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Abstract—Aveillant Ltd has developed a staring L-band radar

that deploys a static quasi-monostatic antenna in transmission
and a static digital phased array on receive capable of generating
multiple simultaneous beams. Because the antenna is not rotating,
the radar can stare at targets and select long dwell times
with no effect on the scan rate. High Doppler resolution can
be achieved and used to detect small targets, such as drones,
even in heavy clutter. Despite the staring array, targets moving
with a variable radial velocity generate echoes with a time-
varying Doppler frequency shift that limits the integration gain
achievable with standard Fourier Transform based techniques. As
a result, the number of pulses can be integrated remains limited
to the effective coherent processing interval with a consequent
suboptimal Signal to Noise Ratio (SNR).
This paper presents the results of a set of simulations aimed
at studying the integration gain efficiency of a staring radar of
the type of the Aveillant Holographic radar for targets moving
with a constant and non-constant radial velocity. The case of a
target flying horizontally with respect to the radar boresight
is investigated to show that compensation techniques can be
potentially employed to maximise coherence on the target and
the resulting integration gain.

I. INTRODUCTION

Traditional scanning radars use a rotating antenna that
combines a transmitter and a receiver. As they rotate, transmit
and receive they are able to capture returns from objects for
only a limited period of time. The total time the radar spends
on a target (time on target or dwell time) is the result of
a trade-off between the desired Doppler resolution and the
total time to scan the scene under surveillance. To increase
the Doppler resolution, that is the capability of the radar to
resolve targets with different speeds, a longer dwell time on
the target is required but, if the radar spends a longer time
in every directions, the time it takes to scan all directions
increases. The resulting compromise is that, on average, only
approximately 1% of each scan is spent on a target and the
radar cannot differentiate between different types of moving
objects.

The 3D Holographic radar developed by Aveillant Ltd is a
staring radar that uses a different solution. The radar deploys a
static quasi monostatic transmitting antenna and a staring array
on receive that can continuously receive echoes from targets
in the radar beam (about 100% of the time). Element level
digitalisation permits the provision of multiple simultaneous
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receive beams under design control and with a near continuous
refresh rate. This configuration enables the sensor to achieve
wide angular coverage without the need to rotate the antenna.
The solution of using a separate wide-beam broadcasting
transmitter allows 100% time on target and provides a real-
time, three-dimensional surveillance of the airspace. The radar
provides a significant amount of information on the object
and so can create a signature that can be characterised and
identified. As the sensor is able to continuously stare at the
target, the Doppler resolution is very high and can be used to
measure and exploit the target micro-Doppler signature char-
acteristics [1]. For applications of Air Traffic Control (ATC),
the continuous dwell on the target and high Doppler resolution
are exploited to fine tune post detection filter processes that
reject false alarms and preserve only detections from genuine
aircraft [2].

Despite the very long illumination time provided by staring
radars, standard Fourier based integration techniques rely on
the assumption of a constant radial velocity component and
hence a constant frequency Doppler. As a result, the coherent
integration time is limited by the target trajectory charac-
teristics, even when the target response remains correlated.
Classical detection techniques require the use of a large bank
of filters which may be difficult to implement in practice ( [3])
and hence research looking at how targets can be focused for
improved detection is attracting significant interest.

This paper presents an analysis of the integration gain effi-
ciency of traditional signal processing based on Fourier tech-
niques for a staring radar. The results of a set of simulations
with targets moving with a constant and non-constant radial
velocity and for a Gaussian target response characterised by an
autocorrelation function that decays exponentially with time.
The model for a target flying horizontally with respect to
the radar boresight is investigated to show that compensation
techniques can be potentially developed and employed to
maximise the resulting integration gain.

II. THEORY

Let us consider a transmitted staring radar signal of ampli-
tude Ar centred around a carrier frequency fy of the form

s7(t) = Agp(t)es2fot (1)
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with p(t) being the complex envelope of the transmitted signal
of unit energy.

