-time quantitative 

PCR (qPCR) experiments, which were performed in 96-well hard-shell PCR plates on 

the CFX Connect Real-Time System (both Bio-Rad). All reactions were carried out 

using the 2-Step QPCR SYBR Kit (Thermo Scientific), following the manufacturer’s 

instructions. Primers were designed using Primer3 (version 0.4.0) (Table S1). The 

specific amplification of each transcript was verified by dissociation curve analysis. A 

standard curve for each primer pair was determined in the CFX Manager (version 3.1) 

based on Cq-values (quantitation cycle) of qPCRs run with a dilution series of cDNA 

pools. The efficiency and amplification factors of each qPCR, based on the slope of 

the standard curve, were calculated using an integrated efficiency calculator of the 

CFX manager software (version 3.1). Ribosomal protein S3 (RPS3), extracted from 

our G. viridula larval gut transcriptome (Pauchet et al. 2010), was used as a reference 

gene, and the abundance of GH45 transcripts was expressed as RNA molecules per 

1000 RNA molecules of RPS3.  

To directly compare GH45-1/GH45-2 transcript abundance to GH45-1/GH45-2 

enzymatic activity in RNAi-treated G. viridula, powdered material was suspended in 

40 mM citrate/phosphate buffer at pH 5.0 containing a protease inhibitor cocktail 
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(cOmplete, EDTA-free Protease Inhibitor Cocktail, Sigma-Aldrich). Then, the samples 

were centrifuged (10 min, 16000xg, 4 °C), and the supernatant was collected and 

stored at 4 °C until further use. Protein concentration was estimated by Bradford 

protein assay (Bio-Rad). Enzymatic activity assays were carried out using the DNS 

method as described above, using 5 μg of extracted proteins in the reaction. 

Alternatively, 2.5 μg (GH45-2) and 5 μg (GH45-1) of total extracted proteins were 

prepared for zymogram analysis by diluting the sample in Laemmli buffer without any 

reducing agent. Samples were run on a 12.5% SDS-PAGE gel containing 0.1 % (w/v) 

of either CMC or Xyloglucan. Electrophoresis was carried out at 4 °C using pre-chilled 

running buffer. Gels were then washed three times in a 2.5 % Triton X-100 solution 

for 15 min each at 4 °C, before being equilibrated in the reaction buffer (50 mM 

citrate/phosphate buffer pH 5.0) for 16 h at 4 °C, followed by a 1 h incubation at 

40 °C. The gels were then incubated in a 0.1 % (w/v) Congo red solution before being 

destained in 1 M NaCl until pale activity zones appeared against a dark red 

background. 

Two life history traits were recorded after larvae were injected with dsRNA. First, 

larvae (we used groups of five insects per replicate, six replicates in total) were 

weighed on day 1 and day 8 post-injection. Then, growth rate was calculated using 

the formula “growth rate= log10(final weight)-log10(initial weight)/time (days)”. Finally, 

mortality was recorded at the end of the experiment. 

Tissue-specific gene expression 
Late-instar G. viridula larvae, actively feeding on leaves of R. obtusifolius, were used 

for total RNA extraction. Larvae were cut open from abdomen to head, and the 

complete gut was removed and stored separately from the rest of the body. 

Dissection and storage were carried out in RL solution (Analytik Jena). Three 

biological replicates were sampled, each containing three larvae. RNA extraction, 

generation of cDNAs and subsequent real-time qPCR experiments were performed 

as described above. Primers used for these experiments are listed in Table S1. 
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Statistical analysis 
If not otherwise stated, data were analyzed in R version 3.2.0 (R-Development-Core-

Team 2015). Statistical analyses of gene expression over time were performed as 

follows: The influence of GH45-1 and GH45-2 RNAi treatments (i45-1 and i45-2) over 

time (RNAi treatment and time used as categorical explanatory variables) on GH45-1 

and GH45-2 transcript abundance was investigated using the generalized least 

squares method (gls from the nlme library (Pinheiro et al. 2015)) to account for the 

variance heterogeneity among the residuals. The varIdent variance structure was 

used, with a different variance for the combination of treatment and time (varIdent 

(form = ~1|combination of [treatment and time])). The influence of the explanatory 

variables was determined by sequentially removing explanatory variables starting with 

the full model and comparing the simpler model to the more complex one, using a 

likelihood ratio test (Zuur et al. 2009). Differences between factor levels were 

determined by factor level reduction (Crawley 2013). The influence of RNAi treatment 

on the enzymatic activity over time was analyzed either by the gls method as 

described above (GH45-1) or using a two-way ANOVA (GH45-2). Statistical details 

can be found in supplementary table S4. The Tukey HSD test was performed in order 

to find differences among the groups. To compare weight gain over time in RNAi-

treated larvae, we calculated the relative growth rate for a period of 8 days and 

analyzed the data using a one-way ANOVA. Differences in mortality were analyzed 

using the test for the equality of proportions. Differences in tissue-specific gene 

expression were analyzed in SigmaPlot Version 11.0 using paired t-tests. 
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Supplementary Material 

 
Fig. S1. Purification of cellulolytic proteins from larval guts. (A) After size-exclusion 

chromatography, all fractions were loaded on an agarose diffusion assay containing 0.1 % 

CMC. The assay was incubated for 16 h at 40 °C and pH 5.0 and subsequently stained using 

Congo red. (B) After TCA precipitation, each fraction was applied to an SDS-gel and stained 

using colloidal Coommassie. Fraction D9 was chosen for LC-MS/MS analysis, as it shows the 

highest cellulolytic activity. C14 to D7 indicates the fractions in which the purified samples 

were collected from the FPLC. Each arrow/letter (a-j) corresponds to samples analyzed by 

LC-MS/MS. + = positive control; - = negative control; kDa = kilodalton; M = marker 
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Fig. S2. figure legend see next page 
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Fig. S2. Analysis of optimal pH and temperature as well as thermal stability of GH45 
proteins. Assays were performed using dialyzed and desalted cell culture medium containing 

target recombinant proteins. Enzymatic activity was determined by analyzing the amount of 

reducing sugars set free and was converted into millimolar (mM) of sugar monomer 

equivalents. (A) Target proteins were incubated with their respective substrate, and 

enzymatic activity was determined at several pH values ranging from 2.0 – 10.0. (B) Target 

proteins were incubated at temperatures ranging from 20 – 90 °C and the respective 

enzymatic activity recorded. (C) Target proteins were incubated without substrate for 16 h at 

temperatures starting with their respective optima and increasing to 80 °C. Then, the 

respective substrates were added and the proteins were incubated once more at their optimal 

temperature. Residual enzymatic activity was recorded and compared to a control. CMC = 

carboxymethyl cellulose; XylG = xyloglucan. 

 

 
Fig. S3. Expression of beetle-derived GH9 and GH45 genes comparing gut tissue to the 
rest of the body. Third-instar actively feeding larvae were dissected in groups of three (three 

replicates per group). Gut tissue and rest of the body were used for total RNA extraction and 

subsequent quantitative RT-PCR. Gene expression was expressed as the copy number of 

target GH gene per 1000 molecules of RPS3 (control gene). Data were plotted using a log-

transformed scale. Statistics were carried out using a paired t-test (statistical values see S1 

table). Significant differences are indicated by an asterisk (P  0.05). 
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Fig. S4. Zymogram testing the activity of gut content against xyloglucan and CMC after 
RNAi treatment. Samples from larvae collected on day four post-injection as used in Figure 

4 were applied to the zymograms (A) Protein loading control of larvae treated with dsRNA 

against GH45-1 (i45-1) and GFP (iGFP) including a non-injected control (NIC). (A) Five 

micrograms of total protein content was applied to a 0.1 % xyloglucan-containing semi-native 

SDS-PAGE gel and subsequently stained with Coomassie. (B) The other half of the same 

semi-native SDS-PAGE gel, after protein renaturation, was used to detect xyloglucanase 

activity. The gel was incubated at 40°C for one hour and activity bands subsequently 

revealed by Congo red staining. (C) Semi-native SDS-PAGE gel containing 0.1 % CMC. Total 

protein content of larvae treated with dsRNA against GH45-2 (i45-2) and GFP as well as a 

non-injected control was loaded (5 μg of total protein content) with subsequent Coomassie 

staining. (D) 2.5 μg total protein content was loaded and proteins were renaturated after the 

run. The gel was incubated at 40 °C for one hour and activity zones subsequently revealed by 

Congo red staining.  
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Fig. S5. Analysis of breakdown products of Rumex obtusifolius primary cell wall 
extracts incubated with G. viridula recombinant GH45 proteins. Thin layer 

chromatography of heterologously expressed GH45s when incubated with plant primary cell 

wall extract for 16 h at 40 °C and pH 5.0. Breakdown products were visualized by spraying 

0.2 % orcinol (w/v) with methanol/sulphoric acid. Standards (S) used: C1-C5 = glucose to 

cellopentaose; XG2 - XG9 = isoprimeverose to xyloglucan nona saccharide. (-) represents 

negative controls where plant cell wall extracts were incubated with the culture medium of 

mock-transfected Sf9 cells. 
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Abstract 
Cellulose, a major polysaccharide of the plant cell wall, consists of -1,4-linked 

glucose moieties forming a molecular network recalcitrant to enzymatic breakdown. 

Although cellulose is potentially a rich source of energy, the ability to degrade it is 

rare in animals and was believed to be present only in cellulolytic microbes. Recently, 

it has become clear that some animals encode endogenous cellulases belonging to 

several glycoside hydrolase families (GHs), including GH45. GH45s are distributed 

patchily among the Metazoa and, in insects, are encoded only by the genomes of 

Phytophaga beetles. This study aims to understand both the enzymatic properties 

and the evolutionary history of GH45s in these beetles. To this end, we tested the 

enzymatic abilities of 37 GH45s derived from five species of Phytophaga beetles and 

learned that beetle-derived GH45s degrade three different substrates: amorphous 

cellulose, xyloglucan and glucomannan. Our phylogenetic and gene structure 

analyses indicate that at least one gene encoding a putative cellulolytic GH45 was 

present in the last common ancestor of the Phytophaga, and that GH45 

xyloglucanases evolved several times independently in these beetles. The most 

closely related clade to Phytophaga GH45s contained fungal sequences, suggesting 

this GH family was acquired by horizontal gene transfer from fungi. Other than in 

insects, arthropod GH45s do not share a common origin and appear to have emerged 

at least three times independently. 

 

Keywords: Chrysomeloidea; Curculionoidea, GH45, cellulase, xyloglucanase 
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Introduction 
The major source of energy for most organisms on earth is D-glucose. Through 

photosynthesis, plants have evolved the ability to biosynthesize organic D-glucose 

from inorganic carbon dioxide. A surplus of electromagnetic energy has provided 

plants with a nearly unlimited access to glucose, giving them a reservoir for storing 

energy as well as access to material for building structural components during plant 

growth. The plant cell wall (PCW) consists of several glucose-derived 

polysaccharides, which form a protective wall against biotic and abiotic stresses. 

Traditionally, three kinds of polysaccharides are used as structural elements in the 

PCW: cellulose, hemicellulose and pectin. While the latter two are characterized by a 

variety of differently organized heteropolysaccharides, cellulose is a homopolymer 

and consists of -1,4-linked anhydroglucose units forming a straight-chain 

polysaccharide. Through hydrogen bonding, individual chains attach to each other 

and form a resilient (para)crystalline structure (Chang 1981). On surface areas, 

cellulose is believed to organize itself into a state of low crystallinity, referred to as an 

“amorphous” state (Ruel et al. 2012). Depending on the developmental stage of the 

plant cell, the PCW is organized as follows: (i) the primary cell wall, which contains 

low amounts of crystalline cellulose (and surrounds plant cells in development) or (ii) 

the secondary cell wall, which comprises large amounts of crystalline cellulose 

(Cosgrove 2014). However, how native cellulose is organized in primary and 

secondary cell walls with regard to the ratio of amorphous to crystalline cellulose is 

still unclear (Knox 2008; Saxena 2007). 

As the most abundant biopolymer on earth (Bayer et al. 1998), cellulose represents 

an abundant energy supply for any organism which has the ability to exploit it. 

Curiously, cellulose degradation has evolved only in few branches of the tree of life. 

Until the end of the 20th century, cellulose degradation was only known to be 

performed by microorganisms such as plant pathogenic bacteria (Chambost J.P. 

1987; Py et al. 1991), saprophytic fungi (Schulein 1997) or mutualistic symbionts in 

insects and ruminants (Breznak and Brune 1994; Rincon et al. 2001). However, in 

1998, the first endogenous cellulases of animal origin were identified in cyst 
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nematodes found in parasitic plants (Smant et al. 1998) and termites (Watanabe et al. 

1998). Several other independent discoveries of cellulases in a variety of Metazoa 

followed, and to date endogenous cellulases encompass the phyla Arthropoda, 

Mollusca and Nematoda (Faddeeva-Vakhrusheva et al. 2016; Girard and Jouanin 

1999; Kikuchi et al. 2004; Pauchet et al. 2010; Sakamoto and Toyohara 2009). 

Cellulases are conventionally classified according to their mode of action. Endo- -

1,4,-glucanases (EC 3.2.1.4) break down cellulose by releasing randomly sized 

cellulose fragments and are known to act only on amorphous cellulose. 

Cellobiohydrolases (exo- -1,4,-glucanases; EC 3.2.1.91) degrade cellulose from its 

terminal regions by releasing cellobiose and occasionally cellotriose. In microbes, 

cellobiohydrolases were shown to degrade amorphous as well as crystalline cellulose 

(Takahashi et al. 2010). Finally, cellobiosidases ( -glucosidases; EC 3.2.1.21) accept 

the released cellobiose as substrate and convert it into glucose. All three types of 

cellulases act synergistically and are necessary to degrade the cellulosic network 

efficiently (Kostylev and Wilson 2012). 

Cellulases are distributed into 14 of the 156 currently described families of glycoside 

hydrolases (GHs), according to the carbohydrate-active enzyme (CAZy) database 

(www.cazy.org, (Lombard et al. 2014). Assignment to different GH families is based 

on sequence similarities. The best-described cellulolytic GH families encompass GH5 

(Aspeborg et al. 2012) and GH9 (Watanabe and Tokuda 2010). Together with 

GH45s, GH5s and GH9s are found to be encoded by the genome of some insects 

(Keeling et al. 2013; McKenna et al. 2016; Pauchet et al. 2014b; Schoville et al. 2018; 

Vega et al. 2015). Based on our previous work, GH45s are commonly distributed in 

the Phytophaga clade of beetles (Marvaldi et al. 2009), which encompasses the 

superfamilies Chrysomeloidea (leaf beetles and longhorned beetles) and 

Curculionoidea (weevils and bark beetles) (Kirsch et al. 2012; Pauchet et al. 2014a; 

Pauchet et al. 2010). The first GH45 that was functionally characterized in a beetle 

originated from Apriona germari (Chrysomeloidea: Cerambycidae: Lamiinae), which 

had the ability to degrade amorphous cellulose (Lee et al. 2004). Until recently, 

GH45s in beetles have been functionally characterized in only a few Chrysomeloidea 
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species, mostly Cerambycidae (Chang et al. 2012; Mei et al. 2015; Pauchet et al. 

2014a) and Diabrotica virgifera virgifera (Chrysomelidae: Galerucinae) (Valencia et al. 

2013), and another two from our previous study in Gastrophysa viridula 

(Chrysomelidae: Chrysomelinae) (Busch et al. 2018a). Although GH45 sequences 

have been identified in Curculionoidea beetles (Keeling et al. 2013; Pauchet et al. 

2010; Vega et al. 2015), to date none has ever been functionally characterized.  

