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Abstract 
The efficient tracking of articulated bodies over time is an essential element of 

pattern recognition and dynamic scenes analysis. This paper proposes a novel method 
for robust visual tracking, based on the combination of image-based prediction and 
weighted correlation. Starting from an initial guess, neural computation is applied to 
predict the position of the target in each video frame. Normalized cross-correlation is 
then applied to refine the predicted target position. 

Image-based prediction relies on a novel architecture, derived from the Elman's 
Recurrent Neural Networks and adopting nearest neighborhood connections between 
the input and context layers in order to store the temporal information content of the 
video. The proposed architecture, named 2D Recurrent Neural Network, ensures both a 
limited complexity and a very fast learning stage. At the same time, it guarantees fast 
execution times and excellent accuracy for the considered tracking task. The 
effectiveness of the proposed approach is demonstrated on a very challenging set of 
dynamic image sequences, extracted from the final of triple jump at the London 2012 
Summer Olympics. The system shows remarkable performance in all considered cases, 
characterized by changing background and a large variety of articulated motions. 
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1  Introduction 

Motion has been one of the main cues studied in Computer Vision and Pattern 
Recognition. As stated by David Marr [1]: “ Motion pervades the visual world, a 
circumstance that has not failed to influence substantially the process of evolution. The 
study of visual motion is the study of how information about only the organization of 
movement in an image can be used to make inferences about the structure and the 
movement of the outside world”. 

In many cases motion enables three-dimensional perception (consider for example 
the counter-rotating cylinders effect described by Ullman [2]) and, in its simplest form, 
explains the unrivaled ability of humans to perform scene segmentation and object 
tracking [3].  

Object tracking can be defined as the estimation of the trajectory of an object in the 
image plane as it moves around a scene. Errors in tracking are often due to abrupt 
changes in object motion, changes in the objects appearance, non-rigidity of the object, 
occlusions and non-linear camera motion [4]. The robustness of the representation of 
target appearance, against these and other unpredictable events, is crucial to 
successfully track objects over time. Interestingly, assumptions are often made to 
constrain the tracking problem within the context of a particular application. 

Recent tracking algorithms are classified into two major categories, based on the 
learning strategy adopted: generative and discriminative methods. Generative methods 



 

describe the target appearance by a statistical model estimated from the previous 
frames. To maintain the integrity of the target appearance model, various approaches 
have been proposed, including sparse representation [5:9], on-line density estimation 
[10]. On the other hand, discriminative methods [11:13] directly implement classifiers 
to discriminate the target from the surrounding background. Several learning 
algorithms have been adopted, including on-line boosting [13], multiple instance 
learning [11], structured support vector machines [12] and random forests [14:15]. 
These approaches are often limited by the adoption of hand-crafted features for target 
representation, such as iconic templates, Haar-like features, histograms and others, 
which may not generalize well to handle the challenges arising in video sequences from 
everyday life scenes. 

In this paper, an original method is proposed for robust visual tracking, based on a 
combination of image prediction and weighted correlation matching techniques. Image 
prediction is based on a novel recurrent neural network which can be easily generalized 
to track any visual pattern in dynamic scenes. The proposed approach is derived from 
both Recurrent Neural Networks (RNNs) and Convolutional Neural Networks (CNNs). 

A Recurrent Neural Network (RNN) is an artificial neural network with feedback 
connections between nodes, with the capability to model dynamic systems [16]. 
Elman’s neural network, also known as Simple Recurrent Network  (SRN), is a 
partially recurrent neural network first proposed by Elman[17]. Because of the context 
neurons and local recurrent connections between the context layer and the hidden layer, 
the Elman’s neural network has several dynamic advantages over a static neural 
network. Training and convergence of SRNs usually take a long time, which makes 
them useless in time critical applications [10] and/or when dealing with high resolution 
images. Therefore, to efficiently process high resolution images, a compromise 
between the representation power and the dimension of the network must be sought. 

A CNN is a feed-forward artificial neural network where individual neurons are 
arranged to respond to overlapping regions in the visual field. A CNN consists of 
multiple layers of small neuron collections taking as input small overlapping areas of 
the image. The outputs of each layer are tiled and overlapping to better represent the 
original image. This feature ensures a reasonable invariance to planar translation on the 
image plane [18]. Due to their representation power, Convolutional Neural Networks 
have recently attracted a considerable attention in the Computer Vision community [7], 
particularly for image- and video-based recognition. However, only few attempts can 
be found in the literature to employ CNNs for visual tracking. One reason is that 
off-line classifiers require a model of the objects class. On the other hand, performing 
on-line learning based on CNNs is not straightforward, due to the large network size 
and the lack of sufficiently large training sets. According to Hong at al [7], the 
extraction of features from the deep structure may not be appropriate for visual tracking 
because top layers encode semantic information and may provide a relatively poor 
localization accuracy. 

