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Forecasting with a hybrid method utilizing data smoothing, a variation 

of the Theta method and shrinkage of seasonal factors 

Abstract 

In this paper, we discuss how extrapolation can be advanced by using some of the most 

successful elements and paradigms from the forecasting literature. We propose a new 

hybrid method that utilises: a) the decomposition approach of the Theta method, but instead 

of considering a linear trend we allow for nonlinear trends, b) rather than employing the 

extrapolation method on the raw data, we first apply smoothing to the data, and c) when 

seasonality is present, we employ the shrinkage approach to the derived indices instead of 

simply applying classical seasonal decomposition. We empirically evaluate the new 

proposition in the M3-Competition data with very promising results in terms of forecast 

accuracy. 

1. Introduction  

Research in time series extrapolation methods is quite fragmented to the extent that any 

improvement in forecasting performance is very incremental and most benefits in the 

process either come from better information sharing or management judgment (Goodwin et 

al., 2013). In order for a newly proposed forecasting approach to have any credibility and 

claim that it can stand the test of time, it should compete favorably and beat the two best 

established benchmarks in the field: Damped Trend Exponential smoothing (Gardner and 

McKenzie, 1985) and the Theta method (Assimakopoulos and Nikolopoulos, 2000).   
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In this paper, we discuss how extrapolation could be advanced by using some of the most 

successful elements and paradigms from the past, and we propose such a new hybrid 

method. First, we exploit the decomposition approach of the Theta method, but instead of 

considering a linear trend we allow for more flexibility and experiment with a set of 

nonlinear trends. Furthermore, instead of employing the method on the raw data, we first 

apply smoothing to the data to obtain a much better starting point for our extrapolation. This 

has proven to be very beneficial for the Naive method in many empirical investigations 

(Makridakis et al., 1983). Finally, instead of just applying classical seasonal decomposition 

when seasonality is present, we employ the well celebrated shrinkage approach of Miller and 

Williams (2003) to the derived indices (from the aforementioned classical approach).  

The rest of the paper is organized as follows: in the next section, we discuss the literature 

on the Theta method so far. In Section 3 we describe the original Theta model and present 

some fertile areas for improvement. In Section 4 we present and analyze the first two 

elements of the proposed method, demonstrating its possible advantages. Section 5 presents 

the hybrid method’s forecasting performance as a whole using the 3003 series of the M3-

Competition. Finally, Section 6 provides our conclusions and some thoughts on future 

research. 

2. The Theta model: a literature review 

The Theta model, proposed by Assimakopoulos and Nikolopoulos (2000), is a univariate 

forecasting method based on modifying the local curvature of the time series through a 

coefficient “Theta” (θ) applied to the second differences of the data. The modification leads 

to the creation of new lines which maintain the mean and the slope of the original data, but 
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not their curvature. The smaller the value of the Theta coefficient, the larger the degree of 

curve deflation, and vice-versa. Thus, fluctuated lines with 0 < 𝜃 < 1  can be used for 

identifying long-term trends (Assimakopoulos, 1995), while highly curved ones with 𝜃 > 1 

for emphasizing the short-term characteristics of the series, such as the running level. In 

practice, θ can be considered as a transformation adjusting the curvatures of the series 

according to the distance of its points with the ones of a simple linear regression in time, 

obtained for θ = 0. In this regard, two or more Theta lines can be created, extrapolated and 

combined accordingly to mime the short- and long-term behavior of the series. 

In its original form, as applied to the monthly M3 data, the Theta model consists of two 

Theta lines with θ values of 0 and 2 calculated on the seasonally adjusted data. Theta line (0) 

has zero curvature and equals to a simple linear regression line. On the other hand, Theta 

line (2) represents a line with double curvature of the original series. The first line is 

forecasted by extrapolating the regression line, while the second one using Simple 

Exponential Smoothing (SES) (Gardner, 1985). The forecasts are combined using equal 

weights and then reseasonalized. This form of Theta participated in the M3-Competition 

(Makridakis and Hibon, 2000) and became popular for outperforming the rest of its 

competitors, particularly for monthly series and microeconomic data. It is notable that the 

model, despite being quite simplistic, performed far better than the participating advanced 

methods and expert system, such as ForecastPro and ForecastX. Till today, it remains a 

difficult benchmark to beat. 

Since the first appearance of the model, and considering its notable performance in the 

M-3 competition, a lot of work has been done both in the direction of implementing it in 

Forecasting Support Systems (FSSs), and testing its accuracy on different data sets. 
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Nikolopoulos and Assimakopoulos (2003) developed a system integrating Theta model 

forecasts with automated rule based and judgmental adjustments for supporting decisions. 

Tavanidou et al. (2003) included it among the forecasting techniques of a web-based FSS. 

Latter, Pagourtzi et al. (2007) evaluated the Theta model for forecasting quarterly housing 

prices and the total average dwelling prices in the UK. Petropoulos et al. (2008) also 

suggested some ideas for its implementation in Intermittent Demand forecasting 

(Spithourakis et al., 2014). Moreover, the model was assessed on a large dataset of non-

demand forecasting series by forecasting the evolution of the S&P500 index (Nikolopoulos et 

al., 2012a) and indicating possible gains in supply chain management and planning 

(Nikolopoulos et al., 2012b). More recently, Thomakos and Nikolopoulos (2015) proposed the 

extension of the univariate Theta model for forecasting multivariate time series and 

assessed its performance in real macroeconomic and financial time series. The results of all 

these studies were very promising as the performance of Theta was either on par, or better 

than the benchmarks set.  

The research on the Theta model has advanced further in the direction of optimizing its 

parameters and generalizing its use. Constantinidou et al. (2012) suggested a neural network 

approach for optimizing the combination weights of two Theta lines. Petropoulos and 

Nikolopoulos (2013) included multiple Theta lines to extract more information from the 

provided data and further boost the performance of the model. Thomakos and Nikolopoulos 

(2014) introduced an approach for selecting the optimal value of the Theta coefficient when 

forecasting with a single Theta line and provided a formula for defining the optimal weights 

when combining two lines. Finally, Fioruci et al. (2016) proposed a method for optimally 
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selecting the second Theta line based on validation schemes, when the first line is calculated 

for θ = 0.  