Interestingly, GH45s are not only found in multicellular organisms but are widely 

encoded by microbes (Davies et al. 1995; DeBoy et al. 2008; O'Connor et al. 2014; 

Sheppard et al. 1994). The distribution of this gene family in the Metazoa appears to 

be patchy and has so far been recorded only in a few species within the phyla 

Mollusca (Rahman et al. 2014; Sakamoto and Toyohara 2009; Xu et al. 2002), 

Nematoda (Kikuchi et al. 2004; Palomares-Rius et al. 2014); GH45s have also been 

recorded in Arthropoda (Song et al. 2017). If GH45s had evolved in the last common 

ancestor (LCA) of the Metazoa and subsequently been inherited by their 

descendants, we would expect the patchy distribution of GH45 genes observed within 

the Metazoa to be due to multiple independent losses. If this hypothesis were true, 

phylogenetic analyses would recover metazoan GH45s as a single monophyletic 

clade. However, two previous studies focusing on the evolutionary origin of GH45s in 

nematodes and mollusks have suggested instead that GH45s were acquired from a 

fungal donor by horizontal gene transfer (HGT) (Kikuchi et al. 2004; Sakamoto and 

Toyohara 2009). The first attempt to clarify the evolutionary history of GH45s in 

beetles also proposed an HGT from a fungal source but was unable to reach definite 

conclusions (Calderon-Cortes et al. 2010) because of the low number of sequences 

used for the phylogenetic analysis. A more comprehensive approach followed in 2014 

(Eyun et al. ), which included more GH45 sequences. Still, the variety of GH45 

sequences in the latter study was poor, resulting in a similarly elusive outcome. Thus, 

the evolutionary history of GH45s appears to be complex, and their inheritance in 

beetles remains enigmatic. 

Therefore, the major aim of our study was to trace the evolutionary origin of the GH45 

family within the Phytophaga and to analyze how the function of the corresponding 
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proteins evolved in this large group of beetles. Based on previous research on the 

ancestral origin of GH45s (Kikuchi et al. 2004; Sakamoto and Toyohara 2009), we 

hypothesize that an HGT event occurred at one or more stages of the evolution of the 

Phytophaga. Additionally, we analyzed other Arthropods, including Oribatida and 

Collembola, as well as several non-arthropod species, including Nematoda, 

Tardigrada and Rotifera. In this study, we combined functional and phylogenetic 

analyses to unravel the origin and evolution of the GH45 family in Phytophaga 

beetles. We first functionally characterized 37 GH45s from five beetle species -- four 

beetles of the Chrysomelidae (leaf beetles) and a beetle of the Curculionidae 

(weevils) -- to determine whether these GH45s harbor cellulase activity, and whether 

they may have evolved other functions. We then combined these functional data with 

amino acid alignments of the GH45 catalytic sites to pinpoint amino acid substitutions 

which might lead to substrate shifts. Finally, we performed phylogenetic analyses to 

ask (i) how many GH45 genes were present in the LCA of the Phytophaga and (ii) 

whether this gene family is ancestral in the Metazoa or, instead, acquired by HGT. 

The aim of our study was to provide the first comprehensive overview regarding the 

evolution in beetles of the GH45 family and to assess the role of these genes in the 

evolution of herbivory. 
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Results 
Functional analyses of the Phytophaga GH45 proteins reveal distinct enzymatic 
characteristics 
Our previous transcriptome analyses (Eyun et al. 2014; Kirsch et al. 2012; Pauchet et 

al. 2010) revealed a set of endogenous GH45 genes distributed within several beetles 

of the superfamilies Chrysomeloidea and Curculionoidea. We investigated the 

product of GH45 genes from four beetle species belonging to the family 

Chrysomelidae, namely, Chrysomela tremula (CTR), Phaedon cochleariae (PCO), 

Leptinotarsa decemlineata (LDE) and Diabrotica virgifera virigfera (DVI), and from 

one species belonging to the family Curculionidae, the rice weevil Sitophilus oryzae 

(SOR), for a total of 33 GH45 sequences (Table S1). By re-examining the 

corresponding transcriptomes as well as the recent draft genome of L. decemlineata 

(Schoville et al. 2018), we identified four extra GH45 sequences (Table S1). The 

resulting 37 GH45s were successfully expressed in Sf9 insect cells (Fig. 1A). All 

GH45s had an apparent molecular weight of ~35 kDa (Fig. 1A). The increase in 

molecular size compared to the expected size (~25 kDa) was likely due to post-

translational N-glycosylations as well as to the artificially added V5/(His)6-tag. 

To explore the cellulolytic capabilities of these proteins, we first applied crude Sf9 

culture medium containing individual recombinant GH45s to agarose plates 

supplemented with 0.1 % carboxymethyl cellulose (CMC) (Fig. 1B). Activity halos 

were visible for at least two GH45s per target species. The intensity of the observed 

activity halos varied from large clearing zones (for example, PCO4 or LDE2) to small 

or medium ones (such as PCO3 or LDE7). These differences were likely due to the 

catalytic efficiency of each individual GH45 as well as to the concentration of the 

crude protein extracts we used. Each clearing zone, independent of its intensity and 

size, indicated endo- -1,4-glucanase activity. To further assess enzymatic 

characteristics of these GH45s, we performed assays with a variety of plant cell wall-

derived polysaccharides as substrates and analyzed the resulting breakdown 

products on thin layer chromatography (TLC) (Table 1; Fig. S1 to S5). 
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Fig. 1 Western Blot and CMC-based agarose-diffusion-assay of target GH45 proteins. 

A) Western Blot of target recombinant enzymes expressed in frame with a V5/His6 after 

heterologous expression in insect Sf9 cells. After 72 h crude culture medium of transfected 

cells were harvested and analysed by Western blotting using an anti-V5-HRP coupled 

antibody. B) Crude culture medium of transfected cells were applied to an agarose-diffusion-

assay containing 0.1 % CMC. Activity halos were revealed after 16 h incubation at 40 °C 

using Congo red. Numbers above Western blot and agarose-diffusion-assay correspond to 

the respective species GH45s depicted in supplementary table S1. 
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Table 1: GH45 enzymatic activity observed on TLC.  

CMC RAC CC C3 C4 C5 C6 Glu Gal XG
CTR1 + + - - - - + + - - 
CTR2 - - - - - - - + - + 
CTR3 + + - - + + + + - - 
PCO1 + + - - - + + - - - 
PCO3 + + - - - - + + - - 
PCO4 + + - - + + + + - - 
PCO5 - - - - - - + + - - 
PCO6 + - - - - - + + - - 
PCO7 - - - - - - - - - + 
PCO8 - - - - - - - - - - 
LDE1 - - - - - - - - - - 
LDE2 + + - - + + + + - - 
LDE3 + + - - - + + + - - 
LDE4 - - - - - - - - - - 
LDE5 + + - - - - + - - + 
LDE6 + + - - - + + - - - 
LDE7 - - - - - - + + - - 
LDE8 - - - - - - - - - - 
LDE9 - - - - - - - - - - 
LDE10 - - - - - + + - - - 
LDE11 - - - - - - - - - + 
DVI1 + + - - - + + - - - 
DVI2 + + - - - + + - - - 
DVI3 - - - - - - - - - - 
DVI4 - - - - - - - - - - 
DVI5 - - - - - - - - - + 
DVI6 - - - - - - - - - + 
DVI7 - - - - - - - - - - 
DVI8 + - - - + + + + - - 
DVI9 + - - - + + + + - - 
DVI10 + - - - + + + + - - 
DVI11 + - - - + + + + - - 
SOR1 + + - - - + + - - - 
SOR2 + + - - + + + - - - 
SOR3 - - - - - - - - - + 
SOR4 - - - - - - - - - + 
SOR5 - - - - - - - - - + 

CMC RAC CC C3 C4 C5 C6 Glu Gal XG
 
(+) indicates degradation, (-) no degradation of the respective substrates. CMC = Carboxymethyl 

cellulose; RAC = regenerated amorphous cellulose; CC = Crystalline cellulose; C3 to C6 = Cellobiose 

to Cellohexaose; Glu = Glucomannan; Gal = Galactomannan; XG = Xyloglucan. 

We were able to confirm the cellulolytic activity initially observed on CMC agar plates 

(CTR1 and CTR3, PCO1, PCO3, PCO4 and PCO6, LDE2, LDE3, LDE5, and LDE6, 
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DVI1, DVI2 and DVI8-11, SOR1 and SOR2). Each of these enzymes was able to 

break down CMC, regenerated amorphous cellulose (RAC) and cellulose oligomers. 

Interestingly, LDE10 did not show activity against cellulosic polymers but 

preferentially degraded cellopentaose and cellohexaose (Fig. S3). Similarly, but with 

much weaker efficiency, PCO5 degraded cellohexaose (Fig. S2). Together with the 

plate assays, our TLC analyses clearly demonstrated that beetle-derived GH45s 

processed cellulosic substrates using an endo-active mechanism, which suggests 

that these enzymes are endo- -1,4-glucanases. Several cellulolytically active GH45s 

derived from the four leaf beetle species displayed additional activity towards the 

hemicellulose glucomannan, for example, CTR1, PCO3 and LDE2 (Table 1; Figs. S1 

to S3). LDE7 exhibited the highest enzymatic activity against glucomannan, whereas 

its activity against amorphous cellulose substrates could be visualized only by plate 

assay. 

Interestingly, TLC allowed us to detect several enzymes (CTR2, PCO7, LDE5, 

LDE11, DVI5, DVI6 and SOR3 to SOR5) which were able to degrade xyloglucan 

instead of cellulose (Table 1; Figs. S1 to S5). The size of the resulting breakdown 

products seemed to correlate with heptamers and octamers, indicating that these 

proteins were endo- -1,4-xyloglucanases; however, the actual size of the resulting 

breakdown products is difficult to assess because some glucose moieties that make 

up the backbone of xyloglucan are substituted with xylose residues. LDE5 displayed 

activity towards amorphous cellulose substrates (Figs. 1B and S3), and is thus, 

according to our data, the only example of a beetle-derived GH45 able to degrade 

xyloglucan as well as amorphous cellulose. Additionally, each of the 37 GH45s was 

tested against xylan and no activity was detected (data not shown). 

The Chrysomelid-derived PCO8, LDE1, LDE4, LDE8, LDE9, DVI3, DVI4 and DVI7 

did not exhibit activity towards any of the substrates used in this study. We wondered 

whether substitutions of catalytically important residues may have caused their 

apparent loss of activity. To test this hypothesis, we performed an amino acid 

alignment of target beetle GH45 sequences, including a fungal GH45 sequence, as a 

reference for which the structure has been resolved (Davies et al. 1995); then we 
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screened for amino acid substitutions and compared these to the reference fungal 

sequence (Fig. 2).  

Fig.2 figure legend: see next page. 
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Fig.2 GH45 amino acid alignment of the catalytic residues. We used a GH45 sequence of 

Humicola insulens (HIN1) as reference sequence (Accession: 2ENG_A) (Davies et al. 1995). 

According to HIN1 we chose to investigate the catalytic residues (ASP10 and ASP121) as 

well as a conserved tyrosine (TYR8) of the catalytic binding site, a crucial substrate stabilizing 

amino acid (ASP114) and an essential conserved alanine (ALA74). Arrows indicate amino 

acid residue under investigation. If the respective amino acid residue is highlighted in green it 

is retained in comparison to the reference sequence, otherwise it is highlighted in red. GH45 

enzymatic activity was color-coded based on their respective substrate specificity (Green dots 

= endo- -1,4-glucanase, blue dots= endo- -1,4-xyloglucanase, yellow dots = 

(gluco)mannanase, red dots= putatively non-activity). 

According to Davies et al. (1995), both the proton donor (catalytic acid) and the 

acceptor (catalytic base) of the catalytic dyad should be aspartates (Asp10 and 

Asp121). In LDE9, the catalytic base was substituted for an asparagine, whereas in 

DVI4, the catalytic acid was substituted for a valine (Fig. 2). In both cases, the loss of 

the carboxyl unit of the functional group likely caused the proteins to lose the catalytic 

activity. No substitution event of the catalytic residues was observed for PCO8, LDE1, 

LDE4, LDE8, DVI3, and DVI7. Thus, we decided to investigate several conserved 

sites known to affect the enzymatic activity of GH45s (Davies et al. 1995). In addition, 

we investigated three other sites crucial for enzymatic activity: (i) a proposed 

stabilizing aspartate (Asp114), (ii) a conserved alanine (Ala74) and (iii) a highly 

conserved tyrosine (Tyr8) (Fig. 2). Apart from two substitution events of Tyr8 in LDE9 

and LDE3, this amino acid remained conserved in all other beetle GH45 sequences. 

LDE9 already possessed a mutation in its catalytic acid, which was likely responsible 

for the lack of activity. In LDE3, a substitution from Tyr8 to Phe8 did not significantly 

impact the catalytic abilities of this protein, likely because the side-chains of both 

amino acids are highly similar and differ only in a single hydroxyl group. When 

examining the proposed stabilizing site Asp114, we observed several amino acid 

substitutions that correlated with a loss of activity in PCO8, DVI3, DVI4, LDE1 and 

LDE8. Amino acid changes at the Asp114 position were also observed in PCO3 and 

CTR1, but were not correlated with a loss of enzymatic activity. Since LDE4 and DVI7 

appeared to have no mutation in Asp114, we screened the Ala74 residue for 
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substitutions; the amino acid exchange we observed, from alanine to glycine in both 

cases, may have caused the loss of activity in these two proteins. Altogether, amino 

acid substitutions at important sites could be detected in some apparently inactive 

GH45s, but not in all of them. It may be that the proteins for which we did not find 

amino acid substitutions are still active enzymes, and we have just not yet found the 

right substrate; alternatively, we have not yet checked all the amino acid positions, 

some of which could also be crucial for catalysis. 

Interestingly, all Chrysomelid GH45 xyloglucanases (except LDE5 and DVI6), 

including G. viridula GVI1 from our previous study, (Busch et al. 2018a), displayed a 

substitution from aspartate to glutamate at the stabilizing site (Asp114) (Fig. 2). As 

glutamate differs from aspartate only by an additional methyl group within its side 

chain, we believe that this exchange may have contributed to the substrate shift. 

Interestingly, and in contrast to Chrysomelidae-derived GH45 xyloglucanases, we 

found that GH45 xyloglucanases from the Curculionidae S. oryzae (SOR3 to SOR5) 

had a substitution from aspartate to glutamate in the proton donor residue (Asp121). 

We also believe that, in S. oryzae, this particular substitution may have contributed to 

the preference for xyloglucan over cellulose as a substrate. 

In summary, we demonstrated that each species investigated encoded at least two 

cellulolytic GH45s that are able to degrade amorphous cellulose. We also 

demonstrated that at least one GH45 per species possessed the ability to degrade 

only xyloglucan. Interestingly, several GH45s did not show activity on any of the 

substrates we tested, suggesting that they have become pseudo-enzymes or are 

active on substrates not tested here. 