In this paper a variation of Elman’s architecture, the Two-dimensional Recurrent 
Neural Network (2D-RNN) is proposed. This neural architecture is derived from a 
CNN where the input layer captures small areas of the input image. This mapping of 
the image pixels allows to reduce both the training time and the network dimension, yet 
keeping the temporal information embedded in the video and the image details 
unaltered. 

The paper is organized as follows: in section 2, the tracking problem is analytically 
stated, the solution based on the novel 2D-RNN architecture is described and compared 
with the Elman’s SRN. A case study for video tracking (triple-jumping runner and 



 

related dataset) is first introduced in section 3; then experimental steps and 
experimental protocols are defined. Section 4 is devoted to the comparison and 
discussion of the experimental results. Conclusions and future developments are finally 
discussed in section 5. 

2  Object tracking in real-time video 

In this paragraph we first define the tracking problem for scenes including non-rigid 
and articulated bodies; thence the two types of neural networks used in the 
experimental section , the original Elman RNN and the proposed 2D-RNN are detailed.  

2.1   Tracking  

In a tracking scenario, an object can be defined as “anything that is of interest for 
further analysis”[6]. Objects can be represented by their varying shapes and 
appearances; the position of a single object can be traced through a single point as the 
centroid or by a set of points related to a  small region in the image; for  example 
primitive geometric shapes (suitable for rigid object but also used for tracking of non 
rigid objects), object silhouette and contour, articulated shape models or skeletal 
models.  In the proposed approach a primitive rectangular shape (bounding box or 
BB) is used. The BB has a fixed dimension for all frames of the database. Note that for 
the purposes of this paper,  the initialization of the tracking process, for example by 
moving objects detection or direct object recognition, it is not explicitly considered;  
as a consequence the object of interest must be defined at the time step 0 by manually 
placing a starting BB in the first frame. 

Afterward, the tracking algorithm iteratively determines the object position.  At 
each time step t, it can be assumed that the object position has been detected in the 
previous t−i time steps, through the centroid of the bounding box. The past i images 
inside the BB are fed as input to a RNN, which produces as output the prediction of the 
image in the bounding box for the current time step.  An important outcome of such a 
prediction is that the expected position of the bounding box for the current time step 
can be evaluated and refined through the correlation between the predicted sub-image 
(RNN next frame prediction) and the current image. At the same time also the predicted 
content of the BB can be evaluated (both the dynamic background and the object of 
interest) by considering the residual error corresponding to the maximum of the 
correlation.  

  
Fig. 1. The Recurrent Neural Network predicts the bounding box of the object at the next frame 
starting from the bounding box at the previous frame. The location refinement is performed by 
the correlation between the predicted bounding box and the entire image 



 

Figure 1 depicts in detail the tracking scheme based on the RNN next frame 
prediction. The correlation matrix is computed by convolution in the Fourier domain; 
the position of the maximum of the correlation matrix corresponds to the best 
prediction of the BB position for the current time step.  Note that, in general, the 
correlation matrix can have more than one local maximum, and it can happen that the 
target BB position is close to a local maximum that is not the absolute maximum.  

This problem is particularly important when the moving object is subject to abrupt 
deformations, partial occlusions, etc. In order to deal with this problem, in our 
approach the correlation matrix is weighted with a Gaussian function centered on the 
extrapolated position of the moving object, based on the two most recent observations,  
i.e. the positions at time t−1 and t−2.  

More precisely, the coordinates ��
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2.2  The Elman neural network 

The Elman’s Simple Recurrent Network (SRN) consists of an input layer, a hidden 
layer, a context layer, and an output layer. The outputs of the context neurons and the 
external input neurons are fed to the hidden neurons. Context neurons are known as 
memory units as they store the previous output of hidden neurons. At the time step t, 
the context layer nodes carry the output of hidden layer nodes of the time step t−1 
iteration and supply that as input during processing of the time step t data.  The SRN 
architecture is presented in figure Fig. 2.  

   
Fig. 2. Architecture of the SRN. The layers are fully connected with a feedback connection 
between the hidden and the context layers. The context layer provides both actual and delayed 
inputs to the hidden layer. 