The echo produced by a moving target received by the n-th
antenna element of the receiving phased array is an attenuated
and delayed replica of the transmitted signal

Sn(t) = Bﬁ(t - Tn(t))e_ﬂ”f‘”"'(t)eﬂ”fot )
where R, (t R Ry (t
c c c

with R, ) and R;(t) being the distance between the target
and the n-th receiving element and between the transmitter
and the target, respectively.

A target moving along Line Of Sight (LOS) with constant
radial velocity V,. at a distance from the radar much greater
than the antenna size can be described the dynamics equation

Ry (t) = Rno +2Vit 4)

where R, 0 = Ryn(0) + R:(0) is the target bistatic range
at t = O relative to the receiving n-th element. The resulting
echo time delay is

2V,

2V,
t=7,(0) +
c

RmO ¢ (5)
C

Tn (t) = -

After replacing Eq. 5 in Eq. 2 the target echo can be expressed
as

. 2V,
sp(t) =0bp —

C

(t -0 t) eI 0T () g =2m o 5E i fot

(6)

which after down-conversion becomes

(t o (0) — QVTt) =32 fora(0) gi2nfot (7

50 (t) = b .

where f; = —fo QZT

by the target.

Narrow band signals satisfy the inequality % < % and, as
a consequence, the time compression of the complex envelope
can be neglected to obtain [3]

() = ~15 (t — 7,(0)) e 927 foTn(0) i27 fpt

is the Doppler frequency shift induced

®)

Finally, the total echo signal after beamforming with an
array consisting of N x M elements with weight w,, is

NxM

Sr() = > wadn(t) 9)

For a pulse radar with Pulse Repetition Interval (PRI) T, the
complex envelope of the transmitted signal can be written as

(10)

and Fourier based techniques, such as range-Doppler maps, are
used to compensate the Doppler term of the received signal
and provide optimal coherent integration.

When the target is moving with a variable radial velocity v(t),
the target dynamics are such that

R(t) = Ry + fot v(u)du

11
R'rn (t) - an,O + fg v(u)du ( )
and the target echo delay becomes
) t
Ta(t) = 7,(0) + E/ v(u)du (12)
0

A possible solution is to approximate the radial velocity with
a Taylor series expansion as

n

o(t) = v(0) + o' (0)t + v”(O)g 4o+l

n! (13)

In this case, the backscattered signal under the narrowband
approximation is

(1) = b (t — 74 (0)) €20 (O) =32 (O

20(") (0)¢n+1
c(n+1)!

(14)
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x e~I2mfo X .. Xe
Because of the phase high order terms, it is not possible
to achieve full integration with a typical Fourier Transform.
These terms induce a temporal steering vector mismatch
which against standard Doppler processing result in a loss
in integration and hence a loss in detection performance. To
solve this issue, techniques to detect and estimate signals with
a polynomial phase may be applied as those developed in [4]
[5].

It can be shown that the phase history of a target moving
horizontally and perpendicularly to the radar boresight is
quadratic. In this case a simple compensation technique can
be implemented to achieve the same SNR as for the case with
constant radial velocity .

III. SIMULATION RESULTS

A set of simulations was carried out to study the integration
efficiency of a staring radar of the type of the 3D Aveillant
Holographic radar for ideal and partially-correlated point tar-
gets moving with both constant and non-constant radial ve-
locity. The transmitting antenna was simulated as an isotropic
element with phase centre located in the origins of a Cartesian
reference system, whilst the receiver was implemented as a
4% 16 receiver array of ideal omni-directional elements spaced
of % For all simulations, the distance between the target and
the radar was much greater than the size of the receiving array.
The radar transmit signal was a linear chirp

. t
p(t) = ™ rect { } (15)
Te
where .
1 <t
2= 2 2
rect [TJ o { 0 elsewhere (16)

with chirp rate %, pulse width 7. and bandwidth
B.. The target was modelled as ideal point target with a
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Fig. 1. Integration efficiency for a stationary target.

complex Gaussian response b de-correlating from pulse to

pulse exponentially as
E {E*(/c + 1)B<k)} = g2eBIKIT (17)