As the literature indicates, although the Theta method is based on a generic 

decomposition framework, the research is mainly focused on optimizing the weights of the 

combined Theta lines. In the usual case of combining one Theta line (0) with another, this 

process is equal to identifying the most appropriate value of the Theta coefficient, if the 

original data is to be reconstructed from the individual lines. Thus, the decomposition 

process is limited to combining a straight line. This is useful for identifying the long trend, 

with the “best” curved one being effective in identifying the short-term characteristics of the 

series. A question arising at this point is what happens if the trend of the model is not linear. 

As Hyndman and Billah (2003) indicated, the Theta model can be expressed as simple 

exponential smoothing with a drift relative to the slope of the linear trend fitted to the data. 

Given that a time series is very likely to follow a nonlinear pattern, it becomes crucial to 

further expand Theta to nonlinear trends, especially when referring to mid- or long-term 

forecasts. 

In this paper we propose the replacement of the original Theta line (0) with simple 

nonlinear lines (e.g. exponential or logarithmic curves) and the construction of a second one, 

so that the original time series is reconstructed from their combination. Given the increased 

flexibility of the Theta line (0) and its improved fit, the second line will be curved only at the 

points which diverge from the trend pattern. Thus, it will be much more stable and effective 

in modeling level variations. In total, the final forecasts of the model will be the improved 

running level of the series, adjusted by the defined slope. An empirical investigation, 

performed on the M3-Competition data set, indicates improvements on forecasting accuracy 
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for the proposed approach. Forecasting performance can be further enhanced if smoothing 

is applied to the original data before extrapolation. 

3. Insights on the Theta method  

The Theta model is based on a decomposition process proposed by Assimakopoulos and 

Nikolopoulos (2000) for adjusting the curvatures of the time series. The adjustment is 

achieved by applying the coefficient Theta (θ ∈ R) to the second differences of the data 

leading to the creation of a Theta line 𝑌𝜃, as shown in the following equation: 

 𝑌𝑡
𝜃 = 𝜃𝑌𝑡

′′, 𝑤𝑖𝑡ℎ 𝑌𝑡
′′ = 𝑌𝑡 − 2𝑌𝑡−1 + 𝑌𝑡+2 (1) 

where Yt  is the original time series at time t. If the value of Theta is greater than one, then 

the process creates a line with stronger curvatures than the original series, obtained for 𝜃 =

1. On the other hand, for 0 < 𝜃 < 1 the created lines are fluctuated leading to a completely 

straight line for 𝜃 = 0, which is equal to the simple linear regression in time. Given the 

simplified modifying formula of Theta provided by Nikolopoulos et al. (2012b), every line 

created will be proportionally adjusted based on the distance between 𝑌0  and 𝑌1. Thus, the 

new lines maintain the mean and the slope of the original data, but with adjusted curvatures 

as follows: 

 𝑌𝑡
𝜃 = 𝜃𝑌𝑡 + (1 − 𝜃)𝑌𝑡

0 = 𝜃𝑌𝑡 + (1 − 𝜃)(𝑏 + 𝑎𝑡) (2) 

where b and a the intercept and slope of the simple linear regression in time. 

Observations with a long distance from 𝑌0 will face a strong modification, and vice versa. 

The Theta coefficient can also obtain negative values with similar effects. However, since the 
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created lines will be symmetric to the original series with respect to 𝑌0 , they are of no 

interest in this study and are not discussed. 

After the creation of the individual Theta lines, a forecasting method is used to 

extrapolate them. One, two or more lines can be considered. The forecasts are then combined 

using appropriate weights. Based on the previous equation, Theta lines with coefficients 

greater than 1 can be used for capturing short-term components of the series, while lines 

with coefficients close to zero for estimating long-term characteristics. At this point we also 

note that, in order the individual lines to reconstruct the original time series, specific 

limitations must be set regarding their weights. As noted by Fioruci et al. (2016), for the case 

of two Theta lines the weights can be directly calculated as follows: 

 
𝑤𝜃1

=
𝜃2 − 1

𝜃2 − 𝜃1
 𝑎𝑛𝑑 𝑤𝜃2

= 1 − 𝑤𝜃1
with the limitations of 𝜃1 ≤ 1, 𝜃2 ≥ 1 

(3) 

where 𝜃𝑖  and 𝑤𝜃𝑖
 are the coefficient of Theta and the weight chosen for line i, respectively. 

Equation (3) can be further simplified when the first of the two lines is the 𝑌0as follows: 

 
𝑤0 =

𝜃 − 1

𝜃
 𝑎𝑛𝑑 𝑤𝜃 =

1

𝜃
 

(4) 

Given its lower complexity, this form of the model is also the most used. Moreover, 

empirical results suggest that 𝑌0 must be included in the model to obtain robust forecasts 

and capture the long trend of the data (Assimakopoulos, 1995).  

However, models of multiple Theta lines can also be considered under relative 

limitations. Following the above mentioned suggestions, the generic form of the Theta model 

is given as follows: 
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𝑌𝑡 =

𝜃 − 1

𝜃
𝛶𝑡

0 +
1

𝜃
𝑌𝑡

𝜃 =
𝜃 − 1

𝜃
(𝑏 + 𝑎𝑡) +

1

𝜃
𝑌𝑡

𝜃 , 𝜃 ≥ 1 
(5) 

The original form of the model consists of two Theta lines with Theta coefficients of 0 and 

2 calculated for the seasonally adjusted data. More specifically, a seasonality test is first used 

to test the seasonal behavior of the series using an auto-correlation function. The data are 

considered seasonal if a 90% confidence is reported. In case of seasonal time series, the 

classical multiplicative decomposition by moving averages (Makridakis et al., 1983) is used 

for estimating the seasonal component. Then, the seasonally adjusted series is created by 

dividing the original one with the calculated seasonal factors and the 𝑌0  and 𝑌2 lines are 

calculated accordingly. Linear regression line and SES are used for extrapolating 𝑌0  and 𝑌2  

respectively, and equal weights are selected for combining the individual forecasts, as 

suggested earlier. Finally, re-seasonalization is applied for the seasonally adjusted series. 

Although this approach, has proven to be very effective (Makridakis and Hibon, 2000), it 

still has some drawbacks. Hyndman and Billah (2003) have proven that classic Theta is equal 

to SES with a drift equal to the half of the slope of the linear trend. This remark can be 

expanded for different coefficients of Theta when the first line is the 𝑌0. For instance, by 

increasing the coefficient of Theta, one can further drift the forecasts derived from SES, and 

vice versa. Taking this into consideration, two key issues arise: (1) identifying the trend type 

of the data and (2) selecting an appropriate θ for optimally adjusting its intensity. The second 

point has been the subject of many studies and different formulas and methodologies have 

been proposed for identifying the optimal Theta coefficient. Yet, the first one remains 

unnoticed. 
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To better illustrate this problem, a characteristic example is presented in Figure 1. 

