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Abstract— Recent work demonstrates that iconic classifiers 

are  good  candidates for  the development of effective driver 

assistance systems, exploiting on-board micro cameras and 

embedded architectures.   

Following this line of research, in  this paper the combined 

use of multilayer classifiers and iconic data reduction, based on 

Sanger neural networks, is investigated. It is shown that by this  

affordable approach it is possible to capture the essential 

information of the images, making worthless much more 

structured and time-consuming feature-based techniques.  In 

particular, the applicability of a simplified learning stage, 

based on a small dictionary of poses, is considered; this 

peculiarity makes the system almost independent from the 

actual user. 

A detailed model of a simple driver assistance system, based 

on iconic classifiers, is presented and a comparative assessment, 

focused on the specific task of monitoring the car driver, is 

performed on adverse driving conditions. Three well known 

classification  techniques are applied,  demonstrating that the 

iconic approach, though can be certainly improved, is   

characterized by  robustness, accuracy and real-time response; 

these features  prove this technology to be an  ideal tool for 

embedded automotive applications.  

I. INTRODUCTION 

 Available studies identify distraction and fatigue of the 
driver as  the primary causes of car crashes [1,2].  Since late 
90s, this social problem attracted the  interest of the scientific 
community which has begun to study the development of 
intelligent systems, suitable to monitor the driver's state of 
vigilance[1]. These systems are often denoted in the literature 
as Advanced Driver Assistance Systems  or ADAS. 

 Computer vision techniques have been recently 
considered particularly promising to detect  changes in the 
facial features  which characterize  behaviors of inattentive 
people. Typically,  persons with reduced alertness due to 
fatigue show longer blink duration, slow eyelid movement, 
small degree of eye opening , frequent nodding, yawning and 
drooping posture [3]. In case of visual distraction, common 
situations include off-road gaze direction and persistent 
rotation of the head.  

The design of a fully automated  safety system based on 
computer vision can benefit of a number of robust tools,  
coming from basic image analysis and related fields like 
pattern recognition and biometrics [4]. In [5] a system based 
on a hybrid Bayesian Network uses eyes movements, spatial 
and temporal measures, and some driving performance 
measures on a simulator. However, the application on a 
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moving vehicle presents new challenges  like changing 
backgrounds and  sudden variations of light conditions. 
Moreover, a useful system should  guarantee real time 
performance and quick  adaptability to a variable set of users 
and to natural movements performed during driving.  

Considered in a broad sense,  a fully automated system 
should simply provide an evaluation of the input images, 
giving as an output a quantized or binary level of attention. 
Obviously, the system could benefit of a priori knowledge 
concerning the environment or the user (the interiors of the 
cars, the identity of the user), some known patterns of 
attention/inattention (like, for instance, closed eyes or rotated 
head) and classes of attention (attentive, low attentive, 
completely inattentive driver). However, both the external 
noise and the characteristics of the input transducers can 
heavily affect the final  result. For instance,  in the case of a 
micro video camera difficulties may arise in relation to 
bandwidth, resolution, sensitivity, distortion, signal to noise  
ratio etc. Moreover, consider that he conceptual boundary 
between raw input data, feature extraction and proper 
classification can be somewhat arbitrary.  The traditional goal 
of the feature extractor is to characterize raw data by 
measurements whose values are very similar for objects that 
are in the same category, and very different for objects that 
are not. An ideal feature extractor would therefore yield a 
representation that would make the job of the classifier 
trivial; conversely, an omnipotent classifier would not need 
the help of a sophisticated feature extractor. Starting from 
this framework,  in this paper the use of multilayer iconic 
classifiers is investigated, proving that it  can be very 
effective  in the specific task of monitoring the driver 
attention.  In particular, the model  of a simple driver 
assistance system is detailed, including  a preliminary face 
detector, an image data reduction step, and a final 
hierarchical classifier exploiting known image patterns. 

The assessment of the system is performed in real driving 
conditions, considering both adverse lighting and freely 
moving users. In particular we report the results obtained 
with some supervised classifiers based on Neural Networks 
[6] like a Feed Forward Back Propagation Network and a 
Probabilistic Neural Network, in comparison with a 
deterministic K-Nearest Neighbours classifier [7]. 

Following sections are organized as follows: section 2 
briefly introduces  the proposed model, section 3 details the 
materials and methods. Experimental results are presented in 
section 4. Finally section 5 draws some conclusions and  
analyses  possible outcomes of this research. 