Phylogenetic analyses reveal multiple origins of GH45 genes during the 
evolution of Metazoa 
For further insight into the evolutionary history of beetle-derived GH45 genes, we 

used phylogenetic analyses to reconstruct their evolutionary history. To achieve this 

goal, we collected amino acid sequences of GH45s available as of February 2018, 

including those from the CAZy database (http://www.cazy.org) (Lombard et al. 2014) 

as well as from several transcriptome datasets accessible at NCBI Genbank. 
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Interestingly, we realized that the presence of GH45 genes in arthropods was not 

restricted to Phytophaga beetles: these genes were also distributed in 

transcriptomes/genomes of species of springtails (Hexapoda: Collembola) and of 

species of Oribatida mites (Arthropoda: Chelicerata) (Table S2). In addition, we 

identified GH45 sequences in two other groups of Metazoa, namely, tardigrades and 

rotifers. Notably, our homology search did not retrieve any mollusk-derived GH45s; 

given the distant relationship of these GH45s to any of those we investigated, this 

absence is not surprising. The patchy distribution of GH45 genes throughout the 

arthropods and, more widely, the Metazoa, could be due to either the presence of 

GH45 genes in a common ancestor, followed by multiple gene losses, or from 

multiple independent acquisitions from foreign sources (i.e., HGT). To test these 

hypotheses, we collected a diverse set of GH45 sequences of microbial and 

metazoan origins resulting in 264 sequences (Table S2). Subsequently, redundancy 

at 90% identity level between sequences was eliminated, resulting in 201 non-

redundant GH45 sequences. According to both Bayesian and maximum likelihood 

phylogenies (Fig. 3, S6 andS7), the arthropod-derived GH45 sequences were not 

monophyletic but globally fell into three separate groups. One highly supported 

monophyletic clade (posterior probability (PP) =1.0, bootstrap =85) grouped all the 

Phytophaga beetle GH45 sequences. This clade was most closely related to a group 

of Saccharomycetales fungi (PP=0.88, bootstrap=44). Then this clade branched to 

yet another group of Saccharomycetales Fungi (PP= 1.0, bootstrap=56). A second 

monophyletic clade grouped all the Oribatida mites GH45 sequences, although with 

moderate support on the branch (PP=0.72, bootstrap=3). Finally, a third clade 

(PP=0.96, bootstrap=14) grouped all the GH45 sequences from Collembola. This last 

group was not monophyletic: a bacterial GH45 sequence was interspersed within this 

clade and separated the Collembola GH45 sequences into two subgroups. In addition 

to the arthropods, the nematode GH45 sequences formed a highly supported 

monophyletic clade (PP= 1.0, bootstrap=84) which was connected to a clade of 

fungal-derived sequences. This connection was highly supported (PP= 0.93, 

bootstrap=69). The two other groups of Metazoa (tardigrades and rotifers) were 

located in a separate clade with species of Neocallimastigaceae fungi (Chytrids), 
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(PP=0.94, bootstrap=14). Overall, this analysis showed that neither arthropods nor, 

more generally, metazoan GH45 sequences, originated from a common ancestor, as 

they were scattered in multiple separate clades rather than forming a monophyletic 

metazoan clade. 

 

Fig. 3 figure legend: see next page 
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Fig. 3 Global Phylogeny encompassing GH45 proteins from various taxa. Bayesian 

based phylogenetic analysis of GH45s sequences. 264 GH45 sequences of microbial and 

metazoan origin were initially collected (see method section) and their redundancy was 

eliminated at 90 % sequence similarity resulting in a total of 201 sequences. Posterior 

probability values are given at crucial nodes. If values are depicted in bold the same branch 

appeared in the corresponding maximum likelihood analysis (see Fig. S6 and S7). If 

underlined the maximum likelihood node was highly supported (bootstrap values > 75). 

Detailed sequences descriptions including accession numbers are given in Table S2. 

Hexapoda are represented in blue, fungi in orange, protists in red, Bacteria in purple, 

Nematoda in green and other Metazoans in yellow. Sacch. = Saccharomycetales fungi; 

Neocallim. = Neocallimastigaceae fungi. 

In summary, our phylogenetic analyses illustrated that the evolutionary history of 

GH45s in the Metazoa was complex and pointed to the possibility that this gene 

family evolved several times independently in multicellular organisms. More 

specifically, our analyses suggested that this gene family had evolved at least three 

times independently in arthropods. Finally, our data pointed toward an acquisition of 

GH45 genes by the LCA of Phytophaga beetles -- presumably through an HGT event 

-- from a fungal donor. 

The structure of GH45 genes in Phytophaga beetles supports a single origin 
before the split of the Chrysomeloidea and Curculionoidea 
The monophyly of the Phytophaga-derived GH45s in the above phylogenetic 

analyses suggests a common ancestral origin in this clade of beetles. If the presence 

of a GH45 in the Phytophaga beetles had resulted from a single acquisition in their 

LCA, we hypothesized that the GH45 genes present in current species of leaf beetles, 

longhorned beetles and weevils would share a common exon/intron structure. To test 

this hypothesis, we mined the publicly available genomes of three species of 

Curculionidae, including H. hampei (Vega et al. 2015), D. ponderosae (Keeling et al. 

2013) and S. oryzae (unpublished), as well as the genomes of the Chrysomelidae L. 

decemlineata (Schoville et al. 2018) and of the Cerambycidae A. glabripennis 

(McKenna et al. 2016). We were able to retrieve the genomic sequence 

corresponding to each of the GH45 genes present in these beetle species, with the 
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exception of DPO9, which we did not find at all, and SOR3 and SOR4, which we were 

able to retrieve only as partial genomic sequences. Our results showed that the 

number of introns varied between the different species (Fig. S8). In L. decemlineata 

(representing Chrysomelidae), we identified a single intron in each of the GH45 genes 

(except for LDE11, which had two). For A. glabripennis (representing Cerambycidae), 

we found two introns in each of the two GH45 genes. In H. hampei, D. ponderosae 

and S. oryzae (all representing Curculionidae), the number of introns ranged from 

three to five. Interestingly, all GH45 genes in these five species possessed an intron 

placed within the part of the sequence encoding the predicted signal peptide. Apart 

from DPO7 and DPO8, these introns were all in phase one. This gene structure of 

Chrysomelid- and Curculionid-derived GH45 genes correlated well with our previous 

study investigating the gene structure of PCW-degrading enzymes, including GH45 

genes, in the leaf beetle Chrysomela tremula (Pauchet et al. 2014b). The 

conservation of the phase and the position of this intron indicated that the LCA of the 

Phytophaga likely possessed a single GH45 gene having a phase one intron located 

in a part of the sequence encoding a putative signal peptide. To assess whether that 

particular intron is also present in the most closely related fungal species, we blasted 

the genomes of Saccharomycetaceae and Neocallimastigaceae fungi (NCBI, whole-

shotgun genome database) using the protein sequence of GH45-1 of C. tremula. We 

did not detect any introns in fungal GH45 sequences (data not shown), suggesting 

that the proposed intron was acquired after the putative HGT event. The diversity of 

the overall intron-exon structure in phytophagous beetles likely resulted from 

subsequent and independent intron acquisition. In summary, and together with the 

monophyly of beetle-derived GH45s (Fig. 3), our analysis highly supports a common 

ancestral origin of beetle GH45. 

Evolution of the GH45 family after the initial split of Chrysomeloidea and 
Curculionoidea 
We mined publicly available transcriptome and genome datasets of Phytophaga 

beetles (Table S3) and collected as many GH45 sequences as possible. We curated 

a total of 266 GH45 sequences belonging to 42 species of Phytophaga beetles. After 

amino acid alignment, we decided to exclude 60 partial GH45 sequences from our 
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phylogenetic analysis because these were too short. We performed a “whole 

Phytophaga” phylogenetic analysis on the remaining 206 curated GH45 sequences 

using maximum likelihood (Fig. 4). Because most of the deeper nodes were poorly 

supported, we decided to collapse branches having a bootstrap support below 50. 

Our phylogenetic analysis indicated that no orthologous genes were found between 

species of Chrysomeloidea and Curculionoidea (Fig. 4). The only exception to this 

rule was found in a clade containing the xyloglucanases from the Chrysomelidae 

(clade m) and from the Curculionidae (clade n), which cluster together with a 

bootstrap support of 73 Proceeding cautiously, because the substrate switch from 

amorphous cellulose to xyloglucan seemed to be due to different amino acid 

substitutions at catalytically important sites between Chrysomelidae-derived 

xyloglucanases and Curculionidae-derived ones (Fig. 2), we hypothesize a single 

common ancestry of cellulolytic GH45s; in contrast, xyloglucanase activity likely arose 

through convergent evolution at list twice within the Phytophaga clade of beetles. 

Clade n comprised Brentidae- and Curculionidae-derived GH45s including SOR3 to 

SOR5 (Fig. 4). According to our functional data, SOR3 to SOR5 act as 

xyloglucanases, suggesting that other GH45 proteins present in clade n may have 

also evolved to degrade xyloglucan. To support this hypothesis, we compared the 

catalytic residues of SOR3-5 to those of the other Curculionidae and Brentidae-

derived GH45 sequences from clade n (Fig. S9). We detected substitutions from an 

aspartate to a glutamate at Asp121 in all Curculionidae-derived GH45 sequences of 

this clade but not in the Brentidae-derived sequences, suggesting that Curculionidae-

derived GH45s of this clade were likely to possess xyloglucanase activity. Functional 

analyses of the Brentidae-derived sequences present in clade n will be needed to 

determine whether these proteins are also xyloglucanases or whether they fulfill 

another function. 
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Fig. 4 figure legend: see next page 
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Fig. 4 Phylogenetic relationships of Phytophaga-derived GH45s. A maximum likelihood 

inferred phylogeny of the predicted amino acid sequences of beetle-derived GH45s. 

Bootstrap values are indicated at corresponding nodes. The tree was collapsed at nodes 

below a bootstrap value of 50. Information on sequences and their accession number are 

given in the Table S3. Dots indicate characterized GH45s to date and are color-coded based 

on their activity: green = endo- -1,4-glucanases; blue = endo- -1,4-xyloglucanases; yellow = 

(gluco)mannanases; red = no activity detected. Color coding in reference to the respective 

subfamily of Curculionoidea: pink = Scolytinae (Curculionidae); brown = Entiminae 

(Curculionidae); Purple = Cyclominae (Curculionidae); grey = Curculioninae (Curculionidae); 

yellow = Molytinae (Curculionidae); light blue =  Brentinae (Brentidae); dark blue = 

Dryophthorinae (Curculionidae). Color coding in reference to the respective subfamily of 

Chrysomeloidea: dark green = Chrysomelinae (Chrysomelidae); light green = Galerucinae 

(Chrysomelidae); orange = Lamiinae (Cerambycidae); cyan = Cassidinae (Chrysomelidae). 

GH45 enzymatic activity was color-coded based on their respective substrate specificity 

(Green dots = endo- -1,4-glucanase, blue dots= endo- -1,4-xyloglucanase, yellow dots = 

(gluco)mannanase, red dots= putatively non-activity). 

The second major cluster encompassed GH45s of clade l, with a bootstrap support of 

95, and contained only Curculionidae-derived sequences (Fig. 4). Within this clade, 

we found SOR1 and SOR2, which are, according to our functional data, endo-active 

cellulases. Their presence in clade l implies that other GH45s of this cluster exhibit 

potential endo-cellulolytic activity. To further support this hypothesis, we again 

investigated amino acid residues of the catalytic site by comparing SOR1 and SOR2 

to other GH45 sequences in this clade (Fig. S9). We did not find crucial substitutions 

in any of the investigated sites, implying that all GH45 proteins of this clade may have 

retained endo- -1,4-glucanase activity. GH45 sequences present in the other 

Curculionidae and Brentidae-specific clades did not harbor any amino acid 

substitutions which could impair their catalytic properties, and they may all possess 

the ability to break down amorphous cellulose. More functional analyses will be 

necessary to assess the function of these proteins. 

Regarding Chrysomeloidea-derived sequences, a highly supported clade (Fig. 4, 

clade m) contained GH45 sequences of two subfamilies of Chrysomelidae, namely, 

Chrysomelinae and Galerucinae. Our functional analyses revealed that this clade 
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contained GH45 proteins possessing xyloglucanase activity, including DVI5 and DVI6 

from D. vir. virgifera. The remaining Galerucinae-derived GH45s, such as those from 

the Alticines Phyllotreta armoraciae and Psylliodes chrysocephala, present in clade m 

have yet to be functionally characterized. When the catalytic residues of active 

xyloglucanases from our study were compared to the uncharacterized GH45 

sequences present in clade m, we observed that at least PAR6 and PCH5 of the 

Galerucinae and OCA10 and CPO2 of the Chrysomelinae had congruent 

substitutions (ASP114 > Glu114), which likely enabled those proteins to also degrade 

xyloglucan (Fig. S10). Therefore, it is highly likely that the LCA of the Chrysomelinae 

and the Galerucinae possessed at least two GH45 proteins, an endo-acting cellulase 

and a xyloglucanase. 

Clade k consisted solely of Lamiinae-derived sequences and in fact encompassed all 

Cerambycidae-derived GH45s identified to date (Fig. 4). Several of those GH45s had 

been previously functionally characterized as cellulases including AJA1 and AJA2 

(Pauchet et al. 2014a), AGE1 and AGE2 (Lee et al. 2004; Lee et al. 2005), AGL1 and 

AGL2 (McKenna et al. 2016), ACH1 (Chang et al. 2012) and BHO1 (Mei et al. 2015). 

Investigating their catalytic residues revealed no critical substitutions (Fig. S10), 

indicating that each yet-uncharacterized Cerambycidae GH45s from clade k (i.e. 

OCH1, MMY1, PHI and MAL1) may also possess cellulolytic activity. 

In summary, our focus on Phytophaga-derived GH45s with regards to enzymatic 

characterization and ancestral origin allowed us to postulate that at least one GH45 

protein was present in the LCA of the Phytophaga beetles and that this GH45 protein 

likely possessed cellulolytic activity. After the split between Chrysomeloidea and 

Curculionoidea, the GH45 gene family evolved through gene duplications at the 

family, subfamily and even genus/species level. Finally, according to our data, the 

ability of these beetles to break down xyloglucan, one of the major components of the 

primary plant cell wall, happened at least twice, once in the LCA of the 

Chrysomelinae and Galerucinae and once in the LCA of the Curculionidae. 
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Discussion 
In our previous research, we found that several beetles of the Phytophaga encoded a 

diverse set of GH45 putative cellulases (Pauchet et al. 2010). Here we demonstrated 

that in each of the five Phytophaga beetles investigated, at least two of these GH45s 

possess cellulolytic activity. This discovery is in accordance with other previously 

described GH45 proteins from Insecta (Pauchet et al. 2014a), Nematoda (Kikuchi et 

al. 2004), Mollusca (Rahman et al. 2014), Rotifera (Szydlowski et al. 2015) and 

microbes (Mcgavin and Forsberg 1988). 

Surprisingly, several GH45 proteins were able to degrade glucomannan in addition to 

cellulose. We hypothesize that GH45 bi-functionalization may have occurred as a 

result of the chemical similarities between cellulose and glucomannan. Glucomannan 

is a straight chain polymer consisting of unevenly distributed glucose and mannose 

moieties. GH45 cellulases could recognize two adjoining glucose moieties in the 

glucomannan chain, thus allowing hydrolysis to occur. Notably, enzymes specifically 

targeting mannans of the PCW are rare in Phytophaga beetles. So far they have been 

identified and characterized only in G. viridula and Callosobruchus maculatus (GH5 

subfamily 10 or GH5_10) (Busch et al. 2017; Pauchet et al. 2010), and one GH5_8 

has been characterized in the coffee berry borer H. hampei (Acuna et al. 2012a). But 

in contrast to the activity on glucomannan of some GH45s we observed here, those 

GH5_10s and GH5_8 were true mannanases, displaying activity towards 

galactomannan as well as glucomannan. Although our experiments suggested some 

GH45 cellulases were also active on glucomannan, we believe that the activity these 

proteins carry out could be important for the degradation of the PCW in the beetle gut. 

In fact, mannans, including glucomannan, can make up to 5 % of the plant primary 

cell wall (Scheller and Ulvskov 2010) and may be a crucial enzymatic target during 

PCW degradation. This hypothesis is further supported by the presence of at least 

one GH45 protein with some ability to degrade glucomannan in each of the 

Chrysomelid beetles for which we have functional data. 