Consider two different time series, one with a linear and one with an exponential pattern of 

trend. 88 observations are used for training the model and 12 for evaluating its forecasting 

performance. Using the classic form of Theta, the linear series is adequately modeled (a) and 

higher coefficients of Theta can be used to further stress trend intensity and improve 

forecasting accuracy (b). However, in the second case, the exponential pattern of the data 

can barely be captured by classic Theta, regardless of the value of θ used (c). By considering 

an exponential curve as 𝛶0, the results can be significantly improved (d). In this respect, in 

the next section we suggest and discuss the expansion of classic Theta into a flexible 

decomposition method considering both linear and nonlinear patterns of trend. 

 

Figure 1. Performance of the Theta method for linear and nonlinear time series: (a) and (c) 

display the forecasts of classic Theta for linear and exponential trended series, (b) Theta 
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classic for θ = 7 and (d) Theta model for Y0 = beat. The red line represents Y0, the blue one Yθ 

and the green one their combination (Theta model) 

4. Smoothing and forecasting with a variation of the Theta method tailored for 

nonlinear time series 

4.1. Introducing the nonlinear trend component 

As discussed in Section 3, Theta model can capture linear trend and adjust slope intensity 

through the Theta coefficient. In this regard, high coefficient values can be chosen for 

significantly trended time series, and lower ones for stable or noisy data to ensure 

robustness. However poor results are expected in cases when nonlinear trends are 

identified.  

Given its simplified expression (equations 2 and 5), the two-lined Theta model has the 

advantage of reconstructing the original series from the individual Theta lines, even if the 

line is used as 𝑌0. Since originally 𝑌𝜃  is forecasted with SES,  
1

𝜃
𝛶𝜃  will mainly specify the level 

of the forecasts while 
𝜃−1

𝜃
𝛶0  will drift them to capture the trend of the data. Thus, by 

replacing linear regression as 𝑌0 with another curve, it is possible to automatically specify 

which type of trend will be considered. 

In this paper, four additional curves are examined: exponential, logarithmic, inverse and 

power. Undoubtedly, any other type of curve, such as a polynomic one could be considered 

(keep in mind that linear regression is a polynomic curve of the first degree). Our choices 

were made given that the performance of the proposed approach must be directly 

comparable with that of Theta classic, i.e., simple curves of the same complexity (number of 



11 

estimated parameters a and b) must be examined. Moreover, the trend obtained from more 

complex and flexible curves is difficult to be qualitatively specified, while over fitting can 

also become a great issue. Finally, the five curves provided in total manage to simulate 

almost any basic pattern of trend. 

The formulas for obtaining the above-mentioned curves Yt0 are given as follows: 

Linear regression: 𝑌𝑡
0 = 𝑏 + 𝑎𝑡 (6.1) 

Exponential curve: 𝑌𝑡
0 = 𝑏𝑒𝑎𝑡, 𝑜𝑟 log(𝑌𝑡

0) = log(𝑏) + 𝑎𝑡 (6.2) 

Logarithmic curve: 𝑌𝑡
0 = 𝑏 + 𝑎𝑙𝑜𝑔(𝑡) (6.3) 

Inverse curve: 
𝑌𝑡

0 = 𝑏 + 𝑎
1

𝑡
 

(6.4) 

Power curve: 𝑌𝑡
0 = 𝑏𝑡𝑎 , 𝑜𝑟 log(𝑌𝑡

0) = log(𝑏) + 𝑎𝑙𝑜𝑔(𝑡) (6.5) 

where parameters a and b can be easily estimated by applying the least squares method 

for minimizing the sum of the squared errors (SSE) produced by the linear form of the 

equations, with the estimate being computed at the same period.  

At this point we note that the parameters could have also been computed for minimizing 

the one-period ahead SSE, as proposed by Fioruci et al. (2016), called the “Dynamic Optimized 

Theta Model”. The former approach is preferred as it is the one originally proposed for the 

Theta method and we are interested in maintaining its classic properties. Moreover, the aim 

of this study is to expand the Theta method by introducing more types of trend and not by 

optimizing the parameterization process itself. Last but not least, the latter approach would 
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force the model to emphasize the most recent trend of the data (exponential smoothing 

logic) and not the long-term one (Theta logic). This is undesirable since Theta has been 

proven to perform well on long-term forecasts, exactly because of this feature. Yet, this is 

indeed a fertile area for future research and should be considered as a powerful alternative. 

In Figure 2 the suggested curves are used for modeling the trend pattern of two different 

time series. As seen, the proposed approach is likely to lead to significant improvements 

since, in cases like the one presented on the right diagram, linear line produces unreasonably 

optimistic forecasts. As reported, this phenomenon could also be mitigated by selecting a 

better θ coefficient for the classic double-lined Theta model (Thomakos and Nikolopoulos, 

2014). Yet, it becomes clear that our suggestion offers a far more flexible solution and 

optimization of θ can be supplementary used after selecting Yt0. This secondary problem, 

partially examined in the literature, is part of our future research and is not further examined 

here due to space limitations. 

 

Figure 2. Fitting various Yt0 into series with different trend patterns. According to their fit, 

linear line seems to be the most appropriate choice for the left series, while for the right one 

the power and logarithmic curve. 
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4.2. Simplifying the nonlinear form of Theta method using smoothed time series 

As demonstrated in the previous sections, the good performance of the Theta model is 

basically due to its ability to capture both the long- (trend) and short-term (level) 

components of the series. Researches also come into a general agreement that these 

components are easier to model for a smoothed time series. For instance, Kourentzes et al. 

(2014) argue that temporal aggregated series of low frequencies can be used for identifying 

long-term characteristics of the data, while Proietti and Lütkepohl (2013) suggest the use of 

power transformations for rescaling the historical data, therefore simplifying their patterns 

and making them more consistent across the whole data set. Similar results can also be 

obtained through outlier (extreme values, level shifts etc.) detection techniques which 

eliminate the carry-over effect of the abnormalities on the forecast and the bias in the 

estimates of the model parameters (Ledolter, 1989). 