II. PROPOSED MODEL 

The proposed attention model  is based on a two-layer  
classifier whose final goal is to associate single frames  with 
the attention state of the driver. For sake of simplicity only 
two states of attention  (“attentive” or “inattentive”) are  
considered.  
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Fig.1 The input frame is first processed by the Viola-Jones algorithm; frames rejected from VJ are considered as inattentive  I1 while  the resulting region of 
interest (ROI) is passed in a binary filter and coded through an Sanger neural network. A dissimilarity representation of the features using the distances from 

model dictionary is made. Finally, a trainable classifier decides about the attentive (A2) or inattentive (I2) poses of the driver. The second layer works only on 

frame A2 ; the resulting ROI is reduced in a cell size around the eyes and coded through an Sanger neural network. A dissimilarity representation, using 
minimum distance from the model dictionary is made. Finally, a trainable classifier decides about the attentive (A3) or inattentive (I3) eyes status of the 

driver.  An integration stage sum sequences of the inattentive states I and provides alarm only if we have a tunable sequence x of I.

Processing performed by the first layer  is devoted to  the 
detection of  wrong head pose (then including drowsiness due 
to fatigue and visual distraction) while the second layer 
distinguishes between open/closed eyes, a measure strictly 
related to fatigue. A block diagram of the complete system  is  
shown in figure 1.   

Note that the a preliminary processing step is applied to 
each  gray-scale frame in order to extract a small region of 
interest (ROI) containing face-candidates. To this purpose, 
the Viola Jones (VJ) face detector is used [8]. The Viola 
Jones detector is a state of the art powerful tool,  which relies 
on a simple Haar-like  image features representation, and off-
line AdaBoost learning. The detector is very fast and  
produces fairly regular results on various light conditions; 
however it fails  when the face of the driver is partly or 
totally out of the field view. It also fails in case of partial 
occlusion of the face and in case of manifest rotation of the 
head; all these cases conservatively bring to the immediate 
association of the frame to the “inattentive state”.  

Both the following layers work on extracted ROIs: these 
ROIs are first scaled to a fixed dimension (280x280 pixels), 
then are processed giving rise to the final classification. Note 
that the system knows about the origin of the classification; 
therefore it can distinguish between “inattentive” frames due 
to absence of face candidates (I1), “inattentive” frames due to 
inappropriate head pose (I2) and “inattentive” frames due to 
closed eyes (I3). This information is used by the final  
integration block, deciding conveniently about the alarm state 
of the system. 

III. MATERIALS AND METHODS 

One of the key issues related to the proposed approach 
concerns the adoption of  two Sanger neural networks (one 
for each layer) in order to reduce the dimensionality of the 
images corresponding to face candidates. A Sanger neural 
network is a simple three-layer feed-forward unsupervised  
network (with linear transfer function in the hidden neurons) 
which develops an internal representation corresponding  to 
the principal components analysis of the full input data set. 
The input  and output layers have the same dimension of the 
input patterns while the dimension of the hidden layer, 
corresponding to the number of the principal components, is 
determined during the training phase on model. Each network 
is trained as an auto-encoder [7,9-11], in such a way to 
reproduce at the output the input data. Starting from a typical 
number of principal components (12) used in eigen-faces 
detection [12] and using a small number of  training frames 
(120 frames from the adopted dictionary of poses) we found 
the best configuration for 16 principal components. Only 
these values, representing the optimal  reduction of the iconic 
data, are passed to the subsequent classifiers.  

Note that the use of a dictionary of poses to train  the 
Sanger networks has some interesting consequences. First of 
all each Sanger network is trained once; this means that 
processing can be executed off-line and without any 
reference to effective users. Secondly, once fixed the weights 
of the Sanger networks,  data reduction can be easily 
obtained by projecting each ROI in the final feature space 
(i.e.  by  product of the Sanger weight vector for the row data 
frames). This operation is very fast, giving as a result a very 



  

compact representation of  the iconic image content both for 
the first and the second classification layer. 

A. Representing dissimilarity 

Representation based on dissimilarity is a well-known 
concept in the pattern recognition literature [13-15] and it is a 
very good alternative to the traditional feature-based 
description whenever relations between objects must be 
captured [13] .  

To construct a decision rule based on dissimilarity, a 

model reference set R with r elements is commonly used: R 

consists of prototypes which are representatives of all 

involved classes. In the learning process, a training set T of t  

elements is then adopted to build the t × r dissimilarity matrix 

D(T,R) relating all training objects to all prototypes. The 

information on a set S of s new objects is provided in terms 

of their distances to R,  i.e. as an  s × r matrix D(S,R).  

