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a b s t r a c t 

Industrial Cyber-Physical Systems have benefitted substantially from the introduction of a range of tech- 

nology enablers. These include web-based and semantic computing, ubiquitous sensing, internet of things 

(IoT) with multi-connectivity, advanced computing architectures and digital platforms, coupled with edge 

or cloud side data management and analytics, and have contributed to shaping up enhanced or new data 

value chains in manufacturing. While parts of such data flows are increasingly automated, there is now a 

greater demand for more effectively integrating, rather than eliminating, human cognitive capabilities in 

the loop of production related processes. Human integration in Cyber-Physical environments can already 

be digitally supported in various ways. However, incorporating human skills and tangible knowledge re- 

quires approaches and technological solutions that facilitate the engagement of personnel within techni- 

cal systems in ways that take advantage or amplify their cognitive capabilities to achieve more effective 

sociotechnical systems. After analysing related research, this paper introduces a novel viewpoint for en- 

abling human in the loop engagement linked to cognitive capabilities and highlighting the role of context 

information management in industrial systems. Furthermore, it presents examples of technology enablers 

for placing the human in the loop at selected application cases relevant to production environments. Such 

placement benefits from the joint management of linked maintenance data and knowledge, expands the 

power of machine learning for asset awareness with embedded event detection, and facilitates IoT-driven 

analytics for product lifecycle management. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

While industrial cyber-physical systems ( Colombo, Karnouskos,

hi, Yin, & Kaynak, 2016 ) bring together the physical and digital

orlds in manufacturing, the human integration in production en-

ironments has only recently began receiving increased attention

 Nunes, Zhang, & Silva, 2015 ). Terms such as “Operator 4.0” are em-

loyed to denote the vision of human empowerment with Industry

.0 technologies ( Romero et al., 2016 ). Within such a vision, the co-

xistence of human and engineering actors is viewed through the

rism of the nature of their interaction in various forms of physi-

al and digital augmentation of human activity. Many concepts and

umerous practical implementation examples of supported human
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ction in industrial environments are reported in the literature.

owever, the actual cognitive contribution of human activities to-

ards the operation of technical systems, although acknowledged

o be important in sociotechnical systems, it remains less well ex-

lored. 

Arguably, the effectiveness of industrial Human In the Loop

HIL) Cyber Physical Systems (CPS) is linked to the ability to cap-

ure and act upon the context of such interaction in an enterprise

ystem ( El Kadiri et al., 2016; Nunes et al., 2015 ). The aim of this

aper is to introduce an approach for enabling industrial HIL in

PS, as a contributor to successful integration of sociotechnical sys-

ems. Starting form an outline of research efforts related to HIL in

PS with an application focus on product and asset lifecycle man-

gement, the paper outlines key emerging HIL-CPS concepts and

elevant cognitive capabilities, highlights the role of context infor-

ation management, and offers exam ples of placing the HIL at

elected relevant application cases. Data and knowledge flows in

uch activities need to be taken into account and methods for the

oint management of linked data and knowledge are introduced as
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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a key mechanism for establishing shared context, which in turn is

a key ingredient for successful HIL-CPS engagement in industrial

environments. The aim is not to seek to replace the human factor

but to empower it with more effective integration of human cog-

nitive capabilities within technical systems. 

The rest of the paper is structured as follows. Section 2 dis-

cusses related work on data flows in Product Lifecycle Manage-

ment (PLM), HIL in CPS, as well as Linked Data, Knowledge,

Context Management and Visual Analytics. Section 3 introduces a

linkage between HIL-CPS and human cognitive capabilities and the

concept of blending sociotechnical systems with advanced capabil-

ities for interaction, supported by visual analytics and a context

management architecture that includes the handling of data, meta-

data information, and knowledge, together with appropriate busi-

ness logic. Section 4 presents the key concepts implemented to

demonstrate HIL on application cases relevant to product and asset

lifecycle management. The first one employs HIL for Linking Data

and Knowledge Management and for enhancing machine learn-

ing capabilities and integrates operating stage technical systems

(condition monitoring) with design stage knowledge (e.g. Failure

Modes, Effects, and Criticality Analysis – FMECA). The second case

engages HIL with visual analytics to communicate condition mon-

itoring outcomes in visually relevant ways for augmenting hu-

man capabilities when performing analytics-driven decision tasks.

Section 5 concludes with an outline of the main contributions and

pointers for further research. 

2. Related work 

While much emphasis has been placed on increasing levels

of automation in production systems, the case for strengthening

the role of HIL is growing stronger, as emerging technology en-

ablers empower human operators to become more effectively in-

tegrated in production activities ( Romero et al., 2016 ). Such inte-

gration makes human actors and their cognitive capabilities more

engaged with data, knowledge, and decision process chains in pro-

duction environments and PLM activities. Therefore research needs

to consider the relevance of data flows when integrating HIL in

PLM, the technology enablers that support more effective inte-

gration of human cognitive capabilities in CPS, the role of linked

data and knowledge in supporting context information manage-

ment and establishing shared context to facilitate the integration

of HIL in technical systems, including the empowering impact of

visual analytics as an interactive approach to HIL in decision mak-

ing. These are discussed next. 

2.1. Data flows in PLM 

The early vision of closed loop product lifecycle management

involved creating information loops between different product life-

cycle phases, namely Beginning of Life (BoL), Middle of Life (MoL),

and End of Life (EoL) activities ( Kiritsis, Bufardi, & Xirouchakis,

2003 ). Consequent research focused on facilitating information ex-

changes between the different lif ecycle activities ( Jun, Kiritsis, &

Xirouchakis, 2007 ). Physical data aspects of such exchanges were

handled with radio frequency identification (RFID), introducing the

concept of product embedded information devices (PEID) ( Kiritsis

et al., 2008 ). This has supported the introduction of smart products

or assets (Brintrup et al., 2011; McFarlane, Sarma, Chirn, Wong,

& Ashton, 2002 ; Meyer et al., 2009 ), a key enabler for the joint

handling of operations, maintenance, and logistics (VanBelle et al.,

2011) but also of monitoring and control functions (Meyer et al.,

2009). However, such joint handling required an upgrade in the

level of data exchanges well beyond basic product data ID ex-

changes. This upgrade could be served by further advancements
oT technologies and collaborative digital engineering systems

 Kiritsis, 2011 ). 

Among the key challenges in IoT-enabled product and asset

ifecycle management is the integration of data, information and

nowledge from disparate and heterogeneous sources. This renders

he conventional approach to integrating data through a common

nterprise data warehouse increasingly problematic in modern big

ata enterprise environments ( Vathy-Fogarassy & Hugyák, 2017 ).

nstead, the emerging data management pattern is that of retriev-

ng relevant data from disparate sources and seeking to integrate

hem at the point of end consumption. However, the often hetero-

eneous nature of the data creates further challenges to such ap-

roaches and has led to research effort s to establish semantic in-

eroperability of connected products, supported by developments

hat looked into how semantic ( Cassina et al., 2008 ) and ontol-

gy based modelling ( Matsokis and Kiritsis, 2010 ) can enable such

roduct lifecycle data exchanges. This thread of research has led to

tandardized, and semantically enhanced product lifecycle data ex-

hanges ( Framling et al., 2014; Kubler et al., 2015 ). IoT connectivity

onetheless gives rise to a multi-layered view of data exchanges,

hich requires a mapping of the IoT information processing layers

ith product data modelling, from the physical to the application

ayer ( Framling, Kubler, & Buda, 2014 ). Product data interoperability

herefore is relevant across the IoT stack and involves both lower

ier data, such as sensor measurements, but also higher level infor-

ation ( Yoo et al., 2016 ), in order to enable product data integra-

ion in proximity to the point of data consumption. 