 

Considering I, S, C and O as input, hidden, context and output layer vectors, 
respectively, the vector components at the tth iteration can be written as [19]:  

i�
� ∈ I, p = 1,2, . . , n        (5) 

s�
� ∈ S, q = 1,2, . . , m       (6) 

o!
� ∈ O, r = 1,2, . . , l       (7) 

c�
� = C         (8) 

s�
� = f(b�

� )        (9) 
c�

� = s�
�
�        (10) 

 
In the above equations, n, m and l represent the numbers of nodes of input, hidden, 

and output layer, respectively,  f(⋅) indicates the activation function of the qth hidden 
node at the tth iteration, while c�

�  denotes the input of the qth context layer node at the tth 
iteration and b�

�  is the linear output of the hidden node q at tth iteration.  
Let W1, W2 and W3 be the weight matrices between input and hidden layer, hidden 

and context layer and hidden and output layer , respectively. The output of hidden layer 
and output layer nodes at the tth iteration with these weight matrices can be represented 
by the following equations :  
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  are the elements of the weight  matrices W1 , W2, and 

W3,  respectively.   
 

The training of the network can be accomplished by exploiting the error back 
propagation algorithm [20]. In this algorithm, the error is minimized to converge to the 
target value by updating the link weights at each iteration using equation (13).  
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where α is the learning rate. 
 

The error E expresses the difference between the set target at the output nodes and 
the actual output obtained as expressed in equation (14):  
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where Ot,r and ot,r represents the set target and the actual output from the network at 
the tth iteration, respectively,  and e is the number of epochs. 

2.3   Two-dimensional Recursive Neural Networks  

In the proposed 2D-RNN, hidden, context and output layers are organized in 
two-dimensional arrays all having the same dimensions as the input image.  Unlike the 
Elman’s network, the layers of the proposed network are not fully connected to each 
other. In particular , denoting by (x,y) the index of row and column of the matrix of the 
hidden layer, respectively, 2D-RNN  uses for each element (x',y') of the input matrix  



 

also its nearest elements in the connection with the correspondent element of the 
hidden layer (x,y). Such type of association is replicated in the connection of the 
context layer with the hidden layer and in the connection between the hidden layer and 
the output layer, as shown in figure 3.  

 

 

    
Fig. 3. Architecture of the 2D-RNN. Mapping of the image pixels from the input and context 
layers. Each node in the hidden layer receives input from both the actual and delayed image. 
Spatial information is preserved through the layers 

 

Note that neuron (x,y) of the hidden layer is connected to all neurons (x',y') of the input 
layer and to all neurons (x'',y'') of the context layer with:  

 
x - k ≤ x’ ≤ x + k , y – k ≤ y’ ≤  y + k      (15) 
 
 
x - k ≤ x” ≤ x + k , y – k ≤ y” ≤  y + k      (16) 
 
 

In other words, the neuron at position (x,y) of the hidden layer is connected to the 
corresponding neuron of the input layer and to its nearest neighbors, and to the 
corresponding neuron of the context layer and to its nearest neighbors. Analogously, 
each neuron of the output layer is connected to the corresponding neuron of the hidden 
layer and to its nearest neighbors.  
 

The training of the network can be accomplished again by  the standard error back 
propagation algorithm.  Note that the k parameter (dimension of the neighborhood) is 
also optimized and the equations (11) and (12) are modified as follows: 
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3  Experimental results 

3.1  Basic assumptions 

The proposed  tracking algorithm  has been validated  on a limited but 
challenging set of sequences, extracted from the final of  triple jump at the London 
2012 Summer Olympics. In this case study, the  computation of the runner’s trajectory 
is subject to several critical issues such as moving background, noise,  articulated 
motion, scene illumination changes and dynamic background, as illustrated in figure 4.  

           

     
Fig. 4. Frames extracted from the triple jump sequence. Several visual artifacts can be noticed, 
such as moving background, change in the object (the runner) shape, changes in lighting and 
occlusions. 

Several object-tracking methods impose constraints on the motion and/or the 
object’s appearance of objects. Most tracking algorithms assume that the object motion 
is smooth and without abrupt changes. Some approaches constrain the object motion to 
be of constant velocity or constant acceleration based on a priori information. As stated 
in the previous section, prior knowledge about the number and the size of objects, or 
the object appearance and shape, have also been used to simplify the problem. The 
proposed method does not make  assumptions. Furthermore, it does not use any 
pre-processing of the image to remove external objects (i.e. TV-written), it does not 
apply any pre-processing such as band-pass filtering or segmentation. The developed 
object tracker shows a bounding box  that contains the athlete in all different frames of 
a video, as in figure 5. The gold standard for each frame is provided through manual 
labeling of the region of interest and more specifically by defining the position of the 
pelvic bones of the athlete.  