In the above approach, a key factor is the discriminative 

power of the adopted measure of difference, but intrinsic 

properties of the adopted metric must be also considered. In 

fact, many traditional optimization methods are not 

appropriate when dissimilarities entail non-metric properties, 

then violating  the triangle inequality axiom. 

A final remark concerns the dimension of the feature space 

where measures are performed. In order to guarantee a good 

representation of  the real data distribution, the number of 

samples  must be much higher than the dimension n of the 

space; a reduction of the spatial dimensionality is therefore 

important to maintain a  compact model reference set, and 

besides, to contain computational burden. 

In the proposed approach the dissimilarity measure is 

performed by traditional Euclidean metric; distances are 

calculated on the  Sanger components  coding the input 

images, as shown in fig.1  The model reference set R is 

composed of 120 images (r=120) for the first layer and 68 

images  (r=68) for the second layer  while the training set T 

is composed of several thousand of images, depending on 

the layer and on the considered subject. We denote the set  R 

as  “dictionary of poses” because the set is composed of 

images of a real user during  the driving.  Images are taken 

during three different sessions, with different conditions of 

light and slightly different distance from the camera. The 

same user appears with glasses and without glasses;  

different wrong poses of the head are also simulated by 

asking the user to look at eight fixed markers around the car. 

Open/close  condition of the eyes is finally simulated asking 

the user to close the eyes both for correct and wrong poses 

of the head and simulating nodding. Some examples of 

dictionary of poses are shown in figure 2.  

 

 

Fig. 2. Some frames from dictionary of poses 

 

The adoption of a  dictionary of poses it’s very important in 

order to condensate into the model all the problems 

related to light and zoom. More in detail, the algorithm for 

the dissimilarity representation needs the computation of a 

measure of  distance for each record i of the training set T 

with respect to each record k of the representation set R: 
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Note that  

 

Ti = (t1,t2,..,t16)           i = 1,..,t                     (2) 

 

Rk = (r1,r2,..r16)         k = 1,..,r           (3)     

 

Each record of T and R is a vector with m=16 elements 

(Sanger components)  while t defines  the number of images 

of the set T and r the number of images of the set R 

(dictionary of poses). 

 

      A single row of the dissimilarity matrix will express all 

the distances of the generic training element ti with respect 

to the reference set. In preliminary experiment we tried other 

notions of distances or data reduction of representative 

distances using mean, median and minimum, in according 

with [13,14], but the setting of dissimilarity presented in this 

paragraph provides best results. 

 

As the final classes of the reference set are a-priori 

known, these distances  can be obviously grouped in  a 

number of  subsets equal to the total number of classes and 

used to feed the training stage of the  classifiers. 

 

B. Classification 

 

For the final classification step we compared  three 
different types  of techniques: a Feed Forward Back 
Propagation Neural Network (FF-Bp), a Bayesian approach 
available through Probabilistic Neural Networks (PNN) and a 
deterministic method as the K-Nearest Neighbours (K-NN).  

All the classifiers are trained  on a train set and tested on a 
validation set to determine  the optimal configuration. The 
test set used for the experimental session is completely  
independent from the two previous sets. 

Feed Forward Back Propagation Neural Networks  [6,7] 
provide a not algorithmic, but very efficient, approach. Back 
propagation is used for learning: for a supervised system, the 
network is  trained by using  samples of  known classes 
whilst for unsupervised systems the training is based on the 
minimization of a generic function of the data and the 
network's output.  

Differently from FF-Bp, probabilistic Neural Networks 
[6] provides a general solution to pattern classification 
problems by following a Bayesian approach. The 
probabilistic neural network uses a supervised train set to 
develop distribution functions within a pattern layer. These 



  

functions, in the recall mode, are used to estimate the 
likelihood of an input feature vector being part of a learned 
category, or class. The learned patterns can also be combined 
or weighted with the a priori probability, also called the 
relative frequency, of each category to determine the most 
likely class for a given input vector. 

The last classifier compared  is the well-known  K-
Nearest Neighbors[7]. For this type of deterministic classifier 
it is necessary to have a good train set, not too small, and a 
good discriminating distance. K-NN performs well in multi-
class simultaneous problem solving.  There exists an optimal 
choice for the value of the parameter K which brings to the 
best performance of the classifier. This value of K is often 
approximately close to N1/2   where N is the number of the 
training samples. 