Although all the approaches listed above for strengthening the valuable components of 

the series seem quite promising, in our case they would significantly increase the complexity 

of the forecasting process. This is undesirable given that simplicity is one of the strongest 

characteristics of the method. For instance, temporal aggregation is a time intensive process, 

while handling of outliers requires a lot of parameterization for appropriately detecting and 

removing possible abnormalities. Finally, transformations are only applicable to positive 

observations. In this respect, a smoothing process is considered as the most effective 

alternative for eliminating the variance of the data and highlighting its characteristics. 

Extrapolating the smoothed time series instead of the original one offers an additional 

advantage to the method: the decrease of its complexity in terms of estimated parameters. 

Originally, SES is used for forecasting 𝛶𝜃  and linear regression line for extrapolating  𝛶0 . 
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Since in the present study 𝛶0 is modeled through two parameters (a, b), the state values of 

SES increase the complexity of the method into four (smoothing parameter and initial level). 

However, given a completed smoothed time series (straight line), the coefficient of SES will 

be always forced to one. This is because, if no level variances are observable by the model, 

the last observation available will also be the best forecast for the period to come. This 

process is equal to the Naive method which has a complexity of zero. Therefore, after 

implementing a smoothing process, the total complexity of the Theta model can be further 

decreased into two. The last observation of the smoothed time series will specify an 

improved running level for the data, while the slope a its trend. 

Using the simplified form of the Theta model (equation 5), and by replacing the forecasts 

of SES for 𝛶𝜃  with the ones of the Naive method (last known observation), the forecasts of 

the generic Theta model are given by the following equation: 

 
𝑌𝑡+𝑛 =

𝜃 − 1

𝜃
𝛶𝑡+𝑛

0 +
1

𝜃
𝑌𝑡+𝑛

𝜃 =
1

𝜃
[(𝜃 − 1)𝛶𝑡+𝑛

0 + [𝜃𝑌𝑡 + (1 − 𝜃)𝑌𝑡
0]]

= 𝑌𝑡 + (1 −
1

𝜃
) (𝑌𝑡+𝑛

0 − 𝑌𝑡
0), 𝜃 ≥ 1 

(7) 

where t is the forecast origin and 𝑌𝑡+𝑛 is the forecast produced by the model n periods 

after the origin. The model can then be expressed for each of the trend types considered 

earlier by simply replacing 𝑌𝑡
0  and 𝑌𝑡+𝑛

0  of equation 7 according to equations 6.1-6.5 as 

follows: 

Linear regression: 
𝑌𝑡+𝑛 = Yt + (1 −

1

𝜃
) 𝑎𝑛 

(8.1) 
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Exponential curve: 
𝑌𝑡+𝑛 = Yt + (1 −

1

𝜃
) 𝑏𝑒𝑎𝑡(𝑒𝑎𝑛 − 1) 

(8.2) 

Logarithmic curve: 
𝑌𝑡+𝑛 = Yt + (1 −

1

𝜃
) 𝑎𝑙𝑜𝑔(

𝑡 + 𝑛

𝑡
) 

(8.3) 

Inverse curve: 
𝑌𝑡+𝑛 = Yt − (1 −

1

𝜃
) 𝑎

n

𝑡(𝑡 + 𝑛)
 

(8.4) 

Power curve: 
𝑌𝑡+𝑛 = Yt + (1 −

1

𝜃
) 𝑏[(𝑡 + 𝑛)𝑎 − 𝑡𝑎] 

(8.5) 

As shown, if the series is completely smoothed (so there is no need of applying SES to 𝑌𝑡
𝜃 

to define the level of the series) the classic model is equivalent to a Naïve forecast with drift 

(equation 8.1), as proposed by Hyndman and Billah (2003). However, this is not true when a 

nonlinear type of trend is examined as the data cannot be drifted in a constant way like 

before (add to the level n times the slope of the series). Therefore, the Theta decomposition 

framework is exploited to determine both the changeable slope at each data point and the 

way the component of trend is combined with that of level (see eq. 8.2-8.5). Moreover, for 

cases of non-smoothed data (where SES is originally used instead of Naïve for extrapolating 

𝑌𝑡
𝜃), the Theta method is obligatory for defying the running level of the data by determining 

the state values of SES (equation 5). Thus, we conclude that Theta framework is mandatory 

for effectively applying the proposed hybrid approach and that the process described cannot 

be substituted by simply drifting a level forecast.  

4.3. Proposing a technique for effectively smoothing time series  

In the present study, a nonlinear mechanism is adopted for effectively smoothing time 

series. The mechanism is based on the theta transformation introduced by Assimakopoulos 
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(1995) for identifying long-term trends. The main idea of the approach is that the long-term 

trend of a time series can be estimated by aggregating the individual local trends, defined 

every three observations of the original series.  In this respect, if the linear local trends 

calculated across the series are the same, the original series will be a completely straight line 

with no variances and a constant slope. On the other hand, if the individual slopes differ 

across the series, its long-term trend will be their average and strongly dependent on the 

variances observed. In order to better estimate the slope of the time series and mitigate the 

effect of local variances and outliers, a transformation for shrinking the local curvatures of 

the series and smoothing them can be applied.  

In this regard, the second differences of the data are calculated for every observation and 

strong local variances are detected using the following formula:  

 
𝐿𝑉𝑡 = 300

|𝑌𝑡−1 − 2𝑌𝑡 + 𝑌𝑡+1|

𝑌𝑡−1 + 𝑌𝑡 + 𝑌𝑡+1
 

(9) 

where LVt indicates the local variance at point t, as a percentage difference of its two 

neighbor observations.  

After estimating the local variance for all the data points of the series, the strongest one 

is identified and limited based on the values of the neighboring observations using the 

formula given:  

 
𝑌́𝑡 = 𝑌𝑡 + 𝑠 (

𝑌𝑡−1 + 𝑌𝑡+1

2
− 𝑌𝑡) 

(10) 

where 𝑌́t is the new value of point t, leading to a smoother time series, and 𝑠∃[0,1] is the 

shrinkage parameter. If s is equal to zero, then no shrinkage is applied, and local variance 

remains the same. If s is equal to 1, then the new value of point t is on the straight line 
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connecting points t+1 and t-1 and local variance becomes equal to zero.  In the rest of the 

cases the local variance is shrinked to some extent between its original value and zero.  