Another interesting discovery was that several GH45 proteins have lost their ability to 

use amorphous cellulose as a substrate and evolved instead to degrade xyloglucan, 
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the major hemicellulose of the plant primary cell wall (Pauly et al. 2013). We believe 

that the initial substrate shift from cellulose to xyloglucan has likely been promoted by 

similarities between the substrate backbones (in both cases -1,4 linked glucose 

units). The major difference between cellulose and xyloglucan is that the backbone of 

the latter is decorated with xylose units (which in turn can be substituted by galactose 

and/or fucose). We presume that the substrate shift from a straight chain 

polysaccharide such as cellulose to a more complex one such as xyloglucan requires 

the similar complex adaptation of the enzyme to its novel substrate. However, in 

contrast to glucomannan-degrading GH45s, GH45 xyloglucanases have apparently 

completely lost their ability to use amorphous cellulose as a substrate. Here, we 

clearly demonstrated that, following several rounds of duplications, GH45s in 

Chrysomelid beetles have evolved novel functions in addition to their ability to break 

down amorphous cellulose, allowing these insects to degrade two additional major 

components of the PCW, namely. glucomannan and xyloglucan. This broadening of 

their functions further emphasizes that GH45 proteins may have likely been an 

important innovation during the evolution of the Phytophaga beetles and may have 

strongly contributed to their radiation. In summary, the ability of GH45 proteins to 

degrade a variety of substrates either as monospecific or as bi-functionalized 

enzymes indicates that these proteins are particularly prone to substrate shifts. 

According to our data, the ability to break down xyloglucan using a GH45 protein has 

evolved at least twice independently in Phytophaga beetles, once in the LCA of 

Chrysomelinae and Galerucinae and once in the LCA of the Curculionidae or of the 

Curculionidae and Brentidae. Once the first Brentidae-derived GH45s are functionally 

characterized, we will know more. Given that genome/transcriptome data for a 

majority of families and subfamilies are lacking throughout the Phytophaga clade, we 

expect that other examples of independent evolution of GH45 xyloglucanases will be 

revealed in the future. It is important to note that the ability to degrade xyloglucan, 

which represents an important evolutionary innovation for Phytophaga beetles, may 

not be linked solely to the evolution of the GH45 family. In fact, in A. glabripennis 

(Cerambycidae: Lamiinae), a glycoside hydrolase family 5 subfamily 2 (GH5_2) 

protein has evolved to degrade xyloglucan; additionally, orthologous sequences of 
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this GH5_2 xyloglucanase have been found in other species of Lamiinae (McKenna 

et al. 2016). 

The ability of GH45s to break down xyloglucan correlated with a substitution event 

from an aspartate to a glutamate residue at a stabilizing site (Asp114) within the 

Chrysomelidae. Interestingly, the same amino acid exchange was present in SOR3-

SO5 but was located at the catalytic acid (Asp121) rather than the stabilizing site 

(Asp114). Aspartate and glutamate share the same functional group but differ in the 

length of their side chain. Thus, the preservation of the functional group coupled with 

an elongated side chain has likely contributed to the substrate switch of those GH45 

proteins which when turned on allows xyloglucan to be degraded. Notably, DVI6 and 

LDE5 do not share that particular substitution but are able to degrade xyloglucan. 

Therefore, we believe that the transition from cellulase to xyloglucanase has not been 

driven solely by a single amino acid substitution, but has been triggered by changes 

at other positions. 

Linked to these observations, our Phytophaga-focused phylogeny combined 

xyloglucanases of Chrysomelidae and Curculionoidea in a single well-supported 

clade (grouping clades m and n on Fig. 4), suggesting that the LCA of the 

Phytophaga may have already possessed a GH45 xyloglucanase. Despite the well-

supported GH45 xyloglucanase clade, we remain skeptical about a common 

ancestral GH45 xyloglucanase present in the LCA of the Phytophaga based on two 

pieces of evidence: first, there are no GH45 xyloglucanases in cerambycid beetles, 

indicating that Cerambycidae have either lost their GH45 xyloglucanases or never 

obtained it in the first place. Given that Cerambycidae -- at least species of Lamiinae -

- have evolved to degrade xyloglucan by using GH5_2, we believe that a substrate 

shift from cellulose to xyloglucan of a GH45 never evolved in this family of beetles, 

not that is was lost. Second, as described above, there are distinct substitution events 

in the catalytic site between proteins from species of the two superfamilies that likely 

led to their substrate shift. Based on these facts, we suggest that GH45 

xyloglucanases have evolved convergently in both superfamilies. In contrast to GH45 

xyloglucanases, GH45 cellulases were present in species of each Phytophaga family 
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investigated to date. This strongly suggests that a cellulolytic GH45 was present in 

the ancestral Phytophaga species. 

According to the carbohydrate-active enzyme (CAZy) database (Lombard et al. 

2014), GH45s encompass 385 sequences (as of February 2018) distributed 

throughout fungi, bacteria and Metazoans. Interestingly, the distribution of GH45s 

within Metazoans is rather patchy, encompassing to date only Nematoda (Kikuchi et 

al. 2004; Palomares-Rius et al. 2014), Arthropoda (Faddeeva-Vakhrusheva et al. 

2016; Pauchet et al. 2010), Rotifera (Szydlowski et al. 2015) and Mollusca (Sakamoto 

and Toyohara 2009), and, in insects, is restricted to Phytophaga beetles. We 

searched several other arthropod genome/transcriptome datasets, including beetles 

other than Phytophaga, and all publicly available insect genomes, as well as publicly 

available genomes of Collembola and Oribatida mites. Except for the latter two, we 

were unable to retrieve GH45 sequences from arthropods. Surprisingly, our 

phylogenetic analyses clearly showed that the arthropod-derived GH45s, rather than 

clustering together, formed three separate monophyletic groups. In fact, all metazoan-

derived GH45s clustered separately, forming independent monophyletic groups. The 

patchy distribution of GH45 sequences among Metazoa indicates either that these 

proteins were acquired multiple times throughout animal evolution or that massive 

differential gene loss occurred within multicellular organisms. The latter hypothesis 

appears to be less parsimonious as it implies the existence of multiple GH45s in the 

LCA of Ophistokonta (Fungi and Metazoa) followed by reciprocal differential gene 

losses and multiple independent total gene losses in many animal lineages. 

Intriguingly, the closest clade to the Phytophaga GH45 sequences contained fungal-

derived sequences. Our phylogenetic analyses could not identify a specific donor 

species/group but both suggested species of Saccharomycetales or 

Neocallimastigaceae fungi as potential source. The most parsimonious explanation 

for the appearance of GH45 genes in Phytophaga beetles is that one or more genes 

was acquired by horizontal gene transfer (HGT) from a fungal donor. A similar 

scenario may have been responsible for the presence of GH45 genes in Oribatida 

and Collembola, but this hypothesis remains speculative until more sequences from 

both these orders are identified. In addition to the monophyly of Phytophaga-derived 
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GH45 sequences, a common origin was further suggested by the fact that the 

position and the phase of the first intron was (except for two cases) conserved across 

GH45 genes from the species of Cerambycidae, Chrysomelidae and Curculionidae 

for which genome data are available. If our hypotheses are correct, the LCA of all 

Phytophaga beetles most likely acquired a single GH45 gene from a fungal donor. As 

we did not find any fungal (Saccharomycetales or Neocalimastigaceae) introns 

corresponding to the proposed original intron, it appears that beetle-derived GH45 

genes have acquired an intron after the HGT. The GH45 gene then likely underwent 

several duplications before the separation of the different Phytophaga clades, and 

these duplications continued independently after the diversification of this hyper-

diverse clade of beetles. 

Strikingly, nematode-derived GH45 sequences were consistently grouped together 

with Saccharomycetales fungi in each analysis we ran, clearly demonstrating that the 

closest relatives to their GH45 genes were fungal and from different fungi than the 

insect relatives. The origin of nematode-derived GH45 genes has been investigated, 

and their acquisition by HGT from a fungal source has been proposed (Kikuchi et al. 

2004; Palomares-Rius et al. 2014). Here we provide the third independent 

confirmation of this fact. 

In conclusion, our research indicated that the Phytophaga GH45s have adapted to 

substrate shifts. In addition to cellulose, this adaptation led to the recognition and 

catalysis of two additional substrates, neither of which can be enzymatically 

addressed by any other GH family that those insects encode. Beetles of the 

Chrysomelidae have evolved to break down three components of the PCW (cellulose, 

xyloglucan and glucomannan) by using only GH45s. In concert with GH28 pectinases 

encoded by each investigated species (Kirsch et al. 2014), these beetles have 

evolved a near-complete set of enzymatic tools with which to deconstruct the PCW, 

allowing them to gain access to the nutrient-rich plant cell contents; in addition, PCW-

derived polysaccharides are a potential source of energy. Our data also suggest that 

GH45 is not an ancestral gene family but was likely acquired by the LCA of the 

Phytophaga from a fungal source, most likely through an HGT event. Both, enzymatic 
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activity and ancestral origin suggest that GH45s were likely an essential prerequisite 

for the adaptation allowing Phytophaga beetles to feed on plants. 
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Materials and methods 
Production of recombinant GH45 proteins 
Open reading frames (ORFs) were amplified from cDNAs using gene-specific primers 

based on previously described GH45 sequences of C. tremula, P. cochleariae, L. 

decemlineata, D. virgifera virgifera and S. oryzae (Pauchet et al. 2010). If necessary, 

full-length transcript sequences were obtained by rapid amplification of cDNA ends 

PCR (RACE-PCR) using RACE-ready cDNAs as described by (Pauchet et al. 2010). 

For downstream heterologous expression, ORFs were amplified using a forward 

primer designed to include a Kozak sequence and a reverse primer designed to omit 

the stop codon. cDNAs initially generated for the (RACE-PCR), as described by 

(Pauchet et al. 2010), were used as PCR template, and the PCR reactions were 

performed using a high-fidelity Taq polymerase (AccuPrime, Invitrogen). The PCR 

products were cloned into the pIB/V5-His TOPO (Invitrogen) in frame with a V5-(His)6 

epitope. TOP10 chemically competent Escherichia coli cells (Invitrogen) were 

transformed and incubated overnight on a LB agar plate containing ampicillin 

(100 μg/ml). To select constructs for which the recombinant DNA had ligated in the 

correct orientation, randomly picked colonies were checked by colony PCR using the 

OpIE2 forward primer (located on the vector) and a gene-specific reverse primer 

(Table S4). Positive clones were further cultured in 2x yeast extract tryptone (2xYT) 

medium containing 100 μg/ml ampicillin. After plasmid isolation using GeneJET 

Plasmid Miniprep Kit (Thermo Scientific), the recombinant plasmids were sequenced 

in both directions using Sanger sequencing to confirm whether the ORF has been 

correctly inserted into the vector. Positive constructs were then transfected in Sf9 

insect cells (Invitrogen) using FuGENE HD (Promega) as a transfection reagent. First, 

successful expression was determined by transiently transfecting three clones per 

construct in a 24-well plate format. 72 h after transfection, the culture medium was 

harvested and centrifuged (16,000 x g, 5 min, 4 °C) to remove cell debris. Successful 

expression was verified by Western blot using the anti-V5-HRP antibody (Invitrogen). 

In order to collect enough material for downstream enzymatic activity assays, a single 

clone per construct was chosen to be transiently transfected in a 6-well plate format. 
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72 h after transfection, culture medium was harvested and treated as described 

above. The cell medium was stored at 4 °C until further use. 

Enzymatic characterization 
The enzymatic activity of recombinant proteins was initially tested on agarose 

diffusion assays using carboxymethyl cellulose (CMC) as a substrate. Agarose (1%) 

plates were prepared, containing 0.1 % CMC in 20 mM citrate/phosphate buffer pH 

5.0. Small holes were made in the agarose matrix using cut-off pipette tips, to which 

10 μl of the crude culture medium of each expressed enzyme was applied. After 

incubation for 16 h at 40 °C, activity was revealed by incubating the agarose plate in 

0.1% Congo red for 1 h at room temperature followed by washing with 1 M NaCl until 

pale halos on a red background were visible. To investigate GH45 enzymatic activity 

in more detail, we analyzed their enzymatic breakdown products using thin layer 

chromatography (TLC). For that, the culture medium of transiently transfected cells 

was dialyzed and desalted as described in Busch et al. (2017). The following 

substrates were tested: CMC, Avicel, glucomannan, galactomannan and xyloglucan 

(all from Megazyme) with a final concentration of 0.5 %. We also tested regenerated 

amorphous cellulose (RAC), prepared according to Zhang et al. (2006). Additionally, 

we used the cello-oligomers D-(+)-biose to D-(+)-hexaose (all from Megazyme), as 

substrates at a final concentration of 250 ng/μl. Samples were incubated and 

analyzed as previously described (Busch et al. 2017). The reference standard 

contained 2 μg of each oligomer: glucose, cellobiose, cellotriose, cellotetraose and 

cellopentaose as well as isoprimeverose, xylosyl-cellobiose and the hepto-, octa- and 

nona saccharides of xyloglucan. 

Tissue-specific gene expression 
Third-instar P. cochleariae larvae, actively feeding on leaves of B. rapa, were used for 

total RNA extraction. Larvae were cut open from abdomen to head, and the complete 

gut was removed and stored separately from the rest of the body. Dissection and 

storage were carried out in RL solution (Analytik Jena). Three biological replicates 

were sampled, each containing three larvae. Total RNA was isolated using the 

innuPREP RNA Mini Kit (Analytik Jena), following the manufacturer’s protocol. The 
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resulting RNA samples were subjected to DNase digestion (Ambion), and their quality 

was assessed using the RNA 6000 Nano LabChip kit on a 2100 Bioanalyser (both 

Agilent Technologies). Total RNA was used as a template to synthesize cDNAs, 

using the Verso cDNA synthesis kit (Thermo Scientific). The resulting cDNA samples 

were then used for real-time quantitative PCR (qPCR) experiments, which were 

performed in 96-well hard-shell PCR plates on the CFX Connect Real-Time System 

(both Bio-Rad). All reactions were carried out using the 2-Step QPCR SYBR Kit 

(Thermo Scientific), following the manufacturer’s instructions. Primers were designed 

using the program Primer3 (version 0.4.0) (Table S4). The specific amplification of 

each transcript was verified by dissociation curve analysis. A standard curve for each 

primer pair was determined in the CFX Manager (version 3.1) based on Cq-values 

(quantitation cycle) of qPCRs run with a dilution series of cDNA pools. The efficiency 

and amplification factors of each qPCR, based on the slope of the standard curve, 

were calculated using an integrated efficiency calculator of the CFX manager 

software (version 3.1). Ribosomal protein S3 (RPS3), extracted from our P. 

cochleariae larval gut transcriptome (Kirsch et al. 2012), was used as a reference 

gene, and the abundance of GH45 transcripts was expressed as RNA molecules per 

1000 RNA molecules of RPS3. Gene expression values were ln-transformed and 

significant differences between gut and rest-body were analyzed in SigmaPlot 

Version 11.0 using paired t-tests. 

Gene structure determination 
Genomic sequences of GH45 encoding genes were mined from publicly available 

draft genomes of L. decemlineata (Schoville et al. 2018), A. glabripennis (McKenna et 

al. 2016), H. hampei (Vega et al. 2015), D. ponderosae (Keeling et al. 2013) and S. 

oryzae (unpublished; accession: SAMN08382431). The intron/exon structure was 

determined for each gene using splign (Kapustin et al. 2008), a spliced aligner.  