The main processing steps for the experimental phase are the following:  
extraction of the single JPG frames for each sequence of the MP4 video; resizing of all 
frames from 1280×720 pixels to 128×72 pixels; conversion of the frames  to  gray 
levels; RNNs training and testing by applying a  BB of 50×50 pixels to the resized 
images.  

3.2  Dataset 

The experimental dataset is composed of 10 sequences, downloaded  from the 
youTube platform. Each sequence relates to a different athlete in the final of the triple 
jump at the Olympics London  2012. 



 

 The sequences are characterized by a  frame rate of 29 images/s; the dimension of 
each original frame is 1280×720 pixels. Each sequence  has a duration of about 45s; 
only  one frame every ten is considered for further processing, therefore for each 
sequence the number of frames processed varies between 97 and 127. 

3.3  Configuration 

A comparison between the original SRN with respect to the novel 2D-RNN is 
performed. Input data are the same for both networks. 

The SRN can identify the single-order dynamic system using fixed coefficients  in 
the context neurons, using weight = 1 in the delay connections with the context layer; 
SRN best architecture needs 2500 input, 250 hidden, 250 context and 2500 output 
neurons. Note that the input and output layers are related to the frame input matrix (the 
50x50 pixels bounding box) while the number of neurons of the context and hidden 
layers have been optimized trying several configurations. 

2D-RNN is not fully connected as the SRN; it requires 2500 input, hidden, context 
and output neurons (the numbers of neurons for all layers is fixed with respect to the 
frame input matrix). Best results are obtained for a number of nearest neighbors k=3, 
using weight=1 in the delay connections with the context layer. For both RNNs and for 
all neurons a logistic standard transfer functions has been adopted.  

4  Results and Discussion 

4.1  Performances of RNNs 

In order to check  the independence from the sampling of the dataset, a k-folder 
cross validation (5x2) has been used in the experiments. One round of cross-validation 
involves partitioning a sample of data in two complementary subsets, performing the 
analysis on one subset (train set of 5 videos), and validating the analysis on the other 
subset (test set of 5 videos); after that the simulation is repeated exchanging train and 
test sets. To reduce variability, 5 rounds of cross-validation are performed using 
random different partitions, and the validation results are averaged over the 10 (5X2) 
rounds. 

In table 1 the comparison of the best configuration for both RNNs on the same random 
train test and blind test set is presented; learning times refer to a simple desktop 
architecture based on a Intel CoreTM 2 DUO CPU E 8400 @3.00 GHz and 4 GB 
RAM. 

 Parameters SRN 2D-RNN 
 Input 2500 2500 

 Output 2500 2500 
 Hidden 250 2500 
 Context 250 2500 

 Learning rate 0.005 0.05 
 Epocs 280 130 

 Connections 1312500 367500 
 Learning time (s) 9230 1092 

 Best rmse 0.114 0.104 

Table 1:  Performance comparison of the of SRN and the 2D-RNN for the same blind test set 



 

Table 1 clearly shows that the learning phase of 2D-RNN is faster than SRN, and 
2D-RNN produces the best results. Obviously the best learning rate for both RNNs are 
reported,in particular, the root-mean-square deviation (rmse) is repeatedly computed 
on the test set after a random selection of the training set followed by the learning 
phase. The results for the 2D-RNN, in 5x2 cross validation,  is a mean  rmse = 0.105 
± 0.003 . In summary, Table 1  shows that  2D-RNN, compared to SRN on the same 
dataset, provides a better rmse; the results are stable for the 5x2 cross-validation and 
2D-RNN is faster than SRN in terms of learning time and epochs. The complexity of 
the 2D-RNN is minor than SRN in terms of connections.  

4.2  Results for tracking 
Visual tracking results can be described through the distances between the center of  
manual annotation (the pelvic bones) of the athlete and the center of bounding box in 
the 2D-RNN next frame prediction, illustrated in previous figure 5. Using only one 
frame every ten and starting from the original frame rate information, the RNN 
previsions correspond to one image every 0.344 s . In figure 5 corresponding samples 
for the SRN (left) with actual frames and next frame prediction are shown, together 
with the  correlation diagram.  The same results are shown for the 2D-RNN in figure 
5 (right). In the surface plot, the peak of the cross-correlation matrix occurs where the 
sub images are best correlated.  

