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Narrow-linewidth single-frequency photonic microwave 
generation scheme by using an optically injected 
semiconductor laser with a filtered optical feedback has 
been proposed. The filtered feedback comes from a 
single feedback loop, which includes a narrow band-pass 
filter. With the filtered feedback, linewidth of the 
generated microwave can be significantly reduced from 
22.4 MHz to 9.0 kHz with the side-peak suppression of 28 
dB. The proposed scheme shows superior performance 
compared with the conventional single feedback 
configuration in terms of linewidth reduction and side-
peak suppression. The proposed scheme also achieves 
better results compared with the complex dual feedback 
setting. The mechanism for the better performance of 
filtered optical feedback is that the filtered feedback can 
effectively limit the external cavity modes and stabilize 
the period one dynamics. In addition, the microwave 
linewidth decreases with the increase of the filter width 
until the optimized filter width is reached. Furthermore, 
the linewidth reduction and the side peaks suppression 
of photonic microwave using filtered optical feedback is 
relatively insensitive to the frequency detuning between 
the filter center frequency and the free-running 
frequency of the semiconductor laser. 

OCIS codes: (140.5960) Semiconductor lasers; (060.5625) Radio 
frequency photonics; (350.4010) Microwaves. 
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Microwave photonics technology has drawn considerable attention due to its wide applications in the fields of optical 

wireless communication, sensors and radar [1,2]. Microwave photonics technology can generally be classified into four categories: photonic generation, processing, control and distribution. Many techniques for the photonic microwave generation have been reported, which includes direct modulation, optical heterodyne, optical injection locking, external modulation, mode-locked semiconductor lasers, optoelectronic oscillator and period-one (P1) dynamics [3-15]. Among them, the P1 dynamics is one of the most promising photonic approaches. It has several advantages over the others, such as a nearly single sideband spectrum, which can enhance the power efficient, low cost due to the all-optical components configuration and a widely tunable frequency range from a few gigahertz to tens or even hundreds of gigahertz [8, 12-15]. P1 dynamics is one of many nonlinear dynamics in optically injected semiconductor lasers. P1 dynamics occurs when a stable locked laser experiences a Hopf-bifurcation [16], which induces two dominant frequencies: one is regenerated from the optical injection while the other one is the red-shifted cavity frequency. The phase noise induced by spontaneous emissions in semiconductor laser can greatly degrade the linewidth of P1 microwave [17-18]. Several techniques have been demonstrated to minimize the phase noise and reduce its linewidth, such as using double-locking with a microwave source [14], dual-beam optical injection [11], optoelectronic feedback [19], combining optical injection and polarization-rotated optical feedback [20] and optical feedback [17-18, 21]. Optical feedback is a simple and low-cost method to achieve linewidth reduction. However, with higher optical feedback strength, P1 dynamics is collapsed, which limits the linewidth reduction. Fischer et al. [22] reported that certain dynamics of the semiconductor lasers can be suppressed using narrow bandwidth filtered optical feedback. In this letter, we numerically investigate the property of the photonics microwave generated in an optically injected 



semiconductor laser with a filtered optical feedback (FOF), which, to the best of our knowledge, has not been studied. The results demonstrate that very narrow-linewidth single-frequency of photonic microwave can be achieved in this configuration. In the proposed configuration, a continuous-wave optical signal generated by a master laser (ML) is unidirectionally injected into a slave laser (SL) and a portion of the SL output is fed back through a feedback loop. The feedback loop contains an optical bandpass filter. For simplicity, the optical bandpass filter is simulated by a Lorentzian filter. Accordingly, the dynamics of the SL with optical injection and filtered feedback can be modeled by modified single-mode rate equations [22-25]. 
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   (3) where, a and n denote the normalized field amplitude and carrier density, respectively. F denotes the field amplitude of the FOF light. 