Among the prime interests in closed loop PLM is feeding MoL

nformation back to BoL activities, so as to enable a better under-

tanding of how specific design choices might perform in opera-

ion and drive product design enhancements accordingly. The na-

ure of the required data acquisition, transmission, management,

nd processing varies from case to case and may create significant

hallenges. For example, raw sensed data transmission may require

onsiderable bandwidth, while radio frequency (RF) operation may

e constrained by the nature of the surrounding environment. The

usiness value of embedded intelligence for smart services was

ecognized even before the dawn of IoT ( Kaplan et al., 2005 ). Tech-

ological solutions involved sensor networking protocols, such as

hose linked to IEEE 802.15.4, and have been adopted in wireless

ensor network applications for asset monitoring ( Willig, 2008 ).

mbedded processing of locally acquired measurements on sensor

odes enabled asset intelligence beyond identification and track-

ng ( Liyanage, Lee, Emmanouilidis, & Ni, 2009 ). Such processing en-

bles assets and products to offer a higher level of self-awareness

 Katsouros, Koulamas, Fournaris, & Emmanouilidis, 2015 ), consis-

ent with an agent-based view of intelligent cyber-physical entities

 Leitão et al., 2016 ). Such cyber-physical monitored assets feature a

asic cycle of perception, analysis, decision, and (re)action. 

Coupling internetworking connectivity with local, distributed

nd cloud computing, together with semantically enriching prod-

ct information, has been recognized as key contributor towards

onnected and intelligent products in enterprise systems ( Kiritsis,

011 ). Different terms, such as product avatars ( Wuest, Hribernik,

 Thoben, 2015 ), shadows ( Vermesan & Friess, 2016 ), or digi-

al twins ( Vermesan et al., 2011 ) have all been employed to de-

cribe the cyber version of a physical asset, acting as a smart

gent ( Leitão, Member, Ma, & Vrba, 2013 ), or intelligent prod-

ct in a cyber-physical world of interconnected physical entities

 Leitão et al., 2016 ). Accompanying physical assets with their cyber

ounterparts ( Wuest et al., 2015 ) enhance the efficiency of modern

nterprise information systems, ( El Kadiri et al., 2016 ). Communi-

ating product lifecycle to the application layer of enterprise sys-

ems is best achieved with application layer relevant means, for

xample with visual product representations. For example, MoL

elevant product data can be superimposed to BoL product views,
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uch as a 3D product CAD model ( Emmanouilidis, Beroncelj,

evilacqua, Tedeschi, & Ruiz-Carcel, 2018 ). Thus, product data are

ade available to users as a visual product design representation,

iding the understanding of maintenance related concepts, such as

he occurrence of failure modes. Such an approach can be useful

hen dealing with real data streams from products as a natural

isual analytics extension to closed loop PLM. What is more, it en-

bles the integration of HIL closing PLM information loops via en-

iched data and knowledge ( Wuest et al., 2015 ). The next section

ooks into more detail on how this integration is being pursued in

ndustrial CPS. 

.2. Human in the loop and cyber physical systems 

Most research efforts on data exchanges in PLM have focused

n automated data exchanges, while human-contributed data and

nowledge has received far less attention. However, HIL integration

equires further development of methods and technological solu-

ions as it is now being recognised to be a major enabler for CPS

 Nunes et al., 2015 ). Recently, human integration in industrial envi-

onments is receiving increasing attention, with terms such as “Op-

rator 4.0” used to denote the vision of human empowerment with

ndustry 4.0 technologies ( Romero et al., 2016 ). However, while the

oncept of ‘people-centric’ IoT has been highlighted in a range of

pplication domains and its cognitive contribution in empowering

nteraction between human and non-human actors is emphasized

n recent studies ( Feng, Setoodeh, & Haykin, 2017 ), the nature of

uch interaction in industrial environments is still primarily con-

ned to intelligent operator support. Indeed, the actual cognitive

ontribution of human activities towards the operation of techni-

al systems, although acknowledged to be of importance, is still

ess well explored. 

When considering human integration in CPS, significant added

alue may arise as a result of the interaction between human and

on-human actors. Recent research has proposed the integration

f HIL of critical systems and processes, with the role of techni-

al systems being to prevent cognitive overload for human oper-

tors, rather than replacing or replicating their function. The ap-

roach combined a supervisory loop for situational awareness with

 dedicated machine learning approach ( Gross et al., 2017 ). HIL

lso enhances decision making capabilities. Specifically, a human

perator receiving a range of automated decision recommenda-

ions, needs to identify an appropriate recommended action and

pply it to physical assets. This can result in IoT-driven intelligence,

here the iterative nature of the HIL interaction, aided by natural

nteraction interfaces (e.g. natural language-based, visual analyt-

cs), as well via semantically enriched abstraction of data through

nowledge, greatly enhance human decision capabilities ( Ma et al.,

017 ), but also machine learning tasks in diagnostics ( Subramania

 Khare, 2011 ). 

Further scenarios of HIL or more broadly Human in the Mesh

nvolvement in industrial environments have been proposed, in-

luding interaction with ERP, MES, SCADA, simulation, analytics,

ata management, as well as lower level shop floor activities

elivering flexibility in CPS-enabled manufacturing environments

 Fantini et al., 2016 ). Identifying appropriate ways to make such

nteraction more effective and better integrate human with non-

uman actors is still open to research but methods and tools to

lign this integration with human cognitive capabilities is a natu-

al promising path. The next section discusses options to achieve

uch integration. 

.3. Linked data, knowledge, context, and visual analytics 

The efficiency of human cognitive activities and therefore of

IL in CPS crucially depends on the human actor having a sound
nderstanding of the context of the targeted problem or situation.

n connected factories, human actors, as well as IoT-enabled pro-

uction equipment and environments create production and prod-

ct – related streams of data. In order to efficiently manage such

ata produced by multiple production sites and stakeholders, so-

utions for scalable data processing are needed. Context Informa-

ion Management has emerged as a key concept in managing such

omplexity in IoT-enabled environments ( Perera, Zaslavsky, Chris-

en, & Georgakopoulos, 2014 ). The main principle is that in order to

nable efficient aggregation and processing of data from disparate

ources, only contextually relevant data need be made available

t the point of data or services consumption. While domain spe-

ific context greatly varies depending on the targeted application,

igher level context can be categorized to fall under certain broad

ategories, such as asset, user, business, environment and system

ontext. 

In industrial CPS, context information management can deter-

ine the situational circumstances of decisions ( El Kadiri et al.,

016 ). In product and asset lifecycle management, high-level con-

ext can be classified according to the aforementioned broad cate-

ories with domain-specific semantics, as illustrated in Fig. 1 . Each

ontext category comprises parameters which can be acquired or

omputed and their semantic interpretation would impact on the

ay a specific situation needs to be assessed. For example, rele-

ant information and services depend on the asset under consid-

ration. Therein, the asset context may be determined by consid-

ring the status of the modelled asset in the asset hierarchy, its

unction within the production system, historical data about its op-

ration, including prognostics and health management (PHM), as

ell as reliability – related maintenance knowledge, such as Fail-

re Modes, Effects, and Criticality Analysis (FMECA), or Fault Tree

nalysis (FTA). To resolve the context of an event or interaction in

 sociotechnical system, other types of context must be taken into

ccount ( Fig. 1 ). The detailed and domain specific modeling of the

road context categories may be further diversified depending on

he exact nature of the application. 