Amino acid alignment and Phytophaga-specific phylogenies 
Sequences corresponding to Phytophaga GH45 proteins described in our previous 

studies were combined with those mined from several NCBI databases, such as the 

non-redundant protein database (ncbi_nr) and the transcriptome shotgun assembly 
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database (ncbi_tsa) (Table S3). In addition, transcriptome datasets generated from 

species of Phytophaga beetles were retrieved from the short-read archive (ncbi_sra) 

(Table S3) and assembled using the CLC workbench program version 11.0. Reads 

were loaded and quality trimmed before being assembled using standard parameters. 

The resulting assemblies were screened for contigs matching known beetle GH45 

sequences through BLAST searches. The resulting contigs were then manually 

curated and used for further analysis. Amino acid alignments were carried out using 

MUSCLE version 3.7 implemented in MEGA7 (version 7.0.26) (Kumar et al. 2016). 

The maximum likelihood analysis was also conducted in MEGA7. The best model of 

protein evolution was determined in MEGA7 using the ‘find best DNA/protein models’ 

tool. The best model was the ‘Whelan and Goldman’ (WAG) model, incorporating a 

discrete gamma distribution (shape parameter = 5) to model evolutionary rate 

differences among sites (+G) and a proportion of invariable sites (+I). The robustness 

of the analysis was tested using 1,000 bootstrap replicates. 

Large phylogenetic analysis 
We used the GH45 protein sequence from Sitophilus oryzae (ADU33247.1) as a 

BLASTp query against the NCBI’s non-redundant protein library with an E-value 

threshold of 1E-3. We retrieved the 250 best blast hits (Table S2), encompassing a 

majority of fungal sequences as well as various hexapod sequences (including 

Chrysomelidae, Curculionidae, Lamiinae and Collembola (=Entomobryomorpha)). 

Besides fungi and hexapods, GH45 sequences from 10 nematodes, from one 

Tardigrade, one Rotifer and one bacterium, as well as a few uncharacterized protists 

from environmental samples, were among the 250 best BLAST hits. We 

complemented this dataset with predicted proteins from several Oribatid mites (10 

sequences) and Collembola (4 sequences) retrieved from ncbi_tsa (Table S2). This 

resulted in a collection of 264 sequences. 

The set of 264 protein sequences was scanned against the Pfam v31 library of 

protein domains using the pfam_scan script with default parameters. All these 

proteins had one GH45 (Glyco_hydro_45 PF02015) domain on at least 98% of the 

expected lengths. Most of the fungal proteins possessed an ancillary carbohydrate-
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binding module (either CBM1 or CBM10), but this domain was not found in other 

species, except the bdelloid rotifer Adineta ricciae. We eliminated redundancy at 90% 

identity level between the 264 protein sequences; we used the CD-HIT Suite server 

(Huang et al. 2010) and reduced the dataset to 201 non-redundant sequences, while 

maintaining the diversity of clades. 

The non-redundant sequences were aligned using MAFFT v7.271 (Katoh and 

Standley 2013) with the “—auto” option to allow us to automatically select the most 

appropriate alignment strategy. We used trimal (Capella-Gutierrez et al. 2009) to 

automatically discard columns that contained more than 50% of gaps in the alignment 

(-gt 0.5 option) and the maximum likelihood and the Bayesian methods to reconstruct 

phylogenetic trees. Maximum likelihood trees were reconstructed by RAxML version 

8.2.9 (Stamatakis 2014) with an estimated gamma distribution of rates of evolution 

across sites and an automatic selection of the fittest evolutionary model 

(PROTGAMMAAUTO). Bootstrap replicates were automatically stopped upon 

convergence (-autoMRE). Bayesian trees were reconstructed by MrBayes version 

3.2.6 (Ronquist et al. 2012) with an automatic estimation of the gamma distribution of 

rates of evolution across sites and a mixture of evolutionary models. The number of 

mcmc generations was stopped once the average deviation of split frequencies was 

below 0.05. Twenty-five percent of the trees were burnt for calculation of the 

consensus tree and statistics. 

Acknowledgments 
We are grateful to Bianca Wurlitzer and Domenica Schnabelrauch for technical 

support. We thank Emily Wheeler, Boston, for editorial assistance. We express our 

gratitude to Franziska Beran (MPI for Chemical Ecology) for sharing the 

transcriptomes of Phyllotreta armoraciae and Psylliodes chrysocephala prior to 

publication. We are also thankful to Roy Kirsch and David G. Heckel for their input on 

experimental design and for fruitful discussions. This work was supported by the Max 

Planck Society 



Manuscript III 

126

Supplementary Material

Fig. S1 Thin-layer chromatography of C. tremula GH45s assayed against several plant 
cell wall polysaccharides. Recombinant GH45s were incubated for 16 h at 40 °C with 

various plant polysaccharides. Their breakdown products were analyzed on TLC and 

visualized using 0.2 % orcinol in methane/sulphoric acid (9:1) under continuous heating. Each 

TLC represents an individually tested GH45 (Ctr1 to Ctr3). All GH45s were assayed against 

the same set of substrates, namely, cellotriose to cellohexaose (C3-C6); crystalline cellulose 

= avicel (CC); carboxymethyl cellulose (CMC); regenerated amorphous cellulose (RAC); 

glucomannan (GluM); galactomannan (GalM); xyloglucan (XG); standards: C1 = glucose, C2 

– C5 = cellobiose to pentaose; XG2- XG9 = xyloglucan-oligomers. 
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Fig. S2 Thin layer chromatography of P. cochleariae GH45s assayed against several 
plant cell wall polysaccharides. Recombinant GH45s were incubated for 16 h at 40 °C with 

various plantpolysaccharides. Their breakdown products were analyzed on TLC and 

visualized using 0.2 % orcinol in methane/sulphoric acid (9:1) under continuous heating. Each 

TLC represents an individually tested GH45 (Pco1 to Pco8). All GH45s were assayed against 

the same set of substrates which included cellotriose to cellohexaose (C3-C6); crystalline 

cellulose = avicel (CC); carboxymethyl cellulose (CMC); regenerated amorphous cellulose 

(RAC); glucomannan (GluM); galactomannan (GalM); xyloglucan (XG); standards: C1 = 

glucose, C2 – C5 = cellobiose – pentaose; XG2- XG9 = xyloglucan- oligomers.Fig. S1 Thin-

layer chromatography of C. tremula GH45s assayed against several plant cell wall 

polysaccharides 
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Fig. S2 continued 
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Fig. S3 Thin layer chromatography of L. decemlineata GH45s assayed against several 
plant cell wall polysaccharides. Recombinant GH45s were incubated for 16 h at 40 °C with 

various plant polysaccharides. Their breakdown products were analyzed on TLC and 

visualized using 0.2 % orcinol in methane/sulphoric acid (9:1) under continuous heating. Each 

TLC represents an individually tested GH45 (Lde1 to Lde11). All GH45s were assayed 

against the same set of substrates which included: cellotriose to cellohexaose (C3-C6); 

crystalline cellulose = avicel (CC); carboxymethyl cellulose (CMC); regenerated amorphous 

cellulose (RAC); glucomannan (GluM); galactomannan (GalM); xyloglucan (XG); standards: 

C1 = slucose, C2 – C5 = cellobiose – pentaose; XG2- XG9 = xyloglucan- oligomers. 
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Fig. S3 continued 
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Fig. S4 Thin-layer chromatography of D. virgifera GH45s assayed against several plant 
cell wall polysaccharides. Recombinant GH45s were incubated for 16 h at 40 °C with 

various plant polysaccharides. Their breakdown products were analyzed on TLC and 

visualized using 0.2 % orcinol in methane/sulphoric acid (9:1) under continuous heating. Each 

TLC represents an individually tested GH45 (Dvi1 to Dvi11). All GH45s were assayed against 

the same set of substrates: cellotriose to cellohexaose (C3-C6); crystalline cellulose = avicel 

(CC); carboxymethyl cellulose (CMC); regenerated amorphous cellulose (RAC); 

glucomannan (GluM); galactomannan (GalM); xyloglucan (XG); standards: C1 = Glucose, C2 

– C5 = cellobiose – pentaose; XG2- XG9 = xyloglucan- oligomers. 
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Fig. S4 continued 
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Fig. S5 Thin-layer chromatography of S. oryzae GH45s assayed against several plant 
cell wall polysaccharides. Recombinant GH45s were incubated for 16 h at 40 °C with 

various plant polysaccharides. Their breakdown products were analyzed on TLC and 

visualized using 0.2 % orcinol in methane/sulphoric acid (9:1) under continuous heating. Each 

TLC represents an individually tested GH45 (Sor1 toSor5). All GH45s were assayed against 

the same set of substrates: cellotriose to cellohexaose (C3-C6); crystalline cellulose = avicel 

(CC); carboxymethyl cellulose (CMC); regenerated amorphous cellulose (RAC); 

glucomannan (GluM); galactomannan (GalM); xyloglucan (XG); standards: C1 = glucose, C2 

– C5 = cellobiose – pentaose; XG2- XG9 = xyloglucan-oligomers. 
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Fig. S6 Bayesian global phylogenetic analysis encompassing GH45 proteins from 
various taxa (expanded version of Fig. 4). 264 GH45 sequences of microbial and 

metazoan origin were initially collected (see Methods) and their redundancy was eliminated at 

90 % sequence similarity, resulting in a total of 201 sequences. Sequence details are given in 

Table S2. Fungal branches are marked in orange, symbiotic protists in red, Collembola, 

Oribatida and Entognatha in dark blue, Coleoptera in light blue, Nematoda and Tardigrada in 

dark green, Rotifera in light green and bacteria in purple. 
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Fig. S7 Maximum likelihood inferred phylogenetic analysis encompassing GH45 
proteins from various taxa. 264 GH45 sequences of microbial and metazoan origin were 

initially collected (see Methods), and their redundancy was eliminated at 90 % sequence 

similarity, resulting in a total of 201 sequences. Sequence details are given in Table S2. 

Fungal branches are marked in orange, symbiotic protists in red, Oribatida in dark blue, 

Collembola, Entognatha and Coleoptera in light blue, Nematoda in light green, Tardigrada 

and Rotifera in dark green and bacteria in purple. 
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Fig. S8 Conservation of intron position in phytophagous beetles with known GH45 
genome structure. Amino acid alignment of GH45 sequences derived from four different 

phytophagous beetles using MUSCLE. Genomic sequence information was retrieved from 

the genome assemblies of L. decemlineata (Schoville et al. 2018), H. hampei (Vega et al. 

2015), A. glabripennis (McKenna et al. 2016) and D. ponderosae (Keeling et al. 2013). The 

predicted signal peptide is marked in bold letters. Intron positions are highlighted by colored 

amino acids according to their phase. Phase 0: green; Phase 1: red; Phase 2: blue.
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Fig. S8  continued 
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Fig. S9 figure legend: see next page. 
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Fig. S9 Amino acid alignment of the GH45 catalytic residues based on our 
Curculionoidea-based phylogeny. We used a GH45 sequence of Humicola insulens (HIN1) 

as a reference sequence (Accession: 2ENG_A) (Davies, et al. 1995). According to HIN1, we 

chose to investigate the catalytic residues (ASP10 and ASP121) as well as a conserved 

tyrosine (TYR8) of the catalytic binding site, a crucial substrate stabilizing amino acid 

(ASP114) and an essential conserved alanine (ALA74). Arrows indicate amino acid residue 

under investigation. If highlighted in green, the residue remained unchanged in comparison to 

HIN1; elsewise it is highlighted in red. GH45 enzymatic activity was color-coded based on the 

respective substrate specificity (green dots = endo- -1,4-glucanase, blue dots = endo- -1,4-

xyloglucanase, red dots= no activity). Color coding in reference to the respective subfamily: 

pink = Scolytinae (Curculionidae); brown = Entiminae (Curculionidae); purple = Cyclominae 

(Curculionidae); gray = Curculioninae (Curculionidae); yellow = Molytinae (Curculionidae); 

light blue = Brentinae (Brentidae); dark blue = Dryophthorinae (Curculionidae). Each clade 

corresponds to the clades depicted in Fig. 4. 

 

Fig. S9 continued 
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Fig. S10 figure legend: see next page. 
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Fig. S10 Amino acid alignment of the GH45 catalytic residues using our 
Chrysomeloidea-based phylogeny. We used a GH45 sequence of Humicola insulens 

(HIN1) as a reference sequence (Accession: 2ENG_A) (Davies et al. 1995). According to 

HIN1, we chose to investigate the catalytic residues (ASP10 and ASP121) as well as a 

conserved tyrosine (TYR8) of the catalytic binding site, a crucial substrate stabilizing amino 

acid (ASP114) and an essential conserved alanine (ALA74). Arrows indicate amino acid 

residue under investigation. If highlighted in green, the residue remained unchanged in 

comparison to HIN1, otherwise it is highlighted in red. GH45 enzymatic activity was color-

coded based on the respective substrate specificity (green dots = endo- -1,4-glucanase, blue 

dots = endo- -1,4-xyloglucanase, red dots = no activity). Color-coding was performed with 

reference to the respective subfamily: dark green = Chrysomelinae (Chrysomelidae); light 

green = Galerucinae (Chrysomelidae); orange = Lamiinae (Cerambycidae); cyan = 

Cassidinae (Chrysomelidae). Each clade corresponds to the clades depicted in Fig. 4. 
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Table S1. Details on the beetle-derived GH45 proteins that were expressed in Sf9 
cells. 
Acronym Species Family Subfamily Accession Reference 

CTR1 Chrysomela tremula Chrysomelidae Chrysomelinae ADU33285.1 (Pauchet et al. 
2010) 

CTR2 Chrysomela tremula Chrysomelidae Chrysomelinae ADU33286.1 (Pauchet et al. 
2010) 

CTR3 Chrysomela tremula Chrysomelidae Chrysomelinae MH892457 This study 

LDE1 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae ADU33345.1 (Pauchet et al. 

2010) 

LDE2 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae ADU33346.1 (Pauchet et al. 

2010) 

LDE3 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae ADU33347.1 (Pauchet et al. 

2010) 

LDE4 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae ADU33348.1 (Pauchet et al. 

2010) 

LDE5 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae ADU33349.1 (Pauchet et al. 

2010) 

LDE6 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae ADU33350.1 (Pauchet et al. 

2010) 

LDE7 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae ADU33351.1 (Pauchet et al. 

2010) 

LDE8 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae MH892458 This study

LDE9 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae MH892459 This study

LDE10 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae MH892460 This study

LDE11 Leptinotarsa 
decemlineata Chrysomelidae Chrysomelinae MH892461 This study

PCO1 Phaedon cochleariae Chrysomelidae Chrysomelinae HE962202.1 (Kirsch et al. 2012) 
PCO3 Phaedon cochleariae Chrysomelidae Chrysomelinae HE962203.1 (Kirsch et al. 2012) 
PCO4 Phaedon cochleariae Chrysomelidae Chrysomelinae HE962204.1 (Kirsch et al. 2012) 
PCO5 Phaedon cochleariae Chrysomelidae Chrysomelinae HE962205.1 (Kirsch et al. 2012) 
PCO6 Phaedon cochleariae Chrysomelidae Chrysomelinae HE962206.1 (Kirsch et al. 2012) 
PCO7 Phaedon cochleariae Chrysomelidae Chrysomelinae HE962207.1 (Kirsch et al. 2012) 
PCO8 Phaedon cochleariae Chrysomelidae Chrysomelinae HE962208.1 (Kirsch et al. 2012) 

DVI1 Diabrotica vir. virgifera Chrysomelidae Galerucinae AFI56547.1 (Valencia et al. 
2013) 

DVI2 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892463 (Eyun et al. 2014) 
DVI3 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892464 (Eyun et al. 2014) 
DVI4 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892465 (Eyun et al. 2014) 
DVI5 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892466 (Eyun et al. 2014) 
DVI6 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892467 (Eyun et al. 2014) 
DVI7 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892468 (Eyun et al. 2014) 
DVI8 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892469 (Eyun et al. 2014) 
DVI9 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892470 (Eyun et al. 2014) 
DVI10 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892471 (Eyun et al. 2014) 
DVI11 Diabrotica vir. virgifera Chrysomelidae Galerucinae MH892472 (Eyun et al. 2014) 

SOR1 Sitophilus oryzae Curculionidae Dryophtorinae ADU33246.1 (Pauchet et al. 
2010) 

SOR2 Sitophilus oryzae Curculionidae Dryophtorinae ADU33247.1 (Pauchet et al. 
2010) 

SOR3 Sitophilus oryzae Curculionidae Dryophtorinae ADU33248.1 (Pauchet et al. 
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2010) 

SOR4 Sitophilus oryzae Curculionidae Dryophtorinae ADU33249.1 (Pauchet et al. 
2010) 

SOR5 Sitophilus oryzae Curculionidae Dryophtorinae ADU33250.1 (Pauchet et al. 
2010) 



 

145

Manuscript III 

Ta
bl

e 
S2

. 2
50

 b
es

t b
la

st
 h

its
 o

bt
ai

ne
d 

fro
m

 N
C

B
I 

 



 

146

Manuscript III 

 



 

147

Manuscript III 

 



 

148

Manuscript III 

 



 

149

Manuscript III 

 

  



Manuscript III 

150

Table S3. Details on the genome/transcriptome datasets which were used to curate 

GH45 sequences derived from Phytophaga beetles. 