This process is repeated by setting as an input the new time series created after applying 

a transformation, until no significant local variances occur. In the present study, s is set equal 

to 0.5 so that smoothing is performed effectively without dramatically changing the local 

curvatures of the series in each repetition. The process ends when none of the data points 

display a variance higher than 1%.  

At this point we mention that, theoretically, in order for a time series to be considered as 

completely smoothed, LVs must all be equal to zero. The parameterization proposed, which 

loses the threshold to 1%, is just a suggestion provided to the reader for efficiently applying 

the smoothing process. This recommendation is based on empirical studies which conclude 

that stricter alternatives lead to equivalent results but exponentially increase computation 

time. In fact, having used multiple ad hoc optimization options, we find that changing the 

value of s results to insignificant differences in forecasting accuracy. Moreover, we learn that 

any limit lower than 1% leads to minor improvements. Yet, optimally parameterizing the 

smoothing process proposed is an interesting topic for future research. It is also mentioned 

that, if the threshold is higher than the LVs, it is possible for the smoothing parameter of SES 

to deviate from 1. In such cases, equations 7 and 8.1-8.5, which exploit this assumption, will 

approximately hold. However, this detail does not make any difference in practice as the 

level variance of such series is negligible compared to their mean. Thus, the forecasts 

generated are identical in both cases (Naïve and SES with 𝑎 ≠ 1). We note that such cases 

are rare and were not observed in the present case study. 
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A limitation of the suggested approach in its original form, is that smoothing is only 

possible for data points 2 to n-1, where n is the length of the series: Calculating LV at points 

1 and n requires two additional observations which, initially, are not available. Thus, the first 

and last observation of the series remain constant. Given that the rest of the observations 

are smoothed exploiting these unchangeable values, this may lead to poor forecasting 

performance in cases of them being outliers. For instance, the estimated trend and level of 

the smoothed series created may be misleading.   

To overcome this problem, we propose the one-step-ahead extrapolation of the original 

series before smoothing using the Damped Trend Exponential Smoothing method (Gardner 

and McKenzie, 1985); both fore- and back-casting. Given the two data points created at the 

start and the end of the original time series, changes are now allowed for all of its 

observations making the whole process more flexible. Moreover, given that Damped is based 

on the running level and trend of the series, its forecasts are expected to be far more 

representative starting points for implementing the smoothing process than the original 

observations of the series. This leads to a potentially better forecasting origin for our 

extrapolation. After all, Damped is quite reasonably considered as a simple, yet accurate 

forecasting model which many more complex methods fail to compete with.  

Once again, Damped can be replaced by any other forecasting model of our choice, as long 

as it effectively captures the running level of the series. For example, in our empirical 

evaluation we achieved similar results using Theta classic and other exponential smoothing 

models for extrapolating the series. However, Naïve and linear regression line lead to 

significantly worse results, mainly due to their inability to capture the trend and level of the 

series.  
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At this point we also note that fore- and back-casting is applied just once at the beginning 

of the smoothing process and not every time a new data point is transformed. Thus, the 

forecasting model used nor directly or indirectly influences the original trend pattern of the 

data. 

Undoubtedly, similar results can also be obtained through other smoothing mechanism, 

such as moving averages and kernel smoothers. The main difference between our approach 

and other smoothing techniques is that a perfectly smoothed series is created (i) without 

introducing any missing data points and (ii) by utilizing a nonlinear and selective function. 

For example, when using a moving average of 12, six missing points are introduced at the 

beginning and the end of the series. To fill in this data, an appropriate technique must be 

applied. Given that this process determines the forecasting origin, it becomes clear that its 

performance strongly affects forecasting accuracy. Moreover, the more the order of the 

moving average is increased for obtaining a smoother time series, the more the missing data 

which are introduced, expanding the uncertainty of the whole process. In the suggested 

approach, no such issues arise. Moreover, moving averages homogeneously smooth the data, 

without emphasizing on outliers and local extrema. In contrast, the suggested approach is 

selectively applied based on the local variances of the points. Thus, the approach leads to a 

much smoother and forecastable series.  A comparison between the two approaches is 

presented in Figure 3. 
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Figure 3. The smoothed time series obtained after applying the Nonlinear (NL) approach 

suggested and a Moving Average (MA) of order 12 to monthly data. As seen, the NL approach 

leads to a much smoother series without introducing missing data points. 

5. Empirical evaluation and an improved seasonal adjustment 

In order to evaluate the performance of our approach and provide some empirical 

evidence regarding its contribution, the data set of the M3-Competition is used as a case-

study. The data set includes 3003 time series which can be distinguished in respect to their 

frequency (Yearly, Quarterly, Monthly, Other). The M3 remains as the largest forecasting 

competition ever conducted within which the original Theta model outperformed the rest of 

its competitors. For this reason we believe that it is the most appropriate choice for 

objectively assessing the forecasting accuracy of the nonlinear form of the model and 

obtaining some insights. Moreover, since the data are publicly available, they meet the 

conditions for reproducibility (Boylan, 2016). 

The empirical evaluation is performed according to the principles of the original 

competition. A sample of historical data is provided for training the models (in-sample) and 

an additional number of previously unknown observations is used for evaluating their 
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performance (out-of-sample). The number of the out-of-sample observations depends on 

the frequency of the time series and is equal to the forecasting horizon set, that is 6, 8, 18 

and 8 periods for Yearly, Quarterly, Monthly and Other series, respectively. The assessment 

in terms of forecasting accuracy is then performed using the symmetric Mean Absolute Error 

metric, defined as: 

 
𝑠𝑀𝐴𝑃𝐸 =

200

𝑛
∑

|𝑌𝑡 − 𝑌𝑡̂|

|𝑌𝑡| + |𝑌𝑡̂|

𝑛

𝑖=1

 
(11) 

where n is the length of the forecasting horizon tested, and 𝑌𝑡   and 𝑌𝑡̂  are the real 

observations and the forecasts produced by the model at point t, respectively.  

The Mean Absolute Scaled Error (MASE) proposed by Hyndman and Koehler (2006) was 

also used for comparing the accuracy of forecasting methods such as sMAPE, which has been 

proven to penalize large positive errors more than negative ones and to increase the 

difference of their absolute size (Goodwin and Lawton, 1999). Yet, due to space limitations 

and similarity to the conclusions made, results are only displayed for the case of sMAPE. We 

just report that, according to MASE, smoothing seems to be more appropriate for the case of 

noisy data (e.g. monthly and quarterly data) leading to minor or no improvements when data 

are already smoothed (e.g. yearly and other data). 