Table III contains the main parameters of the simulations. The

Signal to Noise Ratio (1 pulse) SNR 30 dB
Carrier Frequency fo 1.2 GHz
Pulse Repetition Frequency | PRF=1/PRI | 7.2 kHz
Pulse width Te 30us
Chirp Bandwidth B 3MHz
Sampling Frequency fs 45MHz
Range R0 1500m
Target Velocity Vr 50 m/s
TABLE

SIMULATIONS PARAMETERS.

processing consisted of the following steps:

o simulating the transmitted and received signals at each
element;

« modelling the noise as a complex circular white Gaussian
random process with Power Spectral Density (PSD) to
achieve the desired single element SNR (30 dB);

« modelling the target as a fluctuating target with response
b;

o compressing the received signal with the matched filter;

o implementing the digital beam forming;

o computing the discrete Fourier transform (DFT) of the

slow-time data sequence;

« averaging 100 Monte Carlo simulations;

Fig.1 shows the SNR after integration versus the number of
transmitted pulses NV, and for different values of the parameter
B* = BT for a stationary target. As expected the SNR for 1
pulse is the sum between the SNR at each element (30 dB)
plus the beamforming gain (10log,,(M x N) = 18 dB). The
ideal gain and the average gain relative to 8* = 0 (completely
correlated target) equals 10log,, Np leading to the highest
SNR of 81 dB for 2048 pulses. As expected, the higher 5*
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Fig. 2. Range Doppler map for a target moving with constant radial velocity.
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Fig. 3. Integration efficiency for a target moving with constant radial velocity
after Fourier processing.

the faster the target decorrelates and the lower the gain.

Fig. 2 shows the range Doppler map for a target moving
with a constant velocity of 50 m/s obtained by integrating
N, = 2048 pulses and Fig. 3 the values of the SNR versus
the number of transmitted pulses /V,,. Results are relative to a
case when the normalised Doppler frequency exactly matched
a DFT frequency bin, that is no straddle loss was present. As
expected, in this case, range Doppler processing provides a
perfect compensation of a constant Doppler frequency shift
and after Fourier processing the results are equivalent to those
of the static target. The range Doppler map relative to a
target moving perpendicularly to and crossing the antenna
boresight is shown in Fig. 4. In this case, the target radial
velocity varies with time and the target Doppler shift spans
a bandwidth consisting of positive and negative frequencies
that cannot be compensated with standard Fourier Processing.
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Fig. 4. Range-Doppler map before compensation for a target moving
perpendicularly to LOS.

Range Doppler matrix with compensation

10000
9000
8000 ’
7000 )
6000
5000 -
4000
3000 ‘
2000 )
1000

-2000 -1000 1000 2000 3000
frequency (Hz)

Range (m)

o

-3000

Fig. 5. Range-Doppler map after compensation for a target moving perpen-
dicularly to LOS.

Results show a loss of approximately 35 dB. Compensating
the quadratic phase term produces the results in Fig. 5 for
which the maximum SNR is retrieved.

IV. CONCLUSION AND FUTURE WORK

This paper presents results to investigate the integration gain
efficiency of staring radars that provide a significantly longer
integration time than conventional rotating radars. Results are
presented for the case of a target moving with constant radial
velocity and for a target moving with non-constant radial
velocity to show that, when the target Doppler shift varies
as function of time, classical Fourier based techniques fail to
provide optimal integration. The case of a target crossing bore-
sight is studied to demonstrate that compensation techniques

can be potentially employed to maximise SNR. Results are
also shown for a partially-correlated target to emphasise the
role played by the target response coherency and to show that,
despite any possible compensation of phase terms deriving
from the target trajectory, integration losses will occur also
because the target response decorrelates.

Future work will focus on a detailed study of these technical
challenges through the analysis of real data. Research will
look at adapting and applying signal processing techniques,
such as track before detect [6] and focus before detect [7]
[8], to staring radars and at developing new solutions that can
provide a complete exploitation of the staring radar dwell time,
with a consequent improvement in SNR, independently from
the target trajectory across the radar beam.
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