Context determination depends on linking data and knowledge

nd this is in line with the semantic web paradigm of linked data

nd product knowledge ( Pistofidis, Emmanouilidis, Papadopoulos,

 Botsaris, 2016 ). The real value of context understanding lies with

he quality of data and knowledge upon which analysis, decisions,

nd actions are exercised. For example, ( Fig. 2 ) raw data can be of

ittle value if there is a lack of understanding about their prove-

ance and underlying context. The figure illustrates that annotated

ata (information) can be more valuable if adequately analysed to

btain insights about the underlying generating processes, leading

o knowledge-enhanced data, which are more likely to drive action

ecommendations. A sound understanding of the data context and

verall situation awareness may produce additional insights and

ead to more informed decisions or changes (e.g. supplier selection

n Fig. 2 ). The enhanced value of product data across such a data

alue chain justifies the viewpoint that data is to be considered

 value adding asset itself ( Kubler et al., 2015 ). Context informa-

ion management is a semantically scaled extension of information

usion for IoT ( Snidaro, García, & Llinas, 2015 ), enabling links be-

ween human and non – human actors. Therefore, such links facil-

tate more effective information flows, better interfacing between

ctors, and allow for a more efficient integration of HIL in produc-

ion and specifically PLM. 

A Visual Analytics environment can be a significant enabler

f such context-driven interaction. From the early years of ex-

loratory data analysis ( Tuckey, 1962 ) ( Tuckey, 1977 ) all the way

o current big data analytics ( Idreos et al., 2015 ), the quality and

alue of data-driven decision making depends among other on

ata pre-processing initiated by human experts. Whereas computer

ata analysis in the past had a very limited set of options for
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Fig. 1. Context categories in product and asset lifecycle management. 

Fig. 2. Context and data value. 
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user interaction with data, current visual analytics greatly upgrade

interaction capabilities, steering expert judgement through visu-

ally presented aspects of data characteristics ( Thomas and Cook,

2005 ). Visually enhanced data presentation makes it easier for

users to comprehend the data context compared to reviewing raw

data ( Endert et al., 2014 ). Situational awareness and context man-

agement also play a key role and can be combined with Visual

Analytics, for example, aiming at combining automated process-

ing through condition monitoring with human contributed ob-

servations, as a means for context-based information fusion for

diagnostics ( Emmanouilidis et al., 2016 ). Furthermore, situational

awareness is invaluable in resolving context ambiguity in han-

dling industrial alert and alarm management, which if unresolved

can overwhelm human operators with unmanageable numbers of

alerts ( da Silva, Pereira, & Gotz, 2016 ). 

The overview of related research highlights that there is much

to be gained through the integration human and non-human actors

in sociotechnical systems but for such integration to become more

effective, further research is needed to align such actors not only

by means of technology integration but also by appropriate designs
or seamless data, information, knowledge, and decision flows. The

ext section introduces the concept of placing such designs within

he viewpoint of cognitive capabilities in sociotechnical systems. 

. Cognitive capabilities in sociotechnical systems 

Even with the integration of a range of Industry 4.0 technolo-

ies, production environments are still far below the level of intel-

igence normally associated with human actors. While non-human

ctors exhibit some level of intelligent function, the active pres-

nce of a human actor enables more powerful cognitive capabil-

ties to be expressed in production activities. Such activities can

e considered to draw parallels with the capabilities of cognitive

rchitectures ( Langley, Laird, & Rogers, 2009 ). While such capabili-

ies have been studied regarding human cognitive abilities and ar-

ificial cognitive systems, the potential for joint sociotechnical sys-

ems, which both amplify human cognitive abilities and expand the

apabilities of technical systems, have only recently gained atten-

ion ( Arica et al., 2018 ). Activities which are closer to becoming in-

ustrial practice involve a subset of cognitive capabilities and are
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Fig. 3. HIL-CPS cognitive capabilities. 
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inked to sensing, state inference, action generation and execution

n a form of HIL intelligence in CPS systems ( Nunes et al., 2015 ). 

This paper argues that the integration of such cognitive capa-

ilities can also be exploited in industrial information processing

ycles. Fig. 3 illustrates the concept of integrating cognitive abili-

ies in sociotechnical systems to deliver added value outcomes for

ndustrial environments. 

While in the figure outcomes are highlighted for shop floor, op-

rations, and management, HIL integration has broader potential

n bringing the range of human cognitive capabilities in the whole

roduction and product lifecycle management activities, joining

he power of CPS entities with production, operational, and infor-

ation technologies. For such a potential to be realised, a range

f issues in integrating individual human capabilities within tech-

ical systems, still need to be resolved. For example, the lack of

ufficiently flexible interaction interfaces, despite many advances

t the perception and recognition level, is still a significant hurdle.

ecent studies have shown the dominance of intuitive cognition

ver proper reasoning and decision making, a finding that calls

or further research in human-automation interaction in industrial

ettings ( Patterson, 2017 ). To this end, recent effort s f ocused on

odelling human activities within CPS systems ( Fantini, Pinzone, &

aisch, 2018 ), identifying specific challenges on: (a) understanding

nd controlling the interaction between workers and CPS entities;

b) how to capture the added value of human-contributed activity;

nd (c) how to take into account and match a specific situational

ontext with skills and characteristics of workers. Context Informa-

ion Management is a key concept aimed at situation awareness

nd is therefore appropriate for addressing the above highlighted

hallenges. 

CPS as well as product and asset lifecycle management activities

ncreasingly generate a very significant amount of data. While au-

omated data analytics expectations are high, there are still many

ituations wherein placing the HIL of analytics is highly benefi-

ial. Enhancing human cognitive capabilities in analysing data via

elevant software tools is linked to the concept of “the human is

he loop” ( Endert et al., 2014 ), indicating the valuable role of hu-
an analysts in integrating their cognitive abilities when interact-

ng with visual analytics environments. A conceptual view of HIL

n the Visual Analytics process is introduced in Fig. 4 . 

In a typical visual analytics scenario, data are managed, aggre-

ated, and retrieved through adequate data management business

ogic. Data visualisation options are offered through an analytics

izard, offering different data visualization and exploration op-

ions and retrieving the most relevant ones. The user can inter-

ct with the analytics and visualization tools to direct data pro-

essing, enrich data, process them to obtain prioritisation ranking,

nd in case of critical unexpected events being detected, to issue

elevant alerts, or otherwise routinely present summarised infor-

ation with relevant dashboards. This process augments part of

he cognitive processing cycle presented earlier, including recog-

ition and categorisation, interaction, perception and situation as-

essment, monitoring and prediction, as well as decision making. 

Having introduced the key concepts of human cognitive capa-

ilities in sociotechnical systems, highlighting their role in HIL-CPS

nd Human in the Visual Analytics loop, the next section presents

he implementation of such concepts on selected application cases.

. Human-in-the-loop in production environments 

.1. Introducing application cases for HIL in production environments 

The role of HIL is highlighted in two application cases, both rel-

vant to production environments. They employ condition moni-

oring and they involve some common design elements, but in a

anner to serve different application needs. In that sense, they

eature diverse context and implementation choices and they aim

o enhance joint sociotechnical capabilities in distinct ways. The

rst case actively involves HIL for Linking Data and Knowledge

anagement and for enhancing machine learning capabilities in

rder to integrate operating stage technical systems (condition

onitoring) with design stage knowledge (e.g. Failure Modes, Ef-

ects, and Criticality Analysis – FMECA). The second case engages

IL with visual analytics to communicate condition monitoring
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Fig. 4. Human in the visual analytics loop. 
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outcomes in visually relevant ways for augmenting human capa-

bilities when performing analytics-driven decision tasks. The first

case illustrates the amplification of machine learning and condi-

tion monitoring capabilities via HIL, while the second one is a case

wherein human capabilities when interacting with technical sys-

tems are themselves enhanced. Even though the direction of the

amplification between technical and human capabilities is differ-

ent, the ultimate result in both examples is a joint sociotechnical

system capabilities enhancement. 