        
Fig. 5. Actual frame, predicted next frame and the correlation diagram computed by the SRN on 
the left and by the 2D-RNN on the right. The blue bounding box represents the computed gold 
standard while the green box represents the position computed by the RNNs. 

It should be noted that all the next frames prediction in all figures are blurred 
because the RNN produces a distribution of positions related to the probability density. 
This distribution reflects the variability of the  images used to train the RNN. 
Naturally, the athletes move their limbs during the run in different ways. The fact that 
the body image is blurred is the consequence of the inability to produce an accurate 
prediction. On the other hand, images with clear prediction of the part of the body with 
respect to blurred images, would give rise to lower correlations on the average, and 
consequently more average errors due to the variability and not exact predictability of 
the next image. This is a compromise tolerable because in the tracking problem it is 
only necessary to have an accurate prediction of the center of the BB to follow the 
object of interest. 

Furthermore figure 6 show a qualitative comparison between the real next frame 
and calculated next frame prevision of the SRN and 2D-RNN. 



 

  
Fig. 6. Actual frame (top), next frame and predicted next frame (bottom) from the SRN on the 
left and 2D-RNN on the right.  

In fig. 7 the diagrams of the Euclidean distances between the gold standard and the 
center of the RNNs prevision are shown, normalized with respect to the dimension of 
the BB.  

  
Fig. 7. Euclidean distances between the center of the computed bounding box and the gold 
standard for each frame, normalized with respect to the side of bounding box. The large deviation 
shown at about 85 frames is due to the runner landing on the sand. 

The literature is divided in two types of measures for precision and recall: one is 
based on the localization of objects as a whole such as the F-score or other index [36] 
and one based on the position at pixel level. In the proposed approach object tracking is 
performed at pixel level. There are no lost frames in the proposed approach, therefore 
evaluation metrics based on accuracy is not used; however, with the aim to show the 
performances on the correct location of the BB, a position based measure (PBM) can be 
used. PBM is defined as [21]: 
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depends on the dimensions (width and height) of the bounding box.  
 



 

In equation 19, ST is the total number of frames considered whilst D(i) is the L1-norm 
distance between the gold standard and the BB predicted by RNN. Using such index in 
our dataset the resulting mean of BMP (proposed system, first 85 frames) is expressed 
in the table 2. In particular it is possible to note a better performance of the 2D-RNN 
with respect to the SNR. 

 

 RNN BMP (first 85 frames) 
 SNR 0.95±0.040 

 2D-RNN 0.97±0.002 

Table 2: Comparison of the two RNNs tracking system in terms of BPM 

Considering the entire test set, the distribution of the BB position errors between the 
predicted coordinates and the gold standard, in pixels, with respect to the original 
image, is shown in figure 8.   

 

 
Fig.8. Scatter plots representing the distribution of the bounding box errors, between the 
computed box coordinates and the gold standard for each sequential frame. The red dots 
represent the target positions computed before the runner landing on the sand, while the blue dots 
represent the target positions computed after the runner landing on the sand.  

 

  
Figure 9: Scatter plot representing the distribution of the bounding box errors, between the 
coordinates of the computed box and the gold standard for the first 85 frames. The colors 
represent the method applied to compute the target position 



 

Note that the interesting part of the sequences is composed by the first 85 frames; in 
fact, after frame 85 we typically register a degradation of the image due to the sand 
effect after landing. In figure 9 a comparative scatter plot represents the distribution of 
the BB position error on the original images, for both RNNs considering only the first 
85 frames. 
In particular from figure 9 it turns out that the most part of errors for both RNNs are 
within ±30 pixels with respect to the original image of 1280X720 pixels, where the 
dimension of the BB is 500x500 pixels; in table 3 are represented the position errors in 
pixels for both RNNs and the details of the coordinates of the position  mean square 
error (Position MSE).  

 

 RNN Position error Position error Position MSE 
 dX (pixels) dY (pixels) (pixels) 

 SNR 13 19 23 
 2D-RNN 11 14 19 

Table 3: Comparison of the two RNNs position error in pixels for the first 85 frames. 