C. Database 

 

Even though several important databases are available 
for testing face and head pose recognition techniques (i.e 
IDIAP Head Pose Database [16], Feret [17] and others) video 
sequences of persons driving a car, captured by on-board 
cameras, are  very few in number and  hardly available. The 
acquisition of a small database has been therefore considered 
an essential requirement in order to validate the proposed 
approach.  

The experimental setup has been conceived having in 
mind the need of collecting images  during real driving; for 
this reason a wifi pinhole camera has been installed on the 
windshield of a car in a suitable position  not to annoy the 
driver during a short trip. The camera allows the recording of 
several minutes of video during typical driving situations.  

Data from two acquisition sessions of each driver, in 
different moments of the day and various conditions of 
ambient light, were collected.  The users  were driving  both 
wearing glasses or not, without caring about  the position of 
the seat and of the camera. Each session consists of 3 minutes 
of video recording, manually classified in attentive and 
inattentive states by poses and eyes [9] . For our experiment 5 
representative people were chosen for a total of 10 sessions: a 
woman and four men (with glasses, without glasses, beard, 
smiling).  Some ROIs extracted from the various sessions are 
shown in figure 3. 

 

Fig. 3. Some frames of the persons used in our experiment; it is possible to 

see bad frames affected by interference or adverse lighting. 

Note that the quality of the images is generally low, and 
that lighting and noise effects make really hard the 
classification task. In our perspective, however, these  data 
well reflect the real operating environment of a driver 
assistance system. 

All the images of the second session compose the test set 
(blind set) which is therefore used only to measure the 
performance of the system. In tables 1 and 2 datasets are 
shown. 

TABLE 1 DATASETS FOR FIRST LAYER. 

 

Persons 

  

Sets pose detection  in N° of Frames  

Characteristics  

Train and 

validation Test (blind) 

1 Woman 3238 3004 

2 Smiling man 3750 2914 

3 Man with glasses 2640 3229 

4 Man 3127 3649 

5 Man with beard 2752 2564 

TABLE 2 DATASET FOR THE SECOND  LAYER 

 

Persons 

  

Sets eyes detection in N° of Frames  

Characteristics  

Train and 

validation Test (blind) 

1 Woman 2779 2846 

2 Smiling man 3213 2627 

3 Man with glasses 2393 2894 

4 Man 2758 3020 

5 Man with beard 2399 2376 

 

We used a Self Organizing Map (SOM) [19,23,24] to 
perform a random sampling over the first session of the 
available datasets. This SOM sorts out all samples into 
homogeneous groups from which we extracted a small 
amount of images and composed the training and validation 
sets. 

IV. RESULTS 

 

In a binary classification problem four possible outcomes 

must be considered: results on single frames classification are  

then given in term of true/false positive prediction and 

true/false negative prediction. In our model a positive 

condition corresponds to the presence of some inattentive 

status of the driver.  
 

Table 3 shows the results for the classifiers on the blind test 

as average of the five representative people considered for the 

poses detection.  
 

TABLE 3 CLASSIFIER FOR THE FIRST  LAYER 

 

Classifier 

  

Results on Test set  for poses detection  

(Mean of 5 persons) 

Inattentive% Attentive % ACC.%±dev.st 

FF-Bp 81.2 76.4 76±1.9 

KNN 45.8 96.6 70±16 

PNN 70.8 84.3 78±7.3 

 

 

 



  

Table 4 shows the results for the classifiers on the blind test 

as average of the five representative people considered for the 

eyes detection. 

TABLE 4 CLASSIFIER FOR THE SECOND  LAYER 

Classifier 

  

Results on Test set  for eyes detection  

(Mean of 5 persons) 

Inattentive% Attentive % ACC.%±dev.st 

FF-Bp 66.1 78.9 73±10.9 

KNN 78.7 69.9 76±15.6 

PNN 65.6 81.4 73±14.5 

 

From tables 3 and 4 we can see how the FF-BP neural 

network provides the best results compared to other 

classifiers. In particular, the standard deviations are always 

lower than others presented, providing more stability of 

response  with respect to varying people. 

 

In tables 5 the  detailed performances of the various layers 

of the system are presented for the FF-BP classifiers. It is 

worth noting that for the adopted setup configuration the VJ 

stage has a very high accuracy, reaching almost 100% of 

correct classification and rejecting 28.2% of the processed 

frames. This result is not surprising considering that the blind 

test sets include regular driving but also simulated inattentive 

behaviors. The last row of table 5 shows values related to the 

overall system; in this case accuracy, sensitivity (inattentive 

status) and specificity (attentive status) are computed just 

considering inattentive and attentive frames, without caring 

about the rejection stage.  