The results are provided in total as well as for each frequency individually. In detail, the 

data set used includes 645 Yearly, 756 Quarterly, 1428 Monthly and 174 Other time series. 

Table 1 presents the performance of each model per frequency sub-set by applying five 

different trended models to the original time series of the competition, as described in 

Subsection 3.2. LRL refers to the linear form of the method, which is equivalent to the classic 
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Theta model. For reasons of comparison the original results of the Theta model, as provided 

at the Original Publication of the competition (Makridakis and Hibon, 2003), are also 

displayed (Theta OP). Accordingly, EXP, LOG, INV and POW refer to replacing linear 

regression with an EXPonential, LOGarithmic, INVerse or POWer curve. An equal weighted 

COMbination of the five models is also considered to evaluate potential benefits of the 

method when multiple patterns of trend are considered simultaneously. Finally, two basic 

exponential smoothing models, SES and Holt are included in the results to provide evidence 

regarding whether combining existing good practices (smoothing and shrinked seasonal factors) 

is always beneficial and independent of the forecasting model used. In Table 2 the same results 

are presented for the case of the smoothed time series, as described in Subsection 3.3. 

To obtain more clear evidences, we estimate the percentage of the time series in which 

each model had the best performance across the rest of its kind, as well as its mean rank, 

from 1 to 6. The ranks are created for the original and smoothed series individually. We note 

that for reasons of simplicity and direct comparison, the Theta coefficient is set equal to 2 

for all the models examined, although as reported earlier, one could possibly produce 

improved forecasts through its optimization (Constantinidou et al., 2012).  

Finally, to further improve the performance of each model, the shrinkage estimators of 

time series seasonal factors of Miller and Williams (2003) are considered when seasonally 

adjusting the time series. This is done given that the literature strongly indicates the 

beneficial effect of shrinkage estimators on forecasting accuracy over classical 

decomposition. In brief, the seasonal factors of classical decomposition method are 

estimated for each time series and then the James-Stein (1961) or the Lemon-Krutchkoff 
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(1969) shrinkage estimators are applied based on the skewness of the seasonals and the 

value of the James-Stein shrinkage parameter. We also mention that, since classical 

multiplicative decomposition uses simple moving averages (e.g. MA(12) for monthly data) 

to estimate the seasonal indexes, no assumptions are made at this point regarding the trend 

pattern of the series, which is therefore exclusively determined through the Theta model 

chosen.  

To summarize the methodological framework proposed and help the reader better 

understand its step, we visualize the whole process in the chart flow presented in Figure 4. 

A summary of the results is presented in Tables 3 and 4 for the original and the smoothed 

time series, respectively. As seen, in total, the exponential form of the method outperforms 

the rest of the approaches by improving the accuracy of classic Theta by 1.01% and 1.50% 

for the original and the smoothed series, respectively. For the case of the shrinked seasonal 

factors the benefits of considering an exponential trend are quite similar (0.97% and 1.47%). 

The data with an Other frequency are best forecasted by LRL, especially when the original 

data are used. However, for the rest of the frequencies, the exponential model is by far the 

most accurate one, especially among the yearly and monthly data with an average 

improvement of 2.08% and 1.49%, respectively.  



24 

 

Figure 4. Chart flow of the proposed methodological framework including three individual 

procedures: (i) deseasonalization using shrinked seasonal factors, (ii) smoothing and (iii) 

forecasting through a generalized and simplified Theta model of defined trend type. 

 

It is also notable that, in general, smoothing seems to be far more effective for the case of 

quarterly and monthly data, leading to minor improvements or even decreasing the accuracy 
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of the models when dealing with yearly and other data. For instance, although the average 

performance of the models is increased by 3.03% and 1.88% for quarterly and monthly data, 

respectively, it is decreased by 0.87% and 2.51% for the case of yearly and other time series. 

This is an interesting conclusion mainly related with the noise and the fluctuations of the 

data which are more likely to be observed in higher frequencies. Thus, smoothing should be 

mainly used among noisy time series to help us better identify the signal of the data (level 

and trend), and be omitted when the time series is already smoothed.  

Another encouraging finding is the fact that LRL and EXP are the best performing models 

in only 19% and 41% percent of the series. This means that, in 40% of cases the data are best 

modeled by another curve, such as the inverse one, which holds the best performance across 

30% of the series. Moreover, the relative performance of the models is not affected when 

shrinked seasonal estimators are applied. In this respect, it becomes quite clear that, 

although in total the rest of the models increase the forecast error, if a selective model was 

applied for defining the most appropriate trend type, significant gains would have been 

achieved. 

Table 2: Performance of the linear and nonlinear forms of Theta method according to sMAPE per time 

series frequency – Classical Decomposition applied. 

Trend 

Type 

Yearly Quarterly Monthly Other Total Mean 

Rank 

1st Rank 

(%) 

Original Time Series 
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Theta - 

OP 

16.90 8.96 13.85 4.41 12.73 

- - 

LRL 16.73 9.29 13.87 4.92 12.81 3.07 18.68 

EXP 16.44 9.28 13.68 5.31 12.68 3.05 41.23 

LOG 17.20 9.60 14.00 5.87 13.11 3.77 3.96 

INV 17.73 9.81 14.25 6.27 13.42 4.25 28.37 

POW 16.86 9.56 14.05 5.96 13.05 3.63 3.93 

COM 16.46 9.40 13.82 5.62 12.80 3.23 3.83 

SES 17.77 9.79 14.26 6.28 13.43 - - 

HOLT 19.15 11.23 15.82 4.67 14.73 - - 

Smoothed Time Series 

LRL 16.80 9.04 13.71 5.07 12.70 3.10 18.68 

EXP 16.39 8.98 13.48 5.46 12.51 3.07 40.76 

LOG 17.44 9.31 13.73 6.01 12.97 3.78 2.00 

INV 17.97 9.51 13.88 6.40 13.23 4.25 31.10 

POW 17.12 9.25 13.72 6.10 12.88 3.57 3.46 

COM 16.70 9.12 13.61 5.77 12.69 3.23 4.00 

SES 18.06 9.53 13.89 6.42 13.26 - - 

HOLT 17.59 11.32 17.01 4.86 15.00 - - 
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Table 3: Performance of the linear and nonlinear forms of Theta method according to sMAPE per time 

series frequency – Shrinkage estimators applied. 