In both cases the technical system employs vibration condition

monitoring to associate extracted vibration signal parameters

to machine or component condition. The first case additionally

employs machine learning to learn this association. The ability

of machine learning to associate new patterns to conditions not

yet covered by historical data or to bias learning on the basis of

human expert knowledge is aided by human interaction. While

blind data-driven machine learning might eventually learn such

additional associations, this natural form of human intervention

makes the learning process more focused. The extracted vibration

features in both cases were as in Katsouros et al. (2015) and

comprised the signal RMS, skewness, kurtosis, shape factor,

crest factor, peak value and impulse factor. A stream of data

acquired in this way is a timestamped sequence of vectors x i ∈ R 

7 ,

x i = [ rm s i , s k i , k i , s f i , c f i , p i , i f i ] 
T with i = 1 , . . . , K, wherein the

vector parameters correspond to the extracted features from the

measurement signal described above, and K denotes the number

of samples in a data stream. 
.2. Linked data, knowledge, and machine learning 

The data and knowledge processing chain in maintenance prac-

ice seeks to upgrade the added value of collected data to drive

ore effective evidence driven decision making. Event detection,

iagnostics, prognostics, and decision support for maintenance

ave received much attention, but one of the areas where fur-

her research is needed relates to the way such solutions can en-

ble and indeed benefit from HIL interaction. In this example, HIL

oncepts are employed to fuse automated data processing with

uman contributed knowledge in maintenance decision support

 Pistofidis et al., 2016 ). Evidence driven decision making in this

ay is not solely data-driven or based on prerecorded knowledge

ut is enriched with mechanisms that bring together human and

on-human actors in a way that links data, knowledge and ma-

hine learning ( Fig. 5 ). 

The application environment is that of an industrial produc-

ion facility for lifts and an actual in-service operating installa-

ion. This is a representative case of a hydraulic lift that has a very

ide base of residential and office installations. Preventive mainte-

ance is performed on a monthly basis to detect failure events and

rive recommended maintenance actions. Vibration sensors are po-

itioned in two areas of interest in a lift installation, namely, at the

earing of the lift’s drive motor and at the rollers of the lift’s cabin.

he experiments focus on analysing the signals obtained from the

abin rolling wheels to infer asset condition so as to drive main-

enance actions recommendations. While automated approaches
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Fig. 5. Architecture for Linked data, knowledge, and machine learning. 
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ay succeed where data are sufficiently representative of the un-

erlying knowledge, the proposed approach mitigates risks when

his is not the case. The approach is demonstrated through an e-

aintenance platform, comprising components for machine learn-

ng, embedded event detection and diagnostics, as well as linked

aintenance knowledge management and action recommendation

 Pistofidis et al., 2012 ). 

The objective of this case study is to show how integrating

utomated processing and human-contributed observations can

e fused with established reliability maintenance constructs, such

s FMECA, to expand the capabilities of either human actors or

echnical monitoring systems operating in isolation via a joint

ociotechnical solution ( Fig. 6 ). Furthermore, it extends machine

earning capabilities by allowing HIL to contribute to the learning

rocess, enabling it to be driven not only by data but also by inte-

rating human expert knowledge. 

The design approach to HIL in this case is two-fold. First it

ims at facilitating maintenance knowledge management, includ-

ng sharing, enrichment, validation and extension of knowledge.

econd, it aims at a monitoring abstraction which can be employed

ith machine learning and HIL to deliver customisable condition

onitoring implementations able to learn not only from data but

lso from HIL involvement. This is presented in more detail in the

ext sections. 

.2.1. HIL for knowledge enrichment in maintenance within 

roduction 

A key addressed challenge is to design a metadata management

ystem (MMS) that binds the semantics of sensor events with ref-

rence diagnostics for failure modes. The linking process includes

uman experts in the loop, utilising and progressively enriching
he backbone of an FMECA study with input from both the techni-

al system as well as maintenance personnel. Originating from the

mart sensors that populate the edge IoT tier of the architecture

 Fig. 7 ), sensor events represent an asynchronous flow of informa-

ion that signals events of interest, which may correspond to the

dentification of known and novel states. 

These events are handled by services that examine whether

ailure events are currently linked with the triggered states. Appro-

riate input is then produced through the use of semantic annota-

ions that characterise failure events as either ‘confirmed’ or ‘False

larms’. Human experts are alerted to intervene when novel events

r events linked to failure modes are detected. Both processes, ie

utomated and human-triggered data tagging, produce semantic

ata annotations, ie metadata. Overall, the produced timelines of

emantic annotations is collaboratively driven jointly by smart sen-

ors and human experts ( Fig. 5 ), but the latter occur at a different

ime scale compared to automated alerts. Risk quantification for

onitored machinery and infrastructure is pursued through Risk

riority Number (RPN) evaluation, as in a typical FMECA study

RPN = Severity X Occurrence X Detection) but the estimation is

ow influenced by the joint action of the technical and human ac-

ors of a sociotechnical system. 

The methodology encourages human involvement to provide di-

ect feedback and event validation. This is achieved by simplify-

ng human feedback, empowering staff to participate in knowledge

ows with minimal, intuitive and natural interfaces. Such a process

s more likely to secure staff participation, offering a more famil-

ar input pattern that has been for years now driving the analytics

f enterprise social networks (tags, ‘likes’, and short messages). It

s a pattern that seeks to aggregate a large volume of concise in-

uts into a knowledge building process that invests in collecting
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Fig. 6. HIL and cognitive capabilities in machine learning for decision making. 

Fig. 7. Functional view of the design for human in the loop knowledge enrichment. 
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Fig. 8. A causal semantic graph of events. 
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1 www.mimosa.org . 
wift evaluations over the validity and quality of given information.

n this approach, it is less important to provide a higher quality

tarting knowledge (initial version of an FMECA study), and more

mportant to provide the context, the semantics, and the tools to

reate a virtual collaboration infrastructure to assess its validity,

cceptance and connection to practice. It is exactly this collabo-

ation, driven by short swift evaluations (maintenance tags), that

llows the human to actively contribute in a knowledge validation

oop. The FMECA study is the reference knowledge baseline. But

t is not static and its enrichment, evolution, and validation can

e triggered as a product of consensus and fusion from a larger

roup of technical staff and experts. To secure the quality of this

nput and furthermore manage the complexity of multiple simi-

ar contributions, user roles and votes are employed. Only specific

oles can facilitate tags and votes, including experts that partici-

ate in the FMECA review team and maintenance engineers with

trictly defined function domain. Every contribution is logged and

hen reviewed (FEMCA review) should be backed with evidence

condition monitoring history). This FMECA update comprises cor-

ections, proposed extensions, and builds the enriched evidence to

ack them up. It is not automatic but is triggered by the joint ac-

ion of the technical and human actors. 

The design approach in this application case delivers a so-

iotechnical tool that provides access to services that offer: (i) a

hop-floor contextualised FMECA study; (ii) a streamlined review

ollection process; (iii) and a filtered view of human and non-

uman actors’ annotations. Current IoT and cloud – oriented pat-

erns and technologies (micro-services, Node.JS, MongoDB) were

mployed in the tool design and implementation, but two specific

esign aspects are highlighted next, as they define the two key

erspectives of how HIL functions in this application case are: (a)

upervising and tracking the enrichment and versioning of knowl-

dge and (b) encouraging personnel to collaborate and share expe-

ience and critical thinking over working practice experience and

stablished knowledge. 

.2.1.1. Data provenance. A timeline of events can reveal patterns

hat impact on maintenance diagnostics and risk assessment. Each

ntry in a maintenance system is time-stamped and all actions are

ogged. Data Provenance refers to the ability to trace and verify

ata creation, and, in our case, failure evaluations and important

ensor events, in the form of maintenance metadata. Provenance

f such assessments can identify patterns that depict asset reliabil-

ty and may offer hints for risk analysis. Therefore, adding a meta-

ata layer on top of sensor and reliability data further enhances

rovenance by collecting the evidence of a validation loop. Pop-

lating this layer and driving this loop, human observations and

achine generated events, produce metadata, adding background

nowledge and evidence to support an FMECA review. 