An exhaustive comparison of the proposed approach with respect to other existing 
datasets obtained with very different aim and techniques is not simple. In particular we 
could not find any public database of sport scenes with measured gold standard 
coordinates. However, the results of table 2 can be directly compared to the BMP 
results reported in the paper [11] where the MILTrack algorithm, that uses a novel 
Online Multiple Instance Learning algorithm, is presented. In their work the authors 
provide a diagram with several algorithm tested on eight database for images 320x240 
pixels. Normalizing the results to the scale of the adopted BB, it is possible to conclude 
that our algorithm, without lost frames, obtains similar performances of the best 
proposed MILTrack algorithm.  
An alternative measure quite convenient for comparison is deviation. Deviation 
represents the capability of a tracker to determine the correct position of the target and 
measures the accuracy of tracking [12]. In particular, by using Deviation as the error of 
the center location expressed in pixels as a tracking accuracy measure:  
 

UVW2XY27Z = 1 −
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|`a|
      (21) 

 
where  b(QM , cQM) is the normalized distance between the centroids of bounding box 
(BB) and the gold standard and Ms denotes the set of frames in a video where the 
tracked BB matches with the gold standard BB. 
 

In the proposed approach, again normalizing with respect to the side of the BB and 
using the first 85 frames, for 10 sequences, a Deviation equal to about 0.98 for both 
RNNs is obtained. Taking into account all frames of the 10 sequences in the dataset the 
Deviation value slightly decreases to about 0.96 for both RNNs. 

 
This result can be compared with the values reported in [21] and related to the 

articles [11:12], [22]–[37], where the target is considered tracked correctly each time 
the overlap between the current forecast and the real position of the object area overlap 
for more than 50%. As shown in Table 4, the proposed approach achieves the same or 
even better accuracy than the algorithms at the state of the art. 



 

 RNN Deviation 
 Elman’s neural network (SRN) 0.96 

 2D Recurrent Neural Network (2D-RNN) 0.96 
 Normalized Cross-Correlation (NCC) [22] 0.95 

 Lucas-Kanade Tracker (KLT) [23] 0.95 
 Kalman Appearance Tracker (KAT) [24] 0.95 

 Fragments-based Robust Tracking (FRT) [25] 0.94 
 Mean Shift Tracking (MST) [26] 0.93 

 Locally Orderless Tracking (LOT) [27] 0.94 
 Incremental Visual Tracking (IVT) [28] 0.95 

 Tracking on the Affine Group (TAG) [29] 0.95 
 Tracking by Sampling Trackers (TST) [30] 0.94 

 Tracking by Monte Carlo sampling (TMC) [31] 0.96 
 Adaptive Coupled-layer Tracking (ACT) [32] 0.94 

 L1-minimization Tracker (L1T) [33] 0.95 
 L1 Tracker with Occlusion detection (L1O) [33] 0.95 

 Foreground-Background Tracker (FBT) [34] 0.95 
 Hough-Based Tracking (HBT) [35] 0.93 

 Super Pixel tracking (SPT) [36] 0.93 
 Multiple Instance learning Tracking (MIT) [11] 0.94 
 Tracking, Learning and Detection (TLD) [37] 0.93 

 STRuck: Structured output tracking with kernels (STR) [12] 0.94 

Table 4. Comparison of different approaches for target tracking applied to the jumping sequence. 

5  Conclusion 

A novel tracking algorithm has been presented, where two complementary RNN 
topologies are used  without any pre-processing of the images. The temporal memory 
of the recursive neural networks is used to keep the correlation among processed pixels 
and to perform the next frame prediction at the temporal distances of ten frames, with 
respect to the frame of interest. 

The novel RNN algorithm  proposed performs well for generic, iconic based, 
image tracking. This is mainly due to the two dimensional approach where for each 
pixel of the input image  also the information of its k nearest pixels are considered. 
Such kind of connection of the layers (input-hidden and hidden-output) is preferred 
with respect to the full connection, with great advantages in terms of rmse, learning 
times and BMP of the tracking. 

A qualitative comparison with different approaches on different datasets is also 
performed, obtaining good results on measures such as deviation, that reveals an 
excellent performance compared to the literature. 

The extension of this approach will be applied in the future to large benchmark 
datasets with different types of object of interest, and replacing the manual selection of 
the BB in the first frame with an automatic procedure designed to recognize objects 
belonging to predefined classes. 

The results are originally measured on a triple jump dataset and could be very 
helpful for analysis of athlete errors in the jump in computer aided coaching or for TV 
highlight. However the novel method doesn’t require any information related to the 
object of interest in the scene and it is therefore suitable for a large set of applications 
from sport activities to video-surveillance. 
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