Trend 

Type 
Yearly Quarterly Monthly Other Total 

Mean 

Rank 

1st 

Rank 

(%) 

Original Time Series 

LRL 16.73 9.28 13.79 4.92 12.77 3.06 18.85 

EXP 16.44 9.27 13.62 5.31 12.65 3.05 41.06 

LOG 17.20 9.59 13.94 5.87 13.08 3.77 4.03 

INV 17.73 9.81 14.20 6.27 13.39 4.25 28.31 

POW 16.86 9.56 14.00 5.96 13.03 3.64 3.86 

COM 16.46 9.39 13.76 5.62 12.77 3.23 3.90 

SES 17.77 9.78 14.21 6.28 13.40 - - 

HOLT 19.15 11.23 15.74 4.67 14.69 - - 

Smoothed Time Series 

LRL 16.80 9.04 13.65 5.07 12.67 3.09 18.68 

EXP 16.39 8.98 13.43 5.46 12.48 3.06 41.03 

LOG 17.44 9.31 13.68 6.01 12.94 3.78 2.33 

INV 17.97 9.50 13.84 6.40 13.20 4.25 30.87 

POW 17.12 9.25 13.67 6.10 12.86 3.58 3.33 
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COM 16.70 9.11 13.56 5.77 12.66 3.24 3.76 

SES 18.06 9.52 13.85 6.42 13.23 - - 

HOLT 17.59 11.30 17.02 4.86 15.00 - - 

 

Additionally, as the results indicate, smoothing has proven to be quite beneficial for all of 

the models considered, leading to an improvement from 0.88% to 1.43%, depending on the 

trend type considered (an average of 1.2%). This leads even some of the generally 

misperforming models to outperform the classic model of Theta, such as the logarithmic, the 

power and the inverse model for the monthly data. We also note that, although the accuracy 

is improved in total numbers when shrinkage of seasonals is considered, the benefits of 

smoothing the series remain the same. Thus, we conclude that the gains of applying 

shrinkage factors and smoothing the data are independent. Once again the ranks for the 

smoothed time series are very close with that of the original data. In this regard, identifying 

the type of trend remains a crucial issue and smoothing can be used beforehand to simplify 

the selection of Y0 and better estimate the short- and long-term components of the series. 

Regarding the shrinkage of the seasonal factors, the benefits in forecasting accuracy seem 

to depend on the frequency of the data. The improvement is higher for the monthly time 

series (0.41%) than the quarterly data (0.06%) leading in total to an average improvement 

of 0.22% across the data set. The benefits also seem to be independent of the trend type 

considered and the appliance of the smoothing process. 

We also mention that, although in the literature the combination of individual models 

usually leads to improved forecasting accuracy, in this study the combination of the five 

models seems to be an inadequate choice. This further enhances the point made earlier 
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regarding the importance of selecting the best model per series, since a simple combination 

of all of them leads to decreased forecasting performance overall. The poor performance of 

the combination is partially explained through the ranks of the individual models. For 

instance, LOG and POW are the best choice only in 6% of the data set and significantly worse 

than the rest of the models in terms of mean rank.  

Another important finding of the study is that, although smoothing greatly improves the 

performance of SES (by 1.27%), it simultaneously decreases the forecasting accuracy of Holt 

exponential smoothing. This can be explained as follows: when we eliminate the noise of the 

data, on the one hand we end up with a more constant and representative running level for 

the time series considered – good for determining the forecasting origin-, and on the other 

hand we emphasize the local curvatures of the data (see for example Figure 3). Thus, if the 

forecasting model used considers among others the running trend of the data, estimated 

slope will be way too strong leading to significantly optimistic or pessimistic forecasts. For 

example, Holt on smoothed time series will work as a local regression model. However, this 

is not true for the case of the Theta method, as 𝑌0 is estimated using the whole sample (long-

term trend). Therefore, Theta is not influenced by the most recent curvatures of the series 

(short-term trend). Consequently, in contrast to trended exponential smoothing, the long-

term trend pattern identified through the Theta decomposition framework, combined with 

the improved forecasting origin provided through smoothing, will lead to improved 

forecasting performance. Additionally, shrinkage of seasonal indexes seems to be model-

independent, systematically improving the accuracy of all the forecasting models used. 

To conclude, in case both shrinked seasonal factors and smoothed series are considered, 

an average improvement of 1.42% is reported across the models (from 1.11% to 1.62% 
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depending on the type of trend selected). The benefits of this approach are greater for the 

monthly and quarterly data, mainly due to the shrinked seasonal factors applied to these 

frequencies. The fact that smoothing eliminates the noise and defines a better forecasting 

origin, may also partially explain why the approach performs better for higher data 

frequencies. The best performance is achieved when the exponentially trended Theta model 

is applied to the smoothed time series using the shrinked seasonal factors instead of the ones 

produced by the classical decomposition method. 

At this point it is worth mentioning that the hybrid method proposed can easily be 

extended for local models where data are read and used over a moving window. To do so, 

we used the first 3*f observations of each time series to train the Theta models, with f being 

the frequency of the time-series. We repeated the process over a rolling window (shift one 

point at a time) until no more observations were available. The sMAPE was estimated across 

the windows for each time series according to the original experimental setup, and then 

averaged to evaluate the models.  

The size of the training sample was selected given that, to estimate the seasonal factors, 

at least three periods of data are required. As seen in Table 4, the relative results are pretty 

much the same with the ones of the previous study for the case of the Quarterly and Monthly 

data, where a significant amount of data is available for training and testing the local models. 

Yet, the absolute error was increased over the series, mainly because fewer data were used 

to estimate long-term forecasts. Thus, we conclude that local models can benefit from the 

proposed methodology, as smoothing and damped seasonal factors tend to improve 

forecasting accuracy. Additionally, a simple combination of the individual models would be 

a robust choice for extrapolation. 
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Table 4: Performance of the linear and nonlinear forms of Theta method according to sMAPE per time 

series frequency when applied local y– Original approach vs. proposed one. 