.2.1.2. Context sharing. Social networks or social-network inspired

eatures are increasingly included in enterprise communities and

ollaborative environments. Professionals are becoming familiar

ith such features in standard social networking context and can

enefit from their inclusion in enterprise environments, allowing

hem to offer their input or annotate the input of others, at a real-

ime manner and with many sharing options. More specifically, in-

ormation and features such as ‘voters’ and ‘votes’ stimulate vir-

ual interaction and conduct a social contextualisation of shared

ontent. Instead of long forms for reporting, the proposed method-

logy employs minimal input via customisable maintenance tags

ith voting options. This is no substitute for FMECA revision de-

isions, but allows the accumulation of evidence and capturing of

bservations and knowledge from personnel. If not enough meta-

ata are clustered around a specific failure event, a single ob-

ervation or sensor event is less likely to trigger the appropriate
e-evaluation during the FMECA review process. Votes are an ex-

ra context sharing feature that enables personnel to actively con-

ribute to a crowdsourcing and sharing of observations, evalua-

ions, and sensor events. 

Comprehending the role of metadata and annotations as units

f risk-oriented maintenance knowledge can be more effective

ith a tool that manages them on top of a widely accepted knowl-

dge backbone, namely the FMECA study. The swift capturing and

haring of such maintenance knowledge by personnel, together

ith data and events produced by the technical system, leads

o an incrementally enriched version of FMECA. This is a princi-

le similar to crowdsourcing intelligence in recommender systems,

hereby the users’ collaborative contribution is exploited. Leverag-

ng upon one of the most significant enterprise assets, namely the

uman factor, is the key to facilitating more effective knowledge

ows within the enterprise. 

With increasing adoption, Linked Data have introduced for-

alisation frameworks and technologies that can efficiently in-

tantiate knowledge representations. Such frameworks can employ

nnotation for tagging important content. Supporting technologies

rovide metadata contextualisation using widely established data

onstructs. The amalgamation of relevant knowledge, data, and an-

otations define the Failure Context as the confluence of factors

ontributing to the occurrence of a failure. In other words, the

ailure Context holds the combined knowledge relevant to the oc-

urrence of a failure mode and the assets-specific time-relevant

eedback of maintenance practice. Building upon the established

emantics of an FMECA study, this design provides the means to

ormalising and instantiating this context. Adopting structures and

omponents from the established MIMOSA schema, 1 the FMECA

odel is customised to empower the creation of an event map

 Fig. 8 ). 

This map is a semantic graph where Failure Events act as the

ore nodes. Implemented as a distinct set of semantics, Mainte-

ance Tags are used to annotate core or supporting nodes and thus

eport why, how and when a failure event occurs. The initial ver-

ion of this graph is created as the product of the very first FMECA

tudy completed by the appropriate team of experts. As dictated

y common practice in reliability engineering and risk analysis, an

MECA study is followed by scheduled reviews and evaluations.

he sociotechnical system approach introduced in this paper en-

bles enhanced FMECA review and evolution, through feeding into

http://www.mimosa.org
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Fig. 9. Maintenance micro - knowledge. 
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it collective evidence from the technical and human system actors.

Information and knowledge about failure modes become increas-

ingly important, when human input (from maintenance practice)

and technical triggers (from the machine learning – enabled con-

dition monitoring system) repeatedly validate known and reveal

new connections (causality links) between them and other events

and failure modes. The collected input is a distinct second layer of

knowledge, above and directly linked to FMECA (metadata). FMECA

reviews continue to be the milestones in the enrichment process,

but they can now benefit or even be triggered through this sec-

ond layer, and drive insights for the corrections and extension of

the next FMECA version, which remains the responsibility of the

FMECA team. 

The introduced model utilises MIMOSA as a starting point for

drawing a subset of its core semantics. Specifically, in MIMOSA,

failure events are denoted with the entity Hypothetical Event . In

the new model, the Hypothetical Event profile has been extended

with attributes that record semantics of occurrence and detectabil-

ity. These hold a ranked evaluation for the events’ frequency and

detection probability. Along with the inherited property for event’s

severity, these scaled attributes can drive a RPN-based evaluation.

Furthermore, acting as the building block of a growing event map,

the introduced event entity capitalizes on distinct and well-defined

recursive attributes that link events with cause and effect asso-

ciations. A “malfunction” and a “failure mode” are both types of

the event entity. Failure modes have populated causes, effects and

solutions that are associated with them. A malfunction is primar-

ily a simple event linked to a failure mode. This is a process that

gradually builds a knowledge infrastructure for an Asset Fault Tree.

Traversing such event links may facilitate a root cause analysis and

provide insights for risk assessment. 

Whenever a user is prompt for an assessment, it is practical

to provide a starting reference point, FMECA knowledge in this

case. In the present design the referencing dynamics of ‘ mainte-

nance tags ’ are employed to create metadata that bind users’ feed-

back with FMECA knowledge. Instead of the simple string tags,

commonly used in the context of semantic web, the present de-

sign employed class-types of review assessments, which acquire

added value when coupled with FMECA content. Each tag has a

straightforward use and annotation purpose that is defined by its

tag template. The default set of tag templates is configurable and

extendable. Only specific roles (e.g. roles with FMECA review au-

thorization/‘ facilitator ’) can create, modify and adjust the type and

purpose of tag templates. The ability to extend and map the en-

richment process often resides in the skillset of experts that clearly

understand the scope, depth and purpose of the annotated knowl-

edge. An experienced engineer can be trained to translate new

maintenance goals and policies into meaningful tags that create

new actionable semantic links. 

A tag instance is the modeling entity for maintenance meta-

data. Every annotation action creates a tag instance. Each instance

constitutes a timestamped unit of maintenance knowledge. Tag in-

stances are shared and can be searched or filtered by users. Their

knowledge can be further enriched with tag votes (declaring agree-

ment) and tag mini-forms (additional feedback). These are termed

as Maintenance micro-Knowledge ( Fig. 9 ). 

The enriched version of FMECA is essentially the content that

is dynamically tagged and identified as contextually relevant to

how real events manifested and occurred, and why specific main-

tenance solutions or diagnostic interpretations were reached. In

this sociotechnical system design, maintenance tags can be pro-

duced by both human and non-human actors. Incorporating these

two information flows with an FMECA study by translating them

into brief and accurate review annotations constitutes a simple en-

richment process that formulates a growing pool of maintenance

metadata that is natively organised and collaboratively evaluated.
his fused information pool containing enriched failure mode pro-

les and timelines of maintenance tags, can be consumed and

nalysed for mismatches, corrections and additions to be inserted

n the next version of FMECA, or help document and support crit-

cal risk assessments and maintenance plans. 

The metadata are instantiated and stored in a document-

riented database ( Fig. 5 ), allowing the creation of structured,

emi-structured, unstructured and polymorphic data. Its ability to

andle and query massive volumes of new and rapidly changing

ata types meets the design decision to allow the creation of cus-

om tags and encourage the collection of more and better orga-

ized human input. Furthermore, the implementation of the back-

nd logic is consistent with micro-services patterns, breaking the

pplication logic into smaller modules, enabling better flexibility

nd laying the groundwork for cloud compatibility. This applica-

ion case implements the concept of capturing the tacit knowledge

elevant to maintenance practice and risk assessment, while also

cting and planning upon maintenance events that can support

aintenance intelligence. It captures and transforms maintenance

xpertise into knowledge fragments that instantly link background

eliability knowledge to everyday practice, and crowdsources data,

nformation and knowledge from human and technical actors. 