Species Acronym Superfamily family subfamily Data type* accession 

Cylas brunneus CBR Curculionoidea Brentidae Brentinae SRA SRX1710181 

Cylas formicarius CFO Curculionoidea Brentidae Brentinae SRA SRX1508049 

Cylas puncticollis CPU Curculionoidea Brentidae Brentinae SRA SRX732288 

Anthonomus grandis AGR Curculionoidea Curculionidae Curculioninae SRA SRX2888367 

Listronotus oregonensis LOR Curculionoidea Curculionidae Cyclominae SRA 
SRX1674531; 
SRX1674530; 
SRX1674529 

Cyrtotrachelus buqueti CBU Curculionoidea Curculionidae Dryophthorinae SRA SRX3262946 
Rhynchophorus 
ferrugineus RFE Curculionoidea Curculionidae Dryophthorinae TSA GDKA00000000.1 

Sitophilus oryzae SOR Curculionoidea Curculionidae Dryophthorinae SRA SRX017240 

Sphenophorus levis SLE Curculionoidea Curculionidae Dryophthorinae Sanger ESTs JZ135722.1-JZ139168.1 

Diaprepes abbreviatus DAB Curculionoidea Curculionidae Entiminae Sanger ESTs CN472512.1-CN488395.1; 
DN199437.1-DN201109.1 

Pachyrhynchus infernalis PIN Curculionoidea Curculionidae Entiminae SRA DRX089461; DRX089463; 
DRX089465 

Hylobius abietis HAB Curculionoidea Curculionidae Molytinae SRA SRX3423630 

Larinus minutus LMI Curculionoidea Curculionidae Molytinae TSA GDLA00000000.1 

Pissodes strobi PST Curculionoidea Curculionidae Molytinae Sanger ESTs GT285068.1-GT296156.1 

Euwallacea fornicatus EFO Curculionoidea Curculionidae Scolytinae SRA SRX698946 

Hypothenemus hampei HHA Curculionoidea Curculionidae Scolytinae Genome LBGY00000000.1 

Ips pini IPI Curculionoidea Curculionidae Scolytinae Sanger ESTs CB407474.1-CB409136.1 

Ips typographus ITY Curculionoidea Curculionidae Scolytinae TSA GACR00000000.1 

Tomicus yunnanensis TYU Curculionoidea Curculionidae Scolytinae SRA SRX2518383 
Dendroctonus 
ponderosae DPO Curculionoidea Curculionidae Scolytinae Genome APGK00000000.1 

Anoplophora 
glabripennis AGL Chrysomeloidea Cerambycidae Lamiinae Genome AQHT00000000.2 

Apriona japonica AJA Chrysomeloidea Cerambycidae Lamiinae SRA ERX387572-ERX387579 

Monochamus alternatus MAL Chrysomeloidea Cerambycidae Lamiinae SRA 

SRX1302202; 
SRX1605798; 
SRX1605842; 
SRX1606425; 
SRX1606426 

Anoplophora chinensis ACH Chrysomeloidea Cerambycidae Lamiinae NR AFN89565.1 

Apriona germari AGE Chrysomeloidea Cerambycidae Lamiinae NR AAU44973.1, AAR22385.1 

Batocera horsfieldi BHO Chrysomeloidea Cerambycidae Lamiinae NR AKH90729.1 

Mesosa myops MMY Chrysomeloidea Cerambycidae Lamiinae NR AMA76413.1 
Oncideres albomarginata 
chamela OAL Chrysomeloidea Cerambycidae Lamiinae NR ADI24132.1 

Psacothea hilaris PHI Chrysomeloidea Cerambycidae Lamiinae NR ALE71518.1 

Cassida rubiginosa CRU Chrysomeloidea Chrysomelidae Cassidinae SRA 
SRX3287590; 
SRX3287591; 
SRX3287593 

Octodonta nipae ONI Chrysomeloidea Chrysomelidae Cassidinae SRA SRX396790 

Chrysomela tremula CTR Chrysomeloidea Chrysomelidae Chrysomelinae SRA SRX017241 
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Chrysomela populi CPO Chrysomeloidea Chrysomelidae Chrysomelinae SRA SRX390590; SRX390602; 
SRX390603 

Colaphellus bowringi CBO Chrysomeloidea Chrysomelidae Chrysomelinae SRA SRX317064 

Gastrophysa viridula GVI Chrysomeloidea Chrysomelidae Chrysomelinae SRA SRX017237 
Leptinotarsa 
decemlineata LDE Chrysomeloidea Chrysomelidae Chrysomelinae SRA SRX017239 

Oreina cacaliae OCA Chrysomeloidea Chrysomelidae Chrysomelinae TSA GDPL00000000.1 

Phaedon cochleariae PCO Chrysomeloidea Chrysomelidae Chrysomelinae in-house 
transcriptome  

Clitea metallica CME Chrysomeloidea Chrysomelidae Galerucinae SRA SRX3921909 
Diabrotica virgifera 
virgifera DVI Chrysomeloidea Chrysomelidae Galerucinae TSA GBSB00000000.1 

Phyllotreta armoraciae PAR Chrysomeloidea Chrysomelidae Galerucinae in-house 
transcriptome  

Podagricomela weisei PWE Chrysomeloidea Chrysomelidae Galerucinae SRA SRX3921907 

Psylliodes chrysocephala PCH Chrysomeloidea Chrysomelidae Galerucinae in-house 
transcriptome  

*SRA: Short read archive at NCBI; TSA: transcriptome shotgun assembly at NCBI; NR: non redundant 
protein database at NCBI. 
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4. General Discussion 
The survival of plant-feeding organisms is dependent on a functional and diverse set 

of plant cell wall degrading enzymes (PCWDEs) either being provided endogenously 

or supplied by mutualistic symbionts. Most of our knowledge about PCWDEs is based 

on how they function in microbes. There they have been shown to be essential for 

breaking down the plant cell wall to provide themselves (and potential host species 

during symbiosis) with carbohydrates, a source of metabolic energy (Nguyen et al. 

2018; Slaytor 1992). They are also used to penetrate the cell wall during plant 

infection of pathogens (Goyal et al. 1991; Joko et al. 2014; Kubicek et al. 2014) and 

to provide plant-feeding animals with tools to efficiently degrade the cell wall. Yet, little 

is known about the function, physiological importance or evolution of endogenous 

PCWDEs found in animals, especially in leaf beetles (Chrysomelidae) and weevils 

(Curculionidae). In this thesis, I investigate a set of PCWDEs encoded by several 

phytophagous beetles including six chrysomelid and one curculionid species. My 

focus is the glycoside hydrolase family 5 subfamily 10 (GH5_10s) and family 45 

(GH45s), particularly with respect to their evolution, enzymatic properties and 

physiological importance. 

I discovered that GH5_10 proteins, which to date are only known to have been 

encoded by two chrysomelid species within the Phytophaga, have kept their ancestral 

mannanolytic activity. Strikingly, one of the four copies of GH5_10s in C. maculatus 

has lost its mannanase activity but has evolved to degrade xylan, whereas the 

GH5_10 mannanase has evolved to also degrade cellulose (Manuscript I). Likewise, 

I have learned from my investigation of the GH45s in G. viridula that one of them has 

lost its original cellulolytic function and evolved to become an endo- -1,4-

xyloglucanase, while the other kept its ancestral endo- -1,4-glucanase activity 

(Manuscript II). The evolution of novel substrate specificities in these proteins likely 

compensates for the absence of other glycoside hydrolase families typically covering 

the respective enzymatic activities. More precisely C. maculatus GH5_10 has evolved 

cellulolytic as well as xylanolytic activity due to the absence of GH families with the 

corresponding activity pattern (such as GH10/GH11 xylanases or GH45/GH9 
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cellulases). Likewise, GH45 xyloglucanase activity in G. viridula may has evolved 

because no other GH family is encoded by the genome of this beetle being able to 

degrade xyloglucan. Surprisingly, I was unable to detect any changes in mortality or 

weight gain after GH5_10 or GH45 knockdown in G. viridula indicating a 

compensation by other digestive enzymes encoded by the insects (Manuscripts I 
and II). Furthermore, I present data on the complexity of GH45 and GH5_10 evolution 

within animals and more specifically within beetles. Although I have been able to 

show that the GH5_10 family has been acquired at least twice within insects, the 

ancestral donor organism has remained elusive (Manuscript I). Likewise, I have 

discovered that the GH45 family was not inherited ancestrally but has likely been 

acquired at least three times independently in arthropods. The sister clade to beetle-

derived GH45s was composed of fungal sequences, indicating a likely horizontal 

gene transfer (HGT) event from fungi to beetle (Manuscript III). 

4.1 PCWDEs in Animals: Impact on Science, Survival and Society 
The following paragraphs will focus on the effect of Coleoptera-derived PCWDEs on 

science, beetle survival and the benefit of PCWDEs for society.  

4.1.1 Scientific impact – PCWDE evolution  
After the first endogenous cellulases were found in animals, the scientific world was 

confronted with its dogmatic concept of a cellulolytic system only present in microbes. 

Yet, the initial surprise was quickly overcome as this “brave new world” of cellulolytic 

systems in animals initiated new research areas. The main question that arose was, 

how have cellulases evolved in animals? To find an answer, researchers started to 

include phylogenetic analyses and other tools to investigate the evolutionary origin of 

cellulases as well as other PCWDEs. Two major hypotheses began to gain shape; 

either an ancestral evolution of genes encoding PCWDEs or the genes were acquired 

from a foreign source by HGT. Surprisingly, both hypotheses seemed to be true. For 

instance, an ancestral origin has been proposed for cellulases of the GH9 family, 

which were likely present in the last common ancestor (LCA) of all Eukaryota and 

Bacteria (Davison and Blaxter 2005), whereas cellulases of GH5_2 were likely 

acquired from a bacterial source during the evolution of longhorned beetles 
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(Cerambycidae) and nematodes (Danchin et al. 2010). Over time, independent 

studies have suggested that the acquisition of PCWDEs by HGT in animals was more 

common than expected. For example pectinases of family GH28 have been shown to 

be initially acquired by Phytophaga beetles from a fungal source (Kirsch et al. 2014; 

Kirsch et al. 2016) followed by two additional independent HGTs from yet another 

fungal source as well as from bacteria; cellulases of family GH45 were acquired from 

a fungal source by nematodes (Kikuchi et al. 2004), molluscs (Sakamoto and 

Toyohara 2009) and the bdelloid rotifer Adineta ricciae (Szydlowski et al. 2015). In 

concert with a foreign origin of GH45s in nematodes and molluscs, my own research 

on the respective gene family suggests that it has been acquired by arthropods at 

least three times (Manuscript III). Based on this growing body of evidence, the 

evolution of glycoside hydrolases in insects indicates that their origin may be less 

conservative than anticipated. Thus, in the near future other cases of horizontally 

transferred PCWDEs encoded by animals are likely to be found.  

In the meantime, several other intriguing questions remain unaddressed by the 

scientific community, e.g. why is it that beetle-derived GH45s and GH5_10s occur 

exclusively as “single“ enzymes? In contrast, their microbial counterparts are 

expressed as multi-enzyme complex proteins (MEC) in fungi or as cellulosomes in 

bacteria (Kuhad et al. 2011b; Leschine 1995). To date plant-cell-wall-degrading MEC 

in animals are restricted to some nematodes (GH5_2) (Danchin et al. 2010). The lack 

of MEC in insects has been further emphasized by my own research on the PCWDEs 

of phytophagous beetles (Manuscripts I, II, and III). Yet, the efficiency with which 

MEC or cellulosomes degrade cellulose is well documented and thus begs the 

question, why are they not present in beetles? Carbohydrate-binding modules (CBMs; 

part of MEC and cellulosomes) are believed to facilitate substrate cleavage, 

especially on crystalline cellulose, by increasing enzyme concentration in the 

proximity of the substrate (Bolam et al. 1998) and by disrupting the crystalline 

structure of cellulose (Boraston et al. 2004; Guillen et al. 2010). Thus, I hypothesize 

that the lack of CBMs (and ultimately MEC) in beetles may be due to low amounts of 

crystalline cellulose in the food source of target beetles, a source made up of either 

leaves or seeds. Based on the ability of both food sources to grow or initiate growth, 
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primary cell wall content is likely to be high. Although the ratio of amorphous to 

crystalline cellulose in the primary cell wall is still an issue among plant biologists 

(Ruel et al. 2012), it is suggested that the primary cell wall is comprised of less 

crystalline cellulose than secondary cell walls (Cosgrove 2014; Montanari et al. 2005). 

Thus, crystalline cellulose may be underrepresented in either leaves or seeds 

compared to its amorphous counterpart. Higher amorphous cellulose content in 

leaves or seeds may be further supported by the fact that most characterized beetle-

derived cellulases are endo- -1,4-glucanases, which are able to degrade only 

amorphous cellulose (Manuscripts I, II, III). Thus, the ratio of crystalline to 

amorphous cellulose is likely to favor the latter in leaves as well as seeds and may 

explain why cellulosomes (or MECs) are redundant in beetles. Notably, some plant 

pathogenic fungi and bacteria infect the same tissues (leaves) eaten by beetles, yet 

they still express cellulosomes and MEC. Because microbes cannot grind and crush 

leaf material, they are depend on a highly efficient set of PCWDEs, including 

cellulases. Thus, cellulosomes and MECs are necessary to quickly and thoroughly 

degrade cellulose (independent of its amorphous or crystalline state) in order to 

effectively infect plant tissue. 

Notably, the proposed low amounts of crystalline cellulose do not appear to 

characterize the food source of beetles of the Cerambycidae (longhorned beetles), 

which are known to feed on woody plant tissue with high crystalline cellulose content. 