γc is the cavity decay rate, γs is the spontaneous carrier relaxation rate, γn is the differential carrier relaxation rate, γp is the nonlinear carrier relaxation rate, b is the linewidth enhancement factor, and J is the normalized bias current. fi and υ=ω f/(2π) are the offset frequency of optical injection and the center frequency of filter with respect to the free-running frequency f0 = ω/(2π) of the SL, respectively, and Λ is the half-width at half-maximum (HWHM) of Lorentzian filter, ξ represents the optical injection strength, η is the feedback strength, and τ is the feedback round-trip time. The spontaneous emission noise is modeled by a Langevin fluctuating force χ, of which the real and imaginary parts are mutually independent. Rsp is used to describe the strength of χ [26]. The typical parameters values used in the reference [18] are adopted in this simulation, where γc = 5.36 × 1011 s−1, γs = 5.96 × 109 s−1, γn = 7.53 × 109 s−1, γp= 1.91 × 1010 s−1, b=3.2, J=1.222, f0 = 193.41 THz. With these parameters, the relaxation oscillation frequency of the free-running laser is 10.25 GHz. Rsp is set at 5.99 × 1019 V2m-1s-1 to approach the linewidth of the generated microwave observed in the experiment [17]. In this letter, we emphasize the feedback effect on the linewidth reduction of the generated microwave, the injection parameters (fi, ξ) are fixed at (15 GHz, 0.17) unless stated otherwise. With these injection parameters, the SL operates at P1 dynamics. A second-order Runge-Kutta integration method is used to numerically solve Eqs. (1-3) with a time step of 1 ps. The optical spectrum and radio frequency (RF) spectrum are calculated by adopting FFT to the field amplitude and intensity, respectively. The linewidth is calculated from the smooth RF spectra using MATLAB’s default moving averaging. A time span of 1 ms is adopted for the microwave linewidth analysis, while a time duration of 5 μs is used for the rest of other analyses.  

Figure 1 shows the optical spectra (left column) and radio frequency (RF) spectra (right column) of the SL. Figs. 1(a1) and (a2) are the optical spectrum and RF spectrum of the optically injected SL without optical feedback. From the perspective of optical spectrum, as shown in Fig. 1(a1), the optical injection is regenerated in the SL and many oscillation sidebands are also emerged due to the P1 dynamics [18]. With these injection parameters, the red-shifted cavity frequency of SL without feedback is about -9.06 GHz. Therefore, the frequency of the generated microwave is 24.06 GHz, as shown in Fig. 1(a2).  We add an optical feedback loop that includes a bandpass filter to the setup. The center frequency of filter υ is set near the red-shifted cavity frequency at -9 GHz, so that the output around the red-shifted cavity frequency of the SL can be fed back to the SL. The HWHM of filter is fixed at Λ=160 MHz and the feedback parameters (η, τ) are chosen to be (0.025, 2.4 ns). The resulted optical spectrum and RF spectrum are plotted in Figs. 1(b1) and (b2), respectively. The result in Fig. 1(b2) shows that the microwave linewidth has reduced from the 22.4 MHz without the optical feedback to 9 kHz. In Fig. 1(b2), we also observe some side peaks (SPs) with the separation determined by the delay time, which is similar to the result with single optical feedback [17-18], but the amplitudes of the side peaks are much smaller. To quantify the SP in RF spectrum, the side-peak suppression coefficient (SPSC) is introduced and is defined as the ratio of the power of fundamental microwave frequency to the maximum SP. In Fig. 1(b2) with FOF, the SPSC reaches 28.5 dB. In this case, the generated microwave can be considered as a single frequency microwave. In order to illustrate the outstanding performance of FOF in reducing the microwave linewidth and suppressing the SPs, the spectra of the SL with conventional single optical feedback (SOF) and double optical feedback (DOF) are also simulated. For the conventional optical feedback, equation (3) does not need to be included, the feedback term F in equation (1) is written as ( − ) and ( ( − ) + ( − ) )/2  for SOF and DOF, respectively. and  are the feedback round time from cavity 1 and 2, respectively. From the feedback term, we can see that the equal feedback power from both external cavities for DOF are considered. Fig. 1 (c1) and (c2) present the optical and RF spectra of the SL subject to optical injection and SOF with the same feedback parameters used in Fig.1 (b). Fig. 1(c2) shows that SOF can also significantly reduce the microwave linewidth from 22.4 MHz without optical feedback to 15.8 kHz, but many more SPs are excited, which is in line with the reported results [17-18], and the SPSC decreases to 14.7 dB. Given the external-cavity producing many side peaks (representation of external-cavity modes (ECMs)) around the red-shifted frequency in the optical spectrum [inset in Fig. 1(c1)], SPs in the RF spectrum can be attributed to the direct induction by the ECMs. The excitation of the strong SPs in the RF spectrum can greatly compromise the quality of the microwave. In order to suppress the side peaks in the RF spectrum, the complex double feedback has been proposed and demonstrated [17-18]. Figs. 1 (d1) and (d2) present the optical spectrum and RF spectrum of the SL subject to DOF, respectively. The total feedback strength is the same as that used in Figs. 1(c1) and (c2) and τ1 =2.4 ns, τ2 =3 ns. Fig. 1(d1) shows that the side peaks around the red-shifted cavity frequency under the DOF have been significantly suppressed due to the competition of ECMs induced by two feedbacks with different round-trips times. As a consequence, the SPs in the RF spectrum are suppressed with a SPSC of 23.8 
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