.2.2. HIL in machine learning loop for asset self-awareness 

Machine learning is typically considered as an automated pro-

ess driving decision making. However, data-driven learning is of-

en inefficient in complex tasks with poorly representative data. In-

orporating HIL in machine learning is rarely considered although

t can make a real impact on real world applications, such as in

roduction environments. The design of the HIL solution in the

resent application case considers a machine learning infrastruc-

ure distributed among the edge and the web service level ( Fig. 5 ).

he web service level involves operations needed for learning to

odel the associations between signal features and asset condi-

ions and the management of all relevant operations to manage
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Fig. 10. Incremental learning of process states. 

Fig. 11. Association of failure modes with Gaussian states. 
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Fig. 12. Expert confirmation of sensor driven annotation. 
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uch processes and communicate results. These operations employ

achine learning, inclusive off a human feedback loop for states

etected as novel or for validation ( Fig. 10 ). The edge implementa-

ion includes sensor data acquisition, feature extraction, as well as

ovelty detection and classification of sensed data to asset condi-

ions and is described in more detail in the next section. 

Numerous approaches have been developed to model changes

n system states, identify current states, and predict future ones

or different prognostics purposes ( Lee at al., 2014 ). The implemen-

ation in the present research adopted the parametric family of

aussian Mixture Models (GMM) for modelling the failure modes.

MMs belong to the parametric family of multivariate Gaussian

ensity function, which can be combined with Bayesian statistics

o make statistical inferences regarding the failure modes. 

GMMs can be utilised to approximate an arbitrary distribution

ithin an arbitrary accuracy. For the Gaussian density function, it

uffices to calculate from the feature data points the mean vec-

or and the covariance matrix. In order to keep the implementa-

ion simple, the choice made is to relate each failure mode to a

umber of Gaussian components/states that result from the train-

ng data collected during the operation of the system. Fig. 11 shows

 user interface from the implementation example where a user

an effect the above association. This view displays the associa-

ion of a failure mode with a set of model states from specific sen-
ors. This association is performed off line and failure events can

e profiled by experts and linked with states. Sensor events from

he edge node, can be processed and failure events linked to the

riggered states are tagged and confirmed. Such sensor events and

uman input produce metadata and can serve as example patterns

or machine learning. Rather than relying on blind data-driven only

earning, this effectictely constitutes an incremental, HIL-enabled

earning process. 

For the calculation of the covariance matrix the Minimum

ovariance Determinant (MCD) estimator is employed, which is

mong the robust estimators of a data set’s covariance ( Rousseeuw

 Leroy, 1987 ). In the experimental setting the feature vectors are

ets of statistical time series parameters calculated on shifted win-

ows over the sensorial data stream ( Katsouros et al., 2015 ). The

ootstrap of the system is based on a model of the normal opera-

ion mode of each asset, which is trained from feature sequences

hat have been collected from the sensor level. If there is prior

nowledge of sensorial features’ association with failure modes

hen such associations can also be included in the initialisation

f the system. The parameters of the Gaussian models are com-

unicated down to the sensor level. The embedded algorithm at

he edge node calculates the feature sequences and their degree of

lassification to each of the known states/modes. Features that can-

ot be classified to any of the known states are marked as novel. 

For states which are defined to be determined at the sensor

ode, the embedded classifier assigns readings to states for non-

ovel data. This is done by calculating an overall degree of classi-

cation, applying a Bayesian approach using the independence as-

umption for the feature data points and weighting the product

f the probabilities with the a priori probability of each state. For

ore complex states that require data from multiple sensor nodes,

he classification of the feature sequences is communicated to the

elevant web service, which assigns readings to classes in a simi-

ar manner, but for multiple feature sets from different nodes. The

eature sequences that belong to states of failure modes will trig-

er alerts, drawing attention for human intervention. In the case

here the event is related to an existing failure mode, the web

ervices use maintenance tags to report it and the human expert

ay verify the event or raise doubts about it, potentially as a false

larm not related to the failure mode ( Fig. 12 ). 

Maintenance events or alerts can be issued by technical (non-

uman) or human actors ( Fig. 5 ). Alerts related to detected novel

vents correspond to events that are not classified in any of the

nown states, ie normal conditions or failure modes for which rep-

esentative data are available. Such novel data are stored in order

o be examined at a later stage by a human expert. These may



260 C. Emmanouilidis, P. Pistofidis and L. Bertoncelj et al. / Annual Reviews in Control 47 (2019) 249–265 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m  

q  

f  

b  

r  

c  

m  

p  

m  

s  

h  

r  

r  

p  

c  

d  

c  

p

 

w  

u  

N  

w  

Z  

c  

t  

o  

c  

r  

a  

t  

n

 

e  

I  

a  

o  

b  

t  

i  

“  

v  

I  
represent a new state that is extending one of the known condi-

tions. Alternatively, they can be related to a new failure mode. In

the latter case the human expert has to update the knowledge base

with the new failure mode and relate this mode to the relevant

sample data, so as Gaussian models can be built on the basis of the

related feature sequences. This is an example of machine learning

wherein human input is a significant part of the learning process,

playing a role that is very hard to be replicated by automated ma-

chine learning. Such HIL in the machine learning loop can there-

fore have a positive impact on enhancing data value chains from

the edge to the cloud. The next section presents an edge imple-

mentation that benefits from and makes use of HIL in machine

learning. 

4.2.3. HIL for IoT-driven event detection 

The edge implementation for IoT-driven event detection is

directly benefitting from the HIL of the machine learning process

described in the previous section, as the human interaction en-

ables the association of sensed data and features to states. State

models are then downloaded to the embedded device to drive

edge analytics for event detection and diagnostics. The parts of

the machine learning for novelty detection and diagnostics that

have been assigned to execute at the edge of the system, close

to the monitored resources, were implemented using a range of

embedded devices of different capabilities, interconnected under

a wireless sensor network of heterogeneous IoT technologies.

HIL contributed knowledge, such as the association of failure

modes and machine states is effectively driving the embedded

node operation. The overall implementation was integrated within

an e-maintenance platform ( Pistofidis, Koulamas, Karampatzakis,

Papathanassiou, & Centre, 2012 ), while the algorithmic implemen-

tation described in the previous section ( Katsouros et al., 2015 )

can trigger production process adaptation driven by IoT-captured

failure events ( Alexakos, Anagnostopoulos, Fournaris, Kalogeras, &

Koulamas, 2017 ). 

The implementation over diverse hardware platforms and tech-

nologies is indicative of the wide range abstraction possibilities,

making the approach appropriate for serving very diverse require-

ments. The versatility of the approach is also evident via the ap-

plication layer connectivity, which is offered through RESTful Web

Services, 2 implemented using JSON 

3 over HTTP 4 or CBOR 

5 over

CoAP. 6 These services allow accessing the sensor nodes directly or

through the appropriate gateways, depending on the sensor node

capabilities. All sensor nodes execute sampling, storage, feature ex-

traction, classification and novelty detection services, with their

operation externally controlled through a well-structured set of re-

source URIs, accessed through HTTP or CoAP GET/POST/PUT REST

operations. Key resources include: 

• /info : This is a set of implementation dependent non con-

figurable parameters (basic buffer size, maximum number of

buffers, the maximum number of sliding windows for the ac-

quired signal processing, supported sampling rates and maxi-

mum number of supported state descriptions). 

• /config : The novelty detection engine configurable parameters

(sampling rate, sliding windows size and step, sample scaling

factor, monitoring period). 

• /stateset : A set of configurable parameters, ie state descrip-

tions and thresholds over which the distances of the calculated
2 https://en.wikipedia.org/wiki/Representational _ state _ transfer . 
3 https://en.wikipedia.org/wiki/JSON . 
4 https://en.wikipedia.org/wiki/Hypertext _ Transfer _ Protocol . 
5 https://en.wikipedia.org/wiki/CBOR . 
6 https://en.wikipedia.org/wiki/Constrained _ Application _ Protocol . 

o  

c  
feature matrices are compared in order to generate a novelty

event; these can be ‘learned’ following the previous section’

process and downloaded to edge device. 