Yet, most characterized cellulases in cerambycid beetles are endo-active, single 

enzymes (Calderon-Cortes et al. 2010; Lee et al. 2005; McKenna et al. 2016; Mei et 

al. 2015; Pauchet et al. 2014a). Here, crystalline cellulose may be addressed by the 

fact that beetles masticate their food source before digestion. Chewing enlarges the 

substrate’s surface and crystalline cellulose components may be hydrated, allowing 

enzymes to access and digest former crystalline regions. Additionally, the acidic 

milieu in the gut of phytophagous beetles (Sinha 1959b) may be able to dissolve parts 

of the crystalline cellulose structure into its amorphous state; a strategy that is also 

used in vitro by scientists to produce artificial amorphous cellulose from its crystalline 

counterpart (Manuscripts II,III). If true, the endogenous cellulolytic system of beetles 

of the Cerambycidae does not need to address crystalline cellulose by enzymatic 
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means and likely presents an alternative option of coping with crystalline cellulose 

without the support of an MEC. Finally, microbes digesting plant material are often 

anaerobic (Leschine 1995). The ratio of adenosine triphosphate (ATP) generated 

from glucose compared between anaerobic and aerobic microbes favors the latter (2 

ATP in anaerobes compared to 38 ATP in aerobes). Therefore, a quick and efficient 

digestion of crystalline as well as amorphous cellulosic material in anaerobic bacteria 

(using cellulosomes) is necessary in order to release the amount of glucose needed 

for conversion to ATP (Goyal et al. 1991). In beetles the degradation of amorphous 

cellulose down to glucose, in combination with the released sugar-rich cell content 

(Manuscript II), most likely provides enough ATP given the insects’ aerobic 

metabolism. 

Collectively, the absence of those MECs and cellulosomes in beetles may be 

connected to the putatively lower crystallinity of cellulose in the plant cell wall of their 

host plants and/or to the insects’ ability to masticate their food source before 

digestion. By degrading amorphous cellulosic regions, the resulting glucose moieties 

together with the nutrient-rich cell content are most likely sufficient to sustain beetle 

energy metabolism. However, what can be said is that the digestion of crystalline 

cellulose probably plays a less important role in beetles than the digestion of its 

amorphous counterpart. It remains interesting whether future research will unravel 

PCWDEs encoded by beetle which are incorporated into MECs and whether these 

enzymes are able to degrade crystalline cellulose.  

4.1.2 Animal impact – PCWDE and survival 
As has been discussed in the research presented here, enzymatic activity and 

ancestral origin suggest that GH45s were likely an essential prerequisite for the 

evolution of Phytophaga beetles’ ability to feed on plants (Manuscripts II, III). 
However, an important question remains unaddressed. Did these beetles feed on 

plant material before the potential acquisition of PCWDEs? If yes, did these beetles 

feed on plant material with the support of mutualistic PCWDE-secreting symbionts, or, 

if no, what was their original food source? Interestingly, symbiotic microbes have 

been proposed as a crucial prerequisite for insects and their evolutionary transition to 
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herbivory (Hansen and Moran 2014; Russell et al. 2009). This proposed symbiosis 

would ensure a close proximity of the receiver species (the beetle) of genes encoding 

PCWDEs and a potential donor species (a microbe), a physiological necessity if our 

claim of an HGT of GH45s is true. Therefore, a potential symbiotic relationship 

between an ancestral beetle species and a PCWDE-encoding microbe appears 

plausible. Nonetheless, if this hypothesis holds true, one would expect some 

PCWDE-secreting symbionts to be harbored by phytophagous beetles. Surprisingly, 

reports of the proposed symbionts are scarce and restricted to a single beetle, 

Cassida rubiginosa (Chrysomelidae: Cassidinae), which shelters symbionts encoding 

a GH28 pectinase (Salem et al. 2017). Additionally, symbiotic microbes are known 

from other insects including termites (Breznak and Brune 1994) and wood-feeding 

cockroaches (Dietrich et al. 2014); however to the best of our knowledge no HGT of 

PCWDEs has been observed in either insect clade. Interestingly, these two clades of 

insects encode GH9 putative cellulases, which are assumed to be of ancestral origin 

(Davison and Blaxter 2005). Here, symbiont-derived PCWDEs act synergistically with 

endogenous GH9s to degrade plant tissue (Brune 2014; Ni and Tokuda 2013). 

Another hypothesis proposes that the ancestral feeding habit within Coleoptera 

comprised saprophagy and fungivory (Schigel 2012), suggesting that the common 

ancestor of Phytophaga beetles ingested fungi and/or decaying wood matter. 

Saprotrophic fungi are omnipresent decomposers of decaying wood litter and encode 

a set of PCWDEs (Payne et al. 2015). Within Coleoptera, fungivory can still be found 

in ambrosia beetles (Cuculionidae: Scolytinae and Platypodinae) (Mueller et al. 2005) 

and in closely related beetles of the superfamilies Cucujoidea (Jacob 1996; Silva and 

Lapenta 2011) and in the more distantly related Tenebrionoidea (Majka 2007). By 

ingesting decaying plant tissue, the ancestor of the Phytophaga may have come in 

close contact with saprotrophic microbes; these could be the subsequent basis for a 

potential GH45-HGT event between beetle and fungus. In summary, symbiont-

supported herbivory of early beetles appears to be equally as likely as the 

saprophagy/fungivory that occurred prior to the acquisition of PCWDEs in the 

ancestor of Phytophaga beetles and may be solved in the future when other 

symbiont-harboring beetles are discovered. 
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Consequently, the question arises regarding the benefit of encoding an endogenous 

set of PCWDEs instead of these being provided by mutualistic symbionts. 

Presumably, the major benefit of encoding an endogenous set of PCWDEs lies in the 

expansion of those gene families that leads to an increased gene copy number, which 

in turn leads to an increased mutational system robustness and ultimately allows for 

the acquisition of novel enzymatic functions by concomitantly maintaining ancestral 

functions (Wagner 2008). Gene expansion events of several GH families encoding 

PCWDEs have been shown by our group for GH28s (Kirsch et al. 2014), GH5_2 

(Pauchet et al. 2014a), GH5_10 (Manuscript I) and GH45s (Manuscript III). These 

gene expansions were always coupled with enzymatic sub-functionalization that 

allow, e.g., GH5_2 to degrade xylan and xyloglucan in addition to cellulose (McKenna 

et al. 2016; Pauchet et al. 2014a); GH28s to degrade polygalacturonic oligomers in 

addition to homogalacturonan; and GH45s to degrade xyloglucan and glucomannan 

in addition to cellulose (Manuscripts II and III). In contrast, the expansion of the 

bacterial gene family is mainly driven by HGT, resulting in a slower sub- and/or neo-

functionalization rate compared to the rate in animal counterparts (Treangen and 

Rocha 2011). Thus, the acquisition of an endogenous set of PCWDEs in the LCA of 

Phytophaga beetles, followed by gene duplication and functional diversification, likely 

led to a digestive system which allowed beetles to adapt faster to novel food sources 

than their (putative) symbiont-containing ancestral beetle counterpart. Notably, our 

research on GH45s revealed fungi as putative donor source. Although gene 

expansion mechanisms in fungi is more similar to other eukaryotes than to bacteria 

(Kelkar and Ochman 2012), the number of individual PCWDE-encoding GH families 

is low (Payne et al. 2015). Therefore, beetles with a potentially acquired set of 

PCWDEs may have been able to adapt better to novel food sources than beetles 

containing symbiotic fungi with a less diversified set of PCWDEs. Finally, beetles that 

encode an endogenous set of PCWDEs acquire full regulatory control of the 

respective genes, which allows them to adjust gene expression and consequently 

protein amount to their specific needs rather than to that of the symbionts. Also, 

insects encoding their own set of PCWDEs may be less susceptible to the abiotic and 

biotic stresses which can negatively influence the microbial gut community.  
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4.1.3 Impact on Society - Industrial Applications 
Several industries have found intriguing ways to involve PCWDEs (especially 

cellulases) that can be beneficial for society. To date they are being used in, for 

example, cotton processing, paper recycling, juice extraction and biofuel production, 

and as detergent enzymes and as animal feed additives (Wilson 2009). The following 

paragraph will focus on the potential application of GH45 and GH5_10 enzymes in 

several of those industries. 

As the world is becoming more and more aware of dwindling fossil fuel resources and 

the increasing greenhouse effect, the call for alternative fuels is becoming louder by 

the year. Since the energy crisis in the 1970s, research has focused on the use of  

(ligno)cellulosic biomass as a renewable feedstock that occurs as waste products 

from agriculture or forestry (Li et al. 2014; Obeng et al. 2017). The industrial sector 

quickly realized its potential use for second-generation biofuel production as long as 

the entrapped cellulose could be efficiently converted into glucose (Sims et al. 2010). 

Consequently, PCWDEs have gained major public attention because they are able to 

efficiently degrade plant biomass polysaccharides into sugar monomers and these in 

turn can be fermented by microbes into fuel-supplemented ethanol or (more rarely) 

butanol. Therefore, a highly effective set of PCWDEs is needed to degrade cellulosic 

plant biomass including exo- and endo-cellulases as well as hemicellulases (Gusakov 

2013; Li et al. 2014). The search by the biofuel industry for cellulolytic as well as 

hemicellulolytic enzymes may represent an opportunity for beetle-derived GH45 and 

GH5_10 enzymes to be used in this field. Our research has shown that these proteins 

efficiently degrade cellulosic as well as hemicellulosic plant cell wall compounds 

(Manuscripts I, II, III). However, currently cellulases are biosynthesized on a 

commercial scale almost exclusively from aerobic fungi such as Trichoderma reesei 

or Humicola insolens. Using microbes as bioreactors for cellulase biosynthesis offers 

the ability to bioengineer strains which express high yields of cellulases and provide 

specific activity towards crystalline cellulose (Obeng et al. 2017; Schulein 1998). In 

fact, the enzyme cocktail produced by T. reesei is dominated by exo-cellulases 

(Garvey et al. 2013). Thus, biomaterial with lower cellulose crystallinity may be 

degraded less efficiently without an adequate set of exogenously supplemented 
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endoglucanases. The T. reesei cellulolytic system may be compensated for by 

beetles-derived GH45 endoglucanases which can improve the degradation of various 

plant cell wall compositions. In a similar approach, externally provided -glucosidases 

are supplemented from yet another organism based on T. reesei´s few endogenous 

-glucosidases (Garvey et al. 2013; Obeng et al. 2017). 

Other molecular approaches of involving beetle GH45/GH5_10 enzymes in plant 

biomass processing may be investigated. For example, it has been shown that yeasts 

are able to express three recombinant cellulase proteins simultaneously (Matano et 

al. 2013; Parisutham et al. 2014). Therefore, expressing a beetle-derived endo-

cellulase together with an exo-cellulase and a -glucosidase would provide a 

complete set with which to promote cellulolytic synergism. Additionally, GH45s have 

the potential to be included in artificial cellulosomes. These so-called designer 

cellulosomes incorporate PCWDEs from different species and apply them 

synergistically (Stern et al. 2015; Vazana et al. 2012). So far all the above-mentioned 

strategies have focused only on cellulolytic enzymes. Because hemicelluloses are 

tightly interwoven with cellulose, hemicellulolytic enzymes need to be involved in 

order to effectively degrade plant biomass (Garvey et al. 2013). Therefore, 

approaches similar to those described for GH45 cellulases may be conducted with 

beetle-derived GH45 mannanases/xyloglucanases as well as with GH5_10 enzymes. 

Furthermore, major applications of exogenously added endo-cellulases and 

xylanases are to be found in wine and brewing industries; these increase wine quality 

and stability; improve coloring and filtration; and clarify must (Kuhad et al. 2011a). 

Likewise, in beer brewing, endoglucanases are used to improve yield and quality by 

decreasing wort viscosity and the degree of polymerization. In food industries, 

supplementing feed grains with cellulases and xylanases has been shown to improve 

the performance of cows (Dhiman et al. 2002). In addition, it has been shown that 

piglets and chicken that have ingested PCWDEs as food supplements have 

increased growth rates compared to the control treatment (Bhat 2000; Karmakar and 

Ray 2011; Saleh et al. 2005; Shrivastava et al. 2011). Beetle-derived cellulolytic and 

hemicellulolytic enzymes may also be applied in pulp and paper industries where, 
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among other features, they decrease fiber coarseness and pulp viscosity. During the 

refining and grinding of woody tissue, the use of cellulolytic enzymes has resulted in 

an energy saving of up to 40 % in contrast to purely mechanical pulping (Kuhad et al. 

2011a; Pere et al. 2001). Endoglucanases and xylanases have also been shown to 

increase the efficiency of the de-inking process of paper making, which lowers 

environmental pollution (Chander Kuhad et al. 2010). Several other industrial 

processes make use of cellulolytic and hemicellulolytic enzymes by using them e.g. 

during oil and carotenoid extraction to improve yields, to clean cotton textiles and to 

improve crops growth by increasing soil fertilization (Kuhad et al. 2011a).  

4.2 Conclusion 
The discovery of PCWDEs encoded by phytophagous beetles is an extraordinary 

example of how animals can feed on plants without much help from mutualistic 

symbionts. In this thesis, I have provided evidence that the GH45 family was most 

likely not an ancestral gene family but, rather, evolved independently at least three 

times in arthropods. My data show that beetle GH45s are closely related to fungal 

GH45s implying that a gene transfer has occurred, likely from a fungal donor to the 

last common ancestor of the Phytophaga clade of beetles. This finding was further 

supported by similar discoveries in nematodes and mollusks which likewise originated 

from a fungal donor (Kikuchi et al. 2004; Sakamoto and Toyohara 2009). Whether 

those fungi were symbionts in the LCA of Phytophaga beetles is unclear and may be 

addressed when more beetle and fungal species are investigated in the future. 

In accordance with my functional data, I hypothesize that these genes were (and are) 

essential for these beetles to feed on plants. The enzymatic diversification of GH45s 

and GH5_10s increased their synergism and allowed for additional components of the 

plant cell wall to be degraded. This synergism is further enhanced by the presence of 

GH28 pectinases in the beetle species investigated. Ultimately, all GH proteins 

encoded by the beetles allow for the plant cell wall to be degraded sufficiently in order 

to retrieve energy-rich sugar monomers as well as to gain access to the nutrient rich 

cell content. 
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Interestingly, and in contrast to the above-stated hypothesis, the silencing of 

individual GH45s and GH5_10s did not result in any significant change in phenotype 

(i.e. mortality and weight gain). This strongly suggests the presence of a robust 

system of PCWDEs in the beetle gut which may be connected to the synergy with 

other expressed digestive enzymes. Based on that hypothesis, I propose that the 

simultaneous knockdown of several PCWDEs with different substrate specificities 

would likely result in an alteration of the beetle performance. 

My results show that GH45s have expanded independently and species-wise after 

their initial acquisition in the LCA of the Phytophaga clade of beetles. The observed 

gene expansion was very likely the foundation of the rise of novel enzymatic functions 

in beetle-derived GH45 and GH5_10 proteins. In turn, gene expansion and the 

evolution of novel enzymatic functions have likely facilitated the adaptation to novel 

host plants and in a broader perspective may have influenced the radiation of 

Phytophaga beetles at an early stage of their evolution. 



Summary

165

5. Summary 
The first line of defense against biotic and abiotic stresses in plants consists of a 

diverse set of sugar-based compounds forming the plant cell wall. The major 

component of the plant cell wall is cellulose, a polysaccharide consisting of -1,4-

linked glucose moieties. Any organism being able to degrade cellulose would benefit 

from a huge source of energy as well as gaining access to nutrient-rich cell contents. 

Cellulose-degrading enzymes (cellulases) are well described in a wide range of 

microbes but were thought to be absent in animals. Recently, it became clear that 

some animals encode endogenous plant cell wall degrading enzymes (PCWDEs) 

belonging to several glycoside hydrolase families (GH), including putative cellulases 

of family 45 (GH45) and putative mannanases of family 5 subfamily 10 (GH5_10). In 

Arthropoda, GH45s and GH5_10s are most prominently encoded by insects including 

the Phytophaga clade of beetles (leaf beetles, longhorned beetles, bark beetles and 

weevils). Nonetheless, the distribution of both GH families in insects is erratic and it is 

assumed that they are not of ancestral origin but were acquired separately, likely 

through horizontal gene transfer (HGT) events from microbe to animal. Despite the 

intricate evolution of GH45s and GH5_10s and an emerging role of PCWDEs in 

biofuel industries both GH families in Phytophaga beetles remain largely unexplored. 