Trend 

Type 

Quarterly Monthly Total Quarterly Monthly Total 

Original Time Series 
Smoothed Time Series and 

Seasonal Estimators Applied 

LRL 10.78 15.35 13.77 10.84 15.31 13.77 

EXP 10.67 15.17 13.61 10.71 15.06 13.56 

LOG 11.07 15.25 13.81 10.97 14.95 13.57 

INV 11.29 15.32 13.93 11.15 15.00 13.67 

POW 11.02 15.24 13.78 10.92 14.93 13.54 

COM 10.81 15.13 13.64 10.81 14.95 13.52 

 

6. Conclusions and future extensions 

In this paper, we aspire to pave the way for researchers, when in quest of new hybrid 

methods, where they utilize and combine past successful approaches: the elements being, 

primarily the Theta method, but also good-old-traditional time series smoothing and 

shrinkage through the seasonal adjustment process.  

First, we employ the decomposition approach of the Theta method, but instead of 

considering a linear trend we allow for more flexibility and experiment with a set of 

nonlinear trends. Then, instead of applying the method on the raw data, we apply smoothing 

first. Finally, instead of just applying classical seasonal decomposition, we employ the well 

celebrated shrinkage approach of Miller and Williams (2003) to the derived indices. The 
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results are very promising and we believe they should stimulate academics, practitioners 

and most importantly FSS software designers. 

The Theta method has long been considered as a robust and accurate method for 

forecasting, especially in the cases of monthly and microeconomic time series. Since its first 

appearance in the literature, many suggestions have been made in the direction of 

generalizing its use either by involving more Theta lines or by optimizing the θ coefficient, 

which is responsible for adjusting the linear slope used for drifting the forecasts. In the 

present paper, we suggest that to further generalize its use, apart from the θ coefficient, 

nonlinear forms of trend should be considered. In this respect, we identify cases where 

nonlinear trend can be proven beneficial and provide a generic formula for modifying its 

drift accordingly. Five different types of trends are considered leading to an equal number 

of models with the same complexity of the original one. These can be used for adequately 

modeling any basic pattern of data. 

The overall performance of our hybrid approach is validated using the data set of the M3-

Competition taking into consideration the frequency of the time series. The results show that 

exponential trended model outperforms in total the classic form of the Theta method. 

However, for specific sub-sets the linear and other nonlinear forms of it are more accurate. 

This remark is very promising since it demonstrates that in practice there is no dominant 

model and that many types of trend should be considered when parameterizing its general 

form, based on the patterns of the data. This becomes more clear given that the exponential-

trended model displays the top performance for 40% of cases, with the linear- and inverse-

trended models following with 20% and 30%, respectively. 
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Since the Theta method is based on decomposing the data for highlighting their short- 

and long-term components, we also suggest that a smoothing process must be applied before 

forecasting. In this regard, the components of the series, and mainly the level of the data, are 

better captured. This technique will not only enhance the performance of the individual 

models, but also lead to less complex ones, by simplifying their parameterization. The results 

show that the forecasting accuracy of all the Theta models is boosted when smoothing is 

applied, improving their performance by more than 1.2%. The benefits are greater for high 

frequency data. This can be explained if we consider that noise and fluctuations are more 

likely to be observed on such type of time series. We also note that the relative performance 

of the models is maintained after smoothing, which means that smoothing should be used a-

priori for improving the estimations of the models. Yet, selection of the most appropriate one 

remains an issue.   

The ability of smoothing to enhance forecasting accuracy through the identification of a 

better level, is proven among others though the improved performance of SES. However, 

smoothing should not be applied in the case of forecasting methods which consider the 

running trend of the data (e.g. Holt exponential smoothing). This is because smoothing tends 

to emphasize local curvatures, leading to strong slope estimates and, therefore, to over-

optimistic or pessimistic forecasts. In contrast, it becomes more than helpful for models 

considering the long-term trend of the data (e.g. Theta). 

Another important finding of our study is that by using shrinked seasonal factors instead 

of the ones produced by the classical decomposition method, additional improvements can 

be achieved, especially for monthly time series. Moreover, the fact that the improvement is 

independent of the time series (smoothed time series or not) and the forecasting model used, 
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indicates that decomposing is a prerequisite when trying to improve the accuracy of a 

forecasting model in a simple, yet robust way. 

Regarding the limitations of the proposed method, one short coming is that interest in 

predicting short term movement of the time series cannot be important since this movement 

has been smoothed out in the adjusted time series. Another short coming is that without a 

model, there is no way to compute prediction intervals with a sound statistical basis and 

approximations must be used instead. To overcome the issue of analytically deriving 

prediction intervals, a simulation process can be applied instead to iteratively generate 

multiple future sample paths. In this respect, the forecast distribution of the hybrid method 

is empirically, yet adequately defined. This is a common practice applied e.g. for the case of 

nonlinear autoregressive models, such as neural network models and other machine 

learning methods. 

A very fertile area for research is the multivariate expansion of this hybrid method. For 

example, this could be done by exploiting the bivariate version of the Theta method 

(Thomakos and Nikolopoulos, 2015) but applied first on smoothed data rather than the 

original one: if the data are seasonal one can also experiment by damping the seasonal 

factors after the bivariate extrapolation of the deseasonalized time series. 

In our point of view, through the suggested modification, the method can be transformed 

into a completely dynamic decomposition method offering numerous modeling 

opportunities. Taking into account the results of our study and the conclusions of previous 

relative works, we believe that selecting the most appropriate trend type through e.g. a 

validation technique, could be very beneficial. The advantages could be even greater when 

combined with methods optimizing the coefficient of Theta. This is part of our future 
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research. Moreover, we are very interested in further investigating the impact of smoothing 

to on the forecasting performance of the Theta method and other forecasting models, as well 

as identifying approaches for optimally selecting the parameters of the process. This could 

offer additional insights regarding the way the Theta method responds and reveal new 

opportunities for optimization. Finally, the hybrid approach could be expanded for local 

models where data are read and used over a moving window and further test its 

performance when working with few and most recent data. 
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Appendix 

Notations for the parameters: 

 

Yt:  The data of the time series at point t 

𝒀𝒕̂:  The forecast of the model at point t 

𝒀́𝒕:   The data of the smoothed series at point t 

θ:  Τhe coefficient of the Theta model 

𝒀𝒕
𝜽:  The Theta line calculated for a coefficient of θ at point t 

𝒀′′:  The second differences of a time series 

a:  The intercept of the deterministic model considered 

b:  The slope of the deterministic model considered 

𝒘𝜽:  The weight chosen for Theta line θ 

𝑳𝑽𝒕:  The local variance estimated for the time series at point t 

s:  The shrinkage parameter used for smoothing the data 
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