• /event: This is the observable resource of the last event trig-

gered by the node, modelled through a structure that is sent

to the upper software layers, periodically, on-demand or when

an alert is triggered by the novelty detection mechanism. It en-

capsulates the whole feature-extraction, novelty detection, and

classification process chain. The novelty detection implementa-

tion can instantiate and selectively return either only a Boolean

result of a novel state, that is a calculation window with fea-

tures distance higher than the configured threshold from a

known state; or, additionally, all feature values for the window

and the distances from all known states, quantifying dissimilar-

ity. 

According to the application requirements, there are different

easurement classes in terms of sensing elements and relevant

ualities. Low-end specification correspond to simple scalar values

rom temperature sensors with limited requirements for sampling

andwidth and processing. These can be sufficiently supported by

esource constraint embedded devices and low bandwidth proto-

ols for IoT networking. At the high-end there are high quality,

ultiaxial vibration monitoring requirements that may pose higher

ower and processing resources requirements, so as to manage

ore complex data streams and interfacing to industrial grade IEPE

ensors. In between, there can be mid-range nodes that can still

andle series and vector measurements but with lower sampling

ates and accuracy needs. These nodes may be supported by mid-

ange hardware regarding analogue and digital data acquisition,

rocessing power, flash and RAM space for data acquisition, pro-

essing, storage and radio communication transmission. The edge

esign abstracts and supports all the above requirements specifi-

ations and a broad range of heterogeneous sensor nodes was im-

lemented, covering the whole capabilities spectrum. 

Specifically, at the lowest end, the embedded detection engine

as realized with off-the-self hardware components and widely

sed IoT operating systems such as the TelosB/TinyOS platform, the

XP Jennic platform over its own API and over the Contiki OS, as

ell as the PrismaSense development kit platform and API, using

igBee, 6LoWPAN and raw IEEE802.15.4 protocol stacks. In these

ases, the REST resources were accessed through custom gateways

ranslating JSON/HTTP requests into binary commands transferred

ver the aforementioned wireless protocols, as device capabilities

ould not support complex application layer protocols. At the mid-

ange level, a special resource constraint embedded node was cre-

ted based on a two processor board system structure, separating

he application from the communication processor, coupled with a

umber of exchangeable sensor interface boards. 

The sampling, signal processing and detection components ex-

cute on a Freescale FRDMK64F embedded board, while a full

oT networking stack, based on an IEEE-802.15.4 wireless interface

nd the IPv6, RPL 7 CoAP and CBOR components, is implemented

n the CC2538 based Openmote board ( Fig. 13 ). These nodes can

e accessed either directly through CoAP or indirectly though

he HTTP/CoAP gateway, according to the resource URL structure

n the configuration database, separating the access (“http://” or

coap://”), node FQDN 

8 and resource path. Finally, the high end

ector sampling requirements and the support of industrial grade

EPE vibration sensors have been covered by a sensor node based

n the DT9837B USB acquisition system from Data Translation,

ontrolled by an embedded PC or tablet device which provides
7 https://tools.ietf.org/html/rfc6550 . 
8 https://en.wikipedia.org/wiki/Fully _ qualified _ domain _ name . 

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/CBOR
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://tools.ietf.org/html/rfc6550
https://en.wikipedia.org/wiki/Fully_qualified_domain_name
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Fig. 13. Mid-range Embedded vibration monitoring with event detection capabili- 

ties. 

Fig. 14. High-end embedded vibration monitoring node with user interface. 
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Fig. 15. Gearbox test rig. 
he developed interfaces to the IIoT infrastructure, directly using

TTP/JSON ( Fig. 14 ). 

This IoT edge node implementation enables a monitoring asset

o exhibit self-awareness features and issue event alerts when the

rocessed sensor readings are identified either as novel or as be-

onging to failure mode states. It is part of a monitoring infrastruc-

ure that includes HIL in the definition or validation of the asso-

iation of reference readings with asset conditions. This HIL inter-

ction leads to an incremental machine learning approach, grad-

ally building a more complete learned model over time. While

art of this application example focused on HIL in machine learn-

ng for asset self-awareness and monitoring, the next application

ase utilises monitoring in a different context, linking maintenance

rocesses in a PLM context with visual analytics. 

.3. IoT enabled visual analytics for linked maintenance and PLM 

PLM tools already offer context-adapted product views enabling

 user to view product representations, data, and information rel-

vant to different lif ecycle phase activities. However, user interac-

ion in the data analysis loop could further benefit from due con-

ideration of human cognitive capabilities to ensure a close in-

egration of HIL in PLM activities. Visual analytics embed visual

emantics in data representations, thereby employing simple but

ognitively powerful means to better engage the human cognitive

apabilities. In PLM activities, a user does not simply need to share
roduct lifecycle data, but would benefit from doing so via visually

nriched product views, which is the focus of the application case

resented in this section. 

.3.1. HIL for IoT driven visual analytics 

Considering that the most user-friendly product representation

s a 3D product model, the key idea is to employ such a design

stage product representation together with MoL product infor-

ation, related to product condition monitoring. By superimposing

oL relevant product information to BoL product views, such as a

D product CAD model, linked maintenance data and knowledge

 Pistofidis et al., 2016 ) become visual features of a product design

epresentation, facilitating a user’s understanding of MoL concepts,

uch as the occurrence of failure modes, within a design view-

oint. Therefore, this 3D visualization becomes a natural extension

f standard analytics for monitoring data, including graphs of sen-

or readings and signal features, such as time domain and spec-

ral features. This concept of blended digital product visual analyt-

cs was applied to design a laboratory based demonstrator for IoT-

riven visual analytics. The demonstrator was developed on a me-

hanical transmission rig, comprising a lower shaft with four 42-

ooth gears, driven by a motor, and an upper shaft with one larger

2-tooth gear, which is driven by the first shaft through meshing

he upper shaft gear with any of the lower shaft gears ( Fig. 15 ).

oading conditions can be adjusted with a brake, attached to the

pper shaft, while the rotational speed is controlled by adjusting

he motor speed. The lower shaft gears are initially identical but

efects are introduced to gears 1–3, while keeping one gear in nor-

al condition for reference. The defects are intended to emulate

itting, growing from smaller scale on gear 1 to a level consistent

ith extensive spalling, causing tooth pieces to fall apart ( Fig. 16 ). 

The aim was to produce an instantiation of the concept of

inked knowledge in maintenance and PLM, with knowledge su-

erposition to product views. The rig was retrofitted with a sim-

le and inexpensive IoT monitoring arrangement and a software

emonstrator was developed to offer visual analytics features. The

im is to highlight some of the possibilities for the amplification

f cognitive abilities, which can be pursued by integrating this

ype of visual analytics with more conventional condition moni-

oring and PLM activities, as summarised in Fig. 17 . For example,

nteraction and communication capabilities are offered through vi-

ual interfaces. Monitoring outcomes are communicated both via

 3D asset representation as well as standard signal graphs. The
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Fig. 16. Defect introduction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Experimental setup arrangement on the gearbox test rig. 
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understanding of the situation by the user is aided not only by the

conventional visual representations of monitored signals but also

by superimposing the outcome of a detection mechanism to a 3D

product representation and by highlighting in different colour parts

that are considered to be developing a fault condition and there-

fore should be subject to further attention. This makes interaction

and focus of attention more intuitive for the user. 

4.3.2. Demonstrator of IoT-driven visual analytics 

A low cost IoT – enabled monitoring solution, implementing

data acquisition and basic diagnostics, was introduced for this ap-

plication case. Rather than developing a thorough engineered solu-

tion, the demonstration objective focused on instantiating the basic

data process chain for the blended digital product visual analytics

concept. This process chain comprises 

– data generation process, via a prototype data acquisition. 