Therefore, the major aim of this thesis was to investigate beetle-derived members of 

GH5_10 and GH45 with focus on their enzymatic activity, physiological importance 

and evolutionary history. 

(i) The functional characterization of GH5_10 encoded by Gastrophysa viridula 

(encodes one gene copy) and Callosobruchus maculatus (encodes four gene 

copies) revealed that they have kept their ancestral function allowing them to 

degrade gluco- as well as galactomannan. Surprisingly, one GH5_10 copy of C. 

maculatus has lost its mannanolytic activity but has evolved the ability to 

degrade xylan instead. Moreover, the C. maculatus GH5_10 endo- -1,4-

mannanase was able to additionally degrade cellulose which has likely evolved 

due to the absence of any other gene family encoding a cellulolytic enzyme in 
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this beetle. Investigation of the physiological function of the GH5_10 mannanase 

from G. viridula using gene silencing through RNA interference (RNAi) resulted 

in a successful gene knockdown as well as a drastic reduction of the amount of 

the corresponding protein. However, changes in mortality or weight gain were 

not detected suggesting a robust system of PCWDEs in the beetle gut which 

may be connected to the synergy with other expressed digestive enzymes. 

Intron/exon structure analysis of beetle-derived GH5_10 genes suggests that 

the last common ancestor of these two beetles already possessed at least one 

GH5_10 gene. Moreover, the evolutionary history of GH5_10 proteins revealed 

that this gene family was limited to some Bacteria, Mollusca and Arthropoda 

other than beetles. Interestingly, insect-derived GH5_10s were not monophyletic 

but clustered within two distinct arthropod clades indicating that GH5_10 genes 

were acquired at least twice during insect evolution. Although the donor 

organism is still elusive, this data suggests that the GH5_10 family was acquired 

by insects through horizontal gene transfer. 

(ii) Gastrophysa viridula was used as a model to investigate the enzymatic 

characteristics of two GH45s as well as their biological function. Functional 

characterization experiments revealed that one GH45 possessed endo- -1,4-

glucanase activity which corresponded with activity patterns observed in 

microbes. Intriguingly, the second GH45 encoded by G. viridula has lost its 

cellulolytic function but has evolved to degrade xyloglucan. After successful 

gene silencing of both GH45s, no striking changes regarding mortality or weight 

gain were detected. Based on a zymography experiment, several other 

cellulolytic enzymes were detected in the beetle which most likely compensate 

for the silenced GH45 cellulase, thus causing the lack of phenotype. In contrast, 

the same experiment did not reveal any other xyloglucanase in the beetle gut 

suggesting a likewise robust system of PCWDEs as observed for GH5_10. 

These experiments have demonstrated that both GH45s in G. viridula are active 

PCWDEs. One of them is able to degrade amorphous cellulose where the other 

has evolved to degrade xyloglucan. Yet, and similar to GH5_10, their biological 

role for the survival of beetles remains elusive. 
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(iii) As GH45 were barely investigated in beetles and were functionally characterized 

almost exclusively in Cerambycidae, GH45 functional characterization was 

spread to four additional species of Chrysomelidae as well as one species of 

Curculionidae. In correlation with the results from G. viridula, at least one GH45 

endo- -1,4-xyloglucanase as well as two endo- -1,4-glucanases in each target 

beetle species was detected. Moreover, several GH45 endo- -1,4-glucanases 

also accepted glucomannan as substrate. Phylogenetic analysis of beetle-

derived GH45s revealed that the LCA of Phytophaga beetles possessed at least 

one GH45 cellulase. Furthermore, the substrate shift from cellulose to 

xyloglucan likely occurred through a substitution of an aspartate by a glutamate 

in catalytically important sites. However, the substitution happened at two 

different amino acid positions between Chrysomelidae and Curculionidae, 

suggesting that xyloglucanase activity evolved independently in both beetle 

families. Finally, analysis of the evolutionary history of animal-derived GH45s 

uncovered at least three distinct origins of GH45 within arthropods. The closest 

related clade to beetle GH45s contained fungal-derived sequences, suggesting 

a HGT event from fungi to beetle. In summary, within Arthropoda GH45s have 

evolved at least three times and were likely acquired by beetles through 

horizontal gene transfer from a fungal source. After several gene duplication 

events, some GH45s acquired novel enzymatic functions through amino acid 

substitutions in catalytically important amino acid residues.  

In conclusion, this thesis has greatly contributed to our understanding of PCWDEs 

encoded by Phytophaga beetles. In particular, our knowledge on GH45 and GH5_10 

members encoded by Chrysomelidae and Curculionidae has greatly increased, 

demonstrating that not a vertical but a horizontal gene transfer was likely responsible 

for GH45 (and possibly for GH5_10) inheritance in these beetles. The following 

species-specific, independent gene duplications allowed for functional diversification 

and likely adaptation to their food source. These results provide fundamental insights 

into the evolution of PCWDEs and the molecular mechanisms of acquiring novel 

enzymatic functions. Furthermore, based on a variety of industrial applications of 

PCWDEs, beetle-derived GH45 and GH5_10 enzymes may contribute greatly to 
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Society by being introduced into several industrial applications (e.g. biofuel 

production) and ultimately reducing a progressing greenhouse effect. 
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6. Zusammenfassung 
Die erste Abwehr von Pflanzen gegen biotische und abiotische Stressfaktoren bildet 

die pflanzliche Zellwand, einem Polymer zusammengesetzt aus diversen 

Zuckerderivaten. Der Hauptbestandteil der Pflanzenzellwand besteht aus Zellulose - 

einem Polysaccharid aufgebaut aus -1,4-verbundenen Glucoseeinheiten. Ein 

Organismus, der die Fähigkeit besitzt Zellulose abzubauen, würde sich damit nicht 

nur eine große Energiequelle erschließen, sondern sich auch Zugang zu einem 

nähstoffreichen Zellinhalt verschaffen. Zelluloseverdauende Enzyme (Zellulasen) 

waren lange Zeit dafür bekannt Bestandteil einiger Mikroorganismen zu sein, galten 

aber gleichzeitig als nicht von Tieren selbst zu kodierend. In den vergangenen zwei 

Jahrzehnten wurde jedoch bekannt, dass Pflanzenzellwand-verdauende Enzyme 

(PZVE) auch von einigen Tierarten endogen kodiert werden. Zu diesen PZVE 

gehören u.a. Vertreter der Glycosidhydrolasefamilie (GH) und schließen auch 

putative Zellulasen der Familie 45 (GH45) und potentielle Mannanasen der Familie 5 

Unterfamilie 10 (GH5_10) mit ein. In Arthropoden sind GH45 und GH5_10 

hauptsächlich innerhalb der Insekten vertreten, zu denen auch Käfer der Klade 

Phytophaga (Blatt-, Bock-, Borken- und Rüsselkäfer) zählen. Dennoch ist die 

Verteilung beider Genfamilien in Insekten unregelmäßig und es wird angenommen, 

dass ihre Herkunft nicht auf einen anzestralen Ursprung zurückzuführen ist. 

Wahrscheinlicher ist es, dass sie separat erworben wurden - womöglich durch einen 

horizontalen Gentransfer (HGT) zwischen Mikroorganismus und Tier. Trotz der 

komplexen Evolution von GH45 und GH5_10 und der aufstrebenden Rolle von PZVE 

in der Biokraftstoffindustrie, sind beide Genfamilien in Phytophaga Käfern nur wenig 

untersucht. Das Hauptziel dieser These ist es daher PZVE der GH45 und GH5_10 

aus Phytophagen Käfern -- mit Fokus auf enzymatischer Aktivität, physiologischer 

Bedeutung und Evolutionsgeschichte -- näher zu untersuchen.  

(i) Eine funktionelle Charakterisierung der GH5_10 in Gastrophysa viridula 

(kodiert für eine Genkopie) und Callosobruchus maculatus (kodiert für vier 

Genkopien) zeigt, dass die ursprüngliche enzymatische Aktivität gegen Gluco- 

und Galactomannan erhalten blieb. Überraschenderweise hat eine der 
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GH5_10 aus C. maculatus seine mannanolytische Funktion verloren, erwarb 

aber stattdessen die Fähigkeit Xylan abzubauen. Weiterhin besitzt die GH5_10 

Endo- -1,4-mannanase aus C. maculatus die Fähigkeit zusätzlich Zellulose 

abzubauen, was möglicherweise eine Anpassung an das Fehlen von 

Zellulase-kodierenden Genfamilien in diesem Käfer darstellt. Eine 

Untersuchung der physiologischen Funktion der GH5_10 Endo- -1,4-

mannanase in G. viridula - mittels „Gen-Silencing“ durch RNA Interferenz 

(RNAi) - resultierte in einer signifikanten Herunterregulierung des Gens sowie 

in einer drastischen Reduzierung der korrespondierenden enzymatischen 

Aktivität. Es ist jedoch weder eine phänotypische Änderung in der 

Sterblichkeitsrate noch in der Gewichtzunahme zu beobachten, was wiederum 

eine komplexe Regulierung der GH5_10 und wahrscheinliche Kompensation 

durch andere PZVE (oder anderen Klassen von Verdauungsenzymen) nahe 

legt. Die Intron/Exon-Struktur von GH5_10 Genen in G.viridula und C. 

maculatus suggeriert, dass der letzte gemeinsame Vorfahr beider Arten bereits 

mindestens ein GH5_10 Gen besessen haben muss. Außerdem zeigt sich, 

dass evolutionsgeschichtlich nur Bacteria, Mollusca und Arthropoda GH5_10 

in ihrem Genom kodieren. Interessanterweise fallen die GH5_10 der Insekten 

nicht in eine monophyletische Klade, sondern bilden zusammen mit GH5_10 

anderer Arthropoden zwei eigenständige Gruppen. Dieses Ergebnis impliziert, 

dass GH5_10 Gene mindestens zweimal im Verlauf der Insektenevolution 

erworben wurden. Obwohl bisher kein Spenderorganismus identifiziert werden 

konnte, deuten die erhobenen Daten darauf hin, dass GH5_10 Gene in 

Insekten durch einen HGT erworben wurden. 

(ii) Gastrophysa viridula wurde in dieser Arbeit als Modelorganismus verwendet 

um die enzymatischen Charakteristika sowie biologischen Funktionen von zwei 

GH45 zu ermitteln. Enzymatische Untersuchungen ermöglichen die 

Identifizierung einer GH45 Endo- -1,4-glucanase, was mit dem 

Aktivitätsmuster von GH45 Enzymen aus Mikroben übereinstimmt. 

Interessanterweise hat die zweite GH45 ihre Aktivität gegenüber Zellulose 

verloren, hat im Verlauf der Evolution allerdings die Fähigkeit erworben 
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Xyloglucan abzubauen. Nach erfolgreicher Herunterregulierung beider GH45 

Gene konnten allerdings keine Veränderungen bezüglich der Sterblichkeitsrate 

oder der Gewichtsänderung beobachtet werden. Basierend auf den 

Ergebnissen eines Zymographieexperiments wurden zusätzliche Enzyme mit 

zellulolytischer Aktivität in G. viridula festgestellt, welche höchstwahrscheinlich 

die herunterregulierte GH45 Zellulase enzymatisch ersetzen und einer 

Änderung des Phänotyps entgegenwirken. Im selben Experiment konnten 

keine zusätzlichen Xyloglucanasen in G. viridula identifiziert werden. Somit 

deuten die Ergebnisse auf eine ähnlich komplexe Regulation und 

Kompensation hin wie bereits für GH5_10 beobachtet. Diese Experimente 

zeigen deutlich, dass beide GH45 Gene aktive PZVE sind. Eines ist in der 

Lage amorphe Zellulose abzubauen, wohingegen das andere die Fähigkeit 

besitzt Xyloglucan abzubauen. Doch ähnlich wie schon für GH5_10 gezeigt, 

bleibt ihre biologische Rolle in Bezug auf die biologische Fitness der Käfer 

unklar. 

(iii) Da GH45s nur selten in Käfern untersucht wurden und ihre funktionelle 

Charakterisierung sich fast ausschließlich auf Cerambycidae Käfer fokussiert, 

wurde die Untersuchung von GH45 auf vier zusätzliche Chrysomelidae sowie 

ein Curculionidae Käfer ausgeweitet. In Übereinstimmung mit den Ergebnissen 

aus G. viridula wurde in jeder Spezies mindestens eine GH45 Endo- -1,4-

Xyloglucanase und mindestens zwei GH45 Endo- -1,4-Glucanases entdeckt. 

Darüber hinaus erkannten einige GH45 Endo- -1,4-glucanases auch 

Glucomannan als Substrat. Eine phylogenetische Analyse der GH45 

phytophager Käfer offenbarte, dass ihr letzter gemeinsame Vorfahr bereits 

mindestens eine GH45 Zellulase besaß. Zudem konnte gezeigt werden, dass 

der Substratwechsel von Zellulose zu Xyloglucan höchstwahrscheinlich durch 

eine Substitution von Aspartat zu Glutamat in katalytisch wichtigen 

Aminosäureresten hervorgerufen wurde. Allerdings erfolgte diese Substitution 

an zwei verschiedenen Aminosäurepositionen in Chrysomelidae und 

Curculionidae, was wiederum impliziert, dass die Xyloglucanaseaktivität 

unabhängig voneinander in beiden Käferfamilien entstand. Abschließend 
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wurde die Evolutionsgeschichte von GH45 in Tieren genauer untersucht. Es 

stellte sich hierbei heraus, dass GH45 in Arthropoden im Laufe der Evolution 

mindestens dreimal unabhängige voneinander erworben wurden. Die am 

nächsten zu den Käfer GH45 verwandte Klade beinhaltete Pilzsequenzen und 

suggeriert einen HGT der GH45 von Pilz zu Käfer. Zusammenfassend konnte 

gezeigt werden, dass GH45 Mitglieder innerhalb der Arthropoden mindestens 

dreimal unabhängig voneinander evolvierten und von Käfern vermutlich durch 

einen HGT -- mit Pilzen als Donororganismus -- erworben wurden. Nach 

diversen Genduplikationsereignissen und Substitutionen an katalytisch 

wichtigen Aminosäureresten, konnten einige GH45 Mitglieder neue Funktionen 

erwerben. 

Diese Doktorarbeit hat wesentlich zum Verständnis der Funktion von Phytophaga 

Käfern  kodierenden  PZVE  beigetragen. Dabei konnte unser Wissen über Käfer  

GH45 und GH5_10 maßgeblich vertieft werden. Die vorliegenden Ergebnisse zeigen, 

dass nicht ein vertikaler sondern ein horizontaler Gentransfer die mögliche Ursache 

der ursprünglichen Vererbung von GH45 (und wahrscheinlich GH5_10) in Käfern war. 

Die anschließenden spezies-spezifischen, unabhängigen Genduplikationen erlaubten 

eine funktionelle Diversifizierung und mögliche Adaption an die Nahrungsquelle der 

Käfer. Diese Untersuchungen geben einen fundamentalen Einblick in die Evolution 

von PZVE und der molekularen Mechanismen notwendig für den Erwerb neuer 

enzymatische Funktionen. Die Fähigkeit von GH45 und GH5_10 

Pflanzenzellwandmaterial abzubauen, macht sie zu interessanten Kandidaten für die 

Anwendung in diversen Industriezweigen wie z.B. in Wein- und Bierbrauereien oder 

Textil- und Nahrungsmittelindustrie. Insbesondere können GH45 Zellulasen 

Anwendung in der Biokraftstoffproduktion finden und damit einem fortschreitenden 

Treibhauseffekt entgegenwirken. 
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