 

TABLE 5  PERFORMANCES OF THE SYSTEM (FF-BP CLASSIFIERS) 

  

V. DISCUSSION AND CONCLUSION 

A thorough comparison of the proposed method with  

analogous results published in  the literature  is quite difficult 

due to real lack of  common database protocols. Moreover 

most of the available results focus on the detection of specific 

temporal features like PERCLOS, blink and nodding  

frequency. 

In [18], authors report comparable results for ten 

sequences records in real drive situations (10 users involved). 

The performance detecting inattentive states like nodding and 

wrong face pose is 72.5% and 87.5%, respectively, while 

fusing a complex set of different measures (nodding, face 

pose, gaze, eye closure duration and blinking frequency) the 

detection of the driver inattentiveness level reaches 97%.  For 

PERCLOS, a performance around 90% is reported. In [19] 

tests on six video sequences, collected using a driving 

simulator, are presented.  Accuracies in the classification of 

the PERCLOS range from 89.5 % to 98.2%, giving an   

average   of 93.8% for the whole dataset.  In [5] authors 

obtain the accuracy of 88% ±8 through a system based on a 

hybrid Bayesian Network which uses eyes movements, 

spatial and temporal measures, and some driving 

performance measures such as the standard deviation of 

steering wheel position, the mean steering error and the 

standard deviation of lane position. These results, again, refer 

to a simulator-based experiment. 

 

The overall performance of the system proposed in this 

paper reaches an average accuracy of 83% for real sequences 

captured on-board and in uncontrolled/adverse conditions. 

This result states that the proposed technique, though 

extremely simple  with respect  to structured feature-based 

approaches, performs comparably well in different 

environmental situations.  To this respect, it is worth noting 

that current results are strictly related to the classification of  

single frames, therefore admitting a significant level of 

improvement related to a more convenient use of additional 

information pertaining the temporal sequence of events and 

the specific type of inattentive states (the layer originating the 

actual rejection).  These features  will be certainly taken into 

account in the future design of appropriate alarm  strategies. 

Summarizing, the main contribution of this paper is  the 

proposal of an novel method, based on  binary iconic 

classifiers and  achieving good levels of  accuracy and real 

time performance, therefore particularly suitable for effective 

automotive applications.  The paper explains how  the 

adoption of complex cues  or specific facial features can be 

efficiently replaced by  adopting a generalized model of the 

inattentive drive, coming from a small dictionary of poses 

and totally independent from the actual user. With respect to 

previous work in the field [9] several major improvements 

can be noted: first of all the extension of the database to 

multiple sessions / multiple users and to real on-board 

sequences allowed a thorough validation of the approach; 

secondly the adoption of a dictionary of poses in order to  

train the Sanger network makes the image-reduction task 

totally independent from the actual user. The robust 

performances of a feed forward neural network is 

demonstrated with respect to other classifiers, using  adverse 

lighting images. Moreover, the proposed method  allows for a 

simple generalization of additional inattention  states: 

yawning or drooping postures can be easily introduced  by 

adding a limited number of new training samples in the 

dictionary. 

Concerning weak points, it is worth noting that for both the 

classification stages an initial training  of the system is yet 

required for each new user; this procedure requires less than 

one minute of training, which is an acceptable duration, but 

 Inattentive 

states 

 

Results on single frame (Mean 5 persons) 

Accuracy 

% 

Sensitivity

% 

Specificity% Frames

%  

 VJ rejected (I1  ) 98.8 99.5 98.7 28.2 

Pose detection (I2) 76.0 74.1 79.2 24.8 

Eyes detection( I3) 73.3 66.1 78.9 26.1 

Mean weighted for 

total I respect to 

the number of 

frames 

83.2 80.5 86.1  



  

also requires an active cooperation of the new user, who must 

simulate both attentive and inattentive states. 

Current research is devoted to the simplification of this 

remaining training phase, deriving from the dictionary of 

poses a  generic model of attention, totally independent from 

the single user, and devising a minimal “user adaptation” 

procedure, of about 5 seconds, during which the model is 

adjusted to the iconic appearance of the current user.  As an 

alternative to this approach, also a “continuous user 

adaptation” could be considered,  modulated by the actual 

speed of the vehicle.  

First results in this sense are encouraging.  In particular, it 

is now clear that an iconic generalization of attention states 

can be efficiently applied to a small population of users. 

However, the extension of this approach to very large sets of 

users requires further investigation. 
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