– a data processing stage, wherein acquired data are converted to

monitoring parameters. 

– a basic diagnostic stage, wherein acquired parameters are trans-

lated into asset conditions. 
Fig. 17. HIL in visual analytics for condi
– blended visual analytics, jointly handling MoL data (e.g. diag-

nostics) with BoL (3D product model) product views. 

The data generation process was implemented through an Ar-

uino UNO board and two MPU 6050 accelerometers to capture

earbox vibration ( Fig. 18 ). While this is not a sufficient set up for

n industrially relevant solution, it is adequate for demonstrating

he proposed concept and was selected for this purpose. The data

rocessing stage was implemented on a Raspberry Pi 3 Model B

oard on Python, employing the SciPy library. This included signal

veraging and extraction of standard statistical parameters from

he acceleration signal as mentioned in Section 4.1 , forming a se-

uence of measurement vectors. A Fast Fourier Transform (FFT)

epresentation of the vibration signal is also calculated on board,

fter adequate filtering and windowing. The focus in this example

s not specifically on the condition monitoring functionality but on

ncorporating the diagnostic outputs in an environment offering a

isual analytics view of the product. Any other monitoring setup

an be incorporated instead. 
tion monitoring linked with PLM. 
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Fig. 19. Visual analytics example from the demo application. 

Fig. 20. Visual communication of measurement locations and diagnosed failure modes. 
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Reference data acquisition experiments were performed with

ifferent gear coupling setups, starting with gear without de-

ects to obtain reference data from normal operating condition.

ata were acquired with each one of the other lower shaft gears

oupled with the upper shaft gear, to obtain representative sam-

les from a gradual fault progression. The difference between ref-

rence samples from normal and progressing fault conditions were

mployed to set simple threshold levels for each one of the vibra-

ion parameters to distinguish between different conditions. More

dvanced signal processing and pattern recognition techniques can

e employed instead. However, the focus in this example is on of-

ering a visual analytics view of the product, based on the data

rocessing chain and not the exact signal and pattern analysis. 

The visualisation application was developed in the Processing

nvironment ( processing.org ), an Open Source Development Envi-

onment for Interactive Visualisation. The application presents a

ange of options for interactive visualisation. The application can

roduce reports and visual analytics graphs for the raw signal, the

easured parameters and the FFT of the raw vibration signal, as

ell as motor temperature ( Fig. 19 ). 
The comparison of threshold values estimated from reference

ata and parameters extracted from subsequent observations is

assed to the visualization layer of the application. This offers a

D model of the test rig highlighting visual features by colours,

onveying contextual meaning. For example, sensor locations are

arked in blue colour. The diagnosis outcome is communicated

y superimposing fault conditions features on the 3D CAD product

epresentation, wherein mechanical components are highlighted in

ed to indicate faulty condition. Such visual features can be seen

n an example screen captured from the visualisation application

 Fig. 20 ). 

Typical monitoring systems already convey measurement data

nd faults to users. However, blending visual features in 3D prod-

ct representations offers an additional HIL option, further aid-

ng a user to interact with product relevant data in a way rele-

ant to non-monitoring contexts, such as when reviewing historical

ata and FMECA knowledge ( Pistofidis et al., 2016 ). In this applica-

ion case a user interacting with the application is able to access

aintenance linked knowledge which is naturally more actionable,

s it is shared in a contextually relevant way. As an example, a

http://processing.org
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user handling FMECA knowledge is supported with visual features

to understand the context of timelines of knowledge-rich events,

and is thereby better aided to perform a FMECA revision cycle

( Pistofidis et al., 2016 ). The use can switch faster between differ-

ent product, knowledge, and measurement views, making the re-

view of relevant history data, events, and FMECA knowledge more

directly actionable. Thus, a design-stage tool, namely FMECA, is

looked upon together with MoL data and disseminated in visually

relevant ways, contributing to upper layer context management, ie

context dissemination ( Perera et al., 2014 ). 

5. Conclusion and discussion 

This paper makes the case for more efficient integration of hu-

man and non-human actors in sociotechnical systems. It argues

that for the potential added value of bringing together human and

non-human actors to be amplified, research and development solu-

tions are required to allow not only a mere physical and technolog-

ical integration, but to identify also ways of creating seamless data,

information, knowledge, and decision flows. To address such needs,

this paper introduced novel concepts, methods, and tools for en-

abling the engagement of human in the loop of sociotechnical sys-

tems. Seeking to make such HIL integration more effective, the

adopted approach takes into account what makes a human actor

unique, namely human cognitive capabilities, and sought to align

developed methods and tools with such capabilities. Linked with

such cognitive capabilities are some key design aspects of technol-

ogy enablers introduced in this paper, including HIL for linked data

and knowledge, HIL in the machine learning loop, and human in

the loop of Visual Analytics. The research reported in this paper

applied such concepts to application cases relevant to production

environments, which had some common condition monitoring el-

ements but different functional requirements and technology im-

plementations. 

The key aim of the application demonstrators was to show how

some of the key underlying concepts for HIL integration in CPS are

served by bringing together key Industry 4.0 technologies, such as

Internet of Things, Visual Data Analytics and Machine Learning in

asset and product lifecycle management application contexts. At

the lower end of an IoT architecture, this paper introduced an ex-

ample of an abstract IoT edge node design, which can support self-

awareness of connected assets, while benefitting from HIL interac-

tion in machine learning. In order to highlight the versatility of the

approach, the abstraction architecture was instantiated with differ-

ent hardware and software implementation options, covering low,

mid, and high end requirements. At the level of human interaction

with technical systems, the proposed concepts were mapped into

designs and application demonstrators for enabling cloud-oriented

implementations of metadata management and visual analytics,

bringing together data, annotations, and knowledge relevant to the

roles of such actors in production environments and in asset and

product lifecycle management. 

The presented research contributes to a growing body of litera-

ture on sociotechnical industrial environments. Further research in

a number of directions to unlock more intelligent capabilities, as

well as to increase adoption and improve performance in industrial

sociotechnical environments is needed. The usage of knowledge

graphs needs to be further formalised and supported by methods

and tools to manage the evolution and reorganization of their con-

nections and the learning of their association strengths. Appropri-

ate semantic modelling needs to target both broad and application

specific contexts and drive context reasoning. Furthermore, con-

text modelling and reasoning need appropriate methods to man-

age evolving contexts, based on learning from actual human and

non-human actors interaction, so as to meet not only the typical

challenges in big data environments, but also feature additional
apabilities for handling also human-contributed micro-knowledge.

hile machine learning approaches can be very effective in rela-

ively well defined problems, or in cases where there is a wealth of

ata, production environments often suffer in both aspects and ef-

ective methods for HIL in the machine learning loop for such real

pplication problems need further research attention. The effective

ntegration of human cognitive capabilities in technical environ-

ents is still a long way off from delivering sociotechnical system

ith integrated cognitive capabilities and further studies need to

ocus on such aspects of technology enabled future cognitive fac-

ories. 

Ultimately, successful integration of human and technical sys-

ems depends not only on unlocking new capabilities and improv-

ng performance, but also on the acceptance and adoption of the

ffered solutions in sociotechnical systems. This produces a need

or introducing performance criteria and metrics, as well as con-

ucting research for understanding the underlying factors that can

ontribute to improved success and adoption of Industry 4.0 so-

iotechnical systems. While technology enablers will be gradually

aturing, non-technological barriers would still need to be ad-

ressed. This paper focused on the development of methods and

ools that address functional requirements in such environments.

owever, non-functional features, related to security, ethics, and

rivacy, deserve much attention, in order to make any such solu-

ions acceptable to industry. 
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